Abstract

CATD was not only adequate for analyzing the pursuit of erratically moving prey but also worked well when analyzing the pursuit of prey that remained stationary. It cannot be fully concluded that bats utilize the CATD strategy to successfully capture erratically flying prey. The angle remains relatively constant but does not exhibit a zero change in angle as by definition. The large forces experienced by the bat were seen when the bat began to rotate its body about its pitch axis or when the bat made a large turn. Moments were seen specifically when the bat began to bank into its last and final turn towards its target.; Digital recordings of three different species of bats were studied in this thesis to determine the forces and moments that were experienced throughout the bat's flight. The recordings were also studied to determine the pursuit strategies that were most effective for the bat to quickly capture its prey. A pursuit strategy is a strategic way to travel that will allow a pursuer to capture/approach their target the quickest. Therefore when a bat utilizes a particular pursuit strategy, it will adjust its position/ direction vector in a particular way that will allow it to approach its target very quickly. Data was collected directly from the video by manual collection utilizing Microsoft Visual Studio to extract frames, collect and record the data. This research was conducted to determine when throughout the flight the bat would experience significant forces and moments. The location and magnitude of the forces were reported along with an explanation of why the bat was experiencing a peak at each specific time. The forces and moments that the bat experienced thought-out the flight pursuit were calculated by relative velocity and acceleration calculations. In all four scenarios the bat experienced forces in relation to rotating its body about its center of mass. Forces were specifically seen when the bat periodically began to rotate its body before the final plunge to capture its prey. Prey avoidance and pursuit strategies were also studied and observed in this thesis which included the constant bearing and the constant absolute target direction. The intent was to determine which pursuit strategy bats use to quickly capture their prey. The constant bearing strategy is utilized to pursue prey moving along a smooth path, on the other hand the Constant Absolute Target Direction (CATD) pursuit strategy is utilized to capture erratically moving prey. For most of the bats analyzed, it was seen that the CATD strategy proved to be the preferred pursuit strategy.

Notes

If this is your Honors thesis, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Thesis Completion

2013

Semester

Spring

Advisor

Jayasuriya, Suhada

Degree

Bachelor of Science in Mechanical Engineering (B.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials and Aerospace Engineering

Subjects

Dissertations, Academic -- Engineering and Computer Science;Engineering and Computer Science -- Dissertations, Academic

Format

PDF

Identifier

CFH0004418

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

Share

COinS