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ABSTRACT 

As DIS exercises grow in size and complexity, the volume of data each entity receives increases. At the same 
time, less of this information is typically useful to any particular entity (especially acti vity outside the enti ties' 
vision of interest). Currently, each appli cati on running on any processor connected to an Ethernet LAN will 
be receiving all the PDU elements and acts or discards after examining the contents. In this paper we describe 
our effort to study the feasibility of filtering these PDU elements right at the Ethernet entry point based on the 
requirements specified by the application. The fi ltering is done by a smart card that is placed between the 
Ethernet card and the system bus (or.more conveniently by replacing the entire Ethernet card with this new 
card). We describe an Application Programming Interface (API) specification that the application uses to 
specify the filtering requirements (as to what types of PDU packets can be fi ltered). We also provide a 
high-level description of the filter as well as a design. We present the results of simulation experiments that 
analyze the effectiveness and usefulness of thi s filter. Based on the results of the experiments, we conclude 
that this technique would enable simulators of limi ted capacity to participate in large-scale DIS exercises by 
reducing the amount of data that the applicati ons actually see. 
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1.0 Purpose 

This repOlt is a deliverable item (CDRL AOOX) required in completion of subtask 3.4.2.3, "APPLICATION 
LEVEL HARDWARE FILTERS", on STRICOM contract N61339-94-C-0024 enti tled, "TRIDIS: A Testbed 
for Research in Distributed Interactive Simulation. 

1.1 Introduction 

Distributed Interactive Simulation (DIS) is a set of protocols to permit the linking of various types of 
simulations at mUltiple locations (possibly spread over a vast geographical region) to create a complex, realistic 
simulati on environment. The individual simulations can be one of many types, such as: strictly computer 
controlled virtual entities (computer generated forces), live operator controlled virtual entities (human 
in-the- loop simulators), and live entities (actual operational platforms and evaluation systems). 

In operation, each of the entities participating in the simulation will periodically issue information packets, 
called Protocol Data Units (PDUs), as its operating state changes. The other entities will monitor the network 
and retrieve these packets and use the information to update their internal modelof each of the distant entities 
(distant in the real world, though not necessari ly in the simulated world). 

Most of the DIS exercises that have been run to date, have used the broadcast mode of the Ethernet for 
transmission of the PDUs. This sends all information (0 all entities and each entity is required to examine each 
PDU and determine if the data it contains is relevant to its mission. As more entities participate in an exercise 
and transmit their state data,.a lesser percentage of the information received by each entity will be of use to it. 
This increasing amount of irrelevant data will reduce the performance of both the network and the individual . 
applications that have to process it. It is very desirable to reduce the irrelevant data seen by the network and 
applications. 

2.0 Bandwidth Reduction Techniques 

Many different approaches are being studied to control the increased data flow as DIS exercises grow from 
dozens, to hundreds, to thousands of entities. The ultimate goal is to be able to have tens of thousands of 
entities participating in the same simulation exercise. 

Bassiouni, Chiu, and Williams [2] discuss algorithms for reducing network traffic by filtering performed by . 
network gateways. Each gateway maintains accurate information about entities in its local LAN as well as 
entities on other LANs. Each gateway will only send relevant data to foreign LANS that require it, called 
filtering at transmission, and only propagate information to local nodes that require it, called filtering at 
reception. 

Kerr, and Dobosz [3], suggest that putting different PDU families on different UDP ports will reduce the time 
applications spend filtering as they can ignore groups they are not interested in . 

Russo, Schuette, Smith, and McGuire [4], Pullen, and White [5], Van Hook, Rak, and Calvin [6] and others, 
are analyzing the use of multicast groups to reduce both network traffic and individual applications irrelevant 
data loads. The current concept is to divide the virtual world into grids and entities would subscribe to the 
multicast groups that represent the grid squares that they are interested in. Current estimates are that thousands 
or tens of thousands of multicast .groups maybe required to effectively partition the virtual world. There are 
still more questions on how this might be implemented than there are answers. 
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At the Institute for Simulation and Training, some current applications running on IBM PC compatible 
hardware were found to be discarding (because of queue overflow) 70-80% of the PDU packets received, 
because there was insufficient computational power to process them all. 

3.0 DIS Protocols 

The IEEE standard 1278.1 [1] defines 27 PDU types in six PDU families. Several new types have been 
proposed since. As the protocol matures and other non-military applications are devised, additional families 
and types will be developed. It is important that every new application that is written, does not develop it own 
unique PDUs types and protocols. This would severely limit the interoperability of various applications and 
make constructing large virtual environments nearly impossible. Figure 1 shows the currently defi ned PDUs 
by family and type. 

a) Entity Information/ Interaction 
I) Entity State PDU 
2) Collision PDU 

b) Warfare 
1) Fire PDU 
2) Detonation PDU 

c) Logistics 
1) Service Request PDU 
2) Resupply Offer PDU 
3) Resupply Received PDU 
4) Resupply Cancel PDU 
5) Repair Complete PDU 
6) Repair Response PDU 

d) Simulation Management 
1) Start/Resume PDU 
2) StoplFreeze PDU 
3) Acknowledge PDU 
4) Action Request PDU 
5) Action Response PDU 
6) Data Query PDU 
7) Set Data PDU 
8) DataPDU 
9) Event Report PDU 
10) CommentMessage PDU 
11) Create Entity PDU 
12) Remove Entity PDU 

e) Distributed Emission Regeneration 
L) Electromagnetic Emission PDU 
2) Designator PDU 

f) Radio Communications 
1) Transmitter PDU 
2) Signal PDU 
3) Receiver PDU 

Figure 1: Currently Defined PDUs by Family and Type 
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4.0 Packet Flow - The Inside View 

The International Standards Organization (ISO) has developed a seven layer model for computer systems to 
communicate with each other: Physical layer, Data-Link layer, Network layer, Transport layer, Session layer, 
Presentation layer, and Application layer. In the ISO model, each layer, except the Physical layer, adds its own 
header information and the data-link layer also adds trailer information . The Ethernet hardware board 
encapsulates the lower (first) two layers. The Internet Protocol (IP) layer is the network layer and the 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two different Transport layers. 
TCP uses IP to transport a reliable stream of information between two processes [3]. The UDP is an 
unreliable, connection-less transport protocol [8]. TCP packets are guaranteed to arrive in order and are 
retransmitted if they don't. UDP packets are sent using the best-effort of the network, but are not guaranteed 
to arrive and are not retransmitted if they are dropped . DIS app lications use the UDP for most PDU 
transmissions because the PDUs are resent periodically anyway and an occasional dropped packet will be 
updated when the next olle is transmitted. When a DIS application sends a PDU message over the Internet, 
the transport layer (UDP) adds 8 header bytes, the network layer (IP) adds 20 header bytes, and the data-link 
layer (Ethernet) adds 14 header and 4 trailer bytes to the original PDU. When this PDU is received by the 
destination computer, this process is reversed and the Ethernet layer removes its 14 header and 4 trailer bytes, 
the IP layer removes its 20 header bytes and the UDP layer removes its 8 header bytes. When a PDU packet 
arrives that is not needed by the application, it must sti ll be processed through all of these layers and finally 
be discarded by the application. 

14 20 8 4 Bytes 

Ethernet IP Header UDP Application Data Ethernet 
Header Header Trailer 

Figure 2: Packet <;:ontents en the Ethernet 

5.0 Hardware Filter 

This paper examines the advantages of designing a hardware device to off load much of the filtering tasks from 
the CPU. This device might be implemented as a redesigned Ethernet card to replace the existing card, or as 
a device to be inserted at the transceiver cable interface, between the controller electronics, and the transceiver. 
This device will only address the problem of reducing the irrelevant data reaching an individual application, 
not the problem of reducing the network traffic. 

In the simulations performed, the filter tasks were divided into different layers that correspond to the different 
layers of the Internet protocol stack. Ultimately, each packet examined by the hardware filter is either sent on 
to the DIS application or discarded. The following discussion uses three states to identify the disposition of 
the packet. The states are: 

Filter 
Bypass 
Discard 

the final disposition is not yet known, the packet' is sent to the next stage of the filter. 
this packet is to be kept, bypass the remaining filter stages and send it to the application. 
this packet is not useful to the application, throw it away. 

Figure 4 shows the overall flow of packets through the filter. 
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In keeping with the DIS philosophy of discarding old information, the filter parameters each have a time tag. 
If the DIS application does not update the filter parameters before the timeout, (12-14 seconds) the filter 
ignores those parameters and bypasses those packets. 

Input Packet 
I 
v 

Ethernet Stage ------>+ 
I I 

filter I I bypass 
v v 

discard <------ IP Stage --------->+ 
I I 

filter I I bypass 
v v 

discard <------ UDP Stage ----->+ 
I I 

filter I I bypass 
v v 

discard <-- Application Stage-->+ 
I 
I bypass 
v 

Output Packet 
to computer 

Figure 4: Overall flow of packets through the filter 

The Ethernet layer identifies the Ethernet address as belonging to one of three classes: broadcast, multicast, 
or other. Each of the three address classes can be individually filtered or bypassed. (Note: the filter doesn't 
actually check for a match with the Ethernet port address of this node. This would be redundant since the 
Ethernet hardware does this comparison). 

The lP layer bypasses all non-UDP packets and packets whose lP address is not broadcast or multicast. 
Packets with broadcast or multicast addresses are optionally discarded. 

The UDP layer checks for a match on a list of Destination Port Numbers that identify PDU ports. PDU 
Packets are then either filtered or bypassed and the non-PDU packets are either bypassed or discarded. 

The application layer is the most complicated and checks for matches with various parameters in the different 
fields of the different PDU types, including ignoring some PDU types entirely. The API section covers the 
details on the filter functions for the various PDU types. 

This filter doesn't actually implement all of the functionality of the different protocol layers. This functionality 
will still have to be performed by the system software for those packets that are passed. Time will be saved 
by not processing the undesired packets through all of the protocol layers to merely discard them at the 
application level. 
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6.0 Application Level Interface (API) 

The application communicates with the filter hardware through a dI;ver program. Only the driver program 
communicates directly with the hardware. Appendix A is the header file for the API function prototypes for 
the first three stages of the filter. The API function prototypes for the application stage are in Appendix B . 

The POU Header Stage checks for a match to the OIS protocol version and exercise id and discards packets 
that don't match. 

Each POU type could potentially have a different type of filtering function to determine whether the POU is 
useful to the simulation application . We chose to keep these numbers to a minimum (fewer cases than POU 
types) . All of the POUs in the Logistics family are grouped together, as are the POUs in the Simulation 
Management family. These POU types don't produce a significant percentage of the POU traffic, so don't 

. warrant complex treatment. The POUs in both of these groups are typically addressed to a specific entity site 
and application or to all sites and applications. The API for these two families allows for passing only those 
POU addressed to the running application, and optionally to ignore POUs addressed to all sites and 
applications. Fire and designator POUs use nearly the same filter function as the logistics and simulation 
management families . The only difference is to allow for ignoring POUs addressed to unknown sites and 
applications, rather than all sites and applications. (it doesn't make sense for fire or designator PO Us to target 
all sites and applications) 

Entity State POUs account for a significant percentage of the total POU traffic and therefore warrant fairly 
significant filtering techniques. The filter allows seven different ranges for different classes of entities. The 
entities are · classified by their approximate speed. (see Appendix B, enumeration type 
KINO_OOMAIN_SPEEO). Additionally, the filter can mainta~n different ranges for each of 30 own ship 
vehicles. To eliminate the need for floating point hardware, these admittance regions are treated as cubes 
rather than spheres. This allows simple fixed point comparisons on each of the x, y, and z components. (the 
IEEE floating point standard was specifically designed to allow. floating point comparisons to be performed 
with the same fixed poiIlt comparison hardware) Additionally, only 32 bit floating point ranges are used. This 
also simplifies the hardware. 32 bit IEEE floating point numbers allow a precision of approximately 114 of 
a meter for numbers of the magnitude of the radius of the earth. · This is plenty accurate for this course range 
test. The 64 bit entity positions are easily converted to 32 bit numbers by simply ignoring some of the bits. 
(easy in hardware). 

Transmitter PDUs are filtered based on the transmitter frequency and bandwidth being within one of a ·setof 
frequency and bandwidth limits . 

Signal PO Us have only entity id and radio id available to filter· on. The filter-able information (frequency, 
bandwidth) is in the corresponding transmitter POu. The application sends the filter a list of entity and radio 
ids for which to pass Signal POUs. 

Emission and receiver POUs are either bypassed or discarded. 

Collision and detonation POUs generally occurs at such low rates, it was decided to just bypass them. If in 
some particular exercise, they become significant, they could be handled similarly to fire and designator POUs. 
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7.0 Possible Hardware Architecture 

The filter algorithms to be implemented require quite a lot of field comparisons performed at the different 
levels of the protocol stack. In many cases, multiple comparisons need to be made agai nst the same field to 
pass or reject multiple types. Fixing the particular field s and the number of values to be tested in each fie ld 
would make the hardware quite inflexible. A programmable architecture would be able to accommodate new 
or modifi ed PDU types as the DIS specification matures. A programmable architecture would also allow 
individual applications to tune the filter to a greater degree, thereby eliminating a greater percentage of the 
irrelevant information. The application might be able to reduce or even eliminate its internal filtering on some 
PDU types, further improving app lication efficiency. 

A microcode programmable sequencer can meet all of these goals. 

Address 
Control 

logic 

Addre ss 

Control 

logic 

Micro Code and Sequencer Control 

Match Value 

RA M 

512 x 32 

Pact:.el RAM 

256 x 64 

Selecl 8. 16 . 32 bit fields 

Figure 5: Block Diagram of Filter Hardware 

As the match values must be updated frequently, they will be stored in a separate memory from the actual 
microcode for the sequencer. The sequencer will have a three way loop/jump/continue instruction to faci litate 
matches. 

This instruction will decrement a loop counter and jump to itself while the counter is not zero, simultaneously 
test the result of the match and jump if the match condition passes, increment the match address memory, and 
if the loop counts down without a match continue to the next instruction. 

A modified version of the loop instruction would increment the jump address for each match check, and could 
jump to jump table to effect an n-way branch. n would only limited by the size of the loop counter, probably 
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8 bits (256 count). This would facilitate branching to one of n PDU types that require different filtering 
approaches. 

The match logic will permit testing fields of 8, 16, or 32 bits wide with a 32 bit mask to ignore certain bits (one 
mask per match loop, not per match value). These instructions will permit testing multip le fields sequenti ally 
ANDing the results, or testing multiple values in a field ORing the resu lts, with one test per clock after two 
setup instructions. 

Figure 5 is a block diagram of the microcode based fi lter hardware. 

7.1 Microcode Bit Fields, In'itructions, And Timing Estimates 

Figure 6 shows the microcode bit fields for the sequencer in the filter hardware. There are three main classes 
of instructions, loop and jump commands, load start addresses and load loop counter / mask. Figure 7 gives 
a brief description of each of the micro instructions. Figure 8 contains several sample micro code sequences 
showing how the micro code can be used to implement efficient loops. 

Opcodes O-B loop and jump commands 
o 1 2 3 4 5 6 7 8 9 12 16 20 21 22 23 24 28 31 

+-----------+-----------+--+-----+----- -+----- -+--+--+--+--+------+-- -----+ 

Opcode 
L 

Test se l ect P 
o 
B 

Packet Offset 
and Byte Select 

L A I 
PPM 
S S R 
A A A 

Jump Address 

+-----------+---- --- --- -+--+-----+------+------+--+--+-- +--+------+-------+ 

Inc Match Ram Addr 
I 

I 
Accum Packe t Start Addr 

Load Packet Start Addr 
Load Packet Offset & Byte se l ect 

Opcodes C L~ad start addresses etc 
o 1 2 3 4 5 6 7 8 9 12 16 20 24 28 31 

+-----------+--+--+--- --+--+-----+------+---- ---+-------+------ -+----- --+ 

Opcode 
L L 
M Field P 
S Width 0 
B B 

Packet Offset 
and Byte Select 

Match Start and 
Byte Select 

+- ------ ----+--+--+- ----+-- + -~---+- -----+-------+-------+-------+-------+ 

I 
I Load Packet Offse t & Byte select 
Field Width - Match address Increment value 

Load Ma t ch Start and Byte select 

Opcodes D-F Load Loop Counters / Mask 
o 1 2 3 4 5 6 7 8 9 12 16 20 22 24 28 31 

+-----------+--+--+- ----+--+-----+------+------- ---+--+-+-------+-------+ 

Opcode 
L L 
L D 
P L 
R C 

L 
D 
M 
S 

I 
M 
R 
A 

Loop Counter 
Value 

+-----------+--+--+-----+--+-----+------+----------+--+-+---- ---+-------+ 

I 
Inc Match Ram Addr I 

LoaD Mask 
LoaD Loop Counter 

Load Loop counter from Pac ket Ram 

Figure 6: Micro Code Bit Fields 
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OPCODE Name Description of instruction 

o 

1,2,3 

5, 6 ,7 

8 

9,A,B 

C 

D,E,F 

JUMP 

JDCRx 

LOO Px 

LDJT 

Jump/Cont inue on test condi tion 

Jump / Continue on test condition 
Decrement Loop counter 11 213 

Three way Jump/Loop/Continue. 
If Test jump, (PC=Jump Adrs ) 
else if l oop cntr X ! = 0 loop s tart (PC=Jump_Table_Cntr ) 
else continue (PC++) 

Decrement Loop counter 1 12 13 

Load Jump Addrs to Jump_Table_Cntr 

LOOPxT Three way Jump_via_Table/Loop/Continue. 

LDAD 

LDLPx 

If Test jump , (PC=Jump_Table_ Counter) 
else if loop cntr X != 0 loop to here (PC=PC) 
else continue (PC++) 

Decrement Loop counter 11 2 13 
Jump_Table_Counter++ 

Load Start Addresses for Match Ram and Packet Offset in 
Packet Ram 

Load Loop Counter 11213 from Loop Counte r field or Packet Ram . 
Optionally l oad Mask from Match Va lue Ram 

Figure 7: Brief Description of Micro Code Instructions 

Here is sample micro code to decode PDU types: 

LDAD PDU_TYPE 
LDLP1 PDU SIZE -
LDJT PDU_TBL 
LOOP1T MATCH 

NOOP 

JUMP ESPDU 
JUMP FIRE 
JUMP SIMMAN 

JUMP XMIT 
JUMP SIGNAL 

; Load start addr for Matc h Valu e RAM 
;Load loop counter and mask 
;Load jump table counter 
;Loop here while incrimenting match value RAM 
;also increment jump table counter, and j ump to it 
; when the PDU type is matched 
;Only come here if NO match in PDU type field. Do 
; some e rror handling 

;This is a jump table for decod ing PDU types 

;one for each PDU type 

Here is sample micro code test for a match with with a Entity_id and Radio_id for a signal PDU. This requires 
a two instruction loop. The first matches Site and Application, the second matches Entity and Radio id. Only 
two are needed, because each of the fields are 16 bits, and the hardware can test 32 bits a a time. 

10 
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SKIP: 

LDAD RADIO_ID 
LDLPI RADIO_SIZE 
LDJT RADIO_LP 
JMP RADIO_ LP 
CONT 

JMP NOMATCH SKIP 
LOOPI MATCH KEEP 

;Load start addr for Match Value RAM 
;Load inner loop counter 1 
;Load jump table counter t o loop start 
;loop starts at RADIO_ID, skip SKIP instruction 
;incriment match valu e RAM and decriment Packet 
; RAM, don ' t test l ast part of id fi eld 
;no match, skip next test , incr iment Packet RAM 
; Loop to RADIO_ ID while incrimenting match va lue 
;RAM and decrement Packet RAM, Jump to KEEP if 
;have a match 
;fall through if n o matchs Discard this PDU 

Figure 8: Sample Micro Code Sequences 

Figure 9 is a table with estimated times for execution of the microcode in each of the filter layers. The worst 
case execution time would be the sum of the four protocol stack layers plus the maximum of the application 
layer. 

If we assume that the Ethernet chip we use as the front end has an internal fifo that holds at least two packets, 
and the data interface from the Ethernet chip to the filter chip and from the filter chip to the CPU bus, being 
32-bit at 33MHz, the time to transmit a packet to or from the filter chip varies from 15 to 250 50MHz clock 
times. Inputting, filtering, and outputting a max size packet of 1500 bytes takes 250 + 300 + 250 = 800 
50MHz clocks. The minimum size Ethernet packet takes 51.2 micro seconds, or 2560 50MHz clocks to input. 
So, worst case, it takes less than one third of the available time. The Packet RAM wo uld not be required to 
behave as a fifo in this case, with simultaneous input and output. 

For 100MHz FDDI or fast Ethernet, we only have 256 50MHz clocks available for the minimum size packet. 
The Packet RAM would defiantly be required to behave as a fifo in this case as simultaneous input / processing 
/ output would necessary to keep up with the worst case packet rate. 

Each loop has over head of 3 instructions plus the size of the loop. 

layer II' loop I # of II loop I # of II l oop I IO# OpOsf II total II 
size l oops size loops size 

---------------++---- --+-------++--- - --+----- --++------+-------++-------++ 
Ether 1 3 3 1 18 
I P 1 3 2 1 17 
UDP 30 1 1 2 41 
PDU_ h 1 1 1 2 12 
----- ----- -----++---- - -+--- ----++------+-------++------+-------++-------++ 
PROTOCOL STACK TOTAL 88 

layer 
I I 

l oop I # of I I loop I # of I I l oop I # of I I total I I 
s ize loops ' size l oops size loops 

--------- ------++------+-------++------+-------++------+ -------++-------++ 
Entity State 6x30 1 6 3 210 
Fire 2 2 10 
Sim Man 2 2 10 
Logistics 2 2 10 
Designator 2 2 10 
Transmitter 6x30 1 1 1 187 
S ignal 2x30 1 1 1 67 
Emi ssion 1 1 4 
Receiver 1 1 4 
---------------++------+------- ++------+-- -----++------+---- ---+ + -------++ 
APPLICATION MAX 210 

PROTOCOL STACK + MAX AP PLICATION TOTAL 298 

NOTE: the loop sizes that are 30 are list sizes that were some what arbitrarily chosen, and could be changed if needed. 

Figure 9: Micro Code Time Estimates for Each Layer 
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8.0 A Typical Dis Exercise 

A typical DIS exercise might consist of several manned helicopter simulators, several manned tank simulators, 
and several other computer generated tanks. The manned simulators, being quite large and expensive, are likely 
to be geographically dispersed. The computer generated tanks could be located where ever sufficient computer 
resources were available. The scenario might be for the helicopters to search for and destroy enemy tanks . 
Each of the separate simulators needs to know the location of each of the other participants, so that when the 
other entities are within a celtain range, they may be appropriately displayed on the radar screens or 
out-the-window visual screens. Information on weapons fire and impact is also required to determine if attacks 
are successful. 

Most of the DIS exercises, that have been run to date, have used the broadcast mode of the Ethernet for 
transmission of the PDUs. This sends all information to all entities and each entity is required to examine each 
PDU and determine if the data it contains is relevant to its mission .. As more entities participate in an exercise 
and transmit their state data, a greater percentage of the information received by each entity will not be of use 
to it. This increasing amount of irrelevant data will reduce the performance of both the network and the 
individual applications that have to process it. It is very desirable to reduce the irrelevant data seen by the 
network and applications. 

9.0 Experimental Results 

I To test the effectiveness of the filter, several test cases were. generated. These were ,simi lar to the typical DIS 
exercise described above. 

I 9.1 Rectangular Paths 

I 
I 
I 
I 
I 
I 
I 
I 
I 

The first test case simulated eight tanks each on a rectangular path about 9000 meters by 9000 meters. The 
different tracks are offset from each other by 5 meters, and the tanks start on different edges: N,E,S,W. The 
tanks move at about 20-37 miles per hour (each tank is 2.2 mph faster than the preceding tank). 

The own ship helicopter travels in rectangular path 7000 meters by 1000 meters, inside the tank paths, about 
1000 meters from the tank path edges. The radius that the own ship accepts packets was set to 1400 meters . 
The own ship moves at about 150 miles per hour. Figure 10 shows three of eight tank path and the own ship 
path. 
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tank paths (3 of 8 shown) 
+--- ----- --------------------------+ 

+-+------ - - - ------ - -------~--- --- -+ 
+-+-+------ -------- --- ---- -- - -----+ 

own s hip path 
+-- - --+ 

+-----+ 

+------- ----- --- - - - --------- - --+-+- + 
+----------------------------- - --+-+ 

+----------- ----- ------------ -- - ---+ 

Figure 10: Paths of 3 of 8 tanks and own ship path 
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Figure 11: Packets Discarded in Rectan~ular Grid Case 
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Only Entity State POUs are simulated here. The tanks and own ship each issue Entity State POUs once per 
second. The own ship simulation also issues API calls for the constant data in the other protocol layers once 
every 12 seconds to prevent automatic timeout after 14 seconds. 

The statistics for number of packets processed and bypassed / di scarded at each stage of the filter were gathered 
and fi gure II shows the average/cumulative percentage of packets discarded by the filter (averaged over 15 
seconds of simulations time). 

9.2 Random Path 

The previous case is fairly simple and was implemented mostly to debug the filter functions. This case is a 
more realistic scenario. There are eight tanks traveling in random paths inside the same 9000 by 9000 meter 
space as the previous case. The !anks maintain their path for a random period between 30 and 60 seconds. 
At that time, a new ax, ay and duration are generated. The speeds are still in the 20--40 mph range. The own 
ship also travels in a random path inside a 7000 by 7000 m eter box. Its speed is 100--200 mph . Each tank 
and own ship produces a POU packet at a approximately 1 per second. The tanks actual POU rate is a random 
number between 0.8 and 1.2 seconds. Figure 12 shows five of the tank tracks, figure 13 shows the own ship 
path. Figure 14 shows the statistics for the number of packets discarded . 
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Figure 12: Paths of Tanks in the Random Case 
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Figure 13: Path of a ownship in the Random Case 
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Figure 14: Packets Discarded in Random Case 

9.3 Actual Simulation Data Replayed 

We used some actual data recorded from DIS exercIses performed at the I1ITSEC 1994 DIS [7] 
demonstrations. 

Several of the DIS demonstration were examined to fi nd one or two that were similar to the above test cases. 
Three candidates seemed similar, CGF Demonstration Exercise 5, Helicopter Armed Recon Exercise 9, and 
Ground Combat Exercise 11. A simple pre-filter was written to extract just the entity state PDUs for one 
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particular exercise, from the large (16MB files) and write them to smaller files which were run through the 
filter described here. The Day4-37 file and exercise 9 was selected as the test case. 
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Figure 15: Packets Discarded in iITSEC Data 

One of the helicopters was selected as the own ship. The radius that the own ship accepts packets was set to 
3000 meters. Each time this a PDU from this entity was read from the file, the filter parameters were updated 
to reflect its new position. All of the other PDUs were sent through the filter, and statistics were accumulated 
on the bypass/discard rates. 

Another set of 20 test cases were run varying the radius that the own ship accepts packets between 
1000-10,000 meters for each of the tank and helicopter as the own ship. There were considerably fewer total 
packets in these files than the artificial test cases discussed earlier, and the packets per second rate was also 
slower. The total percentage of packets discarded was also less in this test case. Of course, these discard rates 
will vary considerably, depending on the exact type of exercise that is being simulated, and how large the 
gaming area is compared to the area of interest of the particular own ship entity. The statistics for number of 
packets processed and bypassed /discarded at each stage of the filter are shown in figure 15 (for helicopter 
as the own ship), figure 16 (for the tank as the own ship ) and figure 17 (for various accept ranges). 
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9.4 Radio Transmissions 

Test case four uses the same data file : Day4_37, as test case three. The raw VITSEC data file was 
pre-processed to extract only the transmitter and signal PDUs. The main test program was modifies slightly, 
to handle the transmitter and signal PDUs. When ever a transmitter PDU was read from the fil e, it was sent 
through the filter. If it was bypassed, the filter parameters were updated to accept signal PDUs that matched 
the entity and radio identifiers from the transmitter PDU. Signal PDUs were just sent through the filter, and 
bypass/discard statistics maintained. 

The Day4_37 contained transmitter PDUs containing only five different frequencies . Two three cases were 
11m. One selected two of the frequencies, the second selected two other frequencies, and the last selected the 
final frequency. Oddly, there were only signal PDUs that matched one of the five frequencies . The other four 
frequencies had no cOITesponding signal PDUs. The discard statistics are very nearly identical for the flfSt two 
cases, on ly one is shown if figure 17 . Only transmitter PDUs were bypassed in thi s case, all of the signal 
PDUs were discarded, so the discard rates are fairly high. Figure 18, shows the final case. All of the signal 
PDUs were bypassed here, as well as some of the transmitter PDUs, so the discard rate is fairly low. 
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Figure 18: I1ITSEC 94 File: Day4_37, Exercise 9 Transmitter 
and Signal PDU 
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10.0 Packet Processing Overhead 

Network processing overhead was measured on an actual system and software used at 1ST. Two sets of test 
cases were run . The first set used two 80486DX2-66 machines, the second set used two Pentium 75 machines. 
The two machines were isolated on their own network cable, so only those two machines would generate 
packets on the Ethernet. The software is the current version of ISTCGF, (Institute for Simulation and Training 
Computer Generated Forces) This is a simulator that can generate and control a number of entities, as well as 
display their locations in the data base on screen. One system was setup to send PDU packets, the other only 
received PDU packets. The exercise numbers were set differently on the two systems. This allowed the 
receiving system to process the packets through all of the protocol layers and discard them at the application 
layer with essentially no processing at that layer. The ISTCGF program has built in statistics gathering that 
reports the total time the simulation was run, the number of loops the executive executed, the number of 
packets received and discards at each layer of the protocol stack. 

For the first test case in each set, the sending host was not running the simulation software, and therefore was 
not sending any packets on the network. In this baseline case, the simulator was executed on receiving host 

. for one minute. This was timed by a stop watch and the statistics reported typically about a half a second more. 

For the other test cases, the sending host was started and two or more tanks were created and set rotating on 
their axes. This produced about 6.5 packets per second on the network for each pair of tanks. Six more test 
cases were run with two, four, six, ten, 16, and 24 spinning tanks. Twenty-four entities were an many as the 
simulator supported . Twenty-four spinning tanks produced about 156 packets per second. One final test case 
was run with 24 F16 aircraft. This produced about 256 packets per second. A sample main program is shown 
in Appendix C. 

Define the following terms: 

T = 
W 
P 

Time program is run 
Work time per loop 
Overhead time per packet 
No. of packets processed in case x 
Number of loops processed when there are no packets processed 

Then, 

T=W x Wo 
T=WxWx+PxPx 

If we assume T = 1 second, then: 

W = lIWo 
P = (1 - W/Wo) / Px 

19 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Case Seconds Packets Loops Pkts/Sec Loops/sec UslPkt Ovhd 
o pps 60.858 0 1017838 0.00 16724.80 
2 tanks 60.528 787 1002316 13.00 16559.43 760.46 
4 tanks 60.474 1576 992694 26.06 16415.34 709.99 
6 tanks 60.583 2373 985239 39. 17 16262.53 705.65 
10 tanks 60.364 3946 964216 65.37 15973.45 687.23 
16 tanks 60.638 6342 941546 104.59 15527.25 684.63 
24 tanks 60.638 9490 907692 156.50 14968.97 670.82 
24 f16s 60.693 15564 833065 256.44 13725.79 699.26 

Table 1: Packet Overhead Experiment Results on a 486DX2-66 

Case Seconds Packets Loops Pkts/Sec Loops/Sec UslPkt Ovhd 
o pps 60.199 0 266618 0.00 4428.93 
2 tanks 60.254 743 265051 12.33 4398.90 549.88 
4 tanks 60.474 1490 264081 24.64 4366.87 568.74 
6 tanks 60.144 2227 260786 37.03 4336.02 566.55 
10 tanks 60.529 3752 258685 61.99 4273 .77 565.20 
16 tanks 60.419 6001 252506 99.32 4179.26 567.58 
24 tanks 61.023 9125 247555 149.53 4056.74 561.99 
24 f16s 61.023 7205 252947 118.07 4145 .11 542.77 

Table 2: Packet Overhead Experiment Results on a Pentium 

From these calculations, the average packet overhead is determined to be 560 Jl s for the Pentium 75 and 702Jl 
s for 486DX2-66 machines. 

11.0 Run Time Overhead 

In order to quantify the extra overhead the application has in keeping the filter parameters updated, we profiled 
the run time of the simulator. It indicates that the application overhead in issuing requests to the filter average 
about 36Jl s per second of simulation time (which is very small). 

To gauge the amount of extra overhead required to update the hardware filter parameters, run time profiling 
was performed on Test Case One. The GNU programs: g++ -p -pg -0 and gprof were used. 50000 seconds 
of simulation were performed to obtain meaningful results, as gprof only prints times to 0.01 seconds. This 
took about five minutes of real time on a 486DX4-100 running under Linux 1.2.8. 

The functions whose names begin with Filter are the API calls that are being timed. They take 1.79 
seconds for 50,000 iterations, which is about 36 microseconds per second of simulation time. The filter chip 
dri ver function actually writing data to the filter chip is not in this simulation. 

The pertinent results from the gprof output are in Figure 16, (the comments below this table are also from 
gprof). 
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% time self children called name 

0.50 1.99 50001/50001 main 
1.3 0.50 1.99 50001 Own ship(int) 

1.64 0.00 50001/50001 FilterOwnShipPositionO 
0.20 0.00 50000/450000 MoveSquareO 
0.06 0.00 4167/4167 Fi I terEnti tyStateRangeS QO 
0.05 0.00 4168/4168 FilterUDP-PortO 
0.01 0.00 4167/4167 Fi IterEthernetAddressO 
0.01 0.00 4167/4167 FilterIP-AddressO 
0.01 0.00 4167/4167 FilterUDP-ModeO 
0.01 0.00 4167/4167 Fi IterPD U -HeaderO 

Table 3: Gprof Results of Test Case One 

This table describes the call tree of the program, and was sorted by the total amount of time spent in each 
function and its children . 

12.0 Conclusions 

There is compelling evidence that filtering packets at the Ethernet level would enable low-cost workstations 
to spend more of processing time on useful things, sl:ch as better vi sual effects, and not missing needed 
packets. On the system timed, a 486DX2-66, merely receiving and discarding 256 entity state PDU packets 
per second , used 18% of the total cpu time. The system was found (by others) to be able to process about 100 
packets per second before packets start being dropped. If a hardware filter was available to offload some of 
the filtering tasks, the cpu could process more needed packets, rather than arbitrarily discarding useful and well 
as unneeded packets, when it ran out of processing time. 

We also provided a well-defined API interface to the filter. The filter itself is simple, and involves no floating 
point computations and can be easily integrated into existing Ethernet interface cards. 
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APPENDICES 

A. API Function Prototypes For Stages 1, 2, 3 

/ * api.h typedef s and fun ct i on pro totypes for API call s */ 

/* Some ob v i ou s typedefs */ 
typede f int BOOL; 
typedef unsigned char UINT_8; 
typedef unsigned short UINT_16; 
typedef unsigne d l ong UINT_32 ; 
typedef UINT_3 2 UINT_6 4 [ 2 1 ; 
type def float FLOAT_32 ; 
typedef double FLOAT_ 64; 

typedef enum { 
Filte r _ None ° , 

*/ 
Filter_Self, 
Filte r_Multicast, 
Filte r_Multi_Self, 
Filter_Broadcast, 
Filter_Broad_Se lf, 
Filte r_Multi_Broad, 
Filter_All 

FILTER_ETHERNET; 

/* 
/* 

/* 
/* 
/* 
/* 
/* 
/ * 
/* 

Filter vs Bypass modes */ 
Bypass all, filt er i s off - default 

Bypass multicast and Broadcast * / 
Bypass Broadcast and self */ 
Bypass Broadcast */ 
Bypass multicas t and self */ 
Bypass multicast */ 
Bypass only self */ 
Bypass none */ 

intFilterEthernetAddress (FILTER_ ETHERNET Mode); /* Filter v s Bypass 
modes */ 

typedef enum { 
Discard_None = 0, 
Discard_Broadcast, 
Discard_Multicast, 
Disca~d_Multi_Broad 

DISCARILIP; 

/* Discard vs Filter modes */ 
/* Filter all - default */ 
/* Filter multicast */ 
/* Filter Broadcast */ 
/* Filter onl y self */ 

int FilterIP_Address(DISCARD_IP Mode); /* Discard vs Filte r modes */ 

typedef enum 
Add = 0 , 
Delete , 
Update 

ADD_DELETE; 

/* Add/Delete /Update select */ 
/* Add entries in List that follows */ 
/* Delete entries in List */ 
/* Update entries in List */ 

int FilterUDP_Port(ADD_DELETE Select, /* Add/Delete / Update list of PDU 
ports */ 

*/ 

int *Start, /* Start index o f list 
For ADD, returns actual start index 

int *Size, /* Size of Filter Array: List 
Returns actual number accepted */ 

UINT_16 *List ); /* ar~ay of p orts PDUs are on */ 
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typedef enum { /* Bypass/Filter PDUs / Other Se l ect */ 
BypassPDU_BypassOther 0, /* Bypass PDUs and Bypass Other packets 

*/ 
BypassPDU_DiscardOther, /* Bypass PDUs and Dscard Other packets 

* / 
FilterPDU_BypassOther, /* Filter PDUs and Bypass Other packets 

* / 
FilterPDU_DiscardOther /* Filter PDUs and Dscard Other packets 

*/ 
} PDU_OTHER; 

int FilterUDP_Mode (PDU_OTHER Mode); / * select Bypass/Fil ter PDUs / Other 
mode */ 

B. API Function Prototypes For The Application Stage Of The Filter 

/* Note: Generally, the Entity Site and Application are the same in all 
of the 

following PDU types: all Logistics, all Simulation Management Fire, 
a nd 

Designator. */ 

int FilterPDU_Header(UINT_8 Version, /* Protocol version to filter * / 
UINT_8 ExerciseID); /* Exercise ID filter */ 

int FilterLogisticsEntitySite(BOOL All, /* Bool, accept all enti~ies ID 
*/ 

UINT_16 EntitySite, /* Entity Site to 
bypas s */ 

UINT_16 Application); /* Application to 
bypass */ 

int FilterSimManEntitySite(BOOL All, /* Bool, accept all entities ID */ 
UINT_16 EntitySite, /* Entity Site to bypass 

*/ 
UIN'r_16 Application); /* Applicati on to bypass 

*/ 

int FilterFireEntitySite(BOOL Unknown, /* Bool, accept unknown entity ID 
*/ 

*/ 

UINT_16 EntitySite, /* Entity Site to bypass */ 
UINT_16 Application); /* Application to bypass 

int FilterDe signatorEntitySite(BOOL Unknown, /* accept unknown entity ID 
*/ 

UINT_16 EntitySite, /* Entity Site to 
bypass */ 

UINT_ 16 Application); /* Application to 
bypass */ 

typedef struct 
FLOAT_ 32 x; /* 32 bit IEEE floating point */ 

24 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

FLOAT_32 
FLOAT_32 

Yi 
z i 

int Fil terOwnShipPosi ti on (ADD_ DELETE Selec t, / * Add / Delete/Update list 
*/ 

*/ 

typedef e num 
{ 

SPEED_OTHER, 
FIXED, 
SLOW, 
MED IUM , 
FAST, 
VERY_ FAST, 
HYPER_ FAST 

KIND_DOMAIN_SPEEDi 

in t Index, /* Index of OwnShip Entity (0-31) 

OWN_SHIP_ POSITION *OwnShipPosition) i 

/* Speed range for entities */ 

/* Oth er * / 
/* Cul ture and Environmental */ 
/* Lif e Forms */ 
/* Tanks, Trucks, Boa ts */ 
/* Heli copte r s */ 
/* Fixed Wing Aircraft * / 
/* Munitions */ 

in t Filte rEntityStateRangeSQ(ADD_DELETE Se l ect , /* Add / Delete/Update li s t 
*/ 

to */ 

index 

*/ 

typedef s truc t { 
UINT_64 HighFreqi 
UINT_64 LowFreqi 
FLOAT_32 HighBandwidthi 
FLOAT_32 LowBandwidthi 

FREQ_BANDWIDTHi 

int OwnShip, /* OwnShip index to apply these 

int *Start, /* Start index of list 
For ADD, returns actual start 

This i s on e of 

int *Size, /* Size o f ~~GE Array: Li s t 
Returns actu al number accepted 

FLOAT_32 *List ) i 

/* High Freq limit */ 
/* Low Freq limit */ 
/* High Bandwidth limit */ 
/* Low Bandwith limit */ 

int FilterTransmitter(ADD_ DELETE Select, /* Add/Delete / Update list */ 
int *Start, /* Start index of list 

For ADD, returns actual start index 
* / 

int *Size , /* Siz e of FREQ_BANDWIDTH Array: List 
Returns actual number accepted */ 

FREQ_BANDWIDTH *Lis t) i 

typedef s truc t { 
UINT_16 EntitySitei 
UINT_16 Applicationi 
UINT_ 16 EntityIDi 
UINT_ 16 RadioIDi 

RADIO_ IDi 

/* Entity Sites to bypass */ 
/* Applications to bypass */ 
/* Entity IDs bypass */ 
/* Radio IDs bypass */ 

int FilterSignal(ADD_DELETE Select , /* Add/Delete/Update list */ 
int *Start, /* Start index of list 
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*/ 
int *Size, 

For ADD, returns actual start index 

/ * Size of RADIO_IDs Array: List 
Returns actual number accepted */ 

RADIO_ID *List ); 

int FilterEmission(BOOL discard); /* Bool, di scard all emlSSlon PDUs if 
se t */ 

int FilterReceiver(BOOL discard); /* Bool, Discard all receiver PDUs if 
se t */ 

I C. Main Loop Code Of ISTCGF 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

for (;;) { 
rightnow = GetTime(); 
MathOK() ; 
loop_cnt++; 
CheckNetInterface() ; 
MsgScan() ; 
SetCCB(cons_mgr_cb) ; 
ConsoleCheck(rightnow) ; 
CheckGraphicsMsg() ; 

D. API Function Calls Code 

/* Update the current time 
/ * No math errors so far? 
/ * Count this go-around 
/* Check for incoming network packets 
/* Dispatch highest priority message 

*/ 
*/ 
*/ 
*/ 
*/ 

For the purposes of simulating the functionality of the filter functions, the actual filter parameters were stored 
in C memory structures. These API function calls, which are called by the receiving DIS simulator, write these 
structures, and the filter functions read them. 

In an actual hardware implementation of the filter, each of these API calls would have a few lines of additional 
code to write the data structure to the filter chip. If the filter memory is memory-mapped in the CPU memory 
space, this could be as simple as declaring and mapping the structures in the actual memory space of the filter. 
In this case, API functions would not have to be changed at all. Alternately, a memcpyO call may be used. 
If the filter memory is VO port mapped to the CPU, a DMA request would required. 
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