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Abstract—In the realm of medical diagnostics, precise clas-
sifcation of brain tumors is pivotal. This study conducts a 
comprehensive comparative analysis of a Convolutional Neural 
Network (CNN) against traditional machine learning models, 
Logistic Regression (LR) and Support Vector Machines (SVM) 
on a dataset of MRI scans for multi-class brain tumor classi-
fcation. The CNN, tailored for image recognition, is evaluated 
alongside LR and SVM, which have established benchmarks in 
classifcation tasks. The investigation reveals that the traditional 
models hold their ground in terms of precision and inter-
pretability, with the SVM, in particular, achieving remarkable 
accuracy. However, the CNN distinguishes itself by demonstrating 
superior performance and high confdence in its predictions, 
highlighting the advantages of deep learning for complex pattern 
recognition in neuroimaging. These insights signify a substantial 
stride towards integrating advanced automated methods into 
diagnostic processes, promising enhanced accuracy and effcacy 
in healthcare diagnostics. 

Index Terms—CNN, SVM, LR, Brain Tumor Classifcation, 
MRI, Machine Learning. 

I. INTRODUCTION 

Brain tumors present a formidable challenge in neurol-
ogy, with their diagnosis and classifcation being critical for 
effective treatment planning. Advances in machine learning 
(ML) and deep learning (DL) have ushered in new frontiers 
in medical imaging, providing tools that could potentially 
surpass traditional methods in accuracy and effciency [1]. 
Convolutional Neural Networks (CNNs), in particular, have 
gained attention for their ability to learn complex patterns in 
imaging data, thus showing great promise in the automatic 
detection and classifcation of tumor images [2]. 

This study employs CNNs for the task of classifying MRI 
scans into various tumor categories and compares their per-
formance to traditional ML models, Logistic Regression (LR) 
and Support Vector Machines (SVM). Both LR and SVM have 
been stalwarts in the domain of medical diagnostics due to 
their interpretability and statistical foundations [3]. However, 
their dependency on manual feature extraction is a limitation 
that CNNs aim to overcome with their hierarchical feature 
learning capabilities [4]. 

Through this comparative analysis on a dataset of 3,264 
brain MRI images, we explore the hypothesis that CNNs can 
achieve superior multi-class classifcation accuracy over LR 
and SVM. This study contributes to the ongoing discussion 
on the integration of ML and DL in enhancing diagnostic 

processes, with a focus on improving outcomes for patients 
with brain tumors [5]. 

II. RELATED WORK 

Recent advancements in neuroimaging have facilitated the 
development of machine learning algorithms capable of clas-
sifying brain tumors with signifcant accuracy. [6] explored 
the effcacy of Convolutional Neural Networks (CNNs) in 
differentiating between malignant and benign tumors, illus-
trating promising results that pave the way for automated 
diagnostic systems [6]. Similarly, Smith and colleagues (2022) 
employed Support Vector Machines (SVM) to analyze MRI 
scans, achieving noteworthy precision, especially in cases of 
glioma and meningioma classifcation [7]. 

Moreover, hybrid approaches combining traditional algo-
rithms with deep learning techniques have shown improvement 
in generalization capabilities. For instance, Lee et al. (2023) 
integrated feature extraction methods with neural networks 
to enhance the interpretability and diagnostic power of their 
models [8]. These studies collectively underscore the potential 
of machine learning in revolutionizing brain tumor diagnostics, 
substantiating the research presented in this paper. 

III. DATA DESCRIPTION 

The dataset for this study is derived from anonymized brain 
MRI scans used to train models for diagnosing brain tumors. 
It comprises MRI scans categorized into various tumor types, 
along with scans identifed as having no tumors. 

Attribute Detail 
Total Instances 3,264 (2,870 Training, 394 Testing) 
Features per Instance Image data, variable dimensions 
Missing Value None 
Tumor Type Glioma, Meningioma, No Tumor, Pituitary 
Image Types Represented MRI scans 
Image Format DICOM 

TABLE I: MRI Brain Tumor Dataset 

The dataset is rigorously curated to ensure each scan is cor-
rectly annotated with its corresponding tumor type, facilitating 
precise training and validation of the diagnostic models. The 
images are stored in DICOM format, which is the standard for 
medical imaging and includes metadata essential for accurate 
diagnostics. 

mailto:amina.issoufouanaroua@ucf.edu
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IV. METHODOLOGY 

This study used a layered approach in model design and 
implementation, ensuring each model was optimized for the 
neuroimaging dataset. The following subsections detail the 
architecture and training processes for both the deep learning 
and traditional models. 

A. Deep Learning: Convolutional Neural Network (CNN) 

The CNN architecture was designed to handle three-
dimensional input data representing neuroimaging scans. The 
architecture is composed of several layers that transform the 
input image through a series of convolutional operations, 
non-linear activation functions, pooling operations, and fully 
connected layers, eventually leading to a classifcation output. 

Input Layer: 
• Input neuroimaging data is represented as X ∈ 

R256×256×3, where 256x256 represents the spatial dimen-
sion and 3 represents the RGB color channels. 

Convolutional Layers: 
• The frst convolutional layer applies 32 flters of size 3x3, 

resulting in feature maps which are then passed through 
a ReLU activation function defned as: 

O1 = ReLU(X ∗ F1 + b1) 

R3×3×3×32where F1 ∈ and b1 are the flters and 
bias terms respectively, and ∗ denotes the convolution 
operation. 

• Each convolutional layer is followed by a 2x2 max 
pooling operation which reduces the spatial size by half. 
The operation can be represented as: 

Pk = MaxPool(Ok) 

Dense Layers 
• Prior to the dense layers, the feature maps are fattened: 

F = fatten(Plast) 

• A fully connected layer with 512 neurons applies a linear 
transformation followed by a ReLU activation: 

D1 = ReLU(W1 · F + bdense1) 

• The fnal output layer uses a softmax activation function 
to derive the probabilities for the four classes: 

D2 = softmax(W2 · D1 + bdense2) 

where W1, W2, bdense1, and bdense2 are the weights and 
biases for the dense layers. 

Regularization 
• Dropout is implemented as a regularization technique in 

between the dense layers to prevent overftting, described 
by: 

D ′ = Dropout(Dk, p = 0.5)k 

Loss Function and Optimization 

• The model uses Sparse Categorical Crossentropy as the 
loss function, essential for multi-class classifcation: X 

L(y, ŷ) = − yi log( ̂yi) 
i 

where y is the true label and ŷ  is the predicted probability 
distribution across classes. 

• Adam optimizer is employed for its adaptive learning rate 
capability, enhancing the convergence speed. 

Visual Representation of CNN Architecture 

Fig. 1: Initial CNN architec-
ture with convolutional and 
max-pooling layers. 

Fig. 2: Expanded CNN archi-
tecture including dense and 
dropout layers. 

Figure 1 depicts the initial architecture, showcasing the 
convolutional layers (Conv) interspersed with max-pooling 
(MaxPool) operations. The depth of the bars corresponds to 
the number of flters, which increases with each subsequent 
convolutional layer, a design choice intended to capture more 
complex features in the latter stages of the network. 

Figure 2 expands on this, including the fnal dense layers 
(Dense) and the dropout layers (Dropout) for regularization. 
The substantial width of the dense layer bars refects their 
greater number of neurons, emphasizing the transition from 
spatial feature extraction to classifcation. The dropout layers 
are visualized with reduced depth, symbolizing their role in 
selectively deactivating neurons to prevent overftting. 

Fig. 3: Exploded view of the CNN showing the detailed layer 
structure. 



       
 

 

        

 
 

    
       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
     

       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
    

       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
     

       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
    

       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
     

       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
    

       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
     

       

  
   

  
 

 

 

  

 
     

 

      

  
 

       
 

 

        
 

 

 
    

       

  
   

  
 

 

 

  

 
     

 

      

  
 

Figure 3 provides an exploded view of the network, offering 
a clear visualization of each individual layer, color-coded to 
match Figures 1 and 2. This perspective aids in understanding 
the hierarchical nature of CNNs, where initial layers capture 
basic features like edges, and deeper layers synthesize these 
to detect more abstract concepts. 

Fig. 4: Training and validation accuracy and loss curves for 
the CNN model. 

The left plot illustrates the accuracy of the model during 
the training phase, with the blue line representing training 
accuracy and the orange line representing validation accuracy. 

The right plot shows the model’s loss over the training 
epochs, with the blue line indicating training loss and the or-
ange line indicating validation loss. These plots are crucial for 
understanding the model’s learning process and for ensuring 
that overftting is minimized. 

As noted in Figure 4, the model’s performance on the 
validation set closely tracks the performance on the training 
set, indicating good generalization. The minor fuctuations in 
the validation curves suggest that the model is learning new 
patterns from the data throughout the training process without 
overftting. 

B. Traditional Models: Logistic Regression and Support Vec-
tor Machine (SVM) 

Logistic Regression (Softmax Regression) 
In addressing multi-class classifcation within our dataset, 

which consists of four distinct neuroimaging categories, we 
implement a Softmax Regression model. The probability 

(i) (i) (i)P (y = k|x ; θ) that a given feature vector x belongs 
to a class k is computed using the softmax function: 

θ(k)T (i)xe(i) (i)P (y = k|x ; θ) = PK (i)x 
j=1 e

θ(j)T 

For the cost function J(θ), we use the categorical cross-
entropy loss and include a regularization term to reduce 
overftting: 

1 
m KX X λ 

KX 
J(θ) = − 1{y(i) = k} log(h(k)

(x(i)))+ ∥θ(k)∥2 
θm 2m 

i=1 k=1 k=1 

Here, K represents the total number of classes, m denotes 
the number of training instances, 1{} is the indicator function, Fig. 5: Distribution of image count across four tumor cate-

gories in the dataset. and λ signifes the regularization parameter. 

Support Vector Machine (SVM) 
For SVM classifcation in a multi-class setting, we adopt 

a One-vs-One (OvO) strategy as implemented by default in 
Scikit-learn’s SVC method. In this strategy, a binary SVM 
classifer is trained for each pair of classes from the total 

K(K−1)K classes, resulting in classifers. Each classifer2 
decides between two classes, and the fnal classifcation of new 
instances is determined by a majority voting system among all 
classifers. 

The decision function for these classifers is defned as: 
nX 

fjk(x) = sign( yiαiK(x, xi) + b) 
i=1 

where K(x, xi) = exp(−γ∥x − xi∥2) is the Radial Basis 
Function (RBF) kernel, enabling complex decision boundaries 
by mapping input features into higher-dimensional space. The 
parameters αi are the dual coeffcients, n is the number of 
support vectors, and b is the bias term. 

Training 
Our models are trained on a normalized dataset to ensure 

pixel value consistency, critical for maintaining uniformity 
in feature scaling. The model parameters are optimized to 
minimize respective cost functions through methods like grid 
search, coupled with cross-validation to determine the best 
parameter settings. The performance of our models is then 
evaluated using a comprehensive set of metrics including 
accuracy, precision, recall, and F1-score, which are essential 
for assessing the ability of the models to accurately identify 
each of the four neuroimaging categories. 

V. EXPLORATORY DATA ANALYSIS 

Exploratory Data Analysis (EDA) is a foundational step in 
our study to understand the distribution and characteristics 
of the neuroimaging data. Through visual and quantitative 
methods, we aim to identify patterns, spot anomalies, and test 
hypotheses which could inform subsequent stages of the anal-
ysis, particularly the design and training of our classifcation 
models. 

A. Image Count per Category 



Figure 5 illustrates the distribution of images across four 
distinct tumor categories: no tumor, meningioma tumor, 
glioma tumor, and pituitary tumor. It is evident from the bar 
chart that our dataset is fairly balanced, which is benefcial 
for training classifcation models as it mitigates the risk of 
developing a bias toward a more represented class. 

B. Sample Neuroimaging 

VI. RESULTS 

A. Convolutional Neural Network Evaluation 
We evaluated the performance of our Convolutional Neural 

Network (CNN) on the two sets ( Training and Testing). 
1) Model Predictions and Confdence on Test Dataset: The 

CNN demonstrated high confdence in its predictions on the 
test dataset, as visualized in Figure 8. 

Fig. 6: Sample MRI scans for glioma and meningioma tumor 
categories. 

Figure 6 displays representative MRI scans from the glioma 
and meningioma tumor categories. These images highlight the 
variability in tumor size, shape, and location, challenging the 
model to learn robust features that can generalize well across 
different cases. 

Fig. 7: Variations in MRI scan presentations for glioma and 
meningioma tumors, showcasing diverse angles and cross-
sections. 

In Figure 7, we delve deeper into the variations within the 
glioma and meningioma categories. The scans are presented in 
various angles and cross-sections, providing an in-depth view 
of the complexities involved in diagnosing and classifying 
these tumors. 

The EDA phase of this study underscores the complexity 
and diversity of the neuroimaging data, setting the stage for 
the application of advanced machine learning techniques that 
are capable of capturing the intricate patterns necessary for 
accurate diagnosis. 

Fig. 8: Predictions by the CNN on the test dataset, showing 
actual labels, predicted labels, and confdence percentages. 

Each MRI scan from the test dataset was fed into the 
trained model, which then predicted the category along with a 
confdence score. The model’s high accuracy and confdence 
levels often above 90% emphasize its capability to accurately 
classify neuroimaging data. 

2) Quantitative Performance Metrics: The classifcation 
report for the test dataset is summarized in Table II. 

Class Precision Recall F1-score 
Glioma Tumor 0.91 0.95 0.93 
Meningioma Tumor 0.93 0.91 0.92 
No Tumor 0.95 1.00 0.98 
Pituitary Tumor 0.99 0.94 0.96 
Accuracy 0.94 
Macro Avg 
Weighted Avg 

0.95 
0.95 

0.95 
0.94 

0.95 
0.94 

TABLE II: Classifcation report. 

The model attained high accuracy confrming the effcacy 
of the CNN architecture and training methodology employed 
in our study. 

B. Traditional Machine Learning Models 
The traditional machine learning models employed in our 

study, Support Vector Machine (SVM) and Logistic Regres-
sion, provide a benchmark against our deep learning approach. 



These models are used for multiclass classifcation to identify 
four distinct tumor types in the neuroimaging dataset. 

1) SVM Model Performance: The SVM model underwent 
rigorous training and subsequent evaluation to ascertain its 
classifcation effcacy across the extended range of tumor 
categories. Figure 9 presents the confusion matrix for the SVM 
model, delineating the correct and incorrect predictions for 
each class. 

Fig. 9: Confusion matrix for the SVM model, illustrating the 
distribution of predicted classes in comparison to the actual 
classes. 

The SVM model displayed commendable precision and 
recall across all tumor types, achieving an overall accuracy 
of 86% on the test set. The model was particularly effective 
in distinguishing pituitary tumors with a precision and recall 
of 94% and 98%, respectively. 

2) Logistic Regression Model Performance: In parallel, 
the Logistic Regression model was also evaluated for its 
multiclass classifcation performance. Figure 10 showcases the 
corresponding confusion matrix. 

Fig. 10: Confusion matrix for the Logistic Regression model, 
indicating predictive accuracy across classes. 

The Logistic Regression model demonstrated a profciency 
akin to the SVM model, with overall accuracy reaching 79%. 
This model’s precision and recall for pituitary tumors were 
notably high at 90% and 96%, respectively. 

3) Quantitative Evaluation: The expanded quantitative 
evaluation for both models is captured in Table III, which 
includes precision, recall, and F1-scores that refect the mul-
ticlass classifcation. 

TABLE III: Evaluation Metrics 

Model Precision Recall F1-Score Support 
Logistic Regression 
no tumor 0.74 0.67 0.71 91 
pituitary tumor 0.90 0.96 0.93 162 
glioma 0.72 0.86 0.79 145 
meningioma 0.79 0.65 0.71 176 
accuracy 0.79 (574) 
macro avg 0.79 0.79 0.78 
weighted avg 0.79 0.79 0.79 
SVM 
no tumor 0.82 0.79 0.80 91 
pituitary tumor 0.94 0.98 0.96 162 
glioma 0.81 0.89 0.85 145 
meningioma 0.83 0.74 0.78 176 
accuracy 0.86 (574) 
macro avg 0.85 0.85 0.85 
weighted avg 0.85 0.86 0.85 

C. Discussion 

This study’s analysis reveals that traditional machine learn-
ing models like SVM and Logistic Regression are not only 
viable but also formidable contenders in medical image classi-
fcation tasks. The SVM model, in particular, displayed notable 
precision and recall across various tumor types, indicating its 
robustness in a multiclass setting. The results affrm the value 
of these models in clinical scenarios, especially for initial 
screenings where speed and reliability are paramount. 

The performance of the Logistic Regression model, while 
slightly less impressive than SVM, still demonstrates its rele-
vance in the medical diagnostics feld. It offers a simpler, more 
interpretable alternative that retains a commendable level of 
accuracy, which is crucial for clinical decision-making. 

Signifcantly, the CNN model stands out with its excep-
tional accuracy, reinforcing the transformative impact of deep 
learning in neuroimaging diagnostics. The CNN’s ability to 
discern nuanced patterns within complex data positions it as 
an advanced tool that could potentially redefne diagnostic 
practices. 

Our study’s fndings advocate for a synergistic approach 
where traditional models can be deployed for their speed and 
interpretability, while deep learning models can be reserved for 
their higher accuracy and confdence levels. This combination 
could lead to more robust, accurate diagnostic processes, 
enabling better patient outcomes in neurology. 

VII. CONCLUSION 

The exploration into the classifcation capabilities of tra-
ditional models and a Convolutional Neural Network (CNN) 
for neuroimaging diagnostics has yielded illuminating results. 



The SVM and Logistic Regression models, with their com-
mendable performance metrics, have proven to be robust 
and reliable for multiclass classifcation, particularly effective 
for identifying pituitary tumors. Meanwhile, the CNN has 
demonstrated superior accuracy, with a striking 94% on the 
test set, showcasing its advanced pattern recognition ability 
in image-based diagnostics. The integration of the CNN, 
alongside traditional models, could enhance the precision and 
reliability of brain tumor diagnostics. This study underscores 
the signifcant potential for combining the interpretability of 
traditional models with the advanced capabilities of CNNs in 
creating a comprehensive diagnostic framework. 
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APPENDIX A 
CODE 

Link to code :Diagnostic in Neuroimaging: A Comparative 
Study of Deep Learning and Traditional Approaches. 

https://amissana21.github.io/Diagnostic-in-Neuroimaging/Diagnostic%20in%20Neuroimaging_A%20Comparative%20Study%20of%20Deep%20Learning%20and%20Traditional%20Approaches%20(1)
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