
Machine Learning and Neural Networks for
Real-Time Scheduling

Adam Loree and Christy Wilhite
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2362

Abstract— Using neural networks to find optimal solutions to
real-time scheduling is a common technique, and there have been
many different models put forth to accomplish this goal. This
paper is an academic literature review of six different designs put
forth that use neural networks for real-time scheduling. A
comparison is done for these models which weighs the feasibility
and time complexity for each one as well as identifying common
themes and trends in this topic.

Keywords—Real-time systems, Machine Learning, real-time
scheduling.

I. INTRODUCTION
Real-time systems are used widely in today’s modern

society. In addition to being used in personal computers as one
would expect, they are used in mobile communications,
automobiles, traffic management, and aeronautic systems just
to name a few. Soft real-time systems allow tasks to finish
past their deadlines and handle systems overloads. As pointed
out by Guo and Baruah [1], this soft-time scheduling is
frequently used to support quality of service (QoS) in
applications such as video games, multimedia systems and
telecommunication networks. Hard real-time scheduling is
different as it considers worst case scenarios and schedules
everything to handle those scenarios. These types of systems
are used in things like self-driving cars, aerospace
applications, and life-saving equipment that cannot tolerate
any tasks being late or being dropped [1]. One infamous
instance of a hard real-time system failing is the case of the
1997 Mars Rover Pathfinder. Priority inversion caused the
system to keep resetting itself. Fortunately the problem was
able to be solved by applying a priority inheritance protocol
that NASA was able to load from earth, and the rover was
saved [8].

Machine Learning (ML) is a subset of Artificial

Intelligence that utilizes Neural Networks. Models are built
using artificial neurons and then trained using large data sets.
Once trained, the model can then make predictions for
previously unseen data [7]. Researchers in the field of
real-time scheduling have developed models to utilize ML to
optimize systems and handle dynamic changes. Our research
focuses on reviewing and comparing some of these
implementations.

A. The Literature
The first paper reviewed was titled A Neurodynamic

Approach for Real-Time Scheduling via Maximizing
Piecewise Linear Utility by Guo and Baruah [1]. This paper
discusses uniprocessor mixed-criticality scheduling problems
where each job Ji is described by its release time ai, a worst
case execution time (WCET) estimation ci, and a utility
function μi (t) : [0,+∞) → R. Their focus is to maximize the
overall utility of the scheduled jobs, but they consider separate
utility functions for each job instead of a single function for
the entire job set. They note that prior neurodynamic
approaches have used recurrent neural networks (RNNs) to try
to solve these scheduling problems, but they often have
difficulty since these problems have been shown to be
NP-hard and the global minima can be difficult to reach with
gradient information. By using the concave linear piecewise
function, they were able to solve the scheduling problems in
polynomial time [1].

 The next paper we did a deep dive into was Reducing
network and computation complexities in neural based
real-time scheduling scheme by Ruey-Maw Chen [6]. This
paper did not take long to start the discussion of
two-dimensional Hopfield-type neural networks using
competitive rule. Before reading this paper we were not
confident with this topic so it was difficult for us to accurately
review this paper. After reading through most of it we were
able to put together a very thorough understanding of its
consequences in real time systems. Most importantly for
solving three-dimensional multiprocessor real-time scheduling
problems. As stated in this paper, using a two-dimensional
network can lower the initial number of network neurons. This
is important in lowering the computational complexity of
these problems. Using three-dimensional networks would be
detrimental to run time but using this proposed solution helps
to greatly reduce the cost.

Reading Carlos Cardeira and Zoubir Mammeri’s Neural
Networks for Multiprocessor Real-Time Scheduling [5] was a
good paper to review next because it describes a type of
evolution to the Hopfield type neural network. This paper uses
a type of evolved Hopfield network to analyze real time

1

scheduling problems and analyze the computational
complexity and convergence rate.

Moving on to A Framework to Design and Implement
Real-time Multicore Schedulers using Machine Learning [4].
This paper is very interesting and informative because instead
of spitting facts at the reader they educate the reader on the
topic. They take the time to describe the framework in detail
and then demonstrate its applications in real time systems.
They begin by introducing their framework to design and
implement multicore schedulers in real-time using machine
learning. The framework captures run time data and subjects it
to the ML tools to create targeted optimization goals. It also
utilizes the performance monitoring unit, thermal sensing,
energy monitoring, and dynamic voltage and frequency
scaling through an API [4].

The paper titled Solving Real-Time Scheduling Problems
with Hopfield-Type Neural Networks by Silva et al. is an
older paper that was written in 1997, and it discusses the
basics of Hopfield-type neural networks and how they can be
used in real-time scheduling [2]. They note that it consists of a
large number of neurons whose output is binary in nature and
can converge very quickly. The researchers present a
systematic method of mapping preemptable task sets onto a
multiprocessor system resulting in schedules that are always
feasible, and “global asymptotic consistency between the
discrete time model and the continuous one is assured”. Figure
1 is their representation of a single neuron in the Hopfield
neural network [2].

Figure 1: Additive model of a neuron [2]

The last paper to be reviewed was Scheduling
Multiprocessor Job with Resource and Timing Constraints
Using Neural Networks by Huang and Chen [3]. The design
put forth in this paper is also built on a Hopfield neural
network with multiprocessors. The researchers build on the
technique stochastic simulated annealing to come up and
apply a newer method called mean field annealing which uses
the mean field approximation technique. Their work contends
that this method of normalizing simulated annealing can
efficiently solve combinatorial optimization problems such as
task scheduling. Figure 2 shows their representation of the 3D
Hopfield neural network which is discussed extensively
throughout this literature review [3].

Fig. 2: 3D Hopfield Neural Network [3]

II. DESIGN IMPLEMENTATIONS
This section will examine the proposed design

implementations described in these papers and how they
perform in more detail.

In the first paper [1], Guo and Baruah propose a method
that computes a utility function for each job as it is executed to
maximize the overall utility of the task set. The problem of
finding optimal utility for a real-time task set has been proven
to be NP-hard, and can be represented by a step function.
However, by replacing the nonconvex step function with
piecewise linear concave object function, the problem is
transformed into a constrained convex optimization problem
able to be solved in polynomial time. The neurodynamic
approach involves vectorizing a point in the RNN system and
then performing a transformation to come up with a
scheduling matrix. After applying the RNN, the state variable
is recorded, and the matrix is transformed back into the
scheduling table. Since the RNN is globally convergent, initial
states do not matter so they are set to zero [1].

Guo and Baruah [1] tested their model extensively which
included overloaded examples. They note that during the RNN
convergence process, the convergence time did not suffer even
though the number of jobs was increasing. This could indicate
that this model may be useful in large scale applications such
as cloud computing. In their example problem of five jobs,
two of the less important jobs were dropped, and the task set
ended up having a total utility of 1.249. When compared with
traditional EDF, all jobs are executed but only 2 jobs met their
deadlines, and the total utility was significantly less at 0.623.
They point out that missing deadlines in hard real-time
systems is just as bad, if not worse, than dropping the job
instead. When tested on job sets that were not overloaded, the
model performed optimally [1].

Guo and Baruah [1] further note that their model has only
been tested on uniprocessor systems, and future research into
using it in a multiprocessor system may be beneficial. They
also did not include any penalty for preemptions in their

2

calculations, so an additional term could be investigated that
would add this penalty to the calculations [1].

Reducing network and computation complexities in neural
based real-time scheduling scheme by Ruey-Maw Chen [6]
starts out by talking about commonly known real time
problems and how they can be solved with different types of
algorithms. They go into detail and talk about the implications
on real life problems. These problems are sometimes built into
three-dimensions or more neural networks and this paper aims
at minimizing computational time while maximizing
efficiency. The specific study of the computational complexity
is important and it is heavily discussed in relation to
two-dimensional and three-dimensional neural networks.
Within a three-dimensional network the amount of neurons is
said to be (N x M x T) and the proposed two-dimensional
network would only consist of (N x T) neurons. Consequently
this would make the upper bound of the computational
complexity O(N2 x T2). Using this computational complexity
we know that the scheduling algorithm may need to invest [6]
significant resources to determine synaptic weight. This is
shown to be O((N x T)(N + T)). The added complexity of (N +
T) is equivalent to the algorithmic operations needed to
calculate the synaptic weight.

Conclusively turning a three-dimensional neural network
into a two-dimensional M-out-of-N competitive scheme
results in a simplified approach. Using this approach like we
said reduces the computational complexity of this problem
from O(M x N x T) to O(N2 x T2) not considering other
iterations and synaptic weights [6].

Much of current real time systems research has been carried
out in real world applications as described in this paper [5],
like speech recognition and image compression. A lot of
recognition has real time system implications. In this paper’s
references to previous work on neural networks and real time
systems they mention Liu and Leyland which have been very
prominent people in my real time systems education. They
also talk about the K-out-of-N rule. This rule is an important
rule in building neural networks. To satisfy the constraints of
this rule there must be exactly K neurons among N activated
when the network reaches the stable state. The outlines of the
actual equation are in this paper. Then they go on to use this
rule in their translating constraints into rules section. They use
this rule when analyzing optimization problems with neural
networks. Using the K-out-of-N rule to translate real-time
tasks into an energy function is done by using a network
topology with a number of neurons equal to time units
multiplied by the number of tasks. Described as L x T
respectively. Next rule described is the P-out-of-T rule which
is used when the tasks fully utilize the processors. The number
of activated neurons must be the same as the number of
processors which is why the P-out-of-T rule is required.

Creating an example of this functionality is done in this
paper [5] by simulating a neural network and tracking

activated and not activated neurons. The purpose of testing is
to see if the neural network will evolve to solve the real time
problem. In this task there are 3 processors and 6 time units
which will give us 18 neurons as described earlier (L x T). In
this example the neural network is built with successive passes
of the K-out-of-N rule. The final complexity analysis is done
by analyzing the data plotted on a graph. They analyze the
number of tasks and the mean number of iteration taken by the
chosen algorithm to converge to a solution. Eventually they
decide the algorithm exists with an upper bound of O(T2 x L2)
complexity. They also briefly mention that the complexity
could be reduced to (T + L) if the fact that neurons are only
connected to the same line and column.

This paper [5] also briefly tasks about the downfall of using
their algorithm and neural networks in real time systems
which we think is worth mentioning. They talk about how
there may be special hardware to use neural nets like parallel
hardware architectures. These special types of equipment may
not always be available in a real-time system. They also
mention that the network has a possibility of falling back into
the local minima of the energy function [5] essentially
ignoring the efficient and useful parts of the algorithm.

The architecture of this framework [4] is a queue manager
that keeps the tasks order by criteria given while accessing a
resource. The initial idea is given through a basic framework
which can be flexible and become many different things. Real
time threads in this architecture are simulated using endowing
aperiodic threads. They use semaphoric synchronization
mechanisms. When a thread is initialized the semaphores and
synchronization mechanics are also initialized. The
semaphores are initialized at 0. What is really interesting is the
monitoring of this architecture. The structure of the
architecture is said to be able to implement virtually any
scheduling policy. One exception are algorithms that collect
data at run time which dynamically adjusts the ordering of
objects in scheduling queues. This is where the monitor class
comes in. The monitor class coordinates with the thread class
to create a run-time monitoring system. This system can
collect data from different types of sensors available to the
system.

The purpose of data collection when it comes to monitoring
systems is to identify patterns and be able to replicate them.
The monitoring system is able to ruin these patterns so it is
important that the monitoring is non-intrusive. Therefore to
prevent this limitations are put on sensors to prevent the
number of access or even bandwidth accessed. Another way
this is controlled is by using SmartData. SmartData is data that
was captured on the monitoring system and subsequently
converted to SmartData. The SmartData is described as data
enriched with metadata to make it self-contained in respect to
semantics, spatial location, timing and trustfulness [4]. This
SmartData can be used in multiple different ways to diagnose
and analyze the system. The overall goal of collecting this data
is to be able to learn from it.

3

In the paper by Silva et al. [2], a “systematic procedure to
map task scheduling problems onto Hopfield-type neural
networks” is provided. Their algorithm handles periodic tasks
but can take aperiodic ones and change them into periodic
tasks in order to handle those also. Their design relies on
multiprocessors that have identical processor speeds. They
allow preemptions, and precedence and resource constraints
are not considered in their calculations [2].

As previously discussed, Hopfield neural networks have
binary outputs, so the problem solutions must be presented in
a way that can be solved with a binary result [2]. To do so,
they create matrix V that is the total number of jobs by the
total number of time units (t x u). The number of columns are
equal to the hyperperiod which is the least common multiple
(LCM) of all task periods. They note that when viewing a task
scheduling problem as an optimization problem, there is a
criterion that you would be trying to minimize. However, in
hard real-time scheduling it is more important to guarantee
that the important tasks will be executed. The authors provide
a set of equations to represent the problem as a quadratic 0-1
optimization problem. Their algorithm makes it possible to
represent the task set with linear equality and inequality
constraints. Timing constraints can be handled by the equality
ones while hardware constraints can be handled by the
inequality constraints. Functional constraints are not addressed
here, but the authors note that they have covered that issue in
one of their previous papers titled Handling precedence
constraints with neural network based real-time scheduling
algorithms which can be found in their references.

Silva et al. note that the mutual exclusion of the processors
has to be handled with inequality constraints, but those must
be converted into equality constraints [2]. They introduce a set
of extended variables v and w which includes a slack variable.
They go on to show examples of how the hardware constraint
problems are computed with these vectors. Next they address
the timing constraints which are equality constraints with
instructions on setting up the vectors and showing example
problems. They use a mapping technique based on work by
Aiyer and Gee who are referenced in their paper. The method
assures convergence and will verify the imposed constraints.
However, this only works if all values are binary in nature, so
they use annealing techniques to force the convergences to 0-1
points. They provide detailed results on how the network
responds to simulations, and their evaluation determined that
time complexity is dominated by O(n3) where n is equal to the
number of neurons in the network [2].

In paper [3], Huang and Chen discuss applying a different
annealing technique with the Hopfield neural network (HNN)
to solve combinatorial problems such as real-time scheduling
tasks. They provide a good deal of background on the
Hopfield neural network which was developed by Hopfield
and Tank in 1985. It’s symmetrically interconnected network
makes it effective at solving combinatorial problems such as
the Traveling Salesman one. However, the binary output is not

guaranteed to be optimal, so other researchers have looked
into using simulated annealing (SA) to the network to address
this problem. SA applies synaptic noise using thermal
fluctuations which prohibits getting stuck at local minima and
allows the global minimum to be reached. However, the HNN
neurons are governed by the Boltzmann state-transition rule
which means that a state change is only acceptable when there
is an energy decrease. This implies that the HNN corresponds
to a noiseless system while SA creates noise. Instead the
authors chose to apply the mean field annealing (MFA)
technique instead of SA as an alternative that better supports
the HNN system [3].

The Huang and Chen [3] model proposed is based on a
multiprocessor system that does not allow migration of jobs or
resources. The jobs are broken down into segments, and
preemption can only occur in between those segments. They
then developed an energy function which is based on
constraints from term to term instead of using the k-out-of-N
rule. The constraints considered are confining the output state
to a steady representation and deadline/resource constraints.
Their function considers job, machine, and time variables, and
their paper can be referenced for detailed descriptions of their
derivation. The function is used and “transformed into the
corresponding neural network for utilizing the HNN and the
normalized MFA algorithm”. They provide a set of equations
that expand the HNN into a 3D state in order to map their
energy function to it [3].

Huang and Chen [3] then discuss the MFA algorithm which
is used to keep the network close to thermal equilibrium. If a
state change results in lower energy, then it will be accepted.
But if it doesn’t, then a probabilistic process must be used to
deal with the energy increase. The normalized MFA algorithm
that they use has three steps. First they set the initial average
state and start with a high temperature. Then they go through
their sequential iterations as described in their section 3B
equations, and then they decrease the annealing temperature
and go through the iterations again until they reach
convergence [3].

In their simulation testing [3], Huang and Chen note that the
HNN goes through an oscillation process before it is finally
able to converge, but with the MFA there is a smooth and
efficient process to reach convergence. They note that their
research focuses on resource utilization but could be expanded
to include the time constraints for required resources for each
job. They determined from their simulations that the time
complexity of their model is O(N2*M2*T2) which does not
increase linearly when the number of jobs increases. They
note that future work should try to reduce this time complexity
[3].

III. COMPARISON AND DISCUSSION

In reading all of these papers we have learned so much
about the different types of machine learning in real time
system scenarios. We have experienced different types of

4

comparisons between ranging from different neural network
types and architectures. What stands out from all of these
different approaches are the different computational
complexities. It is interesting that using different methods for
solving real time systems with machine learning will give such
different computational complexities. For instance, solving the
three-dimensional multiprocessor real-time scheduling
problems with two-dimensional competitive rule is interesting
because it gives us a better runtime than simply using a
three-dimensional scheme for it.

Table 1 compares the designs that were reviewed in this
paper. It shows if the model is suitable for uni or multi
processors, what type of neural network was used, and the
time complexity of the model if it was given. While these
models are difficult to compare directly because they have
different constraints considered, this table can provide an
overall view of them.

Table 1: Comparison of Models

We also observed a strong trend in using the Hopfield
neural networks for real-time scheduling, especially early on
in the research. However, we see in a later paper that recurrent
neural networks are also being used, and the comparison
between the two could be a subject for another research
project. None of these papers used a convolutional neural
network, so it would be interesting to see if there are any
implementations of that to be found.

Fig. 3: Simulation of the neural net behaviour. [5]

Before coming into this project our understanding of neural
networks and how they were built was limited. After
observing the different types of building for these neural
networks in many different types of papers it is easier to see
how they are built and evolved. For instance, in figure 3 we
can see the two different lines of evolution independent of
each other. The dark neurons represent active neurons and the
white ones represent inactive ones. In this paper [4] the
evolution is designed by a c coded program that is a
framework for designing neural networks that use machine
learning to solve real time system problems. You can see in
the figure how it converges in one to two evolutions.

IV. CONCLUSION
This literature review has covered six academic research

papers on using Machine Learning neural networks to solve
real-time scheduling problems. Many of the neural networks
that were used in the models were Hopfield neural networks
which we have discussed throughout this paper. However,
there is also a recurrent neural network used in one of the
newer papers which may indicate a trend in that direction.
Some of the models used annealing techniques. Some change
the neural network from 2D to 3D or from 3D to 2D. The
implementations of these models is discussed, and the models
are compared by their constraints and time complexities.

Ultimately the study of these neural networks have shown
that there are many different ways to approach the same
problem. Using different types of neural networks can yield
many different types of results. What is more interesting is
that the time complexity can different from design to design
even when the neural network is the same. For instance, a
Hopfield type neural network was used for half the papers we

5

Design Processors Type of NN Time
Complexity

[1] uni RNN polynomial

[2] multi Hopfield O(n3)

[3] multi Hopfield O(N2*M2*T2)

[4] multi N/A N/A

[5] multi Hopfield O(T2 * L2)

[6] multi 2D Hopfield O(N x T2)

reviewed. All the different approaches resulted in similar but
unique computational complexities.

References
[1] Z. Guo, and S. K. Baruah. “A Neurodynamic Approach for Real-Time

Scheduling via Maximizing Piecewise Linear Utility.” IEEE Transactions
on Neural Networks and Learning Systems, Neural Networks and
Learning Systems, IEEE Transactions on, IEEE Trans. Neural Netw.
Learning Syst , vol. 27, no. 2, pp. 238–248, Feb. 2016.

[2] M. P. Silva, C. Cardeira, and Z. Mammeri. “Solving Real-Time
Scheduling Problems with Hopfield-Type Neural Networks.”
EUROMICRO 97. Proceedings of the 23rd EUROMICRO Conference:
New Frontiers of Information Technology (Cat. No.97TB100167),
EUROMICRO 97. New Frontiers of Information Technology.,
Proceedings of the 23rd EUROMICRO Conference , pp. 671–678, Jan.
1997.

[3] Y. M. Huang and R. M. Chen, “Scheduling Multiprocessor Job with
Resource and Timing Constraints Using Neural Networks”, IEEE
Transactions on systems, Man and Cybernetics-Part B , vol. 29, no. 4, pp.
490-502, 1999.

[4] L. P. Horstmann, J. L. C. Hoffmann, and A.A. Frohlich, “A Framework to
Design and Implement Real-Time Multicore Schedulers using Machine
Learning”, 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA) Emerging Technologies
and Factory Automation (ETFA), pp. 251-258, Sep. 2019.

[5] Cardeira, C., and Z. Mammeri. “Neural Networks for Multiprocessor
Real-Time Scheduling.” Proceedings Sixth Euromicro Workshop on
Real-Time Systems , Sixth Euromicro Workshop On Real-Time Systems ,
pp. 59–64, 1994.

[6] R. M. Chen, “Reducing network and computation complexities in neural
based real-time scheduling scheme”, Applied Mathematics and
Computation vol. 217, no. 13, pp. 6379-6389, 2011.

[7] L. Wang, Class Lecture, Topic: “Artificial Intelligence- Introduction”,
CAP4630, College of Engineering & Computer Science, University of
Central Florida, Aug. 27, 2020.

[8] Z. Guo, Class Lecture, Topic: “Real-Time Systems- Introduction”,
EEL4775, College of Engineering & Computer Science, University of
Central Florida, Aug. 26, 2020.

6

	Machine Learning and Neural Networks for Real-Time Scheduling
	tmp.1611108911.pdf.tgbnc

