Abstract

The objectives of this research were to quantify formaldehyde consumption due to plating and parasitic reactions and determine the magnitude and distribution of formaldehyde losses from the electroless copper plating process. Plating and rinse bath samples obtained from three electroless copper plating operations were analyzed for formaldehyde and copper in order to develop a mass balance analysis about the plating bath for periods of active production and no production. Fugitive air and stack releases of formaldehyde were estimated using emission factors developed from air sampling at the three facilities. It was determined that approximately 90% of the formaldehyde added to the plating process was consumed by some type of chemical reaction. The remaining 10% of formaldehyde represents losses from the plating operation. For the facilities with a waste plating solution stream, atmospheric losses accounted for approximately 25% of the total losses. The mass of fugitive air formaldehyde measured approximately 2.8 times that escaping through the stack. Dragout accounted for approximately 2.3% of the losses with the remaining going to the waste stream. For the facility without a plating solution waste stream, formaldehyde losses were distributed 59% to atmospheric releases and 41% to the rinse tank. Fugitive and stack releases were approximately the same at 29% of the formaldehyde losses. Formaldehyde consumption due to parasitic reactions for periods of active plating and no plating were determined for two facilities. The rate of parasitic consumption during periods of production was found to be approximately 3 times greater than that for no production. The rate of parasitic consumption was observed to increase with increasing bath temperature.

Graduation Date

1993

Semester

Summer

Advisor

Dietz, John D.

Degree

Master of Science (M.S.)

College

College of Engineering

Department

Civil and Environmental Engineering

Degree Program

Environmental Engineering

Format

PDF

Language

English

Rights

Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes.

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Identifier

DP0011932

Share

COinS