Keywords

Motion sickness, Virtual reality

Abstract

The use of incremental and repeated exposures regimens have been put forth as effective means to mitigate visually induced motion sickness based on the Dual Process Theory (DPT) (Groves & Thompson, 1970) of neural plasticity. In essence, DPT suggests that by incrementing stimulus intensity the depression opponent process should be allowed to exert greater control over the net outcome than the sensitization opponent process, thereby minimizing side-effects. This conceptual model was tested by empirically validating the effectiveness of adaptation, incremental adaptation, habituation, and incremental habituation regimens to mitigate side-effects arising from exposure to an optokinetic drum. Forty college students from the University of Central Florida participated in the experimentation and were randomly assigned to a regimen. Efforts were taken to balance distribution of participants in the treatments for gender and motion sickness susceptibility. Results indicated that overall, the application of an incremental regimen is effective in reducing side-effects (e.g. malaise, dropout rates, postural instabilities, etc.) when compared to a non-incremented regimen, whether it be a one-time or repeated exposure. Furthermore, the application of the Motion History Questionnaire (MHQ) (Graybiel & Kennedy, 1965) for identifying high and low motion sickness susceptible individuals proved effective. Finally, gender differences in motion sickness were not found in this experiment as a result of balancing susceptibility with the gender subject variable. Findings from this study can be used to aid effective design of virtual environment (VE) usage regimens in an effort to manage cybersickness. Through pre-exposure identification of susceptible individuals via the MHQ, exposure protocols can be devised that may extend limits on exposure durations, mitigate side-effects, reduce dropout rates, and possibly increase training effectiveness. This document contains a fledgling set of guidelines form VE usage that append those under development by Stanney, Kennedy, & Kingdon (In press) and other previously established guidelines form simulator use (Kennedy et al., 1987). It is believed that through proper allocation of effective VE usage regimens cybersickness can be managed, if susceptible individuals are identified prior to exposure.

Graduation Date

2001

Semester

Summer

Advisor

Stanney, Kay M.

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Industrial Engineering and Management Systems

Format

PDF

Language

English

Rights

Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Identifier

DP0019425

Subjects

Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic

Share

COinS