
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1996

Application Level Hardware Filtering For DIS: Final Report Application Level Hardware Filtering For DIS: Final Report

Udaya B. Vemulapati

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Vemulapati, Udaya B., "Application Level Hardware Filtering For DIS: Final Report" (1996). Institute for Simulation and
Training. 18.
https://stars.library.ucf.edu/istlibrary/18

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/18?utm_source=stars.library.ucf.edu%2Fistlibrary%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.1
.1 831..5

INSTITUTE FOR SIMULATION AND TRAINING

Contract Number N61339-94-C-0024
CDRL AOOX
STRICOM
Feb ruary 27, 1996

Application Level
Hardware Filtering
For DIS

Final Report

Institute for Simulation and Training
3280 Progress Drive
Orlando FL 32826

University of Central Florida
Division of Sponsored Research IST-TR-96-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INSTITUT E FOR SIMULATION AND TRAINING

Application Level Hardware
Filtering For DIS

Final Report

IST-TR-96-16
February 27, 1996

Prepared For:
STRICOM

Contract Number N61339-94-C-0024
CDRL AOOX

Author:
Dr. Udaya B Vemulapati

Reviewed By:
Scott H. Smith

Institute for Simulation and Training • 3280 Progress Drive • Orlando, Florida 32826

University of Central Florida • Division of Sponsored Research

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table of Contents

Abstract 2

1.0 Purpose 3
1.1 Introductior.. 3

2.0 Bandwidth Reduction Techniques 3

3.0 DIS Protocols 4

4.0 Packet Flow -- The Inside View 5

5.0 Hardware Filter 5

6.0 Application Level Interface (API) 7

7.0 Possible Hardware Architecture 8
7.1 Microcode Bit Fields, Instructions, and Timing Estimates 9

8.0 A Typical DIS Exercise 12

9.0 Experimental Results 12
9.1 Rectangular Paths 12
9.2 Random Path 14
9.3 Actual Simulation Data Replayed 15
9.4 Radion Transmissions 18

10.0 Packet Processing Overhead 19

11.0 Run Time Overhead 20

12.0 Conclusions 21

13.0 Acknowledgments 21

14.0 References 22

Appendix A: API Function Prototypes for Stages 1, 2, 3 23

Appendix B: API Function Prototypes for the Application Stage of the Filter 24

Appendix C: Main Loop Code of ISTCGF 26

Appendix D: API Function Calls Code 26

------------.................
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ABSTRACT

As DIS exercises grow in size and complexity, the volume of data each entity receives increases. At the same
time, less of this information is typically useful to any particular entity (especially acti vity outside the enti ties'
vision of interest). Currently, each appli cati on running on any processor connected to an Ethernet LAN will
be receiving all the PDU elements and acts or discards after examining the contents. In this paper we describe
our effort to study the feasibility of filtering these PDU elements right at the Ethernet entry point based on the
requirements specified by the application. The fi ltering is done by a smart card that is placed between the
Ethernet card and the system bus (or.more conveniently by replacing the entire Ethernet card with this new
card). We describe an Application Programming Interface (API) specification that the application uses to
specify the filtering requirements (as to what types of PDU packets can be fi ltered). We also provide a
high-level description of the filter as well as a design. We present the results of simulation experiments that
analyze the effectiveness and usefulness of thi s filter. Based on the results of the experiments, we conclude
that this technique would enable simulators of limi ted capacity to participate in large-scale DIS exercises by
reducing the amount of data that the applicati ons actually see.

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.0 Purpose

This repOlt is a deliverable item (CDRL AOOX) required in completion of subtask 3.4.2.3, "APPLICATION
LEVEL HARDWARE FILTERS", on STRICOM contract N61339-94-C-0024 enti tled, "TRIDIS: A Testbed
for Research in Distributed Interactive Simulation.

1.1 Introduction

Distributed Interactive Simulation (DIS) is a set of protocols to permit the linking of various types of
simulations at mUltiple locations (possibly spread over a vast geographical region) to create a complex, realistic
simulati on environment. The individual simulations can be one of many types, such as: strictly computer
controlled virtual entities (computer generated forces), live operator controlled virtual entities (human
in-the- loop simulators), and live entities (actual operational platforms and evaluation systems).

In operation, each of the entities participating in the simulation will periodically issue information packets,
called Protocol Data Units (PDUs), as its operating state changes. The other entities will monitor the network
and retrieve these packets and use the information to update their internal modelof each of the distant entities
(distant in the real world, though not necessari ly in the simulated world).

Most of the DIS exercises that have been run to date, have used the broadcast mode of the Ethernet for
transmission of the PDUs. This sends all information (0 all entities and each entity is required to examine each
PDU and determine if the data it contains is relevant to its mission. As more entities participate in an exercise
and transmit their state data,.a lesser percentage of the information received by each entity will be of use to it.
This increasing amount of irrelevant data will reduce the performance of both the network and the individual .
applications that have to process it. It is very desirable to reduce the irrelevant data seen by the network and
applications.

2.0 Bandwidth Reduction Techniques

Many different approaches are being studied to control the increased data flow as DIS exercises grow from
dozens, to hundreds, to thousands of entities. The ultimate goal is to be able to have tens of thousands of
entities participating in the same simulation exercise.

Bassiouni, Chiu, and Williams [2] discuss algorithms for reducing network traffic by filtering performed by .
network gateways. Each gateway maintains accurate information about entities in its local LAN as well as
entities on other LANs. Each gateway will only send relevant data to foreign LANS that require it, called
filtering at transmission, and only propagate information to local nodes that require it, called filtering at
reception.

Kerr, and Dobosz [3], suggest that putting different PDU families on different UDP ports will reduce the time
applications spend filtering as they can ignore groups they are not interested in .

Russo, Schuette, Smith, and McGuire [4], Pullen, and White [5], Van Hook, Rak, and Calvin [6] and others,
are analyzing the use of multicast groups to reduce both network traffic and individual applications irrelevant
data loads. The current concept is to divide the virtual world into grids and entities would subscribe to the
multicast groups that represent the grid squares that they are interested in. Current estimates are that thousands
or tens of thousands of multicast .groups maybe required to effectively partition the virtual world. There are
still more questions on how this might be implemented than there are answers.

3

--------...............................
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

At the Institute for Simulation and Training, some current applications running on IBM PC compatible
hardware were found to be discarding (because of queue overflow) 70-80% of the PDU packets received,
because there was insufficient computational power to process them all.

3.0 DIS Protocols

The IEEE standard 1278.1 [1] defines 27 PDU types in six PDU families. Several new types have been
proposed since. As the protocol matures and other non-military applications are devised, additional families
and types will be developed. It is important that every new application that is written, does not develop it own
unique PDUs types and protocols. This would severely limit the interoperability of various applications and
make constructing large virtual environments nearly impossible. Figure 1 shows the currently defi ned PDUs
by family and type.

a) Entity Information/ Interaction
I) Entity State PDU
2) Collision PDU

b) Warfare
1) Fire PDU
2) Detonation PDU

c) Logistics
1) Service Request PDU
2) Resupply Offer PDU
3) Resupply Received PDU
4) Resupply Cancel PDU
5) Repair Complete PDU
6) Repair Response PDU

d) Simulation Management
1) Start/Resume PDU
2) StoplFreeze PDU
3) Acknowledge PDU
4) Action Request PDU
5) Action Response PDU
6) Data Query PDU
7) Set Data PDU
8) DataPDU
9) Event Report PDU
10) CommentMessage PDU
11) Create Entity PDU
12) Remove Entity PDU

e) Distributed Emission Regeneration
L) Electromagnetic Emission PDU
2) Designator PDU

f) Radio Communications
1) Transmitter PDU
2) Signal PDU
3) Receiver PDU

Figure 1: Currently Defined PDUs by Family and Type

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4.0 Packet Flow - The Inside View

The International Standards Organization (ISO) has developed a seven layer model for computer systems to
communicate with each other: Physical layer, Data-Link layer, Network layer, Transport layer, Session layer,
Presentation layer, and Application layer. In the ISO model, each layer, except the Physical layer, adds its own
header information and the data-link layer also adds trailer information . The Ethernet hardware board
encapsulates the lower (first) two layers. The Internet Protocol (IP) layer is the network layer and the
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two different Transport layers.
TCP uses IP to transport a reliable stream of information between two processes [3]. The UDP is an
unreliable, connection-less transport protocol [8]. TCP packets are guaranteed to arrive in order and are
retransmitted if they don't. UDP packets are sent using the best-effort of the network, but are not guaranteed
to arrive and are not retransmitted if they are dropped . DIS app lications use the UDP for most PDU
transmissions because the PDUs are resent periodically anyway and an occasional dropped packet will be
updated when the next olle is transmitted. When a DIS application sends a PDU message over the Internet,
the transport layer (UDP) adds 8 header bytes, the network layer (IP) adds 20 header bytes, and the data-link
layer (Ethernet) adds 14 header and 4 trailer bytes to the original PDU. When this PDU is received by the
destination computer, this process is reversed and the Ethernet layer removes its 14 header and 4 trailer bytes,
the IP layer removes its 20 header bytes and the UDP layer removes its 8 header bytes. When a PDU packet
arrives that is not needed by the application, it must sti ll be processed through all of these layers and finally
be discarded by the application.

14 20 8 4 Bytes

Ethernet IP Header UDP Application Data Ethernet
Header Header Trailer

Figure 2: Packet <;:ontents en the Ethernet

5.0 Hardware Filter

This paper examines the advantages of designing a hardware device to off load much of the filtering tasks from
the CPU. This device might be implemented as a redesigned Ethernet card to replace the existing card, or as
a device to be inserted at the transceiver cable interface, between the controller electronics, and the transceiver.
This device will only address the problem of reducing the irrelevant data reaching an individual application,
not the problem of reducing the network traffic.

In the simulations performed, the filter tasks were divided into different layers that correspond to the different
layers of the Internet protocol stack. Ultimately, each packet examined by the hardware filter is either sent on
to the DIS application or discarded. The following discussion uses three states to identify the disposition of
the packet. The states are:

Filter
Bypass
Discard

the final disposition is not yet known, the packet' is sent to the next stage of the filter.
this packet is to be kept, bypass the remaining filter stages and send it to the application.
this packet is not useful to the application, throw it away.

Figure 4 shows the overall flow of packets through the filter.

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In keeping with the DIS philosophy of discarding old information, the filter parameters each have a time tag.
If the DIS application does not update the filter parameters before the timeout, (12-14 seconds) the filter
ignores those parameters and bypasses those packets.

Input Packet
I
v

Ethernet Stage ------>+
I I

filter I I bypass
v v

discard <------ IP Stage --------->+
I I

filter I I bypass
v v

discard <------ UDP Stage ----->+
I I

filter I I bypass
v v

discard <-- Application Stage-->+
I
I bypass
v

Output Packet
to computer

Figure 4: Overall flow of packets through the filter

The Ethernet layer identifies the Ethernet address as belonging to one of three classes: broadcast, multicast,
or other. Each of the three address classes can be individually filtered or bypassed. (Note: the filter doesn't
actually check for a match with the Ethernet port address of this node. This would be redundant since the
Ethernet hardware does this comparison).

The lP layer bypasses all non-UDP packets and packets whose lP address is not broadcast or multicast.
Packets with broadcast or multicast addresses are optionally discarded.

The UDP layer checks for a match on a list of Destination Port Numbers that identify PDU ports. PDU
Packets are then either filtered or bypassed and the non-PDU packets are either bypassed or discarded.

The application layer is the most complicated and checks for matches with various parameters in the different
fields of the different PDU types, including ignoring some PDU types entirely. The API section covers the
details on the filter functions for the various PDU types.

This filter doesn't actually implement all of the functionality of the different protocol layers. This functionality
will still have to be performed by the system software for those packets that are passed. Time will be saved
by not processing the undesired packets through all of the protocol layers to merely discard them at the
application level.

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6.0 Application Level Interface (API)

The application communicates with the filter hardware through a dI;ver program. Only the driver program
communicates directly with the hardware. Appendix A is the header file for the API function prototypes for
the first three stages of the filter. The API function prototypes for the application stage are in Appendix B .

The POU Header Stage checks for a match to the OIS protocol version and exercise id and discards packets
that don't match.

Each POU type could potentially have a different type of filtering function to determine whether the POU is
useful to the simulation application . We chose to keep these numbers to a minimum (fewer cases than POU
types) . All of the POUs in the Logistics family are grouped together, as are the POUs in the Simulation
Management family. These POU types don't produce a significant percentage of the POU traffic, so don't

. warrant complex treatment. The POUs in both of these groups are typically addressed to a specific entity site
and application or to all sites and applications. The API for these two families allows for passing only those
POU addressed to the running application, and optionally to ignore POUs addressed to all sites and
applications. Fire and designator POUs use nearly the same filter function as the logistics and simulation
management families . The only difference is to allow for ignoring POUs addressed to unknown sites and
applications, rather than all sites and applications. (it doesn't make sense for fire or designator PO Us to target
all sites and applications)

Entity State POUs account for a significant percentage of the total POU traffic and therefore warrant fairly
significant filtering techniques. The filter allows seven different ranges for different classes of entities. The
entities are · classified by their approximate speed. (see Appendix B, enumeration type
KINO_OOMAIN_SPEEO). Additionally, the filter can mainta~n different ranges for each of 30 own ship
vehicles. To eliminate the need for floating point hardware, these admittance regions are treated as cubes
rather than spheres. This allows simple fixed point comparisons on each of the x, y, and z components. (the
IEEE floating point standard was specifically designed to allow. floating point comparisons to be performed
with the same fixed poiIlt comparison hardware) Additionally, only 32 bit floating point ranges are used. This
also simplifies the hardware. 32 bit IEEE floating point numbers allow a precision of approximately 114 of
a meter for numbers of the magnitude of the radius of the earth. · This is plenty accurate for this course range
test. The 64 bit entity positions are easily converted to 32 bit numbers by simply ignoring some of the bits.
(easy in hardware).

Transmitter PDUs are filtered based on the transmitter frequency and bandwidth being within one of a ·setof
frequency and bandwidth limits .

Signal PO Us have only entity id and radio id available to filter· on. The filter-able information (frequency,
bandwidth) is in the corresponding transmitter POu. The application sends the filter a list of entity and radio
ids for which to pass Signal POUs.

Emission and receiver POUs are either bypassed or discarded.

Collision and detonation POUs generally occurs at such low rates, it was decided to just bypass them. If in
some particular exercise, they become significant, they could be handled similarly to fire and designator POUs.

7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7.0 Possible Hardware Architecture

The filter algorithms to be implemented require quite a lot of field comparisons performed at the different
levels of the protocol stack. In many cases, multiple comparisons need to be made agai nst the same field to
pass or reject multiple types. Fixing the particular field s and the number of values to be tested in each fie ld
would make the hardware quite inflexible. A programmable architecture would be able to accommodate new
or modifi ed PDU types as the DIS specification matures. A programmable architecture would also allow
individual applications to tune the filter to a greater degree, thereby eliminating a greater percentage of the
irrelevant information. The application might be able to reduce or even eliminate its internal filtering on some
PDU types, further improving app lication efficiency.

A microcode programmable sequencer can meet all of these goals.

Address
Control

logic

Addre ss

Control

logic

Micro Code and Sequencer Control

Match Value

RA M

512 x 32

Pact:.el RAM

256 x 64

Selecl 8. 16 . 32 bit fields

Figure 5: Block Diagram of Filter Hardware

As the match values must be updated frequently, they will be stored in a separate memory from the actual
microcode for the sequencer. The sequencer will have a three way loop/jump/continue instruction to faci litate
matches.

This instruction will decrement a loop counter and jump to itself while the counter is not zero, simultaneously
test the result of the match and jump if the match condition passes, increment the match address memory, and
if the loop counts down without a match continue to the next instruction.

A modified version of the loop instruction would increment the jump address for each match check, and could
jump to jump table to effect an n-way branch. n would only limited by the size of the loop counter, probably

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8 bits (256 count). This would facilitate branching to one of n PDU types that require different filtering
approaches.

The match logic will permit testing fields of 8, 16, or 32 bits wide with a 32 bit mask to ignore certain bits (one
mask per match loop, not per match value). These instructions will permit testing multip le fields sequenti ally
ANDing the results, or testing multiple values in a field ORing the resu lts, with one test per clock after two
setup instructions.

Figure 5 is a block diagram of the microcode based fi lter hardware.

7.1 Microcode Bit Fields, In'itructions, And Timing Estimates

Figure 6 shows the microcode bit fields for the sequencer in the filter hardware. There are three main classes
of instructions, loop and jump commands, load start addresses and load loop counter / mask. Figure 7 gives
a brief description of each of the micro instructions. Figure 8 contains several sample micro code sequences
showing how the micro code can be used to implement efficient loops.

Opcodes O-B loop and jump commands
o 1 2 3 4 5 6 7 8 9 12 16 20 21 22 23 24 28 31

+-----------+-----------+--+-----+----- -+----- -+--+--+--+--+------+-- -----+

Opcode
L

Test se l ect P
o
B

Packet Offset
and Byte Select

L A I
PPM
S S R
A A A

Jump Address

+-----------+---- --- --- -+--+-----+------+------+--+--+-- +--+------+-------+

Inc Match Ram Addr
I

I
Accum Packe t Start Addr

Load Packet Start Addr
Load Packet Offset & Byte se l ect

Opcodes C L~ad start addresses etc
o 1 2 3 4 5 6 7 8 9 12 16 20 24 28 31

+-----------+--+--+--- --+--+-----+------+---- ---+-------+------ -+----- --+

Opcode
L L
M Field P
S Width 0
B B

Packet Offset
and Byte Select

Match Start and
Byte Select

+- ------ ----+--+--+- ----+-- + -~---+- -----+-------+-------+-------+-------+

I
I Load Packet Offse t & Byte select
Field Width - Match address Increment value

Load Ma t ch Start and Byte select

Opcodes D-F Load Loop Counters / Mask
o 1 2 3 4 5 6 7 8 9 12 16 20 22 24 28 31

+-----------+--+--+- ----+--+-----+------+------- ---+--+-+-------+-------+

Opcode
L L
L D
P L
R C

L
D
M
S

I
M
R
A

Loop Counter
Value

+-----------+--+--+-----+--+-----+------+----------+--+-+---- ---+-------+

I
Inc Match Ram Addr I

LoaD Mask
LoaD Loop Counter

Load Loop counter from Pac ket Ram

Figure 6: Micro Code Bit Fields

9

I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I

OPCODE Name Description of instruction

o

1,2,3

5, 6 ,7

8

9,A,B

C

D,E,F

JUMP

JDCRx

LOO Px

LDJT

Jump/Cont inue on test condi tion

Jump / Continue on test condition
Decrement Loop counter 11 213

Three way Jump/Loop/Continue.
If Test jump, (PC=Jump Adrs)
else if l oop cntr X ! = 0 loop s tart (PC=Jump_Table_Cntr)
else continue (PC++)

Decrement Loop counter 1 12 13

Load Jump Addrs to Jump_Table_Cntr

LOOPxT Three way Jump_via_Table/Loop/Continue.

LDAD

LDLPx

If Test jump , (PC=Jump_Table_ Counter)
else if loop cntr X != 0 loop to here (PC=PC)
else continue (PC++)

Decrement Loop counter 11 2 13
Jump_Table_Counter++

Load Start Addresses for Match Ram and Packet Offset in
Packet Ram

Load Loop Counter 11213 from Loop Counte r field or Packet Ram .
Optionally l oad Mask from Match Va lue Ram

Figure 7: Brief Description of Micro Code Instructions

Here is sample micro code to decode PDU types:

LDAD PDU_TYPE
LDLP1 PDU SIZE -
LDJT PDU_TBL
LOOP1T MATCH

NOOP

JUMP ESPDU
JUMP FIRE
JUMP SIMMAN

JUMP XMIT
JUMP SIGNAL

; Load start addr for Matc h Valu e RAM
;Load loop counter and mask
;Load jump table counter
;Loop here while incrimenting match value RAM
;also increment jump table counter, and j ump to it
; when the PDU type is matched
;Only come here if NO match in PDU type field. Do
; some e rror handling

;This is a jump table for decod ing PDU types

;one for each PDU type

Here is sample micro code test for a match with with a Entity_id and Radio_id for a signal PDU. This requires
a two instruction loop. The first matches Site and Application, the second matches Entity and Radio id. Only
two are needed, because each of the fields are 16 bits, and the hardware can test 32 bits a a time.

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SKIP:

LDAD RADIO_ID
LDLPI RADIO_SIZE
LDJT RADIO_LP
JMP RADIO_ LP
CONT

JMP NOMATCH SKIP
LOOPI MATCH KEEP

;Load start addr for Match Value RAM
;Load inner loop counter 1
;Load jump table counter t o loop start
;loop starts at RADIO_ID, skip SKIP instruction
;incriment match valu e RAM and decriment Packet
; RAM, don ' t test l ast part of id fi eld
;no match, skip next test , incr iment Packet RAM
; Loop to RADIO_ ID while incrimenting match va lue
;RAM and decrement Packet RAM, Jump to KEEP if
;have a match
;fall through if n o matchs Discard this PDU

Figure 8: Sample Micro Code Sequences

Figure 9 is a table with estimated times for execution of the microcode in each of the filter layers. The worst
case execution time would be the sum of the four protocol stack layers plus the maximum of the application
layer.

If we assume that the Ethernet chip we use as the front end has an internal fifo that holds at least two packets,
and the data interface from the Ethernet chip to the filter chip and from the filter chip to the CPU bus, being
32-bit at 33MHz, the time to transmit a packet to or from the filter chip varies from 15 to 250 50MHz clock
times. Inputting, filtering, and outputting a max size packet of 1500 bytes takes 250 + 300 + 250 = 800
50MHz clocks. The minimum size Ethernet packet takes 51.2 micro seconds, or 2560 50MHz clocks to input.
So, worst case, it takes less than one third of the available time. The Packet RAM wo uld not be required to
behave as a fifo in this case, with simultaneous input and output.

For 100MHz FDDI or fast Ethernet, we only have 256 50MHz clocks available for the minimum size packet.
The Packet RAM would defiantly be required to behave as a fifo in this case as simultaneous input / processing
/ output would necessary to keep up with the worst case packet rate.

Each loop has over head of 3 instructions plus the size of the loop.

layer II' loop I # of II loop I # of II l oop I IO# OpOsf II total II
size l oops size loops size

---------------++---- --+-------++--- - --+----- --++------+-------++-------++
Ether 1 3 3 1 18
I P 1 3 2 1 17
UDP 30 1 1 2 41
PDU_ h 1 1 1 2 12
----- ----- -----++---- - -+--- ----++------+-------++------+-------++-------++
PROTOCOL STACK TOTAL 88

layer
I I

l oop I # of I I loop I # of I I l oop I # of I I total I I
s ize loops ' size l oops size loops

--------- ------++------+-------++------+-------++------+ -------++-------++
Entity State 6x30 1 6 3 210
Fire 2 2 10
Sim Man 2 2 10
Logistics 2 2 10
Designator 2 2 10
Transmitter 6x30 1 1 1 187
S ignal 2x30 1 1 1 67
Emi ssion 1 1 4
Receiver 1 1 4
---------------++------+------- ++------+-- -----++------+---- ---+ + -------++
APPLICATION MAX 210

PROTOCOL STACK + MAX AP PLICATION TOTAL 298

NOTE: the loop sizes that are 30 are list sizes that were some what arbitrarily chosen, and could be changed if needed.

Figure 9: Micro Code Time Estimates for Each Layer

11

I
I
I
I
I
I
I
I

8.0 A Typical Dis Exercise

A typical DIS exercise might consist of several manned helicopter simulators, several manned tank simulators,
and several other computer generated tanks. The manned simulators, being quite large and expensive, are likely
to be geographically dispersed. The computer generated tanks could be located where ever sufficient computer
resources were available. The scenario might be for the helicopters to search for and destroy enemy tanks .
Each of the separate simulators needs to know the location of each of the other participants, so that when the
other entities are within a celtain range, they may be appropriately displayed on the radar screens or
out-the-window visual screens. Information on weapons fire and impact is also required to determine if attacks
are successful.

Most of the DIS exercises, that have been run to date, have used the broadcast mode of the Ethernet for
transmission of the PDUs. This sends all information to all entities and each entity is required to examine each
PDU and determine if the data it contains is relevant to its mission .. As more entities participate in an exercise
and transmit their state data, a greater percentage of the information received by each entity will not be of use
to it. This increasing amount of irrelevant data will reduce the performance of both the network and the
individual applications that have to process it. It is very desirable to reduce the irrelevant data seen by the
network and applications.

9.0 Experimental Results

I To test the effectiveness of the filter, several test cases were. generated. These were ,simi lar to the typical DIS
exercise described above.

I 9.1 Rectangular Paths

I
I
I
I
I
I
I
I
I

The first test case simulated eight tanks each on a rectangular path about 9000 meters by 9000 meters. The
different tracks are offset from each other by 5 meters, and the tanks start on different edges: N,E,S,W. The
tanks move at about 20-37 miles per hour (each tank is 2.2 mph faster than the preceding tank).

The own ship helicopter travels in rectangular path 7000 meters by 1000 meters, inside the tank paths, about
1000 meters from the tank path edges. The radius that the own ship accepts packets was set to 1400 meters .
The own ship moves at about 150 miles per hour. Figure 10 shows three of eight tank path and the own ship
path.

12

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

tank paths (3 of 8 shown)
+--- ----- --------------------------+

+-+------ - - - ------ - -------~--- --- -+
+-+-+------ -------- --- ---- -- - -----+

own s hip path
+-- - --+

+-----+

+------- ----- --- - - - --------- - --+-+- +
+----------------------------- - --+-+

+----------- ----- ------------ -- - ---+

Figure 10: Paths of 3 of 8 tanks and own ship path

Tanks on Square Track s
100

, ,
95 , ' , ",

"

:" 90 Q/

."
<-
IV
0
VI
,~

'" 85
VI ..,
Q/

'" 0
IV 8 0 "-..,
<: ..
0
<-.. 75
"-

70

65 L_ __ ~ __ ~ ____ ~ __ ~ ____ L_ __ ~ __ ~ __ ~

o 5000 10000 15000 20000 25000 30000 35000 40000
Packets Processed

Figure 11: Packets Discarded in Rectan~ular Grid Case

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Only Entity State POUs are simulated here. The tanks and own ship each issue Entity State POUs once per
second. The own ship simulation also issues API calls for the constant data in the other protocol layers once
every 12 seconds to prevent automatic timeout after 14 seconds.

The statistics for number of packets processed and bypassed / di scarded at each stage of the filter were gathered
and fi gure II shows the average/cumulative percentage of packets discarded by the filter (averaged over 15
seconds of simulations time).

9.2 Random Path

The previous case is fairly simple and was implemented mostly to debug the filter functions. This case is a
more realistic scenario. There are eight tanks traveling in random paths inside the same 9000 by 9000 meter
space as the previous case. The !anks maintain their path for a random period between 30 and 60 seconds.
At that time, a new ax, ay and duration are generated. The speeds are still in the 20--40 mph range. The own
ship also travels in a random path inside a 7000 by 7000 m eter box. Its speed is 100--200 mph . Each tank
and own ship produces a POU packet at a approximately 1 per second. The tanks actual POU rate is a random
number between 0.8 and 1.2 seconds. Figure 12 shows five of the tank tracks, figure 13 shows the own ship
path. Figure 14 shows the statistics for the number of packets discarded .

Fiv~ of (ig ht RiindoM T~nk Tr,acks
90ee .--,--,--.--'--r--.,---rr---.---r--,

80~0

7000

6000

~000

4 0ge

3000

2000

1000

loee 2900 3eee "Bee saea 6see 7eee saae geee

Figure 12: Paths of Tanks in the Random Case

14

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

Rando~ Own s hi p Tra ck
geee .---,----.---,----.---,,---.---.----.---~

"O wn s h i p Tr ack" -

Beee

7eee

6eee

seeo

4eee

30ee

2eee

Iee e

o L-__ ~ __ -L __ ~ ____ L-__ ~ __ -L __ ~ ____ ~ __ ~

o Ieee 2000 30e0 4000 5000 6000 70e0 8000 9000

Figure 13: Path of a ownship in the Random Case

T~nks on R~ndo~ Tr~cks
laa

I n So c d A
, ou 1 att A

95

~ 90

"
... -...... ", ," " -"--

" .. .-'
..•..

c ,i/ 1·-4
U
~

'" 85
~
+' .
~

U
4 e0 "-
+'
C .
U

; 75
"-

70

65 L-__ L-__ L-__ ~ __ ~ __ ~ __ ~ __ ~ __ ~~

o 5000 10000 15000 20000 25000 30000 35000 ~000a 45000

Figure 14: Packets Discarded in Random Case

9.3 Actual Simulation Data Replayed

We used some actual data recorded from DIS exercIses performed at the I1ITSEC 1994 DIS [7]
demonstrations.

Several of the DIS demonstration were examined to fi nd one or two that were similar to the above test cases.
Three candidates seemed similar, CGF Demonstration Exercise 5, Helicopter Armed Recon Exercise 9, and
Ground Combat Exercise 11. A simple pre-filter was written to extract just the entity state PDUs for one

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

particular exercise, from the large (16MB files) and write them to smaller files which were run through the
filter described here. The Day4-37 file and exercise 9 was selected as the test case.

ge

8S ~ .. /

.•....•• . i""

8e

7S

7e

T anks on Random Tra ck s

n S~c
I Myt a

............ ", '" .. ~ -...

6S~~--~---L---L __ -L __ J-__ ~ __ L-~

e seea 1eeee 1seee 2eaee 2seea 3eeee 3seee . eeee 4seee
Pa cke ts Processe d

Figure 15: Packets Discarded in iITSEC Data

One of the helicopters was selected as the own ship. The radius that the own ship accepts packets was set to
3000 meters. Each time this a PDU from this entity was read from the file, the filter parameters were updated
to reflect its new position. All of the other PDUs were sent through the filter, and statistics were accumulated
on the bypass/discard rates.

Another set of 20 test cases were run varying the radius that the own ship accepts packets between
1000-10,000 meters for each of the tank and helicopter as the own ship. There were considerably fewer total
packets in these files than the artificial test cases discussed earlier, and the packets per second rate was also
slower. The total percentage of packets discarded was also less in this test case. Of course, these discard rates
will vary considerably, depending on the exact type of exercise that is being simulated, and how large the
gaming area is compared to the area of interest of the particular own ship entity. The statistics for number of
packets processed and bypassed /discarded at each stage of the filter are shown in figure 15 (for helicopter
as the own ship), figure 16 (for the tank as the own ship) and figure 17 (for various accept ranges).

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

· " · ~
o · ..

I / ITSEC '94, File : Day4 37 , Exercise 9 , Own Sh ip - Heli copter
lee r------,-------r------,-------r-----~--~~~

ge

80

7e

60

4e

3e

zo

Ie

i (t n Se c ond Ave "
lIIulativ. v. - ---

e L-____ ~ ____ ~ ______ L_ ____ _L ____ ~L_ __ ~

e zeee 4000 6090. 8eee 10eeB 12000
Pac kets Process.d

Figure 16:Packets Discarded as a Function of Ownship 's
Interest

" · " L · 0
~

'"
~

" •
'" 0 · ..
+'
c • 0
L · ..

l / IT SEC ' 9 4, F i l e: Day4 37 , Exe r cise 9 , t ransmitt.r PDUs,
100

90

80

70

60

"Fifteen Second Ave"
"CuMulati ve Ave"

20 0 400 600 80e 10e0 120e 14ee 1600 I eee 2eee
Packets Processed

Figure 17: IJITSEC 94 File: Day4_37, Exercise 9 Transmitter
PDU

17

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9.4 Radio Transmissions

Test case four uses the same data file : Day4_37, as test case three. The raw VITSEC data file was
pre-processed to extract only the transmitter and signal PDUs. The main test program was modifies slightly,
to handle the transmitter and signal PDUs. When ever a transmitter PDU was read from the fil e, it was sent
through the filter. If it was bypassed, the filter parameters were updated to accept signal PDUs that matched
the entity and radio identifiers from the transmitter PDU. Signal PDUs were just sent through the filter, and
bypass/discard statistics maintained.

The Day4_37 contained transmitter PDUs containing only five different frequencies . Two three cases were
11m. One selected two of the frequencies, the second selected two other frequencies, and the last selected the
final frequency. Oddly, there were only signal PDUs that matched one of the five frequencies . The other four
frequencies had no cOITesponding signal PDUs. The discard statistics are very nearly identical for the flfSt two
cases, on ly one is shown if figure 17 . Only transmitter PDUs were bypassed in thi s case, all of the signal
PDUs were discarded, so the discard rates are fairly high. Figure 18, shows the final case. All of the signal
PDUs were bypassed here, as well as some of the transmitter PDUs, so the discard rate is fairly low.

o • .

.0

'0

2 0
' .',

"rt (t.en Se cond I=I v ." -
· CuMu i.ati v e Av e - -

f\-;\~_" ' / ; i \ '~

"'OB 698 9130 1900 1290 1",80 16013 18 ee zeee

Figure 18: I1ITSEC 94 File: Day4_37, Exercise 9 Transmitter
and Signal PDU

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

10.0 Packet Processing Overhead

Network processing overhead was measured on an actual system and software used at 1ST. Two sets of test
cases were run . The first set used two 80486DX2-66 machines, the second set used two Pentium 75 machines.
The two machines were isolated on their own network cable, so only those two machines would generate
packets on the Ethernet. The software is the current version of ISTCGF, (Institute for Simulation and Training
Computer Generated Forces) This is a simulator that can generate and control a number of entities, as well as
display their locations in the data base on screen. One system was setup to send PDU packets, the other only
received PDU packets. The exercise numbers were set differently on the two systems. This allowed the
receiving system to process the packets through all of the protocol layers and discard them at the application
layer with essentially no processing at that layer. The ISTCGF program has built in statistics gathering that
reports the total time the simulation was run, the number of loops the executive executed, the number of
packets received and discards at each layer of the protocol stack.

For the first test case in each set, the sending host was not running the simulation software, and therefore was
not sending any packets on the network. In this baseline case, the simulator was executed on receiving host

. for one minute. This was timed by a stop watch and the statistics reported typically about a half a second more.

For the other test cases, the sending host was started and two or more tanks were created and set rotating on
their axes. This produced about 6.5 packets per second on the network for each pair of tanks. Six more test
cases were run with two, four, six, ten, 16, and 24 spinning tanks. Twenty-four entities were an many as the
simulator supported . Twenty-four spinning tanks produced about 156 packets per second. One final test case
was run with 24 F16 aircraft. This produced about 256 packets per second. A sample main program is shown
in Appendix C.

Define the following terms:

T =
W
P

Time program is run
Work time per loop
Overhead time per packet
No. of packets processed in case x
Number of loops processed when there are no packets processed

Then,

T=W x Wo
T=WxWx+PxPx

If we assume T = 1 second, then:

W = lIWo
P = (1 - W/Wo) / Px

19

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Case Seconds Packets Loops Pkts/Sec Loops/sec UslPkt Ovhd
o pps 60.858 0 1017838 0.00 16724.80
2 tanks 60.528 787 1002316 13.00 16559.43 760.46
4 tanks 60.474 1576 992694 26.06 16415.34 709.99
6 tanks 60.583 2373 985239 39. 17 16262.53 705.65
10 tanks 60.364 3946 964216 65.37 15973.45 687.23
16 tanks 60.638 6342 941546 104.59 15527.25 684.63
24 tanks 60.638 9490 907692 156.50 14968.97 670.82
24 f16s 60.693 15564 833065 256.44 13725.79 699.26

Table 1: Packet Overhead Experiment Results on a 486DX2-66

Case Seconds Packets Loops Pkts/Sec Loops/Sec UslPkt Ovhd
o pps 60.199 0 266618 0.00 4428.93
2 tanks 60.254 743 265051 12.33 4398.90 549.88
4 tanks 60.474 1490 264081 24.64 4366.87 568.74
6 tanks 60.144 2227 260786 37.03 4336.02 566.55
10 tanks 60.529 3752 258685 61.99 4273 .77 565.20
16 tanks 60.419 6001 252506 99.32 4179.26 567.58
24 tanks 61.023 9125 247555 149.53 4056.74 561.99
24 f16s 61.023 7205 252947 118.07 4145 .11 542.77

Table 2: Packet Overhead Experiment Results on a Pentium

From these calculations, the average packet overhead is determined to be 560 Jl s for the Pentium 75 and 702Jl
s for 486DX2-66 machines.

11.0 Run Time Overhead

In order to quantify the extra overhead the application has in keeping the filter parameters updated, we profiled
the run time of the simulator. It indicates that the application overhead in issuing requests to the filter average
about 36Jl s per second of simulation time (which is very small).

To gauge the amount of extra overhead required to update the hardware filter parameters, run time profiling
was performed on Test Case One. The GNU programs: g++ -p -pg -0 and gprof were used. 50000 seconds
of simulation were performed to obtain meaningful results, as gprof only prints times to 0.01 seconds. This
took about five minutes of real time on a 486DX4-100 running under Linux 1.2.8.

The functions whose names begin with Filter are the API calls that are being timed. They take 1.79
seconds for 50,000 iterations, which is about 36 microseconds per second of simulation time. The filter chip
dri ver function actually writing data to the filter chip is not in this simulation.

The pertinent results from the gprof output are in Figure 16, (the comments below this table are also from
gprof).

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

% time self children called name

0.50 1.99 50001/50001 main
1.3 0.50 1.99 50001 Own ship(int)

1.64 0.00 50001/50001 FilterOwnShipPositionO
0.20 0.00 50000/450000 MoveSquareO
0.06 0.00 4167/4167 Fi I terEnti tyStateRangeS QO
0.05 0.00 4168/4168 FilterUDP-PortO
0.01 0.00 4167/4167 Fi IterEthernetAddressO
0.01 0.00 4167/4167 FilterIP-AddressO
0.01 0.00 4167/4167 FilterUDP-ModeO
0.01 0.00 4167/4167 Fi IterPD U -HeaderO

Table 3: Gprof Results of Test Case One

This table describes the call tree of the program, and was sorted by the total amount of time spent in each
function and its children .

12.0 Conclusions

There is compelling evidence that filtering packets at the Ethernet level would enable low-cost workstations
to spend more of processing time on useful things, sl:ch as better vi sual effects, and not missing needed
packets. On the system timed, a 486DX2-66, merely receiving and discarding 256 entity state PDU packets
per second , used 18% of the total cpu time. The system was found (by others) to be able to process about 100
packets per second before packets start being dropped. If a hardware filter was available to offload some of
the filtering tasks, the cpu could process more needed packets, rather than arbitrarily discarding useful and well
as unneeded packets, when it ran out of processing time.

We also provided a well-defined API interface to the filter. The filter itself is simple, and involves no floating
point computations and can be easily integrated into existing Ethernet interface cards.

13.0 Acknowledgments

This work is funded by US Army STRICOM under the contract number N61339-94-C-0024 as a part of
TRIDIS project. The first author is also partially supported by the US Army Research Office under the contract
number DAAH04-95-1-0250 as a part of Advanced Distributed Simulation Research Consortium (ADSRC).
However, the views and conclusions drawn herein are those of the authors and do not necessarily reflect the
position or the policy of the federal government, any of the sponsors of this work or the U ni versity of Central
Florida.

21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

14.0 References

[1] IEEE, "IEEE Standard 1278.1, Standard for Distributed Interactive Simulation -- Application Protocols,"
Institute of Electrical and Electronics Engineers, Inc., 1995.

[2] M. Bassiouni, M. Chiu, Jim Williams. "Improving the Reliability of Relevance Filtering," 13th Workshop
on Standards for the Interoperability of Distributed Simulations, pages 33 1-336, September 1995.

[3] Robert Kerr, Christopher Dobosz. "Reduction of PDU Filtering Time Via Multiple UDP Ports," 13th
Workshop on Standards for the Interoperability of Distributed Simulations, pages 343-349, September 1995.

[4] Keven L. Russo, Lawrence C. Schuette, Joshua E. Smith, Matthew E. McGuire. "Effectiveness of Various
New Bandwidth Reduction Techniques," 13th Workshop on Standards for the Interoperability of Distributed
Simulations, pages 587-591 , September 1995.

[5] J. Mark Pullen, Elizabeth L. White. "Analysis of Dual-Mode Multicast for Large Scale DIS Exercises,"
13 th Workshop on Standards for the Interoperabili ty of Di s tri buted Simulations, pages 613 -621 , Septem ber
1995.

[6] Daniel J . Van Hook, Steven J. Rak, James O. Calvin. "Approaches to Relevance Filtering," 11th
Workshop on Standards for the Interoperability of Distributed Simulation, pages 367-369, September 1994.

[7] Sandra E.Cheung. "Analysis of Network Traffic from the I1ITSEC 1994 DIS Interoperability
Demonstrations," Technical Report IST-TR-95-09, Institute for Simulation and Training, University of
Central Florida, April 1995.

[8] W . Richard Stevens. "TCP/IP Illustrated", volume 1, Addison Wesley, 1994.

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDICES

A. API Function Prototypes For Stages 1, 2, 3

/ * api.h typedef s and fun ct i on pro totypes for API call s */

/* Some ob v i ou s typedefs */
typede f int BOOL;
typedef unsigned char UINT_8;
typedef unsigned short UINT_16;
typedef unsigne d l ong UINT_32 ;
typedef UINT_3 2 UINT_6 4 [2 1 ;
type def float FLOAT_32 ;
typedef double FLOAT_ 64;

typedef enum {
Filte r _ None ° ,

*/
Filter_Self,
Filte r_Multicast,
Filte r_Multi_Self,
Filter_Broadcast,
Filter_Broad_Se lf,
Filte r_Multi_Broad,
Filter_All

FILTER_ETHERNET;

/*
/*

/*
/*
/*
/*
/*
/ *
/*

Filter vs Bypass modes */
Bypass all, filt er i s off - default

Bypass multicast and Broadcast * /
Bypass Broadcast and self */
Bypass Broadcast */
Bypass multicas t and self */
Bypass multicast */
Bypass only self */
Bypass none */

intFilterEthernetAddress (FILTER_ ETHERNET Mode); /* Filter v s Bypass
modes */

typedef enum {
Discard_None = 0,
Discard_Broadcast,
Discard_Multicast,
Disca~d_Multi_Broad

DISCARILIP;

/* Discard vs Filter modes */
/* Filter all - default */
/* Filter multicast */
/* Filter Broadcast */
/* Filter onl y self */

int FilterIP_Address(DISCARD_IP Mode); /* Discard vs Filte r modes */

typedef enum
Add = 0 ,
Delete ,
Update

ADD_DELETE;

/* Add/Delete /Update select */
/* Add entries in List that follows */
/* Delete entries in List */
/* Update entries in List */

int FilterUDP_Port(ADD_DELETE Select, /* Add/Delete / Update list of PDU
ports */

*/

int *Start, /* Start index o f list
For ADD, returns actual start index

int *Size, /* Size of Filter Array: List
Returns actual number accepted */

UINT_16 *List); /* ar~ay of p orts PDUs are on */

23

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

typedef enum { /* Bypass/Filter PDUs / Other Se l ect */
BypassPDU_BypassOther 0, /* Bypass PDUs and Bypass Other packets

*/
BypassPDU_DiscardOther, /* Bypass PDUs and Dscard Other packets

* /
FilterPDU_BypassOther, /* Filter PDUs and Bypass Other packets

* /
FilterPDU_DiscardOther /* Filter PDUs and Dscard Other packets

*/
} PDU_OTHER;

int FilterUDP_Mode (PDU_OTHER Mode); / * select Bypass/Fil ter PDUs / Other
mode */

B. API Function Prototypes For The Application Stage Of The Filter

/* Note: Generally, the Entity Site and Application are the same in all
of the

following PDU types: all Logistics, all Simulation Management Fire,
a nd

Designator. */

int FilterPDU_Header(UINT_8 Version, /* Protocol version to filter * /
UINT_8 ExerciseID); /* Exercise ID filter */

int FilterLogisticsEntitySite(BOOL All, /* Bool, accept all enti~ies ID
*/

UINT_16 EntitySite, /* Entity Site to
bypas s */

UINT_16 Application); /* Application to
bypass */

int FilterSimManEntitySite(BOOL All, /* Bool, accept all entities ID */
UINT_16 EntitySite, /* Entity Site to bypass

*/
UIN'r_16 Application); /* Applicati on to bypass

*/

int FilterFireEntitySite(BOOL Unknown, /* Bool, accept unknown entity ID
*/

*/

UINT_16 EntitySite, /* Entity Site to bypass */
UINT_16 Application); /* Application to bypass

int FilterDe signatorEntitySite(BOOL Unknown, /* accept unknown entity ID
*/

UINT_16 EntitySite, /* Entity Site to
bypass */

UINT_ 16 Application); /* Application to
bypass */

typedef struct
FLOAT_ 32 x; /* 32 bit IEEE floating point */

24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FLOAT_32
FLOAT_32

Yi
z i

int Fil terOwnShipPosi ti on (ADD_ DELETE Selec t, / * Add / Delete/Update list
*/

*/

typedef e num
{

SPEED_OTHER,
FIXED,
SLOW,
MED IUM ,
FAST,
VERY_ FAST,
HYPER_ FAST

KIND_DOMAIN_SPEEDi

in t Index, /* Index of OwnShip Entity (0-31)

OWN_SHIP_ POSITION *OwnShipPosition) i

/* Speed range for entities */

/* Oth er * /
/* Cul ture and Environmental */
/* Lif e Forms */
/* Tanks, Trucks, Boa ts */
/* Heli copte r s */
/* Fixed Wing Aircraft * /
/* Munitions */

in t Filte rEntityStateRangeSQ(ADD_DELETE Se l ect , /* Add / Delete/Update li s t
*/

to */

index

*/

typedef s truc t {
UINT_64 HighFreqi
UINT_64 LowFreqi
FLOAT_32 HighBandwidthi
FLOAT_32 LowBandwidthi

FREQ_BANDWIDTHi

int OwnShip, /* OwnShip index to apply these

int *Start, /* Start index of list
For ADD, returns actual start

This i s on e of

int *Size, /* Size o f ~~GE Array: Li s t
Returns actu al number accepted

FLOAT_32 *List) i

/* High Freq limit */
/* Low Freq limit */
/* High Bandwidth limit */
/* Low Bandwith limit */

int FilterTransmitter(ADD_ DELETE Select, /* Add/Delete / Update list */
int *Start, /* Start index of list

For ADD, returns actual start index
* /

int *Size , /* Siz e of FREQ_BANDWIDTH Array: List
Returns actual number accepted */

FREQ_BANDWIDTH *Lis t) i

typedef s truc t {
UINT_16 EntitySitei
UINT_16 Applicationi
UINT_ 16 EntityIDi
UINT_ 16 RadioIDi

RADIO_ IDi

/* Entity Sites to bypass */
/* Applications to bypass */
/* Entity IDs bypass */
/* Radio IDs bypass */

int FilterSignal(ADD_DELETE Select , /* Add/Delete/Update list */
int *Start, /* Start index of list

25

I
I
I
I
I

*/
int *Size,

For ADD, returns actual start index

/ * Size of RADIO_IDs Array: List
Returns actual number accepted */

RADIO_ID *List);

int FilterEmission(BOOL discard); /* Bool, di scard all emlSSlon PDUs if
se t */

int FilterReceiver(BOOL discard); /* Bool, Discard all receiver PDUs if
se t */

I C. Main Loop Code Of ISTCGF

I
I
I
I
I
I
I
I
I
I
I
I
I

for (;;) {
rightnow = GetTime();
MathOK() ;
loop_cnt++;
CheckNetInterface() ;
MsgScan() ;
SetCCB(cons_mgr_cb) ;
ConsoleCheck(rightnow) ;
CheckGraphicsMsg() ;

D. API Function Calls Code

/* Update the current time
/ * No math errors so far?
/ * Count this go-around
/* Check for incoming network packets
/* Dispatch highest priority message

*/
*/
*/
*/
*/

For the purposes of simulating the functionality of the filter functions, the actual filter parameters were stored
in C memory structures. These API function calls, which are called by the receiving DIS simulator, write these
structures, and the filter functions read them.

In an actual hardware implementation of the filter, each of these API calls would have a few lines of additional
code to write the data structure to the filter chip. If the filter memory is memory-mapped in the CPU memory
space, this could be as simple as declaring and mapping the structures in the actual memory space of the filter.
In this case, API functions would not have to be changed at all. Alternately, a memcpyO call may be used.
If the filter memory is VO port mapped to the CPU, a DMA request would required.

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 0000082

	Application Level Hardware Filtering For DIS: Final Report
	Recommended Citation

	tmp.1440010807.pdf.DrCZn

