

Florida Water Resource Implementation Rule Chapter 62-40 FAC

- Requirements for stormwater management in Florida are outlined in Chapter 62-40.432
- FDEP is responsible for coordinating the statewide stormwater management program by establishing goals, objectives and guidance for the development and implementation of stormwater management programs by the Districts and local governments.
- The Districts shall be the chief administrators of the state stormwater management program. The Department shall implement the state's stormwater management program in Districts that do not have the economic and technical resources to implement a comprehensive surface water management program.

2

Florida Water Resource Implementation Rule Chapter 62-40 FAC – cont.

- Minimum Stormwater Treatment Performance Standards:
 - Achieve at least 80 percent reduction of the average annual load of pollutants that would cause or contribute to violations of state water quality standards.
 - Achieve at least 95 percent reduction of the average annual load of pollutants that would cause or contribute to violations of state water quality standards in Outstanding Florida Waters.
- FDEP provides guidance to Districts for treatment systems to meet these objectives

Florida Water Resource Implementation Rule Chapter 62-40 FAC - cont.

- Individual Districts develop specific design criteria for stormwater BMPs
 - · Every District has a different set of standards
 - Design criteria vary widely throughout the State
 - · Performance efficiencies also vary widely
- Rebuttable presumption that the discharge from such systems will comply with state water quality standards
- During the mid 2000s, FDEP began consideration of a Statewide Stormwater Rule to unify design criteria and effectiveness throughout the State
- Developed RFP for a study to evaluate current design standards and effectiveness

4

Study Objectives

- In 2006, FDEP issued a contract to ERD to evaluate current stormwater design criteria within Florida
- Performed as part of FDEP Agreement S0108, titled "Evaluation of Current Stormwater Design Criteria within the State of Florida"
- The Scope of Work included the following:
 - Determine if current stormwater design criteria meet the performance standards outlined in Ch. 62-40.432 FAC.
 - If design criteria fail to meet Ch. 62-40, then recommend changes to meet performance criteria
 - Also evaluated design criteria to achieve no net increase in post development loadings Analysis performed for nitrogen and phosphorus

 - If performance criteria are met for nitrogen and phosphorus, then they will be met for other significant pollutants (BOD, TSS, heavy metals, etc.) as well

5

Study Objectives - cont.

- Develop scientifically defensible and reproducible design methodologies
- · Use proven methodologies familiar to design engineers This work did not include:
 - Evaluation of alternative stormwater management techniques such as:
 - Low Impact Design (LID)
 - Stormwater Reuse
 - Street Sweeping
 - Pervious Pavement
 - Gross Pollutant Separators
 - Evaluation of wetland loadings

Eric Livingston, M.S. Watershed Management Services, LLC.

AKA: Godfather of Florida Stormwater

- 35 years at FDEP in Tallahassee
 - Helped develop, administer, and evolve Florida's
- stormwater management and treatment program. - Funded and managed hundreds of stormwater BMP projects
- Developed a 10 year LID BMP research and monitoring program in 1999
 - Results of these projects have been used to refine conventional
 - BMPs and create design criteria for LID BMPs
 - The updated designs are in the recently approved Pinellas County and Alachua County Stormwater Treatment Manuals.

8

Morning Session Topics

- 1. Rainfall Characteristics
- 2. Runoff Generation and Estimation
 - 3. Runoff Characteristics
- 4. Calculation of Runoff Loadings

Part 1

Rainfall Characteristics in Florida

10

Rainfall = Runoff + Infiltration

11

Rainfall Data

- Since rainfall drives the hydrologic cycle, the ERD study included an evaluation of rainfall characteristics throughout the State, including
 - Annual and event rainfall depths
 - Rainfall variability throughout Florida
 - Total annual rainfall
 - Variability in individual events
 - Inter-event dry periods
- Rainfall data included in the BMPTRAINS Model are based on the ERD study

- Obtained historical 1-hour rainfall data from the National Climatic Data Center (NCDC) for each available meteorological station – 45 of 111 Florida stations
 Data availability ranged from 25 – 59 years per site
- Grouped data into individual rain events
 Used 3 hour separation to define individual events
- Created historical data set of daily rain events over period of record for each site
- Developed annual frequency distribution of individual rain events for each monitoring site

Summary

- Rainfall in Florida is highly variable
 - Annual rainfall
 - Ranges from 38in/yr in Key West to 68 in/yr in Tallahassee and Pensacola Number of annual rain events
 - Ranges from 104 events/yr in Cross City to 158 events/yr in Miami Rain event depths
 - Most rain events in Florida are less than 0.5 inch
 - Approximately 84 94% are less than 1 inch
 - Inter-event dry period
 - Wet season 1.42 days (34 hrs.) 2.27 days (54 hrs.)
- Rainfall variability impacts runoff volumes and BMP efficiencies throughout the State

23

Runoff Volume Estimation

- Runoff generation is a function of a variety of factors, including:
 - Land use
 - Impervious surfaces
 - Soil types
 - Topography –
 - Basin slope
 - Depressional areas
 - Precipitation amount and event characteristics
- Runoff model must be capable of incorporating each of these factors
 - Many models are available that calculate runoff volumes
 - Soil Conservation Service (SCS)
 - ICPR Proprietary model
 - SWMM EPA Model
 Areal relationships
 - Area

Runoff coefficients (C values)

- Runoff coefficients reflect the proportion of rainfall that becomes runoff under specified conditions
- Tabular C values are used to size pipes using the Rational Formula:

 $\label{eq:Q} \begin{array}{l} Q = C \times i \times A \\ \mbox{Where: } C = \mbox{estimate of runoff proportion for a} \\ \mbox{design storm event (typically 10 yr)} \end{array}$

- Runoff coefficients are often improperly used for estimation of runoff volumes for non design storm conditions
- Tabular runoff coefficients were never intended to reflect
 estimates of annual rainfall/runoff relationships

25

.

Common Rational Formula Ru	unoff Coefficients
Area	Runoff Coefficient
Business (Downtown)	0.70 to 0.95
Business (Neighborhood)	0.50 to 0.70
Residential (Single-Family)	0.30 to 0.50
Residential (Multi-Units, Detached)	0.40 to 0.60
Residential (Suburban)	0.25 to 0.40
Apartment	0.50 to 0.70
Industrial (Light)	0.50 to 0.80
Industrial (Heavy)	0.60 to 0.90
Parks, Cemeteries	0.10 to 0.25
Playgrounds	0.20 to 0.35
Unimproved, Natural Areas	0.10 to 0.30
- Common C values reflect runoff potential under d - Rational runoff coefficients <u>do not</u> reflect the prop becomes runoff	esign storm event conditions ortion of annual rainfall which

26

Runoff Estimation

- Needed a runoff model for use in evaluating rainfall/runoff relationships for Harper methodology
 - Multiple models were evaluated
- Modeling was conducted using the SCS Curve Number (CN) methodology
 - Common method used by most civil engineers and proprietary models
 - Model used to calculate annual runoff coefficients (C values) for meteorological sites throughout Florida

SCS Curve Number Methodology

- SCS Curve Number (CN) methodology
 - Outlined in NRCS document TR-55 titled "Urban Hydrology for Small Watersheds"

TR-55

Urban Hydrology for Small Watersheds

- Common methodology used in many public and proprietary models
- Curve numbers (CN Values) are empirically derived values which predict runoff as a function of soil type and land cover
- Can be used to predict event specific runoff depths and volumes
- Runoff generation based on impervious area, soil types and land cover

28

29

Typical Curve Numbers (TR-55)						
Cover Type and Hydrologic Condition		Curve N	Number			
Cover Type and Trydrologic Condition	А	В	С	D		
Open space (lawns, parks, golf courses, cemeteries, etc.): Poor condition (grass cover < 50%) Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%)	68 49 39	79 69 61	86 79 74	89 84 80		
Impervious areas: Paved parking lots, roofs, driveways, etc. (excl. ROW) Streets and roads: Paved; curbs and storm sewer (excl. ROW) Paved; open ditches (including right-of-way) Gravel (including right-of-way) Dirt (including right-of-way).	98 98 83 76 72	98 98 89 85 82	98 98 92 89 87	98 98 93 91 89		
Pasture, grassland, or range: Poor condition Fair condition Good condition	68 49 39	79 69 61	86 79 74	89 84 80		
Brushbrush-weed-grass mixture: Poor Fair Good	48 35 30	67 56 48	77 70 65	83 77 73		
Woods: Poor Fair Good	45 36 30	66 60 55	77 73 70	83 79 77		

Typical Curve Numbers (TR-55)						
Cover Type and Hydrologic Condition	lmp.		Curve I	Number		
Cover Type and Trydrologic Condition	(%)	А	В	С	D	
Residential Lot size: 1/8 acre or less Lot size: 1/8 acre Lot size: 1/3 acre Lot size: 1/2 acre Lot size: 1/2 acre Lot size: 1/2 acre Lot size: 1/2 acre	65 38 30 25 20 12	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82	
Vater/wetlands	0	0	0	0	0	
General curve numbers for available for General CN values reflect the combined pervious and impervious areas	resider runoff p	ntial ar otentia	nd urba	an area e combi	as ined	
 Water areas are assigned a CN and C- precipitation and evaporation are appro annual cvcle 	value o ximate	ot zero ly equ	since al ove	r an		

Harper Methodology evaluates loadings on an average annual basis

31

Hydrologic Conditions

- In the SCS method, hydraulic conditions sub-sets within a Hydrologic Soil Group
- Defined as poor, fair, and good based on a combination factors that
 affect infiltration and runoff
 - density and canopy of vegetative areas
 - amount of year-round cover
 - amount of grass or close-seeded legumes
 - percent of residue cover on the land surface (good ≥ 20%)
 - degree of surface roughness.
- Poor condition
 - Factors impair infiltration and tend to increase runoff
- Fair condition
- Typical or average runoff conditions
- Good condition
 - Factors encourage average and better than average infiltration and tend to decrease runoff.

32

SCS Method of Calculating Runoff

- Estimation of runoff in the SCS Method is conducted using the following equations:
 - Soil storage is calculated using a weighted-average CN value for each combination of landuse and soil type

Runoff is then calculated using the following equation:

 $Q = \frac{(P_i - 0.2S)^2}{(Pi + 0.8S)}$

- However, the SCS Method can be subject to large errors due to averaging CN values
- To reduce this error, the Harper Methodology calculates separate runoff volumes for the DCIA and non-DCIA areas

- Harper Method calculates separate runoff volumes for the DCIA and . non-DCIA areas
- Definition of DCIA varies depending on the type of analysis .
 - Flood routing Major events
 - DCIA includes all impervious areas from which runoff discharges directly into the drainage system Also considered to be DCIA if runoff discharges as a concentrated shallow flow over pervious areas and then into the drainage system Ex. Shallow roadside swales . .

 - Often generously estimated to provide safety factor for design
 - Annual runoff estimation Common daily events
 - DCIA includes all impervious areas from which runoff discharges directly into the drainage system during small events Does not include swales .
 - .
 - . Generally results in a lower DCIA value than used for flood routing

Hydrologic Modeling

- Continuous simulation of runoff from a hypothetical 1 acre site using SCS curve number methodology and historical rainfall data set for 45 rainfall sites with hourly data
 - Data ranged from 13 64 years per site, but most contained 30+ years of data per site (mean of 4,685 events/site)

 - Data separated into individual events using 3 hour separation
- · Runoff modeled for all rain events at each site
 - Mean of 4,685 rain events/site
 - DCIA percentages from 0-100 in 5 unit intervals
 - Non-DCIA curve numbers from 25-95 in 5 unit intervals
- 350 combinations per rainfall site x 45 sites = 15,750 model runs Total generated runoff depth compared with rainfall depth for each site to calculate runoff coefficient:

Total Runoff Depth Over Simulation Period C Value = Total Rainfall Depth Over Simulation Period

40

41

Runoff Volume

- Runoff models calculate the runoff volume generated within the . modeled area
- .
- However, this does not represent the volume of runoff which may actually reach the ultimate receiving water body The delivery ratio (fraction of generated runoff which reaches the waterbody) varies widely Values can range from 0.0 1.0 .
- Delivery ratios are a function of:
 Watershed size
- Watershed size
 Large watersheds have smaller delivery ratios
 Depressional storage
 Large amount of depressional storage decreases delivery ratio
 Internal waterbodies
 Provides internal storage which reduces delivery ratio
 Few models incorporate the concept of delivery ratios
 Lack of consideration of delivery ratio combined with initial overestimation of runoff volume results in significant errors in runoff volume estimation

50

Urban Watershed Study							
Sub-Basin	Area (ac)	Delivery Ratio					
John Knox Road	80	0.453					
Franklin Blvd.	423	0.450					
Betton Road	333	0.545					
Dorset Way	458	0.272					
Mean	324	0.430					

53

Example Calculations

- 1. Land Use: 90 acres of single-family residential 5 acres of stormwater management systems 5 acres of preserved wetlands
- 2. Ground Cover/Soil Types
 - A. Residential areas will be covered with lawns in good condition B. Soil types in HSG D $\,$
- 3. Impervious/DCIA Areas
 - Residential areas will be 25% impervious, 75% of which will be DCIA
 Impervious Area = 25% of developed site = 90 ac x 0.25 = 22.50 acres
 DCIA Area = 22.50 acres x 0.75 = 16.88 acres
 - DCIA Percentage = (16.88 ac/90.0 ac) x 100 = 18.7% of developed area

4. Calculate composite non-DCIA curve number from TR-55:

Curve number for lawns in good condition in HSG D = 80

Areas of lawns = 90 acres total – 22.50 ac impervious area = 67.50 acres of pervious area

Impervious area which is not DCIA = 22.50 ac - 16.88 ac = 5.62 ac

Assume a curve number of 98 for impervious areas

Non-DCIA curve number = $\frac{67.50 \text{ ac } (80) + 5.62 \text{ ac } (98)}{67.50 \text{ ac } + 5.62 \text{ ac }} = 81.4$

55

Example Calculations - con't.

5. Calculate annual runoff volume for developed area

The proposed developed area for the project is 90 ac. Estimation of runoff volumes is not included for the 5-acre stormwater management area since runoff generated in these areas is incorporated into the performance efficiency estimates for the stormwater system.

 Pensacola (Zone 1) Project: The model calculates the annual runoff coefficient based on the meteorological zone and the hydrologic characteristics.

 $\label{eq:persacola} \mbox{Pensacola} = \mbox{Zone 1}, \ \ \mbox{DCIA} = 18.75\%, \ \mbox{and non-DCIA} \ \mbox{CN} = 81.4$

Annual C value = 0.304

The annual rainfall for Pensacola = 65.5 inches (From Isopleth Map)

Annual generated runoff volume = 90 ac x 65.5 in/yr x 1 ft/12 in x 0.304 = $\underline{149.3 \text{ ac-ft/yr}}$

56

Example Calculations - cont.

5. Calculate annual runoff volume for developed area - cont.

b. <u>Key West (Zone 3) Project:</u> The BMPTRAINS model calculates the annual runoff coefficient based on the meteorological zone and the hydrologic characteristics.

Key West = Zone 3, DCIA = 18.75%, and non-DCIA CN = 81.4

Annual C value = 0.266

Annual rainfall for Key West = 40.0 inches (From Isopleth Map)

Annual generated runoff volume = 90 ac x 40.0 in/yr x 1 ft/12 in x 0.266 = $\underline{79.8 \ ac-ft/yr}$

Summary

- Like rainfall, runoff in Florida is highly variable
 - Impervious area
 - Direct relationship between runoff and impervious percentage Non-DCIA CN value
 - Exponential relationship between CN value and runoff
 - · Characteristics of rain events
- Harper Method and BMPTRAINS Model calculate annual C value and runoff volume based on hydrologic and meteorological characteristics of the project site

58

59

Runoff Characteristics

- · Runoff concentrations are characterized by a high degree of
 - variability: From event to event During storm events
- Variability is caused by variations in:
 Rainfall Intensity
 Rainfall Frequency
 Soil Types
 Land Use
 Intensity of Land Use
 Weather Patterns
- Variability must be included in the monitoring protocol for runoff collection to determine annual emc values
- NPDES data should not be used since these data reflect runoff characteristics for specific rain event conditions NPDES data are useful for comparing different sites because the data are collected in a similar manner .

Runoff	Characteriza	tion Data Ava	ailability
Parameter Group	Species	Data Availability	Available Land Uses
Suspended Solids	TSS	Good	All
	Total N Total P	Good	All
Nutrients	NH ₃ NO _x TKN Ortho-P	Limited	Limited
Matala	Zinc Lead Copper	Fair to Good	Commercial Residential Highway
wetals	Cadmium Nickel Diss. Metals	Poor to Fair	Commercial Residential Highway

Deremeter		Dete	
Group	Species	Availability	Available Land Uses
Oxygen	Oxygen BOD Fa		Commercial, Residential, Highway
Demanding Substances	COD	Poor to Fair	Commercial, Residential, Highway
Oils, Greases	Oil and Grease TRPH	Poor	Commercial, Residential, Highway
Hydrocarbons	Specific Compounds	Extremely Poor	Commercial, Residential, Highway
	Total Coliform Fecal Coliform	Poor to Fair	Commercial, Residential, Highway
Pathogens	E. Coli	Extremely Poor	Commercial, Residential, Highway

Runoff Characteristics and Loadings

- · Runoff characteristics are used in many engineering analyses,

 - including: Pollutant loading analyses TMDL calculations Pre/post loading evaluations
- · Runoff concentrations are commonly expressed in terms of an event mean concentration (emc):
 - emc = _____
 - runoff volume
- An annual emc value is generally determined by evaluating event emc values over a range of rainfall depths and seasons Generally estimated based on field monitoring
 Usually requires a minimum of 7-10 events collected over a range of conditions
- · Annual mass loadings are calculated by:

Annual mass loading = annual runoff volume x annual emc

64

History of Florida emc Database

- The original database was developed by ERD in 1990 in support of the Tampa Bay SWIM Plan
 - A literature review was conducted to identify runoff emc values for single land use categories in Florida
 - Approximately 100 studies were identified .

 - Each study was evaluated for adequacy of the data, length of study, number of monitored events, completeness, and monitoring protocol Original selection criteria

 - Monitoring site included a single land use category most difficult criterion At least 1 year of data collection; minimum of 5 events monitored in a flow-weighted fashion
 - Wide range of rainfall depths and antecedent dry periods included in monitored events
 - · Seasonal variability included in monitored samples
 - · Approximately 40 studies were selected for inclusion in the data base
 - Values were summarized by general land use category .
 - First known compilation of emc data for Florida
 - Emc values calculated as simple arithmetic means

65

History of Database - cont.

- Based on the literature survey, common land use categories were developed based on similarities in anticipated runoff characteristics:
 - Pre-Development
 - Agriculture (pasture, citrus, row crops)
 - Open Space / Forests
 - MiningWetlands

 - Open Water / Lake
 - Post-Development
 - Low-Density Residential
 - Single-Family Residential
 - Multi-Family Residential Low-Intensity Commercial
 - High-Intensity Commercial
 - Industrial
 - Highway

Land Use Categories

- · Land use category descriptions:
 - Low Density Residential (LDR) rural residential with lot sizes >1 acre or less than one unit per acre

 - <u>Single Family Residential (SFR)</u> typical detached family home with lot <1 acre, includes duplexes in 1/3 to 1/2 acre lots, golf courses
 - <u>Multi-Family Residential (MFR)</u> residential units consisting of apartments, condominiums, and cluster-homes
 - Low Intensity Commercial (LIC) commercial areas with low traffic levels, cars parked for extended periods, includes schools, offices, and small shopping centers
 - <u>High Intensity Commercial (HIC)</u> commercial areas with high traffic volumes, includes downtown areas, malls, commercial offices
 - <u>Industrial (Ind.)</u> manufacturing, shipping and transportation services, municipal treatment plants
 - <u>Highway (HW)</u> major road systems and associated ROW, including interstate highways, major arteries
 - <u>Agriculture (Ag)</u> includes cattle, grazing, row crops, citrus, general ag.
 - <u>Recreation/Open Space</u> includes parks, ball fields, open space, barren
 land, does not include golf courses
 <u>Mining (M)</u> general mining activities such as sand, lime rock, gravel, etc.

67

Single Family Residential Runoff Characterization Data (n = 17)												
Lanation	Deference					Repor	ted EMC	(mg/l)				
LOCauon	Reference	TN TP BOD TSS Cd Cr Cu Fe Ni Pb Z								Zn		
Pompano Beach	Mattraw,et.al.,(1981)	2.00	0.310	7.9	26.0			0.008	0.298		0.167	0.086
Tampa-Charter St.	US EPA (1983)	2.31	0.400	13.0	33.0						0.490	0.053
Maitland (3 sites)	German (1983)	2.20	0.340	7.1	43.0			0.014	0.350	0.008	0.230	0.016
St. Pete-Bear Creek	Lopez,et.al. (1984)	1.50	0.200	4.7				0.009			0.128	0.083
Tampa-Kirby St.	Lopez,et.al. (1984)	2.20	0.250	4.5							0.050	
Tampa-St. Louis St.	Lopez,et.al. (1984)	3.00	0.450	6.1				0.016			0.213	0.133
Orlando-Duplex	Harper (1988)	4.62		9.5	63.2	0.005	0.015	0.033	0.464	0.020	0.058	0.089
Orlando-Essex Pointe	Harper (1988)	1.85	0.200	6.5	30.1	0.002	0.017	0.027	0.420	0.029	0.132	0.045
Palm Beach-Springhill	Greg,et.al. (1989)	1.18	0.307		3.5							
Tampa-102nd Ave.	Holtkamp (1998)	2.62	0.510	13.4	36.8			0.019			0.005	0.060
Bradfordville	ERD (2000)	1.30	0.280	2.7	57.1							
FI. Keys-Key Colony	ERD (2002)	1.20	0.281	2.0	26.9	0.002	0.003	0.010	0.067		0.001	0.020
Tallahassee- Woodgate	COT & ERD (2002)	1.29	0.505	15.0	76.0			0.007			0.007	0.039
Sarasota Co.	ERD (2004)	1.17	0.506	4.4	10.1							
Orlando-Krueger St.	ERD (2004)	3.99	0.182	17.1	41.8							
Orlando-Paseo St.	ERD (2004)	1.02	0.102	4.0	12.0							
Windemere	ERD (2007)	1.69	0.402		65.0							
Mean	Value	2.07	0.327	7.9	37.5	0.003	0.012	0.016	0.320	0.019	0.004	0.062
Mediar	1 Value	1.85	0.309	6.5	34.9	0.002	0.015	0.014	0.350	0.020	0.005	0.057
Log-Norm	nal Mean:	1.87	0.301	6.6	29.3	0.002	0.009	0.014	0.267	0.017	0.003	0.052
			not i	ncluded in	mean or i	nedian val	ue due to in ga	dramatic r soline	eductions	in lead from	m removal	of lead

		Reported EMC (mg/l)										
Location	Reference	TN	TP	BOD	TSS	Cd	Cr	Cu	Fe	Ni	Pb	Zn
Broward Co. (6 lane)	Mattraw,et.al.,(1981)	0.96	0.080	9.0	15.0	0.007		0.007	0.207		0.282	0.09
Miami I-95	McKenzie,et.al.(1983)	3.20	0.160		42.0	0.001	0.010	0.040			0.590	0.33
Maitland	German (1983)	1.30	0.240		27.0			0.012	0.350	0.009	0.092	0.05
Maitland I-4	Harper (1985)	1.40	0.170			0.003	0.004	0.038	0.341	0.003	0.163	0.07
Maitland Blvd.	Yousef,et.al.(1986)	1.40	0.170			0.002	0.004	0.039	0.354	0.004	0.181	0.07
I-4 EPCOT	Yousef,et.al.(1986)	3.16	0.420			0.002	0.003	0.024	0.205	0.003	0.026	0.02
Winter Park I-4	Harper (1988)	1.60	0.230	6.9	34.0	0.008	0.013	0.050	1.120	0.046	0.224	0.17
Orlando I-4	Harper (1988)	2.15	0.550	4.2	66.5	0.008	0.014	0.067	1.450	0.020	0.343	0.27
Bayside Bridge	Stoker (1996)	1.10	0.100		20.0	0.000	0.003	0.008	0.530	0.003	0.011	0.05
Tallahassee (6 lane)	ERD (2000)	1.10	0.166	1.9	70.6							
Orlando US 441	ERD (2007)	0.68	0.085	4.2	23.1							
Flamingo Dr. Collier, County	Johnson Eng. (2009)	0.94	0.060		18.5	0.0008	0.001	0.002	0.277	0.002	0.001	0.02
SR-80, Hendry County	Johnson Eng. (2009)	1.31	0.168		120	0.0003	0.001	0.011	1.235	0.004	0.008	0.15
Richard Rd, Lee Co.	Johnson Eng. (2006)	1.60	0.282		76.0	0.0003	0.002	0.010	1.244	0.001	0.007	0.13
US 41, Lee County	Johnson Eng. (2008)	0.82	0.120		39.0	0.0000	0.003	0.012	0.341	0.001	0.002	0.06
Mean	Value	1.515	0.200	5.2	46.0	0.003	0.005	0.025	0.638	0.009	0.006	0.11
Median	Value	1.310	0.168	4.2	36.5	0.001	0.003	0.012	0.352	0.003	0.007	0.07
Geometr	ic Mean	1.371	0.167	4.8	38.1	0.001	0.004	0.017	0.498	0.004	0.004	0.08

	Land Use	No. of Studies					
	Category	1994	2003	2007	2012		
1.	Low-Density Residential	0 - calc.1	0 - calc.1	0 - calc.1	0 - calc.		
2.	Single-Family Resid.	9	16	17	17		
3.	Multi-Family Residential	6	6	6	6		
4.	Low-Intensity Comm.	5	9	9	9		
5.	High-Intensity Comm.	3	4	4	4		
6.	Light Industrial	2	2	4	4		
7.	Highway	6	10	11	15		
8.	Agricultural a. Pasture b. Citrus c. Row Crops	3 7 7	3 7 8	3 7 8	4 7 8		
9.	Undeveloped/Rangeland/ Forest	4	3	4	33		
10.	Minina	1	1	1	1		

Land Use Category	2007 (m	Values g/l)	Revised Values	l (2012) (mg/l)]	Changes from
5,	Total N	Total P	Total N	Total P	1	2007 to 2012
Low Density Residential ¹	1.61	0.191	1.51	0.178	1	datasets:
Single Family	2.07	0.327	1.87	0.301	•	Central tende
Multi-Family	2.32	0.520	2.10	0.497	1	expressed as
Low Intensity Commercial	1.18	0.179	1.07	0.179	1	geometric (log
High Intensity Commercial	2.40	0.345	2.20	0.248	1	rather than
Light Industrial	1.20	0.260	1.19	0.213	1	arithmetic me
Highway	1.64	0.220	1.37	0.167	1.	Additional em
Agricultural					1	values added
Pasture	3.47	0.616	3.30	0.621	1	highway and
Citrus	2.24	0.183	2.07	0.152	1	natural areas
Row Crops	2.65	0.593	2.46	0.489	1	
Undeveloped/Rangeland/Forest	1.15	0.055	Natural Ar	ea Values	1	
Mining/Extractive	1.18	0.150	1.18	0.150	1	

Comparison of Typical Phosphorus Concentrations in Stormwater 0.7 3-10 fold for most land uses 0.6 (1/6 m) Conc. 0.4 Total Phosphorus 0.3 0.2 Typical natural irea cono 0.1 0.0 Pasture LD Res. SF Res. MF Res. LI Comm. HICom Industrial Highway Citrus tow Crops Mining 74

Impacts of Reuse Irrigation on Runoff Characteristics

- The chemical characteristics of reuse water are highly variable, depending on location and level of treatment
- Characteristics of secondary effluent minimum level of treatment
 - Nitrogen \sim 4-20 mg/l, mostly as NO_3^{-} and organic N (2-15 times higher than urban runoff)
 - Phosphorus ~ 2-15 mg/l (8-60 times higher than runoff)
 - On average, secondary reuse water is similar in characteristics to septic tank leachate
 - No requirement to measure nutrient levels, except NO_x
 - Approximately 2/3 of WWT plants in Florida provide secondary treatment

Impacts of Reuse Irrigation on Runoff Characteristics - cont.

- Characteristics of tertiary effluent adds nutrient removal
 - Nitrogen < 3 mg/l</p>
 - Phosphorus <1 mg/l</p>
 - · Tertiary reuse is similar in characteristics to HDR stormwater runoff
 - Approximately 1/3 of WWT plants in Florida provide tertiary treatment
- Impact assessments for reuse only give a cursory look at nutrient impacts
 - Most simply state that the presence of nutrients will increase the value of the water

76

Compa	arison of M with and	ean St I withou	ormwater (ut Reuse Ir	Characteris rigation (El	tics of Basin RD, 1994)	Areas
	Parameter	Units	Without Reuse ¹	With Reuse ¹	Enrichment By Reuse (%)	
	Alkalinity	mg/L	40.5	58.1	44	
	Ammonia	μg/L	87	537	520	
	NOx	μg/L	218	456	109	
	Total N	μg/L	1,526	2,355	54	
	SRP	μg/L	192	241	25	
	Total P	μg/L	376	569	51	
	BOD	mg/L	4.8	7.7	59	

1. Geometric mean values

Conclusion: Secondary reuse irrigation increases concentrations of nutrients by approximately 50%

77

Natural Area Monitoring Project

Objectives

- FDEP funded project to characterize runoff quality from common natural undeveloped upland vegetative communities in Florida
 Data to be used to support pre-development runoff quality for Statewide Stormwater Rule

Work Efforts

- Total of 33 automated monitoring sites established in 10 State parks throughout Florida
 Monitoring conducted over 14 month period from July 2007 August 2008 to include variety of seasonal conditions
- Total of 318 samples collected and analyzed for general parameters, nutrients, demand parameters, fecal coliform and heavy metals

Classification	Area (acres)	Percent of Total
Coastal Strand	15,008	0.1
Dry Prairie	1,227,697	11.4
Hardwood Hammock/Forest	980,612	9.1
Mixed Pine/Hardwood Forest	889,010	8.3
Pinelands	6,528,121	60.7
Sand Pine Scrub	194,135	1.8
Sandhill	761,359	7.1
Tropical Hardwood Hammock	15,390	0.1
Xeric Oak Scrub	146,823	1.4
Totals:	10,758,155	100.0

Natural	Land I	Jse Ru	noff Ch	naract	eristics

Land Type	N	Total N (µg/l)	Total P (µg/l)	lron (mg/l)	Fecal Coliform (cfu/100ml)
Dry Prairie	12	1,950	107	1.259 ¹	72
Hydric Hammock	17	1,072	26	0.537	43
Marl Prairie	3	603	10	0.162	83
Mesic Flatwoods	26	1,000	34	0.598	3631
Mixed Hardwood Forest	39	288	501	1.479 ¹	166
Ruderal/Upland Pine	2	1,318	347	3.311 ¹	17
Scrubby Flatwoods	17	1,023	27	0.741	295 ¹
Upland Hardwood	79	891	269	0.776	155
Upland Mixed Forest	16	676	2,291	0.437	372 ¹
Wet Flatwoods	77	1,175	15	0.347	117
Wet Prairie	9	776	9	0.069	68
Xeric Hammock	1	1,318	2,816	0.814	108
X : O I	2	1 1 5 8	96	0.060	15331

Natural Community Indices

- 1. Florida Vegetation and Land Cover (FFWCC) Reflects existing land cover based on aerial photography - both developed and natural areas
 - Original survey conducted in 1990s included:
 - 17 natural and semi-natural cover types
 - 4 land cover types reflecting disturbed land 1 water class
 - Survey updated in 2003 and included:

 - 26 natural and semi-natural cover types16 land cover types reflecting disturbed land
 - 1 water class
 - · Coverage maps are available for all of Florida

92

Natural Community Indices - cont.

- 2. Florida Natural Areas Inventory (FNAI) 2010
 - Developed by Florida Department of Natural Resources (DNR)
 - Reflects original, natural vegetation associations in Florida
 - Natural communities are characterized and defined by a combination of physiognomy, vegetation structure and composition, topography, land form, substrate, soil moisture condition, climate, and fire
 - Named for their most characteristic biological or physical feature Grouped into 6 Natural Community Categories with 13 Natural Community Groups and 66 sub-groups based on hydrology and vegetation
 - FNAI is system used by State Park system
 - Coverage maps are not available for all of Florida
 - This coverage index selected for natural area characterization study
 - http://fnai.org/PDF/AA_Short_Descriptions_Final_2010.pdf

Estimating Natural Area Loadings

 A wide variability was observed in nutrient concentrations from natural areas

Natural areas with deciduous vegetation were characterized by higher runoff concentrations

• After the community is identified, the annual mass loading is calculated by:

Annual Loading = emc conc. for community type x annual runoff volume

- To simplify calculations, the measured concentrations were converted to annual areal mass loadings based on the hydrologic characteristics of the sites
 - The resulting data fell into two distinct groups with a narrow range of values within each group

94

Florida Land Use	FLUCCS Code	Description
and Cover	1100	Residential, Low Density-Less than 2 du/acre
and Cover	1200	Residential, Medium Density-Two-five du/acre
Classification	1300	Residential, High Density
Svetem	1400	Commercial and Services
System	1700	Institutional
(FLUCCS)	1820	Golf Course
,	2110	Improved Pasture
 FLUCCS codes contain 	2120	Unimproved Pastures
too much detail and	2130	Woodland Pasture
use activities	2210	Citrus groves
	3100	Herbaceous Dry Prairie
 Insufficient data exist to 	3200	Shrub and Brushland
all ELLICCS codes	3300	Mixed Rangeland
	4110	Pine flatwoods
 FLUCCS codes can be 	4340	Hardwood Conifer Mixed
converted to the general	6120	Mangrove swamp
anticipated runoff	6170	Mixed wetland hardwoods
characteristics	6420	Saltwater marshes
	6460	Mixed scrub-shrub wetland
	7410	Rural land in transition w/o indicators of intended activity

95

	FLUCCS	
	Code	Description
Use of FLUCCS	1110	Fixed Single Family Units
Codos in	1290	Medium Density Under Construction
Codes III	1320	Mobile Home Units
Loading	1460	Oil and Gas Storage
Calculations	1530	Mineral Processing
Calculations	1562	Pre-stressed concrete plants
	1620	Sand and Gravel Pits
B 11	1730	Military
Problems:	1750	Governmental
D "	2610	Fallow cropland
- Runoff emc data are not	2320	Poultry feeding operations
available for all of the	2420	Sod farms
listed land use categories	2600	Other Open Lands – Rural
	2610	Fallow cropland
- FLUCCS codes call be	4280	Cabbage palm
converted to one of the	5250	Marshy Lakes
general categories based	6500	Non-vegetated Wetland
characteristics	8115	Grass Airports
Giaracteristics	8130	Bus and truck terminals
	8180	Auto parking facilities
	8330	Water supply plants

Summary

- Runoff emc values are available for a wide range of landuse categories in Florida
 - Urban land uses
 - Natural land uses
- · Estimation of annual runoff loadings requires
 - Estimation of annual runoff volume
 - · Runoff emc value which reflects runoff characteristics
- BMPTrains Model calculates loadings based on user input data for
 - Location
 - Annual rainfall
 - Project physical characteristics
 - Pre/post Land use and cover
 - Soil types CN values

97

98

Calculation of Runoff Loadings

- Pollutant loadings can be calculated using two methodologies:
 - Areal loading method (kg/ac-yr)
 - Very general approach that has minimal data requirements
 Assumes that the hydrologic characteristics for a given land category are the same
 - Subject to large errorsOnly for general loading comparisons
 - Concentration-based method
 - Requires information on runoff volumes and concentrations
 - More accurate approach
 - Method used in Harper Methodology and BMPTRAINS Model

Ann	Are ual Loading	eal Loadii = Areal Lo	ng Rate Meth ading Rate x	od Land Use Area
	Land Use	Area (acres)	Total P Loading Rate (kg/ac-yr	Total P Mass (kg/yr)
	Single Family	100	x 0.594	= 59.4
	Low Intensity Commercial	50	x 0.650	= 32.5
	Industrial	20	x 1.24	= 24.8
	Totals	170		116.7

Concentration-Based Method

Annual Loading = emc conc. x annual runoff volume

<u>Advantages</u>

Considers site-specific hydrologic characteristics

· More accurate than areal loading method

<u>Disadvantage</u>

· More difficult and time-consuming than areal loading method

101

Concentration-Based Method									
Annual Loading = Runoff Concentration x Annual Runoff Volume for Each Land Use									
	Land Use	Total P Conc. (mg/L)	Runoff Volume (ac-ft/yr)	Total P Mass (kg/yr)					
	Single Family	0.30	x 120	= 44.4					
	Low Intensity Commercial	0.15	x 160	= 29.6					
	Industrial	0.31	x 64	= 24.5					
	Totals		344	98.5					

Example Calculation

- 1. Land Use: 90 acres of single-family residential 5 acres of stormwater management systems 5 acres of preserved wetlands
- 2. Ground Cover/Soil Types
 - A. Residential areas will be covered with lawns in good condition B. Soil types in HSG D $\,$
- 3. Impervious/DCIA Areas
 - A. Residential areas will be 25% impervious, 75% of which is DCIA

Impervious Area = 25% of developed site = 90 ac x 0.25 = 22.50 acres

DCIA Area = 22.50 acres x 0.75 = 16.88 acres

% DCIA = (16.88 ac/90.0 ac) x 100 = $\underline{18.7\%}$ of developed area

104

Example Calculations - cont.

4. Post Development Annual Runoff Generation

The post development loading reflects the loading discharging to the stormwater management system from the watershed and does not include the area of the treatment system

The post development area is 90 acres. The wetland area is not included since it is the same under pre and post conditions

Project Area		Impervious Areas DO		AIA	Non- DCIA CN	Annual Rainfall	Annual	Runoff	
Location	(acres)	%	acres	acres	%	Value	(in)	C value	(ac-ivyr)
Pensacola	90	25	22.5	16.68	18.75	81.4	65.5	0.304	149.3
Orlando	90	25	22.5	16.68	18.75	81.4	50.0	0.253	94.8
Key West	90	25	22.5	16.68	18.75	81.4	40.0	0.266	79.8

Example Calculations – cont.
5. Generated Loading to Stormwater Pond:
Under post-development conditions, nutrient loadings will be generated from the 90-acre developed single-family area.
Stormwater management systems are not included in estimates of post- development loadings since incidental mass inputs of pollutants to these systems are included in the estimation of removal effectiveness.
Assume mean emc values for total nitrogen and total phosphorus in single-family residential runoff of:
<u>TN = 1.87 mg/l</u> <u>TP = 0.301 mg/l</u>

Example	e Calculation	<u>1S</u> – cont.	
5. Generated Loading to	Stormwater Pond	<u>l</u> :	
a. <u>Pensacola (Zone</u>	e 1) Project		
TN load from singl	le-family area:		
149.3 ac-ft x 43,560 ft ² x 7.48 gal yr x ac x ft ³	x 3.785 liter x 1.8 x gal x L	37 mg 1 kg ⊥iter 10 ⁶ mg	= <u>344 kg</u> <u>TN/yr</u>
TP load from si	ngle-family area:		
149.3 ac-ft x 43,560 ft ² x 7.48 gal yr ac ft ³	x 3.785 liter 0.3 x gal x	01 mg 1 kg liter 10 ⁶ mg	= 55.4 <u>kg TP/yr</u>
Location	TN Loading (kg/yr)	TP Loading (kg/yr)	
Pensacola	344	55.4	
Orlando	219	35.2	
Key West	184	29.6	

		Exa	amp	le Ca	alcul	ations	– cont.		
6.	Pre-Dev	velopm	nent F	Runoff	and M	Aass Load	dings:		
	- The pro (100 a	e-devel cres –	lopmer 5 acre	nt area s of pre	for cal serve	culating load d wetlands	adings is)	95 acres	
	- The na of 60% HSG D - From T HSG D	tural ve b mesic soils. R-55, t soils =	egetation flatwo the CN 79	on on ti oods an value	he are d 40% for wo	a to be dev wet flatwo oded areas	veloped (! bods in fa s in fair co	95 acres) ir conditio ondition or	consists n on n
Project Area		Imper Are	rvious eas	ous DC		Non-	Annual	Annual	Runoff
Location	(acres)	acres	%	acres	%	Value	(in)	C value	(ac-tt/yr)
Pensacola	95	0	0	0	0	79	65.5	0.154	79.9
Orlando	95	0	0	0	0	79	50.0	0.105	41.6
Key West	95	0	0	0	0	79	40.0	0.125	39.6
-									

	<u>E</u> 2	xample	e Calcu	lations	<u>-</u> cont.				
6.	Pre-Development Runoff and Mass Loadings – cont.								
	 Composite runoff concentrations should be calculated on a weigt basis based on annual runoff volumes 								
	- Since the Cl runoff volum	N values fo les are also	or the 2 lar o the same	nd covers : e	are the sa	me, the ar	nual		
	- Mean emc v developmen	alues for to t condition	otal nitrog s:	en and tot	al phospho	orus undei	r pre-		
	Land Cover	Percent Runoff emc Values			Weighted emc Values (mg/L)				
		(%)	Total N	Total P	Total N	Total P	1		
	Mesic flatwoods	60	1.000	0.034	1.070	0.026	1		
	Wet	40 1.175		0.015	1.070	0.026			

110

Example Calculations - cont.

7. <u>Calculate required removal efficiencies to achieve post- less than or equal to pre-loadings:</u>

Summary of pre- and post-loadings and required removal efficiencies

Project Location	Т	otal Nitrog	jen	Total Phosphorus			
	Pre- Load (kg/yr)	Post- Load (kg/yr)	Required Removal (%)	Pre- Load (kg/yr)	Post- Load (kg/yr)	Required Removal (%)	
Pensacola (Zone 1)	105.4	344	69.3	2.56	55.4	95.4	
Orlando (Zone 2)	54.9	219	74.9	1.33	35.2	96.2	
Key West (Zone 3)	52.3	184	71.6	1.27	29.6	95.7	

