Modeling and analysis of reverse recovery in PiN power diodes in series

Abstract

Moore's Law influences more than just the speed of the latest microprocessor. The law drives many facets of the semiconductor realm. As Moore's Law continues to prevail, switching frequencies for electronics will rise. These increased switching frequencies will cause transient losses to be augmented, especially for power electronics. However, there has been a lack of work on how to improve the most simple semiconductor power device, the PiN diode. Therefore, considerable effort has been made to reduce switching losses in modern power semiconductor devices. Power diodes are used as a building block for almost all power electronics, especially boost converters for power factor correction. The re5earch presented in this thesis demonstrates that switching losses will be reduced when a power diode is replaced by two lower voltage diodes arranged in series. One such company, Q-speed, is already implementing such a technique [l]. The company is using two fast recovery diodes on one integrated circuit. Q-speed's results were comparable to more expensive methods to reduce switching losses such as the use of exotic materials like silicon-carbide. There have been many models to date for the PiN diode, but no research ha5 been published about this innovative idea. Research gathered in this thesis from extensive TCAD simulations and experiments will enlighten the power semiconductor field to this interesting approach.

Notes

This item is only available in print in the UCF Libraries. If this is your thesis or dissertation, you can help us make it available online for use by researchers around the world by downloading and filling out the Internet Distribution Consent Agreement. You may also contact the project coordinator Kerri Bottorff for more information.

Thesis Completion

2008

Semester

Spring

Advisor

Shen, John

Degree

Bachelor of Science (B.S.)

College

College of Engineering and Computer Science

Degree Program

Electrical Engineering

Subjects

Dissertations, Academic -- Engineering and Computer Science;Engineering and Computer Science -- Dissertations, Academic

Format

Print

Identifier

DP0022278

Language

English

Access Status

Open Access

Length of Campus-only Access

None

Document Type

Honors in the Major Thesis

This document is currently not available here.

Share

COinS