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Abstract— Using neural networks to find optimal solutions to         
real-time scheduling is a common technique, and there have been          
many different models put forth to accomplish this goal. This          
paper is an academic literature review of six different designs put           
forth that use neural networks for real-time scheduling. A         
comparison is done for these models which weighs the feasibility          
and time complexity for each one as well as identifying common           
themes and trends in this topic.  

Keywords—Real-time systems, Machine Learning, real-time     
scheduling. 

I.  INTRODUCTION 
Real-time systems are used widely in today’s modern        

society. In addition to being used in personal computers as one           
would expect, they are used in mobile communications,        
automobiles, traffic management, and aeronautic systems just       
to name a few. Soft real-time systems allow tasks to finish           
past their deadlines and handle systems overloads. As pointed         
out by Guo and Baruah [1], this soft-time scheduling is          
frequently used to support quality of service (QoS) in         
applications such as video games, multimedia systems and        
telecommunication networks. Hard real-time scheduling is      
different as it considers worst case scenarios and schedules         
everything to handle those scenarios. These types of systems         
are used in things like self-driving cars, aerospace        
applications, and life-saving equipment that cannot tolerate       
any tasks being late or being dropped [1]. One infamous          
instance of a hard real-time system failing is the case of the            
1997 Mars Rover Pathfinder. Priority inversion caused the        
system to keep resetting itself. Fortunately the problem was         
able to be solved by applying a priority inheritance protocol          
that NASA was able to load from earth, and the rover was            
saved [8].  

 
Machine Learning (ML) is a subset of Artificial        

Intelligence that utilizes Neural Networks. Models are built        
using artificial neurons and then trained using large data sets.          
Once trained, the model can then make predictions for         
previously unseen data [7]. Researchers in the field of         
real-time scheduling have developed models to utilize ML to         
optimize systems and handle dynamic changes. Our research        
focuses on reviewing and comparing some of these        
implementations.  

A. The Literature 
The first paper reviewed was titled A Neurodynamic        

Approach for Real-Time Scheduling via Maximizing      
Piecewise Linear Utility by Guo and Baruah [1]. This paper          
discusses uniprocessor mixed-criticality scheduling problems     
where each job Ji is described by its release time ai, a worst             
case execution time (WCET) estimation ci, and a utility         
function μi (t) : [0,+∞) → R. Their focus is to maximize the             
overall utility of the scheduled jobs, but they consider separate          
utility functions for each job instead of a single function for           
the entire job set. They note that prior neurodynamic         
approaches have used recurrent neural networks (RNNs) to try         
to solve these scheduling problems, but they often have         
difficulty since these problems have been shown to be         
NP-hard and the global minima can be difficult to reach with           
gradient information. By using the concave linear piecewise        
function, they were able to solve the scheduling problems in          
polynomial time [1].  

 The next paper we did a deep dive into was Reducing           
network and computation complexities in neural based       
real-time scheduling scheme by Ruey-Maw Chen [6]. This        
paper did not take long to start the discussion of          
two-dimensional Hopfield-type neural networks using     
competitive rule. Before reading this paper we were not         
confident with this topic so it was difficult for us to accurately            
review this paper. After reading through most of it we were           
able to put together a very thorough understanding of its          
consequences in real time systems. Most importantly for        
solving three-dimensional multiprocessor real-time scheduling     
problems. As stated in this paper, using a two-dimensional         
network can lower the initial number of network neurons. This          
is important in lowering the computational complexity of        
these problems. Using three-dimensional networks would be       
detrimental to run time but using this proposed solution helps          
to greatly reduce the cost.  

Reading Carlos Cardeira and Zoubir Mammeri’s Neural       
Networks for Multiprocessor Real-Time Scheduling [5] was a        
good paper to review next because it describes a type of           
evolution to the Hopfield type neural network. This paper uses          
a type of evolved Hopfield network to analyze real time          
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scheduling problems and analyze the computational      
complexity and convergence rate.  

Moving on to A Framework to Design and Implement         
Real-time Multicore Schedulers using Machine Learning [4].       
This paper is very interesting and informative because instead         
of spitting facts at the reader they educate the reader on the            
topic. They take the time to describe the framework in detail           
and then demonstrate its applications in real time systems.         
They begin by introducing their framework to design and         
implement multicore schedulers in real-time using machine       
learning. The framework captures run time data and subjects it          
to the ML tools to create targeted optimization goals. It also           
utilizes the performance monitoring unit, thermal sensing,       
energy monitoring, and dynamic voltage and frequency       
scaling through an API [4].  

The paper titled Solving Real-Time Scheduling Problems       
with Hopfield-Type Neural Networks by Silva et al. is an          
older paper that was written in 1997, and it discusses the           
basics of Hopfield-type neural networks and how they can be          
used in real-time scheduling [2]. They note that it consists of a            
large number of neurons whose output is binary in nature and           
can converge very quickly. The researchers present a        
systematic method of mapping preemptable task sets onto a         
multiprocessor system resulting in schedules that are always        
feasible, and “global asymptotic consistency between the       
discrete time model and the continuous one is assured”. Figure          
1 is their representation of a single neuron in the Hopfield           
neural network [2]. 

 

Figure 1: Additive model of a neuron [2] 

The last paper to be reviewed was Scheduling        
Multiprocessor Job with Resource and Timing Constraints       
Using Neural Networks by Huang and Chen [3]. The design          
put forth in this paper is also built on a Hopfield neural            
network with multiprocessors. The researchers build on the        
technique stochastic simulated annealing to come up and        
apply a newer method called mean field annealing which uses          
the mean field approximation technique. Their work contends        
that this method of normalizing simulated annealing can        
efficiently solve combinatorial optimization problems such as       
task scheduling. Figure 2 shows their representation of the 3D          
Hopfield neural network which is discussed extensively       
throughout this literature review [3]. 

 

Fig. 2: 3D Hopfield Neural Network [3] 

II. DESIGN IMPLEMENTATIONS 
This section will examine the proposed design       

implementations described in these papers and how they        
perform in more detail.  
 

In the first paper [1], Guo and Baruah propose a method           
that computes a utility function for each job as it is executed to             
maximize the overall utility of the task set. The problem of           
finding optimal utility for a real-time task set has been proven           
to be NP-hard, and can be represented by a step function.           
However, by replacing the nonconvex step function with        
piecewise linear concave object function, the problem is        
transformed into a constrained convex optimization problem       
able to be solved in polynomial time. The neurodynamic         
approach involves vectorizing a point in the RNN system and          
then performing a transformation to come up with a         
scheduling matrix. After applying the RNN, the state variable         
is recorded, and the matrix is transformed back into the          
scheduling table. Since the RNN is globally convergent, initial         
states do not matter so they are set to zero [1]. 
 

Guo and Baruah [1] tested their model extensively which         
included overloaded examples. They note that during the RNN         
convergence process, the convergence time did not suffer even         
though the number of jobs was increasing. This could indicate          
that this model may be useful in large scale applications such           
as cloud computing. In their example problem of five jobs,          
two of the less important jobs were dropped, and the task set            
ended up having a total utility of 1.249. When compared with           
traditional EDF, all jobs are executed but only 2 jobs met their            
deadlines, and the total utility was significantly less at 0.623.          
They point out that missing deadlines in hard real-time         
systems is just as bad, if not worse, than dropping the job            
instead. When tested on job sets that were not overloaded, the           
model performed optimally [1]. 
 

Guo and Baruah [1] further note that their model has only           
been tested on uniprocessor systems, and future research into         
using it in a multiprocessor system may be beneficial. They          
also did not include any penalty for preemptions in their          
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calculations, so an additional term could be investigated that         
would add this penalty to the calculations [1]. 
 

Reducing network and computation complexities in neural       
based real-time scheduling scheme by Ruey-Maw Chen [6]        
starts out by talking about commonly known real time         
problems and how they can be solved with different types of           
algorithms. They go into detail and talk about the implications          
on real life problems. These problems are sometimes built into          
three-dimensions or more neural networks and this paper aims         
at minimizing computational time while maximizing      
efficiency. The specific study of the computational complexity        
is important and it is heavily discussed in relation to          
two-dimensional and three-dimensional neural networks.     
Within a three-dimensional network the amount of neurons is         
said to be (N x M x T) and the proposed two-dimensional            
network would only consist of (N x T) neurons. Consequently          
this would make the upper bound of the computational         
complexity O(N2 x T2). Using this computational complexity        
we know that the scheduling algorithm may need to invest [6]           
significant resources to determine synaptic weight. This is        
shown to be O((N x T)(N + T)). The added complexity of (N +              
T) is equivalent to the algorithmic operations needed to         
calculate the synaptic weight.  

Conclusively turning a three-dimensional neural network      
into a two-dimensional M-out-of-N competitive scheme      
results in a simplified approach. Using this approach like we          
said reduces the computational complexity of this problem        
from O(M x N x T) to O(N2 x T2) not considering other             
iterations and synaptic weights [6]. 

Much of current real time systems research has been carried          
out in real world applications as described in this paper [5],           
like speech recognition and image compression. A lot of         
recognition has real time system implications. In this paper’s         
references to previous work on neural networks and real time          
systems they mention Liu and Leyland which have been very          
prominent people in my real time systems education. They         
also talk about the K-out-of-N rule. This rule is an important           
rule in building neural networks. To satisfy the constraints of          
this rule there must be exactly K neurons among N activated           
when the network reaches the stable state. The outlines of the           
actual equation are in this paper. Then they go on to use this             
rule in their translating constraints into rules section. They use          
this rule when analyzing optimization problems with neural        
networks. Using the K-out-of-N rule to translate real-time        
tasks into an energy function is done by using a network           
topology with a number of neurons equal to time units          
multiplied by the number of tasks. Described as L x T           
respectively. Next rule described is the P-out-of-T rule which         
is used when the tasks fully utilize the processors. The number           
of activated neurons must be the same as the number of           
processors which is why the P-out-of-T rule is required.  

Creating an example of this functionality is done in this          
paper [5] by simulating a neural network and tracking         

activated and not activated neurons. The purpose of testing is          
to see if the neural network will evolve to solve the real time             
problem. In this task there are 3 processors and 6 time units            
which will give us 18 neurons as described earlier (L x T). In             
this example the neural network is built with successive passes          
of the K-out-of-N rule. The final complexity analysis is done          
by analyzing the data plotted on a graph. They analyze the           
number of tasks and the mean number of iteration taken by the            
chosen algorithm to converge to a solution. Eventually they         
decide the algorithm exists with an upper bound of O(T2 x L2)            
complexity. They also briefly mention that the complexity        
could be reduced to (T + L) if the fact that neurons are only              
connected to the same line and column.  

This paper [5] also briefly tasks about the downfall of using           
their algorithm and neural networks in real time systems         
which we think is worth mentioning. They talk about how          
there may be special hardware to use neural nets like parallel           
hardware architectures. These special types of equipment may        
not always be available in a real-time system. They also          
mention that the network has a possibility of falling back into           
the local minima of the energy function [5] essentially         
ignoring the efficient and useful parts of the algorithm. 

The architecture of this framework [4] is a queue manager          
that keeps the tasks order by criteria given while accessing a           
resource. The initial idea is given through a basic framework          
which can be flexible and become many different things. Real          
time threads in this architecture are simulated using endowing         
aperiodic threads. They use semaphoric synchronization      
mechanisms. When a thread is initialized the semaphores and         
synchronization mechanics are also initialized. The      
semaphores are initialized at 0. What is really interesting is the           
monitoring of this architecture. The structure of the        
architecture is said to be able to implement virtually any          
scheduling policy. One exception are algorithms that collect        
data at run time which dynamically adjusts the ordering of          
objects in scheduling queues. This is where the monitor class          
comes in. The monitor class coordinates with the thread class          
to create a run-time monitoring system. This system can         
collect data from different types of sensors available to the          
system.  

The purpose of data collection when it comes to monitoring          
systems is to identify patterns and be able to replicate them.           
The monitoring system is able to ruin these patterns so it is            
important that the monitoring is non-intrusive. Therefore to        
prevent this limitations are put on sensors to prevent the          
number of access or even bandwidth accessed. Another way         
this is controlled is by using SmartData. SmartData is data that           
was captured on the monitoring system and subsequently        
converted to SmartData. The SmartData is described as data         
enriched with metadata to make it self-contained in respect to          
semantics, spatial location, timing and trustfulness [4]. This        
SmartData can be used in multiple different ways to diagnose          
and analyze the system. The overall goal of collecting this data           
is to be able to learn from it.  
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In the paper by Silva et al. [2], a “systematic procedure to            
map task scheduling problems onto Hopfield-type neural       
networks” is provided. Their algorithm handles periodic tasks        
but can take aperiodic ones and change them into periodic          
tasks in order to handle those also. Their design relies on           
multiprocessors that have identical processor speeds. They       
allow preemptions, and precedence and resource constraints       
are not considered in their calculations [2].  
 

As previously discussed, Hopfield neural networks have       
binary outputs, so the problem solutions must be presented in          
a way that can be solved with a binary result [2]. To do so,              
they create matrix V that is the total number of jobs by the             
total number of time units (t x u). The number of columns are             
equal to the hyperperiod which is the least common multiple          
(LCM) of all task periods. They note that when viewing a task            
scheduling problem as an optimization problem, there is a         
criterion that you would be trying to minimize. However, in          
hard real-time scheduling it is more important to guarantee         
that the important tasks will be executed. The authors provide          
a set of equations to represent the problem as a quadratic 0-1            
optimization problem. Their algorithm makes it possible to        
represent the task set with linear equality and inequality         
constraints. Timing constraints can be handled by the equality         
ones while hardware constraints can be handled by the         
inequality constraints. Functional constraints are not addressed       
here, but the authors note that they have covered that issue in            
one of their previous papers titled Handling precedence        
constraints with neural network based real-time scheduling       
algorithms which can be found in their references.  
 

Silva et al. note that the mutual exclusion of the processors           
has to be handled with inequality constraints, but those must          
be converted into equality constraints [2]. They introduce a set          
of extended variables v and w which includes a slack variable.           
They go on to show examples of how the hardware constraint           
problems are computed with these vectors. Next they address         
the timing constraints which are equality constraints with        
instructions on setting up the vectors and showing example         
problems. They use a mapping technique based on work by          
Aiyer and Gee who are referenced in their paper. The method           
assures convergence and will verify the imposed constraints.        
However, this only works if all values are binary in nature, so            
they use annealing techniques to force the convergences to 0-1          
points. They provide detailed results on how the network         
responds to simulations, and their evaluation determined that        
time complexity is dominated by O(n3) where n is equal to the            
number of neurons in the network [2]. 
 

In paper [3], Huang and Chen discuss applying a different          
annealing technique with the Hopfield neural network (HNN)        
to solve combinatorial problems such as real-time scheduling        
tasks. They provide a good deal of background on the          
Hopfield neural network which was developed by Hopfield        
and Tank in 1985. It’s symmetrically interconnected network        
makes it effective at solving combinatorial problems such as         
the Traveling Salesman one. However, the binary output is not          

guaranteed to be optimal, so other researchers have looked         
into using simulated annealing (SA) to the network to address          
this problem. SA applies synaptic noise using thermal        
fluctuations which prohibits getting stuck at local minima and         
allows the global minimum to be reached. However, the HNN          
neurons are governed by the Boltzmann state-transition rule        
which means that a state change is only acceptable when there           
is an energy decrease. This implies that the HNN corresponds          
to a noiseless system while SA creates noise. Instead the          
authors chose to apply the mean field annealing (MFA)         
technique instead of SA as an alternative that better supports          
the HNN system [3].  
 

The Huang and Chen [3] model proposed is based on a           
multiprocessor system that does not allow migration of jobs or          
resources. The jobs are broken down into segments, and         
preemption can only occur in between those segments. They         
then developed an energy function which is based on         
constraints from term to term instead of using the k-out-of-N          
rule. The constraints considered are confining the output state         
to a steady representation and deadline/resource constraints.       
Their function considers job, machine, and time variables, and         
their paper can be referenced for detailed descriptions of their          
derivation. The function is used and “transformed into the         
corresponding neural network for utilizing the HNN and the         
normalized MFA algorithm”. They provide a set of equations         
that expand the HNN into a 3D state in order to map their             
energy function to it [3]. 
 

Huang and Chen [3] then discuss the MFA algorithm which          
is used to keep the network close to thermal equilibrium. If a            
state change results in lower energy, then it will be accepted.           
But if it doesn’t, then a probabilistic process must be used to            
deal with the energy increase. The normalized MFA algorithm         
that they use has three steps. First they set the initial average            
state and start with a high temperature. Then they go through           
their sequential iterations as described in their section 3B         
equations, and then they decrease the annealing temperature        
and go through the iterations again until they reach         
convergence [3]. 
 

In their simulation testing [3], Huang and Chen note that the           
HNN goes through an oscillation process before it is finally          
able to converge, but with the MFA there is a smooth and            
efficient process to reach convergence. They note that their         
research focuses on resource utilization but could be expanded         
to include the time constraints for required resources for each          
job. They determined from their simulations that the time         
complexity of their model is O(N2*M2*T2) which does not         
increase linearly when the number of jobs increases. They         
note that future work should try to reduce this time complexity           
[3]. 

III. COMPARISON AND DISCUSSION 

In reading all of these papers we have learned so much           
about the different types of machine learning in real time          
system scenarios. We have experienced different types of        
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comparisons between ranging from different neural network       
types and architectures. What stands out from all of these          
different approaches are the different computational      
complexities. It is interesting that using different methods for         
solving real time systems with machine learning will give such          
different computational complexities. For instance, solving the       
three-dimensional multiprocessor real-time scheduling    
problems with two-dimensional competitive rule is interesting       
because it gives us a better runtime than simply using a           
three-dimensional scheme for it. 

Table 1 compares the designs that were reviewed in this          
paper. It shows if the model is suitable for uni or multi            
processors, what type of neural network was used, and the          
time complexity of the model if it was given. While these           
models are difficult to compare directly because they have         
different constraints considered, this table can provide an        
overall view of them.  
 

Table 1: Comparison of Models 

We also observed a strong trend in using the Hopfield          
neural networks for real-time scheduling, especially early on        
in the research. However, we see in a later paper that recurrent            
neural networks are also being used, and the comparison         
between the two could be a subject for another research          
project. None of these papers used a convolutional neural         
network, so it would be interesting to see if there are any            
implementations of that to be found.  

 

Fig. 3: Simulation of the neural net behaviour. [5] 

Before coming into this project our understanding of neural         
networks and how they were built was limited. After         
observing the different types of building for these neural         
networks in many different types of papers it is easier to see            
how they are built and evolved. For instance, in figure 3 we            
can see the two different lines of evolution independent of          
each other. The dark neurons represent active neurons and the          
white ones represent inactive ones. In this paper [4] the          
evolution is designed by a c coded program that is a           
framework for designing neural networks that use machine        
learning to solve real time system problems. You can see in           
the figure how it converges in one to two evolutions. 

IV. CONCLUSION 
This literature review has covered six academic research        

papers on using Machine Learning neural networks to solve         
real-time scheduling problems. Many of the neural networks        
that were used in the models were Hopfield neural networks          
which we have discussed throughout this paper. However,        
there is also a recurrent neural network used in one of the            
newer papers which may indicate a trend in that direction.          
Some of the models used annealing techniques. Some change         
the neural network from 2D to 3D or from 3D to 2D. The             
implementations of these models is discussed, and the models         
are compared by their constraints and time complexities.  
 

Ultimately the study of these neural networks have shown         
that there are many different ways to approach the same          
problem. Using different types of neural networks can yield         
many different types of results. What is more interesting is          
that the time complexity can different from design to design          
even when the neural network is the same. For instance, a           
Hopfield type neural network was used for half the papers we           
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Design Processors Type of NN Time 
Complexity 

[1] uni RNN polynomial 

[2] multi Hopfield O(n3) 

[3] multi Hopfield O(N2*M2*T2) 

[4] multi N/A N/A 

[5] multi Hopfield O(T2 * L2) 

[6] multi 2D Hopfield O(N x T2) 



reviewed. All the different approaches resulted in similar but         
unique computational complexities. 
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