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Linear Regression with Regularization on the
Genetic Architecture of Maize Flowering Time*

Roland Fiagbe
Department of Statistics and Data Science

University of Central Florida
Orlando, United States

fiagberoland@knights.ucf.edu

Abstract—Over a century, the maize crop has been one of
the most important crop species that is targeted for genetic
investigations and experiments. One of the major experiments
that have been a topic of interest is crossing inbred lines to
produce better offspring through a process called heterosis.
Crossing the inbred lines create numerous SNP markers that
determine the time to male flowering. This project seeks to
explore the SNP markers to select the most relevant ones for
predicting time to male flowering using linear regression with
regularization methods due to the fact that p > n in our dataset.
Various regularization methods were employed and compared.
The l1-norm regularization method (LASSO) was chosen as the
best regularization method for our data.

Index Terms—SNPs, maize, regularization, crossing

I. INTRODUCTION

For over a century, maize has been one of the most
important crop species that is considered to be the target of
genetics experiments and investigations [2]. The term maize is
frequently used synonymously with corn in some parts of the
world. However, the term maize is often referred to as its plant.
Maize is one of the largest grain plants that emerged from
its wild-grass ancestors due to human agriculture intervention
[4]. There are many varieties that can be distinguished by their
physical characteristics but generally, they grow as a single-
stalk plant to approximately 8 feet tall with about 20 long
narrow single leaves.

However, maize is one of the species that are naturally
outcrossing and its genetic architecture is not different from
other outcrossing organisms like human beings [5]. Through a
process called heterosis, two inbred strains can be crossed to
produce better offspring. This process has been adapted in an
attempt to map the genetic loci but few among those attempts
came out successful [3]. Buckler et al. [2] in their paper created
a genomic map of maize that shows the combined genome
structures. Their research discovered that the difference in
maize flowering time between the inbred strains was caused
by the additive effects of many quantitative trait loci and each
of them has a minor effect on the trait [1].

In this project, due to the vast amount of SNP markers
resulting from crossing inbred lines, we want to perform
variable selection to select the more relevant variables that
contribute to the time to male flowering (measured in days)
and perform linear regression. We will perform the linear

regression with regularization due to the fact that p > n for
our dataset.

II. DATA

The data used in this project is a popular dataset from
[2] at https://www4.stat.ncsu.edu/∼boos/var.select/maize.html.
The dataset was originally provided by the Funda Ogut of
the NC State Department of Crop Science. From 25 crosses,
each with about 200 recombinant inbred lines, the time to
male flowering (dtoa) was measured along with marker data.
The dataset contains 4981 observations and 7393 variables
with some missing values. However, in the dataset, there are
7389 independent variables representing the SNP markers and
a response variable DtoA (time to male flowering) recorded in
a number of days. For the purpose of analysis, we will drop
the following variables; gene code, pop, and Entry.

III. EXPLORATORY DATA ANALYSIS

In this section, we will conduct some exploratory data
analysis to have a visual understanding of the response variable
(DtoA) and how it can be dealt with to create the best
predictive model. We begin by inspecting the distribution
of the response variable (DtoA). Table I gives some basic
descriptions of the response variable.

Min Q1 Median Mean Q3 Max

66.02 74.85 77.33 77.16 79.43 91.23

TABLE I
SUMMARY STATISTICS OF DAYS TO MALE FLOWERING (DTOA)

From the summary statistics (table I), the mean and median
are approximately equal which suggests the normality of the
response variable. However, to further visually investigate the
distribution of the target variable (DtoA), we want to look at
its histogram and Q-Q plot. Figure 1 and 2 show the histogram
and density curve and the Q-Q plot of the response. These
confirm that the variable is normally distributed and this will
work best for the linear regression model.

https://www4.stat.ncsu.edu/~boos/var.select/maize.html


Fig. 1. Histogram of the Response Variable (DtoA)

Fig. 2. Q-Q Plot of the Response Variable (DtoA)

IV. METHODOLOGY

In this project, we will employ the Regression model using
regularization (LASSO, Ridge and Elastic Net) to perform
variable selection and predict the number of days to male
flowering based on the SNP markers.

A. Linear Regression Model

The regression model assumes

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ϵ (1)

where
Y is the response variable (DtoA)
β0 is the intercept
βi is the regression coefficient associated with Xi

ϵ is the error term

The regression model is optimized by using the Least
Square Estimation to find the parameter estimates β̂i

associated with Xi.
The estimates of coefficients are estimated by minimizing the
residual sum of squares (RSS). By using matrix representation,

Y = Xβ + ϵ (2)

The least square method minimizes

RSS(β) =

n∑
i=1

(yi − β0 + β1X1 + β2X2 + · · ·+ βpXp)
2

= ||y −Xβ||2
(3)

∂RSS(β)

∂β
= XT (y −Xβ) = 0

=⇒ β̂ = (XTX)−1XT y

(4)

Now the estimated regression model is

ŷ = Xβ̂ (5)

B. LASSO

Considering the standard linear regression model (explained
in IV-A)

Y = Xβ + ϵ

and considering the fact that p > n in our dataset, the
parameters β can be estimated by the linear regression with
regularization method. The penalized regression function is
given as

β̂λ = argmin
β

||y −Xβ||2 + P (λ, β)

where P (λ, β) is a general penalty function with regularization
parameter λ. Lasso applies l1-norm penalty (P (λ, β) = λ||β||)
to regularize the regression coefficients. The lasso penalized
least squares is

β̂λ = argmin
β

||y −Xβ||2 + λ||β||1

The function is a convex optimization function and it results
in a non-linear regression problem in y. λ is the regularized
parameter (tuning parameter) that controls the amount of
shrinkage of the coefficients. In lasso, the l1-norm shrinks
redundant or less useful coefficients to zero [6].

C. Ridge Regression

On the other hand, ridge regression applies l2-norm penalty
(P (λ, β) = λ||β||2) to regularize the regression coefficients.
The ridge penalized least squares is

β̂λ = argmin
β

||y −Xβ||2 + λ||β||22

Here, λ is the regularized parameter (tuning parameter) that
controls the amount of shrinkage of the coefficients. This
method shrinks coefficients of redundant predictors towards
zero but no variable is set to zero. This shrinkage results in
biased estimates with low variance [6].

D. Elastic Net

The elastic net method is made up of a combination of lasso
and ridge regression penalties. Its penalized least squares is
given by

argmin
β

||y −Xβ||2 + λ[(1− α)/2||β||22 + α||β||1]

where ||β||1 =
∑p

j=1 |βj | and ||β||22 =
√∑p

j=1 β
2
j

These two penalties control the amount of shrinkage of the
coefficients. The new penalty applies λ(1−α)

2 to the ridge
penalty and λα to the lasso penalty. These two penalties λ and
α are tuned to select the best choice. α takes value between
0 and 1. Setting α = 1 results in the lasso and α = 0 results
in the ridge.



V. VARIABLE SELECTION

In this section, we applied lasso, ridge, and elastic net
methods to select relevant features for the regression model.
These regularization methods were applied individually to the
data in aid of selecting the best possible variables. We applied
cross-validation in all the methods to select the best optimal
parameters (λ and α) for the models. Unlike the direct variable
selection methods (i.e lasso and elastic net), we performed
variable screening for ridge regression by setting a cutoff point
to the coefficients to eliminate less useful features. The dataset
contains 487 missing values for all the features hence was
removed and further partitioned into 80, 20 for the training set
(3595 obs) and testing set (899 obs) respectively.

A. LASSO

In this algorithm, we set up the model using the glmnet
function by setting α = 1. We first performed 10-fold cross-
validation with 500 possible values of λ to select the best
penalty for the data. The two lasso penalty values, lambda.1se
and lambda.min were both considered where lambda.1se =
0.2441375 and lambda.min = 0.05374275. Lambda.1se
selected 19 features and lambda.min selected 132 features
including the intercept. The variables selected were used to
train the regression model.

Fig. 3. LASSO plot of variable shrinkage

Fig. 4. Plot of the Mean-Squared Error (MSE) and the number of features
(SNP) in the model for 10-fold cross-validation for LASSO

B. Ridge Regression

The ridge algorithm was also set up using the glmnet
function by setting α = 0. 10-fold cross-validation was per-
formed to select the best λ value. Again, both lambda.1se and
lambda.min were considered. In this case, we performed vari-
able screening by setting a cutoff point of 0.002 to lambda.1se
and 0.005 to lambda.min. 17 and 33 features (SNPs) were
selected respectively to train the regression model.

Fig. 5. Plot of the Mean-Squared Error (MSE) and the number of features
(SNP) in the model for 10-fold cross-validation

C. Elastic Net

This algorithm was also set up using the glmnet function.
Instead of specifying the hyperparameter α, we performed a
10-fold cross-validation on a wide range of α values to select
the optimal α with the lowest MSE. The best α with the lowest
MSE is α = 0.7. Now, we proceed to perform 10-fold cross-
validation to select the best λ value. Again, both lambda.1se
and lambda.min were considered for feature selection where
lambda.1se = 0.2899854 and lambda.min = 0.07537127.
Lambda.1se selected 38 features and lambda.min selected 154
features including the intercept.

Fig. 6. Plot of the Mean-Squared Error (MSE) against α values using 10-fold
cross-validation



Fig. 7. Plot of the Mean-Squared Error (MSE) and the number of features
(SNP) in the model for 10-fold cross-validation for Elastic Net

VI. RESULTS

Table II gives the results for comparing the performance
of the three regularization methods. For the models’ setup,
the best tuning parameters λ for lasso and ridge regression
are 0.2441375 and 510.8293 respectively for 1 standard error
(lambda.1se) and 0.05374275 and 90.10913 respectively for
minimum MSE (lambda.min). For elastic net, α = 0.7 and
the best λ is 0.2899854 and 0.07537127 for 1 standard error
(lambda.1se) and minimum MSE (lambda.min) respectively.

Table II shows the number of features (SNPs) selected
by each model with their Mean Square Errors (MSE) and
Root Mean Square Errors (RMSE). These two measures were
employed to explore the prediction accuracy (performance) of
our models. From the results, we could see that LASSO with
1 standard error (lambda.1se) method produced the smallest
MSE and RMSE, hence will be considered the best performing
model, although there is no significant difference between the
MSE and RMSE of all the models.

Models Methods SNPs Selected Model MSE Model RMSE

Lmabda.1se 19 12.44893 3.528304
LASSO

Lambda.min 132 12.90047 3.591722

Lmabda.1se 17 13.09461 3.618647
Ridge

Lambda.min 33 13.20899 3.634418

Lmabda.1se 38 12.61774 3.552146
Elastic

Net Lambda.min 154 12.48514 3.533432

TABLE II
RESULTS FROM THE ANALYSIS USING THE THREE MODELS

VII. CONCLUSION

In this project, we have developed a suitable regression
model with regularization that predicts the phenotype (time to
male flowering (DtoA)) of maize plants based on its useful
SNP markers from different inbred lines. Various models
applied in this study performed approximately the same but
the lasso regularization method was selected as the best-
performing model with fewer features (SNPs). The SNPs
selected by this model have a higher contribution in predicting
the phenotype (time to male flowering (DtoA)).
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