
	 1

Making Writing Harder

Computer-Mediated Authorship and the Problem of Care

Kyle Booten

Published in the Proceedings of ELO2020, Orlando (Virtual Conference)

ABSTRACT: From simple spell-check to sophisticated autocomplete,
algorithms increasingly intervene in the process of writing. This paper
considers three recent examples of writing interfaces produced by
practitioners of electronic literature, each with a distinct model of what
kind of feedback or interference writers need – in other words, with a
conception of how to care for writers’ minds. One of the main logics that
shapes contemporary digital media, including corporate writing-assistance
tools, is that software should make some task easier. The three algorithmic
co-writers examined here carry out a different logic. Instead of trying to
make writing easier, they make writing more difficult, posing sudden
problems that the writer must solve by writing in a manner that they would
otherwise not. The primary goal of the paper is to understand and
distinguish these three systems’ pedagogical assumptions about what kind
of difficulty writers need. The discussion concludes by arguing that
electronic literature, seeking continuity with both Human-Computer
Interaction and Cognitive Poetics, should do more to research the
cognitive affordances of digital literary objects.

Care and Carelessness

As the writer types furiously, attempting to meet a deadline, the little red squiggle
appears. The writer’s eyes dart to the left. The word is “aquire,” but Microsoft
Word suggests it should be “acquire.” The writer accepts this change and moves
on.

A few sentences later, another red line appears. When the writer hovers their
cursor above the words marked by this line – “It goes without saying” – a popup
message warns that this way of starting a sentence suggests a lack of confidence.
This message comes from Grammarly, a virtual writing assistant.

	 2

These days, algorithms insinuate themselves into our writing processes in ways
that are increasingly complex, both on a technical level (Grammarly employs
cutting-edge machine learning) and on a conceptual level (it purports to assist
with subjective matters such as tone and style). The issue of spell-checkers and
automatic writing assistants may seem relatively low-stakes compared to other
ways that algorithmic media intervene in human lives, from facial-recognition
software used for policing to statistical algorithms that determine credit scores.
However, the phenomenon of human-algorithm co-writing connects to larger
debates about the ways that digital media are often detrimental to our minds. As
philosopher of media Bernard Stiegler has argued by way of Marx, digital
technology is dangerous because it threatens to “proletarianize” us in new ways,
making automatic and external to us the very mechanisms of thought and thus
alienating us from our own capacity to think for ourselves (Automatic Society).
Critiquing what he calls the “linguistic capitalism” represented by Google’s
search technologies, Frédéric Kaplan has argued that this company’s
autocomplete feature nudges human writers toward certain search terms that are
valuable to Google – and thus away from any kind of linguistic idiosyncrasy.i The
humble spell-checker, long blamed for making us worse at spelling, has presaged
the more ambitious ways that writing-assistance algorithms may strip us of our
creative capacities and homogenize our minds on behalf of technocapital.

On the other hand, we may more sanguinely see in certain algorithmic tools,
perhaps including both the spell-checker and Grammarly’s stylistic suggestions,
something that is often missing from contemporary digital media: care. As
Stiegler has also argued, digital media companies generally operate in a “care-
less” manner – for instance, by building sophisticated models of our minds only to
recklessly capture our attention for purely economic purposes (Taking Care). It is
not hard to find examples of the malady Stiegler diagnoses. Netflix’s
recommendation algorithm shows you what it thinks you will watchii, not (as a
teacher or friend might) what you should watch. Grammarly, at least, is explicitly
normative. It draws the writer’s attention to certain phrasings in order to suggest
that these words should be revised.

The question of what it means to write with an algorithm is a significant one that
connects to broader questions about how human thought could and should be
mediated by algorithmic logic and about how algorithms should care for and
about us.iii While there are many types of care (the care of a doctor for a patient,
of a collector for a rare object), here I use the term “care” in a way that is closer to
the kind of care enacted by teachers – perhaps especially teachers of literature,
composition, and related fields – for their students. Such pedagogical care
challenges the student to develop in their use of language. Behind such care is
often some normative sense of how the student’s mind should work, their words
should flow.

Mainstream corporate technologies such as Microsoft Word’s spell-check and
Google’s autocomplete seem hegemonic. Tinkering in the shadows cast by such
software, however, practitioners of electronic literature have long experimented
with developing alternative interfaces and, more generally, techniques of writing

	 3

with algorithms that are both speculative and critical (see Emerson). The goal of
this paper is to briefly connect three recent instances of co-writing tools that are
also examples of electronic literature in order to consider how each tool
exemplifies a different way of tending to – caring for – the minds of its users.

Rnn-writer’s Power of Suggestion

The novelist Robin Sloan’s rnn-writer (2016) makes use of a “recurrent neural
network” (“RNN”) to offer autocomplete-like suggestions for creative writing.
Given some input text (such as “There once wa”) the neural network will predict,
based on a large corpus of “training data,” the next most likely character (for
instance, “s”); performing this prediction step over and over generates text letter
by letter. With rnn-writer, Sloan has inserted this neural network into a typical
text-input interface. By pressing a special key, the user can prompt the network to
continue the text on the screen. Hitting “down” will cycle through other
suggestions. Sloan has trained rnn-writer on a collection of science fiction stories,
so its suggestions are (at least in theory) tailored for human writers who are
composing in this particular genre.

Rnn-writer both evokes and departs from corporate uses of neural-network-
generated autocompletions. Recently Google has integrated something like
autocomplete into its Gmail platform; going beyond “predictive text” algorithms
that merely suggest the user’s next word, “Smart Compose” predicts entire
phrases, empowering users to compose emails “from scratch, faster”
(“SUBJECT”). What Sloan sees valuable in rnn-writer’s suggestions is not that
they make writing quicker or easier (by filling in what the human writer would
perhaps have written anyway) but that they “make it harder” (“Writing,”
robinsloan.com). Composing with rnn-writer, he suggests, is like “writing with a
deranged but very well read parrot on your shoulder.” In a video that captures his
process of writing with rnn-writer in front of an audience at the 2017 Eyeo
Festival (“Writing”), he begins a story:

The sun rose over the planets’s [sic] bleak surface. Captain Eyeo watched
as

Sloan then prompts the system to produce a continuation of this sentence, cycling
through several options until settling on this one:

...as the control board clicked open.

Here the network’s suggestion continues the sentence grammatically while
fluently evoking a familiar motif of science fiction, yet to integrate these words
into the text requires Sloan to overcome a (minor) problem of textual coherence:
now that there is a control board, what exactly does it control? As Sloan continues
his impromptu tale, this device comes to control the summoning an “artist,”
ostensibly some sort of artificially intelligent being. Problem solved.

	 4

Other suggestions from the system, however, are much more confusing and less
easy to integrate. Describing this “artist,” Sloan adds:

...It was enormous, with

then again asks for suggestions. He cycles through the options:

...enormous, with a strong slow shout and a faint squeaking sound

...enormous, with a little purple straw against a wrapped finger and a
heavy face
...enormous, with a black box of human hair which was his face, and his
lips moved

In the video, the last of these evokes a chuckle from the audience, and Sloan
keeps it. However, if this suggestion is somehow more apt or appealing than the
others, all three suggestions seem similar: grammatically correct, extremely
specific (almost “purple” in their overuse of adjectives), and absurd (a word Sloan
himself uses to describe them).

These options point to how inherently impoverished Sloan’s model is relative to
Google’s Smart Compose. Google’s tool has (at least) three key technical
advantages: 1) it is trained on significantly more data (billions of emails); 2) its
statistical model is more complex; and 3) it refines is predictions based on the
respective styles of individual users (Chen). We may reasonably suspect another
non-technical advantage – that emails, as a genre, are simply more “boring” than
fiction (i.e. more statistically predictable, with considerable boilerplate). Rnn-
writer deploys the technology of linguistic prediction only to paradoxically make
use of its faultiness, the gap between the human and algorithmic writers’
respective senses of what letters should probably/probabilistically come next. In
its whimsical spirit, Sloan’s interface is perhaps less closely related to Google’s
powerful and polished software than it is to examples of intentionally defective
technology such as Simone Giertz’s internet-famous “shitty robots."iv

Yet rnn-writer’s purpose is not merely to reveal the smart stupidity of its neural
network. If rnn-writer is “deranged” (etymologically, removed from orderly
rowsv) its very design is an argument that our minds are too-firmly stuck in their
own orderly rows, and so computer-generated text can “inspire” us simply
through its unselfconscious strangeness. The more outlandish (i.e. “wrong”) are
rnn-writer’s suggestions, the greater threat they pose to the coherence of the text,
and the more skill is required to make use of a textual intrusion that could just as
easily seem like sabotage. But this invites the question: why go through the
trouble of training a neural network? Deep learning, after all, is costly in terms of
time and electricity. Why not insert text randomly plucked from the newspaper?
(Simple randomness worked well enough for Tristan Tzara and John Cage.)

Despite their oddness, rnn-writer’s suggestions are not nearly as absurd – not
nearly as challenging to integrate – as they could be. In the theory of learning, the
“Zone of Proximal Development” refers to that which the student cannot

	 5

understand or perform alone but can with the assistance of a teacher or more
experienced peer, a competency that is just out of reach (Vygotsky). Perhaps a
tool such as rnn-writer, when its predictive capacity fails noticeably but not
catastrophically, can lead the human writer into a “Zone of Proximal
Derangement” – just weirder than what they would have written themselves. That
Sloan’s interface makes it easy to cycle through suggestions as well as dismiss
them entirely likewise points to a certain theory of how the algorithmic writer can
benefit the human one: the neural network’s suggestions aim to be “ergonomic,”
challenging but not frustrating, fitted to the writer’s mind and capacities.

Abra’s Power of Surprise

Unlike most iOS apps, which stick to a single catchy name, Abra (2015) has a
subtitle: “a living text.” In the app description section on the iOS store, its
authors, Amaranth Borsuk, Kate Durbin, and Ian Hatcher, also refer to it as a
“magical poetry instrument” and a “spellbook.”

When the user opens Abra on an iOS device, the screen is pre-populated with
several lines of computer-generated text, cast in the hues of a muted rainbow. The
app gives the user a variety of ways of interacting with this pre-populated poetry,
including the simple ability to delete and add text. It is thus a “word processor,”
but it is far more than that. Abra possesses a series of functions that transform the
poem on the screen. When the user presses the “Cadabra” button at the top of the
screen, something “magical” happens. Often the words shuffle to their left and
right, switching places slowly or rapidly. Sometimes an emoji appears – usually
just one, though every so often the screen will become cluttered with emoji trees,
the text suddenly overgrown by a forest (Fig. 1).

The precise workings of the “Cadabra” button can be discovered in the online
repository of Abra’s code (Hatcher). A text file contains the names of each of the
39 “spells” that the “Cadabra” button can cast (Fig. 2). Next to each spell is
number that reflects the likelihood that the particular spell will be castvi, with
higher numbered spells more likely to occur. One function called
“AREA_RANDOM” is given the highest number, 28. The second highest
number, 7, belongs to the function “RANDOM_ERASE.” The most frequent
numbers assigned to functions are 1 and 2, meaning that they won’t occur very
often.

The action of the “Cadabra” button is a matter of probability, with a few functions
very common and the rest quite rare. And there is a pattern to which are rare and
which are common. The most common ones I would describe as – if certainly
bizarre by the buttoned-up standard of Microsoft Word – somehow more neutral.
When you press “Cadabra,” the most likely thing to happen is the
“AREA_RANDOM” function; this applies some “mutations” to the poem –
perhaps changing a word to an orthographically similar one or adding words.
“RANDOM_ERASE” is more self-explanatory: it randomly erases some words in
the poem. These common functions share a logic: words may appear, disappear,

	 6

or even morph into another word, but even those linguistic morphings are drawn
from a large, heterogeneous list of words. “Swan” may turn into “lawn,” or it may
turn into “aswoon,” or it may disappear. The poem is generally smudged, some
neutral chaos injected.

The rare functions, on the other hand, tend to be more dramatic and even at times
tendentious, implicitly making stronger claims about what the should be about.
When the “FOREST” function plants tree emoji throughout the text, this editorial
inclusion strongly suggests the poem become a sylvan idyll or a Romantic
meditation on nature. When the “DEATH” function litters the screen with crosses
and skull-and-bones symbols, the text is suddenly Gothic. When
“ERASE_ALL_EMOJI” and “ERASE_ALL_EXCEPT_EMOJI” do what their
names imply, Abra draws a distinction between emoji and “regular” characters,
asserting that one or the other are the only parts of the user’s current text worth
saving.

Abra’s hexes may seem utterly capricious, yet the designers have clearly thought
about how to structure their magic in order to achieve something like (but not
quite equivalent to) “user friendliness.” The common, not-very-specific spells
serve as a kind of “background,” an expectation that threatens to lull the writer
into complacency. The rare, powerfully tendentious spells violate this expectation,
creating surprise. Imagine the opposite: if almost every time the user hit the
“Cadabra” button the screen were to become cluttered with glyphs related to
death, the appearance of yet more skulls would quickly seem monotonously
macabre. Instead the interface itself sets up (through algorithmic, probabilistic
mechanisms) the possibility of it doing something that seems out of the blue; the
user taps “Cadabra,” expecting the interface to once again change some words or
delete them – when suddenly it is overwhelmed with the signs of a memento mori.

The design choices legible in Abra’s code imply a different conception of what
writers need than the one manifested by rnn-writer. If the latter suggests that
writers need to be led into a “Zone of Proximal Derangement,” pushed just off
course, Abra suggests they should be kept dramatically unstable, forced to deal
with sudden and much more extreme interference. Randomly injecting critical
events such as engine failures and rudder malfunctions into flight simulators has
recently demonstrated an ability to improve how pilots respond to real aviation
crises (Landman); one might hypothesize that Abra has a similar effect, making
the minds of writers more nimble and resilient.

Alternating Current’s Power of Judgment

My third example of an algorithmic co-writer, drawn from my own design-based
research in the development of digital tools, explores how an interface can be
more explicitly pedagogical by judging the human writer’s expression.

In ancient Greek rhetorical education, the progymnasmata were a series of
exercises. Athletic in nature, they aimed to give the student the right amount of

	 7

flexibility and strength (of the mind and its linguistic faculties) so that this rhetor-
in-training could move on to the business of actually composing orations (Webb).
For example, paraphrase was the task of reiterating a statement with different
syntax (Kennedy). Alternating Currentvii (2019) is one of a series of “digital
progymnasmata” – pieces linguistic training equipment that are designed to
stretch the writer beyond typical ways of writing, usually by spurring revision
(see also Booten, “Toward”).

A web-based writing interface, Alternating Current first prompts the writer to
compose a poem. After hitting “submit,” the interface plots – on a sentence-by-
sentence level – the sentiment of the poem, as judged by a classification algorithm
(Fig. 3). In machine learning, classification algorithms are used to place some
piece of data – for instance, a sentence – into (usually just) one category or class
from a list of such classes. Sentiment analysis algorithms classify the emotion of a
piece of text, most simply as either positive or negative. To be more specific, such
an algorithm returns the probability that a sentence belongs to a particular class.
In the case of Alternating Current, a classification algorithm has been trained to
tell the difference between two groups of posts from the social network Tumblr,
one that users had tagged as “#inspiring” (and related words), another that users
had tagged with terms like “#depressed.” The interface’s visualization is thus a
computer-generated representation of this poem’s emotional “arc."

The interface also displays an “EMOTIONAL OSCILLATION SCORE” (EOS),
a number that reflects the total shifts in emotion between adjacent lines; a poem
whose lines are either all happy or all sad will have a lower EOS than one whose
lines oscillate between affective poles. The interface instructs the writer to
maximize the EOS, revising the poem so that it takes the form of a very sad
sentence followed by a very happy sentence followed by yet another very sad
sentence, etc. Each time the writer adjusts the poem and hits “Submit,” each
sentence’s affective arc is replotted and the poem’s total EOS recalculated.

What is the point of this exercise? Here my answer must be biographical, since I
developed Alternating Current as an experiment in remedying a deficiency I
perceived in my own recent poetic writing: a kind of emotional flatness, a dull
quietude or (in the clinical sense) apathy, neither positive nor negative at any
moment. Even the choice of Tumblr is a personal one; posts on this site often take
the form of raw, unvarnished expressions of emotion, exactly the characteristics I
found lacking in my own verse. In this way, the design of Alternating Current
represents a very straightforward form of linguistic therapy, one that is indicated
for an equally specific diagnosis.

Still, this explanation does not get at what it is like to write specifically with a
machine learning system. After all, a writer might “manually” (without the
feedback of such an interface) revise a poem so that it oscillates between happy
and sad sentences. Yet in this case the writer is left only with their own sense of
what sort of language suggests positivity and what indicates dejection. Because a
machine learning model is a “black box,” information that is not immediately
human-readable, conforming to it requires guesswork: given what I know about

	 8

language in general as well as the Tumblr posts I have read (far fewer than the
algorithm itself has “read”), what sorts of words or sequences of words might I
expect to correlate with the #sadness? A wrong guess may reveal asymmetry
between an individual’s human intuitions and the statistical correlations observed
by the machine learning model. I would have thought the sentence

The moon will always know hate.

to be negative, and the sentence

The moon will always know love.

to be positive. To my surprise, Alternating Current’s language model tells me that
they are both similarly negative. It seems that in the context of #depressing
Tumblr posts, “love” itself is a source of sadness nearly as much as “hate.” Each
revision of a line becomes an attempt to get out of one’s own mind and into the
mind not just of the algorithm but of the genre of texts upon which it was trained
and thus (albeit quite obliquely) of the people who wrote them. Against a certain
view of poetry as the genre most amenable to the individual writer’s linguistic
idiosyncrasy and obscure meanings, the judgments of the model implicitly
attempt to re-socialize the writer into common language and fellow feeling. Yet
(unlike with Google’s autocomplete) this process is not automatic, and so it
invites the human writer to think through the gap between their mind and
statistical norm.

Forms and Affordances: Toward “Literary HCI”

Each of these algorithmic co-writers enacts a different assumption about how best
to push the human writer’s mind out of its typical orbit. What are the relative
strengths and limitations of these co-writers’ approaches – the power of
suggestion, the power of surprise, and the power of judgment?

These questions are, at least in part, empirical ones. To answer them would likely
require the field of electronic literature to see itself in deeper continuity with more
mainstream forms of Human-Computer Interaction (HCI) research. In this field, it
is generally not enough to produce new digital tools; researchers must also
systematically (and often experimentally) analyze how actual users employ these
systems. Insofar as electronic literature is also invested in the production of tools
– not just works of literature – it should learn from HCI’s perspectives on how to
rigorously study the tool-mediated dimensions of human thought and creativity.
To be clear, the fields of e-lit and HCI are not totally separate. For example,
empirical research has already explored systems similar to rnn-writer
(Manjavacas et al.; Roemmele and Gordon), ambient literature (Marcinkowski,
“Reading”), and digital fiction (Bell et al.).viii But, within the study of electronic
literature, such empirical approaches are far from de rigueur. An HCI
investigation of rnn-writer could interrogate the kinds of linguistic contortions
that human writers make to skillfully recuperate the “deranged” suggestion of the
algorithm.ix One might study Abra by comparing how writers compose with

	 9

different versions of it, each programmed to provide more or less surprise. A
study of Alternating Current could explore the difficult question of whether or not
it makes the writer literally feel differently.

Electronic literature – staying rooted in the broader literary field – should also see
its attempts to create interfaces as in continuity with the more general question of
literary form, especially as it relates to constraint. Certainly the examples of co-
writers discussed above resonate with the kinds of constraint-based writing
practices developed by the OuLiPo, techniques designed to push writers beyond
“the range of normal speech and language registers” and toward “linguistic
virtuosity” (Symes). Yet this is only one pre-digital connection. From the
perspective of “Cognitive Poetics,” all literary forms and genres may be thought
of as tools for thinking that have specific “affordances” – i.e. that help us to think
in new ways (Cave). That the sonnet form has endured, Terence Cave argues,
suggests that its features (such as the volta or “turn”) afford a cognitive
experience that is itself enduringly useful. Yet, if the sonnet is a cognitive tool, it
is a simple machine; it lacks the “moving parts” of a computational interface and
cannot morph in response to what the writer has written. Moving forward,
practitioners of what might be called “literary HCI” should take stock of the
affordances that are specific to the digital interface while also placing their efforts
within a broader map of literary forms as tools of the mind – tools that structure,
unsettle, assuage, and amplify.

But the question of literary forms as tools of the mind extends well beyond the
purely literary domain. To return to Stiegler: one of the most pressing political
imperatives of our time is to discover how to repurpose digital media, which
threatens so much harm to our minds, in ways that instead refocus cognition in
beneficial, careful ways. This he has called the “contemporary battle for
intelligence” (Taking Care). A “literary HCI” that focuses on the cognitive
experiences that texts foster could play an important – if speculative – role in this
battle. And while, as N. Katherine Hayles has argued, the creation of any
“cognitive assemblages” involving humans and technical objects offers a chance
for us to “design ourselves” anew (55), algorithmic co-writers are particularly
vivid examples of this potential. These tools imply that the human mind needs
assistance or even retraining, whether strange or stern. To design one is to offer an
answer to the key question: amidst this battle for intelligence, what do minds
need?

																																																								
i Stiegler's argument indeed draws upon Kaplan's.
ii See https://help.netflix.com/en/node/100639.
iii My mention of the concept of “mediation” is with reference to Vygotsky's
concept of the tool- and sign-mediated aspects of human thought (“Mind”).
iv See https://www.youtube.com/channel/UC3KEoMzNz8eYnwBC34RaKCQ.
v Etymology furnished by Google Search.
vi Here I am describing (in somewhat simplified terms) only part of Abra and
indeed only part of the “Cadabra” button's effects.

	 10

																																																																																																																																																							
vii See Booten (“Sentiment”) as well as:
https://github.com/kbooten/alternatingcurrent.
viii Marcinkowski (“Methodological Nearness”) offers another perspective on why
the study of e-lit should embrace HCI.

	 11

Acknowledgments

Sincere thanks are due to the anonymous reviewers for their insightful
suggestions.

	 12

Figures

Figure 1: Abra

	 13

Figure 2: “spell_odds.txt"

	 14

Figure 3: Alternating Current (poem originally published in Booten, “Sentiment”)

	 15

References

Bell, Alice, Astrid Ensslin, Isabelle van der Bom, and Jen Smith. “Immersion in
Digital Fiction: A Cognitive, Empirical Approach.” International Journal of
Literary Linguistics, vol. 7, no. 1, 2018,
https://journals.linguistik.de/ijll/index.php/ijll/article/view/105.

Booten, Kyle. “Sentiment: A Lab Notebook.” Tentacular, no. 4, 2019.
https://www.tentacularmag.com/issue-4a/kyle-booten.

---. “Toward Digital Progymnasmata.” Proceedings of the 10th International
Conference on Computational Creativity, edited by Kazjon Grace, Michael Cook,
Dan Ventura, and Mary Lou Maher, ACC, 2019.

Borsuk, Amaranth, Kate Durbin, and Ian Hatcher. Abra: a living text. iOS App
Store, 2015.

Cave, Terence. Thinking with Literature: Towards a Cognitive Criticism. Oxford
UP, 2016.

Chen, Mia Xu, et al. “Gmail Smart Compose: Real-Time Assisted Writing.”
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, Ankur Teredesai and Vipin Kumar, ACM, 2019.

Emerson, Lori. Reading Writing Interfaces: From the Digital to the Bookbound.
University of Minnesota Press, 2014.

Hatcher, Ian. “spell_odds.txt.” Abra, GitHub, 2015,
https://github.com/ihatch/abra/blob/master/Abra/spell_odds.txt. Accessed 15
November 2019.

Hayles, N. Katherine. “Cognitive Assemblages: Technical Agency and Human
Interactions.” Critical Inquiry, vol. 43, no. 1, 2016, pp. 32-55.

Kaplan, Frederic. “Linguistic Capitalism and Algorithmic Mediation.”
Representations, vol. 127, no. 1, 2014, pp. 57-63.

Kennedy, George Alexander, editor. Progymnasmata: Greek Textbooks of Prose
Composition and Rhetoric. Brill, 2003.

Landman, Annemarie, et al. “Training Pilots for Unexpected Events: A Simulator
Study on the Advantage of Unpredictable and Variable Scenarios.” Human
Factors, vol. 60, no. 6, 2018. pp. 793-805.

Marcinkowski, Michael. “Methodological Nearness and the Question of
Computational Literature.” DHQ: Digital Humanities Quarterly, vol. 16, no. 2,
2018. http://www.digitalhumanities.org/dhq/vol/12/2/000378/000378.html.

---. “Reading Ambient Literature: Reading Readers.” Participations, vol. 16, no.
1, 2019, pp. 259-279.

	 16

Manjavacas, Enrique, et al. “Synthetic literature: Writing Science Fiction in a Co-
creative Process.” Proceedings of the Workshop on Computational Creativity in
Natural Language Generation (CC-NLG 2017), edited by Hugo Gonçalo
Oliveira, Ben Burtenshaw, Mike Kestemont, and Tom de Smedt, ACL, 2017.

Roemmele, Melissa and Andrew S. Gordon. “Creative Help: A Story Writing
Assistant.” Proceedings of the 8th International Conference on Interactive Digital
Storytelling, Copenhagen, Denmark, 2015.

Sloan, Robin. Rnn-writer. GitHub, 2016, https://github.com/robinsloan/rnn-writer.
Accessed 10 November 2019.

---. “Writing with the Machine.” robinsloan.com, 2016,
https://www.robinsloan.com/notes/writing-with-the-machine/. Accessed 15
November 2019.

---. “Writing with the Machine.” Eyeo Festival, vimeo, 2017,
https://vimeo.com/232545219. Accessed 15 November 2019.

Stiegler, Bernard. Automatic Society 1: The Future of Work. Translated by Daniel
Ross, Polity Press, 2016.

---. Taking Care of Youth and the Generations. Translated by Stephen Barker,
Stanford UP, 2010.

“SUBJECT: Write Emails Faster with Smart Compose in Gmail.” The Keyword, 8
May. 2018. https://www.blog.google/products/gmail/subject-write-emails-faster-
smart-compose-gmail/.

Symes, Colin. “Writing by Numbers: OuLiPo and the Creativity of Constraints.”
Mosaic: A Journal for the Interdisciplinary Study of Literature, vol. 32, no. 3,
1999, pp. 87-107.

Vygotsky, Lev Semenovich. Mind in Society: The Development of Higher
Psychological Processes. Edited by Michael Cole, Vera John-Steiner, Sylvia
Scribner, and Ellen Souberman. Harvard University Press, 1980.

Webb, Ruth. “The Progymnasmata as Practice.” Education in Greek and Roman
Antiquity, edited by Yun Lee Too, Brill, 2001, pp. 289-361.

