
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1973

A Learning Machine for Job Sequencing in a General-purpose A Learning Machine for Job Sequencing in a General-purpose

Computer System Computer System

Richard Jon Taylor
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Taylor, Richard Jon, "A Learning Machine for Job Sequencing in a General-purpose Computer System"
(1973). Retrospective Theses and Dissertations. 79.
https://stars.library.ucf.edu/rtd/79

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/79?utm_source=stars.library.ucf.edu%2Frtd%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages

A LEARNING MACHINE FOR JOB SEQUENCING IN A
GENERAL-PURPOSE COMPUTER SYSTEM

BY

RICHARD JON TAYLOR
B.S., State University of New Y~rk at Albany , 1968

RESEARCH REPORT

Submitted in partial fulfillment o f the requirements
for the degree of Master o.f Science
in the Graduate Studies Program of

Florida Technological University, 1973

Orlando, Florida

..

131183

TABLE OF CONTENTS

INTRODUCTION . . ~ 1

I. BACKGROUND •• w ••••• . . . • • • • 3

II. GENERAL MODEL STRUCTURE • 4

III. GENERAL MODEL OPERATION .. • • .. • • • ~ • • 4l • • . 6

IV. DETAILED DISCUSSION OF MODEL STRUCTURE
AND OPERATION . . • • • • • . • . . • • • • 7

Job Queue Model
Resource Allocation Model
Processor Model
Adaptive Model

V. MODEL RATIONALE AND INTERPRETATION •

LIST OF REFERENCES • ·~•w•we••~e

iii

. •• 19

. " . "' v • a .24

LIST OF TABLES

Table
1. Possible AM inputs on completion of job i

•

. ...

iv

. . • •

Page
17

LIST OF ILLUSTRATIONS

Figure
1. Block diagram of system model •
2. Job class definition {t • • • • • • • 8 • • • 8

3. Example of divisions of processor storage • . . .
4. Distribution of actual run time for job i

Page
5

8

10

11

5. Matrix of decisionjinput conditional probabilities 16

v

INTRODUCTION

"It is neither impossible nor unreasonable to build
computers which are at l~ast 1000-fold and perhaps
10,000-fold or more, faster than the best machines in
design today."l

" ... a search of all the paths through the game of
checkers involves some 10 40 move choices, in chess, some
10 120 • If we organized all the particles in our galaxy
into some kind of parallel computer operating at the
frequency of hard cosmic rays, the latter computation
would still take impossibly long; we cannot expect
improvements in hardware alone to solve all our
problems !"2

Until the "supercomputers" become available for wide-

spread use, we may not know with any certainty whether speed

alone will. solve some of our problems in maintaining consis-

tently high computer system "throughput" and utilization a

Meanwhile, extensive work is being conducted in ·the

area of developing machines that~exhibit what could be con-

sidered to be intell~gent behavior ~

We will attempt in this report to show how some of the

principles of artificial intell~gence m~ght be applied to

computer system resource allocation in order to improve

system performanceQ

1Willis H. Ware, Limits in Computing Power, Rand
Corp. Paper P-4710 (Santa Monica, Calif: Rand Corp. 1 1971),
p. 18.

2Marvin Minsky, Computers and Thousht, ed. by Edward
A. Feigenbaum and Julian Feldman (New York: McGraw-H i ll Book
Company, 1963), p. 408.

1

The general type of computer system represented by

the model is a multiprogramming system that can execute

several jobs in its main storage concurrently.

W will att mpt to avo i d s orn of th gcrop l exi t i es of

modeling computer systems and focus on the resource alloca

tion and artificial intelligence aspects of the model.

2

I. BACKGROUND

Modeling of computer systems and performance eval

uation has become more difficult over the past several years

due to the increased complexity of the large machines now

available. However, some of the general approaches have been

studied. Work based on automata theory and theory of algo

rithms has been supported [3] while others have considered

actual system simulation problems [4] a

Several surveys of the years from the mid-1950's to

1971 are available that discuss developments and problems in

artificial intelligence [2,5,6] and the Soviet literature has

also been reviewed [7].

Much of the basic theory in pattern recognition and

artificial intelligence is covered by Nilsson [8,9].

3

II. GENERAL MODEL STRUCTURE

The system model i~ made up of four components: (1) a

job queue model, referred to as the JQM, (2) a resource allo

cation model, referred to as the RAM, (3) a processor model,

referred to as the PM, (4) an adaptive model, referred to as

the AM.

The job queue model is the source of jobs which the

system is to process. Specified numbers of jobs are generated

at various times during system operation. Processor storage

requirement and estimated run time are the defining param

eters of each job. The specification of these parameters in

the JQM is governed by a predefined , statistical distribution.

Allocation of processor storage is performed by the

RAM, or resource allocation model. The RAM examines j obs

generated by the JQM and selects those to be sent t o the

processor model. The alternative allocation algorithms in t he

RAM contain parameters which can be adjusted by the adaptive

model to improve system performance .

The processor model , or PM , simulates exe c u t i on o f

the jobs sent to it by the RAM Execution o f a j ob by t h e PM

is represented by processor storage u tilization and v ar i ation

in run time due to contention for system resources .

Learning and adaptive algorithms in the AM enable i t

to decide how it should alter the resource allocation model

4

in order to improve system performance according to a speci

fied criterion.

A block diagram of the system model with its four

components is shown in Figure 1.

~ I

JQM ~ RAM ~ PM ~ AM

Fig. 1--Block diagram of system model

5

III. GENERAL MODEL OPERATION

Time sequencing of events in the system model is

based on the operation of the system for a specified number

of hours.

At the beginning of each hour the JQM generates a

·group of jobs to be placed in the input queue. At the end of

each hour the adaptive model examines system performance and

alters the RAM if this performance is unacceptable.

Each minute of each hour the RAM examines the jobs in

the input queue and based on information concerning available

processor storage i t selects j obs that are s ent t o the PM.

Also at ·each minute the PM accepts jobs from the RAM, alters

the accepted jobs ~ run t imes accordi ng to a s tatistical dis

tribution, releases any job whos e execution is c omp l ete and

updates the state of currently available processor s t orage.

6

IV. DETAILED DISCUSSION OF MODEL STRUCTURE
AND OPERATION

Job Queue Model

The job queue model, or JQM, generates jobs that make

up the input to the system. At the beginning of each hour of

model operation a specified number of jobs is placed in the

input queue. That is, at hour k, ~ jobs are produced by the

JQM and made available to the RAM for possible execution in

the PM.

A job i is represented by tHe parameters c. and r.,
~ ~

where c. is the amount of processor storage required to exe
~

cute the job and r. is the estimated time the job will actu
~

ally occupy the system processor.

Particular values of c. and r. for each job generated
~ ~

by the JQM are determined by predefined job class and statis-

tical distributions. Job classes A, B, C, D, E and F are

defined by stor~ge and run time limits as shown in Figure 2 v

The average proportion of all jobs to be selected from each

class, represented by the quantities PA, PB ' PC, PDv PE and

PF, is specified. Proportions for the six classes must sum to

one. Within a particular class, the c. and r. for a job i
l. ~

chosen from that class are selected at random from a uniform

distribution over the acceptable storage and estimated run

time ranges for the class.

7

1.0

B
run
tim . 5
r.
~

A

0
50

D

-- -
c

150 250

storage c .
~

F

E

350

Fig. 2--Job class definition

All jobs in the input queue are eligible for selec-

tion by the resource allocation model for execution. The JQM

does not assign priorities or queue position to the jobs it

generates~

Resource Allocation Model

The RAM selects jobs from the input queue to be

entered into the system processor.

At each minute of model operation between zero and n

jobs, where n is the number of _jobs in the input queue, are

sent to the processor model. The decision on which jobs are

to be sent is based on available processor storage and a

resource allocation algorithm.

The mathematical model of allocation is in the form

of an integer programming maximization problem:

max
X.
~

n n n
w

1
E (c . /350)r.x. + w

2
E (-r.x.) + w3 E (-c./350)x.

. 1 ~ ~ ~ . 1 ~ ~ . 1 ~ ~
~= ~= ~=

a

n
subject to r (c./350)x. < (c /350)

. 1 ~ ~ a
~=

x. = 0 or 1, i=l, 2, ••• , n.
~

After the program ~s solved, the variable x. is zero if job i
~

is not to be run and one if the job is to be sent to the PM

for processing. Values of r. are between 0 and 1; c. is nor-
~ ~

malized by division by 350, the largest storage requirement

possible for a job. The constraint c , also normalized, is
a

the storage currently available in the processor as provided

by the PM.

The objective function of the allocation program -is

made up of three sets of terms. Each set represents an

approach toward allocation of processor storage. The surnrna
n

tion r (c./350)r.x., when maximized with respect to the x.,
. 1 ~ ~ ~ ~
~=

causes jobs with the largest c.r. values to be selected for
~ ~

n
r (-r.x.) over the x.

. 1 ~ ~ ~
~=

processing. Similarly, maximizing

results in selection of jobs with the shortest estimated run

times to be sent to the PM. When the third component of the
n

objective r (-c./350)x. is maximized with respect to the X;
. 1 ~ ~
~=

variables, jobs with the smallest storage requirements are

selected for execution.

The weights w
1

, w2 and w3 which multiply the objec

tive function components are nonnegative real numbers that

allow adjustment of the allocation algorithm by the adaptive

model.

When a job is selected by the RAM for processing, the

time d. that the job spent in the input queue is saved for
~

9

later use by the AM.

Processor Model

The processor model, or PM, receives jobs from the

RAM and simulates the utili~ation of storage by the . jobs for

a particular amount of run time.

At each minute of model operation the PM accepts jobs

from the RAM, alters run time for new jobs based on a statis-

tical distribution, deletes jobs that have completed their

run time in the processor and updates the state of currently

available processor storage c . A predefined maximum value of
a

c , c , is specified and represents the size of the system
a amax

processor ~

If three jobs with storage requirements c 11 c 2 and c 3

are in the processor the storage divisions can be represented

by the diagram in Figure 3~

current

processor
storage

c3

c2

cl

c a l available
(storage

~j ob 3

~j ob 2

f job l

Fig. 3--Example of divisions of processor storage

Note that c , the available storage in the processor
a

10

at a particular time, must be available for use by the

resource allocation model for its storage constraint.

The estimated run time r. can vary due to contention
l.

for system resources during processing in a computer system.

To represent this variatic)rl, the PM chooses an actual run

time at random from a statistical distribution with mean r.
l.

for job i. Figure 4 shows a normal (Gaussian) distribution

of the random variable p from which the actual run time pi

will be selected for job l..

f. (p)
l.

Fig. 4--Distribution of actua l run time for j ob i

The dispersion of the variable p about· the mean must

be specified for the random selection process. In order to

prevent extremely small or large values of pi from being

chosen from the distribution defined by f. (p), the variance
l.

must be such that only a negligible probability exists of the

p. being~ say, less than O.Sr. or greater than l.Sr .•
l. l. l.

For a random variable p that is normally distributed
' 2

with mean r. and variance a , we know that
].

P(r.-kcr< p <r.+kcr) = 2~(k)-1 ,
l. - - l.

where -~ k 2 1
~(k) = (2TI) J exp(-~p)dp.

-co

1Paul L. Meyer, Introductory Probability and Stat is
tical Applications (2d ed.; Reading, Massachusetts: Addi son
Wesley Publishing Company, 1970), pp. 186-187 .

11

In order to avoid selecting values of p. that differ
1

from the mean ri by more than O.Sri' we must specify the
2

variance a that will result from the expression above when

k is chosen such that 2~(k)-l is close to one, that is, when

k is such that the probability of p.<O.Sr. or p.>l.Sr. is
1 1 ~ 1

negligible.

When k=3.07, 2~(k)-l~0.9998, thus we must have kcr=

3.07cr<O.Sr. so we choose cr=O.Sr . /3.07 ~ 0.l63r ..
- 1 ~ 1

Therefore, to determine the actual run time of a job

i with estimated run timer., we select p. at random from a
• 1 1

2 2
normal distribution with mean r. and variance cr =(0.163r.) •

l 1

Once a job i has entered the processor ~ the PM

reduces c by c. and holds the job until p . units of time a 1 1

have passed. Then ci units of processor storage are freed,

that 1s, c is increased by an amount c .• The storage used a 1

c. and the estimated run time r. are sent to the adaptive
1 1

model as an indication of job completion.

Adaptive Model

The adaptive model, or AM, consists o f an adaptive

or learning algorithm which , based on data concern ing c om-

pleted jobs , adjusts the weights w1 , w2 and w3 in t h e RAM

The adjustments are based on comparison of actua l j ob pro-

cessing results with a predefined performance standard .

There are several possible approaches to the deter-

mination of the weight adjustments using techni ques developed

by researchers in the fields of pattern recognit i on and

12

artificial intelligence. In the application of these tech-

niques to the AM we consider two approaches: (1) an error-

correction algorithm based on training methods used in

pattern classification machines, (2) a reinforcement method

used in the training of learning machines to exhibit intel-

ligent behavior.

For each job i whose processing is completed by the

PM, the AM receives the storage requirement c. and the esti-
1.

mated run time r .. The RAM provides d. the time the job spent
1. 1.

waiting in the input queue after generation by the JQM. Any

decision made by the AM concerning changes in the RAM must be

based solely on these data.

In the case of the error-correction approach, the

important steps in the decision process are: (1) the deter-

mination of which jobs were not completed within the speci-

fied performance standard, (2) the selection of the adjust-

ments to be made to correct the condition causing unsatisfac-

tory performance.

Assume, for example,- that we demand for minimum

acceptable performance that d.<r. for all jobs , that i s, that
1.- 1.

the time di that job i spent waiting in the input queue mus t

be less than or equal to the job's estimated run time r. o
1.

Then if d.>r. for a job i we wish to have the RAM adjusted so
1. 1.

that for future jobs with similar c. and r . , the condition
1. 1.

d.<r. will be satisfied .
1.- 1.

In order to accomplish the necessary adjustments, the

error-correction algorithm must be guided by some heuristics

13

that are based on known relationships between the weights in

the RAM and performance of the system on jobs with certain

·general storage and estimated run time characteristics.

Four possible heuristics are: (1) if a job with short

run timer. and large storage c. had d.>r., increase the
l l l l

irifluence of the "short run time" allocation algorithm, (2)

if a job with large run time r . and small storage c. had
l l

d.>r., increase the influence of the "small storage" alloca
l l

tion algorithm, (3) if a job with large run time r. and large
l

storage c. had d.>r., increase the influence of the "storage
l l l

times run time" allocation algorithm, (4) if a job with short

run timer. and small storage c. had d.>r., increase the
l l l l

influence of the "short run time" and "small storage" alloca-

tion algorithms.

Since w1 is associated with the "storage times run

time" allocation scheme, w2 is associated with the "short run

time" allocation algorithm and w3 is the weight related to

the "small storage" allocation method, we can state several

rules for the error-correction algorithm in more symbolic

form. For a job with run time ri' storage ci' queue wait time

d. and d.>r., we have: (1) if (1-r.+c.)/2 is near 1, increase
l l l l l

w2 and decrease wl and w3, (2) if (1-r.+c.)/2 is near O,
l l

increase w3 and decrease w1 and w2 , (3) if (c.+r.)/2 is near
l l

1, increase w
1

and decrease w2 and w
3

, (4) if (c. +r.) /2 is
l l

near 0, increase w2 and w3 and decrease w1 •

Changes in a particular weight of the RAM objective

function will cause a particular allocation algorithm to have

14

more or less influence than t he other allocation s chemes on

which jobs are chosen from the input queue for processing .

Clearly the heuristics described must be more pre-

cisely defined in terms of exactly how the conditi ons that
. .

invoke a particular decision rule are satisfied and in terms

of exactly how increases or decreases in the we i ghts a re to

be implemented.

The principles of learning by reinforcement can also

be used to improve the ability of the AM to make effecti v e

decisions concerning changes in the RAM.

This approach involves evaluation of the d e cisions o f

the AM learning machine b y a t rai ner o f s ome s ort. I f the

deci sion resulted in an improvement wi th respect t o a stan-

dard of performance, the use of the decision wo~ld be

encouraged or positively reinforced Q Similarly ~ i f the deci-

sian resulted in a degradation of performance, use of the

decision would be discouraged or negatively reinforced .

Specifically, when an input gk to a learning machine

results in a decision a. by that machine and a . causes an
J J

improvement in performance of the system affecte d by t he

machine, the trainer will positively reinforce decision a . i n
J

response to input gko The reinforcement should be s uch that

the probability of the learning machine making deci s i on a. i n
J

response to the input gk is increased and the probabili ty of

decisions other than aj i n response to gk is decrea s ed . The

lea rning machine essentially chooses decis i ons bas ed on a

changing conditional distribut i on of the decis i ons over the

15

range of possible inputs.

Suppose PL(ajlgk) is the conditional probability that

the learning machine will choose decision a. in response to
J

gk as the Lth input. We can specify the set of these proba-

bilities as shown in Figure 5 for various combinations of

decision and input.

al

a2

• PL(aj lgk)
..

am

Fig. 5--Matrix of decision l input
conditional probabilities

On each occurrence of an input, the trainer computes

the elements of the (L+l)th conditional probability matrix

from the Lth matrix elements . If gk was not the Lth i nput ,

then PL+l(aj lgk)=PL(ajlgk) for all j. If gk was the Lth input

and decision aj was made in response to the gk , the trainer

can either positively or negatively reinforce the dec i sion .

If the decision was correct and positive reinforcement is

called for, PL+l(aj lgk)=8PL(ajlgk)+(l-8) for 0 <8< 1 and

PL+l(ai lgk)=8PL(ai lgk) for 0<8<1 and i~j . I f the deci sion was

incorrect negative reinforcement can be applied b y s etting

PL+l(ajlgk)=8PL(aj lgk) for 0<8 <1 and PL+l(ail gk)= 8PL (ail gk)+

(1-8) for 0<8<1 and i~j.

In the context of the AM, assume that several

16

17

possible decisions can be made by the learning machine: (1)

increase w2 , decrease w1 and w3 , (2) increase w3 , decrease w
1

and w2 , (3) increase w1 , decrease w2 and w3 , (4) i ncrease w
2

and w3 , decrease w1 , (5) do not change w1 , w2 or w
3

. Let

these decisions be a 1 , a 2 , a
3

, a 4 and a
5

•

Possible inputs to the AM learning machine upon com-

pletion of job i are shown in Table lu

input c. c. r. r. d.
l. l. l. l. l.

minimum maximum minimum maximum condition
gl 50 200 0 • 5 d. <r.

l.- l.

g2 50 200 0 .5 d. >r.
l. .l.

g3 50 200 .5 1 d. <r.
l.- l.

g4 50 200 .5 1 d. >r.
l. l.

g5 200 350 0 • 5 d. <r .
l.- l.

g6 200 350 0 • 5 d. >r .
l. l.

g7 200 350 .5 1 d. <r .
l.- l.

ga 200 350 • 5 1 d. >r.
l. l.

Table 1--Possible AM inputs on completion of job i

Based on the heuristics discussed earlierv the train-

er should positively reinforce (1) a 5 in response to g 1 , g 3 ,

g 5 , g
7

, (2) a 4 in response to g
2

, (3) a 2 in response to g 4 ,

(4) a
1

in response to g
6

, (5) a
3

in response to g
8

• The

trainer should negatively reinforce all other combinations

of decisions and inputs~

Consider the example of positive reinforcement of the

choice of decision a 1 in response to g 6 • The input g 6 repre

sents unacceptable performance of the system (d.>r.) on a job
l. l.

with large storage requirement and short estimated run time.

The heuristic to be applied here is to increase the influence

of the "short run time" allocation algorithm in the RAM by

increasing w
2

; . this can be accomplished by choice of aecision

al.

The acti ons of the trainer in the example above are

based on the heuristics defined previ ously v The learn i ng

machine is dependent on the trainer to reinforce i t ; i f

changes occur in the distribution of the inputs the tra i ner

must cause changes in the PL(ajlgk) probabilities so that the

machine can adapt to the new input environment.

18

V. MODEL RATIONALE AND INTERPRETATION

The emphasis in the development of the system model

has been on the learning machine and adaptive resource allo

cation aspects. Simplifications have been made ' in the JQM

and PM to avoid some of the usual complications associated

with computer job queue and processor modeling.

The job queue model defines jobs in classes according

to storage and estimated run time values. This is not an

unusual approach in real computer system operations, however

more complex class definitions are possible and may be more

efficient. For example, a .third class definitiQn parameter

might be the number of input/output devices required by the

job. Additional terms and constraints in the RAM and changes

in the PM and AM could be implemented to accomodate this

three-parameter job class scheme. Essentially this definition

would add complexity to the system model but is not likely to

require changes in the underlying learning or adaptive prin

ciples.

The assumption in the JQM of a uniform distribution

of jobs within a job class allows specification of a fairly

small set of heuristics to aid the learning machine decision

making process. This is probably an unrealistic assumption as

compared with actual job storage and estimated run time dis

tributions ' for real computer system operations.

19

The processor could include such complications as

input/output device contention, priority schemes, more

realistic run time variations, queuing effects, storage

partitioning or virtual stoEage. In our development of the

system model we have regarded the PM as a "black box" that

introduces a delay or acceleration into the passage of a job

from the RAM to the AM& In other words, a job may be ended

by the PM and sent to the AM before another job that was

begun earlier is completed due to the variation in run time.

This reordering of the jobs received in a particular sequence

by the processor is common in any multiprogramming computer

system.

The parameter c . . a max
, the size of the system processor,

has a significant effect on the RAM constraint. Study of the

result of variations in this size would be important in any

evaluation of the system model.

The objective function of~ the integer program in the

resource allocation model can be interpreted as a learning

machine discriminant function. 1 A 2n-dimensional space is

defined by the c. and r. parameters for each of the n jobs in
~ ~

the input queue. If in the expression

n n n
F = w1 E (c./350)r.x. + w2 E (-r.x.) ·+ w3 E (-c./350)x .,

'1 ~ ~~ 'l ~~ 'l l. ~
~= l.= ~=

we regard the xi and w1 , w2 , w3 as parameters , the expression

1Nils J. Nilsson, Learning Machine~ (New York , New
York: McGraw-Hill Book Company, 1965), pp. 6-8 w

20

can be described as a linear combination of linear and

second-order terms in the c. and r .. If n is 2 we can write
~ ~

F = (w1x1/350)c1r 1 + (w1x 2/350)c2r 2 + (-w2x 1)r1 +

(-w2x 2)r2 + (-w 3x1/35~~:1 + (-w3x 2/350)c 2 .

21

Thus, F contains some hyperbolic and some linear terms which,

depending on the weights and the parameters x., can be
~

regarded to partition the 2n-dimensional space of c. and r.
~ ~

variables into two subspaces separated by a combination of

hyperboloid and hyperplane surfaces.

The separating hypersurface defined by the objective

function is altered during the solution of the integer pro-

gram by testing of alternative feasible x. solution sets ,
~

which causes certain terms of the linear combination to be

included or deleted depending on whether x. is ·o or 1 for the
~

terms. Note that the constraint of the program is a hyper-

plane in the 2n-dimensional c., r . space.
~ ~

One of the two subspaces separated by the objective

function hypersurface contains jobs to be executed when the

optimum feasible x. have been determined.
~

There are many alternatives to the error-correction

and reinforcement learning approaches suggested for the adap-

tive model. Heuristic programming and problem-solving methods

in artificial intelligence seem to be receiving a large

amount of support and attention. 1 However 1 since any model

1Edward A. Feigenbaum, Artificial Intelligence: Themes
in the Second Decade, Stanford University Report AI-67 (Stan
ford, Calif: Stanford University, 1968), pp. 5-18.

of a computer system that attempts to reflect "real world"

conditions will probably contain at least one statistical

element, these popular techniques may not be applicable in

th uo of rtifio1 l int lligance to improve computer system

performance.

In the heuristic programming and problem-solving

approaches a representation is required that defines the

problem space over which the search for a solution is con-

ducted. This representation problem is sometimes a difficult

one and poor problem representation can lead to extremely

. ff. . t h. 1 lne lClen searc lng.

When a statistically defined process (which may be

based on empirical data) is involved as in computer system

modeling, it is not clear that an adequate representation can

be defined that will allow application of search methods.

Uncertainty as to how to specify the parameters of the sta-

tistical processes may make any representation such as a

search graph difficult to construct and verify .

Both approaches suggested for the AM learning algo-

rithm essentially involve feedback to the resource allocation

model. Due to the statistical processes represented by the

JQM and PM, the AM may be receivi~g inputs· that have signif

icant fluctuations. It might be useful to include some type

of preprocessor in the AM so that instead of altering the ~~

1Edward A. Feigenbaum, Ibid., pp . 27~31.

22

based on system performance for each job, it would respond to

some "average" performance for a group of jobs.

2 3

LIST OF REFERENCES

1. Willis H. Ware, Limits in Computing Power. Rand Corp.
Paper P-4710. Santa Monica, Calif: Rand Corp., 1971.

2. Edward A. Feigenbaum and Julian Feldman,eds., Computers
and Thought. New York: McGraw-Hill Book Company , 1963.

3. Richard A. Arnold, et al., Mathematical Models of Informa
tion Systems. USAF Rome Air Development Center Report
RADC-TR-66-37. Griffiss Air Force Base, New York:
Rome Air Development Center, 1966 ~

4. Georges. Fishman and Philip J . Kiviat, Digita l Computer
Simulation: Statistical Considerations . Rand Corp Q
Memorandum RM-5387-PR. Santa Monica, Calif: Rand
Corp., 1967.

5. Edward A. Feigenbaum, Artificial Intelligence: Themes in
the Second Decade. Stanford Univ . Report AI-67 G
Stanford, Calif: Stanford Univ. , 1968 • .

6. Peter E. Hart and Richard 0. Duda, Survey of Artificial
Intelligence. Menlo Park, Calif: Stanford Research
Institute, 1971. . .

7. Aerospace Technology Division, Library of Congress , Learn
ing, Self-Learning, and Pattern Recognition. Library
of Congress Report ATD 67-64. Washington , D.C.:
Library of Congress , 1969 .

B. Nils J. Nilsson,Learning Machines. New York: McGraw-Hill
Book Company, 1965*

9. Nils J. Nilsson,Problem-Solving Methods in Artificial
Intelligence. New York: McGraw-Hill Book Company,
1971.

lO.Paul L. Meyer,Introductory Probability and Statistical
Applications. 2d ed. Reading, Massachusetts: Addison
Wesley Publishing Company , 1970 Q

24

	A Learning Machine for Job Sequencing in a General-purpose Computer System
	STARS Citation

	TITLE PAGE
	i

	TABLE OF CONTENTS
	iii

	LIST OF TABLES
	iv

	LIST OF ILLUSTRATIONS
	v

	INTRODUCTION
	001
	002

	CHAPTER I
	003

	CHAPTER II
	004
	005

	CHAPTER III
	006

	CHAPTER IV
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018

	CHAPTER V
	019
	020
	021
	022
	023

	LIST OF REFERENCES
	024

