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ABSTRACT 

Any ~tructural ana~sis which gives stresses and displacements for 

some predefined structure is governed by some physical domain of loading, 

geometry and boundary conditions. Let this domain be called the struc­

tures "problem space." 

-In app~ing finite element analysis, the solution to any one 

problem space may be one of many admissible solutions all of which 

satisfY some given set of boundary conditions. Admissibility is 

determined by the stated problem with its boundary conditions along 

with computer storage capacity considerations. Obtaining the most 

exact approximate solutions is of major concern to insure adequate 

results. This problem has been approached from a number of viewpoints 

C4-9J all of which employ some version of minimum potential energy 

C5, lOJ. This report is a study of current approaches to this problem 

and their effect on finite element grid optimizations. 

Selected optimizations C4-9J are shown to be effective in producing 

better solutions but it is noted that the ~mplementation of these optimi­

zations may be difficult. To survey the situation two fixed problem 

spaces of a tapered beam and a cantilever beam are chosen for investiga­

tion. 

Conclusions based on this study display that optimizations 

methods applied to a finite element model give an optimum space 

arrangement that is a function of the selected element geometry and 

displacement function. When changes in the element geometry are 
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introduced a new optimum results. Comparing test problem results 

leads to some speculation employing uniform strain energy as a better 

g ·de to "first guess" grid arrangement and a reconunendation for 

further investigation in this direction. 
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1. INTRODUCTION 

For any __ structure which is to be analyzed to obtain stresses and 

displacements there must exist some domain of definition for the 

structure. This domain of definition describes the geometry and 

loading conditions that the structure experiences. Let th~s domain 

of definition be called the structure's "problem space. n 

The finite element method in structural analysis allows a wide 

variety of element configurations for any one problem space. In order 

to provide a reasonable approximation the element divisions or grid 

should be relatively fine [1, 2J. The size of the problems finite 

element model can then be characterized by the number of elements 

in the model. The maximum size of any problem is lim.i ted to comp t er 

capacity. For problem spaces, grid refinements obtained by increasing 

the size of the model may make the model too large for the available 

computer. When this happens a typical practice is to increase t e 

number of elements in areas of high strain gradients while leav1n g 

law gradient areas coarse Cl-4J. This, too, may prove · impractica 

and the task reduces to one of finding the most effic·ent so utl fo 

a fixed number of elements or, plai ly, grid optimization. 

In the past the selection of refined grids was left to the 

finite element user who re ied heavily on his past experience and 

intuitive "feel" for the problem C4J. More recently the prob em of 

grid optimization through beoretical and analytical methods h b 

explored by a number of if er nt aut or C4-9J. 



2 
A variational approach developed by Turcke and McNeice C7J and 

the similar variational method of Carroll and Barker C5J use the 

minimization of potential energy with respect to a change in element 

length to determine an optimum grid. Oliveira C6J introduced the 

concept of isoenergetic lines as a criterion for optimum grid arrange-

ment. In each, however, as the optimi~ation formulation was solved 

a more distressing problem arose making implementation of the theory 

a sizable task. Turcke and McNeice C7J found their variational method · 

"intractable" for problems of two and three dimensional nodal variation ·. 

Oliveira. C6J states "It is fair to remark that the requirements of 

disposing of elements along the isoenergetic lines is not alw~s easy 

to . follow" and goes on to point out that " .•• isoenergetic lines are 

not known a priori." The residue convergence method employed by Carroll 

and Barker C5J appears to be the best defined and the most applicable 

to computer usage of those investigated but, as indicated by them, fine 

meshes m~ preclude the justification of the residue convergence tech-

nique due to economic considerations. 

With all the above in mind, a study to compare any of these 

possible methods, indeed, seems in order. The net result of such a 

study shall provide a tabulation of sample problems which will cross 

check the techniques used. More germane to tractable applications, 

this study is intended to shed some needed light on the subject of 

finite element grid optimization. 



2. DESCRIPTION OF SELECTED PROBLEM SPACES 

The criterion for selection of the problem space to use for this 

study is determined by the relative ease of application each space 

displays with respect to the optimization methods. Two such problem 

spaces are selected. A tapered bar with axial load and a cantilever 

beam with end load. Each display favorable traits to one or both 

optimization approaches. 

The tapered bar [Figure (l)J is easily modeled in six degree of 

freedom (6 DOF), constant strain, triangular elements. Analysis may 

then proceed with the aid of a linear displacement formulated finite 

element program ClJ. Isoenergetics for the tapered bar are particularly 

simple. 

Oliveira C6J demonstrates that a better approximate solution is 

obtained when the grid is arranged so the element nodes fall on lines 

of constant strain energy density (isoenergetics C6J). For any but 

the simplest of problems, ·these isoenergetic lines are generally non­

linear and require sophisticated element descriptions, such as iso­

parametric elements, to provide this desirable alignment. Interpreting 

isoenergetic lines to imply equipotential lines of constant strain 

energy density furnishes a lirut between the known exact solution and 

the-major .element divisions of the approximate solution. If the number 

of equipotential lines is set equal to the number of major element 

divisions desired in the· model the alignment of nodes and isoenergetics 

is simplified, 

3 



4 
The tapered bar with an applied axial load possesses straight 

isoenergetic lines normal to the axis of symmetry. This is one of the 

simple cases referenced above. By keeping the number of major element 

divisions small the tapered bar is also easily optimized by trial and 

error calculations on the approximate solution by making use of an 

existing p~~e stress finite element program ClJ. 

In adapting Oliveira's C6J isoenergetic concept to shells of 

revolution Sen C9J indicates that the element strain energy as opposed 

to str~n energy density should be monitored to isolate inflexibilities 

in the finite element grid. When the strain energy change from element 

to element is observed to be relatively uniform the grid arrangement is 

considered adequate. The tapered bar is a simple problem space for 

calculating strain energy by elements to allow this observation. 

By proper non-dimensionalization of the tapered bar analysis on 

the approximate solution, use can be made of a one-dimensional linear 

displacement bar model optimized variationally by Turcke and McNeice C7J. 

A comparison of optimum gird arrangements with respect to the type of 

element selected may then be made. 

The second problem space is selected to best utilize existing 

residual optimization techniques developed by Carroll and Barker C5J. 

A cantilever beam [Figure (2)J with an end load possesses simple 

characteristics which directly apply to the residue method and still 

has relatively simple isoenergetics. By using an eight degree of 

freedom (8 DOF) rectangular element to model the beam a suitable geometry 

is produced which is compatible with the residue method. A computer 

finite element program containing an iterative subroutine to optimize 

the rectangular element model by minimal residues is then useful. 

Carroll C5J has developed such a program which is used to make these 
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optimi za.tions. Since this same cantilever beam is of simple geometry 

it can also be easily modeled in 6 DOF triangular elements. A separate 

computer analysis on this triangular element configuration supplies an 

interesting comparison of the two models as shown in Figure (6). · 

As in the tapered bar, the cantilever beam lends itself to simple 

calculation of individual element strain energies. The concept of 

uniform strain energy for optimization purposes may then be applied 

with ease. 



3. EXACT SOLUTIONS AND ISOENERGETICS 

The strength of materials solutions to each of the two problem 

spaces are elementary and may be found in any basic strength of materials 

text such as Timoshenko Cl2J for solutions of displacements, stresses 

and strain energies. For the tapered bar the axial stress is given by 

ax = P/A(x) (3.1) 

where cr is the axial stress, Pis the axially applied load and A(x) 
X 

is the cross-sectional area of the bar as a function of x [Figure (l)J. 

The cantilever beam axial stress is given by 

a = (Fxy) /I 
X 

(3.2) 

where ox is th~ stress in the x direction (Figure (2)J, F is the applied 

shear end load and I is the cross-sectional area moment of inertia. 

The isoenergetics are calculated for each exact solution by 

employing an equipotential concept on the strain energy density function. 

For a linearly elastic, homogeneous, isotropic continuum in a plane 

stress formulation the strain energy density is given by ClOJ 

u = 1 [(o + o )2 - 2(1-v)(o a - a 
2

)J 2E X y X Y x:y 
(3.3) 

where u represents the strain energy density per unit volume, v ia 

Poisson's ratio and E is Young's modulus. If the geometry of each 

problem is selected such that the length of the beam or bar is large 

compared to the height and thickness of the cross-section the contri-

6 



7 
bution of cry and crxy to u in (3.3) is insignificant [12, 15J. It 

can be shown that (3.3) reduces further to 

with only a small error. 

Orien~inB cr with respect to the coordinates shown in Figure (1) 
X 

and Figure (2) gives 

(3.5) 

Oliveira C6J has shown it desirable to find the locus of points in the 

continuum for which u is equal to a constant. Referring to Figure (3) 

this m~ be stated in equation form as 

(3.6) 

Equation (3.6) m~ be generalized to 

~- un-l = C; n = 1,2, ... ,n (3.7) 

where C is a constant. From (3.4) and (3.5) then, an equation for 

crx(x,y) in terms of the strain energy density can be written as 

. ( ) 2 -Cox x,y J = 2Eu (3. 8) 

For the tapered bar shown in Figure (1) equation (3.8) is seen to be 

essentially invarient in y and for the cantilever beam in Figure (2 ) 

equation (3.8) holds as stated. By now using equations (3.1) and (3.2) 

for these two problem spaces [12, 15J and the geometric descriptions 

given in Figures (1) and Figure (2) it can be shown that a parametric 

form of (3.8) for the tapered beam is given by 
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~ = [(b-a) ~ + aJ-2 
T L (3 9} 

where ~T = 8iiEt 
2

. For the cantilever beam, a corollary of ( 3.9) i .s 
p2 

seen to be 

2 2 
~ = X y 
c (3 0 

where ¢' 
c By recalling (3.7) tne equipotential concept to t e 

tapered beam g1ves 

.= ~ (n)-~ (n-1) 
T T 

for n representing the number of major e eme , t dins as 

approximate solution. Similarly, by preselec g 

- ~c(n) at x = L, y = ~ [Figure 2J tbe corollary of (6 

lever beam is 

t (1)-~ (o) = ~ (2)- (1) = = t ( n)-~ ( - ) c c c c c c 

and n has the same definition gi e abo e 

Evaluating (3 9} for x0 = 0 and = L give 
n 

Equations (3.11) then represents a syste of ~ ~] ) e 

(n-1) unknowns which will yield x-posit · o -al es: di 

(3 12), on the other hand, represents a famil of hyper las 

3 

· e c ..~:. -

{3 2 } 

mey be plotted by ordered pai s n the p oblem pace one n as 

a value from the approximate solution 

In the approximate so t• ons al es of = 2. 
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tapered bar and n = 3 for the cantilever beam. Solving equation (3.11) 

then provides a possible location for the major element division to 

compare with the optimum approximate solution as shown in Figure (1). 

Equation (3.12) is plotted as a family of 3 hyperbolas on the cantilever 

beam in Figure (2 ) to observe possible similarities with its approximate. 

In order to use uniform strain energy as ·a criterion for optimum 

grid arrangement it becomes necessary to determine a set of xi's which 

satisfY the equation 

J udv 
v 

0 

= ! iidV = •.• = f udV. (3.14) 
vl vn 

For the tapered bar (3.14) can be shown to reduce to 

L 
= f 

X 
n-1 

(3.15) 

where ~T is given by (3.9) and suitable geometric relations from Figur e 

(2) are used to change the volume integrals into the definite integrals 

shown. For n = 2, (3.15) reduces to 

xl ~ L ! 
f C ~TJ dx = f C ct>TJ dx ( 3.16) 
0 x1 

which is directly solvable for x
1

. It can also be shown that for the 

cantilever beam with n = 3, (3.14) reduces to 

xl xl 2 x2 x2 L L 2 
Bf xdx + f X dx = Bf xdx + J x2dx = B! xdx + f xdx (3.17) 

0 0 xl xl x2 x2 

where B = 12(1 ~ v)h2/5 [Figure (2)J. Equation (3.17) represents two 

equations in two unknowns and can be solved directzy for x1 and x2 . 

These values, in turn, rna¥ then be compared to the approximate optimum 

grid arrangement. All of the comparisons mentioned above are made in 

a latter section of this report. 



4. FINITE ELEMENT APPROXIMATE SOLUTIONS 

The geometry of the tapered beam suggests use of the 6 DOF 

triangular element in the approximate solution as noted earlier. 

In order to contain the problem within reasonable bounds, two major 

element divisions are chosen [Figure (4)J. The line connecting nodes 

(2), (5) and .(7) is varied laterally in position from x =a to x = b 

[Figure (5)J and a computer analysis is made for each. The potential 

energy for the system is calculated by multiplying the tip deflection 

obtained from this analysis by minus one-half the applied load P. From 

the exact solution the exact potential energy is also obtained. A 

ratio of approximate to exact potential energy is then tabulated for 

each new position of x. The result of this tabulation is given in 

Figure (5). An optimum configuration is selected from this plot by 

the interpolated value of the potential energy ratio most near unity. 

Figure (5) shows this maximum ratio value to occur at (L-x1 )/L = .68 

along the ordinate. This same problem was investigated by Turcke 

and McNeice C7J as a one dimensional system using a 2 DOF linear 

displacement model. Their study produced an optimum division location 

at (L-x
1

)/L = .73 along the ordinate. By solving equation (3.11) for 

n = 2 the isoenergetic prediction places the major divis~on at 

(L-x
1

)/L = .9209 along the ordinate. From equation (3.16) a value 

of (L-x
1

)/L = .71 is obtained. All of these values are listed in 

Figures (5) and (7). 

The cantilever beam is modeled using rectangular elements as 
10 



11 
stated previously. The results of the computer calculated optimization 

are given in Figure (6) verses the exact solution in terms of potential 

energies ratios. The x. values obtained from the solution of (3.17) 
~ 

are listed in Figure (7) to compare with the approximate solutions 

mentioned above. Modeling the same beam in triangular elements elimin-

ates the possibility of using the residual subroutine which is designed 

to calculate optimums for rectangular element configurations only. 

Because of the selection of three major element divisions, the trial 

and error procedure used on the tapered beam is also impractical. 

Because of this attempts are not made in this fonnulation to actually 

optimize the beam but to ascertain if the optimum does occur at the 

same location as iri the rectangular formulation. Problem space arrange-

ments are selected around the rectangular element optimum and analyzed 

in the triangular element field by a method similar to Ward's Cl4J. 

A compilation of these calculations is shown in Figure (6). The value 

of n(APPROX.)/TI(EXACT) for the triangular element formulation is 

calculated using the x. 's found for the optimum rectangular formulation . 
~ 

Since a value of the energy ratio can be found which is larger than 

this value when a different set of x. 's are chosen it is concluded 
1 

that the optimum grid configurations do not have the same arrangement 

for the two formulations. 

The large reduction in the energy ratios observed by changing 

from the rectangular to the triangular elements is attributed to 

the models themselves, The 6 DOF linear strain triangular element 

gives a less flexible system than the 8 DOF rectangular elemento To 

equilibrate these ratios it becomes necessary to increase the number 

of element divisions in the triangular formulation which again destroys 

the desired similarities. 



5. CONCLUSIONS AND RECOMMENDATIONS 

By comparison of Figure (5) with the work done by Turcke and 
-. -

McNeice C3J on a one dimensional tapered beam it is seen that the 

optimums of the two formulations are at different major element 

divisions. Similarly the comparison of the rectangular optimum 

with the computations made on the triangular formulation of the canti-

lever beam are inconsistent. The results are compiled in tabular form 

in Figure (6) as energy ratios and non-dimensionalized measurements. 

Attempting to predict the optimum location of the major element 

divisions by isoenergetic lines on the exact solution is seen to fall 

short of the anticipated results. The nodal locations determined by . iso-

energetics in every instance are far different from those obtained from 

approximate solution optimizations [Figures ( 5), ( 6 ).J. Reviewing Figure 

(7) shows the values predetermined on the exact solution of the canti-

lever beam by uniform strain energy are in close agreement with the major 

element divisions found in the approximate solution. In addition, when 

the uniform strain energy derived x./L values are used as input, opposed 
~ 

to equidistant spacing, for the computer analysis of the approximate 

solution an iteration time saving is realized. For the cantilever beam 

described earlier up to thirty-five iterations are made in order to find 

the optimum. Upon inputing the uniform strain energy calculated xi 

values this time is reduced to five iterations. Enough similarity and 

usefulness is seen here to warrant comment and to recommend that 

further study possibly be directed toward investigation of this phenomenon. 
12 
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As evidenced by Flgures ( 1-8) it is apparent that the ideal 

optimization for each element configuration is a function of the 

type of element selected for the model. The problem space is held 

constant and, realistically, will contain one and only one ootimi-

zation, the exact solution. In each approximate space, however, the 

only variable is the element models. Yet, in each situation, a better 

solution is obtained from the optimized element model than from the 

evenly space element model. In turn, each of these ideal solutions 

satisfied the well accepted concept of stationary potential energy 

C7-11J indicating a true optimum for the model but still failing to 

agree totally with the exact soltuion. Since this is observed to be so, 

the type of element must effect the approximate solution and therefore 

should be considered in any scheme for idealization. 

Speculation in the area of isoenergetic lines seems to suggest 

field orientation as an important criterion for insuring the best 

idealization. Selecting an element that allows a g~neral orientation 

of the mesh of more or less "flow" in the direction of the isoenergetics, 

as in the triangular formulation of the cantilever beam shown in Figure 

(8), produces a better approximate solution than if the mesh were 

arranged overlooking this consideration. The development of an 

iterative subroutine for the computer program used here which would 

optimize this triangular arrangement is recommended for future investi-

gation. 
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BEAM TAPER EQUATION: y = +C(b-a) !. + aJ 
- L 

P = Applied Loa 

CROSS SECTION AREA: 

GEOMETRIC RATIOS: 

A(x) = 2ty 

b_6 a_l a_5 
a - 1 ' L - 4o ' t - 1 

RATIOS OF MAJOR ELEMENT DIVISIONS: 

Exact Isoenergetics Optimum(~), (L-x1)/L- .92 

Uniform Strain Energy 

Approximate Optimum From Trianguiar Formulation, 

Approximate of Turcke and McNeice C3J , 

(L-x )/L = .73 
I 

Figure (1) Tapered Beam De cr.iption 
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GEOMETRIC RATIOS: h = £ ~= 1 
L 10 ' h 2 

RATIOS OF MAJOR ELEMENT DIVISIONS: 

Exact Isoenergetics Optimum (~1 , c:>2 ), 

x1/L = .5774· , x
2

/L = .8165 

Uniform Strain Energy, 

F 

y 

Approximate Optimum From Rectangular Formulation 

x1/L = .6209 , x2/L = .8408 

ISOENERGETIC MAPPING: 

~ = x2y2 
c 

Figure (2) Cantilever Beam Description 

h 
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Nodes ( 3 ,6) 
§f-. Simple Support 

t- Fixed 

'----Major Division 

Tapered Beam General Grid Arrangement For 6 DOF Triangular 
Element. 

Nodes 
(3,7,11) 

Nodes 
(2,6,10) 

Nodes 
( 1 '5 ,9) 

Cantilever Beam General Grid Arrangement For 8 DOF Rectangular 
Element. 

--Major D~visions --

Nodes 
(4,8,12) 

Nod s 
(3,7,11) 

Nodes 
(2,6,10) 

Nodes 
( 1 '5 ,9) 

Cantilever Beam General Grid Arrangement For 6 DOF Triangular 
Element. 

Figure (4) Grid Arrangements For the Finite Element Analysis. 
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x~~~------------

IT( APPROX .. ) 
II( EXACI') 

y 

Uniform Strain Energy 

1.0---
____ ......_ __ 

.9 
Optimum 

I Turcke and McNeice 
~ C6J Optimum 

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

( L-x ) /L 
1 

ll(EXAcr) = -; Pu(EXAcr) , ll(APPROX.) = ~ Pu(APPROX.) 

Desire Solution For 

II (APPRO X. ) 
n(EXACT) 

~ Maximum 

7igure (5) Tapered Beam, Triangular Element Optimization. 
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.62L --~----~~ 

. 841L --------~ 

x1/L x2/L 

8 DOF 
REGrANGULAR .333 .667 

ELEMENT 
.577 . 816 

.621 .841 

6 DOF 
TRIANGULAR .600 .800 

ELEMENT 
.600 .841 

.600 .900 

.621 .800 
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Figure (6) tt(APPROX.)/II(EXACT) For the Cantilever Beam. 
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Energy Verses Approximate Optimums. 
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Figure (8) Comparison of Grid Orientation to Isdenergetics 
For the Cantilever Beam. 
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