Keywords

Microstrip antennas, Phased array antennas, Time domain analysis

Abstract

The Finite-Difference Time-Domain (FDTD) method has gained tremendous popularity in the past decade as a tool for solving Maxwell's equations. Phased Array Antennas find several applications including mobile communications ( cellular, personal communication systems and networks), satellite communications, global positioning system (GPS), aeronautical and radar systems. This dissertation describes the application of the FDTD method for calculating broadband characteristics of finite-sized phased array antennas consisting of microstrip elements fed with coaxial probes.

The characterization of such antennas is dependent upon the development of simulation tools that can accurately model general topologies including wires, dielectrics, conductors lumped elements and metallic strips. The use of these simulation tools reduces the cost and effort associated with fabricating and testing phased array antennas. The FDTD formulation is inherently broadband, very general, and easily accorrunodates arbitrary conductor geometry and dielectric configurations.

The FDTD method is implemented and applied to determine the input impedance, radiation-patterns and gain of microstrip antennas. Next, the main contributions of this work are described which include the full time-domain characterization of broadband characteristics of finite-sized phased array antennas for different scan conditions. Active reflection coeffici nt gain scan-element patterns and scanning-array radiation patterns are calculated.

Graduation Date

1999

Semester

Summer

Advisor

Christodoulou, Christos

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering

Department

Electrical and Computer Engineering

Format

PDF

Pages

212 p.

Language

English

Rights

Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Location

Orlando (Main) Campus

Identifier

DP0023929

Subjects

Dissertations, Academic -- Engineering; Engineering -- Dissertations, Academic

Share

COinS