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ABSTRACT

Unlike humans, Al systems are brittle and not robust. They often struggle when faced with novel
situations, and are highly sensitive to small perturbations, which can lead to catastrophically poor
performance. These systems comprise two main components: the model and the data. In recent
decades, research has primarily focused on models, emphasizing advanced structures or algorithms
to enhance Al performance. However, the data-centric aspect consumes most of the time and re-
sources of human experts and greatly influences Al systems. Furthermore, the gains from the
model-centric part are reaching a plateau. Thus, I shifted my research focus toward data-centric Al
in order to identify the ideal feature space for preparing the Al-readiness of data. To realize this,
this dissertation introduces two main research perspectives and the corresponding frameworks:
1) the decision-making perspective and 2) the generative Al perspective. The decision-making
perspective formulates feature selection and feature generation as Markov decision-making pro-
cesses. Within this perspective, reinforcement learning is used to develop practical frameworks
due to its proficiency in optimizing such processes. Specifically, for feature selection, a single
agent is employed to determine the selection of individual features in an iterative manner. For fea-
ture generation, a cascading reinforced agent structure is proposed to select candidate features and
operations for generating new features. The generative Al perspective assumes that the knowledge
derived from discrete feature learning records can be effectively integrated into a continuous space.
This integration facilitates the exploration of an optimal feature space inspired by the successes of
generative Al techniques. Thus, a unified framework is proposed to optimize both tasks, which has
four key steps: data collection, continuous space construction, enhanced embedding search, and
feature space reconstruction. The effectiveness of both perspectives underscores the potential for

building up foundation models in the data-centric AI domain.
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CHAPTER 1: INTRODUCTION

Motivation

Artificial Intelligence (Al) has profoundly revolutionized various areas, such as transportation, ur-
ban planning, economy, etc. The typical Al development process includes three key phases: 1)
data collection; ii) data representation (a.k.a. feature space); and iii) machine learning (ML) model
construction. Creating a high-quality feature space is crucial, as it enhances the measurement of
distances and discriminative patterns, thereby improving the structural and predictive aspects of
data for more effective Al applications. There has been considerable research focusing on data-
centric Al to achieve these improvements. This dissertation addresses two primary tasks within this
domain: feature selection, which enhances the feature space by eliminating redundant features, and
feature generation, which augments the feature space through mathematically transforming origi-
nal features. However, existing methods are limited by: 1) Requiring extensive domain knowledge
and human intervention, reducing their flexibility across different domains; 2) Tending to produce
latent and untraceable representations, which hinders further analysis of the feature space; 3) Ex-
ponentially growing number of combinations as the dimensionality of the feature space increases,
making these methods unsustainable for high-dimensional feature spaces. These challenges bring a
key question: How can we autonomously develop an effective, traceable, and interpretable feature
space? To address this, I introduce the novel concept of “Transformation Learning”, comprising
"feature generation learning’ and ’feature selection learning’. This research presents two inno-
vative research perspectives to reformulate the two tasks: 1) The Decision-Making Perspective,
which views them as discrete Markov decision-making processes, employing reinforcement learn-
ing to develop practical frameworks; 2) The Generative-Al Perspective, which integrates feature

learning knowledge into an embedding space, facilitating the search for an enhanced feature space.



Research Gap in Existing Literature

This dissertation includes two main topics: automated feature generation and automated feature
selection. We will first review the existing works in these areas. Then, we will identify the research

gaps and limitations of them.

Automated Feature Generation can enhance the feature space by automatically mathematically
transforming the original feature space [13, 51, 13]. Existing works can be divided into three
categories: 1) expansion-reduction based approaches [40, 45, 52, 38, 43]. Those approaches first
expand the original feature space by explicitly [42] or greedily [16] decided mathematical transfor-
mation, then reduce the space by selecting useful features. However, it is hard for them to produce
or evaluate both complicated and effective mathematical compositions, leading to inferior trans-
formation performance. 2) evolution-evaluation approaches [44, 88, 112, 101]. These methods
iteratively generate effective features and keep the most useful ones until achieving the maximum
iteration number. Evolutionary algorithm models optimize the entire process. However, they still
focus on how to simulate the discrete decision-making process in feature engineering. Thus, they
are still time-consuming and unstable. 3) Auto ML-based approaches [12, 113]. Auto ML aims to
find the most suitable model architecture automatically [18, 57, 35, 41]. The success of auto MLL
in many area [110, 100, 3, 92] and the similarity between auto ML and AFT inspire researchers to

formulate AFT as an auto ML task to resolve.

Automated Feature Selection can be widely categorized into three types, i.e., filter methods,
wrapper methods, and embedded methods [62, 111, 11, 75]. Filter methods rank features only by
relevance scores and only top-ranking features are selected. The representative filter method is
the univariate feature selection [21] and correlation based feature selection [108]. Filter methods
are very fast and thus they are efficient on high-dimensional datasets. The representative wrapper

methods are branch and bound algorithms [67, 48]. Wrapper methods are supposed to achieve



better performance than filter methods since they search on the whole feature subset space. Evolu-
tionary algorithms [105, 46] low down the computational cost but can only promise local optimum
results. Embedded methods combine feature selection with predictors more closely than wrapper
methods. The most widely used embedded methods are LASSO [85] and decision tree [82]. Em-
bedded methods could have supreme performance on the incorporated predictors, but are normally

not very compatible with other predictors.

Research Gaps: Regarding automated feature generation, current approaches face limitations: 1)
Overlooking the heterogeneity between various feature pairs; i1) Experiencing exponential growth
in time complexity with an increase in exploration steps; iii) Struggling to maintain consistent
feature generation performance across diverse scenarios. Regarding automated feature selection,
existing methods are limited by: 1) Exponential growth in time complexity as the dimensionality
of the feature space increases; ii) Limited generalization ability for cross-domain feature sets; iii)

Inconsistent performance in feature selection across different scenarios.

Research Thinking and Project Aims

To address these gaps, this dissertation aims to propose automated, robust, interpretable, and trace-
able feature transformation approaches to enhance the input of Al models. Thus, we revisit the

feature generation and feature selection tasks from three sides:

Optimization Thinking: The process of feature generation is iteratively selecting candidate fea-
tures and applying mathematical operations to create new, informative features that enhance the
performance of downstream ML tasks. Similarly, the procedure of feature selection refers to the
iterative identification and selection of optimal feature subsets with the same objective. Both pro-
cesses can be formulated as discrete decision-making processes. There are two research questions:

1) How can we automatically optimize the two tasks to obtain better feature space? ii) Given the



similarities in the principle of the two tasks, is it possible to develop a unified optimization frame-

work that effectively addresses both?

Framework Thinking: To establish practical frameworks for feature generation and feature se-
lection, it is significant to construct concrete components, addressing the following aspects: i) The
criteria that ought to be employed for selecting candidate features and mathematical operations.
i1) The approach to modeling the knowledge inherent in feature learning to enhance the quality
of the feature space. iii) The specific learning objective of the framework, whether it is centered
on feature selection or feature generation. iv) The generalization way of the feature selection and

generation frameworks when confronted with different underlying downstream ML tasks.

Computational Thinking: The third research thinking is from the computational perspective,
which is essential in assessing the practical applicability of the proposed feature selection and
generation frameworks in real-world scenarios. The significant research question is this: i) How
can we enhance the computational efficiency of these frameworks, particularly when dealing with

high-dimensional feature spaces?

This dissertation focuses on developing automated feature transformation systems. They are de-
signed to enhance the feature space, aiming to improve the downstream ML tasks’ performance

and make the feature space easier to understand and interpret.

Organization

To tackle these research thinking questions, we propose two main research perspectives for refor-
mulating feature generation and feature selection: i) A Decision-making perspective, where we
treat these tasks as discrete Markov decision-making processes and use reinforcement learning

to find the best solutions. ii) A Generative-Al Perspective, which combines both tasks into one



optimization system and uses generative Al approaches to model feature learning knowledge.

Specifically, this dissertation can be categorized into two thrusts:

* Thrust 1: Traceable Feature Space Refinement: A Decision-Making Perspective.

Regarding feature generation learning, we examine the feature engineering workflow em-

ployed by human experts, identifying it as an iterative process. A cascading reinforced agent

structure is proposed for selecting candidate features and operations. This structure com-

prises three agents: two dedicated to selecting candidate features and one focused on choos-

ing candidate mathematical operations. Utilizing these selections, novel and informative

features are generated and incorporated into the feature space for the next iterative updates.

The primary objective of this process is to optimize both the performance of downstream

machine learning tasks and the utility score of the features.

Regarding feature selection learning, we formulate the feature selection task as a Markov

discrete decision-making process. We introduce a single-agent Monte Carlo-based Rein-

forced Feature Selection (MCRFS) method, accompanied by two strategies for efficiency

enhancement: an early stopping strategy and a reward-level interactive strategy. More specif-

ically, we first develop a behavior policy to navigate through the feature set for generating

training data. This training data is then used to evaluate and enhance the target policy through

the Bellman equation. After that, we employ incremental importance sampling with the early

stopping strategy to heighten training efficiency by discarding skewed data. This strategy en-

tails getting the behavior policies traversal, with the cessation probability inversely related

to the importance of the sampling weight. Moreover, we introduce a reward-level interactive

strategy to augment training efficiency by the integration of reward-level external advice.

* Thrust 2: Traceable Feature Space Refinement: A Generative-Al Perspective. Feature selec-

tion and feature generation can both be formulated as discrete decision-making processes.

5



This formulation naturally leads us to propose a unified optimization framework to inte-
grate the two tasks. We expect that such integration can alleviate the inherent complexities
in modeling, potentially enhancing the performance of both tasks. Inspired by the success
of ChatGPT, this dissertation assumes that extensive knowledge in feature engineering can
be effectively embedded into a continuous embedding space. This strategic compression
can facilitate a more efficient search for the optimal feature space. Thus, we propose a
unified framework with four key steps: 1) Sequential training data collection; 2) Deep se-
quential feature knowledge embedding; 3) Gradient-steered better embedding search; 4)
Autoregressive-based feature space reconstruction. More specifically, in Step 1, we can em-
ploy the self-optimizing feature selection or generation learning framework to collect suf-
ficient feature-accuracy pairs as training data. In Step 2, we propose an encoder-evaluator-
decoder model structure to preserve the knowledge in the training data into a distinguishable
continuous embedding space. In Step 3, we select local optimal embeddings based on the
model performance. Then, we move these embeddings along the direction of maximizing the
downstream task performance to get enhanced ones. In Step 4, these enhanced embeddings
are input into the well-trained decoder to generate the feature space in an autoregressive
manner. We output the feature space with the highest downstream task performance as the

optimal feature generation or selection result.

In the following chapters, this dissertation delves into two distinct perspectives. Chapter 2 and
Chapter 3 focus on the decision-making perspective. I will explore self-optimizing feature gen-
eration learning and self-optimizing feature selection learning in detail. Chapter 3 and Chapter 4
shift to the generative-Al perspective, where I will comprehensively examine autoregressive fea-
ture generation learning and autoregressive feature selection learning. Chapter 5 will summarize
the key findings and contributions of this research. The future research directions in these areas

will also be discussed in this chapter.



CHAPTER 2: DECISION-MAKING PERSPECTIVE:
SELF-OPTIMIZING FEATURE GENERATION LEARNING

In this chapter, I will introduce the framework for self-optimizing feature generation learning. This
task is formulated as the collaboration of three discrete decision-making processes and reinforce-

ment learning is employed to develop a practical framework.

Introduction

Classic Machine Learning (ML) mainly includes data prepossessing, feature extraction, feature
engineering, predictive modeling, and evaluation. The evolution of deep Al, however, has resulted
in a new principled and widely used paradigm: i) collecting data, ii) computing data represen-
tations, and iii) applying ML models. Indeed, the success of ML algorithms highly depends on
data representation [6]. Building a good representation space is critical and fundamental because
it can help to 1) identify and disentangle the underlying explanatory factors hidden in observed
data, 2) easy the extraction of useful information in predictive modeling, 3) reconstruct distance
measures to form discriminative and machine-learnable patterns, 4) embed structure knowledge
and priors into representation space and thus make classic ML algorithms available to complex

graph, spatiotemporal, sequence, multi-media, or even hybrid data.

In this paper, we study the problem of learning to reconstruct an optimal and explainable feature
representation space to advance a downstream ML task (Figure 2.1). Formally, given a set of
original features, a prediction target, and a downstream ML task (e.g., classification, regression),
the objective is to automatically reconstruct an optimal and explainable set of features for the ML

task.
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Figure 2.1: We want to uncover the optimal feature space that is explainable and performs
optimally in a downstream ML task by iteratively reconstructing the feature space.

Prior literature has partially addressed the problem. The first relevant work is feature engineering,
which designs preprocessing, feature extraction, selection [56, 30], and generation [44] to extract
a transformed representation of the data. These techniques are essential but labor-intensive, show-
ing the low applicability of current ML practice in the automation of extracting a discriminative
feature representation space. Issue 1 (full automation): how can we make ML less dependent on
feature engineering, construct ML systems faster, and expand the scope and applicability of ML?
The second relevant work is representation learning, such as factorization [24], embedding [25],
and deep representation learning [97, 95]. These studies are devoted to learning effective latent
features. However, the learned features are implicit and non-explainable. Such traits limit the de-
ployment of these approaches in many application scenarios (e.g., patient and biomedical domains)
that require not just high predictive accuracy but also trusted understanding and interpretation of
underlying drivers. Issue 2 (explainable explicitness): how can we assure that the reconstruct-
ing representation space is traceable and explainable? The third relevant work is learning based
feature transformation, such as principle component analysis [10], traversal transformation graph
based feature generation [44], sparsity regularization based feature selection [34]. These methods
are either deeply embedded into or totally irrelevant to a specific ML model. For example, LASSO
regression extracts an optimal feature subset for regression, but not for any given ML model. Issue
3 (flexible optimal): how can we create a framework to reconstruct a new representation space

for any given predictor? The three issues are well-known challenges. Our goal is to develop a new



perspective to address these issues.

Our Contributions: A Traceable Group-wise Reinforcement Generation Perspective. We
propose a novel principled framework to address the automation, explicitness, optimal issues in
representation space reconstruction. We view feature generation and selection from the lens of
Reinforcement Learning (RL). We show that learning to reconstruct representation space can be
accomplished by an interactive process of nested feature generation and selection, where feature
generation is to generate new meaningful and explicit features, and feature selection is to remove
redundant features to control feature sizes. We highlight that the human intuition and domain
expertise in feature generation and selection can be formulated as machine-learnable policies. RL
is an emerging technique to automatically generate experiences data and learn globally optimized
policies. Such traits have sparked considerable interest in recent years. We demonstrate that the
iterative sequential feature generation and selection can be generalized as an RL task. We find that
crossing features of high information distinctness is more likely to generate meaningful variables
in a new representation space, and, thus, leveraging group-group crossing can accelerate learning

efficiency.

Summary of Proposed Approach. Based on our findings, we develop a generic and principled
framework: group-wise reinforcement feature generation, for optimal and explainable represen-
tation space reconstruction. This framework learns a representation space reconstructor that can
1) Goal 1: explainable explicitness: provide traceable generation process and understand the
meanings of each generated feature. 2) Goal 2: self optimization: automatically generate an
optimal feature set for a downstream ML task without much professional experience and human
intervention; 3) Goal 3: enhanced efficiency and reward augmentation: enhance the generation
and exploration speed in a large feature space and augment reward incentive signal to learn clear

policies.



To achieve Goal 1, we propose an iterative feature generation and selection strategy, where the
generation step is to apply a mathematical operation to two features to create a new feature and
the selection step is to control the feature set size. This strategy allows us to explicitly trace the
generation process and extract the semantic labels of generated features. To achieve Goal 2, we
decompose feature generation into three Markov Decision Processes (MDPs): one is to select the
first meta feature, one is to select an operation, and one is to select the second meta feature. We
develop a new cascading agent structure to coordinate agents to share states and learn better selec-
tion policies for feature generation. To achieve Goal 3, we design a group-operation-group based
generation approach, instead of intuitive feature-operation-feature based generation, in order to ac-
celerate representation space reconstruction. In particular, we first cluster the original features into
different feature groups by maximizing intra-group feature cohesion and inter-group feature dis-
tinctness, where we propose a novel feature-feature information distance. We then let agents select
and cross two feature groups to generate multiple features each time. The benefits of this strategy
are two folds: 1) it explores feature space faster; ii) if we use feature-operation-feature based gen-
eration to add a single feature each time, the state of a feature set cannot be sufficiently changed,
thus, restricting the agents from gaining enough reward to learn effective policies. Instead, the

group-operation-group based generation can alleviate this issue by augmenting the reward signal.

Definitions and Problem Statement

In this section, we present several important definitions and then outline the problem statement.

10



Important Definitions

Definition 1 Feature Group. We aim to reconstruct the feature space of such datasets D <
F.,y >. Here, F is a feature set, in which each column denotes a feature and each row denotes a
data sample; 1y is the target label set corresponding to samples. To effectively and efficiently pro-
duce new features, we divide the feature set F into different feature groups via clustering, denoted

by C. Each feature group is a feature subset of F.

Definition 2 Operation Set. We perform a mathematical operation on existing features in order
to generate new ones. The collection of all operations is an operation set, denoted by O. There are

» o« » o«

two types of operations: unary and binary. The unary operations include “square”, “exp”, “log”,

» g

and etc. The binary operations are “plus”, “multiply”, “divide”, and etc.

Definition 3 Cascading Agent. To address the feature generation challenge, we develop a new
cascading agent structure. This structure is made up of three agents: two feature group agents
and one operation agent. Such cascading agents share state information and sequentially select

feature groups and operations.

Problem Statement

The research problem is learning to reconstruct an optimal and explainable feature representation
space to advance a downstream ML task. Formally, given a dataset D < F,y > that includes an
original feature set F and a target label set y, an operator set O, and a downstream ML task A
(e.g., classification, regression, ranking, detection), our objective is to automatically reconstruct an

optimal and explainable feature set F* that optimizes the performance indicator V' of the task A.

11
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Figure 2.2: An overview of GRFG. First, we cluster the feature set into feature groups. Second,
we employ cascading agents to select two feature groups and one operation. Next, we conduct
group-group feature interaction to generate new features and combine them with original features
to create a new feature set. Then, the updated feature set is fed into a downstream task to assess
the selection process of cascading agents for parameter update. Meanwhile, we adopt feature
selection to control the size of the feature set and iterate the process until the best feature set is
discovered or the maximum number of iterations is reached.

The optimization objective is to find a reconstructed feature set F that maximizes:

Fr= argmaxﬁ(VA(]}, v)), 2.1

where F can be viewed as a subset of a combination of the original feature set F and the generated
new features F9, and FY is produced by applying the operations O to the original feature set F

via a certain algorithmic structure.

Methodology

In this section, we present an overview, and then detail each technical component of our framework.

12



Framework Overview

Figure 2.2 shows our proposed framework, Group-wise Reinforcement Feature Generation (GRFG).
In the first step, we cluster the original features into different feature groups by maximizing intra-
group feature cohesion and inter-group feature distinctness. In the second step, we leverage a
group-operation-group strategy to cross two feature groups to generate multiple features each time.
For this purpose, we develop a novel cascading reinforcement learning method to learn three agents
to select the two most informative feature groups and the most appropriate operation from the op-
eration set. As a key enabling technique, the cascading reinforcement method will coordinate the
three agents to share their perceived states in a cascading fashion, i.e., (agentl, state of the first
feature group), (agent2, fused state of the operation and agentl’s state), and (agent3, fused state of
the second feature group and agent2’s state), in order to learn better choice policies. After the two
feature groups and operation are selected, we generate new features via a group-group crossing
strategy. In particular, if the operation is unary, e.g., sqrt, we choose the feature group of higher
relevance to target labels from the two feature groups, and apply the operation to the more rele-
vant feature group to generate new features. if the operation is binary, we will choose the K most
distinct feature-pairs from the two feature groups, and apply the binary operation to the chosen
feature pairs to generate new features. In the third step, we add the newly generated features to the
original features to create a generated feature set. We feed the generated feature set into a down-
stream task to collect predictive accuracy as reward feedback to update policy parameters. Finally,
we employ feature selection to eliminate redundant features and control the dimensonality of the
newly generated feature set, which will be used as the original feature set to restart the iterations

to regenerate new features until the maximum number of iterations is reached.
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Generation-oriented Feature Clustering

One of our key findings is that group-wise feature generation can accelerate the generation and
exploration, and, moreover, augment reward feedback of agents to learn clear policies. Inspired
by this finding, our system starts with generation oriented feature clustering, which aims to create
feature groups that are meaningful for group-group crossing. Our another insight is that crossing
features of high (low) information distinctness is more (less) likely to generate meaningful vari-
ables in a new representation space. As a result, unlike classic clustering, we aim to cluster features
into different feature groups, with the optimization objective of maximizing inter-group feature in-
formation distinctness while minimizing intra-group feature information distinctness. To achieve
this goal, we propose the M-Clustering for feature clustering, which starts with each feature as a

feature group and then merges the closest feature group pair at each iteration.

Distance Between Feature Groups: A Group-level Relevance-Redundancy Ratio Perspective.
To achieve the goal of minimizing intra-group feature distinctness and maximizing inter-group
feature distinctness, we develop a new distance measure to quantify the distance between two
feature groups. We highlight two interesting findings: 1) relevance to predictive target: if the
relevance between one feature group and predictive target is similar to the relevance of another
feature group and predictive target, the two feature groups are similar; 2) mutual information: if
the mutual information between the features of the two groups are large, the two feature groups
are similar. Based on the two insights, we devise a feature group-group distance. The distance
can be used to evaluate the distinctness of two feature groups, and, further, understand how likely
crossing the two feature groups will generate more meaningful features. Formally, the distance is

given by:

Z Z |M] fza Mj(fj7y>|7 (22)

dis CZ,C
(Ci, Cj) = | ]|f€cfec MI(f;, f;) + €

where C; and C; denote two feature groups, |C;| and |C,| respectively are the numbers of features
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in C; and C;, f; and f; are two features in C; and C; respectively, y is the target label vector.
In particular, |MI(f;,y) — MI(f;,y)| quantifies the difference in relevance between y and f;,
fi- X |MI(fi,y) — MI(f;,y)|is small, f; and f; have a more similar influence on classifying y;
MI(fi, f;)+e€ quantifies the redundancy between f; and f;. € is a small value that is used to prevent

the denominator from being zero. If M I(f;, f;) + €is big, f; and f; share more information.

Feature Group Distance based M-Clustering Algorithm: We develop a group-group distance
instead of point-point distance, and under such a group-level distance, the shape of the feature
cluster could be non-spherical. Therefore, it is not appropriate to use K-means or density based
methods. Inspired by agglomerative clustering, given a feature set J, we propose a three step
method: 1) INITIALIZATION: we regard each feature in F as a small feature cluster. 2) REPEAT:
we calculate the information overlap between any two feature clusters and determine which cluster
pair is the most closely overlapped. We then merge two clusters into one and remove the two
original clusters. 3) STOP CRITERIA: we iterate the REPEAT step until the distance between the
closest feature group pair reaches a certain threshold. Although classic stop criteria is to stop when
there is only one cluster, using the distance between the closest feature groups as stop criteria can
better help us to semantically understand, gauge, and identify the information distinctness among

feature groups. It eases the implementation in practical deployment.

Cascading Reinforcement Feature Groups and Operation Selection

To achieve group-wise feature generation, we need to select a feature group, an operation, and
another feature group to perform group-operation-group based crossing. Two key findings inspire
us to leverage cascading reinforcement. Firstly, we highlight that although it is hard to define
and program the optimal selection criteria of feature groups and operation, we can view selection

criteria as a form of machine-learnable policies. We propose three agents to learn the policies by
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Figure 2.3: The cascading agents are comprised of the feature group agentl, the operation agent,
and the feature group agent2. They collaborate to choose two candidate feature groups and a
single operation.

trials and errors. Secondly, we find that the three selection agents are cascading in a sequential
auto-correlated decision structure, not independent and separated. Here, “cascading” refers to the
fact that within each iteration agents make decision sequentially, and downstream agents await
for the completion of an upstream agent. The decision of an upstream agent will change the
environment states of downstream agents. As shown in Figure 2.3, the first agent picks the first
feature group based on the state of the entire feature space, the second agent picks the operation
based on the entire feature space and the selection of the first agent, and the third agent chooses
the second feature group based on the entire feature space and the selections of the first and second

agents.

We next propose two generic metrics to quantify the usefulness (reward) of a feature set, and then

form three MDPs to learn three selection policies.

Two Utility Metrics for Reward Quantification. The two utility metrics are from the supervised

and unsupervised perspectives.

Metric 1: Integrated Feature Set Redundancy and Relevance. We propose a metric to quantify

feature set utility from an information theory perspective: a higher-utility feature set has less re-
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dundant information and is more relevant to prediction targets. Formally, given a feature set / and
a predictive target label y, such utility metric can be calculated by

U(Fly) = Z MI(f;, f;) +

| fz,f] eF

ZMI fu), (2.3)

&

where M1 is the mutual information, f;, f;, f are features in F and | F| is the size of the feature

set F.

Metric 2: Downstream Task Performance. Another utility metric is whether this feature set can

improve a downstream task (e.g., regression, classification). We use a downstream predictive task

performance indicator (e.g., 1-RAE, Precision, Recall, F1) as a utility metric of a feature set.

Learning Selection Agents of Feature Group 1, Operation, and Feature Group 2. Leveraging
the two metrics, we next develop three MDPs to learn three agent policies to select the best feature

group 1, operation, feature group 2.

Learning the Selection Agent of Feature Group 1. The feature group agent 1 iteratively select the

best meta feature group 1. Its learning system includes: i) Action: its action at the ¢-th iteration is
the meta feature group 1 selected from the feature groups of the previous iteration, denoted group
aj = C} ;. ii) State: its state at the ¢-th iteration is a vectorized representation of the generated
feature set of the previous iteration. Let Rep be a state representation method, the state can be
denoted by s} = Rep(F;_1). We will discuss the state representation method in the next section.

iii) Reward: its reward at the ¢-th iteration is the utility score the selected feature group 1, denoted

by R(s},ar) = U(Ci_1]y).

Learning the Selection Agent of Operation. The operation agent will iteratively select the best

operation (e.g. +, -) from an operation set as a feature crossing tool for feature generation. Its

learning system includes: i) Action: its action at the ¢-th iteration is the selected operation, denoted
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by af = o;. ii) State: its state at the ¢-th iteration is the combination of Rep(F;—1) and the
representation of the feature group selected by the previous agent, denoted by s = Rep(F;_1) &
Rep(C}_,), where @ indicates the concatenation operation. iii) Reward: The selected operation
will be used to generate new features by feature crossing. We combine such new features with the
original feature set to form a new feature set. Thus, the feature set at the ¢-th iteration is F; =
Fi—1 U g¢, where g, is the generated new features. The reward of this iteration is the improvement

in the utility score of the feature set compared with the previous iteration, denoted by R(s?, a?) =

U(Fily) — U(Fi-1ly)-

Learning the Selection Agent of Feature Group 2. The feature group agent 2 will iteratively select

the best meta feature group 2 for feature generation. Its learning system includes: i) Action: its
action at the ¢-th iteration is the meta feature group 2 selected from the clustered feature groups
of the previous iteration, denoted by a? = C? ,. ii) State: its state at the ¢-th iteration is combi-
nation of Rep(F;_1), Rep(C}_,) and the vectorized representation of the operation selected by the
operation agent, denoted by s? = Rep(F;_1) & Rep(C} ;) & Rep(o,). iii) Reward: its reward at
the ¢-th iteration is improvement of the feature set utility and the feedback of the downstream task,
denoted by R(s?,a?) = U(F|y) — U(Fi_1ly) + Va,, where V4 is the performance (e.g., F1) of a

downstream predictive task.

State Representation of a Feature Group and an Operation. We propose to map a feature
group to a vector that characterizes the State of the given feature group. In detail, given a feature
group JF, we first calculate the descriptive statistics (i.e. count, standard deviation, minimum,
maximum, first, second, and third quartile) column by column. Then, row by row, we calculate the
descriptive statistics of the outcome of the previous step to obtain the descriptive matrix that shape
is R™*7. After that, we obtain the feature feature’s representation Rep(F) € R4 by flatting
the descriptive matrix. A fixed-size state vector is produced by the representation method, which

accommodates the varying size of the feature set at each generation iteration. Second, for the
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Figure 2.4: State Representation. Given a feature group J consisting of several features, we
calculate the descriptive statistics of F column-by-column, then row-by-row to get a meta
descriptive statistics matrix. Then, we flat the matrix to obtain the state representation vector
Rep(F).

operation, we use the one-hot encoding as its representation Rep(o).

Solving the Optimization Problem. We train the three agents by maximizing the discounted and
cumulative reward during the iterative feature generation process. In other words, we encourage
the cascading agents to collaborate to generate a feature set that is independent, informative, and
performs well in the downstream task. To accomplish this goal, we minimize the temporal differ-

ence error £ converted from the Bellman equation, given by:

L= Q(s1,ar) — (R(s¢,a¢) + v % maxaH—lQ(St'l'l? ay1)), (2.4)

where v € [0 ~ 1] is the discounted factor; () denotes the () function estimated by deep neural
networks. After agents converge, we expect to discover the optimal policy 7* that can choose the

most appropriate action (i.e. feature group or operation) based on the state via the Q-value, which

can be formulated as follows:

7 (a¢|sy) = argmax Q(s¢, a). (2.5)
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Group-wise Feature Generation

We found that using group-level crossing can generate more features each time, and, thus, accel-
erate exploration speed, augment reward feedback by adding significant amount of features, and
effectively learn policies. The selection results of our reinforcement learning system include two
generation scenarios: (1) selected are a binary operation and two feature groups; (2) selected are
a unary operation and two feature groups. However, a challenge arises: what are the most effective

generation strategy for the two scenarios? We next propose two strategies for the two scenarios.

Scenario 1: Cosine Similarity Prioritized Feature-Feature Crossing. We highlight that it is
more likely to generate informative features by crossing two features that are less overlapped in
terms of information. We propose a simple yet efficient strategy, that is, to select the top K dis-
similar feature pairs between two feature groups. Specifically, we first cross two selected feature
groups to prepare feature pairs. We then compute the cosine similarities of all feature pairs. Later,
we rank and select the top K dissimilar feature pairs. Finally, we apply the operation to the top K

selected feature pairs to generate K new features.

Scenario 2: Relevance Prioritized Unary Feature Generation. When selected are an unary
operation and two feature groups, we directly apply the operation to the feature group that is more
relevant to target labels. Given a feature group C, we use the average mutual information between
all the features in C' and the prediction target y to quantify the relevance between the feature group
and the prediction targets, which is given by: rel = ﬁ > r.cc MI(fi,y), where M1 is a function
of mutual information. After the more relevant feature group is identified, we apply the unary

operation to each feature of the feature group to generate new features.

Post-generation Processing. After feature generation, we combine the newly generated features

with the original feature set to form an updated feature set, which will be fed into a downstream
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task to evaluate predictive performance. Such performance is exploited as reward feedback to
update the policies of the three cascading agents in order to optimize the next round of feature
generation. To prevent feature number explosion during the iterative generation process, we use a
feature selection step to control feature size. When the size of the new feature set exceeds a feature
size tolerance threshold, we leverage the K-best feature selection method to reduce the feature size.
Otherwise, we don’t perform feature selection. We use the tailored new feature set as the original

feature set of the next iteration.

Finally, when the maximum number of iterations is reached, the algorithm returns the optimal

feature set F* that has the best downstream performance over the entire exploration.

Experiments

Experimental Setup
Data Description

We used 24 publicly available datasets from UCI [73], LibSVM [14], Kaggle [39], and OpenML
[72] to conduct experiments. The 24 datasets involve 14 classification tasks and 10 regression

tasks. Table 5.1 shows the statistics of the data.

Evaluation Metrics

We used the F1-score to evaluate the recall and precision of classification tasks. We used 1-relative
absolute error (RAE) to evaluate the accuracy of regression tasks. Specifically, 1-RAE = 1 —

%, where n is the number of data points, vy;, ¥;, ¥; respectively denote golden standard
7=1 1 1
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target values, predicted target values, and the mean of golden standard targets.

Baseline Algorithms

We compared our method with five widely-used feature generation methods: (1) RDG randomly
selects feature-operation-feature pairs for feature generation; (2) ERG is an expansion-reduction
method, that applies operations to each feature to expand the feature space and selects significant
features from the larger space as new features. (3) LDA [9] extracts latent features via matrix fac-
torization. (4) AFT [38] is an enhanced ERT implementation that iteratively explores feature space
and adopts a multi-step feature selection relying on L1-regularized linear models. (5) NFS [12]
mimics feature transformation trajectory for each feature and optimizes the entire feature genera-
tion process through reinforcement learning. (6) TTG [44] records the feature generation process
using a transformation graph, then uses reinforcement learning to explore the graph to determine

the best feature set.

Besides, we developed four variants of GRFG to validate the impact of each technical component:
(i) GRFG™“ removes the clustering step of GRFG and generate features by feature-operation-
feature based crossing, instead of group-operation-group based crossing. (ii) GRFG ™ utilizes the
euclidean distance as the measurement of M-Clustering. (iii) GRFG ™" randomly selects a feature
group from the feature group set, when the operation is unary. (iv) GRFG ™ randomly selects
features from the larger feature group to align two feature groups when the operation is binary. We
adopted Random Forest, as the downstream ML model, in order to ensure the changes of results
are mainly caused by the feature space reconstruction, not randomness or variance of the predictor.

We performed 5-fold stratified cross-validation in all experiments.
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Hyperparameters, Source Code and Reproducibility

The operation set consists of square root, square, cosine, sine, tangent, exp, cube, log, reciprocal,
sigmoid, plus, subtract, multiply, divide. We limited iterations (epochs) to 30, with each iteration
consisting of 15 exploration steps. When the number of generated features is twice of the original
feature set size, we performed feature selection to control feature size. In GRFG, all agents were
constructed using a DQN network with two linear layers activated by the RELU function. We opti-
mized DQN using the Adam optimizer with a 0.01 learning rate, and set the limit of the experience
replay memory as 32 and the batch size as 8. The parameters of all baseline models are set based

on the default settings of corresponding papers.

Environmental Settings

All experiments were conducted on the Ubuntu 18.04.5 LTS operating system, Intel(R) Core(TM)
19-10900X CPU@ 3.70GHz, and 1 way SLI RTX 3090 and 128GB of RAM, with the framework
of Python 3.8.5 and PyTorch 1.8.1.

Performance Evaluation

Overall Comparison

This experiment aims to answer: Can our method effectively construct quality feature space and
improve a downstream task? Table 5.1 shows the comparison results in terms of F1 score or 1-
RAE. We observed that GRFG ranks first on most datasets and ranks second on “Credit Default”
and “SpamBase”. The underlying driver is that the personalized feature crossing strategy in GRFG

considers feature-feature distinctions when generating new features. Besides, the observation that
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Table 2.1: Overall performance comparison. ‘C’ for classification and ‘R’ for regression.

Dataset Source C/R Samples Features RDG ERG LDA AFT NFS TTG GRFG
Higgs Boson UClrvine C 50000 28 0.683 | 0.674 | 0509 | 0.711 | 0.715 | 0.705 0.719
Amazon Employee Kaggle C 32769 9 0.744 | 0.740 | 0.920 | 0.943 | 0.935 0.806 0.946
Pimalndian UClrvine C 768 8 0.693 | 0.703 | 0.676 | 0.736 | 0.762 | 0.747 0.776
SpectF UClrvine C 267 44 0.790 | 0.748 | 0.774 | 0.775 | 0.876 | 0.788 0.878
SVMGuide3 LibSVM C 1243 21 0.703 | 0.747 | 0.683 | 0.829 | 0.831 0.766 0.850
German Credit UClrvine C 1001 24 0.695 | 0.661 0.627 | 0.751 0.765 | 0.731 0.772
Credit Default UClrvine C 30000 25 0.798 | 0.752 | 0.744 | 0.799 | 0.799 | 0.809 0.800
Messidor_features UClrvine C 1150 19 0.673 | 0.635 | 0.580 | 0.678 | 0.746 | 0.726 0.757
Wine Quality Red UClrvine C 999 12 0.599 | 0.611 | 0.600 | 0.658 | 0.666 | 0.647 0.686
Wine Quality White | UCIrvine C 4900 12 0.552 | 0.587 | 0571 | 0.673 | 0.679 | 0.638 0.685
SpamBase UClrvine C 4601 57 0.951 | 0931 | 0908 | 0.951 | 0.955 | 0.961 0.958
AP-omentum-ovary OpenML C 275 10936 0.711 0.705 0.117 0.783 0.804 0.795 0.818
Lymphography UClrvine C 148 18 0.654 | 0.638 | 0.737 | 0.833 | 0.859 | 0.846 0.866
Tonosphere UClrvine C 351 34 0919 | 0926 | 0.730 | 0.827 | 0.949 | 0.938 0.960
Bikeshare DC Kaggle R 10886 11 0.483 | 0.571 0.494 | 0.670 | 0.675 | 0.659 0.681
Housing Boston UClrvine R 506 13 0.605 | 0.617 | 0.174 | 0.641 0.665 | 0.658 0.684
Airfoil UClrvine R 1503 5 0.737 | 0.732 | 0463 | 0.774 | 0.771 | 0.783 0.797
Openml_618 OpenML R 1000 50 0.415 | 0427 | 0372 | 0.665 | 0.640 | 0.587 0.672
Openml_589 OpenML R 1000 25 0.638 | 0.560 | 0331 | 0.672 | 0.711 | 0.682 0.753
Openml_616 OpenML R 500 50 0.448 | 0372 | 0385 | 0.585 | 0.593 | 0.559 0.603
Openml_607 OpenML R 1000 50 0.579 | 0.406 | 0376 | 0.658 | 0.675 | 0.639 0.680
Openml_620 OpenML R 1000 25 0.575 | 0.584 | 0425 | 0.663 | 0.698 | 0.656 0.714
Openml_637 OpenML R 500 50 0.561 0.497 0.494 0.564 0.581 0.575 0.589
Openml_586 OpenML R 1000 25 0.595 | 0.546 | 0.472 | 0.687 | 0.748 | 0.704 0.783

GRFG outperforms random-based (RDG) and expansion-reduction-based (ERG, AFT) methods
shows that the agents can share states and rewards in a cascading fashion, and, thus learn an
effective policy to select optimal crossing features and operations. Moreover, because our method
is a self-learning end-to-end framework, users can treat it as a tool and easily apply it to different
datasets regardless of implementation details. Thus, this experiment validates that our method is

more practical and automated in real application scenarios.

Study of the impact of each technical component

This experiment aims to answer: How does each component in GRFG impact its performance?
We developed four variants of GRFG (Section 4). Figure 2.5 shows the comparison results in
terms of F1 score or 1-RAE on two classification datasests (i.e. Pimalndian, German Credit)

and two regression datasets (i.e. Housing Boston, Openml_589). First, we developed GRFG™*
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Figure 2.5: Comparison of different GRFG variants in terms of F1 or 1-RAE.

by removing the feature clustering step of GRFG. But, GRFG™¢ performs poorer than GRFG on
all datasets. This observation shows that the idea of group-level generation can augment reward
feedback to help cascading agents learn better policies. Second, we developed GRFG~? by using
euclidean distance as feature distance metric in the M-clustering of GRFG. The superiority of
GRFG over GRFG~¢ suggests that our distance describes group-level information relevance and
redundancy ratio in order to maximize information distinctness across feature groups and minimize
it within a feature group. Such a distance can help GRFG generate more useful dimensions. Third,
we developed GRFG~* and GRFG~® by using random in the two feature generation scenarios

(Section 2) of GRFG. We observed that GRFG™ and GRFG~ perform poorer than GRFG. This
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validates that crossing two distinct features and relevance prioritized generation can generate more

meaningful and informative features.
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Figure 2.6: Comparison of different clustering algorithms in terms of F1 or 1-RAE.

Study of the impact of M-Clustering

This experiment aims to answer: Is M-Clustering more effective in improving feature generation
than classical clustering algorithms? We replaced the feature clustering algorithm in GRFG with
KMeans, Hierarchical Clustering, DBSCAN, and Spectral Clustering respectively. We reported
the comparison results in terms of F1 score or 1-RAE on the datasets used in Section 2. Figure

2.6 shows M-Clustering beats classical clustering algorithms on all datasets. The underlying driver
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Figure 2.7: Comparison of different machine learning models in terms of F1 or 1-RAE.

is that when feature sets change during generation, M-Clustering is more effective in minimizing
information overlap of intra-group features and maximizing information distinctness of inter-group
features. So, crossing the feature groups with distinct information makes it easier to generate

meaningful dimensions.

Robustness check of GRFG under different machine learning (ML) models.

This experiment is to answer: Is GRF'G robust when different ML models are used as a downstream

task? We examined the robustness of GRFG by changing the ML model of a downstream task to
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Random Forest (RF), Xgboost (XGB), SVM, KNN, and Ridge Regression, respectively. Figure
2.7 shows the comparison results in terms of F1 score or 1-RAE on the datasets used in the Section
2. We observed that GRFG robustly improves model performances regardless of the ML. model
used. This observation indicates that GRFG can generalize well to various benchmark applications
and ML models. We found that RF and XGB are the two most powerful and robust predictors,
which is consistent with the finding in Kaggle. COM competition community. Intuitively, the ac-
curacy of RF and XGB usually represent the performance ceiling on modeling a dataset. But, after
using our method to reconstruct the data, we continue to significantly improve the accuracy of
RF and XGB and break through the performance ceiling. This finding clearly validates the strong

robustness of our method.

Study of the traceability and explainability of GRFG

This experiment aims to answer: Can GRFG generate an explainable feature space? Is this gen-
eration process traceable? We identified the top 10 essential features for prediction in both the
original and reconstructed feature space using the Housing Boston dataset to predict housing prices
with random forest regression. Figure 2.8 shows the model performances in the central parts of
each sub-figure. The texts associated with each pie chart describe the feature name. If the fea-
ture name does not include an operation, the corresponding feature is original; otherwise, it is a
generated feature. The larger the pie area is, the more essential the corresponding feature is. We
observed that the GRFG-reconstructed feature space greatly enhances the model performance by
20.9% and the generated features cover 60% of the top 10 features. This indicates that GRFG
generates informative features to refine the feature space. Moreover, we can explicitly trace and
explain the source and effect of a feature by checking its name. For instance, the feature “Istat”
measures the percentage of the lower status populations in a house, which is negatively related to

housing prices. The most essential feature in the reconstructed feature space is “Istat*]stat” that
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Figure 2.8: Top 10 features for prediction in the original and GRFG-reconstructed feature space.

is generated by applying a “multiply” operation to “Istat”. This shows the generation process is

traceable and the relationship between “Istat” and housing prices is non-linear.

Related Work

Reinforcement Learning (RL) is the study of how intelligent agents should act in a given environ-
ment in order to maximize the expectation of cumulative rewards [83]. According to the learned
policy, we may classify reinforcement learning algorithms into two categories: value-based and
policy-based. Value-based algorithms (e.g. DQN [66], Double DQN [90]) estimate the value of
the state or state-action pair for action selection. Policy-based algorithms (e.g. PG [84]) learn
a probability distribution to map state to action for action selection. Additionally, an actor-critic
reinforcement learning framework is proposed to incorporate the advantages of value-based and
policy-based algorithms [77]. In recent years, RL has been applied to many domains (e.g. spatial-
temporal data mining, recommended systems) and achieves great achievements [96, 99]. In this
paper, we formulate the selection of feature groups and operation as MDPs and propose a new

cascading agent structure to resolve these MDPs.
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Automated Feature Engineering aims to enhance the feature space through feature generation
and feature selection in order to improve the performance of machine learning models [13]. Fea-
ture selection is to remove redundant features and retain important ones, whereas feature gener-

ation is to create and add meaningful variables. Feature Selection approaches include: (i) filter

methods (e.g., univariate selection [21], correlation based selection [108]), in which features are
ranked by a specific score like redundancy, relevance; (ii) wrapper methods (e.g., Reinforcement
Learning [63], Branch and Bound [48]), in which the optimized feature subset is identified by a
search strategy under a predictive task; (iii) embedded methods (e.g., LASSO [85], decision tree
[82]), in which selection is part of the optimization objective of a predictive task. Feature Gen-

eration methods include: (i) latent representation learning based methods, e.g. deep factorization

machine [28], deep representation learning [6]. Due to the latent feature space generated by these
methods, it is hard to trace and explain the feature extraction process. (ii) feature transformation
based methods, which use arithmetic or aggregate operations to generate new features [44, 12].
These approaches have two weaknesses: (a) ignore feature-feature heterogeneity among different
feature pairs; (b) grow exponentially when the number of exploration steps increases. Compared
with prior literature, our personalized feature crossing strategy captures the feature distinctness,
cascading agents learn effective feature interaction policies, and group-wise generation manner

accelerates feature generation.

Conclusion Remarks

In this chapter, we present a group-wise reinforcement feature generation (GRFG) framework for
optimal and explainable representation space reconstruction to improve the performances of pre-
dictive models. This framework nests feature generation and selection in order to iteratively recon-

struct a recognizable and size-controllable feature space via feature-crossing. Specifically, first,
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we decompose the process of selecting crossing features and operations into three MDPs and de-
velop a new cascading agent structure for it. Second, we provide two feature generation strategies
based on cosine similarity and mutual information to deal with two generation scenarios follow-
ing cascading selection. Third, we suggest a group-wise feature generation manner to efficiently
generate features and augment the rewards of cascading agents. To accomplish this, we propose
a new feature clustering algorithm (M-Clustering) to produce robust feature groups from an infor-
mation theory perspective. Through extensive experiments, we can find that GRFG is effective at
refining the feature space and shows competitive results compared to other baselines. Moreover,
GRFG can provide traceable routes for feature generation, which improves the explainability of
the refined feature space. In the future, we aim to include the pre-training technique into GRFG to

further enhance feature generation.
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CHAPTER 3: DECISION-MAKING PERSPECTIVE:
SELF-OPTIMIZING FEATURE SELECTION LEARNING

In this chapter, the framework for self-optimizing feature selection learning is introduced. Similar
to feature generation learning, I formulate feature selection as a Markov decision-making process

and employ a singular reinforced agent to construct a practical framework.

Introduction

In general data mining and machine learning pipelines, before proceeding with machine learning
tasks, people need to preprocess the data first. Preprocessing technologies include data cleaning,
data transformation and feature engineering. As one of the most important feature engineering
technique, feature selection aims to select the optimal feature subset from the original feature
set for the downstream task. Traditional feature selection methods can be categorized into three
families: (i) filter methods, in which features are ranked by a specific score (e.g., univariate feature
selection [106, 21], correlation based feature selection [31, 108]); (ii) wrapper methods, in which
optimal feature subset is identified by a search strategy that collaborates with predictive tasks
(e.g., evolutionary algorithms [105, 46], branch and bound algorithms [67, 48]); (iii) embedded
methods, in which feature selection is part of the optimization objective of predictive tasks (e.g.,
LASSO [85], decision tree [82]). However, these studies have shown not just strengths but also
some limitations. For example, filter methods ignore the feature dependencies and interactions
between feature selection and predictors. Wrapper methods have to directly search a very large
feature space of 2N feature subspace candidates, where /V is the number of features. Embedded
methods are subject to the strong structured assumptions of predictive models, i.e., in LASSO, the

non-zero weighted features are considered to be important.
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Figure 3.1: Reinforced feature selection explores the feature subspace by assigning each feature
one agent, and the agent’s policy decides the selection of its corresponding feature.

Recently, reinforcement learning has been incorporated with feature selection and produces an
emerging feature selection method, called reinforced feature selection [60, 20]. In the reinforced
feature selection, there are multiple agents to control the selection of features, one agent for one
feature. All agents cooperate to generate the optimal feature set. It has been proved to be superior
to traditional feature selection methods due to its powerful global search ability. However, each
agent adapts a neural network as its policy. Since the agent number equals the feature number (/V
agents for NV features), when the feature set is extremely large, we need to train a large number of
neural networks, which is computationally high and not applicable for large-scale datasets. Our
research question is: Can we design a more practical and efficient method to address the feature
selection problem while preserving the effectiveness of reinforced fearure selection? To answer

this questions, there are three challenges.

The first challenge is to reformulate the feature selection problem with smaller number of agents.
Intuitively, we can define the action of the agent as the selected feature subset. For a given feature

set, we input it to the agent’s policy and the agent can directly output the optimal subset. However,
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the feature subset space is as large as 2%V, where N is the feature number. When the dataset is large,
the action space is too large for the agent to explore directly.To tackle this problem, we design a
traverse strategy, where one single agent visit each feature one by one to decide its selection (to
select or deselect). After traversing all the feature set, we can obtain the selected feature subset.
We adapt the off-policy Monte Carlo method to our framework. In the implementation, we design
two policies, i.e., one behavior policy and one target policy. The behavior policy is to generate the
training data and the target policy is to generate the final feature subset. In each training iteration,
we use the behavior policy to traverse the feature set, and generates one training episode. The
training episode consists of a series of training samples, each of which contains the state, the
action and the reward. Similar with [60], we regard the selected feature subset as the environment,
and its representation as the state. The action 1/0 denotes selection/deselection, and the reward is
composed of predictive accuracy, feature subset relevance and feature subset redundancy. Using
the training episode, we evaluate the target policy by calculating its Q value with importance
sampling, and improve it by the Bellman equation. After more and more iterations, the target
policy becomes better and better. After the training is done, we use the target policy to traverse the
feature set and can derive the optimal feature subset. Besides, the behavior policy is supposed to
cover the target policy as much as possible so as to generate more high-quality training data, and
should introduce randomness to enable exploration [83]. We design an e-greedy behavior policy,

to better balance the coverage and the diversity.

The second challenge is to improve the training efficiency of the proposed traverse strategy. In this
paper, we improve the efficiency from two aspects. One improvement is to conduct the importance
sampling in an incremental way, which saves repeated calculations between samples. In the off-
policy Monte Carlo method, since the reward comes from the behavior policy, when we use it to
evaluate the target policy, we need to multiply it by an importance sampling weight. We decompose

the sampling weight into an incremental format, where the calculation of the sampling weight can
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directly use the result of previous calculations. The other improvement is to propose an early
stopping criteria to assure the quality of training samples as well as stopping the meaningless
traverse by behavior policy. In Monte Carlo method, if the behavior policy is too far away from the
target policy, the samples from the behavior policy are considered harmful to the evaluation of the
target policy. As the traverse method is continuous and the importance sampling weight calculation
depends on the previous result, once the sample at time ¢ is skew, the following samples are skew.
We propose a stopping criteria based on the importance sampling weight, and re-calculate a more

appropriate weight to make the samples from the behavior policy more close to the target policy.

The third challenge is how to improve the training efficiency by external advice. In classic inter-
active reinforcement learning, the only source of reward is from the environment, and the advisor
does have access to the reward function. However, in many cases, the advisor can not give direct
advice on action, but can evaluate the state-action pair. In this paper, we define a utility function
U which can evaluate state-action pair and provide feedback to the agent just like the environment
reward does. When integrating the advisor utility ¢/ with the environment reward R to a more
guiding reward R’, we should not change the optimal policy, namely the optimal policy guided by
R’ should be identical to the optimal policy guided by R. In this paper, we propose a state-based
reward integration strategy, which leads to a more inspiring integrated reward as well as preserving

the optimal policy.

To summarize, the contributions of this paper are: (1) We reformulate the reinforced feature selec-
tion into a single-agent framework by proposing a traverse strategy; (2) We design an off-policy
Monte Carlo method to implement the proposed framework; (3) We propose an early stopping
criteria to improve the training efficiency. (4) We propose a reward-level interactive strategy to
improve the training efficiency. (5) We design extensive experiments to reveal the superiority of

the proposed method.
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Table 3.1: Commonly Used Notations.

Notations Definition

St, Qg state at time ¢ and action at time ¢

st al the i-th state and the j-th action

) state space defined as {s'|i < inf}

A action space defined as {a’|j € [1, N]}
vy discount factor in range [0,1]

P(st, at, St1) transition probability

(s)/m"(s)

3

N

policy/optimal policy

Markov decision process (MDP) defined as
{S,A,R,~,P}

utility function from advisor’s perspective
feature space (set) defined as {f*|k €
0, M]}

feature selection.

Preliminaries

We first introduce some preliminary knowledge about the Markov decision process(MDP) and the

Monte Carlo method to solve MDP, then we give a brief description of multi-agent reinforced

Markov Decision Process

Markov decision process (MDP) is defined by a tuple M = {S, A, R,~, P}, where state space S
is finite, action space A is pre-defined, reward function R : S x A — R is a mapping function
from state-action pair to a scalar, v € [0,1] is a discount factorand P : S x A x S — R is
the transition probability from state-action pair to the next state. In this paper, we study the most
popular case when the environment is deterministic and thus P = 1. We use superscripts to
discriminate different episode, and use subscripts to denote the time step inside the episode, e.g.,

st, ai denote the state and action at time ¢ in the i-th episode.
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Monte Carlo for Solveing MDP

Monte Carlo method can take samples from the MDP to evaluate and improve its policy. Specif-
ically, at the i-th iteration, with a behavior (sampling) policy b°, we can derive an episode x' =
{xi,xb, ... 2t ... 2%}, where ¢ = (s!,al,r!) is a sample consisting state, action and reward.
With the episode, we can evaluate the Q value Q. (s, a) over our policy (detailed in Section 1),

and improve it by Bellman optimality:
T (s) = argmar,Q.i (s, a) (3.1)

With the evaluation-improvement process going on, the policy 7 becomes better and better, and

can finally converge to the optimal policy. The general process is:
TIRREEY Q0 L s Qm LML Qv (3.2)

E . . I . . .
where — denotes the policy evaluation and — denotes the policy improvement. After M iterations,
we can achieve an optimal policy. As Equation 3.2 shows, the policy evaluation and improvement
need many iterations, and each iteration needs one episode x (x* for the i-th iteration) consisting

N samples.

Multi-Agent Reinforced Feature Selection

Feature selection aims to find an optimal feature subset F’ from the original feature set F for
a downstream machine learning task M. Recently, the emerging multi-agent reinforced feature
selection (MARFS) method [60] formulates the feature selection problem into a multi-agent rein-

forcement learning task, in order to automate the selection process. As Figure 3.2 shows, in the
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MARFS method, each feature is assigned to a feature agent, and the action of feature agent decides
to select/deselect its corresponding feature. It should be noted that the agents simultaneously select
features, meaning that there is only one time step inside an iteration, and thus we omit the subscript
here. At the i-th iteration, all agents cooperate to select a feature subset F*. The next state s*™! is

derived by the representation of selected feature subset F:

st = represent(F") (3.3)

where F' is the selected feature subset at time ¢. represent is a representation learning algorithm
which converts the dynamically changing F; into a fixed-length state vector s'™!. The represent
method can be meta descriptive statistics, autoencoder based deep representation and dynamic-

graph based GCN in [60]. The reward 7 is an evaluation of the selected feature subset F:

r = eval(F") (3.4)

where eval is evaluations of F*, which can be a supervised metric with the machine learning task F
taking F* as input, unsupervised metrics of F*, or the combination of supervised and unsupervised
metrics in [60]. The reward is assigned to each of the feature agent to train their policies. With
more and more steps’ exploration and exploitation, the policies become more and more smart, and

consequently they can find better and better feature subsets.

Methodology

In this section, we first propose a single-agent Monte Carlo-based reinforced feature selection
method. Then, we propose an episode filtering method to improve the sampling efficiency of

the Monte Carlo method. In addition, we apply the episode filtering Monte Carlo method to the
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Selected
Features

Figure 3.2: Multi-agent Reinforced feature selection. Each feature is controlled by one feature
agent.

reinforced feature selection scenario. Finally, we design a reward-shaping strategy to improve the

training efficiency.

Monte Carlo Based Reinforced Feature Selection

The MARFS method has proved its effectiveness, however, the multi-agent strategy greatly in-
creases the computational burden and hardware cost. Here, we propose a single-agent traverse

strategy and use Mote Carlo method as the reinforcement learning algorithm.

Traverse strategy

As Figure 3.3 shows, rather than using N agents to select their corresponding features in the multi-

agent strategy, we design one agent to traverse all features one at a time.

In the i-th episode, beginning from time ¢ = 1, the behavior policy ¥ firstly decides the selection
decision (select or not select) for feature 1, and then, at time t = 2, b’ decides the selection
decision for feature 2. With time going on, the features are traversed one by one, and the selected

features form a selected feature subset ;. Meanwhile, this process also generates an episode
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action aj = 1/0is the selection/deselection decision of the ¢-th feature, the next state s , is derived

by represent(F;) and the reward r! is derived by eval(F}).
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Figure 3.3: Single-agent Reinforced feature selection with traverse strategy. At each step, the
agent transverses features one by one to decide their selection. The traverse data are stored in the
memory to form a training episode.

Monte Carlo Method for Reinforced Feature Selection

With the episode generated by the behavior policy b%, we can evaluate our target policy 7" and
improve 7. Both the behavior policy b and the target policy 7 provide the probability of taking

action a given a specific state s.

Specifically, We generate an episode x%; by b’. Then, we calculate the accumulated reward by:

t
G'(si,ap) = > A (3.5)
=0

where 0 <« < 1 is a discount factor.
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As the state space is extremely large, we use a neural network (J(s, a) to approximate G(s, a).

The target policy 7 is different from the behavior policy b, and the reward comes from samples
derived from policy b, therefore the accumulated reward of 7 should be calculated by multiplying

an importance sampling weight:

I _om'(al]s?)

i J
ph= (3.6)
bO_gbi(al]st)
The Qi (s, a) can be optimized by minimizing the loss:
Lo = ||Qni(s1, ay) — pi * G (51, ay)[|” (3.7)

The probability of taking action a for state s under policy 7 in the next iteration can be calculated

by:

71 a5} = erp(Qri 4, 5)) (3:8)
Wl = op(@nfa = 0.5)) + eap(Qu{a = 151
We develop an e-greedy policy of b based on the Q value from 7:
A 1—€e a=argmar,Qi(s,a);
bz+l{a|3} — (39)

€ otherwise;

Algorithm 1 shows the process of Monte Carlo based feature selection (MCRFS) with traverse

Strategy.
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Algorithm 1: Monte Carlo Based Reinforced Feature Selection with Traverse Strategy

Input: Feature set ¥ = {f1, fo, ..., fn }, downstream machine learning task 7.
Output: Optimal feature subset F’.
Initialize the behavior policy b, target policy 7!, exploration number M, F' = ®.
fori =1t0 M do
Initialize state s°.
fort =110 N do
Derive action a! with behavior policy b°(s!).
Perform al, getting selected feature subset .
Obtain the next state s, | by represent(F;) and reward r; by eval(F;).
end
Update target policy 7'*! by Equation 3.8 and behavior policy b**! by Equation 3.9.
if eval(FY) > eval(F') then
| F = Fk.
end
end
Return F'.

Early Stopping Monte Carlo Based Reinforced Feature Selection

In many cases, the feature set size N can be very large, meaning that there can be a large number
of samples in one episode x%;. The problem is, if the sample at time 7" is bad (the Chi-squared
distance between b'(st) and 7' (s}) is large), all the subsequent samples (from 7" to N) in the episode
are skew [65]. The skew samples not only are a waste time time to generate, but also do harm to

the policy evaluation, therefore we need to find some way to stop the sampling when the episode

becomes skew.

Incremental Importance Sampling

Rather than calculating the importance sampling weight for each sample directly by Equation 3.6,

we here decompose it into an incremental format. Specifically, in the i-th iteration, we define the

weight increment:
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)

w = T (at|8t)

— 3.10
b (a)51) G-10)

and the importance sampling weight can be calculated by:

ph=pt - w (3.11)

Thus, at each time, we just need to calculate a simple increment to update the weight.

Early Stopping Monte Carlo Method for Reinforced Feature Selection

We first propose the stopping criteria, and then propose a decision history based traversing strategy

to enhance diversity.

Early stopping criteria. We stop the traverse by probability:
pi = max(0,1 — pi/v) (3.12)

where 0 < v < 1 is the stopping threshold.

And for the acquired episode, we recalculate the importance sampling weight for each sample by:

w; = pl, - p,/p} (3.13)

where the p, can be calculated by:

Py = /maﬂf(O,l—pi/v)bi(St) ds; (3.14)
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As p' is identical for all samples in the i-th episode regardless of ¢, the calculation of Equation

3.13 does almost no increase to the computation.

Decision history based traversing strategy. In the i-th iteration, the stopping criteria stops the
traverse at time ¢, and the features after ¢ are not traversed. With more and more traverses, the front
features (e.g., f1 and f5) are always selected/deselected by the agent, while the backside features
(e.g., fv and fn_1) get very few opportunity to be decided. To tackle this problem, we record the
decision times we made on each feature, and re-rank their orders to diversify the decision process
in the next traverse episode. For example, in the past 5 episodes, if the decision times of feature

set { f1, f2, f3} are {5,2,4}, then in the 6-th episode, the traverse order is fo — f3 — fi.

Algorithm 2 shows the process of Monte Carlo based feature selection (MCRFES) with early stop-
ping traverse strategy. specifically, we implement the early stopping Monte Carlo based reinforced

feature selection method as follows:

1. Use a random behavior policy 0° to traverse the feature set. Stop the traverse with the prob-

ability in Equation 3.12 and get an episode X[])VO.

2. Evaluate the policy 7° to get the Q value Q° by minimizing Equation 3.7, and derive the

updated policy 7! and b from Equation 3.8 and 3.9 respectively.

3. Update the record of traverse times for each feature. Re-rank feature order. The smaller

times one feature was traversed, the more forward order it should get.

4. Use the updated policy 7! and b to traverse the re-ranked feature set for the next M steps.
Derive the policy 7 and b™. Use 7 to traverse the feature set without stopping criteria,

and derive the final feature subset.
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Algorithm 2: Monte Carlo Based Reinforced Feature Selection with Early Stopping Traverse
Strategy

Input: Feature set 7 = {f1, fo, ..., fn }, downstream machine learning task 7.
Output: Optimal feature subset F’.
Initialize the behavior policy b', target policy 7!, exploration number M, F' = ®.
for: =11t M do
Initialize state s¢.
Rank features with their decision history.
fort =11t N do
Derive action a! with behavior policy b'(s?).
Perform a!, getting selected feature subset .
Obtain the next state s, | by represent(F;) and reward r; by eval(Fy).
Break the loop with probability p; derived from Equation 3.12;
end
Update target policy 7**! by Equation 3.8 and behavior policy b*! by Equation 3.9.
if eval(Fy) > eval(F') then
| F=Fi.
end
end
Return F'.

Interactive Reinforcement Learning

As all the steps in this section belong to the same iteration, we omit the superscript ¢ in each

denotation for simplicity.

Reinforcement learning is proposed to develop the optimal policy 73,(s) = argmaz,Q%(s,a)

for an MDP M. The optimal ()-value can be updated by Bellman equation [5]:

Qi (s,ar) = R(s¢, ar) + v * mazq, Qo (St41, Grs1) (3.15)

Interactive reinforcement learning (IRL) is proposed to accelerate the learning process of rein-

forcement learning (RL) by providing external action advice to the RL agent [81]. As Figure 3.4
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shows, for selected advising states, the action of RL agent is decided by the advisor’s action advice
instead of its own policy. The algorithm to select advising states varies with the problem setting.
Typical algorithms for selecting advising states include early advising, importance advising, mis-
take advising and predictive advising [87]. To better evaluate the utility of the state-action pair
(st, ar), we define a utility function U (s;, a;). The utility function can give a feedback of how the

action benefits from the state from the advisor’s point of view.

Advisor Agent Environment

S ———

Action
-, Action Advice |
oo 0 OO0——

Reward

A 4

Figure 3.4: Classic interactive reinforcement learning. The advisor gives the agent advice at the
action level.

Reward-Level Interactive Reinforcement Learning. In reinforcement learning (RL), we aim to
obtain the optimal policy for the MDP M = {S, A, R,~, P}. However, in IRL, when we change
the reward function R to a more inspiring reward function R’, the original MDP M is changed to
anew MDP M’ = {S, A, R’,~, P}. Without careful design , the optimal policy derived from M’
would be different from the optimal policy for M. Here we give a universal form of reward advice

without limitation on the form of utility function (s, a):

R/(Clt, St) = R(G,t, St) + c* (’y * Z/{(St+1) — U(St)) (316)

where U(s;) = Eq, [U(ay, $¢)], ¢ is the weight to balance the proportion of the utility function.

We prove that the optimal policies of M and M’ are identical when the reward advice is Equation

3.16:
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Algorithm 3: Reward-Level Interactive Reinforcement Learning

Initialize replay memory D; Initialize the ()-value function with random weights; Initialize
the advising state number N,, stop time 77;
fort =1t T do

~ Jrandom action  with probabilitye;

“= maxa,Q(s,a;) with probabilityl — ¢;

Perform a,, obtaining reward R (a, s;) and next state s;,1;

R (s a) = {R(st,at) t > Ng;
R(se,ar) +c* (v« U(Se41) —U(st)) t < Ng;

Store transition (s, a;, R'(s¢, ar), S¢+1) in D;

Randomly sample mini-batch of data from D;

Update (s, a) with the sampled data;

end

We firstly subtract ¢ * U(s;) from both sides of Equation 3.15, and we have:

Qm(se,ar) —exU(sy) = R(se, ar)

(3.17)
+ 7k maza,, Qu(St41, ar1) — cx U(sy)
We add and subtract ¢ x y *« U (s;41) on the right side:
Qu(se,ar) —exU(sy) = R(st, ar)
+ 7 * max e, Qu(St41, Q1) — cxU(sy)
+exy*U(spr1) —exy U (Sp41) (3.18)
= R(St, (It) + c* Y *Z/{(St+1> — C* Z/[(St>
+ Az, [Qu(Se415 @r1) — cx U(5p11)]
We define:
Q% (50, a) = Qg (50,a) — cx U(sy) (3.19)
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Then Equation 3.18 has the new form:

Qv (5, ar) = Rsp, ar) + ¢ x [y« U(sp41) — U(sy)]
+ 7 * maza, ,, Qap (Stt1, arr1) (3.20)

= R/(Sta ap) 4y * ma%mQ/aw(StH, iy1)

which is the Bellman equation of Q4 (s, a;) with reward R’, meaning Q3 (s, a;) is the optimal

policy Q-value for MDP M’, i.e.,

Qe (51, ar) = Q% (51, ar) (3.21)

We combine Equation 3.19 and Equation 3.21 and have:

Qe (51, a1) = Q51 a0) — cxU(sy) (3.22)

Obviously,

argmazq, Qe (St, ar) = argmaxa, [Qh(st, ar) — ¢ * U(sy)]
(3.23)

= argmaxq, Q' (se, at)

which reveals the optimal policy of MDP M’ with reward R’ is identical to the optimal policy of

MDP M with reward R.

As the reward advice R’ consists of more information than the original reward R, it can help
the reinforcement learning agent explore the environment more efficiently. We give a detailed
description of reward-level IRL in Algorithm 3. Specifically, we adapt the early advising strategy

[87] to select the advising states, i.e., the advisor gives advice for the first n states the IRL agent
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Figure 3.5: Reward-level interactive reinforcement learning. The advisor gives advice at the
reward level.

meets.

Comparison with Prior Literature

Compared with filter methods, our methods capture feature interactions; Compared with wrapper
methods, our methods reduce the search space; Compared with embedded methods, our methods
don’t rely on strong structured assumptions; Compared with multi-agent reinforcement learning

feature selection, our methods achieve parallel performance with lower computational cost.

Experiments

Experimental Setup

We conduct extensive experiments on real-world datasets to study: (1) the overall performance
of early stopping Monte Carlo based reinforced feature selection (ES-MCRFS); (2) the training
efficiency of the early stopping criteria; (3) the sensitivity of the threshold in the early stopping cri-
teria; (4) the computational burden of the traverse strategy; (5) the decision history based traverse

strategy; (6) the behavior policy in the ES-MCRFS.
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Data Description

We use four publicly available datasets on classification task to validate our methods, i.e., Forest
Cover (FC) dataset [8], Spambase (Spam) dataset [17], Insurance Company Benchmark (ICB)

dataset [89] and Arrhythmia (Arrhy) dataset [29]. The statistics of the datasets are in Table 3.2.

Table 3.2: Statistics of datasets.

FC Spam | ICB | Arrhy
Features | 54 57 86 274
Samples | 15120 4601 | 5000 | 452

Evaluation Metrics

In the experiments, we have classification as the downstream task for feature selection problem,

therefore we use the two most popular evaluation metrics for the classification task:

Accuracy is given by Acc = =5 +%}€i%¥ 7~ Where TP, TN, F'P,FN are true positive, true

negative, false positive and false negative for all classes.

PR where P =

Fl-score is given by F'1 = 2220, TPoFF is recall.

. . _ _ TP
is precision and R = 757

Baseline Algorithms

We compare our proposed ES-MCRFS method with the following baselines: (1) K-Best ranks
features by unsupervised scores with the label and selects the top £ highest scoring features [106].
In the experiments, we set k equals to half of the number of input features.(2) LASSO conducts

feature selection via [1 penalty [85]. The hyper parameter in LASSO is its regularization weight A
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which is set to 0.15 in the experiments. (3) GFS selects features by calculating the fitness level for
each feature to generate better feature subsets via crossover and mutation [53]. (4) mRMR ranks
features by minimizing feature’s redundancy and maximizing their relevance with the label[69]. (5)
RFE selects features by recursively selecting smaller and smaller feature subsets [26].(6)MARFS
is a multi-agent reinforcement learning based feature selection method [60]. It uses M feature
agents to control the selection/deselection of the M features. Besides, we also compare our method
with its variant without an early stopping strategy, i.e., Monte Carlo-based reinforced feature se-

lection MCREFS.

Implementation

In the experiments, for all deep networks, we set mini-batch size to 16 and use AdamOptimizer
with a learning rate of 0.01. For all experience replays, we set memory size to 200. We set the
(2 network in our methods as a two-layer ReLU with 64 and 8 nodes in the first and second layer.
The classification algorithm we use for evaluation is a random forest with 100 decision trees. The
stop time is set to 3000 steps. The state representation method in reinforced feature selection is an
auto-encoder method whose encoder/decoder network is a two-layer ReLLU with 128 and 32 nodes

in the first and second layer.

Environmental Settings

The experiments were carried out on a server with an 19-9920X 3.50GHz CPU, 128GB memory,

and a Ubuntu 18.04 LTS operation system.
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Overall Performance

Performance Evaluation

We compare the proposed ES-MCRFS method with baseline methods and its variants with regard

to predictive accuracy. As Table 3.3 shows, the MCRFS, which simplifies the reinforced fea-

ture selection into a single-agent formulation, achieves similar performance with the multi-agent

MAREFS. With the help of a traverse strategy and early stopping criteria, the ES-MCRFS outper-

forms all the other methods.

Table 3.3: Overall performance.

FC Spam ICB Arrhy
Acc Fl Acc Fl Acc F1 Acc F1
K-Best 0.7904 0.8058 0.9207 0.8347 0.8783 0.8321 0.6382 0.6406
P LASSO 0.8438 0.8493 0.9143 0.8556 0.8801 0.8507 0.6293 0.6543
g GFS 0.8498 0.8350 0.9043 0.8431 0.9099 0.637 0.6406 0.6550
5 mRMR 0.8157 0.8241 0.8980 0.8257 0.8998 0.8423 0.6307 0.6368
%‘) RFE 0.8046 0.8175 0.9351 0.8480 0.9045 0.8502 0.6452 0.6592
MARFS 0.8653 0.8404 0.9219 0.8742 0.8902 0.8604 0.7238 0.6804
MCRFS 0.8688 0.8496 0.9256 0.8738 0.8956 0.8635 0.7259 0.7152
ES-MCRFS 0.8942 0.8750 0.9402 0.9067 0.9187 0.8803 0.7563 0.7360

Sensitivity Study of Early Stopping Criteria

We study the threshold sensitivity in the early stopping criteria by differing the threshold v and

evaluate the predictive accuracy. Figure 3.6 shows that the optimal threshold for the four datasets

is 0.4, 0.5, 0.7, 0.7. It reveals that the early stopping criteria are sensitive to the pre-defined

threshold, and the optimal threshold varies on different datasets.
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Figure 3.6: Threshold sensitivity of early stopping criteria.

Training Efficiency of Early Stopping Criteria

We compare the predictive accuracy with different numbers of training episodes to study the train-
ing efficiency of the early stopping. Figure 3.7 shows that with early stopping criteria, the Monte
Carlo reinforced feature selection can achieve convergence more quickly, and the predictive accu-

racy can be higher after convergence.
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Figure 3.7: Predictive accuracy on training step.

Study of the Behavior Policy

We study the difference between random behavior policy and the e-greedy policy presented in
Equation 3.9. We combine the two policies with MCRFS and ES-MCREFS respectively. Figure 3.8

shows that the e-greedy policy outperforms the random behavior policy on all datasets.

Computational Burden of Traverse Strategy

We compare the computational burden of the MCRFS which uses single-agent and the traverse

strategy to substitute the multi-agent strategy in the MARFS. Table 3.4 shows that the CPU and
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Figure 3.8: Predictive accuracy on different training strategies. RB for random behavior policy
and GB for e-greedy behavior policy.

memory cost when implementing the two methods. Our method MCRES requires less computa-

tional resources than the multi-agent MARFS.

Table 3.4: CPU and memory (in MB) occupation.

FC Spam ICB Arrhy
CPU | Mem | CPU | Mem | CPU | Mem | CPU | Mem
MAREFS | 72% 1531 | 75% 1502 | 86% 1797 | 97% | 4759
MCRES | 57% 1429 | 54% | 1395 | 59% 1438 | 55% 1520
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Decision History Based Traverse Strategy

We study the decision history based traverse strategy by comparing its performance with the vanilla

traverse strategy on ES-MCREFS. Table 3.5 shows that the decision history can significantly im-

prove performance of the traverse strategy.

Table 3.5: Traverse strategy ablation. DH for decision history.

FC Spam ICB Arrhy
Acc F1 Acc F1 Acc F1 Acc F1
No DH 0.75 | 0.82 | 0.83 | 0.79 | 0.75 | 0.81 | 0.59 | 0.56
WithDH | 0.89 | 0.88 | 0.94 | 091 | 092 | 0.88 | 0.76 | 0.74

Table 3.6: Performance with different utility function

FC Spam ICB Arrhy
Acc F1 Acc F1 Acc F1 Acc F1
> Rd 0.8689 0.8433 0.9250 0.8749 0.8997 0.8788 0.7340 0.6955
=] Rv 0.8703 0.8507 0.9317 0.8831 0.9001 0.8793 0.7393 0.7143
- Rv — Rd 0.8842 0.8650 0.9402 0.8949 0.9117 0.8903 0.7492 0.7258

Training Efficiency of reward-level interactive strategy

We compare the predictive accuracy with different numbers of training episodes to study the train-
ing efficiency of the reward-level interactive (RI) strategy. Figure 3.9 shows that with RI, the
Monte Carlo reinforced feature selection can achieve convergence more quickly. However, as the

ES-MCRES already achieves good performance, the RI can not improve its final performance.

Study of the Utility Function

We define the utility function U/ as the combination of relevance (Rv) function and redundancy

(Rd) function. Here we study the impact of the two components for the utility function. Table 3.6
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shows that when we use Rv independently as the utility function, its performance is better than the
Rd. This is because Rv evaluates the relationship between features and the label, which is directly
related to the classification task, while Rd evaluates the relationship among features, which is an
indirect evaluation to the classification task. The combination of the two functions (Rv — Rd) as

the utility function significantly outperforms each of the independent functions, revealing the Rd
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Figure 3.9: Predictive accuracy on training step.

and Rv coordinate and make up each other’s shortage.
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Related Work

Efficient Sampling in Reinforcement Learning. Reinforcement learning is a trial-and-error
based method, which requires high-quality samples to train its policy. It is always a hot topic
to pursue efficient sampling for reinforcement learning. One research direction is to generate
training samples with high quality based on the importance sampling technology, such as rejection
control [59] and marginalized importance sampling [104]. These methods basically control the
sampling process based on the importance sampling weight. Another research direction is to sam-
ple diversified sample from different policy parameters. The diversity partially contributes to the
exploration and thus have better performance on some specific tasks [22]. However, these methods
suffer from slow convergence and no theoretical guarantee [109]. Besides, there are other attempts
to develop sample efficient reinforcement learning, such as curiosity-driven exploration and hybrid

optimization [74, 98].

Feature Selection. Feature selection can be categorized into three types, i.e., filter methods, wrap-
per methods and embedded methods [62, 111]. Filter methods rank features only by relevance
scores and only top-ranking features are selected. The representative filter methods is the univari-
ate feature selection [21] The representative wrapper methods are branch and bound algorithms
[67, 48]. Wrapper methods are supposed to achieve better performance than filter methods since
they search on the whole feature subset space. Evolutionary algorithms [105, 46] low down the
computational cost but could only promise local optimum results. Embedded methods combine
feature selection with predictors more closely than wrapper methods. The most widely used em-

bedded methods are LASSO [85] and decision tree [82].

Interactive Reinforcement Learning. Interactive reinforcement learning (IRL) is proposed to
accelerate the learning process of reinforcement learning. Early work on the IRL topic can be

found in [58], where the authors presents a general approach to making robots which can improve
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their performance from experiences as well as from being taught. Unlike the imitation learning
which intends to learn from an expert other than the environment [76, 36], IRL sticks to learning
from the environment and the advisor is only an advice-provider in its apprenticeship [47, 97].
As the task for the advisor is to help the agent pass its apprenticeship, the advisor has to identify
which states belong to the apprenticeship. In [87], the authors study the advising state selection
and propose four advising strategies, i.e., early advising, importance advising, mistake correcting

and predictive advising.

Conclusion Remarks

Summary. In this chapter, we study the problem of improving the training efficiency of reinforced
feature selection (RFS). We propose a traverse strategy to simplify the multi-agent formulation
of the RFS to a single-agent framework, an implementation of Monte Carlo method under the

framework, and two strategies to improve the efficiency of the framework.

Theoretical Implications. The single-agent formulation reduces the requirement of computa-
tional resources, the early stopping strategy improves the training efficiency, the decision history
based traversing strategy diversify the training process, and the interactive reinforcement learning

accelerates the training process without changing the optimal policy.

Practical Implications. Experiments show that the Monte Carlo method with the traverse strategy
can significantly reduce the hardware occupation in practice, the decision history based traverse
strategy can improve performance of the traverse strategy, the interactive reinforcement learning

can improve the training of the framework.

Limitations and Future Work. Our method can be further improved from the following aspects:

1) The framework can be adapted into a parallel framework, where more than one (but much
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smaller than the feature number) agents work together to finish the traverse; 2) Besides reward
level, the interactive reinforcement learning can obtain advice from action level and sampling
level. 3) The framework can be implemented on any other reinforcement learning frameworks,

e.g., deep Q-network, actor critic and proximal policy optimization (PPO).
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CHAPTER 4: GENERATIVE-AI PERSPECTIVE: AUTOREGRESSIVE
FEATURE GENERATION LEARNING

In this chapter, I will introduce the framework of autoregressive feature generation learning. This
framework embeds the knowledge of feature generation into a distinguishable embedding space,

subsequently facilitating the identification of the optimal feature space.

Introduction

The objective of feature transformation is to derive a new feature space from the original features
through the application of a series of operations, with the goal of enhancing the performance
of subsequent machine learning tasks. However, feature transformation is usually manual, time-
consuming, labor-intensive, and requires domain knowledge. These limitations motivate us to
accomplish Automated Feature Transformation (AFT). AFT is a fundamental task because AFT
can 1) reconstruct distance measures, 2) form a feature space with discriminative patterns, 3) ease

machine learning, and 4) overcome complex and imperfect data representation.

There are two main challenges in solving AFT: 1) efficient feature transformation in a massive
discrete search space; 2) robust feature transformation in an open learning environment. Firstly, it
is computationally costly to reconstruct the optimal feature space from a given feature set. Such
reconstruction requires a transformation operation sequence that includes features-operations com-
binations, each of which represents a newly generated feature. Since there are many features and
operations, the number of feature-operations combinations exponentially grows, not to mention
the number of candidate transformation operation sequences. The efficiency challenge seeks to

answer: how can we efficiently identify the best feature transformation operation sequence? Sec-
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ondly, identifying the best transformation operation sequence is unstable and sensitive to many
factors in an open environment. For example, if we see identifying a transformation operation
sequence as a searching problem, it is sensitive to starting points or the greedy strategy during iter-
ative searching. If we see identifying transformation paths as a generation problem, it is sensitive
to training data quality and the complexity of generation forms. The robustness challenge aims to

answer: how can we robustify the generation of feature transformation operation paths?

Prior literature only partially addresses the two challenges. Existing AFT algorithms can be
grouped into three categories: 1) expansion-reduction approaches [40, 38, 45], in which all math-
ematical operations are randomly applied to all features at once to generate candidate transformed
features, followed by feature selection to choose valuable features. However, such methods are
based on random generation, unstable, and not optimization-directed. 2) iterative-feedback ap-
proaches [93, 44, 88], in which integrates feature generation and selection are integrated, and
generation and selection strategies are updated based on feedback in each iteration. Two example
methods are Evolutionary Algorithms (EA) or Reinforcement Learning (RL) with downstream ML
task accuracy as feedback. However, such methods are developed based on searching in a massive
discrete space and are difficult to converge on compared with solving a continuous optimization
problem. 3) Neural Architecture Search (NAS)-based approaches [12, 113]. NAS was originally
to identify neural network architectures using a discrete search space containing neural architec-
ture parameters. Inspired by NAS, some studies formulated AFT as a NAS problem. However,
NAS-based formulations are slow and limited in modeling all transformation forms. Existing stud-
ies demonstrate the inability to address efficiency and robustness in feature transformation jointly.

Therefore, we need a novel perspective to derive a novel formulation and solver of AFT.

Our Contribution: A Postfix Expression Embedding and Generation Perspective. We formu-
late the discrete AFT problem as a continuous optimization task. We highlight a postfix expres-

sion embedding and generation perspective for feature transformation: feature transformation is
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described as a transformation operation sequence; the sequence is represented by a postfix expres-
sion, thereafter, embedded into a vector in a continuous latent space, with the continuous space, the
best transformation identification is solved by an efficient gradient-based optimizer; finally a new
feature set is reconstructed from the optimal embedding vector via generative modeling. We show
that training data quality directly defines an effective embedding space, without which gradient-
based optimization and generative reconstruction will not work well. Collecting quality feature
transformation training data is never easy. We demonstrate that reinforcement intelligence can be
used as a self-optimizing training data collector to explore high-quality feature transformations,
evaluate downstream ML task accuracy, and automate training data collection. We find that inte-
grating transformation sequence reconstruction loss and downstream task accuracy estimation loss
can better measure the effectiveness of an embedding space and strengthen the denoising capability
of gradient-based search of the optimal transformation embedding. We observe that beam search
exhibits the ability to track multiple top candidate sequences during sequence reconstruction and
increase the validity of generated feature transformation operation. We encode a feature transfor-
mation operation sequence as a single postfix expression so that the generative model can capture
feature-feature interactions and automatically identify the dimensionality of the new feature space

and the complexity of the transformation operation sequence.

Summary of Proposed Approach. Inspired by these findings, this paper presents a generic and
principled framework for deep differentiable feature transformation, namely GBFG. To advance
efficiency and robustness, this framework implements four steps: 1) reinforcement training data
collection; 2) postfix expression embedding of transformation operation path; 3) gradient-based
continuous optimization; 4) beam search-based transformation operation path reconstruction. Step
1 is to collect high-quality transformation operation sequence-accuracy pairs as training data.
Specifically, we develop a cascading reinforcement learning structure to automatically explore

transformation operation sequences and test generated feature spaces on a downstream predictor
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(e.g., decision tree). The self-optimizing policies enable agents to collect high-quality transforma-
tion operation sequences. The key insight is that when training data is hard to collect, reinforce-
ment intelligence can be used as an automated training data collector. Step 2 is to learn a continuous
embedding space from transformation-accuracy training data. Specifically, we describe transfor-
mation operation sequences as postfix expressions, each of which is mapped into an embedding
vector by jointly optimizing the transformation operation path reconstruction loss and accuracy
estimation loss. Viewing feature transformation from the lens of postfix expression can reduce an
exponentially growing discrete search problem into an alphabetical letter generation problem. The
postfix reformulation has a much smaller space by only selecting an alphabetical feature-related or
operator-related letter in each generation instead of considering high-order expansions. The post-
fix reformulation equips the generation model with the ability to self-decide the best number of
generated features and the transformation operation segmentation of each developed feature. Step
3 is to leverage the gradient calculated from the improvement of the accuracy evaluator to guide
the search for the optimal transformation operation sequence embedding. Step 4 is to develop a
beam search-based generative module to reconstruct feature transformation operation sequences
from embedding vectors. Finally, we present extensive experiments and case studies to show the

enhanced performances of our framework.

Definitions and Problem Statement

Important Definitions

Definition 4 Operation Set. To refine the feature space, we need to apply mathematical operations
to existing features to generate new ones. All operations are collected in an operation set, denoted
by O. Based on the computation property, these operations can be classified as unary operations

and binary operations. The unary operations such as "square”, “exp”, "log”, etc. The binary
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operations such as "plus”, "multiply”, "minus”, etc.

Definition 5 Cascading Agent Structure. We create a cascading agent structure comprised of
feature agentl, operation agent, and feature agent? to efficiently collect quantities of high-quality
feature transformation records. The selection process of the three agents will share the state infor-

mation and sequentially select candidate features and operations for refining the feature space.

Definition 6 Feature Transformation Operation Sequence. Assuming that D = {X, y} is a
dataset, which includes the original feature set X = [fi, -, fn] and predictive targets y. As
shown in Figure 4.1, we transform the existing ones using mathematical compositions T consisting
of feature ID tokens and operations to generate new and informative features. K transformation
compositions are adopted to refine X to a better feature space X = [ fl, sy fK] The collection

of the K compositions refers to the feature transformation sequence, which is denoted by I' =

[7—17 e 7TK]~

7 :(f1+ (%) —f2), 7o :(f1 — (VF3) o i ((f2)?)

Figure 4.1: An example of feature transformation sequence.

Problem Statement

We aim to develop an effective and robust deep differentiable automated feature transformation
framework. Formally, given a dataset D = { X, y} and an operation set O, we first build a cascad-
ing RL-agent structure to collect n feature transformation accuracy pairs as training data, denoted
by R = {(I';,v;)}_,, where I'; is the transformation sequence and v; is the associated downstream

predictive performance. We pursue two objectives thereafter: 1) building an optimal continuous
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Figure 4.2: An overview of our framework. GBFG consists of four main components: 1)
transformation-accuracy data preparation; 2) deep feature transformation embedding; 3)
gradient-ascent optimal embedding search; 4) transformation sequence reconstruction and
evaluation.
embedding space for feature transformation sequences. We learn a mapping function ¢, a recon-
structing function v, and an evaluation function w to convert R into a continuous embedding space
£ via joint optimization. In &£, each embedding point is associated with a feature transformation

sequence and corresponding predictive performance. 2) identifying the optimal feature space. We

adopt a gradient-based search to find the optimal feature transformation sequence ['*, given by:

P* = (%) = argmax A(M((E) (X)), y), 1)

Ec€

where v can reconstruct a feature transformation sequence from any embedding point of &; E is
an embedding vector in £ and E* is the optimal one; M is the downstream ML model and A is
the performance indicator. Finally, we apply I'* to transform X to the optimal feature space X*

maximizing the value of A.
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Methodology

Framework Overview

Figure 5.1 shows the framework of GBFG including four steps: 1) reinforcement transformation-
accuracy data preparation; 2) deep postfix feature transformation operation sequence embedding;

3) gradient-ascent optimal embedding search; 4) transformation operation sequence reconstruction.

In Step 1, a cascading agent structure consisting of two feature agents and one operation agent is
developed to select candidate features and operators for feature crossing. The transformed feature
sets are applied to a downstream ML task to collect the corresponding accuracy. The data col-
lection process is automated and self-optimized by policies and feedback in reinforcement learn-
ing. We then convert these feature transformation operation sequences into postfix expressions.
In Step 2, we develop an encoder-evaluator-decoder model to embed transformation operation
sequence-accuracy pairs into a continuous embedding space by jointly optimizing the sequence re-
construction loss and performance evaluation loss. In detail, the encoder maps these transformation
operation sequences into continuous embedding vectors; the evaluator assesses these embeddings
by predicting their corresponding model performance; the decoder reconstructs the transformation
sequence using these embeddings. In Step 3, we first learn the embeddings of top-ranking transfor-
mation operation sequences by the well-trained encoder. With these embeddings as starting points,
we search along the gradient induced by the evaluator to find the acceptable optimal embeddings
with better model performances. In Step 4, the well-trained decoder then decodes these optimal
embeddings to generate candidate feature transformation operation sequences through the beam
search. We apply the feature transformation operation sequences to original features to reconstruct
refined feature spaces and evaluate corresponding downstream predictive performances. Finally,

the best feature space is chosen as the optimal one.
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Reinforcement Training Data Preparation

Why Using Reinforcement as Training Data Collector. Our extensive experimental analysis
shows that the quality of embedding space directly determines the success of feature transforma-
tion operation sequence construction. The quality of the embedding space is sensitive to the qual-
ity and scale of transformation operation sequence-accuracy training data: training data is large
enough to represent the entire distribution; training data include high-performance feature trans-
formation cases, along with certain random exploratory samples. Intuitively, we can use random
sample features and operations to generate feature transformation sequences. This strategy is inef-
ficient because it produces many invalid and low-quality samples. Or, we can use existing feature
transformation methods (e.g., AutoFeat [38]) to generate corresponding records. However, these
methods are not fully automated and produce a limited number of high-quality feature transforma-
tion records without exploration ability. We propose to view reinforcement learning as a training

data collector to overcome these limitations.

Reinforcement Transformation-Accuracy Training Data Collection. Inspired by [93, 103], we
formulate feature transformation as three interdependent Markov decision processes (MDPs). We
develop a cascading agent structure to implement the three MDPs. The cascading agent structure
consists of a head feature agent, an operation agent, and a tail feature agent. In each iteration,
the three agents collaborate to select two candidate features and one operation to generate a new
feature. Feedback-based policy learning is used to optimize the exploratory data collection to find

diversified yet quality feature transformation samples.

To simplify the description, we adopt the i-th iteration as an example to illustrate the reinforcement
data collector. Given the former feature space as X;, we generate new features X, using the head

feature fj, operation o, and tail feature f; selected by the cascading agent structure.
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1) Head feature agent. This learning system includes: State: is the vectorized representation of X.

Let Rep(-) be a state representation method, and the state can be denoted by Rep(X;). Action: is

the head feature f; selected from X; by the reinforced agent.

2) Operation agent. This learning system includes: State: includes the representation of X; and

the head feature, denoted by Rep(X;) & Rep(f), where & indicates concatenation. Action: is the

operation o selected from the operation set O.

3) Tail feature agent. This learning system includes: State: includes the representation of X,

selected head feature, and operation, denoted by Rep(X;) @ Rep(fr) @ Rep(o). Action: is the tail

feature f; selected from X; by this agent.

4) State representation method, Rep(-). For the representation of the feature set, we employ a

descriptive statistical technique to obtain the state with a fixed length. In detail, we first compute
the descriptive statistics (i.e. count, standard deviation, minimum, maximum, first, second, and
third quantile) of the feature set column-wise. Then, we calculate the same descriptive statistics on
the output of the previous step. After that, we can obtain the descriptive matrix with shape R”*7
and flatten it as the state representation with shape R'*4°. For the representation of the operation,

we adopt its one-hot encoding as Rep(o).

4) Reward function. To improve the quality of the feature space, we use the improvement of a

downstream ML task performance as the reward. Thus, it can be defined as:

R(Xi, Xiv1) = AM(Xi1),y) — AM(X;), ). 4.2)

5) Learning to Collect Training Data. To optimize the entire procedure, we minimize the mean

squared error of the Bellman Equation to get a better feature space. During the exploration pro-
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(a) Feature transformation Sequence
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(b) Original infix notation based sequence
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(c) Postfix notation based sequence

Figure 4.3: An example of feature transformation sequence and postfix notation-based
transformation expression.

cess, we can collect amounts of high-quality records (", v) for constructing an effective continuous
embedding space, where I is the transformation sequence, and v is the downstream model perfor-

mance.

Postfix Expressions of Feature Transformation Operation Sequences

Why Transformation Operation Sequences as Postfix Expressions. After training data col-
lection, a question arises: how can we organize and represent these transformation operation se-

quences in a computationally-tangible and machine-learnable format?

Figure 4.3 (a) shows an example of a feature transformation operation sequence. To convert this
sequence into a machine-readable expression, a naive idea is to enclose each calculation in a pair
of brackets to indicate its priority (Figure 4.3(b)). However, the representation of Figure 4.3(b)
has four limitations: (1) Redundancy. Many priority-related brackets are included to ensure the
unambiguous property and correctness of mathematical calculations. (2) Semantic Sparsity. The
quantity of bracket tokens can dilute the semantic information of the sequence, making model
convergence difficult. (3) lllegal Transformation. If the decoder makes one mistake on bracket

generation, the entire generated sequence will be wrong. (4) Large Search Space. The number of
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combinations of features and operators from low-order to high-order interactions is large, making

the search space too vast.

Using Postfix Expression to Construct Robust, Concise, and Unambiguous Sequences. To
address the aforementioned limitations, we convert the transformation operation sequence I' into
a postfix-based sequence expression. Specifically, we scan each mathematical composition 7 in
I' from left to right and convert it from the infix-based format to the postfix-based one. We then
concatenate each postfix expression by the <SEP> token and add the <SOS> and <EOS> tokens
to the beginning and end of the entire sequence. Figure 4.3(c) shows an example of such a postfix
sequence. We denote it as T = [y, - - -, yas], Where each element is a feature ID token, operation
token, or three other unique tokens. The detailed pseudo code of this conversion process is provided

in the Appendix.

The postfix sequences don’t require numerous brackets to ensure the calculation priority. We only
need to scan each element in the sequence from left to right to reconstruct corresponding trans-
formed features. Such a concise and short expression can reduce sequential modeling difficulties
and computational costs. Besides, a postfix sequence indicates a unique transformation process,
thus, reducing the ambiguity of feature transformation and yielding a more robust feature space.
Moreover, the most crucial aspect is the reduction of the search space from exponentially growing
discrete combinations to a limited token set C that consists of the original feature ID tokens, oper-
ation tokens, and other three unique tokens. The length of the token set is |O| + | X| + 3, where
|O| is the number of the operation set, | X | is the dimension of the original feature set, and 3 refers

to the unique tokens <SOS>, <SEP>, <EOS>.

Data Augmentation for Postfix Transformation Operation Sequences. Big and diversified
transformation operation sequence-accuracy training data can benefit the learning of a pattern dis-

criminative embedding space. Be sure to notice that, a feature transformation operation sequence
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consists of many independent segmentations, each of which is the composition of feature ID and
operation tokens that are used to generate a single feature in the new feature space. These inde-
pendent segmentations are order-agnostic. Our idea is to leverage the order agnostic characteristic
to conduct data augmentation to increase the data volume and diversity for constructing a more ro-
bust and effective embedding space. For example, given a transformation operation sequence and
corresponding accuracy {7, v}, we first divide the postfix expression into different segmentations
by <SEP>. We then randomly shuffle these segmentations and use <SEP> to concatenate them
together to generate new postfix transformation sequences. After that, we pair the new sequences
with the corresponding model accuracy performance to improve data diversity and data volume for

better model training and to create the continuous embedding space.

Deep Feature Transformation Embedding

After collecting and converting large-scale feature transformation training data to a set of postfix
expression-accuracy pairs {(Y1;, v;) }7,, we develop an encoder-evaluator-decoder structure to map
the sequential information of these records into an embedding space. Each embedding vector is

associated with a transformation operation sequence and its corresponding model accuracy.

The Encoder ¢: The Encoder aims to map any given postfix expression to an embedding (a.k.a.,
hidden state) EE. We adopt a single layer long short-term memory [37] (LSTM) as Encoder and
acquire the continuous representation of Y, denoted by E = ¢(T) € R**4, where M is the total

length of input sequence T and d is the hidden size of the embedding.

The Decoder ¢/: The Decoder aims to reconstruct the postfix expression of the feature transforma-
tion operation sequence Y from the hidden state E. In GBFG, we set the backbone of the Decoder
as a single-layer LSTM. For the first step, v» will take an initial state (denoted as hg) as input.

Specifically, in step-i, we can obtain the decoder hidden state h¢ from the LSTM. We use the dot
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product attention to aggregate the encoder hidden state and obtain the combined encoder hidden

state h{. Then, the distribution in step-j can be defined as:

exp(W, (b @ b))
> cec exp(We(hi ® hf))’

where 7; € T is the i-th token in sequence Y, and C is the token set. W stand for the parameter
of the feedforward network. Y_; represents the prediction of the previous or initial step. By
multiplying the probability in each step, we can form the distribution of each token in T, given
as:Py(Y|E) = [, Py(7|E, T<;). To make the generated sequence similar to the real one, we

minimize the negative log-likelihood of the distribution, defined as: £,.. = —log Py (T |E).

The Evaluator w: The Evaluator is designed to estimate the quality of continuous embeddings.
Specifically, we will first conduct mean pooling on E by column to aggregate the information
and obtain the embedding E € R¢. Then E is input into a feedforward network to estimate the
corresponding model performance, given as: © = w(E). To minimize the gap between estimated
accuracy and real-world gold accuracy, we leverage the Mean Squared Error (MSE) given by:

L. = MSE(v, w(E)).

Joint Training Loss £: We jointly optimize the encoder, decoder, and evaluator. The joint training

loss can be formulated as: £ = oL, + (1 — a)L.s; where « is the trade-off hyperparameter that

controls the contribution of sequence reconstruction and accuracy estimation loss.

Gradient-Ascent Optimal Embedding Search

To conduct the optimal embedding search, we first select top-7" feature transformation operation
sequences ranked by the downstream predictive accuracy. The well-trained encoder is then used

to embed these postfix expressions into continuous embeddings, which later will be used as seeds
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(starting points) of gradient ascent. Assuming that one search seed embedding is E, we search,

starting from E, toward the gradient direction induced by the evaluator w:

~ Oow

E=E+i. (4.4)

where E denotes the refined embedding, 7 is the size of each searching step. The model perfor-
mance of E is supposed to be better than E due to w(E) > w(E). For T seeds, we can obtain the

enhanced embeddings [f]l, Ey, - JE7].

Transformation Operation Sequence Reconstruction and Evaluation

We reconstruct the transformation sequences by the well-trained decoder v using the collected
candidate (i.e., acceptable optimal) embeddings [El, ]:32, e ,ET]. This process can be denoted
by:

By, By, By S (T, (4.5)

To identify the best transformation sequence, we adopt the beam search strategy [23, 91, 4] to
generate feature transformation operation sequence candidates. Specifically, given a refined em-
bedding E, at step-t, we maintain the historical predictions with beam size b, denoted as {7,310 ..
For the 7-th beam, the probability distribution of the token identified by the well-trained decoder v

at the ¢-th step is is 7, which can be calculated as follows:
Pi(y) = P¢(7|Ea Tl<t) * Pw(TiqlE)» (4.6)

where the probability distribution P/ (~y) is the continued multiplication between the probability
distribution of the previous decoding sequence and that of the current decoding step. We can

collect the conditional probability distribution of all tokens for each beam. After that, we append
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tokens with top-b probability values to the historical prediction of each beam to get a new historical
set {T%,,,}%_,. We can iteratively conduct this decoding process until confronted with the jEOS;,

token. We select the transformation sequence with the highest probability value as output.

Hence, 7" enhanced embeddings may produce 7" transformation sequences {T;}~,. We divide
each of them into different parts according to the SEP; token and check the validity of each part
and remove invalid ones. Here, the validity measures whether the mathematical compositions
represented by the postfix part can be successfully calculated to produce a new feature. These
valid postfix parts reconstruct a feature transformation operation sequence {f‘i}iTzl, which are used
to generate refined feature space {X}};‘F:l Finally, we select the feature set with the highest ML

performance as the optimal feature space X*.

Compared with Prior Literature

Recent studies tried to convert the feature transformation into a continuous optimization task to
search the optimal feature space efficiently. DIFER [113] is a cutting-edge method that is compa-
rable to our work in the problem formulation. However, the following constraints limit its practi-
cality: 1) DIFER collects transformation-accuracy data at random, resulting in many invalid train-
ing data with inconsistent transformation performances; 2) DIFER embeds and reconstructs each
transformed feature separately and, thus, ignores feature-feature interactions; 3) DIFER needs to
manually decide the number of generated features, making the reconstruction process ad-hoc. 4)
the greedy search for transformation reconstruction in DIFER leads to suboptimal transformation
results. To fill these gaps, we first implement an RL-based data collector to automate high-quality
transformation record collection. We then leverage the postfix expression idea to represent the en-
tire transformation operation sequence to model feature interactions and automatically identify the

number of reconstructed features. Moreover, we employ beam search to advance the robustness,
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quality, and validity of transformation operation sequence reconstruction.

Experiments

Experiment Setup

Datasets

We used 23 publicly available datasets from UCI [73], LibSVM [14], Kaggle [39], and OpenML [72]
to conduct experiments. The 23 datasets involve 14 classification tasks and 9 regression tasks. Ta-

ble 4.1 shows the statistics of these datasets.

Evaluation Metrics

We used Fl-score, Precision, Recall, and ROC/AUC to evaluate classification tasks. We used
1-Relative Absolute Error (1-RAE) [93], 1-Mean Average Error (I-MAE), 1-Mean Square Error
(1-MSE), and 1-Root Mean Square Error (1-RMSE) to evaluate regression tasks. We used the Valid
Rate to evaluate the sequence generation. A valid feature transformation means it can successfully
conduct mathematical compositions without any ambiguity and errors. The valid rate is the average
of all correct transformation numbers divided by the total number of generated sequences. The
greater the valid rate is, the superior the model performance is. Because it indicates that the
built continuous space can capture the patterns of mathematical compositions, resulting in more

effective exploration and fewer errors during searching for better feature transformations.
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Baselines

We compared our method with eight widely-used feature generation methods: (1) RDG generates
feature-operation-feature transformation records at random for generating new feature space; (2)
ERG first applies operation on each feature to expand the feature space, then selects the crucial
features as new features. (3) LDA [9] is a matrix factorization-based method to obtain the factor-
ized hidden state as the generated feature space. (4) AFAT [38] is an enhanced version of ERG that
repeatedly generate new features and use multi-step feature selection to select informative ones. (5)
NFS [12] models the transformation sequence of each feature and uses RL to optimize the entire
feature generation process. (6) TTG [44] formulates the transformation process as a graph, then
implements an RL-based search method to find the best feature set. (7) GRFG [93] uses three col-
laborated reinforced agents to conduct feature generation and proposes a feature grouping strategy
to accelerate agent learning. (8) DIFER [113] embeds randomly generated feature transformation

records with a seq2seq model, then employs gradient search to find the best feature set.

Besides, we developed two variants of GBFG in order to validate the impact of each technical
component: (i) GBFG~? replaces the RL-based data collection component with collecting feature
transformation-accuracy pairs at random. (ii) GBFG™“ removes the data augmentation component.
We randomly split each dataset into two independent sets. The prior 80% is the training set, and
the remaining 20% is the testing set. We conducted all experiments with the hold-out setting to
ensure a fair comparison. This experimental setting means that the optimal feature transformation
operation sequence learned on the training set was directly applied to the testing set without any
data leakage. We adopted Random Forest as the downstream machine learning model and reported
the performance of each method by running five-fold cross-validation on the testing set. Random
Forest is a robust, stable, well-tested method, thus, we can reduce performance variation caused by

the model, and make it easy to study the impact of feature transformation.
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Hyperparameter Settings and Reproducibility

The operation set consists of square root, square, cosine, sine, tangent, exp, cube, log, recipro-
cal, quantile transformer, min-max scale, sigmoid, plus, subtract, multiply, divide. For the data
collection part, we ran the RL-based data collector for 512 epochs to collect a large amount of
feature transformation-accuracy pairs. For the data augmentation part, we randomly shuffled each
transformation sequence 12 times to increase data diversity and volume. We adopted a single-layer
LSTM as the encoder and decoder backbones and utilized 3-layer feed-forward networks to im-
plement the predictor. The hidden state sizes of the encoder, decoder and predictor are 64, 64, and
200, respectively. The embedding size of each feature ID token and operation token was set to 32.
To train GBFG, we set the batch size as 1024, the learning rate as 0.001, and X\ as 0.95 respectively.
For inferring new feature transformation sequences, we used top-20 records as the seeds with beam

size 5.

Experimental Settings

All experiments were conducted on the Ubuntu 18.04.6 LTS operating system, AMD EPYC 7742

CPU, and 8 NVIDIA A100 GPUs, with the framework of Python 3.9.10 and PyTorch 1.8.1.

Performance Evaluation

Overall Performance

This experiment aims to answer: Can GBFG effectively generate transformation sequence with
excellent performance? Table 4.1 shows the comparison results in terms of F1-score and 1-RAE.

We noticed that GBFG outperforms other cutting-edge baselines on all datasets. The underly-
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ing driver for this observation is that GBFG builds an effective embedding space to preserve the
knowledge of feature transformation, making sure the gradient-ascent search module can identify
the best-transformed feature space following the gradient direction. Another interesting observa-
tion is that GBFG significantly outperforms DIFER and has more stable performance. There are
two underlying drivers: 1) RL-based data collector produces large quantities of high-quality trans-
formation records, which provides a robust and powerful foundation for constructing an effective
embedding space; 2) Postfix notation-based transformation sequence greatly decreases the search
space and learning difficulties, resulting in a better transformation performance. Thus, this exper-
iment validates that GBFG is effective and superior when confronted with different datasets and

scenarios.

Table 4.1: Overall performance comparison. ‘C’ for binary classification, and ‘R’ for regression.
The best results are highlighted in bold. The second-best results are highlighted in underline.
(Higher values indicate better performance.)

Dataset Source  C/R  Samples Features RDG ERG LDA AFAT NFS TTG GRFG DIFER GBFG
Higgs Boson UCIrvine C 50000 28 0.695 0.702 0513 0.697 0.691 0.699 0.707 0.669  0.712
Amazon Employee  Kaggle C 32769 9 0932 0.934 0916 0.930 0.932 0933 0932 0.929 0.936
Pimalndian UCIrvine C 768 8 0.760 0.761 0.638 0.765 0.749 0.745 0.754 0.760  0.807
SpectF UCIrvine C 267 44 0.760 0.757 0.665 0.760 0.792 0.760 0.818 0.766  0.912
SVMGuide3 LibSVM C 1243 21 0.787 0.826 0.652 0.795 0.792 0.798 0.812 0.773  0.849
German Credit UCIrvine C 1001 24 0.680 0.740 0.639 0.683 0.687 0.645 0.683 0.656 0.730
Credit Default UCIrvine C 30000 25 0.805 0.803 0.743 0.804 0.801 0.798 0.806 0.796 0.810
Messidor_features  UCIrvine C 1150 19 0.624 0.669 0.475 0.665 0.638 0.655 0.692 0.660 0.749
Wine Quality Red  UCIrvine C 999 12 0.466 0.461 0.433 0480 0462 0467 0470 0476 0.559
Wine Quality White UCIrvine C 4900 12 0.524 0.510 0.449 0.516 0.525 0531 0.534 0.507  0.536
SpamBase UCIrvine C 4601 57 0906 0917 0.889 0912 0925 0919 0922 0912 0932
AP-omentum-ovary OpenML C 275 10936  0.832 0.814 0.658 0.830 0.832 0.758 0.849 0.833  0.885
Lymphography UCIrvine C 148 18 0.108 0.144 0.167 0.150 0.152 0.148 0.182 0.150  0.267
Ionosphere UCIrvine C 351 34 0912 0921 0.654 0.928 0913 0902 0933 0.905 0.985
Housing Boston ~ UCIrvine R 506 13 0.404 0.409 0.020 0416 0425 0396 0404 0.381 0.467
Airfoil UCIrvine R 1503 5 0.519 0.519 0.220 0.521 0.519 0.500 0.521 0.558  0.629
Openml_618 OpenML R 1000 50 0.472 0.561 0.052 0472 0473 0467 0.562 0408 0.692
Openml_589 OpenML R 1000 25 0.509 0.610 0.011 0.508 0.505 0.503 0.627 0.463 0.656
Openml_616 OpenML R 500 50 0.070 0.193 0.024 0.149 0.167 0.156 0.372 0.076  0.526
Openml_607 OpenML R 1000 50 0.521 0.555 0.107 0.516 0.519 0522 0.621 0476  0.673
Openml_620 OpenML R 1000 25 0.511 0.546 0.029 0.527 0513 0512 0.619 0442 0.642
Openml_637 OpenML R 500 50 0.136 0.152 0.043 0.176 0.152 0.144 0307 0.072  0.465
Openml_586 OpenML R 1000 25 0.568 0.624 0.110 0.543 0.544 0544 0.646 0482  0.700

* We reported F1-Score for classification tasks, and 1-RAE for regression tasks.
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Figure 4.4: The influence of data collection (GBFG~?) and data augmentation (GBFG~%) in
GBFG.

Study of the impact of data collection and augmentation.

This experiment aims to answer: Is it essential to collect feature transformation records and aug-
ment them to maintain GBFG performance? To answer the question, we developed two model
variants of GBFG: 1) GBFG~¢, which randomly collects feature transformation records for con-
tinuous space construction; 2) GBFG™, which removes the data augmentation step in GBFG.
Figure 4.4 shows the comparison results in terms of Precision, Recall, F1-score, and Valid Rate
for classification tasks (i.e., Spectf and SpamBase) and in terms of 1-MAE, 1-MSE, and 1-RAE,

and Valid Rate for regression tasks (i.e., Openml_616 and Openml _618). Firstly, we found that
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Figure 4.5: Comparison of the valid rate of GBFG in different beam search settings and DIFER.

the performance of GBFG is much better than GBFG~¢. The underlying driver is that the RL-
based data collector can generate amounts of high-quality transformation records, which makes
the continuous embedding space construction robust. Thus, it enables gradient-ascent search to
identify the optimal feature space more effectively. Moreover, we observed that the performance
of GBFG™“ is inferior to GBFG. This observation reflects that removing the data augmentation
module significantly decreases data diversity and volume, leading to the learning process of the
continuous embedding space construction being unstable and noisy. Thus, this experiment shows

the importance of the data collection and augmentation components in the GBFG.

Study of the influence of beam search.

This experiment aims to answer: Is it critical to introduce beam search into GBFG? To establish
the control group, we set the beam size as 5 and 0, respectively. In the meantime, we add DIFER
as another comparison object. We compare the generation performance in terms of valid rate.
Figure 4.5 shows the comparison result. We noticed that the result with the 5-beams search beats

the 0-beams greedy search. The underlying driver is that introducing beam search may identify
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Table 4.2: Robustness check of GBFG with distinct ML models on Spectf dataset in terms of

Fl-score.
RF XGB SVM KNN Ridge LASSO DT
RDG 0.760 0.818 0.750 0.792 0.718 0.749 0.864
ERG 0.757 0.813 0.753 0.766 0.778 0.750 0.790
LDA 0.665 0.715 0.760 0.749 0.759 0.760 0.665
AFAT 0.760 0.808 0.722 0.759 0.723 0.770 0.844
NFES 0.792 0.799 0.732 0.792 0.744 0.749 0.864
TTG 0.760 0.819 0.765 0.750 0.716 0.749 0.842
GRFG 0.818 0.842 0.580 0.760 0.729 0.744 0.786
DIFER 0.766 0.794 0.727 0.777 0.647 0.744 0.809
GBFG 0.912 0.897 0.876 0.916 0.780 0.844 0.929

a more effective and reasonable transformation sequence by enlarging the search space compared
with greedy search (beam size=0). Another interesting observation is that DIFER is substantially
worse than GBFG, and its error bar is extended. The underlying driver is that DIFER collects fea-
ture transformation records at random. Such a data collection method generates too many invalid

sequences and error patterns, which distorts the constructed embedding space.

Robustness check of GBFG.

This experiment aims to answer: Is GBFG robust with different downstream ML models? We
replaced the downstream ML models with Random Forest (RF), XGBoost (XGB), Support Vec-
tor Machine (SVM), K-Nearest Neighborhood (KNN), Ridge, LASSO, and Decision Tree (DT)
to observe the robustness performance, respectively. Table 4.2 shows the comparison results on
Spectf in terms of the Fl-score. We observed that GBFG keeps the best performance regardless
of downstream ML models compared with other baselines. A possible reason for this observa-
tion is that customized transformation records can be collected for different ML models. Then,

the constructed embedding space may comprehend the preference and properties of distinct ML
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Figure 4.6: Scalability check of GBFG in terms of search time for optimal feature space, sample
size, and feature size.
models, thereby resulting in a globally optimal feature space. Therefore, this experiment shows

the robustness and effectiveness of GBFG.

Study of the scalability of GBFG

This experiment aims to answer: Can GBFG have good scalability to fit different datasets? We
visualized the changing trend of the time cost of searching for better feature spaces over sample
size and feature dimensions of different datasets. Figure 5.3 shows the comparison results. We
found that the time cost of GBFG keeps stable with the increase of sample size of the feature
set. A possible reason is that GBFG only focuses on the decision-making benefits of feature ID
and operation tokens instead of the information of the entire feature set, making the searching
process sample size irrelevant. Another interesting observation is that the search time is still stable
although the feature dimension of the feature set varies significantly. A possible explanation is that
we map transformation records of varying lengths into a continuous space with a constant length.
The searching time in this space is input dimensionality-agnostic. Thus, this experiment shows the

GBFG has excellent scalability.
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on Spectf dataset.

Study of the parameter sensitivity

To validate the parameter sensitivity of the search step size 7 (See section 4) and the trade-off
parameter « in the training loss (See section 4), we set the value of 7 from 1 to 10, and set the
value of a from 0.05 to 0.50 to observe the difference. Figure 4.7 shows the comparison results
in terms of precision, recall, and F1-score. When the search step size grows, the downstream ML
performance initially improves, then declines marginally. A possible reason for this observation
is that a too-large step size may make the gradient-ascent search algorithm greatly vibrate in the
continuous space, leading to missing the optimal embedding point and transformed feature space.
Another interesting observation is that the standard deviation of the model performance is lower
than 0.01 under different parameter settings. This observation indicates that GBFG is not sensitive
to distinct parameter settings. Thus, the learning and searching process of GBFG is robust and

stable.
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Figure 4.8: The visualization of learned transformation sequence embedding (from GBFG).

Study of the continuous embedding space.

This experiment aims to answer: What is the continuous search space look like? We selected
Airfoil and Openml_616 as examples to visualize their continuous embedding space. In detail, we
first collected the latent embeddings generated by the transformation records. Then, we use T-
SNE to map them into a 2-dimensional space for visualization. Figure 4.8 shows the visualization
results, in which each point represents a unique feature transformation sequence. The size of each
point means its downstream performance. The bigger point size indicates that the downstream
performance is superior. We colored the top 20 embedding points according to the performance
in red. We found that the distribution locations of the top 20 embedding points are different. A
potential reason is that the corresponding transformation sequences of the top 20 embedding points
are different lengths. The sequence reconstruction loss distributes them to different areas of the
embedding space. Moreover, we observed that the top 20 embedding points are close in the space
even though the positions are different. The underlying driver is that the estimation loss makes
these points with good performance clustered. Thus, this case study reflects that the reconstruction
loss and estimation loss make the continuous space associate the transformation sequence and the

corresponding model performance.
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Figure 4.9: Comparison of traceability on the original feature space and the generated one
produced by GBFG.

Study of the traceability and explainability of GBFG

This experiment aims to answer: Is GBFG traceable, and what’s new in the generated features?
We selected the top 10 essential features for prediction in the original, and GBFG transformed
feature space of the Wine Quality Red dataset for comparison. Figure 4.9 shows the comparison
results. The texts associated with each pie chart are the corresponding feature name. The larger
the pie area is, the more critical the feature is. We found that almost 70% critical features in the
new feature space are generated by GBFG and they improve the downstream ML performance by
22.6%. This observation indicates that GBFG really comprehends the properties of the feature set
and ML models in order to produce a more effective feature space. Another interesting finding
is that ‘[alcohol]’ is the essential feature in the original feature set. But GBFG generates more
mathematically composited features using ‘[alcohol]’. This observation reflects that GBFG not
only can capture the significant features but also produce more effective knowledge for enhancing
the model performance. Such composited features can make domain experts trace their ancestor

resources and summarize new analysis rules for evaluating the quality of red wine.
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Related Work

Automated Feature Transformation (AFT) can enhance the feature space by automatically math-
ematically transforming the original feature space [13, 51, 13]. Existing works can be divided into
three categories: 1) expansion-reduction based approaches [40, 45, 52, 38, 43]. Those approaches
first expand the original feature space by explicitly [42] or greedily [16] decided mathematical
transformation, then reduce the space by selecting useful features. However, it is hard for them to
produce or evaluate both complicated and effective mathematical compositions, leading to inferior
transformation performance. 2) evolution-evaluation approaches [93, 44, 88, 112, 101]. These
methods integrate feature generation and selection into a closed-loop learning system. They itera-
tively generate effective features and keep the most useful ones until achieving the maximum iter-
ation number. The entire process is optimized by evolutionary algorithms or RL models. However,
they still focus on how to simulate the discrete decision-making process in feature engineering.
Thus, they are still time-consuming and unstable. 3) Auto ML-based approaches [12, 113]. Auto
ML aims to find the most suitable model architecture automatically [18, 57, 35, 41]. The success
of auto ML in many area [110, 100, 3, 92] and the similarity between auto ML and AFT inspire
researchers to formulate AFT as an auto ML task to resolve. However, they are limited by: 1) in-
capable of producing high-order feature transformation; 2) unstable transformation performance.
Thus, to fulfill these gaps, we propose a new framework GBFG. In this framework, we formulate
AFT as a continuous optimization task to resolve. We develop an RL-based data collector to gen-
erate large quantities of high-quality transformation-accuracy records. We propose a postfix-based
sequence expression way to model the entire transformation sequence, which saves computational
resources, decreases the learning difficulties, and determines the transformation length automati-
cally. We employ a beam search-based transformation sequence reconstruction module to generate

more effective feature spaces for identifying the optimal one.

87



Conclusion Remarks

In this chapter, we propose a gradient-based automated feature transformation framework, namely
GBFG. In detail, we first develop an RL-based data collector to gather large quantities of high-
quality transformation-accuracy pairs. Then, we offer an efficient postfix notation-based sequence
expression way to represent the transformation sequence in each pair. Moreover, we map them
into a continuous embedding space using an encoder-decoder-evaluator model structure. In this
space, each embedding point is associated with a transformation sequence and downstream ML
performance. Finally, we employ a gradient-ascent search to identify better embeddings and then
use beam search to reconstruct the transformation sequence and identify the optimal one. Extensive
experiments show that the continuous optimization setting can efficiently search for the optimal
transformed feature space. The RL-based data collector is essential to keep an excellent and stable
transformation performance. The postfix expression sequence enables GBFG to automatically
determine the transformation depth and length, resulting in more flexible and effective feature
transformations. The beam search technique can increase the validity of feature transformation. In
the future, we will focus on applying GBFG to more application domains to inspire and facilitate

more areas.
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CHAPTER 5: GENERATIVE-AI PERSPECTIVE: AUTOREGRESSIVE
FEATURE SELECTION LEARNING

In this chapter, I will introduce the autoregressive feature selection learning framework. Within

this unified optimization framework, the task of feature selection is well addressed.

Introduction

Feature selection aims to identify the most appropriate subset of features, which can be employed
to optimize downstream predictive tasks. A proficiently executed feature selection can reduce
dimensionality, shorten training time, bolster the generalization capability, mitigate the risk of
overfitting, enhance predictive accuracy, and improve interpretation and explanation. Thus, fea-
ture selection can enrich our understanding of the underlying data patterns for conducting more

comprehensive analyses.

Within the scope of practical application, feature selection encounters two prominent challenges:
1) The aspect of generalization, and 2) The issue of robustness. Firstly, different selection algo-
rithms use different criteria to select representative features, making it challenging to find the best
algorithm for cross-domain datasets. The notion of generalization within feature selection aims
to address the following question: how can we facilitate consistently high accuracy across mul-
tiple domains? Secondly, certain domains (e.g., biomedical) involve a huge number of features,
but sample sizes are limited due to costs, privacy, and ethnicity. When data are high-dimensional,
point-point distances tend to be the same, and data patterns are non-discriminative. Concurrently,
high dimensionality can amplify feature selection complexity and time costs in a discrete space.

On the other hand, when data are low sample-sized, distributions are sparse, and data patterns
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are unclear. Addressing robustness within feature selection intends to answer the following ques-
tion: how can we automatically identify an effective yet small-sized feature subset with input

dimensionality-agnostic time costs?

Relevant studies can only partially solve the two challenges. Classic feature selection algorithms
can be grouped into three categories: (i) filter methods (e.g., univariate feature selection [107, 21],
correlation-based feature selection [31, 108]), in which features are ranked by a specific score.
However, feature relevance or redundancy scores are usually domain-specific, non-learnable, and
cannot generalize well to all applications. (ii) wrapper methods (e.g., evolutionary algorithms
[105, 46], branch and bound algorithms [67, 48]), in which optimal feature subset is identified by
a search strategy that collaborates with predictive tasks. However, such methods have to search a
large feature space of 2V feature subspace candidates, where N is the number of input features.
(iii) embedded methods (e.g., LASSO [86], decision tree [82]), in which feature selection is part
of the optimization objective of predictive tasks. However, such methods are subject to the strong
structured assumptions of predictive models (e.g., the L1 norm assumption of LASSO). That is,
feature selection and predictive models are coupled together, lack flexibility, and are hard to gen-
eralize to other predictors. Therefore, we need a novel perspective to derive the novel formulation

and solver of generalized and disruption-robust feature selection.

Our contributions: a discrete subsetting as continuous optimization perspective. We formu-
late the problem of discrete feature selection as a gradient-based continuous optimization task. We
propose a new perspective: the discrete decisions (e.g., select or deselect) of feature selection can
be embedded into a continuous embedding space, thereafter, solved by a more effective gradient-
based solution. We show that this perspective can be implemented by feature subset encoding,
gradient-optimized search, and reconstruction. Training deep models requires big training data,
and we find that reinforcement feature selection can be used as a tool to automatically generate

features-accuracy pairs in order to increase the automation, diversity, and scale of training data
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preparation. We demonstrate that integrating both reinforcement-generated and classic selection
algorithms-generated experiences learn a better feature subset embedding space because: 1) using
reinforcement is to crowd-source unknown exploratory knowledge and 2) using classic selection
algorithms is to exploit existing peer knowledge. We highlight that a globally-described discrimi-
native embedding space, along with the joint objective of minimizing feature subset reconstruction
loss and accuracy estimation loss, can strengthen the denoising ability of gradient search, elim-
inate noisy and redundant features, and yield an effective feature subset. We observe that, by
representing feature subsets into fixed-sized embedding vectors, the time costs of gradient-based
optimization are input dimensionality-agnostic (only relates to embedding dimensionality). The
feature subset decoder can automatically reconstruct optimal selected features and doesn’t need to

manually identify the number of best features.

Summary of Proposed Approach. Inspired by these findings, this paper presents a generic and
principled framework for deep differentiable feature selection. It has two goals: 1) generalized
across domains; 2) disruption-robust: overcome training data bottlenecks, reduce feature subset
size while maintaining accuracy, and control time costs against input dimensionality. To achieve
Goal 1, we achieve feature selection via a pipeline of representation-search-reconstruction. Specif-
ically, given a downstream predictor (e.g., decision tree), we collect the features-accuracy pairs
from diverse feature selection algorithms so that training data represent the diversity of samples.
An embedding space is learned to map feature subsets into vectors. We advance the representabil-
ity and generalization of the embedding space by exploiting the diverse and representative train
samples to optimize the joint loss of feature subset reconstruction and accuracy evaluation. We
leverage the accuracy evaluator as feedback to infer gradient direction and degree to improve the
search for optimal feature subset embeddings. To achieve Goal 2, we devise different computing
strategies: 1) We develop a multi-agent reinforcement feature selection system that can automat-

ically generate large-scale high-quality features-accuracy pairs in a self-optimizing fashion and
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overcome training data bottlenecks. 2) We reformulate a feature subset as an alphabetical non-
ordinal sequence. We devise the strategy of jointly minimizing not just accuracy evaluation loss
but also sequence reconstruction loss in order to position the gradient toward a more denoising
direction over the continuous embedding space to reconstruct a shorter feature subset. We find that
the reduction of feature space size improves generalization. 3) Since we embed feature subsets
into a fixed-size embedding space, gradient search in a fixed-size space is input dimensionality
agnostic. Finally, we present extensive experimental results to show the small-sized, accurate,

input-dimensionality agnostic, and generalized properties of our selected features.

Problem Statement

Our goal is to develop a generalized and robust deep differentiable FS framework. Formally, given
a dataset D = {X, y}, where X is a feature set, and y is predictive target labels. We utilize
classic FS algorithms to D to collect n feature subset-accuracy pairs as training data, denoted
by R = {(f;,v;)}},, where f; = [f1, fo,- -+, fr] is the feature ID token set of the i-th feature
subset, and v; is corresponding downstream predictive accuracy. Thereafter, we pursue two aims:
1) constructing an optimal continuous space of feature subsets. We learn a mapping function ¢, a
reconstructing function v, and an evaluation function w via joint optimization to convert R into a
continuous embedding space £, in which each embedding vector represents the feature ID token
set of a feature subset and corresponding model performance. 2) searching the optimal feature

subset. We adopt gradient-based search to find the optimal feature token set f*, given by:

£ = Y(E*) = argmaxg c ACM(X [V (E)]), ), 5.1)

where 1) is a reconstruction function to reconstruct a feature ID token set from any embedding of

&; E is an embedding vector in £ and E* is the optimal one; M is the downstream ML model
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and A is the performance indicator. We apply f* to X to select the optimal feature subset X [f*] to

maximize downstream ML model performances.

Methodology

In this section, we present an overview of our method, and then introduce the technical details of

each component.
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Figure 5.1: An overview of our framework. GAINS is made up of four main components: 1)
feature-accuracy training data preparation, designed to quickly collect large quantities of qualified
and valid training data; 2) deep feature subset embedding, purposed to preserve the knowledge of

feature selection into a global continuous embedding space; 3) gradient-optimized best
embedding search, intended to search for better embeddings in the learned space; 4) optimal
feature subset reconstruction, devised to reconstruct and output the optimal feature subset.

Framework Overview

Figure 5.1 shows the overview of our framework, including four steps: 1) feature-accuracy training

data preparation; 2) deep feature subset embedding; 3) gradient-optimized best embedding search;
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4) optimal feature subset reconstruction. Step 1 is to collect selected feature subsets and corre-
sponding predictive performances as training data for deep feature subset embedding. In particu-
lar, to exploit existing peer knowledge, we utilize classical feature selection methods (e.g., K-Best,
mRMR) to collect feature subset-accuracy records; to explore crowdsource unknown knowledge,
we utilize reinforcement learning (RL) based feature selector to collect diverse feature subset-
accuracy records. Step 2 is to develop a deep encoder-evaluator-decoder model to learn the opti-
mal embedding space of feature subsets. In particular, given a feature subset, the encoder maps
the feature subset ID tokens into a continuous embedding vector; the evaluator optimizes the em-
bedding vector along the gradient direction by predicting the corresponding model performance;
the decoder reconstructs the feature ID tokens using feature subset embedding vectors. We learn
the optimal embedding space by jointly optimizing the reconstruction and evaluation losses of the
encoder, evaluator, and decoder. Step 3 aims to expedite the gradient-optimized search of opti-
mal feature subset embedding vector in the embedding space. In particular, we first select top-K
historical feature subset-accuracy pairs as search seeds (starting points) and obtain corresponding
embeddings using the well-trained encoder. We then search by starting from these embeddings at a
minute rate in the gradient direction of performance improvement to identify optimal embeddings.
Step 4 is to exploit the well-trained decoder to reconstruct the optimal feature ID tokens as candi-
date feature subsets from these identified embeddings. We evaluate these candidate feature subsets

with a downstream ML model to present the best feature subset with the highest performance.

Feature-Accuracy Training Data Preparation

We collect a set of feature-accuracy pairs as training data to construct an effective continuous space

that depicts the properties of the original feature set.

Leveraging exploitation and exploration for automated training data preparation. The di-
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versity, scale, and comprehensiveness of the training data population are essential for learning an
effective embedding space. The training data is collected via two strategies. 1) exploitation of
existing feature selection algorithms: we apply classical feature selectors (e.g., KBest, Lasso.) to
the given feature set. Each algorithm represents one algorithmic perspective and produces a small
number of feature subset-accuracy records. It is challenging to collect large-scale, diverse train-
ing data. 2) exploration of other unknown candidate subsets: We find that reinforcement learning
can be used to automatically explore and select various feature subsets to evaluate corresponding
feature subset performance [61]. In other words, reinforcement feature selection can be viewed
as a tool for automated training data preparation. In particular, we develop a multi-agent rein-
forcement feature selection system, where each agent is to select or deselect a feature in order to
progressively explore feature subsets and find high-accuracy low-redundancy feature subsets. The
reinforcement feature selection system leverage randomness and self-optimization to automati-
cally generate high-quality, diverse, comprehensive feature subset-accuracy records to overcome

data sparsity.

Leveraging order agnostic property to augment training data. To learn a feature subset em-
bedding space, we view a feature subset as a token sequence and exploit seq2vec models to embed
a feature subset as a vector. Since the feature subset is order-agnostic, the token sequence is order-
agnostic. We leverage the order-agnostic property to augment the feature subset-accuracy training
data by shuffling and rearranging the orders of selected features in a feature token sequence. For-
mally, given a selected feature subset and corresponding predictive accuracy, denoted by {f, v},
where f = [fi, fo, -+, fr] is the ID tokens of selected features and v; is corresponding perfor-
mance. We shuffle the old token order and obtain a new order of the 7-length feature subset
f= [fs, fr,- -+, f1]. We add the new shuffled token sequence and corresponding accuracy into the

training data to enhance data diversity and comprehensiveness.
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Deep Feature Subset Embedding

Why effective embedding space construction matters. Most conventional feature selection al-
gorithms are of a discrete choice formulation. Such formulation results in suboptimal performance
since it is difficult to enumerate all possible feature combinations in a high-dimensional dataset. To
efficiently search the optimal feature subset, it is crucial to change feature selection from searching
in discrete space to searching in continuous space, where gradient-based optimization can be used

for faster and more effective selection.

But, How can the knowledge derived from feature selection be incorporated into an embedding
space? There are two potential methods: 1) Sequential modeling, which learns distinct embed-
dings for the same feature subset irrespective of order; 2) Set modeling, which generates a consis-
tent embedding for the same feature subset, even with altered order. In sequential modeling, the
identical subset with varying orders yields different embeddings. These form a global continuous
embedding space, where lighter regions signify poor model performance, while darker regions cor-
respond to superior performance. It is easy to search for the optimal solution by shifting candidate
embeddings to the optimal regions via gradients. Conversely, set modeling, which learns a consis-
tent embedding for variations of the same feature subset, results in a locally optimal embedding
space. This model cannot perceive the order of feature subsets that do not influence performance.
Consequently, even after embedding updates, locating the optimal point remains challenging due
to the lack of clear direction. Based on these observations, we opt for sequential modeling (i.e.,

LSTM) to integrate feature selection knowledge into a continuous embedding space.

Leveraging the encoder-evaluator-decoder framework to embed feature subset tokens. We
aim to construct an effective continuous embedding space in order to search for better feature
subsets using gradient-based search in the gradient direction of higher performance. We develop

a novel learning framework that includes the encoder, evaluator, and decoder. Next, we use f
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to denote the feature ID tokens of selected features and v to denote the corresponding model

performance.

The feature subset encoder ¢: The encoder is to learn a mapping function ¢ that takes f as input,
and outputs its continuous embedding E, denoted by ¢(f) = E. The encoder is designed based on
a single layer of Long Sort-Term Memory [37] (LSTM), where f € R**7 and T is the length of
the feature subset. After inputting f into ¢, we collect each feature ID token embedding to form E.
Here, E = [h;, hy, -+, hy] € RT*4 where h; € R'*?is the ¢-th token embedding with dimension

d.

The feature subset decoder ¢): The decoder ) aims to reconstruct the feature ID tokens f of of
an embedding vector E, denoted by ¢/(E) = f. Similar to the encoder, we employ a single-layer
LSTM to implement the decoder. We train the decoder in an autoregressive manner. The initial
input of the decoder is the last embedding of E, denoted by hy = hy. We take the i-th step in
LSTM as an example to demonstrate the calculation process. Specifically, we input h,_; and the
i-th feature ID token in s into the LSTM layer to get the current embedding h;,. The output of the
decoder and the input of the encoder share the same feature ID token dictionary. Thus, to forecast
the next most possible token easily, we utilize the attention mechanism [2] to learn the attention

weights between h; and each token embedding in E. Then, we generate the enhanced embedding

h; by aggregating the knowledge of E using the attention weights. This process can be defined by:

. h; - h,
hi = Z Clijhj, Where aij = eXp( ]) (52)

h;cE theE eXP(ﬁi -hy,) '

where h; is the j-th embedding from E and q;; is the attention weight between h; to h;. Later, we

concatenate h; and h; together and input them into a fully-connected layer activated by Softmax
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to estimate the distribution of each feature ID token for the i-th step, which can be formulated by:

exp(Wy, concat(h;, h;))

P, z‘E,fi — h,. b 7
o (fil B, i) = Zh g €Xp(Wh,, concat(h;, h;))

(5.3)

where concat(-) is the concatenate operation, W) represents the weight matrix. f_; represent the
previous tokens before the i-th step. We may take the token with the highest probability as the
predicted feature ID token, denoted by f;. If multiple the probability at each step, the probability

distribution of the whole token sequence f can be represented by:

f|E pr ft’E f<t) (5-4)

The Feature Subset Evaluator w: The evaluator w aims to predict the model performance given
the continuous embedding of E. Specifically, we apply the mean pooling to the embedding E in a
column-wise manner to obtain the embedding & € R'*?. We then input it into a fully-connected

layer to predict the model performance ¥, which can be defined by: ¢ = w(e).

The joint optimization. We jointly optimize the encoder, decoder, and evaluator. There are two
goals: 1) reconstructing the feature ID tokens f. To achieve this goal, we minimize the negative

log-likelihood of f given E, defined by:

Lyec = —log Py(f|E) = Z log Py(fi|E, f-,). (5.5)

t=1

2) minimizing the difference between the predicted performance ¢ and the real one v. To achieve

this goal, we minimize the Mean Squared Error (MSE) between ¢ and v, defined by:

Loy = MSE(v, ©). (5.6)
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We integrate the two losses to form a joint training loss £, defined by:

L=Aree+ (1 =) Lest, (5.7

where A is the trade-off hyperparameter to balance the contribution of the two objectives during

the learning process.

Gradient-Optimized Best Embedding Search

Why selecting search seeds matters. When the encoder-evaluator-decoder model converges, we
perform a gradient-based search in the well-built continuous space for better feature selection
results. Similar to the significance of initialization for deep neural networks, good starting points
can accelerate the search process and enhance its performance. These points are called “search
seeds”. Thus, we first rank the selection records based on the corresponding model performance.

Then, the top-K selection records are chosen as search seeds for searching for better embeddings.

Gradient-ascent Optimizer Search. Assuming that one of the top-K selection records is (f,v).
We input f into the encoder to obtain the embedding E = [hy, hy, - -+ hy|. Then, we move each
embedding in E along the gradient direction induced by the evaluator w:

(]

h:rthLnaht

aE+:{hf—>h3_7"' 7h;a}7 (58)

where 7 is the step size and ET is the enhanced embedding. We should set 7 within a reasonable
range (e.g., small enough) to make the model performance of the enhanced embedding E™ is better
than E, denoted by w(E™) > w(E). We conduct the search process for each record and collect
these enhanced embeddings, denoted by [Ef,EJ, - -- | E]. Since we have embedded discrete se-

lection records into d dimensional embedding space, the time complexity of the searching process
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is independent of the size of the original feature set.

Optimal Feature Subset Reconstruction

The enhanced embeddings indicate possible better feature selection results. To find the optimal
one, we should reconstruct the feature ID tokens using them. Specifically, we input [E], E;, - -+ | EL]
into the well-trained decoder to get the reconstructed feature ID tokens [f;", £, - - - , £;]. We do not
need to set the number of feature ID tokens throughout the decoding process; instead, we identify
each token until the stop token, similar to how natural language generation works. Then, we use
them to select different feature subsets from the original feature set. Finally, we adopt the down-
stream ML model to evaluate these subsets and output the optimal feature ID tokens f*, which can

be used to select the best feature subset with the highest model performance.

Experiments

In this section, we present detailed experimental setups and conduct comprehensive experimental

analyses and case studies to validate the efficacy of the proposed model.

Experimental Setup

Dataset Description.

We conducted extensive experiments using 19 publicly available datasets from UCI, OpenML,
CAVE, Kaggle, and LibSVM. These datasets are categorized into 3 folds based on the types of MLL

tasks: 1) binary classification (C); 2) multi-class classification (MC); 3) regression (R). Table 5.1
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shows the statistics of these datasets, which is accessible via the website address provided in the

Abstract.

Evaluation Metrics.

For the binary classification task, we adopted F1-score, Precision, Recall, and ROC/AUC. For the
multi-classification task, we used Micro-F1, Precision, Recall, and Macro-F1. For the regression
task, we utilized 1-Mean Average Error (I-MAE), 1-Mean Square Error (1-MSE), and 1-Root
Mean Square Error (1-RMSE). For all metrics, the higher the value is, the better the model perfor-

mance is.

Baseline Algorithms.

We compared GAINS with 10 widely used feature selection methods: (1) K-Best selects K features
with the highest feature scores [107]; (2) mRMR intends to select a feature subset with the great-
est relevance to the target and the least redundancy among themselves [70]; (3) LASSO selects
features by regularizing model parameters, which shrinks the coefficients of useless features into
zero [86]; (4) RFE recursively removes the weakest features until the specified number of features
is reached [27]; (5) LASSONet designs a novel objective function to conduct feature selection in
neural networks [55]; (6) GFS selects features using genetic algorithms, which recursively gen-
erates a population based on a possible feature subset, then uses a predictive model to evaluate
it [54]; (7) MARLFS builds a multi-agent system for selecting features, wherein each agent is
associated with a single feature, and feature redundancy and downstream task performance are
viewed as incentives [61]; (8) SARLFS is a simplified version of MARLFS, which uses one agent
to determine the selection of all features in order to alleviate computational costs [64]; (9) RRA

first collects distinct selected feature subsets, and then integrates them based on statistical sorting
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distributions [80]; (10) MCDM first obtains a decision matrix using the ranks of features, then as-
signs feature scores based on the matrix for ensemble feature selection [33]. Among the discussed
baseline models, K-Best and mRMR fall under the category of filter methods. Lasso, RFE, and
LassoNet are considered as embedded methods. GFS, SARLFS, and MARLFS are classified as

wrapper methods. Lastly, RRA and MCDM are representative of hybrid feature selection methods.

We randomly split each dataset into two independent sets. The prior 80% 1is used to build the
embedding space, and the remaining 20% is used to search for the optimal feature space. We
conducted all experiments using the hold-out setting to ensure a fair comparison. We adopted
Random Forest as the downstream machine learning model and reported the performance of each
method by running five-fold cross-validation on the testing set. Random Forest is a robust, stable,
well-tested method, thus, we can reduce performance variation caused by the model, and make it

easy to study the impact of the result of feature selection.

Hyperparameter Settings and Reproducibility.

We ran MARLFS for 300 epochs to collect historical feature subsets and the corresponding down-
stream task performance. To augment data, we permutated the index of each feature subset 25
times. These augmented data can be used for GAINS training. The Encoder and Generator have
the same model structure, which is a single-layer LSTM. The Predictor is made up of 2-layer feed-
forward networks. The hidden state sizes of the Encoder, Decoder, and Predictor are 64, 64, and
200, respectively. The embedding size of each feature index is 32. To train GAINS , we set the
batch size as 1024, the learning rate as 0.001, and A as 0.8 respectively. During the model inference
stage, we used the top 25 feature selection records as the initial points to search for the optimal

feature space.
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Environmental Settings

All experiments were conducted on the Ubuntu 18.04.6 LTS operating system, AMD EPYC 7742

CPU, and 8 NVIDIA A100 GPUs, with the framework of Python 3.9.10 and PyTorch 1.8.1 [68].

Performance Evaluation

Table 5.1: Overall performance comparison. ‘C’ for binary classification, ‘MC’ for multi-class
classification, and ‘R’ for regression. The best results are highlighted in bold. The second-best
results are highlighted in underline. (Higher values indicate better performance.)

Dataset Task #Samples #Features Original K-Best mRMR LASSO RFE LASSONet GFS SARLFS MARLFS RRA MCDM GAINS

SpectF C 267 44 7596 7821 79.16 7596 80.80 7596 75.01 75.96 7596 79.16 80.36 87.38
SVMGuide3 C 1243 21 7781 75.13 7534 7595 78.07 76.44 83.12 79.48 81.32 77.63 76.66 83.68
German Credit C 1001 24 64.88 66.67 65.81 69.65 64.86 58.20 67.54 63.32 69.00 69.69 70.85 75.34
Credit Default C 30000 25 80.19 80.59 80.59 77.94 80.28 80.05 79.96 80.05 80.24 7539 74.46 80.61
SpamBase C 4601 57 92.68 92.02 9191 91.74 91.68 88.39  92.25 90.94 92.35 89.43 8895 92.93
Megawattl C 253 38 81.60 78.55 80.08 83.78 80.08 81.03 77.42 82.75 7933 87.78 85.11 90.42
Ionosphere C 351 34 92.85 91.38 95.69 8698 95.69 8558 91.34 94.27 88.48 92.74 88.64 97.10

Activity MC 10299 561 96.17 96.07 9592 9592 9587 96.17 96.12 95.87 95.87 9558 96.12 96.46
Mice-Protein  MC 1080 71 7499 78.69 76.84 7871 77.29 7823 77.35 74.53 7730 70.86 78.69 79.16
Coil-20 MC 1440 400 96.53 95.84 9549 9584 96.52 8297 9549 94.79 9547 95.15 95.50 97.22
MNIST MC 10000 784 9270 9275 9235 9220 9225 87.05 91.60 91.70 91.75 90.40 92.65 93.20
MNIST fashion MC 10000 784 80.15 80.80 80.00 79.90 80.50 78.85 80.60 80.10 80.15 78.85 80.20 81.00

Openml 586 R 1000 25 5495 57.68 5729 60.67 58.10 58.60 63.27 55.76 5721 57.80 57.95 64.00
Openml 589 R 1000 25 5095 54.09 54.03 59.74 5425 54.80 44.72 38.64 5277 54.54 5543 59.76
Openml_607 R 1000 50 51.74 53.03 53.03 58.10 5439 53.63 4570 5532 5394 5541 55.56 66.01
Openml 616 R 500 50 15.63 2475 2444 2898 24.08 1632 5293 2537 25.83 2332 2292 47.39
Openml 618 R 1000 50 46.89 5133 5133 4741 5064 50.69 5240 50.18 5171 5093 50.90 59.13
Openml 620 R 1000 25 51.01 53.57 53.57 5799 53.96 5429 6199 34.45 53.68 56.24 55.66 62.58
Openml 637 R 500 50 1495 20.72 20.72 26.02 17.82 1897 40.12 19.54 2372 2238 22.16 4212

* We reported F1-Score for classification tasks, Micro-F1 for multi-class classification tasks, and 1-RAE
for regression tasks.

Overall Comparison.

This experiment aims to answer: Can GAINS effectively select the feature subset with excellent

performance? Table 5.1 shows the overall comparison results in terms of Fl-score, Micro-F1, and
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1-RAE. We observed that GAINS outperforms other baseline models across all domains and var-
ious tasks. The underlying driver for this observation is that GAINS converts the discrete feature
selection records into a discriminative and effective embedding space by integrating the knowledge
of historical selection records. It enables the gradient-based search to effectively perceive the prop-
erties of the original feature set to obtain superior feature subsets. Another interesting observation
is that the performances of various baseline models vary over datasets: high in certain datasets,
yet low in other datasets. Such an observation indicates that classic feature selection methods can
address the feature selection task in a limited number of data environments, but perform unstably
in diverse data environments. Overall, this experiment demonstrates that GAINS has effective and

robust performance in various data environments and application scenarios.

Examining the impact of data collection and augmentation.

This experiment aims to answer: Is it essential to collect feature selection records and augment
them to maintain GAINS performance? To establish the control group, we developed two model
variants: 1) GAINS™¢, we collected feature selection records at random rather than building basic
feature selectors. 2) GAINS™“, we removed the data augmentation process of GAINS. Figure 5.2
shows the comparison results on Spectf, German Credit, OpenML_589, and Mice Protein. We
found that the performance of GAINS is much better than GAINS™?. The underlying driver is
that, compared to random generation, selection records generated by feature selectors are more ro-
bust and denoising, which is important for creating a more effective embedding space for searching
better feature subsets. Moreover, we observed that GAINS is superior to GAINS™ in all cases.
The underlying driver is that data augmentation can increase the data diversity, resulting in a more
robust and effective learning process for GAINS. Thus, this experiment validates that data collec-

tion and augmentation is significant for maintaining GAINS performance.
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Figure 5.2: The influence of data collection (GAINS~%) and data augmentation (GAINS~¢) in
GAINS.

Study of the scalability of GAINS.

This experiment aims to answer: Does GAINS have excellent scalability in different datasets? Ac-
cording to the dimensionality of the feature set, we chose 6 datasets: SVMGuide3, Megawattl,
Spambase, Mice Protein, Coil-20, and MNIST, from small to large. We analyzed the variation in
the average time required to make an inference during a single search step and in the parameter
size employed by the encoder-evaluator-decoder model. Figure 5.3 (a-b) shows the comparison

results in terms of Parameter Size and Inference Time. We found that in spite of the almost 40-
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Figure 5.3: Scalability check of GAINS in terms of feature size, parameter size, inference time,
data preparation time, and training time.

fold increase in feature dimension from SVMGuide3 to MNIST, the inference time increases by
just about 4-fold, and the parameter size only enlarges by almost 2-fold. The underlying driver
for this observation is that the deep feature subset embedding module has integrated the knowl-
edge of discrete selection records into a fixed continuous embedding space, significantly reducing
the searching time and embedding model size. The time-cost bottleneck is only caused by the
downstream ML model validation. Therefore, this experiment validates that GAINS has strong

scalability when dealing with datasets of varying dimensions.
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Study of the time cost of data preparation and model training.

This experiment aims to address the following question: What are the computational costs in terms
of data preparation and model training? The same as the scalability examination, we selected
six datasets with varying dimensions, i.e., SVMGuide3, Megawattl, Spambase, Mice Protein,
Coil-20, and MNIST. Figure 5.3 (c-d) illustrates the comparison of the corresponding time costs.
From Figure 5.3 (c) We found that the time cost for data preparation correlates with the feature
dimension. For instance, the MNIST dataset, encompassing 784 feature columns, necessitates
approximately 26,547.5 seconds for collecting sufficient samples. In contrast, the Coil-20 dataset,
comprising 400 feature columns, demands a lesser duration of 1344.56 seconds. Interestingly, the
Mice_Protein dataset, despite only encompassing 77 feature columns, necessitates 3985 seconds.
This observation indicates that the time cost of the reinforcement learning-based data preparation
module is associated with the number of feature columns, the sample size, and the complexity of
the downstream task. Figure 5.3 (d) shows the model training duration increases proportionately
with the number of feature columns, thereby validating the findings of the scalability examination.
This illustrates that GAINS requires only a finite number of epochs for reinforced data collection,
thereby significantly reducing the time cost for exploration relative to RL-based methods such as
SARLFS and MARLEFS. Secondly, the training time remains unaffected by the sample size or the
complexity of the downstream task, indicating that our continuous optimization method can make

the feature selection process more efficient.

Study of the impact of hold-out percentage.

This experiment aims to answer: How does the variation in hold-out settings impact our proposed
model? In the experiment setup section, we partitioned the dataset randomly into two independent

subsets. The larger subset, comprising 80% of the total, was allocated for data preparation, model
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Figure 5.4: Robustness check of GAINS when confronted with distinct downstream ML models
in terms of F1-score on German Credit.

training, and validation, whereas the remaining 20% functioned as a holdout set to evaluate the
performance of the optimally constructed feature subset. We further explored this holdout set-
ting and conducted an experiment to exemplify its effectiveness, with the results being depicted in
Figure ??. Figure ?? reveals that different datasets display distinct trends. For instance, the Iono-
sphere dataset’s performance is enhanced with a smaller test split. Conversely, the performance on
the Spectf dataset remains relatively constant, irrespective of fluctuations in the split setting. More-

over, a smaller test split shows a negative influence on the performance of the OpenML_607 and
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Mice_Protein datasets. Various elements, such as the randomness of the dataset partitioning and the
volume of the training data, can affect these datasets’ performance. Notwithstanding, we observed
consistently significant improvements between the performance lines of the optimized and original
feature sets. This observation indicates that the holdout percentage setting does not influence our
proposed method’s optimization for the original datasets, thus substantiating the model’s robust-
ness. Therefore, his experiment demonstrates that GAINS can comprehend the feature selection

knowledge and produce better feature selection results regardless of the hold-out percentages.

Robustness check of GAINS over downstream ML tasks.

This experiment aims to answer: Does our proposed model exhibit robustness when confronted
with various machine learning models serving as downstream tasks? We proceeded to substitute
the downstream machine learning model with Random Forest (RF), XGBoost (XGB), Support
Vector Machine (SVM), and K-Nearest Neighborhood (KNN) respectively. Figure 5.5 shows the
comparison results on the German Credit dataset in terms of the Fl-score. It was observed that
our proposed model consistently outperforms other baseline models regardless of the downstream
model in use. The underlying driver for this observation is that GAINS has the capacity to cus-
tomize the deep embedding space based on the performance evaluation conducted by a specific
downstream machine learning model. This leads our model with a noteworthy degree of cus-
tomization capability. Therefore, this experiment validates the robustness of our proposed model

when confronted with different downstream tasks.
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Figure 5.5: Robustness check of GAINS when confronted with distinct downstream ML models
in terms of F1-score on German Credit.

Study of the size of selected feature subsets.

This experiment aims to answer this question: Is our proposed model capable of selecting a small,
yet effective, feature subset? We randomly selected seven datasets and compared the size of the
feature set of our proposed model with the best-performing baseline model and the original feature
set. Figure 5.6 shows the comparative results, represented in terms of feature ratio. The feature

ratio provides an indication of the proportion of selected features relative to the entire feature
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Figure 5.6: Comparison of the feature set size of GAINS, the best baseline model (Second Best),
and the original feature set (Original).

set. We found that the feature subset selected by our model is substantially smaller than that
of the second-best baseline, yet it maintains superior performance. A plausible explanation for
this observation is that the joint optimization of feature subset reconstruction loss and accuracy
estimation loss enhances the denoising capability of gradient search, reduces noise and redundancy
in features, and ultimately selects a compact but effective feature subset. Therefore, this experiment
demonstrates that the features selected by GAINS can not only improve model performance but

also decrease computational expenses.

Study of the hyperparameter sensitivity of GAINS.

This experiment aims to answer: To what extent is the performance of GAINS sensitive to the values
of the trade-off parameter \ and step size n? There are two major hyperparameters, training trade-
off A and the step size n of each search step. A higher A will make the model more concentrated

on the loss from the reconstruction of sequence, and a higher n make the model search more
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aggressive. We set 7 varies from 0.1 to 1.0, and A from 0.1 to 0.9, then train the GAINS on
German Credit. The model performance is reported in Figure 5.7. Overall, we observed that the
model performance will change slightly on different step size settings. Further, a balanced (i.e., 0.5
or 0.6) model training trade-off value will slightly bring a higher downstream performance. These
findings provide insight into how 7 and A impact the performance of our model and how we might

choose optimal values for these hyperparameters.
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Figure 5.7: The hyperparameter sensitivity test on German Credit.

Related Work

Feature Selection can be broadly categorized as wrapper, filter, and embedded methods according
to the selection strategies [56]. Filter methods choose the highest-scoring features based on the
feature relevance score derived from the statistical properties of the data [70, 7, 15]. For instance,
K-Best [107] algorithm operates by ranking all features based on a specific criterion or metric.
This criterion could be a correlation with the target variable, mutual information, or any other sta-

tistical measure that reflects the significance or importance of the feature. Once the features are

112



ranked, the top ”k” features are selected. These approaches have low computational complexity
and can efficiently select features from high-dimensional datasets. But, they ignore feature-feature
dependencies and interactions, resulting in suboptimal performance. Wrapper methods assess the
quality of the selected feature subset based on a predefined machine learning (ML) model in an
iterative manner [54, 64, 20, 19, 1]. The performance of these methods is typically superior to that
of filter methods because they evaluate the entire feature set. MARLFS [61] adopted a multi-agent
reinforcement approach to manipulate and construct the combination of the features, which is ef-
fective to search the solution. Besides, many reinforcement learning approaches [94, 103, 102]
show great potential for feature engineering knowledge exploring. However, enumerating all pos-
sible feature subsets is an NP-hard problem, leading to cannot identify the optimal feature subset.
Embedded methods convert the feature selection task into a regularization item in a prediction
loss of the ML model to accelerate the selection process [86, 55, 27, 50, 49]. LassoNet [55] is a
representative embedded method that combines the regularization properties of the Lasso and the
expressive power of neural networks. The method is designed to handle high-dimensional data
with intricate and non-linear relationships among the features. The key principle behind LassoNet
is that it introduces sparsity, just like Lasso, but in the weights of a neural network. LassoNet,
thus, combines Lasso (Least Absolute Shrinkage and Selection Operator) with a feedforward neu-
ral network. These methods may have outstanding performance on the incorporated ML model
but are typically difficult to generalize to others. Moreover, other works have proposed hybrid fea-
ture selection methods, which have two technical categories: 1) homogeneous approach [78, 71];
2) heterogeneous approach [32, 79]. Their performance is all limited by their basic aggregat-
ing methods. Unlike these works, GAINS proposes a new feature selection perspective, which
maps historical discrete selection records into a continuous embedding space and then employs the

gradient-based search to efficiently identify the optimal feature subset.
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Conclusion Remarks

In chapter, our research has challenged traditional views of feature selection as a discrete choice
problem and instead considered a novel research question: is it feasible to approach feature se-
lection within a continuous space, thus enhancing its automation, effectiveness, and generaliz-
ability? In pursuit of an answer, we proposed a fresh perspective that transforms the discrete
feature selection process into a gradient-optimized search, thereby reformulating feature selection
as a continuous optimization task. Our study proposed a robust four-stage framework that inte-
grates: 1) Automated reinforcement training data preparation, 2) Deep feature subset embedding,
3) Gradient-optimized feature subset search, and 4) Feature subset reconstruction. Our research
findings have offered significant insights: 1) We demonstrated that reinforcement feature selec-
tion can act as a powerful tool for automated training data collection, significantly enriching the
diversity, scale, and comprehensiveness of the training data. 2) We established that the joint opti-
mization of the encoder, evaluator, and decoder can efficiently construct a continuous embedding
representation space. 3) We found that treating discrete feature selection as a gradient search
strategy can effectively reduce feature subset sizes and boost generalization. This novel method
proved to be automated, effective, and input dimensionality agnostic. Ultimately, these findings
underscore the potential of our proposed approach in improving the effectiveness and efficiency of

automated feature selection, thereby opening up new avenues for future research in this domain.
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS

Conclusion
In this dissertation, I focus mainly on two key areas in data-centric Al: feature generation learning
and feature selection learning. More specifically, I propose two innovative research perspectives

for the two tasks and present corresponding practical approaches:

1. Decision-Making Perspective: Self-Optimizing Feature Generation Learning. 1 introduce a

group-wise reinforced feature generation framework designed to optimize feature space re-
construction. This framework formulates feature generation as an iterative process, struc-
tured into three Markov Decision Processes (MDPs). An innovative cascading agent struc-
ture is developed for selecting candidate features and operations, facilitating the creation
and integration of new features into the existing space in each iteration. Furthermore, an
M-clustering algorithm enhances the process’s efficiency by forming robust feature clusters
from the information theory perspective. This framework generates feature groups at each
iteration instead of individual features. It aims to improve downstream task performance

while reducing feature set redundancy.

2. Decision-Making Perspective: Self-Optimizing Feature Selection Learning. 1 formulate fea-

ture selection as a Markov Decision Process and introduce a reinforced, single-agent Monte
Carlo-based approach for feature selection. This approach involves a reinforced agent specif-
ically developed to navigate through the feature set. The agent is to make decisions on feature
inclusion to optimize downstream task performance and minimize feature set redundancy.
Moreover, an early stopping strategy is proposed to enhance training efficiency. The utiliza-

tion of decision history, derived from the feature traversal strategy, diversifies training data,
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thereby enhancing the robustness and effectiveness of the training process. Additionally, an
interactive reinforcement learning strategy is employed to integrate domain knowledge to

accelerate the learning procedure.

3. Generative-Al Perspective: Autoregressive Feature Generation and Selection Learning. 1 pro-

pose a unified optimization framework to reformulate feature generation and selection, re-
ducing model complexity while improving performance. Drawing inspiration from genera-
tive Al it hypothesizes that feature learning knowledge can be embedded into an embedding
space for enhanced feature space exploration. The framework comprises four significant
steps: 1) Data Collection: This stage gathers sufficient pairs of feature ID sequences and
corresponding model accuracies, utilizing a self-optimizing feature learning framework. 2)
Feature Learning Knowledge Embedding: An encoder-evaluator-decoder framework is in-
troduced to embed feature learning knowledge within an embedding space. Each point in
this space correlates to a specific feature generation or selection sequence and its associated
model performance. 3) Gradient-steered Search: The process involves identifying locally
optimal feature knowledge embeddings based on model performance. These embeddings
are then navigated using gradients from a well-trained evaluator, aiming to maximize down-
stream task performance. 4) Feature Space Reconstruction: Enhanced embeddings are input
into the well-trained decoder to regenerate feature generation or selection sequences. I then
construct a new feature space following these sequences, ultimately selecting the highest-

performing feature space as the final output.

Future Directions

In the future, the ultimate goal of this research is to develop a foundation model in the feature

learning domain. To achieve this goal, I have outlined the potential research directions in the
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following paragraphs:

D1: Large Sequential Model for Intelligent Feature Learning. The success of the sequential-
generation-based feature space refinement framework I developed signifies the practicality of em-
bedding feature learning knowledge into a continuous space. This motivates my intention to devise
a robust sequential model optimized for the automated feature learning domain. Such a model
can be efficiently and swiftly fine-tuned for varying sub-tasks. This process promises significant
resource savings and improves the generalizability and applicability of existing feature learning
techniques. To this end, I will focus on developing a practical large-scale model within the feature
learning domain. This will be accomplished through three stages: 1) I will obtain a substantial
collection of large, unlabeled datasets; 2) I aim to design a sequential model, potentially a Trans-
former, with the aim of embedding the acquired dataset knowledge into an effective embedding
space; 3) under supervised conditions, I will fine-tune this well-trained model across different

sub-domains to expedite the acquisition of optimal feature space.

D2: Federated Feature Learning for Distributed Data. In the practical context, data is often
stored in disparate repositories across various regions, rendering the centralization of this data for
feature engineering a challenging task due to constraints related to data confidentiality, transporta-
tion expenditures, and network bandwidth. In response to these challenges, I aim to develop a
federated feature engineering pipeline. The execution of this objective will ensure through three
distinct tasks: 1) The construction of a distributed learning framework capable of efficiently orga-
nizing and assimilating information from data stored in diverse repositories; 2 The formulation of
privacy-preserving computation strategies tailored specifically for the aforementioned distributed
learning framework; and 3) The proposal of parallel learning paradigms to accelerate the feature

engineering process.

D3: Real-Time Feature Learning for Streaming Data. Despite the proven effectiveness and
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efficiency of my prior work on automated feature engineering with static data, streaming data
introduces a distinct set of challenges vital for real-world implementation. My proposed plan
to adapt these techniques for real-time scenarios addresses the intricacies of feature engineering
within streaming data, including distribution shifts, the discrepancy between slower feature engi-
neering training speeds and data streaming speeds, and the constant fluctuation of feature addition
and elimination. To effectively mitigate these challenges, I propose a threefold approach: 1) I
will develop incremental updating strategies to reconcile the impact of both old and new data and
capture distribution shifts; 2) I will design adaptive sampling windows to align the pace of feature
engineering training with data streaming; 3) I propose the creation of innovative feature engineer-

ing pipelines adept at managing the complexities of cold-start feature space changes.

D4: Fairness-awareness in Feature Space Learning. This research trajectory, focused on in-
stituting fairness in the feature learning domain, will specifically address two tasks: 1) ensuring
fairness over demographic features and 2) maintaining fairness among noisy and distorted features.
My research will explore the concept of fairness in feature learning through several key avenues:
1) Fairness Evaluation: The goal is to devise innovative feedback paradigms or metrics capable
of justifying fairness within the framework of feature learning. 2) Unfairness Detection: This
aims to identify any features that may introduce unfairness into downstream tasks. 3) Unfairness
Elimination: This component is targeted at creating new feature engineering pipelines dedicated
to eradicating discrimination. 4) Balancing Fairness and Discrimination: This entails the sensitive
task of finding a compromise between fairness and other ethical considerations within the feature

learning process.
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