A DSP Algorithm for Multi-Channel Maximum Power Point Tracking in Photovoltaic Systems

Abstract

In order for photovoltaic systems to gain acceptance as viable energy sources, they must have a sufficient life span and must be optimized to provide maximum power. In order to achieve these goals, several maximum power point tracking (MPPT) algorithms have been developed to ensure the photovoltaic (PV) system operates at maximum efficiency despite changes in temperature, shading, and age of the solar cells. However, the connection of multiple PV systems in parallel cannot be achieved using a single MPPT control due to the characteristic differences in each solar array's orientation, illumination, temperature, composition, and age. The mismatch of the individual PV systems can limit the power output and reliability of the systems, as well as reduce the expected lifetime. Multi-channel PV systems require MPPT controls for each channel, as well as communication between channels so that power extraction is shared among channels. Therefore, an algorithm is presented which includes MPPT and promotes equal power sharing between the sources and the load in order to make multichannel PV systems more robust, reliable, and efficient. The algorithm is implemented using a digital signal processor (DSP), and the validity of the algorithm will be proven using modeling techniques and through the construction of a prototype two-channel PV system. Once the viability of the two channel system has been proven, the expansion of the system to an n-channel system will be discussed.

Notes

This item is only available in print in the UCF Libraries. If this is your thesis or dissertation, you can help us make it available online for use by researchers around the world by downloading and filling out the Internet Distribution Consent Agreement. You may also contact the project coordinator Kerri Bottorff for more information.

Thesis Completion

2004

Semester

Summer

Advisor

Batarseh, Issa

Degree

Bachelor of Science (B.S.)

College

College of Engineering and Computer Science

Degree Program

Electrical Engineering

Subjects

Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic

Format

Print

Identifier

DP0021831

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

This document is currently not available here.

Share

COinS