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Evolutionary function of motion sickness 
The existence of motion sickness, its prevalence through a variety of species, and its 

persistence throughout evolution has perplexed motion sickness researchers pursuing plausible 
explanations. Scientists are developing predictive theories that encompass a plethora of known 
motion sickness inducing environments. Despite the quantity and quality of effort, there is 
frustration . Part of this is because the neurological underpinnings of motion sickness are not 
fully understood, as will be discussed in subsequent sections on the evolution of sensory 
integration. Meanwhile, the philosophical focus in provocative motion study has taken a 
characteristic, engineering approach-partly because the goal of many of such efforts has been to 
solve extant design problems. This makes sense. 

We suggest that by taking a biological-moreover an evolutionary-approach, we may 
gain insight into the true nature of the malady. In fact, that we consider motion sickness a 
"disorder" is telling. Perhaps its ultimate origins and function were of adaptive value during say, 
Pleistocene, and that the phenomenon has become maladaptive in its proximate, 
contemporaneous manifestation. In any case, through systematic tracing of the emergence, 
elaboration, and mechanisms of motion sickness in the phylogenetic record, we believe that there 
are clues to its adaptive nature. From such findings, we derive and offer a tentative, integrative 
model of motion sickness, one that may be substantiated subsequently. 

For a comprehensive overview of motion sickness, particularly that of Homo sapiens, the 
reader should consult Thomas Dobie's excellent book, Motion Sickness: A Motion Adaptation 
Syndrome (in press). In fact, there is much human-related motion sickness phenomenology that 
the reader might consult, such as its prevalence, and age and sex differences in susceptibility 
(e.g., Dobie, McBride, Dobie, & May, 2001). These issues are beyond the scope of this report. 

Evolutionary Development and Persistence of Motion Sickness; Current Theories 
Money (1990) addressed the issue of motion sickness and evolution based on 

evolutionary assumptions. He talks about various "givens" in regards to motion sickness and 
evolution, one of these being that motion sickness stimuli were not integral in the evolutionary 
development of motion sickness mechanisms. Another given is based, of course, on the work of 
Darwin and Wallace (1858): physiological mechanisms that offer reproductive advantage are 
selected for; those that are disadvantageous are selected against. Money (l990) suggests that 
based on the aforementioned assumptions, the physiological components of motion sickness did 
not ascend by chance and then endure due to a lack of evolutionary pressure to select against it. 
However, it is perplexing that motion sickness appears to have no function (e.g., survival value), 
pm1icularly because it reflects a physiological mechanism, and physiological mechanisms are 
normally associated with functions. 

In an effort to explain the function of motion sickness, various theories have arisen, three 
of which are reviewed very briefly. The first is Treisman's (1977) poison hypothesis which 
claims that motion sickness, particularly vomiting, is a protective response against poisons that 
create sensory conflict by affecting the processing of visual and vestibular information. He 
suggests that vomiting would protect against the poison's effects, and the associated negative 
experience would reinforce memory (i.e., one trial learning) for foods or substances to avoid. 
Empirical evidence partially supports Treisman' s poison hypothesis. Most notably among them 
are Money and Cheung's (1983) work on bilateral labyrinthectomy in dogs in conjunction with 
the administration of modest levels of toxins. In addition, the work of Ossenkopp and Tu (1984), 
Wilpizeski et al. (1987a), and Lambert et al. ( 1989) support the learning aspects of Treisman ' s 



theory. However. the poison hypothesis of motion sickness has been criticized becallse by the 
time a toxin enters the body and affects the vestibular system, vomiting to expel the toxins still in 
the stomach may be of little use for protection (Yates, Miller, & Lucot, 1998: Guedry. Rupert. & 
Reschke, 19(8). 

Yates, Miller, and Lucot (1998) suggest an alternate explanation to the poison hypothesis. 
They note that individuals afflicted with vestibular system diseases often experience motion 
sickness symptoms, pal1icularly nausea and vomiting, that may prompt the individuals to remain 
sedentary. Taking an evolutionary viewpoint, it could be argued that the sickness and inactivity 
are forms of positive adaptation to vestibular disease to keep the individual from harming 
themselves. Interestingly, it has been suggested that the function of emesis is not only the 
expulsion of stomach contents, but also to keep a disoriented or dizzy individual from moving 
ahout the environment in search of food when he or she would be at risk doing so (Longhridge, 
1983). Therefore, as suggested by Yates, Miller, and Lucot (1998), it is possihle that motion 
sickness is the result of a wayward activation of the vestibular nerve and related central nervous 
system components that maintain postural stability, not a poison response. 

Guedry, Rupert, and Reschke (1998) put f0l1h the third evolutionary explanation of 
motion sickness, proposing a motor learning component. In essence, they suggest that motion 
sickness results from inefficient movements and prevents further development of these 
inefficient perceptual-motor programs. They hypothesize that : 

Innate displeasure from conflict involving the vestibular system is a mechanism that 
operates in addition to and in'espective of the presence or absence of reward and 
punishment afforded by parental care and goal attainment. This reaction continuum, 
pleasure-displeasure, is a mechanism by which the spatial orientation system is trained 
and conditioned to develop perceptual motor programs that arc efficient in the operati ng 
environment of the individual (Guedry, Rupert, & Reschke, 1998; pg. 479). 

Guedry, Rupert. and Reschke (1998) also provide an evolutionary explanation for the emetic 
response that occasionally accompanies motion sickness. They suggest that while the motion 
sickness symptoms provide a powerful means for learning, the quick relief from symptoms 
following emesis allows learning to proceed when adaptation is required. 

In reviewing the various theories on motion sickness and evolution, it is apparent that no 
one theory dominates. Furthermore, theories that attempt to explain the mechanisms of motion 
sickness (e.g., sensory conflict theory, subjective vertical model of sensory conflict, postural 
instability theory, and eye movement hypotheses) arc post hoc explanations that arc not proven 
predictive theories and arc often limited to particular sensory environments. As a result, the true 
function of motion sickness has not been agreed upon among motion sickness researchers and 
may remain an intriguing mystery until its neurological basis has been fully unraveled. We will 
provide a fourth explanation below; one which also serves to integrate the three current 
explanations. However, in an effort to better understand the phenomenon of motion sickness, a 
revicw of the evolution of sensory systems and sensory integration is necessary. 

Evolution of sensory systems and sensory integration 
The various scnsory modalities are thought to have evolved from a "supramodal," 

primordial system that is not very selective ahout what it responds to. It is believed that in a 
supramodal system, all effective sensory stimuli (e.g., chemical, thermal, mechanical, radiant, 
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etc.) entail comparable consequences based on stimulus intensity. High-intensity stimuli are 
thought to elicit avoidance or withdrawal behaviors, whereas low-intensity stimuli elicit 
approach behaviors (Stein & Meredith, 1993). The development of specialized receptors 
sensitive to a particular form of stimuli is thought to be the result of the evolutionary process of 
specialization, thereby creating sensory differentiation (Marks, 1978; Butterworth, 1981). 

Support for a single, nonspecific ancestral sensory receptor is lacking, but it is plausible 
that the earliest primordial organism consisting of a single cell would have been supramodal. 
The most primitive eukaryotic organisms are unicellular. Living examples evolved from species 
that appeared about 1.4 billon years ago (Stein & Meredith, 1993). Eukaryotes derived from 
prokaryotes (the most ancient unicellular organism-living bacteria are extant examples) in a 
marine environment and unlike the prokaryotes, they developed internal organelles (e.g., 
mitochondria, true cilia, miotic spindles, nuclei). Early unicellular organisms also probably led 
diverse sensory lives, more than might be expected of a unicellular organism (Stein & Meredith, 
1993). A salient example of unicellular organisms that can be studied today is the ParameciullI (a 
ciliated protozoan). This organism provides a very suitable beginning for a discussion on the 
development of sensory systems and their integration. 

Touch- and stretch-induced receptor potentials are common among, and even predate, 
protozoa (Morris, 1990). Interestingly, the mechanisms by which these primordial organisms 
mediate the sensory functions of transduction and excitation are fundamentally similar to the 
mechanisms in higher organisms (Hille, 1984). In the Paramecium, ion channel specificity 
exists, with distinct channels for receptor and for action potentials (Ogura & Machemer, 1980). 
In addition, it is believed that receptor specificity exists in the case of protozoa with "eyespots" 
(van Houten & Preston, 1988). This suggests that protozoa, at the cellular level, are supramodal 
because they are unicellular organisms responding to two or more sensory stimuli (e.g., at least 
mechanical and chemical sources). Therefore, Paramecium, in a cellular context, is a clear 
example of elemental multisensory integration because its behavior is a direct result of ongoing 
synthesis of stimuli that its membrane is responsive to. 

As more complex organisms evolved, an increase in sensory specialization and 
segregation also occurred. The initial step in sensory segregation occurred in early multicellular 
invertebrates (Stein & Meredith, 1993), for example, sponges. Mackie and Singla (1983) note 
that sponges are the phylogenetically the lowest of multicellular species and consist solely of a 
network of cells (i.e., they do not possess nerves or muscles). However, Mackie and Singla 
(1983) note that sponges are able to transmit information from an area of receptor activation to 
the entire cellular mass via protoplasmic continuity. They also suggest that sponges are able to 
identify various stimuli because they are observed ingesting food and retracting from harmful 
stimuli. However, this ability to discriminate between various stimuli does not appear to require 
modality segregation nor diversion of information to specialized groups of cells. Similarly, in 
some primitive coelenterates, such as some species of medusae, sensory signals are transformed 
via conductive epithelia (Mackie & Passano, 1986). Mackie and Passano (1986) note that the 
sensory signals are simultaneously transmitted in all direction, thereby negating the potential for 
sensory segregation. However, Stein and Meredith (1993) note that it was within this phylum 
that nerve cells, synapses, and nerve nets first developed. In addition, the authors indicate that 
this phylum was the first in which cell groupings formed specialized sensory organs, for 
example, sense organs for detecting bodily rotation, vibration, and photic stimuli. While the 
development of specialized sensory organs provides the means for sensory segregation, there is 
no evidence that it was actually achieved in coelenterates. Instead, it has been shown that in 
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coelenterates. impulses can pass through multiple cells, both neural anti non neural. via electronic 
coupling (Antlerson & Schwab, 1(82). This may allow diverse sensory stimuli to access a large 
pcrccntage of the organism. thereby, making all cells multisensory. 

Stein anti Mcretlith (1993) notc that a jump in sensory systcm complexity anti response 
flexibility cvolved in the ncrvous system of the phylum Platyhelminthcs (flatworms). The 
development , embellishment, and fusion of ganglia produced an encephalizetl , bilaterally 
symmetrical organism (i.e., not radially symmetrical, like the coelenterates) containing the first 
brain and peripheral nervous system (i.e., plexus). While elongated axons hatl begun 
development in coelenterates via nervc rings and giant motor axons, they arc utilized more 
effectively in Platyhelminthcs by allowing transmission of information over long distances. 
bypassing unnecessary cells. This provided the ability for the first segrcgation of stimulus inputs 
and distinct response outputs to segregated stimuli. 

It should also be mentioned that sensor integration is c1car in water-borne organisms 
more sophisticatetl than the coelenterates. Clearly exemplary is observation in Lollinguncula 
brevis (squid) by Press and Budelmann (1995): 

When illuminated from the side in visually homogeneous surroundings, a 
free-swimming squid rolls the dorsal side of its head and trunk 10-20 
degrees towards the light. With the trunk restricted in a holder, the squid 
rolls its head 4-5 degrees towards the light; this reaction increases by 
about 50% w hen the statocysts are bi laterall y removed anti i ncrcases 
further when the neck receptor organ is also destroyed. The results 
indicate a multi-modal interaction of visual. statocyst and proprioceptive 
inputs during postural control (p. 1157). 

Stein and Mercdith (1993) suggest that capacity for concurrent segregation and 
integration among sensory modalities occurred relatively carly in the tlevelopment of nervous 
systems. The finding that the essentials of nervous systems in advanced vcrtebrates were evident 
in complex invel1ebrates emphasizes this point. In essence, these complex invcrtebrates 
transJuce sensory inputs via modality-specific organs, which arc then relayeJ to centralized 
structures by way of afferent pathways for continued signal proccssing and evaluation. Finally, 
signals are sent to the effector organs using defined output pathways. Furthcrmore, complex 
invertcbrates posscss an advancement in sensory system evolution that provides a mixture of 
unisensory and multisensory afferents (Stein & Meredith, 1(93). 

Complex invertebrates also demonstrate the beginnings of the distinction between 
afferent selectivity anJ central and efferent sensory integration (Stein & Mercdith, 19(3). 
Interestingly, the afferent dissociation that afforded parts of the brain to become modality
specific processors permitted other portions to become sensory intcgrators. By allowing 
intcgration of multiscnsory information in central neurons, responscs can bc enhanced, 
particularly when the various stimuli are weak. It is thought that multisensory stimuli enhance 
rcactions by summing thc energies of the several stimuli (Giclen ct aI., 1983; AnJreassi & Grcco, 
197'5). Howcver. two or more stimuli of the same motlality may inhibit onc another or fail to 
summate as expectetl (Shiplcy, 1(80). Multisensory intcgration and cxprcssion on output 
pathways is also an effectivc means to produce like behavior tlespite the sensory channel 
stimulatctl. Complex invertebrates have also demonstrated the ability to form cmss-moJal 
associations via pooling of various sensory cues in common neurons. Through cross-moJal 
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association, a complex invertebrate can learn to organize anticipatory responses to sequential 
stimuli of different modalities (Stein & Meredith, 1993). 

Insects display an ability to perform sensory integration with respect to their f1ight
controlling and body-controlling motoneurons. In Gypsy Moths, motoneurons controlling flight 
contain dendrites in the thoracic ganglion, which allows them to be contacted by efferent 
interneurons descending from the brain by way of the ventral nerve cord (Willis & Carde, 1990). 
Studies by Olberg and Willis (1990) on intracellular recordings have shown that a large pOltion 
of these descending interneurons are multisensory, and that they are capable of sensory 
integration to alter their output, thereby exerting control on flight motoneurons. 

Vertebrates represent the pinnacle of afferent segmentation by sensory modality, while 
also possessing the capability for sensory integration in first and second order afferent neurons 
(Stein & Meredith, 1993). This is particularly true in the vestibular system, where integration of 
somatosensory and visual inputs in vestibular processing is a ubiquitous characteristic of 
veI1ebrates (Dichgans, et aI., 1973; Caston & Bricout-Berthout, 1985; Horn et aI., 1983; Precht & 
Strata, 1980). Unlike the vestibular system, it is thought that visual, auditory, and somatosensory 
stimuli initiate a stream of modality-specific information along their primary projection 
pathways. However, it is accepted that in particular situations these modality-specific projection 
pathways may also be altered by auxiliary sensory inputs (Stein & Meredith, 1993). 

Stein and Meredith (1993) note that vertebrates possess a variety of sensory integration 
centers, for example, the superior colliculus in mammals and its non-mammalian counterpaI1, the 
optic tectum. The superior colliculus is located in the midbrain and is associated with attentive 
and orientation behaviors. However, it is only one of many sites in the central nervous system in 
which various sensory inputs converge on a group of neurons. The reticular activating system is 
another site of convergence for multisensory neurons; and it is responsible for general arousal 
(Yen & Blum, 1984). In the brain stem, multisensory neurons are found in the locus coeruleus 
(Grant et aI., 1988), the external nucleus of the inferior colliculus (Tokunaga, et aI., 1984), and 
the superior colliculus. Rasmussen et al. (1984) note that at the thalamic level, modality-specific 
primary projection pathways (e.g., lateral geniculate for visual stimuli, medial geniculate for 
auditory stimuli, and ventrobasal complex for somatosensory stimuli) coexist with multisensory 
convergence structures in the posterior and lateral thalamus. 

The cortical regions of veI1ebrates, particularly mammals, are capable of receiving 
multisensory afferents, in addition to converging inputs from various unisensory thalamic nuclei 
(Jones & Powell, 1970). In primates, the superior temporal and intraparietal cortices contain 
multisensory neurons (Duhamel et aI., 1991), as do the frontal and prefrontal cortex (Vaadia, 
1986). These multisensory cortical areas are thought to be association areas that playa role in 
higher cognitive, perceptual, and attentive behaviors. 

In the output portion of the central nervous system (e.g., premotor and motor limb of the 
central nervous system), multisensory neurons can also be found. For example, the basal ganglia 
are a group of interrelated structures that are essential for coordinating movement, which can be 
influenced by somatosensory, visual, auditory, and noxious stimuli (Hikosaka, et aI., 1989). 
Outputs from the superior colliculus and parts of the cerebellum can also be affected in a manner 
similar to the basil ganglia (Aizi & Woodward, 1990). 

In essence, the review of sensory system evolution (e.g., sensory system specialization, 
differentiation, and integration) shows that components have been preserved or elaborated in an 
effort to provide sensory information to the organism that may otherwise be undetectable if the 
various sensory components were completely segregated. This ability to detect stimuli and 
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integrate information in a meaningful and effective manner appears to have reached its peak in 
vertebrates. Interestingly, it is in vertebrates that motion sickness has been documented in the 
literature and not in invertebrates . The question is, is it due to the multitude of sensory 
integration and output integration centers in the central nervous system of vertebrates that makes 
vertebrates susceptible to motion sickness '? Or, could it be that our ability to detect motion 
sickness in invertebrate species. or desire to do so, is lacking. Sensory integration conflicts, 
particularly with respect to the vestibular system, have been posited as the primary driver of 
motion sickness. Reviewed below is what is known about motion sickness in variolls vertebrate 
species and the neural structures that are thought to playa role in motion sickness. 

Species in which motion sickness has been found to occur and the potential requisite 
underlying neural structures 

Motion sickness has been found in various forms in a variety of species. It has been 
reported to occur in dogs (Morton, 1942; McNally, Stuart, & Morton, 1942; Babkin, & 
Bomstein, 1943a,b; Noble, 1945, 1948; Money & Friedberg, 1964), cats (Babkin, Dworkin, & 
Schachter, 1946; Johnson, et aI., 1951; Crampton, & Lucot, 1985), horses (McEachern, Morton, 
& Lehman, 1942; Tyler & Bard, 1949; Anonymous, 1955; Chinn & Smith, 1955), cows 
(McEachern, Morton, & Lehman, 1942; Tyler & Bard, 1949; Chinn and Smith, 1955), sheep 
(McEachern, Morton, & Lehman, 1942), squirrel monkeys (Wilpizeski, et aI., 1987h; Johnson, 
Meek, & Graybiel, 1962; Brizzee, & Igarashi, 1986; Igarashi, et aI., 1983, 1986), chimpanzees 
(Graybiel, et aI. , 1960), seals (DeWit, 1953, Chinn & Smith, 1955 ; Anonymous, 1955), birds 
(Desnoes, 1926, Tyler & Bard, 1949; Ossenkopp & Tu, 1984), fish (McKenzie, 1935; Chinn & 
Smith, 1955), guinea pigs (Ossenkopp, & Ossenkopp, 1990), shrews (Matsuki, Ueno, Kaji, & 
Saito, 1988), mice (Ossenkopp, et aI., 1988; Fox, et aI., 1984), ferrets (Florezyk, Schurig, & 
Bradner, 1981), and rats (Sutton, Fox, & Daunton, 1988; Ossenkopp, & Frisken, 1982; Lambert 
et aI., 1989). Here again, we see vertebrates only. From motion sickness studies on these 
various species, a portion of the clitical neural structures involved in motion sickness have heen 
identified. These are discussed next. 

Vestibular System 
The vestibular system is the most studied, and probably the most important neural 

component in the motion sickness pathway. It has been shown that individuals without 
functioning vestibular systems are immune to motion sickness , including visually induced 
motion sickness (Money, 1990). Furthermore, direct stimulation of the vestibular system can 
produce motion sickness (e.g., heavy water stimulation of the semicircular canals, caloric 
vestibular stimulation , or a Meniere's attack). It therefore appears likely that the motion sickness 
inducing stimuli acts on the vestibular system either through direct stimulation of the vestihular 
system or through visual and proprioceptive inputs. 

Research on motion sickness using animal models has clearly demonstrated the 
requirement of a functioning vestibular system for the genesis of motion sickness. In 
experiments on dogs it was shown that immunity to motion sickness can be conferred hy 
hilaterallahyrinthectomy (Babkin & Bornstein, 1943a; Babkin & Bornstein, 1943b; McNally, 
Stuart, & Morton, 1942; Money & Friedberg, 1964; Wang & Chinn. 1956). Furthermore, 
deactivating just the semicircular canals has shown to be effective in abating motion sickness in 
dogs (Money & Frcidberg, 1964). Primate models (e.g. squirrcl monkeys and chimpanzees). 
which arc thought to be more representative of humans (Ordy & Brizzee. 1980), have also 
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demonstrated the effectiveness or bilateral and unilateral labyrinthectomy (Johnson, Meek, & 
Graybiel, 1962; Graybiel, Meek, Beischer, & Riopelle, 1960). 

The question about whether the semicircular canals or otolith organs play the dominant 
role in spurring motion sickness has not been firmly answered, however, it appears that the 
semicircular canals may be the more critical component of the vestibular system. The 
discounting of the otolith overstimulation theory of motion sickness combined with findings that 
nystagmus (normally the result of stimulation of the semicircular canals) can be driven by linear 
accelerations, and that responses to both rotation and changing linear accelerations can be 
observed in a single central vestibular neuron suggests that the semicircular canals may be the 
more dominant component of the vestibular system with regard to motion sickness (Benson & 
Bodin, 1965, 1966; Correia & Guedry, 1966; Guedry, 1965a; Benson, Guedry, & Melville-Jones, 
1967; Melville-Jones & Milsum, 1966). However, Brizzee and Igarashi (1986) suggest that the 
semicircular canals alone are not sufficient for the elicitation of motion sickness. In summary, it 
appears that the vesti bular system is crucial for the genesis of the motion sickness and that the 
semicircular canals may playa more critical role than the otolith organs. 

In addition to rotation and linear accelerations stimulating the vestibular system and 
potentially causing motion sickness, visual inputs may also influence the vestibular system. In 
multisensory integration, the visual modality tends to dominate, unless dramatic differences in 
stimulus intensity exist (Stein & Meredith, 1993). Studies by Graybiel et al. (1965) and Guedry 
(I 965b) suggest that vestibular responses can be conditioned to respond to alternate stimuli (e.g., 
visual input). It is foreseeable that visual stimuli modify vestibular output and that a visual 
stimulus typically associated with a vestibular stimulus would yield vestibular activity in the 
absence of the vestibular stimulus. In visually induced motion sickness studies in which the head 
is restrained (Witkin, 1949), the occurrence of motion sickness suggests that the malaise resulted 
from conditioned activation of the vestibular centers. 

Area Postrema 
The area postrema (AP) is synonymous with the chemoceptive trigger zone (Brizzee, 

Ordy, & Mehler, 1980) and thought to be a critical structure in the motion sickness reflex arc 
(Wang & Chinn, 1954; Brizzee, Ordy, & Mehler, 1980), in addition to its role as the "integrative 
vomiting center" (Cummins, 1958). The AP is a circumventricular organ located on the floor of 
the fourth ventricle; the "integrative vomiting center" is located near the fasciculus solitarius in 
the dorsal part of the underlying lateral reticular formation (Brizzee, Ordy, & Mehler, 1980; 
Cummins, 1958). Chinn and Smith (1955) suggest that the AP's role in the vomiting that 
occasionally accompanies motion sickness is a release of chemicals that spurn gastric distress 
when the stimulus is intense enough. This is consistent with the work of Isaacs (1957) that 
suggests that abnormal vestibular stimulation alone can sway the AP to induce emesis. Further 
support for the cliticality of the AP in the motion sickness pathway comes from AP lesions in 
rats resulting in mitigation of drug-induced (e.g., LiCI and methylscopolamine) conditioned taste 
aversion (CTA; note that rats are incapable of vomiting so a CTA paradigm is used to index 
degree of motion sickness; Ossenkopp, 1983; Ritter, McGlone, & Kelley, 1980; Sutton, Fox, & 
Daunton, 1988). These findings about the role of the AP in motion sickness suggest that a 
functional relationship between the vestibular system and AP exists. Furthermore, Brizzee, 
Ordy, and Mehler (1980) suggest that while the emetic response associated with motion sickness 
may be mediated by the AP, the other symptoms associated with motion sickness (e.g., malaise, 
nausea, pallor, etc.) may be controlled by brain structures above the level of the caudal medulla. 
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Cerebellum: Uvula-Nodulus Complex 
In the cerebellum, the nodulus and uvula are thought to playa role in motion sickness. It 

is suggested that vestibular afferents mediating motion sickness terminate in the nodulus, and to 
a lesser degree , in the uvula (Wang & Chinn, 1(56). Wang and Chinn ( 1(56) also note that the 
uvula receivcs afferent connections from the spinal cord and thc corticopontinc system, unlike 
the nodulus, which receives only vestibular afferents. Studies on dogs have shown that ablating 
the uvula and nodulus confer an immunity to motion sickness, while ablating the vermis between 
the primary fissure and the pyramis does not decrease susceptibility (Wang & Chinn, 195.1: 
Wang & Chinn, 1956: Bard et aI., 1947,1(49). Furthermore, research has shown that removal or 
partial ablation of solely the nodulus is ellective in mitigating motion sickness, while it is 
necessary to remove practically the entire uvula to produce similar results (Wang & Chinn, 
1956). These findings suggest that the nodulus and uvula of the cerebellum, which rcceive 
vestibular afferents, are involved in motion sickness and are part of the motion sickness pathway 
that traverses the labyrinths, uvula and nodulus, and area postrema before reaching the medullary 
vomiting center (Wang, Chinn, & Renzi, 1957). Furthermore, the work of Wang and Chin 
(1956) demonstrates that it is not critical to remove all cerebellar receptors of vestibular 
afferents, rather. removal of 1/3 to 1/2 of the nodulus-uvula complex is sufficient for mitigating 
motion sickness, simultaneously not causing detectable neurological defects. 

Viscera 
It has been suggested that visceral afferents from the gastrointestinal tracts do not play an 

essential role in the vomiting associated with motion sickness (Wang, Chinn, & Renzi, 1957; 
Wang & Tyson, 1954). At best, Wang, Chinn, and Renzi (1957) found that denervation of the 
viscera in dogs resulted in a decrease in susceptibility, but did not abate emesis . They also 
suggest that the autonomic nervous system plays no vital role in emesis from motion sickness . 
FU11hermore. it has been noted that vomiting in humans is not modified after vagotomy, and that 
to prevent emesis in experimental peritonitis, both the vagus and splanchnic nerves must be 
sectioned (Walton et aI., 1931). Although the autonomic nervous system might not playa vital 
role in emesis, it clearly plays a role in balance control and motion adaptation in general. We 
will address this issue later. 

Cerebrum 
The cerebrum is not considered a necessary component in the genesis of motion sickness 

becausc motion sickncss, as well as gastrointcstinal and vasomotor responses to vestibular 
stimulation, can occur in the absence of a cerebrum (Spiegel, 1946: Spiegel , Henny, 
Oppenheimer, & Wycis, 1944; Spiegel, Henny, & Wycis, 1944: Spiegel, Oppenheimer, & 
Wycis. 1944: Speigcl & Sokalchuk, 1950; Speigel & Sommer, 1(50). In addition, unilateral 
dec0l1ieation and bilateral removal of the cortex from temporal, occipital, or parietal areas in 
dogs has revealed that cortical structures are not critical for motion sickness to occur (I3ard, 
1(54). As a result. it may be that mental activity (including anxiety ; a point we address later) is 
not requisite for motion sickness. This is emphasized by an anecdote described by Doig, WolL 
and woln (195.1) in which a relatively stable decorticate man exhibited pallor and vomiting 
during turbulent flight. However, despite the presence of motion sickness in the absence of the 
cerebrum. when the cerebrum is present its control over the brain-stem mechanisms and 
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cerebellar mechanisms may be highly influential in the suppression or facilitation of motion 
sickness (Money, (970) . For example, Kirkner (1949) has shown that voluntary mental activity 
during stimulus exposure can influence the intensity of motion sickness, and that suggestions that 
motion sickness may occur tends to increase the incidence of sickness, especially if motion is 
mild. 

From the above sections on the vestibular system, area postrema, uvula-nodulus complex , 
viscera, and cerebrum it is apparent that there are a few distinct areas that are crucial for the 
genesis of motion sickness. If the vestibular system, area postrema, or uvula-nodulus complex 
are not intact, or are inhibited, then motion sickness will likely be abated or at the very least 
drastically mitigated. These requisite constellations are areas that display multisensory 
integration, and it may be that the evolutionary advancements in these areas are what make 
vertebrates susceptible to motion sickness. F0I1unately, sensory integration (e.g., the potential 
for sensory conflict, which Reason [1975] posits as a major contributor to motion sickness) may 
be governed by a set of rules. If these rules of integration can be exploited properly, the 
suggestion is that motion sickness may be mitigated. Presented below is a proposed taxonomy of 
sensory integration accompanied by prospective rules for sensory integration. 

Emotion in Humans and Its Relationship with Motion Sickness 
As indicated above, the role of the autonomic system is not thought to be key to the 

emetic response, per se. However, emotion-affect-does in fact playa significant role in 
motion sickness. An examination below reveals those parameters necessary for the construction 
of a biologically based model of motion sickness. 

Arousal (i.e., effort) and distress are characteristics of human affect (emotion or mood) 
that may be important presently and have been described by a two-dimensional, physiologically
based model of affect (i.e., Franceschini, McBride, and Sheldon, 2001; Frankenhauser, 1986; 
Henry & Meehan, 1981; Lundberg, 1980; Sheldon, 2001) .. These two dimensions reflect 
neurochemical acti vity (Frankenhauser, 1986; Henry & Meehan, 1981; Lundberg, (980): (l) 
catecholamines (i.e. epinephrine and norepinephrine), which are associated with the arousal 
dimension , and (2) corticosteroids (i .e. cortisol), which are associated with the distress 
dimension. Specifically, increases in the arousal dimension are associated with effort, 
engagement, and attentiveness, whereas increases in the distress dimension are associated with 
uncertainty and uncontrollable situations. Researchers investigating the phenomena of motion 
sickness have also studied neurochemical activity. For instance, increased corticosteroid 
secretion has been associated with increases in the occurrence of motion sickness symptoms 
(Janowsky, 1984, Reichard et al., 1998; Stalla, 1985), while increased catecholamine secretion, 
specifically epinephrine, has been associated with a greater tolerance to motion sickness 
symptoms (Zubek, (968). 

A recent investigation (Sheldon, 2001) demonstrated simultaneous measures of the 
sympathetic nervous system (SNS; i.e. skin conductance, heart rate [HR]); parasympathetic 
nervous system (PNS; i.e. HR), and somatic nervous system (i.e. muscle tension) reflected 
emotional responses according to this two-dimensional model. Additionally, it has been 
proposed that physiological evaluation of affect accounts for the SNS, PNS, and somatic nervous 
system (Gellhorn, 1964; Kiely, 1974; Porges, (995). Porges (1995) proposed that the limbic 
system is not merely associated with emotion control (MacLean, 1993), but is responsible for 
motion control. Leiman-Patt, Biastrocchi, and Moia (1988) repol1ed a relationship between 
increaseLi somatic activity (cervical muscle contractures) and motion sickness symptoms. Muth 
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et al. (1998) have reported a relationship between increased gastric-myoelectrical activity, which 
is associated with nausea (a symptom of motion sickness), and decreased SNS activity. 

Personality traits influence an individual's interactions with the environment (Matthews, 
1999), as exhibited by subjective (Kardum, 1999: Rusting & Larsen, 1998) and physiological 
(Eysenck & Eysenck, 1985, Markov et al., 1995) differences in emotional experiences. 
Personality traits are also considered a contributing factor to motion sickness susceptibility 
(Reason, 1978). With respect to the distress dimension, increases are associated with feelings of 
anxiety. The personality trait of anxiety (Bandura, 1997: Costa & McCrae, 1995: Eysenck & 
Eysenck, 1985: Spielberger, 1966) is related to an increased susceptibility of perceiving the 
environment as threatening or uncontrollable and experiencing feelings of anxiety. Furthermore, 
there is evidence that higher levels of trait anxiety, as well as higher levels of state anxiety, 
reported prior to the experience of provocative motion are associated with motion sickness 
susceptibility (Mirabile & Glueck, 1993), motion sickness symptoms (Bick, 1983: Cornum, 
Caldwell, & Ludwick, 1993, Fox & Arnon, 1988; Gordon et al., 1994: Lindseth & Lindseth, 
1992), decreased spatial orientation abilities (Betihoz & Viaud-Delmon, 1999: Smith, 1958), 
vestibular dysfunctions (Furman, Jacob, & Redfern, 1998; Jacob et al., 1992), and over-reactivity 
to visual disorientation (Milne, 1972). Additionally, the personality trait of psychoticism 
(Gordon et al., 1994) has been associated with tolerance to motion aftereffects. 

Other factors, such as self-efficacy (Bandura, 1997: Schunk, 1989), perceived autonomy 
or locus of control (Noels, Clement, & Pelletier, 1999), and attitude (Bandura, 1997; Kanfer & 
Heggestad, 1999), influence an individual's perception of the environment, thereby contributing 
to the individual's affect. These factors have also been investigated with respect to motion 
sickness. For instance, increased locus of control has been associated with reduced motion 
sickness symptoms (Collins & Lutz, 1977: Keinan el al., 1981). Eden and Zuk (1995) reduced 
seasickness effects in Israeli Defense Forces Navy cadets through efforts aimed at increasing the 
cadets' self-efficacy regarding their tolerance to experiencing seasickness. Also, Grunfield et al. 
demonstrated a relationship between an individual's positive attitude regarding his susceptibility 
to experiencing motion sickness effects was associated with reduced motion sickness symptoms. 
Consequently, it is not surprising that cognitive-behavioral therapies (Dobie & May, 1994; Dobie 
et al., 1989; Koselka, 2000) and relaxation techniques (Dobie et lIl., 1994: Jackson, 1994) have 
been successful at reducing the occurrence of motion sickness aftereffects. 

An individual's posture has been associated with emotional responding (Eckman, 1993: 
Gellhom, 1968). There has also been research regarding the effects that rest posture orientation 
(Harm et al., 1998) and postural instability (Owen, Leadbetter & Yardley, 1998; Warwick-Evans 
et al., 1998) have on motion aftereffects. 

Researchers have investigated the influence of visual motion on emotional responding. 
However, the reports of these efforts are incongruous. For instance, Simons et al. (1999) 
suggested visual motion increased arousal, while Detenber and Reeves (1996) reported 
contradictory results. A plausible explanation for this conflict is that the Simons et al. (1999) 
study used physiological measures (skin conductance) in conjunction with subjective responses 
to obtain data on arousal and valance, whereas the Detenber and Reeves (1996) investigation 
only used subjective measures. As subjective measures are considered poor indicators of 
emotional experiences (Cacioppo & Petty, 1986), and there is evidence of physiological 
responding that contradicts subjective reports (Schwartz, 1986; Sheldon, 200 1), it is reasonable 
that the Detenber and Reeves (1996) study would have obtained results similar to the Simons ct. 
al (1999) study if physiological measures had been used. 
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Prospective Taxonomy and Rules of Sensory Integration 
The field of intelligent sensor fusion in robotics has provided fertile ground for the 

commingling of biological and cognitive aspects of sensory integration. There are increasing 
challenges for machine makers as the underlying technology becomes more capable of 
simulating human behavior. For example, it is not obvious that a robot should be "down-loaded" 
with code sufficient to solve any reasonable problem, or whether there is more efficiency or 
effectiveness in designing robust learning capability instead. A look at sensor fusion technology 
is helpful in our attempt to understand motion sickness (though, certainly, robots will not show 
symptoms), because the engineering world is relying increasingly on biomimetic approaches to 
design. Following is a synopsis of some representative work. 

Murphy (1996) discusses the biological and cognitive components of sensory integration 
in regards to sensor fusion in robotics and in doing so presents various viewpoints regarding the 
process of sensory integration. For instance, Marks' (1978) theory of sensory correspondence is 
presented, as well as Bower's (1974) taxonomy of sensory integration. Marks' (1978) theory of 
sensory correspondence is comprised of five Doctrines. The first doctrine is the Doctrine of 
Equivalent Information, which suggests that the same percept can be deduced from individual 
receptors, despite their receiving distinct and nonintersecting stimuli. The second is the Doctrine 
of Analogous Attributes and Qualities that states that all stimuli have a common stimulus 
property (e.g., intensity, duration, size, form, and number). The third, Doctrine of Common 
Psychophysical Properties, notes that stimuli are processed by like, or multisensory, receptors. 
The Doctrine of Neural Correspondences is the fourth doctrine and posits the existence of a 
multisensory integrator, which requires stimuli to be represented in a common format or 
knowledge representation. The final doctrine is comprised of four previously mentioned 
doctrines and is referred to as the Unity of the Senses. It suggests that because the senses are so 
similar, they should be thought of as modalities of a general sense. 

Bower's taxonomy of sensory integration is comprised of four levels. The first level is 
complete sensory unity, in which all receptors receiving the stimulus are combined without a 
mechanism for detecting discordances. In level one, the receptors for a particular stimulus are in 
synchrony such that discrepancies do not arise. At this level, sensory integration is done blindly 
without a means for detecting discordances between the modalities. The second level of the 
taxonomy is unity with awareness of discordance and the possibility of adaptation. At this level, 
discordances between afferent signals can be detected and dealt with via adaptation of the most 
deviant afferent signal. This level of the taxonomy is most akin to an individual's ability to 
capitalize on inherent neural plasticity and utilize adaptation or habituation to mitigate motion 
sickness. The third level of the taxonomy is awareness of discordance with a tendency to 
suppress it. At this level, discrepancies between receptors are detected, but instead of adapting, 
the most discordant receptor is suppressed. This may be the case when an individual becomes 
dual adapted to a provocative environment and is capable of suppressing a motion sickness 
inducing conflict long enough to complete a rapid acclimation process associated with dual 
adaptation. The foul1h and final level of the taxonomy is no unity at all. At this level, the 
different receptors process aspects of the stimulus, but the aspects have no correspondence 
among each other. Bower notes that this level rarely occurs in humans. 

Another system that describes hierarchies of control systems is one provided by Powers 
(L 973). This system suggests that there are characteristically eight levels of sensor integration in 
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cybernetic control systems. In ascending order they include control of: sensitivity, vector, 
configuration, transition, sequence, relationship, strategy, and principles. 

Stein and Meredith (1993) present various rules of sensory integration. These rules are 
briefly presented and discussed below. 

• Spmially cuincident lIIultisensory stimllli telld to prodllce response ellhallcemcllt, wherc(/s 
spatially disparate stimllli prodllce either depression or 110 interactioll. 

This rule suggests that enhancement occurs only when sensory stimuli are presented 
within their respective receptive fields. For example, a visual-auditory stimulus pair must have 
the visual stimulus within the visual receptive field and the auditory stimulus with the auditory 
receptive field. Due to the sensory overlap in a multisensory neuron, co-located stimuli enhance 
each other's effects. If one of the sensory stimuli is presented outside the range of its receptive 
field, it will fail to enhance the effect of a second stimulus within its receptive field and may 
depress any response the primary excitatory stimulus. 

• Maximalmllitisellsory illteractiolls {Ire not dependent on matching the onset of two dilli'rent 
sellsory stilllllli, or their latencies, but 01/ how the activity patterns resulting from the two 
il/pllts overlap. 

Some of the temporal limitations on multisensory integration are lucid, such as stimuli 
presented in close temporal proximity interact, while stimuli with large temporal separations arc 
processed as separate events. Stein and Meredith (1993) note that the existence of a relatively 
large temporal window is logical once the travel and processing times for various stimuli arc 
considered. They suggest a temporal window up to 1500 msec must exist to be able to process 
the longest delays found in visual-auditory stimulus pairs. They also note that from an 
evolutionary standpoint it makes perfect sense because a long temporal window provides leeway 
in detecting and responding to minimal and imp0l1ant stimuli at various distances from an 
organism. This also makes evolutionary sense because the depression of discordant stimuli when 
they are in temporal proximity provides a means for focusing attention on the strongest, and 
presumably the most important, stimulus when distracters are present. 

• Receptive field properties are neither created 1I0r elimillated by combining inputs from 
difFerellt sen.w)r}' systems. 

The essence of this rule is that receptive field propel1ies act as neuronal filters, deciding 
which stimuli activate a neuron and how intense that activation will be. 

• The multiplicative interactiolls that characterize superior col/iellllls respollses to two stim/lli 
from dijTerent modalities are not apparent when the stimuli arefrom the s(lme modality. 

• Maximal enhancement OCClIrs with minill/al/y eflective stimuli . 

A Preliminary Integrative Model of Motion Sickness 
Depicted below is a tentative model of motion sickness that is based on the three existing 

models (outlined above), and the biological information considered above. 
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Figure I . Flow Diagram of Model. 
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The essence of the model is obvious from its flow. First , consider the fundamental nature 
of the diagram; that is, that toxic filtration is its foundation, much as the poison hypothesis 
posits. The organism acquires food, in a context (location, scents, etc.) that is associated with the 
acquisition, including the predatory fixed action pattern, itself. The digestion process begins 
when saliva is secreted, and here again cues from the context (textures, tastes, etc.) are present 
and become associated with the acquisition. 

Two signal detection analyses are continuously working in the animal. The first is 
associated with detecting the presence of toxins based on assessment of contextual cues (taste, 
scent , etc.). The other is concerned with detection given that there is in fact toxicity in the 
digestive system, or more to the point, it is concerned with detection given that there is no toxin 
in the system. Importantly, the presence of toxins or any other material is not a binary 
proposition. Rather, detection is an issue of fuzzy logic, as all biological detection is. Thus, the 
animal must assess (unconsciously, of course) the likelihood that there is poison in the 
gastrointestinal tract. Unnecessary emesis-false alarm- is in fact expensive, not only because 
of lost sunk costs (of hunting, etc.), but also because of the oppOltunity costs, and the raw caloric 
cost of the emesis sequence, itself. Dehydration amplifies the expense to the organism. 

Thus, key to the model are the parameters associated with the signal detection 
components . Clearly organisms inherit some initial and boundary conditions on these 
parameters . Just as clearly, there is plasticity or learning (conditioning) in toxis detection and 
avoidance . We describe next, briefly, what is essentially this filtration process. (For a complete 
treatment of signal detection theory, see Swets, 1996). 

The signal detection parameters as depicted in figure I are d' and Beta. The former 
represents signal separation strength from background noise (or from an alternative signal) ; the 
latter is an indication of the organism's bias, known also as decision criterion. If toxin is clearly 
recognizable, d ' is said to be large, and the probability of error on the part of the animal is 
minimal. On the other hand, if toxicity is disguised (as is usually the case in nature), d' is low, 
ipso facto. Momentary d' is governed by the strength of the poison cues agai nst thei r surround 
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(external or internal environment). Arguably, a compromised sensor system contributes to 
effective signal separation, as well. 

Probability of Correct Rejection 

on 
J: on 

~ 
0 0 
~ ~ ii .. ii 
Jl .. 
0 Jl 

d: 0 

d: 

Probability of False Alarm 

Figure 2. Receiver Operating Characteristic depicting the improvement in detection as Signal Separation (d') 
increases. 

Bias, on the other hand, is more situationally dependent. For example, as an animal 
continues to forage or hunt, and as the prospects for acquiring a next meal fail to improve, the 
probability of accepting a piece of food, say slightly tinged, improves. That is, the animal must 
manage its bias so as carefully to maintain calorie investments while avoiding toxis: that is, 
minimize the probability of committing type I or type II en·ors. The former (detecting toxin 
falsely) means loss or opportunity loss (and perhaps all of the other costs indicated, above); the 
latter (failure to detect the poison) might mean death. Thus, each organism behaves ill a way that 
describes a receiver operating characteristic (ROC), as is shown in figure 2. The variables of 
each unique ROC are governed by the quality of the sensor system they inherit (and which 
matures), and by the quality of feedback they have produced (long term store) to date. 

The model described suggests that the mechanism of motion sickness is sensory 
mismatch, and that those organisms which are sensitive to mismatch, for whatever reason it is 
imposed situationally, react naturally by engaging some level of the emetic complex. There are 
comparative differences in this regard, as outlined, above, and there are individual differences 
within species, and as the model suggests, within individuals. Fundamentally, provocation 
causes some probability that the emetic complex be engaged, which (as feedback loop A 
indicates) initiates an evaluation against an experience data base (long term store), which 
modulates the beta in evaluation B. Necessary to any confirmation of this simple model. of 
course. is acquisition and application of known or theoretical values for the parameters 
identified. Valid models of d' and beta (and thus an enriched theory) could be derived from 
empirically existing or experimentally produced ROCs. 

A straightforward application of the model is with regard to flight simulator sickness (a 

sUIlJrisingly prevalent phenomenon; see Cornum, Caldwell, & Ludwick, 1993; Fox & Arnon, 
1988; Jackson, 1994; .lones, 1984; Lindseth & Lindseth, 19(2). Perhaps as a pilot acquires very 
precise mastery of "his aircraft" through thousands of hours of practice, the number of perceptual 
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just noticeable differences Und ' s) he has acquired is very significantly greater than those of a 
novice. That is , even at an unconscious level, his perceptuomotor control system detects very 
small differences between the dynamics of "his aircraft" (let's call it the veridical) and those of a 
high-fidelity simulator. Such that during a simulated practice flight, he "mistakenly loads" the 
"veridical data base" associated with his F-140, because the simulator cockpit signals to do so. 
However, the simulator is just that; its dynamics are not quite the same as those of the veridical. 
Provocation is thus inspired at the level ofjnd mastery that our hypothetical, highly skilled pilot 
has achieved. Expectation does not meet reality. This would explain also why flying say a small 
single engine recreational aircraft on the weekend is less likely to cause motion sickness, because 
the "wrong data base" does not get invoked in the pilot's perceptuomotor control system. 

The model outlined presently would predict that simulator sickness susceptibility 
increases with experience rather than the reverse. Moreover, the model might help describe or 
understand delayed simulator sickness phenomena. It could well be that two dynamics data 
bases (the veridical and the simulated) are actually "compared" during the trace consolidation 
(which may include unconscious re-enactment) phase of skill acquisition (that is, after or even 
well after the simulation flight). Because they are dissimilar, provocation results. 
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