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ABSTRACT 
 

The intent of this thesis is to investigate student approaches to linearity within a linear 

algebra context, focusing on definitional, computational, and theoretical skills. Linear algebra’s 

abstract nature constitutes a major challenge for a significant sector of STEM students, with the 

course often serving as undergraduates’ first encounter with mathematical proofs and 

extrapolations. The current student struggle is reflected through the prominent gap in knowledge 

derived from a lack of a concrete understanding of rudimentary concepts (like linearity), pivotal 

to student success. As such, this investigation aimed to bridge this gap by considering students’ 

modes of thinking regarding the elementary notion of linearity to improve the current course 

delivery and curriculum. Students were given three assessment questions targeting different 

skills integral to the mastery of linearity. Their responses were categorized using Action, Process, 

Object, Schema (APOS) and analyzed through Sierpinska’s (2000) proposed modes of thinking. 

About 26% of the participants responded correctly to question 1, 77% to question 2, and 59% to 

question 3. The analytic mode proved pivotal, specifically when considering definition 

application and computational abilities. The synthetic-geometric mode, however, was integral to 

the practical application of the concept. Further discussion and suggestions regarding the results 

and their implications on the current structure of linear algebra instruction are provided.  
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CHAPTER ONE: INTRODUCTION 

Linear algebra holds a pivotal role within the realms of scientific study and innovation. 

Through its efficacious nature in a multitude of domains, linear algebra is of significance even to 

non-mathematics students, serving as a prerequisite in several academic paths, including 

undergraduate engineering, physics, computer science, chemistry, biology, statistics, and the like 

(Pearlmutter & Šmigoc, 2018). However, while linear algebra constitutes an important milestone 

within a plethora of fields, the subject itself is challenging, posing an obstacle for most students. 

Literature investigating the learning and teaching of linear algebra structures offers several 

theories to explain the student struggle and elaborates upon the gap in student understanding. 

Research highlighting the student experience with the course identified that the abstract and 

theoretical nature of the material was a prime factor hindering student progress (Çelik, 2015).  

Dorier et al. (2000) coined the term formalism obstacle to describe this phenomenon. The 

formalism obstacle poses an obstruction to one's understanding derived from a grappling attempt 

to grasp a multitude of new concepts, theorems, and notations simultaneously (Dorier et al., 

2000; Çelik, 2015). Additionally, students limited (if any) prior knowledge and experience with 

linear algebra concepts (vector spaces, basis, linearity, span, dimension, etc.) feeds into the 

obstacle of formality and setback student comprehension (Dorier et al., 2000; Çelik, 2015). 

Notably, the lack of experience and knowledge in writing proofs, along with inadequate and 

incomplete ideas of mathematical logic are key factors impacting student learning in linear 

algebra (Britton & Henderson, 2009; Dorier et al., 2000; Çelik, 2015). Linear algebra often 

serves as students’ first encounter with rigorous mathematical procedures and proofs, requiring 

students to deliberate concepts not only in specific, calculation-based encounters (e.g., computing 
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the product of two matrices) but also in a general manner (e.g., considering if a set of vectors V is 

a vector space). Consequently, students are frequently required to extrapolate and rationalize 

advanced abstractions while still struggling to master rudimentary concepts (Dorier et al., 2000; 

Çelik, 2015). Dubinsky (1997) notes that when navigating higher-level mathematics education, 

an epistemological and thorough analysis of the fundamental structures that undergraduate 

students deem conceptually challenging, is of merit; particularly, defining the methods by which 

students reason and explain linear algebra concepts (Dubinsky, 1997; Çelik, 2015). Therefore, 

the pedagogical structures implemented should foster a learning environment that encourages the 

conceptualization of the prime concepts of linear algebra. Hence, to resolve the current gap in 

knowledge, an emphasis on the elemental, introductory notions must be placed prior to the 

integration of more advanced materials.  

One such concept is that of linearity and linear transformations, the backbone of linear 

algebra. Linear transformations are unique functions that foster an additive and homogeneous 

structure. The useful qualities of a linear map transcend the realms of theoretical mathematics 

and posit real-world applications; most notably, they are used in machine learning algorithms and 

are implemented in the study of metric and kernel learning (Jain et al., 2012). An investigation of 

the student approach to the concept of linearity within a linear algebra context is therefore 

proposed. 

The purpose of this research—keeping the objective of correcting the gap of knowledge in 

mind—is to understand what impact students’ thinking modes and approach have on their 

comprehension and retention of linearity within a linear algebra context. The established paths 

towards answering this question are detailed in this investigation. The structures implemented for 

the purposes of this research are paved with an Action, Process, Object, Schema (APOS) 
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outlook; an analysis of students’ operations and thought processes within this context is pivotal to 

improving upon the knowledge gap and fostering an environment dedicated to student success.   
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CHAPTER TWO: THEORETICAL FRAMEWORK 

The theoretical framework for this research is manifested through the works of Harel and 

Dubinsky (1991), Roa-Fuentes and Oktaç (2010) and Sierpinska (2000). An adaptation of the 

groundwork brought forth by Dubinsky’s APOS theory (Dubinsky, 1984; Arnon et al., 2014) 

provides guidance throughout this research. APOS outlines differences in mathematical thinking 

processes, focusing on how one performs Action applications to mental Objects. A repetition of 

and reflection upon an Action transforms it into a Process through an interiorization mechanism; 

since APOS is cyclic, Processes convert into Objects so that Actions can be further applied to 

them. As such, these connections are considered as a collective, interwoven Schema (Dubinsky, 

1984; Arnon et al., 2014; Oktaç et al., 2019).  

APOS breaks down mental structures into their basic components to be studied, detailing 

the processes and mechanisms required for a specific subject to be learned. This is known as a 

concept’s genetic decomposition (Arnon et al., 2014). Given new mathematical concepts often 

arise as transformations of existing concepts, a genetic decomposition frequently consists of an 

account of the Actions that a student needs to perform on current mental Objects, along with an 

explanation of how said Actions are interiorized into Processes (Arnon et al., 2014).  

Harel and Dubinsky (1991) detail a genetic decomposition and approach to the study of 

functions. They suggest that the construction of a function (as a concept to be learned) begins 

with Actions taken on a set. These Actions range in complexity and involve the performance of 

an operation (explicit rule) on an element in one set and the assignment of a unique element– 

from the second set– to it (Arnon et al., 2014; Harel & Dubinsky, 1991). As these Actions are 

performed on various sets, students reflect on them and consider them as dynamic 

transformations. Therefore, a mental structure that performs the same transformations as Action 
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has now been constructed in the minds of the students (Arnon et al., 2014; Harel & Dubinsky, 

1991). Students who demonstrate an understanding of the Process procedure as it relates to a 

function will often conceptualize a function in terms of accepted inputs being altered through 

some rule and resulting in an output. This mental connection will occur without the explicit need 

for the students to operate or perform calculations. Students at a Process conceptual 

understanding point could elaborate on the concept of inputs and outputs drawn previously. For 

example, the ability to determine if a function has an inverse would demonstrate a successful 

Process (Arnon et al., 2014; Harel & Dubinsky, 1991).  

Applications of Actions or additional Processes applied to the initial function Process 

pave the path to its mental capture as a cognitive Object. The procedure of encapsulation allows 

for a jump in conceptualization; the idea of a function is now transformed from a dynamic 

alteration of inputs to a static element that itself can be examined and operated on. Students who 

demonstrate the ability to form and recognize functional relationships between two entities and 

can manage a variety of Processes to determine the domain and range of a function may indicate 

the construction of a function Schema (Arnon et al., 2014; Harel & Dubinsky, 1991).  

Since linear transformations are special cases of functions, a similar genetic 

decomposition can be built using the map suggested by Harel and Dubinsky. This decomposition 

serves as an extension of the type 2 genetic decomposition brought forth by Roa-Fuentes and 

Oktaç (2010). The type 2 decomposition begins with the establishment of the notion of a 

(general) transformation between two vector spaces. Since the ability to recognize and apply the 

perseverance of addition and scalar multiplication is an Action directed to the transformation 

itself, the notion of a transformation must first be captured as a mental Object (Arnon et al., 

2014; Roa-Fuentes & Oktaç, 2010).  
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As such, it follows that an encapsulation process of a transformation would draw a 

parallel between a transformation and a function, denoting a transformation, T, as a function 

defined between two vector spaces–the domain and codomain of the transformation (Arnon et al., 

2014; Roa-Fuentes & Oktaç, 2010). As students become capable of viewing transformations as 

an extension of functions—recognizing the domain and range as the vector spaces of domain and 

codomain—the parallel between the concepts will be more evident.  

Applications of Actions to the transformation Process would allow students to consider 

these transformations as singular entities to be studied. Indicators of the encapsulation process 

might include students’ ability to form sets of or perform arithmetic operations on 

transformations. The idea of linearity, therefore, is introduced as a unique case of a 

transformation. Roa-Fuentes and Oktaç (2010) note that the de-encapsulation of the 

transformation Object is necessary for the construction of the properties of linearity as well-

rounded Processes. Since the Process corresponding to the transformation provides students with 

the opportunity to consider the images of the domain vectors under the transformation, students 

are able to perform the following: (1) create a sum of any two vectors in the domain and apply 

the transformation operation to that sum and (2) determine the images of any two vectors in the 

domain and sum them together (Arnon et al., 2014; Roa-Fuentes & Oktaç, 2010). This, in turn, 

initiates the path for the capture of linear transformations as satisfying the conditions of 

perseverance of vector addition and scalar multiplication.  

In a follow-up study, Roa-Fuentes and Oktaç (2012) concluded that function structures 

(as Schemas) and vector spaces (as Objects) are indispensable for the construction of the linear 

transformation concept (Roa-Fuentes & Oktaç, 2012). They further observed that the two 

suggested genetic decompositions brought forth in their preliminary 2010 paper point to a 
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potential disconnect between the instructional treatment and the textbook structure and the 

content that the students received (Arnon et al., 2014; Roa-Fuentes & Oktaç, 2012). This barrier 

was referenced by Alves-Dias and Artigue (1995). They noted that students are not offered the 

flexibility necessary to develop an understanding of linear algebra; in particular, the tasks and 

exercises given to students are narrow in their scope (Dorier & Sierpinska, 2001; Alves-Dias & 

Artigue, 1995).  

The delivery and accessibility of the content and instruction are prime factors in the 

conversation surrounding the retention and understanding of material, especially in a linear 

algebra course. As such, cognitive flexibility is of merit within this context. Sierpinska (2000), 

further elaborates upon the characteristics of thinking that are essential for the development of 

linear algebra. She notes that linear algebra requires a shift from, what she coined, practical 

thinking to theoretical thinking. Practical thinking (PT) is characterized as an auxiliary activity 

that directs other activities. Theoretical thinking (TT), on the other hand, is a specialized mental 

activity.  

PT is manifested through direct action while TT is brought to light through written words 

or texts (Sierpinska, 2000; Dorier & Sierpinska, 2001). Sierpinska (2000) further identifies three 

prime modes of thinking governing students’ approach to linear algebra: synthetic-geometric, 

analytic-arithmetic, and analytic-structural (Sierpinska, 2000; Çelik, 2015). Students operating 

under the synthetic mode demonstrate fundamental differences in their approach compared to 

their analytic mode counterparts. Synthetic thinkers aim to describe given mathematical objects 

without defining them while analytical thinkers attempt to comprehend the objects using their 

definition and mathematical properties (Sierpinska, 2000; Çelik, 2015). In general, it is 

recognized that the synthetic mode favors geometric representations, and the analytic mode 
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favors algebraic and numerical representations. Therefore, the synthetic mode corresponds to the 

practical way of thinking while the analytical mode corresponds to the theoretical way of 

thinking (Sierpinska, 2000; Çelik, 2015).  

As mentioned above, the analytic mode is split into two sub-categories: analytic-

arithmetic and analytic-structural. Sierpinska (2000) draws a clear distinction between the two 

modes of analytical thinking; while the analytic-arithmetic mode focuses on computations and 

simplifying calculations, the structural mode aims to elaborate upon one’s knowledge of 

concepts. Through an analytic-arithmetic lens, an object is best defined by a formula (set of 

rules) that allows one to manipulate and perform calculations on it; through a structural lens, an 

object is best defined through a set of mathematical properties (Sierpinska, 2000; Çelik, 2015). In 

this study, the instructional material and test problems are constructed following the guide of the 

genetic decomposition and representations proposed by Harel and Dubinsky (1991) and Roa-

Fuentes and Oktaç (2010). An analysis of students’ approach to linearity is conducted following 

the framework laid forth by Sierpinska (2000). 
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CHAPTER THREE: METHODOLOGY 

The methodology and application, along with the evaluative tools used in this 

investigation were approved by the University Institutional Review Board (IRB) (see Appendix 

A for approval form). A discussion of the participants and research settings for this study follows 

below. 

Participants 

This study was administered to 39 undergraduate matrix and linear algebra students from 

the University of Central Florida (UCF) during the Fall 2023 semester. Before this course, all 

participants took the prerequisite mathematics classes relevant to the linear algebra curriculum. 

As such, participants should have been familiar with and have had ample knowledge of vector 

arithmetic and functional relationships.  

The research was conducted in a face-to-face, classroom setting; the linear algebra 

content the participants studied, particularly the introduction to the concept of transformations, 

was performed using the genetic decompositions suggested by Harel and Dubinsky (1991) and 

Roa- Fuentes and Oktaç (2010). A review of functions and their properties was provided before 

integrating transformations. The notion of a general transformation, defined from one vector 

space to another, was established through an example—the students were told to think of a 

machine that, like a function, takes in certain inputs and returns an output upon conducting some 

operation on the input. Linear transformations were introduced as special instances of 

transformations, with a formal definition of the conditions of linearity being provided to the 

participants. Classroom practices, along with homework exercises, concerning the definition of 

linearity and linear transformations were carried out; the goal of these assignments was to 
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provide students with the opportunity to engage with the definition and understand its conditions. 

To assess students’ comprehension of linearity, two data collection tools—a test and an 

interview—were used. A description of the tools is provided in the following sub-section. 

Evaluative Instruments 

Upon the integration of transformations and linearity into the curriculum, student 

evaluation could be conducted. In this study, students were tasked with completing three test 

questions (see Appendix B for list of test questions) concerning linearity and linear 

transformations. Since a well-rounded Schema involves the application of a multitude of Actions 

and Processes (ranging in complexity and type), each of the three questions focused on a 

different skill, unique to linearity. With definitional, computational, and practical applications 

corresponding to questions 1, 2, and 3, respectively.  

An elaborate explanation and breakdown of the questions is provided in the results and 

analysis sections. These categories correspond to Sierpinska’s (2000) identified modes of 

thinking, with the skill application for questions 1 and 2 aligning with analytical thinking skills 

and question 3 with a combination of synthetic-geometric and analytical thinking skills. The test 

was implemented during regularly scheduled class time, with students receiving the entire period 

to complete the set of questions. The tests were de-identified and then analyzed using APOS 

theory and Sierpinska’s (2000) modes of thinking, as a guide. Each test was assessed 

individually, with similar responses being grouped under one general category. A total of eight 

categories (see Table 1) emerged. 
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Table 1: Explanation of categories classifying students’ modes of thinking 

CODE Category Explanation of Category 

NR No Response Participant did not attempt 

the question   

RWJ Response without 

Justification 

Participant attempted the 

question but did not provide 

support/ justification for their 

response  

DWD Definition of Linearity 

without Deduction 

Participant used/applied the 

definition of linearity in their 

response but did not deduce/ 

achieve a conclusive result  

DWC Definition of Linearity with 

Wrong Conclusion 

Participant used/applied the 

definition of linearity in their 

response but achieved a 

wrong result  

 

ILI Incorrect logic; Incorrect 

Conclusion 

Participant used/applied a 

linear algebra concept (other 

than linearity) incorrectly, 

resulting in an incorrect 

conclusion  

AIL Affinity instead of Linearity Participant used/applied the 

concept of linear functions 

(first-degree polynomials) 

instead of the definition of 

linearity, resulting in an 

incorrect conclusion  
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CODE Category Explanation of Category 

ILC Incorrect Logic; Correct 

Conclusion 

Participant used/applied a 

linear algebra concept (other 

than linearity) incorrectly, 

however, the conclusion 

achieved was correct  

DLC Definition of Linearity with 

Correct Conclusion 

Participant used/applied the 

definition of linearity in their 

response and achieved a 

correct conclusion  

 

Upon the assessment's completion, and in accordance with the ethics guidelines outlined 

by the IRB, participants were offered the opportunity to take part in a voluntary follow-up 

interview. Students were given the IRB-approved consent form to review and sign prior to their 

participation. 13 out of 39 students consented to take part in the interview process. The post-test 

interview contained 7 questions (see Appendix C for list of interview questions) and took 

approximately 15 minutes to complete. The interviews were administered in a one-on-one setting 

at a quiet, reserved study room at the UCF Library. 

During the interview, students were offered a blank piece of paper to draw, write, and jot 

down their thoughts and explanations as they saw fit. In the interest of consistency, students’ 

names were collected at the beginning of the interview to ensure the test they were provided with 

was their own. However, when discussing student responses, both in the analyses of questions 

and in reference to the interview discussion, participants will be referred to using a code name—

Pn, where n corresponds to their assigned number for their de-identified test. The interviews 

were audio recorded—with the consent of the participants—and later transcribed.   
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CHAPTER FOUR: RESULTS 

The findings of this research are discussed in this section. Each of the three assessment 

questions provided focused on a different application of linearity. While both question 1 and 

question 2 required the use of vector arithmetic and an understanding of the definition of 

linearity, question 1 put an emphasis on the conditions of linearity itself, tasking students with 

checking the linearity of the given transformation.  

On the other hand, question 2, while utilizing linearity (the students are given that the 

transformation is linear) primarily focused on students’ ability to correctly perform the necessary 

computations under said conditions. Question 3 focused on a practical application, asking 

students, given a word-problem scenario, to set up the implied transformation. While most 

students were able to think of linearity within a non-mathematical context, the disconnect 

occurred when applying the definition of linearity directly. The following tables present the total 

number of student responses corresponding to the emergent categories. 

Table 2: Frequency of responses per category for question 1 

CODE Category frequency Percentage 

NR No Response 4 10.26 

RWJ Response without 

Justification 

2 5.13 

DWD Definition of 

Linearity without 

Deduction 

1 2.56 

DWC Definition of 

Linearity with Wrong 

Conclusion 

6 15.39 
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CODE Category frequency Percentage 

ILI Incorrect Logic; 

Incorrect Conclusion 

6 15.39 

AIL Affinity instead of 

Linearity 

6 15.39 

ILC Incorrect Logic; 

Correct Conclusion 

4 10.26 

DLC Definition of 

Linearity with 

Correct Conclusion 

10 25.64 

 

Table 3: Frequency of responses per category for question 2 

CODE Category frequency Percentage 

NR No Response 0 0.00 

RWJ Response without 

Justification 

0 0.00 

DWD Definition of 

Linearity without 

Deduction 

1 2.56 

DWC Definition of 

Linearity with Wrong 

Conclusion 

5 12.82 

ILI Incorrect Logic; 

Incorrect Conclusion 

3 7.69 

AIL Affinity instead of 

Linearity 

0 0.00 

ILC Incorrect Logic; 

Correct Conclusion 

0 0.00 
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CODE Category frequency Percentage 

DLC Definition of 

Linearity with 

Correct Conclusion 

30 76.92 

 

Table 4: Frequency of responses per category for question 3 

CODE Category frequency Percentage 

NR No Response 7 17.95 

RWJ Response without 

Justification 

1 2.56 

DWD Definition of 

Linearity without 

Deduction 

0 0.00 

DWC Definition of 

Linearity with Wrong 

Conclusion 

3 7.69 

ILI Incorrect Logic; 

Incorrect Conclusion 

5 12.82 

AIL Affinity instead of 

Linearity 

0 0.00 

ILC Incorrect Logic; 

Correct Conclusion 

0 0.00 

DLC Definition of 

Linearity with 

Correct Conclusion 

23 58.97 

 

Across all three questions, DLC is the most common category, corresponding to 

approximately 37% of responses. This result is significant, indicating that over a third of the class 

correctly applied and utilized the definition of linearity across multiple domains. Responses 
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which fell under DWC, ILI, and AIL (accounting for 29% of student replies) featured mistakes, 

misconceptions, and leaps in logic that students performed to achieve their conclusions.  

The AIL category demonstrates students’ use of prior knowledge of linear functions when 

attempting to use the new definition of linearity in the context of transformations. This mistake 

appeared frequently throughout question 1, that it felt necessary to include it as its own category 

to be analyzed. Responses belonging to this section indicate that students think of linearity as a 

linear function rather than considering the definition of linearity or the conditions defined in the 

transformation.  

When considering the DWC and DWD categories, it is apparent that students, while able 

to recognize the definition of linearity (and partially apply it), had gaps in their ideas and 

application and as such were left with a wrong conclusion or no conclusion at all. Replies in the 

range of ILI, ILC, and RWJ demonstrated a prominent lack of understanding of linearity; with 

the concept being redefined and altered by the students. RWJ responses, particularly, did not 

explain the linear (or nonlinear) relationships given in the sample questions, rather providing a 

conclusion without an adequate basis. 

 ILC responses, however, while reaching a correct conclusion, did not follow the course's 

definition of linearity. Students, to justify their thoughts, elaborated on concepts previously 

established in the course (such as matrices, rank, and vector arithmetic) and applied them to the 

questions. However, the application or definitions were utilized incorrectly within the context of 

the questions, hence providing a false foundation for the students’ conclusions.  

Among all three questions, question 2 had the highest correct number of responses (about 

77%) followed by question 3 (about 59%). Comparatively, question 1 featured the lowest number 

of correct responses (about 26%). This is a remarkable result. The prominent difference in 
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students’ ability to apply linearity in questions 1 and 2 reveals the nature of students’ modes of 

thinking regarding linear transformations. Notably, said difference points to a strong, analytic-

arithmetic-influenced thought process (Sierpinska, 2000). Given the frequency of student replies 

in each classified category, an analysis of each sample question was performed. What follows is 

a thorough, question-by-question investigation of the distinct categories, their significance, and 

the emergent modes of thinking.  
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CHAPTER FIVE: ANALYSIS 

The analysis of participant responses reveals important insights into students' modes of 

thinking and approach to linearity within a linear algebra context. An evaluation of these 

responses is conducted using the modes of thinking identified by Sierpinska (2000). Keeping the 

research objective in mind, the three test questions were designed to test the completion of the 

transformation Schema (focusing specifically on linearity).  

Since this investigation’s goal is to bridge the knowledge gap through the mastery of 

elementary concepts (like linearity), each question represents a unique component within the 

decomposition of the linear transformation map: (1) definition application, (2) computational 

skills, and (3) practical application. First, let us consider the responses for question 1. 

Question 1 

The purpose of question 1, within this investigation, was to determine if the students’ 

foundation of linearity, as it pertains to definition application, is sound. This question required 

the participants to apply the definition of linearity to a given transformation and deduce its 

behavior (linear or nonlinear). About 49% of students were unable to correctly reason about the 

nature of the transformation’s linearity.  

An additional 15% of students left the question blank or provided no justification for their 

response. Only about 26% of participants were able to both correctly apply and deduce the 

linearity of the given transformation, with the remaining students correctly concluding about the 

transformation’s linearity through incorrect logical application of concepts. Let us analyze and 

compare the results of a select group of students, each corresponding to a unique code within the 

list of categories. Consider the responses provided by P3 (AIL), P4 (DWC), P8 (ILI), and P15 
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(ILC). P3’s response (see Figure 1) consisted of a deconstruction of the transformation 𝑇(𝑥) into 

two separate components to be studied: 𝑥 + 1 and 3𝑥. 

   

Figure 1: P3 response to question 1 

 

The student concluded that 𝑇(𝑥) was linear as both functions comprising the 

transformation are known linear functions. P3 reasoned that since a vertical shift (by 1 unit for 

𝑥 + 1) and a stretch (by a factor of 3 for 3𝑥) are acceptable transitions for “linear functions” 

(first-degree polynomials), that the transformation at hand is linear.  

Two interesting observations are to be noted: (1) the student disregarded, or was unable 

to, utilize the definition of linearity, and (2) the student attempted to apply previous knowledge 

of functional relationships (established within the creation of the function Schema) 

demonstrating a clear case of the obstacle of formalism phenomena discussed by Dorier et al. 

(2000). This form of rationale aligns with Sierpinska’s (2000) synthetic mode of thinking. P3’s 

approach to the question suggests a preference for a pragmatic thought process. Their analysis of 

the components of the transformation as “linear functions” is indicative of the PT approach. In 

fact, among all students within the AIL category, signs of synthetic thinking were manifested; 

particularly with students’ attempts to graph and plot the transformation (see Figures 2 and 3), 

pointing to a gravitation toward geometrically based representations. 
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Figure 2: P21 response to question 1 

P21’s response falls under the AIL category; demonstrates an attempt to graph the transformation by plotting 𝑥 + 1 

and 3𝑥 on the plane. 

 

Figure 3:P10 response to question 1 

P10’s response falls under the AIL category; demonstrates an attempt to graph the transformation by considering a 

sample vector 𝑥 = (2
2) and comparing it to its image under T, 𝑇(𝑥) = (3

6). The participant used these two points to 

create a plot of the transformation. 

 

It appears that students in the AIL category put greater emphasis on their understanding 

of functions, specifically first-degree polynomials, rather than the definition of linearity itself. It 

can be concluded that the AIL category reflects an initiation of the transformation Schema, 

however, the definition of linearity (within the function Schema context) took precedent.  
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Next, observe the response provided by P4 (see Figure 4). Unlike P3, this student 

attempted to deduce the linearity of the transformation using the definition of linearity. However, 

their portrayal of the definition and its application in their response were incomplete.  

 

Figure 4: P4 response to question 1 

 

The student only listed one of the conditions for linearity, focusing solely on the additive 

property of linear transformations. Furthermore, their application of their definition was 

incorrect. While the student correctly noted condition (1) of the definition (𝑇(𝑎 + 𝑏) = 𝑇(𝑎) +

𝑇(𝑏)), the student then applied the following step: 𝑇(𝑎) + 𝑇(𝑏) = 𝑇(𝑥 + 1) + 𝑇(3𝑥), 

suggesting an insufficient understanding or familiarity with the notation.  

P4 concluded that the relationship is linear since their initial condition for linearity was 

satisfied. The rationale used by P4 best aligns with Sierpinska’s (2000) analytic thinking mode. 

The student favored the use and application of a definition when approaching the question at 

hand. However, their definition along with their ability to successfully articulate and work with 

the additive condition was lacking. As such, P4 leans more towards structural-arithmetic 

thinking, emphasizing the mathematical properties of the definition itself compared to 

manipulation and application of the definition's formula.  
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Moreover, when considering the student’s application of their definition to the 

transformation, it is apparent that not only was the student unknowledgeable about or unfamiliar 

with the notation of the definition but also, they demonstrated a lack of understanding when 

attempting to apply it. This is seen through the student’s inability to successfully substitute inputs 

into 𝑇(𝑥) to perform the test for linearity along with the attribution of the components of 𝑇(𝑥) as 

the inputs themselves. These properties are indicative of a deeper issue rooted within their 

function Schema. This student could not properly manipulate equations and their inputs or 

adequately apply the rule of the given function. 

 In fact, when considering the responses of other participants within the DWC category, a 

similar pattern can be observed within a major sector of the responses. The remaining responses 

in the category demonstrated an arithmetic-analytic approach. These students, while their 

definition of linearity is not always complete, demonstrate an ability to work with the conditions 

of linearity and perform the (partial) correct arithmetic corresponding to the given property.  

P8’s (see Figure 5) method, like P4, focused on a linear algebra approach to the question. 

However, unlike P4, this student did not focus on the definition of linearity within a linear 

algebra context. Instead, P8 tried to use concepts previously established in the course to justify 

their process.  
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Figure 5: P8 response to question 1 

 

This student concluded that the transformation’s linearity was directly correlated to their 

domain and codomain. Specifically, since the transformation’s inputs are in ℝ and the outputs are 

in ℝ2, they reasoned that the output is going to be a real number; and, as the outputs are in ℝ2, 

the transformation will require two rows for the output, which according to them, 𝑇(𝑥) 

possesses. Therefore, 𝑇(𝑥) is linear. P8 did not define or elaborate upon what constitutes or 

qualifies linearity within the context of transformations. Instead, they attempted to determine the 

transformation’s behavior through the transformation’s makeup (domain and codomain). 

However, P8’s conceptual application is flawed, suggesting their understanding of the 

mathematical properties governing linear transformations is poor. The student made a false 

connection between the number of rows in a matrix and the transformation’s linearity. Using this 

student’s logic, any transformation T, defined 𝑇: ℝ → ℝ2, will be linear. This, of course, is not 

the case.  

P8’s applications of concepts throughout question 1 would suggest an analytic thought 

process aligning with the structural-analytic mode (Sierpinska, 2000). This is evident through 

P8’s attempt to elaborate upon concepts (while not necessarily providing clear definitions of 
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objects) to justify their rationale, and restructuring 𝑇(𝑥) as a 2 × 1 matrix to indicate that when 

inputs from the vector space ℝ are plugged into 𝑇(𝑥), the outputs will be 2 × 1 matrices whose 

elements are real numbers. The student demonstrates the computation of 𝑇(1) as an example. 

 A similar pattern can be observed among the other ILI responses. All the responses in 

this category made use of matrix representation of a transformation, referencing the number of 

rows/columns of the matrix (like P8) or the number of pivot positions. 

Lastly, consider the response given by P15 (see Figure 6). This student, like P8, used a 

faulty matrix representation of the transformation to determine its linearity. However, while their 

logical basis was incorrect, their conclusion was. P15 determined that since the number of rows 

was altered, a new matrix was created and therefore, the transformation was not linear.   

 

Figure 6:P15 response to question 1 

 

While the transformation was, indeed, nonlinear, this leap in logic would suggest that any 

transformation where the domain and codomain have different dimensions is non-linear as well. 

However, this is a false, easily refutable, conclusion. It appears that both P8 and P15 used a 

similar approach to justify their results. In fact, all the students under the ILC category appeared 

to be making similar leaps in logic to P8 and P15 to deduce the transformation’s linearity. P15’s 

approach, unsurprisingly, like P8’s and the rest of the ILI sector, is indicative of Sierpinska’s 

(2000) structural-analytic mode. 
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The analysis of question 1 yielded significant results. In the quest to improve upon the 

gap in student knowledge, specifically, as it relates to the concept of linearity, this question 

served as a test of student’s understanding of the core definition of linearity within linear algebra. 

This question focused on definition application and required understanding of the notation and 

arithmetic necessary to successfully complete it. As such, it appears that students who are 

analytical thinkers had a slight upper hand when attempting to understand and answer this 

question. The structural-analytical mode garnered an additional advantage, as this mode is 

heavily oriented around the application of mathematical properties, a quality necessary to answer 

question 1. 

It is important to note, however, that students who exemplified the structural-analytic 

mode did not always complete the question successfully, as evident by students like P8 and P15 

of the ILI and ILC categories. These students demonstrated the ability to focus on the 

mathematical properties of objects and draw conclusions based on them, yet, their knowledge of 

how to use or apply said properties was lacking. This suggests students in these categories 

possess the potential to comprehend and correctly apply the conditions of linearity. However, 

further work with the definition itself is necessary to ingrain the principles of linearity for said 

groups.  

Question 2 

The purpose of question 2, within this investigation, was to test students’ ability to 

perform computations given that the conditions of linearity hold. This question saw the highest 

success rate among the three questions (about 77%). The skills necessary to successfully 

complete this question seemed to have been acquired by a major sector of the class compared to 
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question 1’s necessary skill set. This fact is unsurprising given that while both questions required 

knowledge of proper arithmetic, question 2 utilized simple computation techniques compared to 

question 1’s focus on the definition of linearity, requiring a deeper understanding of notation, 

which, in its nature, is more abstract a concept. Nevertheless, let us consider two sample 

responses. Observe the answers from P4 (DWD), and P14 (ILI).  

P4’s response (see Figure 7) is of particular interest as out of all the responses to question 

2, their response was the only one classified under the DWD category. 

 

Figure 7: P4 response to question 2 

 

Their understanding of the notation, in a similar fashion to their previous response, was 

incomplete. This is evident through their classification of the images under the transformation as 

scalar multiples of the vectors 𝑢 and 𝑣. P4, while utilizing incorrect notation, did manage to 

perform the correct computation of the images under T of 4𝑢 and 2𝑣, however, when considering 

the image of 4𝑢 + 2𝑣 their response was incomplete. The student completed the setup for the 
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addition but did not conduct the process itself. This could indicate that either: (1) the student ran 

out of time and could not complete the computation, or (2) the student could not perform the 

necessary vector arithmetic. Given P4’s previous demonstration of their vector arithmetic in 

question 1, option (2) seems plausible. This student may need more practice with the properties 

of vectors; P4 demonstrates signs of initiation of their transformation Schema evidenced through 

partial application and knowledge of the definition of linearity and notation, however, the 

Schema is yet to be fully integrated. P4, once again, displays an analytically based thought 

process (Sierpinska, 2000). Their ability to conduct the correct arithmetic for the scalar 

multiplication section of the question suggests that their application aligns with the analytic-

arithmetic mode.  

It is important to note that the shift from P4’s structural- analytic to arithmetic-analytic 

approach indicates that thinking modes are dynamic; one’s thought process can be fluid and shift 

based on the question at hand. When analyzing the three-test questions, it was apparent that 

synthetic thinkers tended to stick to the synthetic approach while the analytical thinkers showed 

more flexibility in their thinking, fluctuating between arithmetic and structural processes.  

Next, observe the response of P14 (see Figure 8). Unlike P4, who demonstrated a base 

level of the necessary arithmetic skills, P14’s application of vector properties was poor. Their 

understanding of the notation was lacking or non-existent.   
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Figure 8: P14 response to question 2 

 

For instance, P14 attempted to define the transformation as taking a vector 𝑥 and 

returning 𝑥 + 𝑇(𝑥) as the new vector. However, not only is this portrayal unrepresentative of the 

transformation at hand but the definition of a function 𝑇(𝑥) cannot depend on 𝑇(𝑥) itself. This 

suggests a disconnect within P14’s function Schema. It is possible that the student may have 

attempted to define 𝑇(𝑥) as a recursive function, however, even if that were the case, it would 

indicate a poor understanding of recursive functions and their properties; a skill obtained within a 

function Schema (distinguishing types of functions and their domain and range).  

Using their definition of 𝑇(𝑥), P14 then manipulated the given vectors. Assuming their 

definition was correct, their scalar multiplication and addition skills themselves can be 

considered “correct” as well. The severe lack of proper notation, along with a lacking 

understanding of the conditions of linearity, point to a struggle with analytical thinking and could 

suggest P14 is more compatible with the synthetic-geometric approach (Sierpinska, 2000). 

 The analysis of question 2 responses produced noteworthy observations. As previously 

mentioned, about 77% of the participants were able to correctly perform the vector addition and 
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multiplication required in the problem. However, even among the DLC responses, a prominent 

lack of proper, correct notation is present. In fact, 18 out of the 30 DLC responses (60%) 

demonstrated issues with notation, specifically, writing 4𝑢, 2𝑣, and,4𝑢 + 2𝑣 when referring to 

𝑇(4𝑢), 𝑇(2𝑣), and, 𝑇(4𝑢 + 2𝑣). 

While these students were capable of correctly computing the images under the 

transformation, the improper notation indicates a slight gap in the conceptual perception of the 

definition of linearity. This could also explain the jump in responses in the DLC category from 

question 1 to question 2. When considering the significance of correct notation to the 

understanding of linearity conditions, additional work and practice are needed. It seems the 

student struggle with question 2 was primarily derived from gaps in the definition of linearity 

and its proper notation.  

This is consistent with the established literature (Dorier et al., 2000, Britton & 

Henderson, 2009) investigating student struggle in linear algebra; students tend to attribute 

difficulty to theoretical and abstract concepts rather than to practical, calculation-based notions. 

Question 2 represents an arithmetic-focused, computational problem which, often, will not pose 

a major obstacle to student understanding. 

Question 3 

The purpose of question 3, within this investigation, was to test students’ ability to apply 

the conditions of linearity outside of a mathematical framework. This exercise required students 

to think about a given scenario which described a color machine taking color inputs (of any 

positive, negative, or zero amount) and returning, as an output, the input added with two units of 

red color. The students, being familiar with the transformation set up and notation, should have 
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been able to recognize and dissect this scenario into mathematical objects: the color machine 

constitutes the transformation (or function) itself and the domain and codomain of the 

transformation is the set of all colors. This question produced the most creative results, with 

students navigating the challenge of translating the given scenario into its mathematical 

components. Question 3 also saw the greatest number of no responses, with seven students 

leaving the question completely blank.   

Let us analyze the results of P32 (ILI) and P35 (DLC). The response provided by P32 

(see Figure 9) utilized a matrix representation to approach the scenario. This student dissected 

the scenario into the following transformation: 𝑇 = (2𝑟 + 2𝑐). 

 

Figure 9: P32 response to question 3 

 

 One key observation to note here is that the student did not specify if T is a function of 𝑐 

or a function of 𝑟. Additionally, no mention of the domain or codomain of the transformation was 

included. P32 drew what appears to be a 2 × 2 matrix of the transformation with every entry in 
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the matrix being 2 + 2𝑟. The matrix itself was multiplied by 𝑐. It is unclear if 𝑐 is taken to be a 

scalar in this context or as a variable (as intended in the directions for the question). 

 P32 was unable to correctly break the scenario into mathematical objects. Moreover, their 

transformation setup suggests that the color input, 𝑐, is doubled then combined with two units of 

red color (2𝑟), however, that is not the case. Their matrix representation is flawed, as well, with 

no supporting work to justify its elements. P32’s thought process seems to best align with the 

synthetic mode (Sierpinska, 2000). Their struggle with the notation and baseless matrix 

representation suggests an insufficient understanding of the mathematical properties of 

transformations and matrices.  

However, their ability to partially define the transformation (in terms of the constant 

addition of two units of red color) signifies a synthetically based approach; the objects 

introduced in the scenario are considered within the realms of practical thinking, treating the 

objects to be studied through direct action. P32 did not use any mathematical properties to define 

their transformation and neglected to include the domain and codomain. Their response points to 

a lack of understanding of the properties of a transformation, its notation, and the proper use of 

matrix representations, indicating that further work with the mathematical properties of 

transformations is needed for them to successfully derive the components of a transformation 

from a word problem scenario.  

Comparatively, consider the response of P35 (see Figure 10). This student’s response 

demonstrated a clear understanding of the necessary procedure to obtain the transformation from 

the given scenario. The student correctly identified the transformation to be 𝑇(𝑐) = 𝑐 + 2𝑟. 
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Figure 10: P35 response to question 3 

 

 P35 created a table listing the input, output, and the domain and codomain of their 

transformation. Their ability to correctly identify and construct the transformation implies a 

sound foundation of transformations and points to further development of their transformation 

Schema. The student also included miscellaneous calculations using their defined function to 

understand its behavior. They included an example of the transformation evaluated at 4𝑐. P35 

indicated that if 𝑐 = 𝑟, then the transformation would yield 6𝑟 as an output. Otherwise, it would 

yield 4𝑐 + 2𝑟 = some mix of colors. The student also mentioned that in the case that 𝑐 = 0, the 

output of the transformation will be 2𝑟. 

This process performed by P35 suggests a strong alignment with the structural-arithmetic 

mode (Sierpinska, 2000). The student also shows some synthetic-geometric thinking, with the 

student’s ability to consider the objects of the scenario directly and break them successfully into 

mathematical objects to be studied. In fact, when considering students who ranked in the DLC 

category, it is apparent that the practical thinking skill associated with synthetic thinking was 
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crucial when attempting to break the scenario into its mathematical objects and deriving the 

correct components for the transformation, including the domain and codomain.  

The analysis of question 3 yielded significant results. In the quest to improve upon the 

knowledge gap, specifically as it pertains to linear algebra, this question served as a test of 

students’ ability to draw upon a learned concept or definition (linearity and linear 

transformations) and use said knowledge to construct a solution. The composition of question 3 

required students to both practically think and apply their idea of transformations to a non-

mathematical scenario and then define the transformation’s domain and codomain. This task 

requires some combination of the synthetic and arithmetic modes. 

 First, the student needs to break the scenario into mathematical objects to build their 

transformation (synthetic) then define said objects using the properties of transformations 

(arithmetic). When comparing the success rate among all three questions, an interesting pattern 

can be observed: questions targeted toward an analytic-arithmetic mode (question 2) saw a 

higher success rate compared to questions focused on an analytic-structural mode (question 1). 

It is also apparent that the success rate of combined synthetic and analytic questions 

(question 3) was increased as well. Overall, students were able to correctly perform 

computations (based on the conditions of linearity) at a higher rate compared to using the 

conditions themselves to prove (or disprove) linearity. Hence, the analytic-arithmetic mode is 

more prominent among students compared to the analytic-structural mode.   

Moreover, when asked to convert a word problem scenario into a transformation, 

practical thinking skills were essential, corresponding to the synthetic-geometric mode. Since 

question 3 only called for the transformation’s setup, it can be concluded (based on the number 

of correct responses) that students are more comfortable identifying a function’s components 
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(variables, domain, range, etc.) compared to applying the definitions describing the behavior of 

said function.  

Interviews 

Upon the evaluative assessment's completion, the post-interview was conducted with the 

consenting participants. Every interviewee got the chance to demonstrate and elaborate upon 

their thought processes and explain their approach. As a majority (about 77%) of the original 

student group completed question 2 successfully, the interviews predominantly focused on 

questions 1 and 3. Each of the seven interview questions aimed to provoke thought and instigate 

a process of reflection among the students. The goal of the post-assessment interviews was to 

expand upon the student experience and garner a first-hand account of the students’ method 

concerning the test questions. A sample of participant responses to a selection of the interview 

questions is presented in this section. First, let us consider the interview conducted with P3. 

P3 Interview 

 

The interview with P3 shed light on their understanding of and thought process 

surrounding linearity. Their responses to the interview questions suggested a faulty association 

between linear transformations and first-degree polynomials. For instance, P3’s response (see 

Figure 11) to the fourth interview question demonstrated a disregard for or lack of understanding 

of the linear algebra context for linearity. 
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Figure 11: An excerpt from interview with P3 (interview question 4) 

 

Question 4 of the interview aimed to understand the existence of the student-made 

correlation between first-degree polynomials and linearity (as seen throughout question 1 of the 

assessment). P3 reasoned that a line of the form 𝑦 = 𝑚𝑥 + 𝑏; 𝑚, 𝑏 ≠ 0 must be linear as it is a 

“linear function.” They connected their rationale to their response for question 1 of the 

assessment; suggesting that there exists a relation between linear functions (like 𝑥 + 1 and 3𝑥) 

and linear transformations. P3 expressed an AIL-based rationale throughout their interview. In 

their response to questions 3 and 5 (see Figure 12), for example, they noted that the 

transformation presented in the third question of the assessment must be linear as, it too, is a 

linear function. Specifically, P3 suggested that, again, since the translation portrayed in the 

question is a defined vertical shift for linear functions, the transformation described must, 

therefore, be linear as well.  
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Figure 12: An excerpt from interview with P3 (interview questions 3 and 5) 

 

It appears that P3, when approaching the concept of linearity, considered the possible 

alterations that can be acted upon standard linear functions (vertical/ horizontal shift, 

stretch/shrink, and reflection/rotation) and reasoned the behavior of the provided transformations 

through said actions. It is important to note, however, that these shifts are not exclusive to first-

degree polynomials (which seemed to drive P3’s rationale).  

Furthermore, it is evident that this participant did not utilize or consider the linear algebra 

presentation of linearity provided in the course. In fact, throughout their interview, P3 made no 

mention of the conditions of linearity themselves, continuously referencing linearity and linear 

transformations within a fist-degree polynomial context. Similar lines of thought can be seen in 

P20’s interview. 

P20 Interview 
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The interview conducted with P20 demonstrated similar tones regarding the concept of 

linearity. Like P3, P20 reasoned that the transformation described in question 3 of the assessment 

is linear. However, this participant also indicated a level of confusion and uncertainty when 

approaching the question itself.  

 

Figure 13: An excerpt from interview with P20 (interview question 5) 

 

P20 described a sense of confusion with the terminology surrounding linearity derived 

from their previous knowledge and understanding of the concept. Linearity, as a mathematical 

term, is often introduced to students in the context of first-degree polynomials (described as 

“linear functions”). This previously established definition of linearity seems more institutive and 

far more ingrained within the students’ mathematical framework. As such, describing a function, 

whose graph is a line, as “linear” may seem more reasonable compared to considering 

“conditions for linearity.”   

It is evident that this new idea of linearity was not regarded as its own concept to be 

learned and, therefore, the new terminology caused confusion among some of the participants. 

Linearity, within a linear algebra context, shakes the foundation of established linear functions; 
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suggesting that not all linear functions are indeed linear or linear transformations. P20 indicated 

difficulty with the concept as early as the first interview question (see Figure 14). When asked 

about their knowledge regarding a transformation’s linearity, they revealed that they struggled 

grasping the definition of linearity, particularly, as it pertained to the notation or “terms” utilized 

when testing the conditions. 

 

Figure 14: An excerpt from interview with P20 (interview question 1) 

 

The account provided by P20 is indicative of a struggle with the idea of linearity and 

linear transformations derived from two key components: (1) a faulty connection to previously 

established concepts, and (2) unfamiliarity with the notation and terminology. This phenomenon 

is further reflected in the interview conducted with P2.  

P2 Interview 

 

P2, like P3 and P20, also discussed difficulties with grasping the concept of linearity. 

However, their struggle was manifested through their application and connection to matrices and 
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vectors. P2 revealed that they think of transformations as functions of vectors, with linear 

transformations consisting of “linear formulas” which are applied to transformations. P2 

included a drawing (see Figure 16) to explain their thought process.   

 

Figure 15:An excerpt from interview with P2 (interview question 1) 

 

 

Figure 16: Drawing included by P2 in response to interview question 1 

P2’s explanation of linear functions. The graph contains three functions. A parent function 𝑣, 𝑣 + 2 and 2𝑣. P2 

discussed possible linear functions that, in their eyes, constitute an application of linear transformations.  
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When asked about their application for question 1 of the assessment, P2 admitted that 

they drew a blank when it came to the definition of linearity. Instead, they attempted to use their 

knowledge of vectors and matrices to complete the problem. 

 

Figure 17: An excerpt from interview with P2 (interview question 3) 

 

P2’s responses demonstrated an overall lack of conceptual understanding of linearity 

within a linear algebra context. Both P2 and P20, when attempting to answer question 1, utilized 

some prior understanding of linearity to rationalize their result. However, while P2 demonstrated 

an ability to think about transformations as functions—which is pivotal for the formulation of the 

transformation Schema—they fell short in their understanding and use of linear functions within 

the scope of linear transformations.  

Furthermore, their faulty logical application in question 1 suggests further work with the 

definition itself is necessary. Their idea of linearity appears to also be rooted in some form of 

symmetry, as they reference the need for balanced action to be taken on “both sides.” P2 

considered linear relationships as vectors where every component is identical, noting that the 
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transformation described in question 1 was nonlinear due to its different functional elements. 

This, however, is a logical fallacy. Moreover, during the interview, P2 mentioned the term 

“weights” (see Figure 18) when discussing the setup for question 3.  

They noted that the addition of a constant (in this instance, 2r) is the “weight” of the 

function. P2 claimed that the term helped them visualize the action of the transformation, 

referencing their computer science background in their explanation. This result is significant, 

indicating that students may draw on their existing knowledge not only from previous 

mathematics courses but also from various STEM-related fields (like computer science). This is 

consistent with the established importance of linear algebra within STEM itself (Pearlmutter & 

Šmigoc, 2018).   

 

Figure 18: An excerpt from interview with P2 (interview question 3 continued) 
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Figure 19: Work included by P2 in response to interview question 3 

P2’s new setup for question 3 of the assessment. They indicate that 2r is the “weight” of the transformation with c, 

the input, being scaled by a factor of 1. 

 

The interview with P2 identified similar struggles to those present in P3’s and P20’s  

 interviews. By identifying their mistake in question 3, P2 was able to correctly set up the  

 transformation and apply their idea of weighted functions in their set up. This suggests that with  

additional exposure to the terminology of transformations and practice with the definition of   

linearity, P2 could improve upon their transformation Schema. A similar case can be observed   

in the interview conducted with P26.   

P26 Interview 

 

P26, like P3, P20, and P2, struggled with the definition application of linearity. Upon  

 reintroducing the definition in the interview session, P26 was asked to think about what would 

happen if the given transformation in question 1 was altered from 𝑇(𝑥) = (𝑥 + 1, 3𝑥) to  

𝑇(𝑥) = (𝑥, 3𝑥). They concluded that based on the definition and conditions—as discussed and  

revisited in the interview—that the transformation would be linear. P26 then attempted to test 

the two conditions of linearity for the new 𝑇(𝑥) (see Figure 21). 
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Figure 20: An excerpt from interview with P26 (interview question 7) 

 

 
 

Figure 21: Work included by P26 in response to interview question 7 

P26’s test for the conditions of linearity for the new 𝑇(𝑥). P26 tested for additivity using arbitrary vectors 𝑥 and 𝑦 

but used 𝑐 = 5 for the scalar multiplication test.   
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During the interview, P26 noted that they are going to use 𝑐 = 5 in their test to “see how 

the transformation behaves.” This may suggest that P26, while comfortable using arbitrary 

vectors for vector addition, still benefits from the use of numbers when applying other vector 

arithmetic (like scalar multiplication). As such, while P26 demonstrated correct arithmetic and 

definition, their proof is incomplete; an application of the scalar multiplication test using an 

arbitrary 𝑐 value needs to be performed to ensure that the condition holds true for all scalars, 𝑐. 

P26, upon testing the two conditions, concluded that the transformation was linear. They 

also reasoned that adding non-zero constants constitute nonlinear behavior. This further 

exemplifies P26’s new understanding of the material, suggesting they can form a distinction 

between linear functions and linear transformations. Although their proof, in its entirety, is 

insufficient, their application points to the initiation of a Process relevant to their establishment 

of their transformation Schema. 

  



  45 

CHAPTER SIX: DISCUSSION 

Both the analysis and interviews revealed significant information regarding students’ 

modes of thinking in linear algebra. The analysis revealed that among all three test questions, an 

issue with notation and its proper usage was prevalent. The interviews further indicated that 

students faced difficulty understanding the definition of linearity within a linear algebra context, 

citing the terminology and misconceptions of the definition as prime factors in their confusion. 

These results are consistent with the literature on student struggle with mathematics, specifically 

as it pertains to the learning and understanding of mathematical notation.  

When investigating student difficulties with mathematical terminology, Mulwa (2015) 

found that students’ inadequate grasp of the mathematical language yielded logical 

inconsistencies. She observed that this gap in student knowledge caused confusion, e.g., some 

terms were mistaken with others under the guise that both terms corresponded to the same 

mathematical operation, and some terms were given informal interpretations rather than a 

mathematical one (Mulwa, 2015). The observations described by Mulwa correlate with students’ 

difficulty with the concept of linearity. For instance, students’ confusion of linearity within a 

linear algebra context and linearity as an affine function (first-degree polynomial). The AIL 

category in question 1 points to a student-made connection between linear transformations and 

linear (first-degree polynomial) functions.  

Furthermore, the difficulty with notation and retention of the conditions of linearity 

support the existence of the formalism obstacle suggested by Dorier et al. (2000). Students, to 

understand linearity as a new concept, attempted to draw upon previous knowledge (matrices, 

functions, rank, dimension, etc.) to form connections to the current material. The three thinking 
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modes described by Sierpinska (2000) help guide a conversation to improve upon the gap in 

knowledge and the current linear algebra curriculum.  

Consider the synthetic-geometric mode; students who operate under this mode of 

thinking tend to, primarily, favor geometric representations of mathematical concepts. Aspari et 

al. (2019) noted the benefits of said representations in their research; their study focused on the 

impact of geometric representations on student thinking in pre-algebra courses. They observed 

that the usage of geometric-based visuals enhanced students’ ability to identify patterns and 

construct generalization within an algebraic context. A similar approach can be taken when 

considering linear transformations.  

The difference between linear and non-linear transformations can be demonstrated 

through a graph (where each element of a transformation is considered as a separate entity). If all 

elements of a transformation are linear, then the transformation will also be linear. The figure 

below (Figure 22) displays such a representation using the transformation in question 1. The 

transformation 𝑇(𝑥) is broken into its components, with 𝑓1(𝑥) = 𝑥 + 1 and 𝑓2(𝑥) = 3𝑥. If the 

transformation is linear, then the additive condition will hold true for both 𝑓1(𝑥) and 𝑓2(𝑥); 

hence, every point (𝑥0, 𝑓1(𝑥0)) and (𝑥0, 𝑓2(𝑥0)) on the graph of T will have a one-to-one 

correspondence with (𝑥0, 𝑓1(𝑥1) + 𝑓1(𝑥2) + ⋯ + 𝑓1(𝑥𝑛)) and  

(𝑥0, 𝑓2(𝑥1) + 𝑓2(𝑥2) + ⋯ + 𝑓2(𝑥𝑛)), respectively, where 𝑥0 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛, 𝑛 ∈ ℕ. 
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Figure 22:A graphical representation of the additive condition of linearity for the transformation 

component 𝑥 + 1  

An arbitrary 𝑥0 is selected for the test and compared with 𝑥0 + 0 + 0 + ⋯ + 0. If 𝑓1(𝑥) is linear, the position of 

(𝑥0, 𝑓1(𝑥0)) on the graph will be equivalent to (𝑥0, 𝑓1(0) + 𝑓1(0) + ⋯ + 𝑓1(0)). Since the positions are not equal, 

𝑓1(𝑥) is nonlinear, and as such, 𝑇(𝑥) is nonlinear as well. 

 

 An interesting case to dissect is the additive condition of linearity where the input, 𝑥 ∈ ℝ, 

is written as the trivial linear combination 𝑥 + 0 + 0 + ⋯ + 0. Synthetic thinkers may choose to 

plot these points to visualize the transformation. It can be observed that 

 𝑓1(𝑥0) ≠ 𝑓1(𝑥0 + 0 + 0 + ⋯ + 0). The point at (𝑥0, 𝑓1(𝑥0)) has been shifted upward by 

(𝑛 − 1)𝑓1(0) = 𝑛 − 1 units (where 𝑛 is equal to the total number of zeros present in the linear 

expansion of 𝑥0). Therefore, 𝑓1(𝑥) is nonlinear as it fails condition (1) for linearity. Since 𝑓1(𝑥) 

is nonlinear, 𝑇(𝑥), as a whole, must be nonlinear as well. 

 Similarly, the scalar multiplication condition can be demonstrated in a like manner. Here, 

for any scalar 𝑐, if T is linear, every point (𝑥0, 𝑐𝑓1(𝑥0)) and (𝑥0, 𝑐𝑓2(𝑥0)) will have a one-to-one 
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correspondence with (𝑥0, 𝑓1(𝑐𝑥0)) and (𝑥0, 𝑓2(𝑐𝑥0)), respectively. In the case of 𝑓1(𝑥) = 𝑥 + 1, 

it can be shown that for a given 𝑥0, 𝑐𝑓1(𝑥0) ≠ 𝑓1(𝑐𝑥0), unless 𝑐 = 1. An interesting case to 

consider is the comparison at 𝑥0 = 0, as this will constitute the y-intercept of the function. A 

graphical representation of the scalar multiplication condition for 𝑓1(𝑥) is provided below 

(Figure 23). 

 

 

Figure 23: A graphical representation of the scalar multiplication condition of linearity for the 

transformation component 𝑥 + 1 

The value 𝑥0 = 0 was selected for the test. If 𝑓1(𝑥) is linear, then the position of (0, 𝑐𝑓1(0)) on the graph of T will 

be equivalent to (0, 𝑓1(0𝑐)). Since the positions are not equal, 𝑓1(𝑥) is nonlinear, and as such, 𝑇(𝑥) is nonlinear as 

well. 

 

It is important to note that throughout this presentation, the selection of specific values is 

done with the intention of providing students with a concrete example of the application of the 

conditions to further build their intuition towards linearity. When proving linear relationships, 

however, students should use arbitrary vectors and scalars in their solution. Since 𝑓1(𝑥) failed 
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condition (2) for linearity, it is proven, again, to be a nonlinear function. It should also be 

mentioned that once a component within a transformation’s breakdown fails one of the two tests 

for linearity, it can be concluded that (1) the specific component is nonlinear (like in the case of 

𝑓1(𝑥)) and (2) that the transformation, as a whole, is nonlinear as well.  

Next, consider the analytic mode; for analytic thinkers, particularly arithmetic thinkers, 

algebraic representations, such as formulas and equations, are a primary source of reasoning and 

understanding of mathematical concepts. Otten and Wambua (2022) concluded that algebraic 

representations hold merit in building a strong foundation for the construction of proofs, with 

each new algebraic statement requiring some form of work which calls for the direct exercise of 

justification skills.  

As such, comparing linear and nonlinear relationships, for analytical thinkers, may best 

be done through work with and manipulation of algebraic representations. Specifically, through 

the construction of a proof of the conditions of linearity. A direct proof demonstrating the 

distinction between first-degree polynomials and linear transformations is therefore proposed 

(see Figure 24).  
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Figure 24:A direct proof of the conditions of linearity for the transformation T(x) = 𝑎𝑥 + 𝑏; 𝑎, 𝑏 

scalars  

The test shows that given the conditions of linearity hold true, either 𝑏 = 0 or 𝑛, 𝑐 = 1, respectively. This suggests 

that either no addition of non-zero constants is performed or, when 𝑏 ≠ 0, 𝑇(𝑥) is linear if and only if an input 𝑥0 is 

not broken into a linear combination of more than one element (i.e. 𝑥0 = 𝑥1) and that it is not scaled by a factor 

other than one (i.e. 1𝑇(𝑥0) = 𝑇(1𝑥0)). As such, 𝑇(𝑥), as defined above, is linear, if and only if 𝑇(𝑥) = 𝑎𝑥. 

 

To demonstrate a specific example of the general proof, consider the established function 

𝑓1(𝑥) = 𝑥 + 1 from the transformation given in question 1 (see Figure 25). In this case, 𝑎, 𝑏 = 1. 

Since the linear combination of the images under 𝑓1 of 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 does not equal 𝑓1(𝑥0), 𝑥 + 1 

is a nonlinear function. Therefore, the transformation 𝑇(𝑥), described in question 1, is nonlinear. 
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Figure 25: A sample case of the direct proof provided in Fig. 24 

The proof demonstrates the test for the additive condition of linearity for the function 𝑓1(𝑥) = 𝑥 + 1. Since 𝑏 =

1 and 𝑛 > 1, it follows that 𝑓1(𝑥) fails the linearity test. 

 

The proof's construction uses the mathematical properties of linear transformations and 

arithmetic and computational skills. Each line of work requires students to reason, based on the 

definition, the following logical step, which builds proof writing techniques, as suggested by 

Otten and Wambua (2022). Analytical and synthetic thinkers can both conceptualize linearity by 

presenting it through an algebraic or geometric lens, respectively. It can be observed that in both 

cases, the analytical and synthetic thinkers would reach the same conclusion regarding the 

transformation’s linear behavior. The analytic thinkers would consider the transformation’s 



  52 

mathematical properties and use algebra to deconstruct the given formula into the desired 

conditions of linearity.  

Comparatively, the synthetic thinkers would consider the graphical representation of the 

transformation’s components, concluding that the transformation is linear if and only if for all 

inputs, 𝑥0, in the domain of T, there exists (1) a one-to-one correspondence between (𝑥0, 𝑇(𝑥0)) 

and (𝑥0, 𝑇(𝑥1) + 𝑇(𝑥2) + ⋯ + 𝑇(𝑥𝑛)) where 𝑥0 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛, 𝑛 ∈ ℕ and (2) a one-to-

one correspondence between (𝑥0, 𝑐𝑇(𝑥0)) and (𝑥0, 𝑇(𝑐𝑥0)) for all scalars 𝑐 and inputs 𝑥0 in the 

domain of T. 

Lastly, consider the gap in the students’ conceptual component of their transformation 

Schema. While students could perform computational-based Actions on transformations (as seen 

in question 2) they could not make the necessary leap from computational Processes to structural 

Processes. Since a well- rounded Schema requires students to understand the mathematical 

properties of an Object—both in its definitional applications and computational applications—it 

appears that the establishment of the Schema was incomplete.  

Piaget and García (1989) suggest that the development of a Schema requires students to 

recognize the Schema’s components and their relations. To overcome the conceptual barrier in 

the acquisition of the Schema, therefore, a change from implicit application to consequent use of 

concepts is proposed (Piaget and García, 1989). For instance, providing students with additional 

assessments focusing on the definition of linearity directly (like in question 1), compared to 

assessments utilizing linearity implicitly (like in question 2), would benefit students’ retention of 

the notion of linearity within a linear algebra context. Piaget and García (1989) coined the term 

thematization to describe this conceptualization process. The thematization of a Schema points to 

the mental establishment of a Schema with the objective of dissecting and assessing its parts, 
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reassembling its components, and performing further Action on the Schema through the lens of 

an Object (Cooley et al., 2007; Piaget and García, 1989). As such, a thematization of the 

transformation Schema will focus on the Action application on the Object of transformations, 

with an emphasis on the definitional and conceptual Actions (as demonstrated in questions 1 and 

3).  

The student struggle surrounding work with and the understanding of the definition of 

linearity, along with the gap in the notational and terminological comprehension of linear 

transformations, could potentially be resolved through further work with linearity involving its 

thematization.   
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CHAPTER SEVEN: CONCLUSION 

This investigation explored students’ modes of thinking concerning linearity in linear 

algebra; focused on understanding how students’ interactions with, and ideas of linearity impact 

their comprehension and success within a linear algebra context. Both evaluative measures (3-

assessment questions, and a follow-up interview) utilized in this study revealed significant 

information pertaining to the root of the student struggle and experience with the concept of 

linearity and linear transformations. The following section discusses the derived conclusions 

from this study, along with suggestions for future work and replications of the research. 

 The results of this study indicated a noteworthy student-struggle with mathematical 

notation and terminology, which impacted student success with the acquisition of their 

transformation Schema. The genetic decomposition of functions and transformations (Harel & 

Dubinsky, 1991; Roa-Fuentes & Oktaç, 2010) implemented in the teaching of the course proved 

to be a useful indicator of student retention of the concept of linearity. The APOS breakdown of 

categories shed light on the various methods students integrated when attempting to solve a 

linearity problem.  

Overall, students did not acquire a complete Schema for transformations, demonstrating 

difficulty with conceptual, definition-based Actions and Processes. While most students correctly 

applied the necessary vector arithmetic (given that the conditions of linearity hold true) correctly, 

they struggled using the conditions themselves to prove a transformation’s behavior. The 

interviews further indicated the existence of a struggle with definition application derived from a 

lack of understanding of and misconceptions about the terminology surrounding linear 

relationships.  



  55 

Three suggestions were made to address this disconnect between the student experience 

of linearity and its proper linear algebra applications. Two of the suggestions are manifested 

through Sierpinskia’s (2000) modes of thinking and correlate to the established significance of 

both geometric and algebraic representations in mathematics (Aspari et al., 2019; Otten & 

Wambua, 2022). The last suggestion, concerning the conceptual component of a Schema, is seen 

through the lens of thematization discussed by Piaget and García (1989). 

 Future work with the ideas brought forth in this investigation should be focused on 

correcting the knowledge gap through improving students’ understanding of notation and 

mathematical terminology. In particular, emphasizing the thematization of linearity within the 

transformation Schema to ensure the conceptual understanding of linearity is retained (Piaget and 

García, 1989). In addition, one of the limitations of this investigation was the student sample 

size. As such, future replications of this research should be conducted with a larger participant 

pool, to establish the findings within a wider sector of STEM related research.  
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APPENDIX B: LIST OF ASSESMENT QUESTIONS 
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APPENDIX C: LIST OF INTERVIEW QUESTIONS 
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