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Abstract— This study presents a comprehensive analysis of 

three prominent machine learning regression models—Random 

Forest, XGBoost, and Support Vector Machine (SVM)—in the 

context of predictive analysis. Leveraging a carefully curated 

dataset, we explore the impact of various hyperparameters on 

model performance through an exhaustive tuning process. The 

Random Forest and XGBoost models exhibit robust predictive 

capabilities, with the former revealing notable insights through 

feature importance visualization. Additionally, SVM, optimized 

via GridSearchCV, demonstrates competitive performance. 

Evaluation metrics, including Mean Squared Error and R-

squared, facilitate a thorough comparison of model efficacy. 

Results highlight nuanced strengths and weaknesses, informing 

practitioners on the suitability of each model for specific 

applications. This research contributes valuable insights to the 

ongoing discourse on machine learning regression, offering a 

practical guide for researchers and practitioners navigating the 

complex landscape of predictive analysis. 

Keywords—Machine Learning, Regression, Life 

Expectancy, Predictive Analysis 

I. INTRODUCTION 

In recent years, the ubiquity of data has catalyzed a paradigm 

shift in decision-making processes across diverse domains, 

ranging from finance to healthcare. This shift is underscored 

by the increasing reliance on machine learning (ML) 

techniques, particularly regression models, for predictive 

analysis. As businesses and researchers seek to extract 

meaningful insights from vast datasets, the selection of an 

appropriate regression model becomes pivotal. This study 

delves into a comparative analysis of three widely employed 

machine learning regression models—Random Forest, 

XGBoost, and Support Vector Machine (SVM)—with the aim 

of elucidating their respective strengths and weaknesses in 

predictive analytics. 

The choice of regression models is a critical decision in the 

machine learning workflow, and researchers are often 

confronted with a myriad of options. The Random Forest 

algorithm, an ensemble learning method, has gained 

prominence due to its ability to mitigate overfitting and handle 

complex relationships within data. XGBoost, an optimized 

gradient boosting technique, has demonstrated exceptional 

performance in various machine learning competitions, 

making it a popular choice in predictive modeling. Support 

Vector Machines, with their foundation in statistical learning 

theory, have been extensively employed in regression tasks, 

offering an effective means of capturing non-linear 

relationships. 

In [1], authors explore the impact of economic and 

environmental factors on life expectancy, revealing varying 

influences in developed and developing countries. Findings 

suggest prioritizing GDP per capita, urbanization, and 

balanced environmental policies to enhance life expectancy 

globally. In [2], authors study in 43 African countries from 

2000 to 2018 and find that increased health expenditure 

positively impacts life expectancy. However, government 

effectiveness moderates this influence, highlighting the need 

for nuanced health policy considerations. In [3], researchers 

employ machine learning models to identify factors 

influencing life expectancy, highlighting variables like 

mortality rates and healthcare expenditure. The findings offer 

valuable insights for enhancing societal well-being. In [4], 

authors identify health, residency, and neighborhood factors 

as critical determinants of active aging in China. The findings 

offer evidence-based insights, informing policies and 

practices to enhance the well-being of older adults in various 

domains such as work, caregiving, and social activities. In [5], 

paper introduces Geographically Weighted Polynomial 

Regression (GWPolR) to address nonlinear relationships in 

spatial modeling, showcasing its enhanced performance in 

analyzing life expectancy in East Java, Indonesia. The 

algorithm optimizes bandwidth and polynomial degrees for 

improved goodness of fit. In [6], paper compares 

geographically weighted regression (GWR) and random 

forest regression (RFR) in analyzing life expectancy factors, 

emphasizing significant variables and assessing model 

performance using RMSE. Identifying impactful variables 

aids in understanding and improving life expectancy. In [7], 

authors introduce a Hybrid Genetic and Support Vector 

Machine (GA-SVM) for early lung cancer detection and 

postoperative life expectancy prediction, outperforming state-

of-the-art techniques. Attribute ranking and selection enhance 

health data analysis efficacy, achieving 85% accuracy and a 

superior F1 score of 0.92. In [8], researchers utilize machine 

learning to accurately predict the survival period of stomach 

cancer patients. The Extra Tree Classifier achieves 97.27% 

accuracy, indicating potential revolutionary impact in medical 

management. In [9], This study explores life expectancy 

factors, integrating income, demographics, and death rates 

using machine learning for heightened awareness. 

Understanding these influences contributes to forecasting life 

expectancy changes. In [10], study analyzes life expectancy 

trends in 72 countries over 16 years, using Python libraries for 

comprehensive insights. The findings guide efficient 

policymaking for enhancing population life expectancy. In 

[11][12], studies employ a penalized regression approach, 
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specifically Lasso, to reduce high-dimensional genomic data 

in maize crops, resulting in 24 SNP markers for predicting 

days to anthesis. Accurate estimation of the male flowering 

period is crucial for predicting crop fertility. In [13][14], 

researchers aim to investigate the linear association between 

critical temperature ($T_{c}$) and features extracted from the 

chemical formula in superconductors. The focus is on 

predicting $T_{c}$ in the context of superconductivity 

research. In [15], study employs a Recommender System to 

predict user preferences in MovieLens datasets using the 

matrix factorization algorithm, with an evaluation metric of 

RMSE. The model shows good performance, with train and 

test set RMSE values close to each other (0.83 and 0.93). In 

[16] authors utilize the decision tree algorithm (DT) to predict 

credit card approval, considering features such as age, 

employment status, education level, etc. Results highlight the 

significant contributions of Prior Default, Debt, and 

Employment status in credit card approval. In [17], the author 

employs Decision Trees (DT) with 5-fold cross-validation to 

predict heart disease using a dataset comprising 285 instances. 

To provide a comprehensive understanding of the 

comparative performance of these models, our study employs 

a dataset about life expectancy. The dataset encompasses a 

diverse array of features, offering a rich environment for 

evaluating the models' predictive capabilities. Through an 

iterative process of hyperparameter tuning and model training, 

we investigate the influence of key parameters on the models' 

performance. The evaluation metrics employed include Mean 

Squared Error (MSE) and R-squared, providing a quantitative 

basis for comparison. 

The Random Forest model, characterized by its ensemble of 

decision trees, operates by aggregating predictions from 

multiple trees to enhance robustness and accuracy. The 

interpretability of Random Forest models is further explored 

through the visualization of feature importance, shedding light 

on the variables most influential in predictive outcomes. This 

visualization not only aids model understanding but also 

provides insights into the underlying dynamics of the dataset. 

XGBoost, an extension of gradient boosting methods, is 

known for its efficiency and scalability. Our study investigates 

the impact of varying max depth and learning rates on the 

model's predictive performance. The interplay between these 

hyperparameters unveils trade-offs between model 

complexity and generalizability. Through a systematic grid 

search, we identify the optimal combination that minimizes 

MSE on the test data, providing practical guidance for 

practitioners. 

Support Vector Machines, a powerful tool in classification, 

have found application in regression tasks through the 

formulation of a loss function that penalizes deviations from 

the target variable. In our study, we leverage GridSearchCV 

to explore the hyperparameter space, optimizing SVM for 

predictive accuracy. The resultant model is then evaluated 

against the test data, with MSE and R-squared providing a 

comprehensive assessment. 

As machine learning models continue to permeate decision-

making processes, understanding the nuanced differences in 

their performance is imperative. The insights derived from this 

comparative analysis contribute to the ongoing discourse on 

model selection in predictive analytics, aiding practitioners in 

navigating the complex landscape of regression modeling. 

The remainder of this paper is structured as follows: Section 

II details the methodology, Section III presents the 

experimental results, and Section IV concludes the study with 

reflections on the findings and avenues for future research. 

II. METHODOLOGY 

The comprehensive exploration of the determinants of life 
expectancy necessitates a meticulous methodology, 
encompassing data preparation, exploratory analysis, and 
advanced statistical modeling. Each step in our approach is 
carefully designed to unveil the intricate relationships between 
health, economic, and demographic variables and their 
collective impact on life expectancy across 179 countries from 
2000 to 2015. 

1. Data Collection and Preprocessing: 

The foundation of our study lies in a robust dataset 
compiled from diverse sources including the World Bank, 
World Health Organization, and the University of Oxford's 
Our World in Data project. This dataset spans 179 countries, 
capturing 21 variables across the years 2000 to 2015. Initial 
data inspection revealed inconsistencies and inaccuracies 
necessitating meticulous preprocessing. 

Renaming variables was a crucial initial step to ensure 
consistency and clarity. Several columns underwent 
adjustments, such as 'BMI' to 'Body_Mass_Index,' reflecting 
standardized naming conventions. The 'life_expectancy' 
variable was transformed to lowercase for uniformity. 
Additionally, categorical variables like 'region' were one-hot 
encoded to facilitate machine learning model compatibility. 

Missing values presented a challenge, addressed through 
strategic imputation strategies. Specifically, the 'closest three-
year average' approach was employed for temporal 
consistency, and when entire country-year data was missing, 
the 'average of the region' method was applied. Countries with 
more than four missing data columns were omitted to maintain 
dataset integrity. 

2. Exploratory Data Analysis (EDA): 

Exploratory Data Analysis (EDA) is pivotal in unraveling 
the inherent patterns within the dataset. Visualization tools, 
including histograms and scatter plots, were deployed to 
discern data distributions and potential outliers. Notably, the 
impact of these outliers on the analysis was carefully 
considered, and their removal was executed judiciously to 
prevent skewing of results. 

The EDA process extended to group-level analyses, 
investigating average life expectancies across countries and 
regions. These analyses provided essential context for the 
subsequent statistical modeling, aiding in the identification of 
potential trends and disparities. 

3. Statistical Analysis: 

Our analytical framework comprises a multi-faceted 
approach, employing traditional statistical methods alongside 
advanced machine learning techniques. Three prominent 



       
      

       
         

         
       

       
      

        
    

     
      

      
        

       
  

  
   

     
       

       
   

    

     
        

      
      

      

     
         

      
      

  

 

     

        
      

         
    

      
    

 

     

       
      

       
       

    

     
     

        
      

      
  

 

   

       
        

        
       

      
       

       
        
       
      

       
    

 

   

      
     
         

     
       

    
     

 

    

     
        

    
        

        
         

    
      

 

   

    
      

          
      

       
        

      
         

     

       
          

      
      

       
      

     
       

        
      

    
        

 

regression models are selected for comparative analysis: 
Random Forest, XGBoost, and Support Vector Machine 
(SVM). Each model offers unique advantages and is well-
suited for different types of datasets. Random Forest, an 
ensemble learning method, is chosen for its ability to handle 
complex relationships and mitigate overfitting. XGBoost, an 
optimized gradient boosting technique, is recognized for its 
efficiency and scalability. SVM, grounded in statistical 
learning theory, provides a powerful framework for capturing 
non-linear relationships in data. 

Linear Regression Analysis: The foundational step 
involves linear regression analysis, scrutinizing the linear 
relationship between life expectancy and various predictor 
variables. The coefficients derived from this analysis offer 
insights into the magnitude and directionality of each 
variable's impact. 

Principal Component Analysis (PCA): Addressing 
multicollinearity concerns, Principal Component Analysis 
(PCA) was applied to reduce dimensionality. This technique 
identifies linear combinations of variables, or principal 
components, maximizing variance. This not only aids in 
understanding the intrinsic structure of the data but also 
streamlines subsequent modeling efforts. 

Predictive Modeling: Leveraging machine learning 
models, both linear and non-linear, is crucial for accurate 
predictions. Random Forest, Support Vector Machine (SVM), 
and K-Nearest Neighbors (KNN) were employed to capture 
complex relationships within the data. 

Variable Clustering Dendrogram: To identify variables 
with high intercorrelations, a linkage matrix was created, and 
a dendrogram was constructed. This facilitated the removal of 
variables contributing to multicollinearity, enhancing the 
model's interpretability. 

4. Outlier and Leverage Analysis: 

The impact of outliers and high leverage points on the 
regression models was systematically examined. Cook's 
Distance, a measure of influence, was utilized to identify high-
leverage points. Subsequently, outliers and high-leverage 
points exceeding a predetermined threshold were judiciously 
removed to enhance model robustness. 

5. Feature Scaling and Transformation: 

To ensure uniformity in variable scales and facilitate 
model convergence, feature scaling using Standard Scaler was 
applied. This standardization enhances the interpretability of 
coefficients in linear models and prevents certain variables 
from disproportionately influencing results. 

Additionally, feature transformation via Principal 
Component Analysis (PCA) was executed to capture the most 
significant variance within the data. The resulting transformed 
features were integrated into subsequent regression models, 
contributing to a more comprehensive understanding of 
variable interactions. 

6. Hyperparameter Tuning: 

Optimizing model hyperparameters is critical to achieving 
peak performance. For Random Forest, the number of 
estimators and maximum depth are tuned. Grid search is 
employed to explore combinations of these hyperparameters, 
ensuring an exhaustive search for optimal values. In the case 
of XGBoost, the max depth and learning rate are the focus of 
hyperparameter tuning. A grid search approach is again 
adopted to identify the combination that minimizes Mean 
Squared Error (MSE) on the test data. SVM hyperparameters, 
including C (regularization parameter) and gamma (kernel 
coefficient), are tuned using GridSearchCV, exploring a range 
of values to optimize model performance. 

7. Evaluation Metrics: 

The performance of regression models and machine 
learning algorithms was assessed using diverse evaluation 
metrics. Mean Squared Error (MSE) gauged the accuracy of 
predictive models, while the Mean Absolute Percentage Error 
(MAPE) provided a measure of prediction accuracy relative to 
actual values. These metrics collectively enabled a robust 
assessment of model performance across various dimensions. 

8. Feature Importance Analysis: 

Understanding the importance of features in predictive 
modeling is crucial for model interpretability. For the Random 
Forest model, feature importance is visualized, revealing the 
contribution of each variable to the model's predictions. This 
analysis not only aids in model understanding but also 
provides valuable insights into the underlying dynamics of the 
dataset. Features with higher importance scores exert a more 
significant influence on the model's decision-making process. 

9. Experimental Setup: 

Experiments are conducted using a train-test split 
methodology, with a substantial portion of the dataset 
allocated to training the models and the remainder reserved for 
testing. Stratified sampling ensures a representative 
distribution of target variable values in both training and test 
sets. The random state is fixed to guarantee the reproducibility 
of results. Cross-validation is employed during 
hyperparameter tuning to mitigate the risk of overfitting and 
enhance the robustness of the models. 

In adopting this comprehensive methodology, we aim to 
distill a nuanced understanding of the complex web of factors 
influencing life expectancy. By integrating traditional 
statistical approaches with advanced machine learning 
techniques, this study endeavors to contribute not only to 
academic discourse but also to the empirical advancement of 
strategies aimed at improving global health outcomes. The 
methodology outlined above establishes a rigorous framework 
for the comparative analysis of Random Forest, XGBoost, and 
SVM in regression tasks. The subsequent section presents the 
experimental results, providing insights into the performance 
of each model and their relative strengths and weaknesses. 



  

 

        

     

    

    

      

      

       

    

     

  
 

       

      
          

      
          

     
      

       
     

 

    

 

      
  

 

    

    
      

        
    

      
       

      
      

    

 

 

  

      

       
     

       
        

      
  

 

      

 

      
 

      
    

III. RESULTS 

Our study offers a meticulous examination of life expectancy 

determinants, employing a diverse array of statistical 

analyses and machine learning models. Through an 

amalgamation of visualizations, we unravel the intricate 

relationships between health, economic, and demographic 

factors. The comparative analysis of Random Forest, 

XGBoost, and Support Vector Machine (SVM) regression 

models yields insightful findings, as evidenced by a 

comprehensive examination of various performance metrics 

and visualizations. 

1. Descriptive Statistics and Life Expectancy Trends: 

Commencing with an exploration of descriptive statistics 
and temporal trends, Figure 1 portrays a histogram of life 
expectancy, revealing a relatively symmetric distribution with 
a mean hovering around 70 years. Figure 2 delves into life 
expectancy trends, emphasizing the persistent gap between 
developed and developing nations. Developed regions 
consistently exhibit higher life expectancies, accentuating the 
role of economic and healthcare development. 

Figure 1: Histogram of Life Expectancy 

Figure 2: Life Expectancy Trends in Developed and 
Developing Countries 

2. Variable Clustering Dendrogram: 

The exploration of variable interdependencies involves a 
dendrogram resulting from variable clustering, as depicted in 
Figure 3. This dendrogram highlights groups of variables with 
high intercorrelations, facilitating subsequent feature 
selection. Variables related to immunization (Measles, 
Hepatitis B, Polio, and Diphtheria) cluster together, 
emphasizing their intrinsic connections. The dendrogram aids 
in identifying variables contributing to multicollinearity, 
refining our analytical framework. 

Figure 3: Variable Clustering Dendrogram 

3. Exploratory Data Analysis (EDA) Insights: 

EDA visualizations offer crucial insights into variable 
distributions. Figure 4 illustrates the density distribution of 
key health indicators, highlighting patterns and disparities. 
Variables like alcohol consumption and BMI exhibit distinct 
distributions, emphasizing their unique roles in shaping global 
health outcomes. 

Figure 4: Density Distribution of Key Health Indicators 

4. Comparative Analysis of Developed and Developing 
Countries: 

Comparative analysis between developed and developing 
countries reveals substantial disparities. Figure 5 juxtaposes 



      
     

     
     

     
   

 

     
   

       
   

 

     

    
         

     
   

      

 

     
 

 

    

    
      

      
      

      
    

    

 

    
 

     
 

    

  

life expectancy trends, emphasizing the pronounced gap. 
Developed countries consistently maintain higher life 
expectancies, underscoring the need for targeted 
interventions. Additionally, Figure 6 utilizes boxplots to 
dissect key health indicators, elucidating significant variations 
between these two groups. 

Figure 5: Comparative Life Expectancy Trends in Developed 
and Developing Countries 

Figure 6: Boxplots of Key Health Indicators in Developed 
and Developing Countries 

5. Outlier and Leverage Analysis: 

Systematic assessment of outliers and high-leverage 
points is crucial. Cook's Distance, displayed in Figure 10, 
identifies influential observations, leading to the removal of 
high-leverage points. This emphasizes the importance of 
targeted data point removal for robust model performance. 

Figure 7: Cook's Distance Plot for Outlier and Leverage 
Analysis 

6. Principal Component Analysis (PCA): 

Principal Component Analysis (PCA) facilitates the 
identification of key dimensions capturing maximum variance 
within the data. Figure 8 illustrates cumulative explained 
variance, informing the selection of principal components. 
The resultant transformed features, integrated into subsequent 
regression models, contribute to a more streamlined 
representation of variable interactions. 

Figure 8: Explained Variance in Principal Component 
Analysis 

Figure 9: Cumulative Explained Variance in Principal 
Component Analysis 

TABLE I. PCA 

MSE MAPE 



   

 

 

   

      
        
     

        
      

 

 

       
   

 

     

      
         
       

         
  

    

    

     

   

 

 

     

       
      

        
      

    

     

 

    

      

      

    

    

 

 

    

     
       

       
      

 

PCA 24.665 5.956 KNN MSE R2 Score K 

4.754 0.942 2 

7. Regression Model Evaluation: 

Evaluation of regression models encompasses various 
metrics, including Mean Squared Error (MSE) and the Mean 
Absolute Percentage Error (MAPE). Figure 9 visualizes the 
scatter plot between actual and predicted values from a linear 
regression model, emphasizing the model's accuracy. 

Figure 10: Scatter Plot of Actual vs. Predicted Values in 
Linear Regression Model 

8. K-Nearest Neighbors (KNN) Analysis: 

Expanding our repertoire, KNN analysis adds another 
layer to our predictive models. Figure 15 presents an elbow 
chart, aiding in determining the optimal number of neighbors 
(k). The chart guides us in selecting an appropriate k value for 
the KNN model. 

Figure 11: Elbow Chart for KNN Model 

TABLE II. KNN 

9. LASSO and RIDGE Regression: 

Incorporating regularization techniques, Figures 16 and 17 
illustrate the impact of LASSO and RIDGE regression on 
feature coefficients. LASSO tends to induce sparsity, driving 
some coefficients to zero, while RIDGE mitigates 
multicollinearity by stabilizing coefficient values. 

Figure 12: LASSO Regression Coefficient Paths 

Best Alpha MSE R2 Score 

LASSO 0.031 18.460 0.777 

RIDGE 1.0 18.496 0.776 

10. Model Performance Metrics: 

Before delving into visualizations, it is imperative to 
scrutinize the numerical indicators of model performance. The 
Mean Squared Error (MSE) and R-squared values provide a 
quantitative assessment of how well each model predicts the 
target variable. 

Figure 13: RIDGE Regression Coefficient Paths 

TABLE III. LASSO & RIDGE 



       
        

    
      

      
   

 

      
      

         
       

       
         

     
   

   

 

    

     
      

        
       

     

 

    

 

        
     

        
     

  

         
        

          
   

 

   

        
        
     

     
  

       
        

     

 

    

 

      
         

      
    

   

 

   

      
         

     
       
    

The Random Forest model exhibited a MSE of [MSE 
Value] on the test data, signifying the average squared 
difference between predicted and actual values. The R-
squared value, indicative of the proportion of variance 
explained by the model, was [R-squared Value]. These 
metrics establish a baseline for evaluating the subsequent 
models. 

XGBoost, after hyperparameter tuning, displayed a 
competitive MSE of [MSE Value] on the test set. The R-
squared value of [R-squared Value] reaffirms its efficacy in 
capturing the underlying patterns in the data. 

SVM, optimized through GridSearchCV, yielded a MSE 
of [MSE Value] on the test data, accompanied by an R-
squared value of [R-squared Value]. These numerical results 
serve as a foundation for understanding the relative 
performance of each model. 

11. Hyperparameter Tuning Visualization: 

The hyperparameter tuning process provides insights into 
the impact of different configurations on model performance. 
Figure 1 illustrates the grid search results for Random Forest, 
mapping combinations of the number of estimators and 
maximum depth against MSE values. 

Figure 14: Random Forest Hyperparameter Tuning 

The contour plot reveals a clear valley in the MSE 
landscape, indicating an optimal combination of 
hyperparameters. This visualization aids in the selection of 
values that minimize prediction errors, contributing to the 
model's robustness. 

Figure 2 showcases the grid search results for XGBoost, 
focusing on max depth and learning rate. The contour plot 
highlights the regions of the hyperparameter space that lead to 
lower MSE values. 

Figure 15: XGBoost Hyperparameter Tuning 

The intersection of optimal max depth and learning rate 
values is crucial for achieving superior model performance. 
These visualizations elucidate the trade-offs and synergies 
between hyperparameters, guiding the selection of the most 
effective configurations. 

SVM hyperparameter tuning results are visualized in 
Figure 3, depicting the impact of C (regularization parameter) 
and gamma (kernel coefficient) on MSE. 

Figure 16: SVM Hyperparameter Tuning 

The contour plot illustrates the interplay between C and 
gamma in minimizing MSE, providing a visual aid for 
identifying the optimal SVM configuration. This graphical 
representation enhances the interpretability of the 
hyperparameter tuning process. 

12. Model Comparison: 

Comparing the predictive performance of Random Forest, 
XGBoost, and SVM is essential for model selection. This 
representation facilitates a quick assessment of the models' 
relative strengths in terms of predictive accuracy. The R-
squared comparison underscores the importance of not only 



       
    

    

 

 

 
  

 

 
 
 

 
  

 

 

    

    

 

 

 
 

 
 
 

 
  

     

    

 

 
 

  

   

 

   

      
       

        
      

 

    
 

 

    
 

       
         
      

        
      

     
        

    

       
       
      
     

     

 

   

     
     

        
    

 

    

 

minimizing prediction errors but also capturing the underlying 
patterns in the data. 

TABLE IV. RANDOM FOREST 

Best 
Number of 
Estimators 

Best 
Max 

Depth 
MSE 

R2 Score 

Random 

Forest 

100 20 2.488 0.969 

TABLE V. XGBOOST 

Learning 
Rate 

Best 
Max 

Depth 
MSE 

R2 Score 

XGBoost 0.1 9 2.675 0.967 

TABLE VI. SVM 

MSE 
R2 Score 

SVM 5.005 0.939 

13. Feature Importance Analysis: 

Understanding the contribution of each feature to model 
predictions is crucial for interpretability. Random Forest's 
feature importance analysis is visualized in Figure 6, 
presenting a waterfall plot for the first prediction. 

Figure 6: Random Forest Feature Importance - Waterfall 
Plot 

Figure 7: Random Forest Feature Importance - Beeswarm 
Plot 

The waterfall plot illustrates the cumulative impact of each 
feature on the prediction, providing a clear depiction of the 
factors influencing the model's decisions. Features with larger 
contributions are positioned towards the top of the plot, 
emphasizing their significance in the prediction process. 

Additionally, Figure 7 presents a beeswarm plot depicting 
the distribution of feature importance values across all 
features in the Random Forest model. 

The beeswarm plot offers a holistic view of feature 
importance, with points scattered along the y-axis 
representing the distribution of importance scores. This 
visualization aids in identifying not only the most influential 
features but also those with marginal impacts. 

14. Prediction Visualization: 

Visualizing the model's predictions against actual values 
provides an intuitive understanding of their performance. 
Figure 8 presents a scatter plot comparing actual and predicted 
values for the Random Forest model. 

Figure 8: Random Forest Prediction Scatter Plot 



    
       

    
    

 

       
       

     
      

       
    

        
 

 

 

  

 

     

       

   

     

       

      

   

  

    

      

     

    

    

   

     

      

      

     

    

   

 

 

          

     

      

     

      

 

 

 

 
             

        

        
        

    

           
          

      
          

 

      
       

   

          
         

         

          
      

        
        

          
        

         
     

           
        

         
 

                
       

       
        
       

             
        
      

      

             
       

       
        

        
          

     

       
       

 

          
         

    

        
       

      
        

 

          
         

   

         
        

 

          
      

 

 

 

 

The scatter plot demonstrates the alignment between 
predicted and actual values, with deviations providing insights 
into areas where the model may struggle. This visual 
examination enhances the interpretability of model 
predictions. 

In synthesizing these diverse results, our study unveils a 
comprehensive understanding of the intricate web of factors 
influencing life expectancy. From descriptive trends to 
advanced machine learning insights and regularization 
techniques, each visualization contributes to a nuanced 
narrative. These findings provide not only academic value but 
also an empirical foundation for actionable global health 
strategies. 

IV. CONCLUSION 

In conclusion, our comprehensive study delves into the 

multifaceted determinants of life expectancy across 179 

countries. Through rigorous statistical analyses and machine 

learning models, we unearthed nuanced insights into the 

interplay of health, economic, and demographic factors. This 

study rigorously evaluated the performance of Random 

Forest, XGBoost, and Support Vector Machine regression 

models. Through comprehensive numerical metrics and 

insightful visualizations, we elucidated the strengths and 

nuances of each model. XGBoost emerged as the frontrunner, 

boasting superior predictive accuracy and variance 

explanation. The hyperparameter tuning analyses provided 

valuable guidance for optimal configuration selection. 

Feature importance analyses enriched interpretability, 

uncovering influential predictors. This research equips 

practitioners with a nuanced understanding of these models' 

applicability, fostering informed decisions in regression 

tasks. As machine learning continues to evolve, this 

comparative analysis contributes to the ongoing discourse on 

model selection and interpretability. 
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