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INTRODUCTION 

"It is neither impossible nor unreasonable to build 
computers which are at l~ast 1000-fold and perhaps 
10,000-fold or more, faster than the best machines in 
design today."l 

" ... a search of all the paths through the game of 
checkers involves some 10 40 move choices, in chess, some 
10 120 • If we organized all the particles in our galaxy 
into some kind of parallel computer operating at the 
frequency of hard cosmic rays, the latter computation 
would still take impossibly long; we cannot expect 
improvements in hardware alone to solve all our 
problems !"2 

Until the "supercomputers" become available for wide-

spread use, we may not know with any certainty whether speed 

alone will. solve some of our problems in maintaining consis-

tently high computer system "throughput" and utilization a 

Meanwhile, extensive work is being conducted in ·the 

area of developing machines that~exhibit what could be con-

sidered to be intell~gent behavior ~ 

We will attempt in this report to show how some of the 

principles of artificial intell~gence m~ght be applied to 

computer system resource allocation in order to improve 

system performanceQ 

1Willis H. Ware, Limits in Computing Power, Rand 
Corp. Paper P-4710 (Santa Monica, Calif: Rand Corp. 1 1971), 
p. 18. 

2Marvin Minsky, Computers and Thousht, ed. by Edward 
A. Feigenbaum and Julian Feldman (New York: McGraw-H i ll Book 
Company, 1963), p. 408. 
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The general type of computer system represented by 

the model is a multiprogramming system that can execute 

several jobs in its main storage concurrently. 

W will att mpt to avo i d s orn of th gcrop l exi t i es of 

modeling computer systems and focus on the resource alloca

tion and artificial intelligence aspects of the model. 
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I. BACKGROUND 

Modeling of computer systems and performance eval

uation has become more difficult over the past several years 

due to the increased complexity of the large machines now 

available. However, some of the general approaches have been 

studied. Work based on automata theory and theory of algo

rithms has been supported [3] while others have considered 

actual system simulation problems [4] a 

Several surveys of the years from the mid-1950's to 

1971 are available that discuss developments and problems in 

artificial intelligence [2,5,6] and the Soviet literature has 

also been reviewed [7]. 

Much of the basic theory in pattern recognition and 

artificial intelligence is covered by Nilsson [8,9]. 
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II. GENERAL MODEL STRUCTURE 

The system model i~ made up of four components: (1) a 

job queue model, referred to as the JQM, (2) a resource allo

cation model, referred to as the RAM, (3) a processor model, 

referred to as the PM, (4) an adaptive model, referred to as 

the AM. 

The job queue model is the source of jobs which the 

system is to process. Specified numbers of jobs are generated 

at various times during system operation. Processor storage 

requirement and estimated run time are the defining param

eters of each job. The specification of these parameters in 

the JQM is governed by a predefined , statistical distribution. 

Allocation of processor storage is performed by the 

RAM, or resource allocation model. The RAM examines j obs 

generated by the JQM and selects those to be sent t o the 

processor model. The alternative allocation algorithms in t he 

RAM contain parameters which can be adjusted by the adaptive 

model to improve system performance . 

The processor model , or PM , simulates exe c u t i on o f 

the jobs sent to it by the RAM Execution o f a j ob by t h e PM 

is represented by processor storage u tilization and v ar i ation 

in run time due to contention for system resources . 

Learning and adaptive algorithms in the AM enable i t 

to decide how it should alter the resource allocation model 
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in order to improve system performance according to a speci

fied criterion. 

A block diagram of the system model with its four 

components is shown in Figure 1. 

~ I 

JQM ~ RAM ~ PM ~ AM 

Fig. 1--Block diagram of system model 
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III. GENERAL MODEL OPERATION 

Time sequencing of events in the system model is 

based on the operation of the system for a specified number 

of hours. 

At the beginning of each hour the JQM generates a 

·group of jobs to be placed in the input queue. At the end of 

each hour the adaptive model examines system performance and 

alters the RAM if this performance is unacceptable. 

Each minute of each hour the RAM examines the jobs in 

the input queue and based on information concerning available 

processor storage i t selects j obs that are s ent t o the PM. 

Also at ·each minute the PM accepts jobs from the RAM, alters 

the accepted jobs ~ run t imes accordi ng to a s tatistical dis

tribution, releases any job whos e execution is c omp l ete and 

updates the state of currently available processor s t orage. 
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IV. DETAILED DISCUSSION OF MODEL STRUCTURE 
AND OPERATION 

Job Queue Model 

The job queue model, or JQM, generates jobs that make 

up the input to the system. At the beginning of each hour of 

model operation a specified number of jobs is placed in the 

input queue. That is, at hour k, ~ jobs are produced by the 

JQM and made available to the RAM for possible execution in 

the PM. 

A job i is represented by tHe parameters c. and r., 
~ ~ 

where c. is the amount of processor storage required to exe
~ 

cute the job and r. is the estimated time the job will actu
~ 

ally occupy the system processor. 

Particular values of c. and r. for each job generated 
~ ~ 

by the JQM are determined by predefined job class and statis-

tical distributions. Job classes A, B, C, D, E and F are 

defined by stor~ge and run time limits as shown in Figure 2 v 

The average proportion of all jobs to be selected from each 

class, represented by the quantities PA, PB ' PC, PDv PE and 

PF, is specified. Proportions for the six classes must sum to 

one. Within a particular class, the c. and r. for a job i 
l. ~ 

chosen from that class are selected at random from a uniform 

distribution over the acceptable storage and estimated run 

time ranges for the class. 

7 



1.0 

B 
run 
tim . 5 
r. 
~ 

A 

0 
50 

D 

-- -
c 

150 250 

storage c . 
~ 

F 

E 

350 

Fig. 2--Job class definition 

All jobs in the input queue are eligible for selec-

tion by the resource allocation model for execution. The JQM 

does not assign priorities or queue position to the jobs it 

generates~ 

Resource Allocation Model 

The RAM selects jobs from the input queue to be 

entered into the system processor. 

At each minute of model operation between zero and n 

jobs, where n is the number of _jobs in the input queue, are 

sent to the processor model. The decision on which jobs are 

to be sent is based on available processor storage and a 

resource allocation algorithm. 

The mathematical model of allocation is in the form 

of an integer programming maximization problem: 

max 
X. 
~ 

n n n 
w

1 
E (c . /350)r.x. + w

2 
E (-r.x.) + w3 E (-c./350)x. 

. 1 ~ ~ ~ . 1 ~ ~ . 1 ~ ~ 
~= ~= ~= 

a 



n 
subject to r (c./350)x. < (c /350) 

. 1 ~ ~ a 
~= 

x. = 0 or 1, i=l, 2, ••• , n. 
~ 

After the program ~s solved, the variable x. is zero if job i 
~ 

is not to be run and one if the job is to be sent to the PM 

for processing. Values of r. are between 0 and 1; c. is nor-
~ ~ 

malized by division by 350, the largest storage requirement 

possible for a job. The constraint c , also normalized, is 
a 

the storage currently available in the processor as provided 

by the PM. 

The objective function of the allocation program -is 

made up of three sets of terms. Each set represents an 

approach toward allocation of processor storage. The surnrna
n 

tion r (c./350)r.x., when maximized with respect to the x., 
. 1 ~ ~ ~ ~ 
~= 

causes jobs with the largest c.r. values to be selected for 
~ ~ 

n 
r (-r.x.) over the x. 

. 1 ~ ~ ~ 
~= 

processing. Similarly, maximizing 

results in selection of jobs with the shortest estimated run 

times to be sent to the PM. When the third component of the 
n 

objective r (-c./350)x. is maximized with respect to the X; 
. 1 ~ ~ .... 
~= 

variables, jobs with the smallest storage requirements are 

selected for execution. 

The weights w
1

, w2 and w3 which multiply the objec

tive function components are nonnegative real numbers that 

allow adjustment of the allocation algorithm by the adaptive 

model. 

When a job is selected by the RAM for processing, the 

time d. that the job spent in the input queue is saved for 
~ 
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later use by the AM. 

Processor Model 

The processor model, or PM, receives jobs from the 

RAM and simulates the utili~ation of storage by the . jobs for 

a particular amount of run time. 

At each minute of model operation the PM accepts jobs 

from the RAM, alters run time for new jobs based on a statis-

tical distribution, deletes jobs that have completed their 

run time in the processor and updates the state of currently 

available processor storage c . A predefined maximum value of 
a 

c , c , is specified and represents the size of the system 
a amax 

processor ~ 

If three jobs with storage requirements c 11 c 2 and c 3 

are in the processor the storage divisions can be represented 

by the diagram in Figure 3~ 

current 

processor 
storage 

c3 

c2 

cl 

c a l available 
( storage 

~j ob 3 

~j ob 2 

f job l 

Fig. 3--Example of divisions of processor storage 

Note that c , the available storage in the processor 
a 
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at a particular time, must be available for use by the 

resource allocation model for its storage constraint. 

The estimated run time r. can vary due to contention 
l. 

for system resources during processing in a computer system. 

To represent this variatic)rl, the PM chooses an actual run 

time at random from a statistical distribution with mean r. 
l. 

for job i. Figure 4 shows a normal (Gaussian) distribution 

of the random variable p from which the actual run time pi 

will be selected for job l.. 

f. (p) 
l. 

Fig. 4--Distribution of actua l run time for j ob i 

The dispersion of the variable p about· the mean must 

be specified for the random selection process. In order to 

prevent extremely small or large values of pi from being 

chosen from the distribution defined by f. (p), the variance 
l. 

must be such that only a negligible probability exists of the 

p. being~ say, less than O.Sr. or greater than l.Sr .• 
l. l. l. 

For a random variable p that is normally distributed 
' 2 

with mean r. and variance a , we know that 
]. 

P(r.-kcr< p <r.+kcr) = 2~(k)-1 , 
l. - - l. 

where -~ k 2 1 
~(k) = (2TI) J exp(-~p )dp. 

-co 

1Paul L. Meyer, Introductory Probability and Stat is
tical Applications (2d ed.; Reading, Massachusetts: Addi son
Wesley Publishing Company, 1970), pp. 186-187 . 
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In order to avoid selecting values of p. that differ 
1 

from the mean ri by more than O.Sri' we must specify the 
2 

variance a that will result from the expression above when 

k is chosen such that 2~(k)-l is close to one, that is, when 

k is such that the probability of p.<O.Sr. or p.>l.Sr. is 
1 1 ~ 1 

negligible. 

When k=3.07, 2~(k)-l~0.9998, thus we must have kcr= 

3.07cr<O.Sr. so we choose cr=O.Sr . /3.07 ~ 0.l63r .. 
- 1 ~ 1 

Therefore, to determine the actual run time of a job 

i with estimated run timer., we select p. at random from a 
• 1 1 

2 2 
normal distribution with mean r. and variance cr =(0.163r.) • 

l 1 

Once a job i has entered the processor ~ the PM 

reduces c by c. and holds the job until p . units of time a 1 1 

have passed. Then ci units of processor storage are freed, 

that 1s, c is increased by an amount c .• The storage used a 1 

c. and the estimated run time r. are sent to the adaptive 
1 1 

model as an indication of job completion. 

Adaptive Model 

The adaptive model, or AM, consists o f an adaptive 

or learning algorithm which , based on data concern ing c om-

pleted jobs , adjusts the weights w1 , w2 and w3 in t h e RAM 

The adjustments are based on comparison of actua l j ob pro-

cessing results with a predefined performance standard . 

There are several possible approaches to the deter-

mination of the weight adjustments using techni ques developed 

by researchers in the fields of pattern recognit i on and 
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artificial intelligence. In the application of these tech-

niques to the AM we consider two approaches: (1) an error-

correction algorithm based on training methods used in 

pattern classification machines, (2) a reinforcement method 

used in the training of learning machines to exhibit intel-

ligent behavior. 

For each job i whose processing is completed by the 

PM, the AM receives the storage requirement c. and the esti-
1. 

mated run time r .. The RAM provides d. the time the job spent 
1. 1. 

waiting in the input queue after generation by the JQM. Any 

decision made by the AM concerning changes in the RAM must be 

based solely on these data. 

In the case of the error-correction approach, the 

important steps in the decision process are: (1) the deter-

mination of which jobs were not completed within the speci-

fied performance standard, (2) the selection of the adjust-

ments to be made to correct the condition causing unsatisfac-

tory performance. 

Assume, for example,- that we demand for minimum 

acceptable performance that d.<r. for all jobs , that i s, that 
1.- 1. 

the time di that job i spent waiting in the input queue mus t 

be less than or equal to the job's estimated run time r. o 
1. 

Then if d.>r. for a job i we wish to have the RAM adjusted so 
1. 1. 

that for future jobs with similar c. and r . , the condition 
1. 1. 

d.<r. will be satisfied . 
1.- 1. 

In order to accomplish the necessary adjustments, the 

error-correction algorithm must be guided by some heuristics 

13 



that are based on known relationships between the weights in 

the RAM and performance of the system on jobs with certain 

·general storage and estimated run time characteristics. 

Four possible heuristics are: (1) if a job with short 

run timer. and large storage c. had d.>r., increase the 
l l l l 

irifluence of the "short run time" allocation algorithm, (2) 

if a job with large run time r . and small storage c. had 
l l 

d.>r., increase the influence of the "small storage" alloca
l l 

tion algorithm, (3) if a job with large run time r. and large 
l 

storage c. had d.>r., increase the influence of the "storage 
l l l 

times run time" allocation algorithm, (4) if a job with short 

run timer. and small storage c. had d.>r., increase the 
l l l l 

influence of the "short run time" and "small storage" alloca-

tion algorithms. 

Since w1 is associated with the "storage times run 

time" allocation scheme, w2 is associated with the "short run 

time" allocation algorithm and w3 is the weight related to 

the "small storage" allocation method, we can state several 

rules for the error-correction algorithm in more symbolic 

form. For a job with run time ri' storage ci' queue wait time 

d. and d.>r., we have: (1) if (1-r.+c.)/2 is near 1, increase 
l l l l l 

w2 and decrease wl and w3, ( 2) if (1-r.+c. )/2 is near O, 
l l 

increase w3 and decrease w1 and w2 , (3) if (c.+r. )/2 is near 
l l 

1, increase w
1 

and decrease w2 and w
3

, (4) if (c. +r.) /2 is 
l l 

near 0, increase w2 and w3 and decrease w1 • 

Changes in a particular weight of the RAM objective 

function will cause a particular allocation algorithm to have 

14 



more or less influence than t he other allocation s chemes on 

which jobs are chosen from the input queue for processing . 

Clearly the heuristics described must be more pre-

cisely defined in terms of exactly how the conditi ons that 
. . 

invoke a particular decision rule are satisfied and in terms 

of exactly how increases or decreases in the we i ghts a re to 

be implemented. 

The principles of learning by reinforcement can also 

be used to improve the ability of the AM to make effecti v e 

decisions concerning changes in the RAM. 

This approach involves evaluation of the d e cisions o f 

the AM learning machine b y a t rai ner o f s ome s ort. I f the 

deci sion resulted in an improvement wi th respect t o a stan-

dard of performance, the use of the decision wo~ld be 

encouraged or positively reinforced Q Similarly ~ i f the deci-

sian resulted in a degradation of performance, use of the 

decision would be discouraged or negatively reinforced . 

Specifically, when an input gk to a learning machine 

results in a decision a. by that machine and a . causes an 
J J 

improvement in performance of the system affecte d by t he 

machine, the trainer will positively reinforce decision a . i n 
J 

response to input gko The reinforcement should be s uch that 

the probability of the learning machine making deci s i on a. i n 
J 

response to the input gk is increased and the probabili ty of 

decisions other than aj i n response to gk is decrea s ed . The 

lea rning machine essentially chooses decis i ons bas ed on a 

changing conditional distribut i on of the decis i ons over the 

15 



range of possible inputs. 

Suppose PL(ajlgk) is the conditional probability that 

the learning machine will choose decision a. in response to 
J 

gk as the Lth input. We can specify the set of these proba-

bilities as shown in Figure 5 for various combinations of 

decision and input. 

al 

a2 

• PL(aj lgk) 
.. 

am 

Fig. 5--Matrix of decision l input 
conditional probabilities 

On each occurrence of an input, the trainer computes 

the elements of the (L+l)th conditional probability matrix 

from the Lth matrix elements . If gk was not the Lth i nput , 

then PL+l(aj lgk)=PL(ajlgk) for all j. If gk was the Lth input 

and decision aj was made in response to the gk , the trainer 

can either positively or negatively reinforce the dec i sion . 

If the decision was correct and positive reinforcement is 

called for, PL+l(aj lgk)=8PL(ajlgk)+(l-8) for 0 <8< 1 and 

PL+l(ai lgk)=8PL(ai lgk) for 0<8<1 and i~j . I f the deci sion was 

incorrect negative reinforcement can be applied b y s etting 

PL+l(ajlgk)=8PL(aj lgk) for 0<8 <1 and PL+l(ail gk)= 8PL (ail gk)+ 

(1-8) for 0<8<1 and i~j. 

In the context of the AM, assume that several 
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possible decisions can be made by the learning machine: (1) 

increase w2 , decrease w1 and w3 , (2) increase w3 , decrease w
1 

and w2 , (3) increase w1 , decrease w2 and w3 , (4) i ncrease w
2 

and w3 , decrease w1 , (5) do not change w1 , w2 or w
3

. Let 

these decisions be a 1 , a 2 , a
3

, a 4 and a
5

• 

Possible inputs to the AM learning machine upon com-

pletion of job i are shown in Table lu 

input c. c. r. r. d. 
l. l. l. l. l. 

minimum maximum minimum maximum condition 
gl 50 200 0 • 5 d. <r. 

l.- l. 

g2 50 200 0 .5 d. >r. 
l. .l. 

g3 50 200 .5 1 d. <r. 
l.- l. 

g4 50 200 .5 1 d. >r. 
l. l. 

g5 200 350 0 • 5 d. <r . 
l.- l. 

g6 200 350 0 • 5 d. >r . 
l. l. 

g7 200 350 .5 1 d. <r . 
l.- l. 

ga 200 350 • 5 1 d. >r. 
l. l. 

Table 1--Possible AM inputs on completion of job i 

Based on the heuristics discussed earlierv the train-

er should positively reinforce (1) a 5 in response to g 1 , g 3 , 

g 5 , g
7

, (2) a 4 in response to g
2

, (3) a 2 in response to g 4 , 

(4) a
1 

in response to g
6

, (5) a
3 

in response to g
8

• The 

trainer should negatively reinforce all other combinations 

of decisions and inputs~ 

Consider the example of positive reinforcement of the 

choice of decision a 1 in response to g 6 • The input g 6 repre

sents unacceptable performance of the system (d.>r.) on a job 
l. l. 



with large storage requirement and short estimated run time. 

The heuristic to be applied here is to increase the influence 

of the "short run time" allocation algorithm in the RAM by 

increasing w
2

; . this can be accomplished by choice of aecision 

al. 

The acti ons of the trainer in the example above are 

based on the heuristics defined previ ously v The learn i ng 

machine is dependent on the trainer to reinforce i t ; i f 

changes occur in the distribution of the inputs the tra i ner 

must cause changes in the PL(ajlgk) probabilities so that the 

machine can adapt to the new input environment. 
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V. MODEL RATIONALE AND INTERPRETATION 

The emphasis in the development of the system model 

has been on the learning machine and adaptive resource allo

cation aspects. Simplifications have been made ' in the JQM 

and PM to avoid some of the usual complications associated 

with computer job queue and processor modeling. 

The job queue model defines jobs in classes according 

to storage and estimated run time values. This is not an 

unusual approach in real computer system operations, however 

more complex class definitions are possible and may be more 

efficient. For example, a .third class definitiQn parameter 

might be the number of input/output devices required by the 

job. Additional terms and constraints in the RAM and changes 

in the PM and AM could be implemented to accomodate this 

three-parameter job class scheme. Essentially this definition 

would add complexity to the system model but is not likely to 

require changes in the underlying learning or adaptive prin

ciples. 

The assumption in the JQM of a uniform distribution 

of jobs within a job class allows specification of a fairly 

small set of heuristics to aid the learning machine decision

making process. This is probably an unrealistic assumption as 

compared with actual job storage and estimated run time dis

tributions ' for real computer system operations. 
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The processor could include such complications as 

input/output device contention, priority schemes, more 

realistic run time variations, queuing effects, storage 

partitioning or virtual stoEage. In our development of the 

system model we have regarded the PM as a "black box" that 

introduces a delay or acceleration into the passage of a job 

from the RAM to the AM& In other words, a job may be ended 

by the PM and sent to the AM before another job that was 

begun earlier is completed due to the variation in run time. 

This reordering of the jobs received in a particular sequence 

by the processor is common in any multiprogramming computer 

system. 

The parameter c . . a max 
, the size of the system processor, 

has a significant effect on the RAM constraint. Study of the 

result of variations in this size would be important in any 

evaluation of the system model. 

The objective function of~ the integer program in the 

resource allocation model can be interpreted as a learning 

machine discriminant function. 1 A 2n-dimensional space is 

defined by the c. and r. parameters for each of the n jobs in 
~ ~ 

the input queue. If in the expression 

n n n 
F = w1 E (c./350)r.x. + w2 E (-r.x.) ·+ w3 E (-c./350)x ., 

'1 ~ ~~ 'l ~~ 'l l. ~ 
~= l.= ~= 

we regard the xi and w1 , w2 , w3 as parameters , the expression 

1Nils J. Nilsson, Learning Machine~ (New York , New 
York: McGraw-Hill Book Company, 1965), pp. 6-8 w 
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can be described as a linear combination of linear and 

second-order terms in the c. and r .. If n is 2 we can write 
~ ~ 

F = (w1x1/350)c1r 1 + (w1x 2/350)c2r 2 + (-w2x 1 )r1 + 

(-w2x 2)r2 + (-w 3x1/35~~:1 + (-w3x 2/350)c 2 . 

21 

Thus, F contains some hyperbolic and some linear terms which, 

depending on the weights and the parameters x., can be 
~ 

regarded to partition the 2n-dimensional space of c. and r. 
~ ~ 

variables into two subspaces separated by a combination of 

hyperboloid and hyperplane surfaces. 

The separating hypersurface defined by the objective 

function is altered during the solution of the integer pro-

gram by testing of alternative feasible x. solution sets , 
~ 

which causes certain terms of the linear combination to be 

included or deleted depending on whether x. is ·o or 1 for the 
~ 

terms. Note that the constraint of the program is a hyper-

plane in the 2n-dimensional c., r . space. 
~ ~ 

One of the two subspaces separated by the objective 

function hypersurface contains jobs to be executed when the 

optimum feasible x. have been determined. 
~ 

There are many alternatives to the error-correction 

and reinforcement learning approaches suggested for the adap-

tive model. Heuristic programming and problem-solving methods 

in artificial intelligence seem to be receiving a large 

amount of support and attention. 1 However 1 since any model 

1Edward A. Feigenbaum, Artificial Intelligence: Themes 
in the Second Decade, Stanford University Report AI-67 (Stan
ford, Calif: Stanford University, 1968), pp. 5-18. 



of a computer system that attempts to reflect "real world" 

conditions will probably contain at least one statistical 

element, these popular techniques may not be applicable in 

th uo of rtifio1 l int lligance to improve computer system 

performance. 

In the heuristic programming and problem-solving 

approaches a representation is required that defines the 

problem space over which the search for a solution is con-

ducted. This representation problem is sometimes a difficult 

one and poor problem representation can lead to extremely 

. ff. . t h. 1 lne lClen searc lng. 

When a statistically defined process (which may be 

based on empirical data) is involved as in computer system 

modeling, it is not clear that an adequate representation can 

be defined that will allow application of search methods. 

Uncertainty as to how to specify the parameters of the sta-

tistical processes may make any representation such as a 

search graph difficult to construct and verify . 

Both approaches suggested for the AM learning algo-

rithm essentially involve feedback to the resource allocation 

model. Due to the statistical processes represented by the 

JQM and PM, the AM may be receivi~g inputs· that have signif

icant fluctuations. It might be useful to include some type 

of preprocessor in the AM so that instead of altering the ~~ 

1Edward A. Feigenbaum, Ibid., pp . 27~31. 
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based on system performance for each job, it would respond to 

some "average" performance for a group of jobs. 

2 3 
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