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ABSTRACT

Cloud computing increasingly handles confidential data, like private inference and query databases.

Two strategies are used for secure computation: (1) employing CPU Trusted Execution Environ-

ments (TEEs) like AMD SEV, Intel SGX, or ARM TrustZone, and (2) utilizing emerging cryp-

tographic methods like Fully Homomorphic Encryption (FHE) with libraries such as HElib, Mi-

crosoft SEAL, and PALISADE. To enhance computation, GPUs are often employed. However,

using GPUs to accelerate secure computation introduces challenges addressed in three works.

In the first work, we tackle GPU acceleration for secure computation with CPU TEEs. While TEEs

perform computations on confidential data, extending their capabilities to GPUs is essential for

leveraging their power. Existing approaches assume co-designed CPU-GPU setups, but we contend

that co-designing CPU and GPU is difficult to achieve and requires early coordination between

CPU and GPU manufacturers. To address this, we propose software-based memory encryption for

CPU-GPU TEE co-design via the software layer. Yet, this introduces issues due to AES’s 128-

bit granularity. We present optimizations to mitigate these problems, resulting in execution time

overheads of 1.1% and 56% for regular and irregular applications.

In the second work, we focus on GPU acceleration for the CPU FHE library HElib, particularly

for comparison operations on encrypted data. These operations are vital in Machine Learning, Im-

age Processing, and Private Database Queries, yet their acceleration is often overlooked. We ex-

tend HElib to harness GPU acceleration for its resource-intensive components like BluesteinNTT,

BluesteinFFT, and Element-wise Operations. Addressing memory separation, dynamic allocation,

and parallelization challenges, we employ several optimizations to address these challenges. With

all optimizations and hybrid CPU-GPU parallelism, we achieve a 11.1× average speedup over the

state-of-the-art CPU FHE library.
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In our latest work, we concentrate on minimizing the ciphertext size by leveraging insights from

algorithms, data access patterns, and application requirements to reduce the operational footprint

of an FHE application, particularly targeting Neural Network inference tasks. Through the im-

plementation of all three levels of ciphertext compression (precision reduction in comparisons,

optimization of access patterns, and adjustments in data layout), we achieve a remarkable 5.6×

speedup compared to the state-of-the-art GPU implementation in 100x[30].

Overcoming these challenges is crucial for achieving significant GPU-driven performance im-

provements. This dissertation provides solutions to these hurdles, aiming to facilitate GPU-based

acceleration of confidential data computation.
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CHAPTER 1: INTRODUCTION

Cloud computing is increasingly used to process sensitive data. Computing sensitive data requires

careful consideration due to the potential security risks involved. Secure computation in the data

center could be addressed with two different techniques: one involves utilizing a Trusted Exe-

cution Environment (TEE), such as Intel SGX, AMD SEV, or ARM TrustZone, while the other

employs the novel cryptographic method of Fully Homomorphic Encryption (FHE). Each of these

techniques offers distinct advantages and challenges in ensuring the confidentiality and integrity

of the processed data.

Accelerators are commonly employed to enhance data center computations, with the GPU emerg-

ing as a pivotal component. Notably, recent strides in machine learning, exemplified by Deep

Neural Networks (DNNs), have harnessed the substantial computational prowess of GPUs. Their

capacity to manage formidable computational requirements extends to diverse scientific applica-

tions as well. The GPU is composed of numerous smaller, specialized cores. Collaboratively, these

cores yield substantial performance gains, especially when processing tasks can be partitioned and

executed across multiple cores in parallel.

To achieve accelerated computation of confidential data using GPUs, we face two options: ex-

tending the CPU Trusted Execution Environment (TEE) to incorporate GPU usage or optimizing

the industry-standard Fully Homomorphic Encryption (FHE) library to efficiently offload its most

resource-intensive components to the GPU. In line with these strategies, the ensuing chapters of

this thesis present solutions tailored to tackle the arising challenges.

1



Statement of Research

LITE: a low-cost practical inter-operable GPU TEE

There is a strong need for GPU trusted execution environments (TEEs) as GPU is increasingly

used in the cloud environment. However, current proposals either ignore memory security (i.e.,

not encrypting memory) or impose a separate memory encryption domain from the host TEE,

causing a very substantial slowdown for communicating data from/to the host.

In this paper, we propose a flexible GPU memory encryption design called LITE that relies on

software memory encryption aided by small architecture support. LITE’s flexibility allows GPU

TEE to be co-designed with CPU to create a unified encryption domain. We show that GPU

applications can be adapted to the use of LITE encryption APIs without major changes. Through

various optimizations, we show that software memory encryption in LITE can produce negligible

performance overheads (1.1%) for regular benchmarks and still-acceptable overheads (56%) for

irregular benchmarks.

BoostCom: Boosting the Comparison Operation on Encrypted Data using GPU

Fully Homomorphic Encryption (FHE) enables computation directly on encrypted data, ensuring

data privacy. While prior efforts focused on accelerating linear operations, they ignored crucial

non-linear integer operations like comparisons (x < y and x = y), used in neural networks, image

processing, and private queries, even though they are much slower than linear operations.

This paper introduces BoostCom, a scheme for accelerating the FHE comparison operation in

the BGV scheme on a CPU/GPU system. BoostCom involves a multi-prong strategy includ-

ing comparison-friendly parameter tuning, infrastructure acceleration (hybrid CPU/GPU paral-

2



lelization), algorithm-aware optimizations (slot compaction, non-blocking comparison semantic),

as well as others. Together they provide more than an order of magnitude end-to-end speedups

(11.1×) over an industry-level FHE library running on a 16-core CPU.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we categorize the literature based on the acceleration of the GPU-accelerated TEE

system and the GPU-accelerated FHE system. In the first subsection, we narrate the related studies

in confidentiality protection based on TEE. In the second subsection, we summarize the accelera-

tion of FHE systems.

GPU Trusted Execution Environment (TEE)

There are a few recent proposals for TEE on GPUs. HIX [28] extended the Intel SGX interface to

support the GPU enclave, which focuses on securing the GPU driver. The MMU design was also

enhanced to prevent unauthorized access to the GPU memory-mapped I/O region. ZeroKernel [37]

proposed a secure execution model that relies only on on-chip storage. This model assumes all of

the kernel code can fit into the instruction cache and be stored there. It also assumes all of the

PTE is cached in the TLB, then it removes all of the PTE from device memory and prevents page

table reconstruction. These two proposals require no hardware changes to the GPU. Graviton [63]

requires small hardware changes on the peripheral components. It assumes that the GPUs are using

3D stack memory, making it difficult to perform physical attacks. In Graviton, secure context

isolation is achieved through an ownership tracking table. Using this table prevents unauthorized

access to the victim address space. The focus of these three studies is to provide secure GPU

execution without a lot of overheads, hence they did not include memory encryption.

Another approach to TEE is to bring CPU solutions to GPUs. The common counter scheme [45]

uses counter-mode encryption and requires caches for the security metadata such as counter, MAC,

Merkle Tree, and Common Counter Status Map. They observed that multiple counter values are
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updated simultaneously, resulting in the same value for several counters. They proposed to group

several data blocks to have a common counter to reduce counter cache misses. Yuan et al. [67]

analyzed the performance implication of counter mode encryption for secure GPU memory. They

observed that the increase in memory traffic due to accessing security metadata, including counters

and MACs, is the main contributor to performance degradation. The memory traffic increase would

affect GPUs using non-volatile memory more than those using DRAM due to the lower bandwidth

capacity for larger memory space and crash-recoverable ability [6]. In subsequent work, Yuan et

al. [68] proposed the PSSM scheme to reduce bandwidth overhead from the metadata. None of the

above works address the inter-operability of CPU/GPU TEEs, hence they will still suffer the high

performance overheads when data crosses encryption domains.

Table 2.1: Comparing LITE with prior GPU enclaves.

Aspect Graviton [63] Common Counter [45] PSSM [68] LITE
Memory encryption No Yes Yes Yes

Domain crossing N/A Yes Yes No
Hardware support Low High High Low

Flexible algo N/A No No Yes
Flexible app/data N/A No No Yes
Unified Memory N/A No No Yes

Deployability Easy Hard Hard Easy

Table 2.1 compares the solutions discussed above versus our software-based memory encryption

LITE. Compared to the Common Counter and PSSM, LITE provides a unified encryption do-

main between CPU and GPU, allowing data to move from/to CPU TEE and GPU TEE without

re-encryption. In contrast to Common Counter and PSSM, which require substantial hardware

support (crypto engine per memory partition, metadata caches, etc.), LITE only requires small

hardware support (write-once pages) for protecting kernel code. The flexibility of choosing an en-

cryption algorithm is unique to LITE. Due to the flexibility of LITE, after establishing a common

shared key, the GPU can use the same encryption scheme as the host CPU, leading to efficient
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communication between them. For example, unified virtual memory (UVM) can be supported,

and data can be moved back and forth between CPU and GPU without re-encryption. LITE also

has the flexibility of applying memory security to select data and select applications, depending on

the need at the host CPU, and requires no re-encryption. Finally, since it requires little hardware

support, LITE can be deployed easily in current production GPU. In contrast, Common Counter

and PSSM solutions require much more hardware support and are difficult to deploy.

Fully Homomorphic Encryption (FHE) Acceleration

Infrastructure acceleration is an approach to accelerate FHE operations with the use of hardware

accelerators and efficient software implementation. It is used along with algorithmic improvement

to achieve desirable performance. Table 2.2 shows the comparison of the prior works with Boost-

Com on infrastructure acceleration of FHE. Among all the works on infrastructure accelerations,

only ours focuses on boosting the latency of comparison operations on the BGV scheme. Further-

more, the infrastructure acceleration from the prior works could be divided into two categories:

operation-wise acceleration and end-to-end acceleration. For the former, the acceleration is only

targeting reducing the latency of each primitive FHE operation separately such as multiplication,

addition, rotation, etc. Therefore they only estimate the total execution time of an application that

runs on their proposal by the latency of each FHE operation. The proposals belonging to this cate-

gory typically ignore the problem of dynamic memory allocation, different levels of the ciphertext

operand, noise estimation, etc. since these problems may not arise when only accelerating each of

the operations separately. For the latter, the acceleration is taking into account these problems and

is typically used to accelerate the real-world library such as HElib[22] and Microsoft SEAL[44].

The end-to-end acceleration has a more immediate impact than operation-wise acceleration. It can

be used to improve the execution time of the application that used the real-world HE library imme-
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diately. In contrast, the operation-wise acceleration needs more work to gather them to be usable

to truly run an application on it. Moreover, for both categories, the acceleration is divided by the

type of hardware platform such as ASIC, FPGA, CPU (with new instructions), GPU, and mixed

CPU/GPU.

Table 2.2: The comparison of BoostCom vs. prior works.

Name Scheme Comparison End-to-End Platform
SHARP[34] CKKS ✓ ✗ ASIC

CraterLake[52] CKKS ✗ ✗ ASIC
FxHENN[71] CKKS ✗ ✗ FPGA

TensorFHE[18] CKKS ✗ ✗ GPU
HE on GPU[46] BFV ✗ ✓ GPU
Intel HEXL[7] BGV ✗ ✓ CPU

BoostCom BGV ✓ ✓ CPU/GPU

Algorithmic acceleration. To boost the comparison operation on BGV/BFV, some algorithmic

improvements have been proposed including, [25] and [60]. The scheme results in a slightly faster

speed for performing comparison compared to TFHE when the number of messages being com-

pared is large. However, when only comparing a single message in a ciphertext, the comparison

latency becomes very expensive. Typically this problem arises when the comparison is used to

determine the taken branch path. Our works proposed an optimization to mitigate this problem

called non-blocking comparison. The optimization overlaps the comparison operation with other

works that do not depend on the comparison result.

Operation-wise acceleration with GPUs. [18] and [64] proposes a GPGPU-based FHE accel-

eration solution called TensorFHE and HE-Booster, respectively. TensorFHE utilizes algorithm

optimization, NTT optimization, and data layout optimization to achieve significant performance

improvement for FHE arithmetic operations. This paper also utilizes tensor cores to speed up the

NTT operation. HE-Booster improves the FHE arithmetic operation by improving the GPU NTT
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implementation from [47] with fine-grain synchronization on every iteration of NTT computation.

Operation-wise acceleration with ASIC/FPGA. Several works in this category include [51, 36,

52, 71, 34, 35]. These proposals introduced an NTT unit for processing radix-2 NTT. Crater-

Lake[52] is the first FHE accelerator to achieve high performance on unbounded FHE programs

while prior accelerators are only efficient on a limited subset of simple FHE computations[51].

CraterLake[52] is a uniprocessor with specialized functional units that spans a wide vector space.

The design is statically scheduled in order to take advantage of the regularity of FHE computa-

tions. SHARP[34], reduces the computation latency of the FHE operation by limiting the size of

the prime modulus to only 36-bit. This will translate into lower memory bandwidth demand for

the accelerator’s memory thus improving the performance. Although the infrastructure accelera-

tion with the use of ASIC/FPGA offers higher acceleration than GPUs, however, the lead time to

the development of the hardware and the production is substantially long. Therefore, to get the

benefit of this accelerator will need to wait for several years.

End-to-end acceleration. Intel HEXL introduced a new CPU instruction for processing 512-bit

vectors in one go, speeding up element-wise operations and NTT. However, this only benefits

power-of-two polynomial rings, and comparison operations remain slow in such rings. [46] pro-

posed the acceleration of the BFV scheme in the Microsoft SEAL library for power-of-two polyno-

mial rings, element-wise operation, and key-switching. Compared to our work, this work provides

general FHE acceleration, while our proposal focuses on accelerating comparison operation on the

BGV scheme.
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CHAPTER 3: LITE: A LOW-COST PRACTICAL INTER-OPERABLE

GPU TEE

1 In this chapter, we address the challenges of accelerating confidential data computation protected

with CPU TEE technology.

Introduction

Secure and private computation in the cloud is increasingly demanded by cloud computing users.

To cater to that, chip manufacturers provide CPU TEE (Trusted Execution Environment), through

which the processor provides a root of trust for guaranteeing confidentiality (and sometimes in-

tegrity) of computation and data against vulnerabilities in system software. A typical CPU TEE

includes key features such as key management, attestation, and memory security [43] (memory

encryption and/or integrity verification). Note that memory security is far costlier than others due

to its continuous application during execution.

GPUs are increasingly widely used in the cloud. However, since current GPUs do not support

TEEs, users sacrifice security and privacy when offloading computation to GPUs. Recently re-

searchers have looked at providing TEE on GPUs [63, 28, 67, 68]. While these solutions work,

they do not address inter-operability with CPU TEE. The CPU and GPU have their own encryp-

tion domains where each is the only one that can decrypt data it encrypted previously. Therefore,

for a CPU to send data to a GPU, the data must be decrypted (by the CPU), re-encrypted in soft-

ware, transmitted to GPU memory, decrypted in software, and then re-encrypted into the GPU

encryption domain. Such encryption domain crossing, ignored in prior studies, incurs high costs.

1This work has been published in the 36th ACM International Conference on Supercomputing (ICS) 2022.
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Figure 3.1 shows that the crossing overheads contribute to 60% higher execution time and up to

4.2× slowdown (322% overhead), which is much higher than 16% performance overhead from

memory security alone. While these numbers were collected across different platforms, it is clear

that encryption domain crossing dominates performance concerns.

237.71% 322.31%

Figure 3.1: Execution time overheads of memory security with a state-of-the-art scheme
(PSSM [68]) and domain crossing re-encryption overheads. The former was collected from GPU
simulation with machine configuration from [68], while the latter is from a real machine described
in Section 3.

Achieving inter-operability with CPU requires CPU/GPU TEE co-design, but co-designing is dif-

ficult for various reasons, e.g., GPU manufacturers may be different than CPU manufacturers, their

design cycles may be different, etc. Furthermore, as an accelerator for the CPUs, the GPU TEE

scheme should support a variety of GPU usage scenarios. For example, it may be paired with CPUs

that vary in architectures, ISAs, types of CPU TEEs supported, and whether GPUs are paired with

a single virtual machine (VM) vs. shared between VMs, etc. Given the wide variety of contexts in

which GPUs may be deployed, it is important that GPU TEE support is as flexible as possible.

A flexible GPU TEE design provides additional benefits. Some workloads may process sensitive
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data, hence confidentiality is required, but confidentiality may not be a priority for many others

(e.g., graphics rendering or gaming). Furthermore, even for a single GPU kernel, in some cases,

both input and output may be confidential, or only one of either input or output may be confidential.

However, the need for a flexible GPU TEE conflicts with the need to co-design GPU and CPU TEE.

Co-designing them requires early coordination of CPU and GPU TEE design, which is difficult to

achieve across companies. Furthermore, the wide variety of contexts and workloads in which

GPUs could be used is hard to anticipate that early. Building many types of GPU TEEs to provide

flexibility incurs a high fixed cost, e.g., supporting a single GPU memory security scheme already

requires high die area overheads: one encryption engine for each memory partition, plus metadata

caches to keep counters, MACs, and Merkle Tree nodes [68].

To achieve GPU/CPU TEE co-design without sacrificing flexibility, we propose software-based

memory encryption, which we refer to as LITE. LITE requires only small hardware support for

GPU TEE, and it relegates memory encryption to software. LITE achieves flexibility because

software can choose different encryption algorithms to be in accordance with host TEE, selectively

choose applications to apply encryption to, and select the subset of data to encrypt in an application,

etc. LITE is possible in a GPU because GPU architecture supports explicit data movement (e.g.,

global to shared memory), unlike a CPU which relies only on caches that implicitly move data.

LITE provides a library and APIs that the compiler/programmer can use to keep data encrypted in

memory and only decrypt it before use.

To summarize, this paper makes the following contributions:

1. We propose a lightweight GPU TEE (LITE) solution that allows flexible CPU-GPU TEE

co-design through the software layer.

2. We present three optimizations, masked shuffle, delayed shuffle, and selective padding, to
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LITE that significantly improve its performance.

3. We show that despite relying on software for encryption, the optimized LITE incurs low

performance overheads, with a geometric mean slowdown of 1.1% for regular applications.

However, irregular workloads incur high performance overheads (55.7% on average). This

overhead could be reduced by partial encryption to only 10.0% and 44.3% for input-only

and output-only encryption, respectively.

Background

GPU Architecture and Unified Memory

A GPU consists of an array of Streaming Multiprocessors (SMs), and each SM has its own control

unit, register file, L1 cache, and software-managed shared memory [48, 62]. Multiple SMs share an

on-chip L2 cache with multiple banks to provide high L2 access bandwidth. One or more L2 banks

are then connected to a memory controller to provide high bandwidth to access device memory.

With discrete GPUs, data is typically moved between CPU main memory and GPU device memory

over the PCI-e interface.

GPUs use Single-Instruction Multiple-Thread (SIMT) architecture to achieve high throughput. As

a result, GPUs can tolerate/hide long latency by leveraging massive thread-level parallelism. How-

ever, they tend to be sensitive to bandwidth due to the high number of concurrent threads.

Prior to UVM [48], programmers had to manage memory explicitly by allocating memory in the

host and device memory and moving data between the host and the device. A way to automate

this is to use direct store to move data from CPUs to GPUs by exploiting data producer-consumer

relationship [69] . With UVM, programmers can avoid explicit memory management and rely on
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on-demand paging managed by UVM. UVM enables CPU and GPU to share the virtual memory

space. Programs executed on the GPU are no longer limited by the size of device memory and can

instead access host physical memory through a GPU virtual address.

Host-side TEE

A TEE may be designed to protect an application, a system, or memory. For the former, a ring-3

secure execution environment for code and data is provided by hardware (e.g., Intel SGX en-

clave) to protect against system software (OS and hypervisor) vulnerabilities as well as other code

portions of the application that run outside the enclave. For the latter, a ring-0 secure execution

environment is provided by hardware to protect a system (OS and applications) from vulnerabili-

ties in the hypervisor or other systems. Examples include AMD Secure Encrypted Virtualization

(SEV) [31] and Intel Multi-Key Total Memory Encryption (MKTME) [27]. AMD SEV and Intel

MKTME are geared toward virtualized cloud computing servers where multiple virtual machines

may share the same physical server. Each VM is provided a unique hardware ID with associated

unique keys. Finally, the memory may be protected with encryption without regard to the software

environment, such as in Intel Total Memory Encryption (TME) [27] and AMD Secure Memory

Encryption (SME) [31]. TME is especially important for non-volatile memory with data rema-

nence problems. A common support across all three types of execution environments is memory

encryption. However, the type of memory encryption differs based on the goal of the memory

security protection.

User-level enclaves such as SGX rely on counter-mode encryption and integrity verification rely-

ing on MACs and integrity tree [16]. Counter mode encryption is vulnerable to revealing plaintext

of data if the counter can be changed or replayed by the adversary [66]. Thus, MACs and the

integrity tree are an integral and necessary part of guaranteeing confidentiality in counter mode en-
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cryption, in addition to detecting integrity violations. In contrast, XTS mode encryption (shown in

Figure 3.2) is often deployed without integrity verification as data confidentiality is not dependent

on integrity verification. Thus, since the XTS encryption mode is not prone to revealing plaintext,

integrity verification is only needed for detecting integrity violations. Without integrity verifica-

tion, the attacker may modify the ciphertext of data in memory without being detected; however,

the tampered ciphertext will be decrypted to an unpredictable plaintext value, which may be of

little value to the attacker. Since Intel SGX usage is currently limited to a small portion of an ap-

plication that is highly security sensitive, and our goal is to provide a TEE for a whole application

or system, we instead focus on non-counter mode memory encryption.

Encryption

Encryption

aj

Key2

Key1

128-bit tweak 128-bit Plaintext

128-bit Ciphertext

Key1:
The first key with 128-bit length

The block sequence number

Key2:
The second key with 128-bit length

aj:

Figure 3.2: The block diagram of the AES-XTS encryption mode used in Intel MKTME.

Intel Total Memory Encryption (TME) [27] allows for the encryption of the entire physical memory

of a system using the AES-XTS algorithm with a 128-bit key. The encryption key is generated

using a hardware random number generator residing in the System-on-Chip (SoC). Multi-Key

Total Memory Encryption (MKTME) [27] extends the TME to support multiple keys, and each

page in the physical memory can be associated with a key. A process or the OS can read the

plaintext of a page only when it has the right key in its page table entry for the page. The SoC
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supports a fixed number of encryption keys, and software can use the keys to encrypt any page in

the memory.

Similarly, AMD Secure Memory Encryption (SME) [31] provides main memory encryption using

a single key generated by the AMD Secure Processor (AMD-SP). Encryption is performed by

AES encryption engines located in on-die memory controllers using a 128-bit key. AMD Secure

Encrypted Virtualization (SEV) [31] extends SME by providing cryptographic isolation for a VM

from the hypervisor and other VMs. This isolation is achieved by assigning a hardware tag and

key to each VM and tagging pages for that VM. This assures that the plaintext of the VM pages to

only be readable by the VM itself.

Figure 3.2 illustrates the AES-XTS with 128-bit keys and a tweak to encrypt a 128-bit plaintext.

The tweak represents the address of the data being encrypted or decrypted [24] to ensure the same

plaintext value at different addresses results in different ciphertexts. Compared to counter-mode

encryption, the AES-XTS mode does not require counters to be kept to perform its operations,

hence eliminating the counter integrity problem. Thus, other metadata (MACs and integrity tree)

are also no longer needed to ensure confidentiality.

Threat and Trust Model, Scope of Work

Both Intel TME and AMD SEV assume a threat model where the attacker has both a software and

physical attack surface. The software attack surface is defined by the attacker having control over

privileged software such as the OS and hypervisor. The physical attack surface is defined by the

attacker having limited physical access to the machine to employ passive physical attacks such as

snooping or scanning attacks but cannot modify data stored in memory. To be compatible with the

host-side TEE, we assume the same attack model for GPUs.
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We consider the following attacks to be out of the scope of this paper: active physical attacks (i.e.,

where data in memory is physically tampered with), side-channel attacks, and availability attacks.

Our trust model is as follows. We assume that the CPU, GPU, and CPU/GPU memories are

trustworthy components in the sense that they operate correctly according to their specifications,

free of design errors, faults, and trojan circuits. We assume that the system already has secure

key storage in place, where the CPU and GPU have built-in public/private cryptographic key pair,

with the public key readable from chip pins and the private key stored securely in a non-volatile

manner in the CPU and GPU chips. Both chips are also assumed to have non-volatile storage to

keep other keys, including session keys. Furthermore, we assume that a trusted party, such as the

system integrator or the cloud administrator, has provided GPU public key to the CPU and CPU

public key to the GPU. Alternatively, the CPU and GPU could automatically exchange public keys

the first time they are connected. Thus, the CPU and GPU have a mechanism to initially trust each

other.

Building on this trust, the CPU and GPU may initiate a Diffie-Hellman key exchange to establish

a different shared session secret key, which enables a private communication channel between the

CPU and GPU. If there is more than one CPU or GPU in the system, multiple secret keys must be

tracked and stored on-chip. The shared secret key enables a private, authenticated communication

channel that persists until the system shuts down. When the system is rebooted, the BIOS execution

results in a new shared secret key to establish the communication channel.

Furthermore, our LITE scheme relies on a hardware feature where kernel code cannot be tampered

with once it is loaded into GPU memory. Since active physical attacks are out of scope, the kernel

code would not be altered by physical attacks. So, the possible threats would be malicious software,

such as a driver. The code may be protected by the GPU page table, which sets the pages used for

code as read-only.
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The Design of LITE

In this section, we describe the design of LITE and discuss how, through a software solution with

small hardware support, LITE allows GPU TEE to be co-designed with CPU TEE and provides

great flexibility in which application or data is encrypted. Our discussion will start with rationale

and overview, APIs, hardware support, and optimizations that enable LITE to achieve very low

overheads for many applications.

Rationale and Overview

Figure 3.3 contrasts the typical data flow of current hardware-based GPU TEE design vs. our

LITE. With current hardware GPU TEE (Figure 3.3(a)), because CPU and GPU TEEs use different

encryption schemes and/or have their own encryption keys, they need to establish an intermediate

ciphertext format that can be encrypted/decrypted by both the CPU and GPU. Data sent by the

CPU must first be decrypted from the ciphertext C1 in the CPU TEE domain and encrypted to

the intermediate ciphertext form C2 1 . After memory copy to device memory 2 , the ciphertext

needs to be re-encrypted again into the GPU TEE domain 3 . When data is read by GPU, it

is decrypted by the encryption engine 4 and stored in plaintext P in the on-chip GPU memory

hierarchy. Notice the two sets of decryption and encryption that are added to the critical-path delay

of CPU sending its data to GPU. This has to be repeated in the reverse direction as the GPU sends

its computation result to the CPU at the end of kernel execution.

In contrast, in LITE (Figure 3.3(b)), if the GPU is in the same encryption domain as the CPU, we

eliminate the re-encryption of data between CPU and GPU. Data can be directly copied from host

memory to device memory 1 . In theory, one could co-design GPU memory encryption to match

that of the CPU and also avoid cross-domain re-encryption. However, this is difficult in practice for
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Figure 3.3: The LITE vs Hardware-based GPU TEE typical data flow from host to device.

several reasons. First, the GPU manufacturer may be different from the CPU manufacturer, mak-

ing co-design difficult. Second, CPU may have different design and update cycles than GPU. For

example, AMD Epyc 7251 processor uses XE-based encryption while AMD Epyc Embedded 3151

processor uses XEX-based encryption mode, although produced only eight months apart [65]. Fi-

nally, GPU may be used in many different scenarios to execute different workloads, hence ideally,

GPU memory security should have a large degree of flexibility to match use cases and workloads.

Therefore, in LITE, we focus on software memory encryption approach that can be deployed in

GPU independently on CPU. A consequence of LITE’s software approach is that data is brought

into the GPU chip in ciphertext form 2 . Then software decrypts data using ALU 3 operating on

data on registers 4 . Data may also be stored temporarily in plaintext in on-chip shared memory

5 . LITE’s software memory encryption approach is enabled in GPU because data movement into

shared memory is controlled by software. The same approach is not deployable in CPU because
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data movement in caches is transparent to software.

There are several inherent advantages to LITE beyond avoiding domain-crossing re-encryption

overheads. It can readily support unified virtual memory (UVM) because a page can be copied

between host and device memory without any ciphertext transformation. Second, data is stored in

ciphertext form in GPU caches, which are shared by multiple SMs that may run different kernels

concurrently. While we are not aware of current security attacks that leak cached data, if such an

attack arises in the future due to GPU design bugs, only the ciphertext leaks out.

Challenges in achieving LITE are numerous, and we seek to address them in this paper. Imple-

menting the same encryption algorithm in software in GPU is only the first step in sharing an

encryption domain with CPU TEE. First, simple APIs need to be defined for kernels to use. Sec-

ond, another necessary ingredient is to share the same encryption metadata as used in the CPU

TEE, including any tweak inputs (e.g., host physical address). Third, there needs to be hardware

support at GPU to ensure that encryption software cannot be tampered with by the attacker and

that encryption keys can be stored securely in GPU chip. Fourth, software encryption performance

bottlenecks are aplenty and need to be addressed, including high latencies, warp divergence, and

the challenges in collecting 128-bit of data from multiple threads to be encrypted/decrypted with

block cipher algorithms. We will discuss them in the rest of the section.

Encryption APIs

Since AES is block-based encryption, data is encrypted by the host in blocks of 128 bits (if 128-

bit AES is used). To decrypt data correctly, the same block must be gathered and decrypted. If

the access pattern of the GPU is to contiguous data elements, then the encryption block can be

gathered simply by collecting data from the registers of neighbouring threads. To do that, we rely

on shfl, which is a warp-level shuffling instruction that enables a thread to read the registers of other
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threads. After decryption, data can be redistributed back to various threads by another round of

shuffling. However, the if memory access pattern involves non-contiguous locations, assembling

an encryption block is not as straightforward. In this case, we rely on padding so that each data

item is expanded into a 128-bit single encryption block.

To ease adoption of LITE in the kernel code, we provide high-level AES APIs shown in Table 3.1.

The first two calls are used for the case where adjacent threads in a warp access contiguous data,

while the last two are provided when adjacent threads do not access contiguous data, hence padding

is used (int_128 or a vector of four ints/floats) per thread.

Table 3.1: Encryption APIs

Interface to encryption and decryption
encrypt(data, variable_addr, addr_type, enc_mode)
decrypt(variable_addr, addr_type, enc_mode)
encrypt_v4(data, variable_addr, addr_type, enc_mode)
decrypt_v4(variable_addr, addr_type, enc_mode)

The decrypt/decrypt_v4 API loads the ciphertext and returns the plaintext. The encrypt/encrypt_v4

API takes the plaintext data in a register and returns the ciphertext generated using the key and the

address tweak. In the last two arguments for each API function, the type of address (virtual or

physical) and the encryption modes are specified to match those used by the CPU TEE. Listing 3.1

shows the implementation of APIs. decrypt shows the use of shuffling to assemble multiple con-

tiguous 32-bit values in neighboring threads’ registers into one 128-bit (Step 4), which is then de-

crypted (Step 5), and redistributed back to different threads’ registers (Step 6). For decrypt_v4 and

encrypt_v4, with each thread accessing data using the float4 or int4 data types, data assembling/re-

distribution is not needed, hence AES encryption function is invoked directly (Step 4 and 3, re-

spectively).
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Listing 3.1: Implementation of AES APIs.

1 unsigned int decrypt(unsigned int v_addr , bool addr_type , int enc_mode) {

2 //step 1: configure encryption mode

3 AES_Encryption_Mode(enc_mode);

4 //step 2: set address tweak type

5 AES_Address_Type(addr_type);

6 //step 3: accessing global memory at v_addr

7 unsigned int temp = (unsigned int) (* v_addr);

8 int_128 buff;

9 unsigned int p_text // plaintext

10 //step 4: assemble 128-bit data block

11 if(tid % 4 == 0) { //tid is the thread id

12 buff [0] = temp; //temp from thread i, i is a multiple of 4

13 buff [1] = __shfl_down_sync (0xffffffff ,temp , tid + 1) //temp from thread i+1

14 buff [2] = __shfl_down_sync (0xffffffff ,temp , tid + 2) //temp from thread i+2

15 buff [3] = __shfl_down_sync (0xffffffff ,temp , tid + 3) //temp from thread i+3

16 //step 5: decrypt data with AES_decrypt

17 buff = AES_decrypt(buff , v_addr);

18 }

19 //step 6: Distribute decrypted data to threads

20 if(tid% 4 == 0)

21 p_text = buff [0];

22 else

23 p_text = shfl_down_sync (0xffffffff , buff[tid%4], tid - tid %4]);

24 return p_text;

25 }

26 unsigned int encrypt(unsigned int data , unsigned int v_addr , bool addr_type , int

enc_mode) {

27 unsigned int c_text; // ciphertext

28 int_128 buff;

29 //step 1: configure encryption mode

30 AES_Encryption_Mode(enc_mode);

31 //step 2: set address tweak type

32 AES_Address_Type(addr_type);

33 //step 3: assemble 128-bit data block

34 if(tid % 4 == 0) {

35 buff [0] = data; //data from thread i, i is a multiple of 4

36 buff [1] = __shfl_down_sync (0xffffffff ,data , tid + 1) //data from thread i+1

37 buff [2] = __shfl_down_sync (0xffffffff ,data , tid + 2) //data from thread i+2
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38 buff [3] = __shfl_down_sync (0xffffffff ,data , tid + 3) //data from thread i+3

39 //step 4: encrypt data with AES_encrypt

40 buff = AES_encrypt(buff , v_addr);

41 }

42 //step 5: distribute encrypted data to threads

43 if(tid % 4 == 0)

44 c_text = buff [0];

45 else

46 c_text = shfl_down_sync (0xffffffff , buff[tid%4], tid - tid %4]);

47 return c_text;

48 }

49 int_128 decrypt_v4(unsigned int v_addr , bool addr_type , int enc_mode) {

50 int_128 p_text // plaintext

51 //step 1: configure encryption mode

52 AES_Encryption_Mode(enc_mode);

53 //step 2: set address tweak type

54 AES_Address_Type(addr_type);

55 //step 3: accessing global memory at v_addr

56 int_128 temp = (int_128) (* v_addr);

57 //step 4: decrypt data with AES_decrypt

58 p_text = AES_decrypt(temp , v_addr);

59 return p_text;

60 }

61 int_128 encrypt_v4(int_128 data , int_128 v_addr , bool addr_type , int enc_mode) {

62 int_128 c_text // ciphertext;

63 //step 1: configure encryption mode

64 AES_Encryption_Mode(enc_mode);

65 //step 2: set address tweak type

66 AES_Address_Type(addr_type);

67 //step 3: encrypt data with AES_encrypt

68 c_text = AES_encrypt(data , v_addr);

69 return c_text;

70 }
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AES Encryption and Address as the Tweak

As LITE encryption is based on software, the encryption algorithm and mode could be changed

and updated to make it more secure, e.g., to add resistance to side-channel [40] or using a weaker

algorithm such as DES [49] if higher performance is desired. For our implementation, we use the

AES encryption from OpenSSL v1.1.1 and adapt it to CUDA [40]. It uses a T-table with a series

of table lookups for each round and XORed to the round key.

To achieve CPU-GPU TEE interoperability, for host (CPU) memory encryption relying on a tweak,

LITE needs to rely on the same tweak used by the host. Two approaches are possible. The first

approach is to use the host physical address as the AES tweak. With this approach, the GPU needs

to have the host physical address to decrypt data encrypted by the host and to encrypt the output

for the host to decrypt. To achieve this, the GPU needs to keep the host physical address and uses

it for decryption and encryption or be able to look it up. At least three techniques are possible. One

technique is to add host physical address into the GPU page table such that given a virtual address,

both host and GPU physical addresses can be looked up [59] [58]. With this technique, the GPU

TLB also needs to be extended to include the host physical address. An alternative technique is

for the GPU and host to share the same page table [38]. When the GPU misses in its TLB, the

host IOMMU can be triggered to do a page table walk and provide the host physical address to the

GPU for use in decryption and encryption. In this case, the GPU TLB can keep the host physical

addresses but avoid modifications to the page table. Such a technique can utilize existing features

such as NVIDIA Address Translation Service (ATS), available since Volta [61]. Finally, host

physical addresses can be maintained in a separate data structure maintained entirely by the GPU.

Such a structure needs to be populated prior to kernel launch, protected as read-only during kernel

execution and looked up as needed by the GPU for encryption/decryption. In any case, in order for

the host to decrypt the GPU computation result correctly, we need to reserve data pages in the host
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physical memory until the GPU computation is completed. In other words, LITE requires that all

UVM data have consistent host physical addresses. It can be achieved by reserving & pinning host

memory when UVM is allocated with the cudaMallocManaged API (a host function). If a page is

first accessed by the GPU, the host physical address is sent through the page fault handler without

data migration. If a page from UVM is migrated from host memory to GPU device memory, it is

not unmapped, similar to page pinning. For the data generated from GPU, such as stack frames,

for which there are no corresponding host physical addresses, the GPU physical addresses can be

used as the tweak. This practice would not affect CPU-GPU interoperability since GPU private

data is not part of UVM and would not be accessed by the host.

The second approach is to use virtual addresses as the AES tweak. As UVM provides a unified

virtual address space between host and GPU, the virtual addresses are the same on either side.

Therefore, no additional changes are needed to achieve interoperability. Neither pinning nor modi-

fications to paging are necessary. However, most host memory encryption uses physical addresses,

which requires some changes to host memory encryption design, e.g., additional datapath to pass

virtual addresses from the core to the memory controller. In our experiments on real GPU hard-

ware, we assume this approach for the purpose of performance evaluation. The performance of the

first approach (i.e., using host physical address as a tweak) would be very similar to the second

approach if the GPU TLB is expanded to include the host physical address.

Kernel Code Adaptation

With our provided APIs, GPU kernel modification is quite straightforward. After determining the

encryption algorithm, its mode, tweak, and address used in the tweak, global memory accesses to

the data are examined. By default, we treat all GPU global memory as secure (encrypted) unless

configured otherwise. If the memory accesses for four consecutive threads fall into contiguous
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locations, then no padding is assumed, and the APIs to use are the first two in Table 3.1. Otherwise,

padding is used, and the last two are used.

Kernel code can be adapted to use the APIs either manually or automatically by a compiler. With

the compiler approach, the programmer can annotate the secure data variables through #pragma

directives similar to OpenMP-style annotation, and the compiler transforms the directives into API

calls. In this case, the compiler transformation forms a part of the trust base.

Listing 3.2 illustrates an example with tiled matrix multiplication. Global memory reads include

’a[row * n (i*tile_size+tx)]’ and ’b[(i * tile_size * n + ty* n) + col]’. Since accesses are

to contiguous 32-bit data, we simply convert them to ’decrypt(&a[row * n + (i*

tile_size+tx)], addr_type, enc_mode)’ and ’decrypt( &b[(i * tile_size * n + ty* n) + col],

addr_type, enc_mode)’. Similarly, the global memory store statement ’c[(row*n) + col] = temp_val’

is converted to ’c[(row*n) + col] = encrypt(temp_val, &c[(row*n) + col], addr_type, enc_mode)’.

Listing 3.2: Matrix multiplication kernel after code adaptation.

1 __global__ void tiledMatrixMul(float *a, float *b, float *c, int n,

2 int tile_size) {

3 __shared__ float A[SHMEM_SIZE ];

4 __shared__ float B[SHMEM_SIZE ];

5 int_128 buff1 , buff2;

6 int row = by * tile_size + ty;

7 int col = bx * tile_size + tx;

8 int temp_val = 0;

9 bool addr_type = true; // true: phsyical , false: virtual

10 enc_mode = 1; // 0:ECB , 1:AES -XTS , 2:XE, 3:XEX etc.

11 // Sweep tiles over entire matrix

12 for (int i = 0; i < (n / tile_size); i++) {

13 A[(ty * tile_size) + tx] = (float) decrypt( &a[row * n + (i * tile_size + tx)],

addr_type , enc_mode);

14 B[(ty * tile_size) + tx] = (float) decrypt( &b[(i * tile_size * n + ty * n) +

col], addr_type , enc_mode);

15 __syncthreads ();
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16 for (int j = 0; j < tile_size; j++) {

17 temp_val += A[(ty * tile_size) + j] * B[(j * tile_size) + tx];

18 }

19 __syncthreads ();

20 }

21 c[(row * n) + col] = encrypt(temp_val , &c[(row * n) + col], addr_type , enc_mode);

22 }

Listing 3.3: BFS kernel before and after code adaptation.

1 struct pad_128 {

2 int32_t data; //32 bit

3 int32_t pad; //32 bit

4 int64_t pad; //64 bit

5 };

6 bfs_kernel(pad_128 *row , pad_128 *col , pad_128 *d, float_128 *rho , pad_128 *cont ,

7 const pad_128 num_nodes , const pad_128 num_edges , const pad_128 dist)

8 { ...

9 /* original code

10 for (int edge = start; edge < end; edge ++) {

11 int w = col[edge];

12 if (d[w] < 0) {

13 (*cont) = 1;

14 ...

15 } ... */

16 //code after padding

17 for (int edge = start; edge < end; edge ++) {

18 int w = decrypt_v4 (&col[edge], addr_type , enc_mode);

19 if (decrypt_v4(d[w], addr_type , enc_mode) <0){

20 int_128 i;

21 i.data = 1;

22 (*cont) = encrypt_v4(i, cont , addr_type , enc_mode);

23 ...

24 }

25 }

For non-contiguous access patterns, the data structure is padded before using the AES APIs to en-

sure that we would get 128-bit of data for encryption. The BFS function of the BC benchmark in
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Listing 3.3 shows ’col[edge]’, ’d[w]’, and ’(*cont)’ in lines 11-13 not accessing contiguous loca-

tions, hence the ’int’ type is converted to pad_128 type, which contains 96-bit padding beside the

32-bit data. Padding, however, increases the data structure size and incurs significant performance

penalties.

Hardware Support

In order for LITE to work securely, some hardware support is needed. The hardware support re-

quired by LITE includes on-chip key storage, remote attestation, and code-integrity protection.

Among them, on-chip key storage and remote attestation are supported in the latest NVIDIA Hop-

per GPU [5]. In LITE, code-integrity protection is achieved by page table protection, which sets

the code pages as read-only. Such hardware overhead does not affect the performance of kernel

execution. Note that compared to Hopper GPU, which enables encrypted CPU-GPU data transfer,

LITE provides confidentiality of data stored in GPU memory.

Code Optimizations

Masked shuffle

As discussed earlier, we could use shfl instruction to collect 128-bit of data for decryption. shfl has

an implicit thread synchronization that acts as a barrier to ensure threads in a warp have finished

earlier computation prior to data exchange. This fact is important when considering applications

with branch divergence. If threads in a warp have thread-divergent branches and execute a shfl,

which is permitted in Volta and later GPU architectures [39], the shuffle is delayed until the threads

with the longest branch path complete. This performance bottleneck is illustrated in an example in

Figure 3.4 (top), where odd-ID threads diverge on a branch path than even-ID threads. When only
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odd-ID threads need to load ciphertext from global memory, shfl forces them to wait for even-ID

threads before data exchange in the decrypt function. To solve this, we propose a masked shuffle

optimization that ensures only threads in the same branch path would be masked so that only those

same threads will participate in data exchange. It takes advantage of the "mask" operand in the shfl

instruction, which indicates specific threads in a warp that participate in the shuffling. We use the

__ballot_sync() function to determine the set of participating threads in a warp for a branch path.

This function is invoked before the diverging if statements. The result is used to set the mask of

the shfl instruction such that only participating threads in a branch path perform the shuffle. In the

example in Figure 3.4 (bottom), we use an odd mask in the decrypt function. By doing this, we

let the odd ID threads complete the shuffle sooner, and the even threads do not participate in data

exchange, thereby reducing the execution time.

Unoptimized shfl on divergent branch

path B

path A stall
Todd shfl

Teven

Masked shfl on divergent branch

path B

path A shfl

Time

saved cycles
Todd

Teven

AES_dec

AES_dec stall

Figure 3.4: The timeline comparison between unoptimized shfl vs masked shfl. Following a diver-
gent branch, only threads in path A fetch ciphertext from global memory.
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shfl

stall shfl

AES_dec
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fetch B stall shfl

shfl

AES_dec

AES_dec

fetch A
T0

fetch A
T1

shfl

shfl

AES_dec

AES_decfetch B

fetch B saved cyclesshfl

shfl

AES_dec

AES_dec saved cycles

Unoptimized shfl

Delayed shfl

Time

Figure 3.5: The timeline comparison between unoptimized code and optimized code with delayed
shuffle. Fetch A and fetch B are two independent global memory accesses. Unoptimized code
decrypts the data immediately while delayed shuffle decrypts the data after the data are loaded into
shared memory/registers.

Delayed Shuffle

Another problem with the implicit synchronization of shfl is that it limits instruction overlapping.

For example, lines 13 and 14 in Listing 2 are two independent global memory reads, ’fetch A’

and ’fetch B’, and they can be issued back to back. However, due to the shfl used in the decrypt

function, fetch A and fetch B are sequentialized, as illustrated in Figure 3.5 (top). As a result, when

there is memory divergence, i.e., some threads having cache hits while others in the same warp

have cache misses, the longest latency is exposed. To address this problem, we propose a delayed

shuffle optimization, which delays the decrypt function after independent global memory reads. In

the example of Listing 2, the decrypt function is moved to right before the syncthreads function in

line 15. In other words, the ciphertexts are first loaded in shared memory (both fetch A and fetch

B), then the decrypt function is used to overwrite the shared memory array with plaintext. This

would re-enable overlapping between fetch A and fetch B, as illustrated in Figure 3.5 (bottom),
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leading to improved performance.

Selective Padding

If threads do not access contiguous data and the access pattern is hard to identify statically, there

may be a data coherence problem that arises when two threads modify different data items in the

same encryption block. We refer to this as an encryption block false sharing problem. Without

hardware cache coherence, both threads will need to read the same encryption block in order to

decrypt it, but this may create incoherent replicas. Earlier, we discussed that we eliminate the

false sharing by padding the data structure such that each element is expanded to 128 bits. While

this solution works, it increases memory footprint and bandwidth pressure. To improve on this,

we note that having encryption block replicas only leads to coherence issues only if the block

is modified. Thus, we perform selective padding optimization by differentiating the data access

type; and skipping padding if data is read-only. The read-only attribute can be obtained from

the programming model, e.g., the input buffers in OpenCL, compiler analysis, or programmer

annotation.

Methodology

We evaluate LITE on an NVIDIA RTX 2080 GPU. The system runs on Ubuntu OS version 18.04

with NVIDIA driver version 440.33.01. For compilation, we use the CUDA version 11.0 and GCC

version 7.1.0. We also use NVIDIA Nsight Compute to collect the hardware performance statistics.

Each experiment was repeated 100 times, and we use the average of them.

To test LITE, we use a wide range of applications from two benchmark suites, Parboil and Pan-

notia, as shown in Table 3.2. They consist of both regular GPU and irregular GPU code. Parboil
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benchmarks have regular GPU code and work well with GPUs since their memory accesses can be

coalesced, and a 128-bit block of data is accessed either by one or four adjacent threads. Pannotia

has irregular GPU code that accesses memory locations depending on the input, i.e., the sequence

of memory accesses are randomly determined by the input. Irregular GPU codes have relatively

poor performance on GPUs. As discussed in the previous section, we use padding for the irregular

benchmarks, in which a 128-bit data block is not accessed by a single thread or by four consecutive

threads in a warp.

Table 3.2: Benchmarks

Name Input Suites Reg Size(MB) Bottleneck
SPMV 1138_bus.mtx Parboil[57] Yes 0.04 Memory
MM medium Parboil Yes 55.8 Compute
TPACF small Parboil Yes 0.88 Compute
GRIDDING small.uks Parboil Yes 63.7 Compute
MRI-Q 32_32_32_dataset Parboil Yes 0.44 Compute
LBM short Parboil Yes 2.2 Memory
SAD large Parboil Yes 8.2 Memory
STENCIL 128x128x32 Parboil Yes 2.1 Memory
HISTO large Parboil Yes 4.1 Memory
FW 256_16384.gr Pannotia[12] No 0.19 Memory
BC 1k_128k.gr Pannotia No 1.7 Memory
MIS ecology1.gr Pannotia No 28.5 Memory
PAGERANK coAuthorsDBLP.gr Pannotia No 12.6 Memory
SSSP NY.gr Pannotia No 14.4 Memory
COLOR ecology1.gr Pannotia No 28.5 Memory

In Table 3.2, the ’Reg’ column indicates whether the benchmark is regular or irregular, ’Size’

indicates the input size in megabytes, and ‘Bottleneck’ indicates the performance bottleneck of

the benchmark is compute or memory. The bottleneck categorization is determined mainly from

the DRAM utilization and Streaming Multiprocessor (SM) utilization, as shown in Figure 3.6. If

the DRAM utilization is higher than the SM utilization, the benchmark is categorized as memory

bound, and vice versa. An exception is SAD; this benchmark is categorized as memory bound
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since it has 98% utilization of the internal caches.

52.44% 62.37% 74.36% 62.87% 76.23% 88.28% 81.99% 73.96% 62.88%

Figure 3.6: Streaming Multiprocessor (SM) utilization and DRAM bandwidth utilization.

Evaluation

LITE Performance Overhead

We present the kernel execution time overheads incurred by naive vs. optimized LITE implemen-

tations over the unsecured GPU baseline in Figure 3.7 and Figure 3.8 for regular and irregular

code, respectively. The naive implementation always encrypts or decrypts data immediately after

loading it or immediately before storing it to global memory. The optimized LITE applies all the

optimizations described in Subsection 3. The execution time overhead is broken down into the

time to perform encryption/decryption (encryption), the time to perform data shuffling without op-

timizations (shfl-naive), and the time to perform data shuffling with optimizations (shfl-opt). The

last set of bars shows the geometric mean overheads across all benchmarks in the respective cate-

gory. Note that the y-axes of the figure is capped at 3% for easier reading, but the actual magnitude

overheads are shown in numbers for any bars that exceed the cap.
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Figure 3.7: Kernel execution time overheads of naive LITE (shfl-naive+encryption) vs. optimized
LITE (shfl-opt+encryption) over unsecured GPU baseline on regular GPU benchmarks.

For regular applications in Figure 3.7, the naive implementation of LITE incurs 18.9% mean over-

heads.The overheads are especially very high for four benchmarks: SPMV (70.2%), MM (42.0%),

GRIDDING (14.3%), and STENCIL (66.0%). In contrast, our optimizations are extremely effec-

tive, bringing the geometric mean down to more than one order of magnitude smaller, at 1.1%.

Examining the source of the overhead, we note that the encryption time itself causes only 0.5%

overhead in general. Although encryption/decryption latency is relatively high when performed

in software, GPU is good at hiding it via thread-level parallelism, resulting in nearly negligible

encryption overheads. This observation is also consistent with the findings in the prior work [67].

However, anything that reduces the degree of thread-level parallelism can easily introduce high

execution time overheads. In particular, the shfl instruction exposes the load imbalance of path

divergence between threads in a wrap, forcing the wrap synchronization to wait for the slowest

execution path to be completed. Also, it limits overlapping among independent instructions. The

33



naive LITE shows that nearly all of the overheads for SPMV, MM, GRIDDING, and STENCIL,

come from shuffling.

To verify if the implicit wrap synchronization in shfl is the culprit, we replaced the shfl instruction

with __syncwarp() and noticed roughly the same overheads. We will now discuss the impact of

optimizations on each benchmark.

For SPMV, we apply the masked shuffle optimization, ensuring that only threads that fetched data

would participate in the corresponding data exchange and would be indicated active in the "mask".

This optimization lowers the performance overhead from 70.2% to just 4.0%. The reason for the

masked shuffle effectiveness is that SPMV may make some threads idle if their global thread id is

beyond the length of the vector input. Thus, the idle threads should not be indicated as active in

the "mask." We did not apply delayed shuffle because there are no independent data accesses.

For MM, we apply both the masked shuffle and delayed shuffle optimizations. We also replace

some of the shfl with data fetch from the neighbouring addresses to collect the 128-bit encryption

block. These optimizations significantly lower the overheads from 42.0% to just 0.6%, which is

nearly two orders of magnitude improvement.

For GRIDDING and STENCIL, we applied both the masked shuffle and delayed shuffle optimiza-

tions. After applying the masked shuffle, the overhead decreases to 10.4% and 2.0% respectively,

which is still somewhat high. However, after applying the delayed shuffle, the overheads go down

to just 1.7% and 0.4% for GRIDDING and STENCIL, respectively. For TPACF, the masked shuffle

optimization was applied similar to SPMV.

For irregular benchmarks (Figure 3.8), padding removes the false sharing coherence problem but

significantly contributes to the overheads, incurring 206.5% geometric mean overheads for naive

LITE due to increased working set size leading to higher bandwidth pressure. When we apply
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selective padding to the benchmarks, the execution time overheads decrease substantially as band-

width pressure decreases. The geometric mean overhead decreases to 55.7%.
N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

N
ai
ve
O
pt
.

196.30% 419.52%188.74% 394.05% 577.22% 206.47%

Figure 3.8: Kernel execution time overhead of naive LITE implementation (pad+encryption) vs.
optimized LITE (selective_pad+encryption) over unsecured GPU baseline on irregular GPU work-
loads.

Only FW does not suffer from much overhead. The anomaly of FW is because its working set

(Table 3.2) fits entirely in the L2 cache even after padding, hence padding does not increase band-

width pressure. For other benchmarks, bandwidth pressure increases in padding due to the higher

total number of memory accesses. In addition, miss rates often increase also. Figure 3.9 shows the

L2 cache miss rate of unsecured GPU, full padding, and selective padding. Generally, the figure

shows that padding increases the L2 miss rates, which are then reduced by selective padding. The

only exception is COLOR. However, even though COLOR’s L2 miss rate decreases with padding,

its L1 cache miss rate increases (from 71% to 79%).
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84.23%

Figure 3.9: Comparison of the L2 miss rate of unsecure GPU (baseline) vs. full padding (pad) vs.
selective padding (selective_pad) on irregular GPU code.

Benefit of Partial Encryption on LITE

Due to its software approach, LITE has great flexibility. We demonstrate one particular usage

that stems from the flexibility, which is partial encryption. Here we explore scenarios where only

the input or the output to GPU is confidential, hence needs encryption. Figure 3.10 shows the

execution time overheads, normalized to full encryption (i.e., full encryption overheads are 100%),

for input-only encryption with padding applied only to input, and output-only encryption with

padding only applied to the output. Only irregular benchmarks are shown in the figure since full

encryption overheads for regular workloads are already very small. The figure shows that partial

encryption is generally effective, more so for input-only (82.0% lower) than for output-only (20.5%

lower). Furthermore, its effect varies significantly across benchmarks, with some achieving nearly

negligible overheads for input-only encryption (MS, PAGERANK, and COLOR) while others for

output-only encryption (BC).
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Figure 3.10: Normalized execution time overhead over full encryption of optimized LITE for
input-only encryption vs output-only encryption on irregular GPU code.

Performance of Software Implementation of AES

As LITE does not use a crypto engine to encrypt the data, it relies on software implementation of

AES to perform encryption. The software performance of AES encryption of a single round of

AES takes up to 1011 cycles before the cache warms up, while after that, it takes only 34 cycles

for a single round. Similarly, the overall AES encryption latency is 7880 cycles before the cache

warms up, while after that, it takes 340 cycles. The latency is measured by taking the difference

between the clock cycle before and after each round or the encryption function. After the cache

warms up, the GPU only needs to perform bit operations such as XOR, AND, and bit shift for

encryption. While before the cache warms up, the GPU needs to fetch the T-table into its caches

followed by bit operations for performing encryption, thereby incurring higher latency.
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Performance Comparison between LITE and PSSM

We modeled LITE in GPGPU-sim [32] and compared it with PSSM [68]. We also simulated the re-

encryption process by running a re-encryption kernel for the input of each benchmark on the sim-

ulator. We simulated on all benchmarks listed in Table 3.2 up to 1B instructions or finished earlier.

The results are shown in the Figure 3.11. As shown in the figure, for regular codes, LITE always

achieved lower performance overhead compared to PSSM. For irregular codes, PSSM has lower

performance overhead if the re-encryption overhead is not included. With re-encryption, PSSM

shows a similar overall performance to LITE. Across all benchmarks, LITE achieved 11.7% per-

formance overhead while PSSM with re-encryption achieved 68.8% overhead. From this, we could

see that a key advantage of LITE is its interoperability, which eliminates the high re-encryption

cost.

259.46% 215.21% 149.50% 72.77% 141.88% 82.39% 68.78%

Figure 3.11: Comparison of execution time overhead of LITE vs. PSSM with re-encryption over-
head evaluated in GPGPU-sim.
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Conclusion

In this work, we proposed a software-based TEE for GPUs (LITE). We observed that when CPU

and GPU TEE are not co-designed, communication between them incurs high performance over-

heads because of encryption domain crossing. Since LITE is software-based encryption, its en-

cryption scheme can be co-designed to match host-side TEE, even after tape out. LITE only needs

minor architecture support. Measured on NVIDIA RTX 2080 GPU, naive LITE implementation

incurs substantial performance overheads. We proposed three different optimizations including

masked shuffle, delayed shuffle, and selective padding. Together, these optimizations are effective.

LITE incurs execution time overheads of only 1.1% and 56% for regular and irregular benchmarks,

respectively.
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CHAPTER 4: BOOSTCOM: BOOSTING THE COMPARISON

OPERATION ON ENCRYPTED DATA USING GPU

In this chapter, the GPU is used to accelerate the FHE implementation inside the HElib library.

Introduction

Data privacy in cloud computing requires technologies such as Trusted Execution Environment

(TEE) or Fully Homomorphic Encryption (FHE) [20]. FHE is a cryptographic technique that

enables arbitrary computational operations directly on encrypted data, without ever seeing the

plaintext. In contrast, TEE computation processes plaintext within the CPU boundary, despite

being cryptographically segregated from the system software and external to the CPU. Operating

on plaintext produces plaintext-dependent architecture behavior that creates various side channels

that have been proved difficult to close entirely.

There has been a surge of interest from the industry in FHE acceleration recently [44, 3, 7] as FHE

may play a pivotal role in facilitating computation on private data in the cloud without disclosing its

plaintext. FHE has been cited to be applicable for many types of computation, including machine

learning, and big data analytics, on various application domains that include healthcare, finance,

genomics research, secure voting systems, and private information retrieval, where it helps main-

tain stringent privacy regulations [10, 17, 26, 70]. Figure 4.1 illustrates the FHE workflow, which

includes client-side encoding, encryption, server-side computation, and subsequent client-end de-

cryption and decoding, which assures data confidentiality even on potentially untrusted servers.

Various FHE schemes, including BGV [9], CKKS [13], and TFHE [15], have emerged in the pre-

vious decade. These schemes exhibit distinct characteristics and operational compatibility. TFHE
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Figure 4.1: The workflow of performing computations on encrypted data that is transferred to an
untrusted server using FHE.

scheme, for instance, is geared towards bitwise operations, whereas CKKS primarily operates on

approximate floating-point computations and BGV specializes in integer arithmetic operations.

However, it is noteworthy to mention that CKKS, in its pursuit of approximate computing, un-

dergoes a reduction in precision as every operation it conducts impacts the ciphertext’s fractional

value [29]. Moreover, the comparison involving an approximated polynomial in the CKKS frame-

work leads to non-negligible errors [14] whereas comparisons in BGV introduce no errors and

exhibit faster execution times [25]. TFHE, though proficient in bitwise comparison, exhibits a

slower performance in arithmetic operations on integers. Conversely, BGV not only facilitates

integer arithmetic operations natively but also supports batched data processing and exact compar-

ison. Therefore, BGV appears promising for the efficient implementation of FHE applications that

heavily rely on integer arithmetic operations and exact comparisons.

Nevertheless, the BGV scheme is not without its limitations, particularly the sluggish and complex

comparison operation. To execute a single comparison, it requires 3p− 5 non-scalar multiplica-
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tions in conjunction with several additions, rotations, and scalar multiplications, with p denoting

the plaintext modulus [60]. A variety of applications, encompassing scientific computations and

machine learning workloads, depend heavily on this comparison operation. These applications ne-

cessitate the comparison of two elements within the encrypted data, subsequently yielding results

whether they are equivalent, less than, or greater than.

Recognizing that a comparison operation may create a performance bottleneck in BGV, there has

been an effort to rely on an algorithmic approach to accelerate it [25]. The algorithmic approach

reduces the comparison complexity to 2p−6 (Bivariate case) and
√

p−3+O(log p) (Univariate

case). Although an algorithmic approach is valuable, we are of the view that it alone may not

be adequate to meet the requirements of high performance. Proposals have been made to switch

between FHE schemes like TFHE-BGV [8] and TFHE-CKKS [41]. However, these transitions are

still costly, with over 70x latency compared to BGV [25]. Therefore, in this paper, we propose an

infrastructure acceleration approach, which we call BoostCom, where we offload comparison to the

Graphics Processing Unit (GPU) and apply various optimizations. We note that infrastructure ac-

celeration approach has been pursued successfully for various other operations such as encryption,

decryption, multiplication, bootstrapping, and other power-of-two polynomial ring operations [64,

30, 46, 53, 18], including on FPGA [50, 56], and ASIC [51, 52, 36]. However, they have all

neglected the comparison operation, which is the focus of this paper.

In this work, we propose an infrastructure acceleration approach for accelerating the comparison

operation. A single comparison may be up to multiple orders of magnitude slower than multiplica-

tion. Hence, accelerating comparison is challenging, requiring us to use a multi-prong strategy that

includes comparison-friendly parameter tuning, hybrid CPU/GPU parallelization, slot compaction,

non-blocking comparison semantics, branch removal, and layout optimization, as detailed below.

First, the choice of the polynomial ring significantly impacts the overall performance of BGV. Prior
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research presumed the use of a power-of-two polynomial ring. However, these studies overlooked

the fact that such a ring leads to a considerably slower comparison operation, as they did not delve

into the aspect of comparison. When considering the comparison operation, it becomes evident

that a non-power-of-two polynomial ring holds a substantial performance advantage for the BGV

scheme, offering a smaller ciphertext size and a larger number of slots while maintaining the

same security level as the power-of-two ring. Furthermore, the comparison operation exhibits a

substantial difference in execution time on different rings. For instance, a single comparison may

require several hours with a ring of 16,384, contrasting with just a few seconds for a ring of 18,157.

Second, we propose hybrid parallelization where the multicore CPU exploits parallelization at a

higher level (digit-level), while the GPU exploits parallelization of primitive FHE operations at a

lower (library) level. This enables both CPU and GPU to work cooperatively to improve BGV

comparison performance.

Third, we observed that in machine learning workloads, comparison occurs after other operations,

such as matrix multiplication or convolution. This creates an opportunity to perform slot com-

paction prior to performing the comparison. We introduce a slot manager that keeps track of slot

utilization inside a ciphertext and performs compaction in order to minimize the number of slots

used, resulting in lower memory usage and performance improvement.

Fourth, we propose non-blocking semantic for comparison that allows the overlap of comparison

with other computations. The semantic allows comparison to be executed on another CPU thread

while the main CPU thread continues executing the next code segment concurrently until the main

thread needs to use the result of the comparison. To increase the distance until the use of the result,

we perform code straightlining.

Finally, we accelerate each primitive FHE operation on GPU, targeting key performance-intensive

codes on HElib [22] such as BluesteinNTT, BluesteinFFT, and element-wise operation. We apply
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optimizations that include branch removal, plan reuse, and layout optimization to achieve better

spatial locality.

We implemented the optimizations on a real-world library (HElib) which enables us to evaluate

end-to-end performance (instead of operation-wise evaluation in many prior studies) reliably. We

evaluate several applications including sorting, finding minimum elements, multi-layer perceptron

(MLP), image re-colorizing, and a private query. Our evaluation shows that the proposed accel-

eration is effective in boosting the performance of the comparison and the application that use it.

Across the five benchmarks, it achieves end-to-end geometric mean speedup of 11.1× (even up to

26.7×), over an industry-standard FHE library running on 16-core CPUs.

To summarize, this paper makes the following contributions:

1. We proposed an infrastructure acceleration approach for comparison in the BGV FHE scheme.

2. We proposed a multi-prong strategy for accelerating comparison, including comparison-

friendly parameter tuning, hybrid CPU/GPU parallelization, slot compaction, non-blocking

semantics, branch-removal, as well as other minor ones (plan reuse and layout optimization).

These optimizations are wrapped in a new library cuHELIB, which extends HElib utilizing

GPUs.

3. We conducted a thorough evaluation of our scheme, considering end-to-end measurements

that include CPU-GPU memory copy, kernel launches, and synchronizations. This approach

provides a more holistic assessment compared to extrapolating from operation-wise mea-

surements. The evaluation covered five applications: Sorting, Finding Minimum Element,

Multi-Layer Perceptron (MLP), Image Re-Colorizing, and Private Query Database.
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Background

BGV Scheme

The BGV scheme is a lattice-based encryption based on Ring Learning with Errors (RLWE) prob-

lem [9]. RLWE is a challenging mathematical problem in lattice-based encryption that creates a

foundation for developing safe encryption schemes. Table 4.1 shows the essential BGV parame-

ters. Key parameters include p, m, and N. p defines the plaintext modulus; its increase enlarges

plaintext space but slows down comparisons. The roles of m and N will be outlined later.

Table 4.1: Parameters used in BGV and comparison operation.

Parameter Description
p Plaintext coefficient modulus.
m The order of the cyclotomic ring.
N The degree of the cyclotomic polynomial.
Q The product of (prime) moduli: Q = ∏

L
i=0 qi.

L Maximum (multiplicative) level.
λ Security level of a given BGV instance.
ω Root of unity of twiddle factor for NTT.
d The dimension of a vector space over a finite field.
l The length of vectors to be compared.

In BGV scheme, a plaintext is encoded into a polynomial and encrypted to form a ciphertext poly-

nomial. Computation can be performed on the ciphertext, yielding a result also in ciphertext form,

which requires decryption to obtain the plaintext. Both plaintext and ciphertext polynomials reside

in the same ring with different coefficient moduli, where the ciphertext modulus is significantly

larger than the plaintext modulus. The ciphertext polynomial ring (RQ) in the BGV scheme is

C = RQ×RQ, where RQ = ZQ[x]/(Φm(x)), where Φm(x) is the mth cyclotomic polynomial with

a degree of N. The relationship between m and N is determined by the Euler totient function ϕ ,

i.e., N = ϕ(m). While prior works use a power-of-two N for simplicity, non-power-of-two N is

45



suggested for better performance and higher security flexibility. Q ∈ Z is the ciphertext coefficient

modulus at level L, representing the product of several primes (q0,q1,q2, ...,qL) that fit into the na-

tive integer data type. The value of Q determines the multiplicative depth, i.e., the most extended

sequence of homomorphic multiplications during computation. Q is typically much larger than p,

influencing the message expansion rate after encryption. The individual primes qi are part of the

modulus chain.

The BGV scheme utilizes SIMD-style processing, storing multiple integers in one ciphertext to

optimize operation speed. Leveraging ring isomorphism of polynomial modulus enables multiple

plaintext slots within a ciphertext. Modular arithmetic is used for homomorphic operations in-

cluding addition, multiplication, and rotation. However, noise introduced during encryption limits

operation numbers and requires a large ciphertext modulus (Q).

Efficient Representation of Polynomial and NTT

To handle the large ciphertext modulus Q, the BGV scheme uses a Residue Number System (RNS)

format, splitting the polynomial into L+1 residue polynomials with coefficients under modulo qi,

where qi’s are pair-wise coprime integers. RNS allows for efficient multiplication and addition of

ciphertext polynomials using current hardware systems.

To accelerate polynomial multiplication, the Number Theoretic Transform (NTT) is used, convert-

ing the polynomial to an integer Discrete Fourier Transform (DFT) representation using a twiddle

factor ω that meets specific conditions. For efficient NTT and INTT, radix-2 NTT implementations

are applied when N is a power of two, employing Cooley-Tukey (CT) and Gentleman-Sande (GS)

algorithms. The ciphertext polynomial is represented as a matrix of polynomial coefficients in in-

teger DFT representation of size (L+1)×ϕ(m), enabling straightforward element-wise operations

for multiplication and addition between polynomials.
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The BluesteinNTT algorithm is used for polynomial conversion between coefficient representation

and integer DFT representation when N is a non-power of two. The algorithm requires two twiddle

factors: TF1, the twiddle factors for polynomial ring m, and TF2, the twiddle factors for a power

of two polynomial ring. First, the input polynomial is multiplied element-wise by TF1 to generate

a polynomial C. Then, the polynomial C is padded with zero to become C_pad and then multiplied

by polynomial D_pad. D_pad is a polynomial generated from TF1. Both polynomials C_pad and

D_pad have length power of two greater than 2m−1. The polynomial multiplication between them

is accelerated by the radix-2 NTT algorithm (CT and GS) that requires TF2. The multiplication

result (C_pad x D_pad) is then truncated to have length m, the exceeding coefficient added to the

polynomial. The resulting polynomial is then multiplied element-wise by TF1. Finally, filter the

polynomial to have a length from m to N.

Comparison Operation Algorithm

The state-of-the-art comparison algorithm for BGV/BFV was proposed in [25]. It exploits SIMD-

style processing such that many comparisons can be performed in parallel, leading to a small

amortized comparison latency. A large integer comparison operand is encoded into an element of

Fl
pd . Here, Fl

pd represents a finite field extension of degree d over a prime field with p elements.

The encoding process involves decomposing the large integer into an element in this vector space,

where the vector space is of dimension l.

To compare two integers a and b, first, each integer is decomposed into multiple slots in the form

of Fpd . For example, a is decomposed into a0,a1, . . . ,al−1, where ai occupying the i-th slot. For

each slot, using mod extract step, each number is further split into multiple digits in the form of

Fp. For example, a0 is split into a00 (the first digit in the first slot), a01 (the second digit in the first

slot), etc.
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To perform comparison, the algorithm first extracts digits of encrypted numbers in Fp, then per-

forms equality (EQ) and less than (LT ) functions for each digit using specific equations. The

computation of LT and EQ for each digit is independent and there is no dependency relation. The

results of the equality and less than functions on the digits are combined through lexicographical

order. First, the lexicographical order is computed for each block of d digits, and then the results

are combined using a final equation that returns encrypted 1 when a < b and 0 otherwise. The last

two steps that involve ciphertext shifting and multiplying with the result from the equality circuit

are called ShiftMul, whereas the step for performing a summation of the ciphertext is called Shif-

tAdd. The digit comparison steps are expensive due to repeated ciphertext exponentiations with

large exponents for d× l times, while other steps (Extraction, ShiftMul, and ShiftAdd) are faster.

The process represents a Bivariate circuit with separated LT and EQ computations, whereas the

Univariate circuit combines LT and EQ circuits differently.

Bottleneck Analysis of Comparison Operation

The state-of-the-art BGV comparison implementation is in HElib [25]. It was reported that it

was up to 3× faster than prior work based on BGV/BFV, and achieved even better performance

than bit-wise FHE schemes in basic comparison tasks such as less-than, maximum, and minimum

operations. However, each comparison still takes up to several seconds, hence we argue for the

need for infrastructure acceleration.

To accelerate BGV comparison in HElib, we first identify the bottlenecks in the library component.

To achieve this, we perform profiling and measure the execution time breakdown based on the

components in the library. Figure 4.2 shows the execution time breakdown of the comparison

operation based on the primitive HElib components. For brevity, the figure only shows the profiling

results from the Univariate case, but we note that the Bivariate case exhibits similar results. The
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platform we used for the profiling is detailed in Table 4.2.

BluesteinNTT

BluesteinFFT

Element-wise Ops.

CRT
Other

30%

24%

19%

6%
21%

Figure 4.2: Breakdown of BGV comparison time for Bivariate circuit with parameters m = 34511,
p = 3, and d = 6.

The figure shows that the execution time is mainly spent on three components: BluesteinNTT,

BluesteinFFT, and Element-wise operations. Upon code inspection, we found that they are also

highly parallelizable, so offloading them to GPU could be fruitful. In contrast, the "Other" compo-

nent is also quite significant. It consists of many small loops scattered inside the library. While the

code is parallelizable, the degree of the parallelism is too small to compensate for the overheads of

memory copy, memory allocation, and kernel launch. Therefore, offloading these codes to GPUs

may not yield net performance improvement. For CRT, although the code involves multiple loops,

the most time-consuming loops in this component involve the computation of a big integer and

storing the final result in it. Currently, there is no support for big integer data types on GPUs,

whereas a highly optimized library for CPUs exists[21]. Therefore, both CRT and Other compo-

nents may not benefit from GPU offloading; instead, we will utilize CPU for their parallelization.

Note that CRT parallel execution on multiple CPU cores is already the case in HElib, hence we
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Figure 4.3: Execution time breakdown for various BGV parameters for Bivariate (left) and Uni-
variate (right) circuits.

keep it that way. Furthermore, we add parallel execution of "Other" components on CPUs.

Next, we repeat the profiling while varying the FHE parameters, shown in Figure 4.3 with a Bi-

variate case on the left and a Univariate case on the right. We tried ten different sets of parameters

(p1 to p10), with p increasing from 3 to 31 (details in Table 4.2). Being the plaintext modulus, the

parameter p determines the size of the plaintext space, i.e. larger p increases the maximum number

that can be encoded in the plaintext space. For the Bivariate Circuit, BivarEQ and BivarLT are the

most time-consuming steps in the algorithm. Moreover, with the increase of the size of parameter

p, the dominance of these steps increases. For the Univariate Circuit, the UnivarLT+EQ steps

dominate most of the computation time and increase as p increases. The steps are computationally
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expensive due to repetitive ciphertext exponentiations performed in a loop. Each exponentiation

has parallelism that could benefit from running on a GPU, and indeed HElib offloads it to the GPU.

However, they are still very expensive, and thus further optimizations are needed.

The Design of BoostCom

This section describes BoostCom, our solution for BGV comparison operation acceleration through

the use of GPU and multiple CPU threads. After we conduct the execution time breakdown from

the previous section, we discover some primitive components inside the HElib that need to be of-

floaded to the GPU and what steps in the algorithm to look out for the possibility of acceleration

with multi CPU threads.

Comparison-Friendly BGV Parameter Tuning

The conventional wisdom for BGV parameter selection is that the degree of polynomial ring should

be a power-of-two (PoT) number, as reflected in most prior works. However, it is noteworthy that

BGV can also accommodate a polynomial ring with a non-PoT degree. When the polynomial ring

possesses a non-PoT degree as a result of choosing a prime number or a product of a few prime

numbers of the cyclotomic polynomial ring order, it ensures that the slot permutation group is

cyclic or a composite of several cyclic groups, leading to enhanced performance [25, 19].

The choice of parameters affects the end-to-end performance, security, and computation efficiency

trade-offs and degree of SIMD parallelism. However, ignored by the conventional wisdom is the

implication of selecting a PoT polynomial ring degree on the performance of BGV comparison. For

example, while homomorphic operations are slightly faster with PoT polynomial rings, comparison

is multiple orders of magnitude slower with PoT. Since prior works overlooked comparison, the
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highly adverse impact of PoT ring degree did not surface.
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Figure 4.4: Comparison of the homomorphic operation latencies of using the power of two vs.
non-power of two vs. optimized non-power of two polynomial rings.

As a demonstration, Figure 4.4 presents stacked bars representing the latencies of a single mul-

tiplication and a single comparison in logarithmic scale for a pair of m values. To qualify this,

while ensuring a security level of λ > 128 bits, we have chosen two non-PoT m values, 18,157 and

34,511, to correspond with two specific PoT m values, 16,384 and 32,768. To ensure a meaningful

comparison, these selections have been designed such that the non-PoT m values yield a slightly

larger count of SIMD slots and an enhanced security level, as guided by the recommendations

from [4, 25]. For each m value, we show the stacked latencies for three cases: PoT, unoptimized

non-PoT, and non-PoT with our optimizations that will be described later. The figure shows that the

stacked non-PoT latencies are more than two orders of magnitude faster than PoT, because com-

parison is 351.6× and 165.9× slower for m values of 16,384 and 32,768 respectively compared to

the corresponding non-PoT.

It is important to note that while unoptimized non-PoT achieved much faster comparison in ex-
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change of slightly slower multiplication, after optimizations that we propose, the multiplication

becomes faster than with PoT, leading to non-PoT as strictly faster for each operation compared to

PoT. The reason for this outperformance of non-PoT is that our optimizations accelerate the build-

ing blocks of comparison that also serve as the building blocks for addition and multiplication.

In addition to the outperformance, choosing a non-PoT polynomial ring improves flexibility and

security. For instance, increasing m (cyclotomic ring order) while keeping Q (prime moduli prod-

uct) constant results in a higher security level but slower computation. Thus, the choice of m

presents a trade-off between security and computation time. Restricting m to PoT leaves us with

limited polynomials to choose from, such as x256+1,x512+1,x1024+1, etc. This may in turn force

the ciphertext to be too large, lowering efficiency. If instead, we allow non-PoT polynomial rings,

there are many more polynomials to choose from to rightsize the ciphertext, while still meeting a

minimum security level.

Finally, the size of SIMD slot (nslot) in BGV is determined by nslot =
ϕ(m)

d , where d is in the

order of p mod m. Thus, increasing nslot requires decreasing d. When m is restricted to PoT, we

can only vary p to affect the ciphertext size. In contrast, when m is non-PoT, it can be varied to

increase the SIMD slots, allowing a higher degree of parallelism which yields a smaller amortized

execution time.

Overall, choosing a non-PoT polynomial ring order is advantageous, as it leads to a much faster

comparison, higher computation efficiency, and a higher degree of SIMD parallelism.

Hybrid CPU/GPU Parallelization

Profiling results (Section 4) identified BluesteinNTT, BluesteinFFT, and element-wise operations

in BivarLT/BivarEQ/UnivarLT+EQ as taking roughly three quarters of the execution time. Thus,
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an obvious acceleration step is to offload them to the GPU to benefit from the massive parallelism

on the GPU. However, after offloading, through profiling we found that the GPU utilization is less

than 10%. Meanwhile, the CPU is mostly idle waiting for GPU computation results. To address

both problems, we propose hybrid parallelization where higher-level parallelization is performed

at the CPU.

To perform parallelization on the CPU, one approach is to only parallelize the most time-consuming

operations (i.e., ciphertext exponentiation). However, this approach is challenging as the use of re-

cursion creates loop-carried dependences. Moreover, the exponent of the parameters depends on

p, which may exceed the number of CPU threads, making load balancing challenging. Hence,

we explore an alternative approach of parallelizing across digits. As discussed earlier in 4, the

computation of each digit in LT and EQ has no dependence on the computation of other digits.

LTi j computes LT with digit input ai j and bi j only. The computation of each digit is also highly

parallel. Hence we adopt a hybrid parallelism strategy, where we use GPU for specific computa-

tions for each digit in parallel, and utilize multicore CPUs to exploit digit-level parallelism. This

is illustrated in Figure 4.5.

The parallelization for digit computation is wrapped inside a library which we name cuHElib, built

on top of HElib. We added multiple buffers (called CuBuffers) to hold data in the GPU memory,

a command queue to dispatch tasks to the GPU, and changed the GPU task offloading strategy.

The library offloads each expensive operation or function as a task (BluesteinNTT, BluesteinFFT,

and Element-wise operations) to the GPUs. At the digit level, the computation of LT and EQ

of different digits are computed across multiple CPU threads simultaneously. To avoid races and

synchronization, we allocate a separate GPU buffer for each CPU thread.

Since the CPU and GPU have separate memories, offloading computation tasks to the GPU requires

copying data to a GPU buffer, launching a kernel to compute the task, and then copying the result
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Figure 4.5: Illustrating Boostcom’s hybrid parallelism: digits are computed across multiple CPU
threads, while primitive operations in each digit are offloaded to the GPU.

back to the CPU. If Unified Memory (UM) [48] is supported, the copying may be performed

implicitly as the CPU and GPU share virtual memory address space. However, to avoid page

thrashing and page faults while a kernel is running, we use explicit copying with careful timing.

Slot Compaction

SIMD-style processing facilitates the simultaneous manipulation of tens of thousands of numbers

encoded within a single ciphertext, whereby an operation on the ciphertext is performed on all

encoded numbers. Thus, a high slot utilization increases both compute and memory efficiency.

However, our analysis reveals that slot utilization is often low, especially for comparison, due to
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two reasons. First, there are often discrepancies between the input size alignment and the available

ciphertext slots, which persist even after optimizations. For instance, AlexNet’s input size is 224×

224, while SEAL [44] supports a maximum of 16,384 slots per ciphertext. Consequently, the input

is partitioned into ⌈224×224
16384 ⌉ = 4 ciphertexts, resulting in 76% slot utilization. The presence of

unused slots presents an opportunity for compaction.

A second reason for slot under-utilization is less straightforward; it is the result of performance

optimizations (standard in Helayers[2]) for non-comparison operations where some numbers are

duplicated in different slots. Figure 4.6 illustrates an example of a neural network where a con-

volution operation (and batch normalization) precedes ReLU in which comparison is performed

(part (a)). To perform the convolution between a matrix M and a filter (part (b)), the matrix M fills

up all 16 ciphertext slots, while the convolution filter is duplicated four times to fill up slots (part

(c)). The purpose of filter duplication is to reduce the number of multiplications and rotations.

In order to obtain the convolution results, a multiplication is followed by three sets of rotate-and-

accumulate. The resulting result ciphertext has the convolution results in the 4th, 8th, 12th, and

16th slots (shown in grey), while all other slots do not contain useful values.

Next, Figure 4.6 (part (d)) illustrates the state-of-the-art practice where each convolution result

number is split into its digits (four digits per number are illustrated). Thus, each useful slot in the

convolution result becomes four new slots across four different chiphertexts, each new slot rep-

resenting a digit. Note, however, that useless numbers are also decomposed into digits, resulting

in 75% of the slots not containing useful data. When performing comparison, only the slots with

useful digits are needed, which presents an opportunity for compaction. Our approach is shown in

part (e), where we consolidate digits from all numbers into a single ciphertext. Through slot com-

paction, the comparison can now work on fewer ciphertext inputs, substantially reducing memory

usage and unnecessary computation.
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tion (BN), and ReLU; (b) Convolution filter; (c) Convolution steps on encrypted data resulting
in unused slots; (d) Naive digit decomposition with many unused slots; and (e) Optimized digit
decomposition with slot compaction.

Achieving slot compaction in the Helayer is difficult because the information of which slots con-

tain useful data is not available to the Helayer, hence it must conservatively assume that all slots

are useful. Besides, the existence of non-useful slots arises only in the case where comparison

is preceded by certain operations like convolution or matrix multiplication, so the Helayer cannot

predict slot usefulness without algorithmic information. To overcome this challenge, our slot man-

ager (SM) preserves algorithm information to track slot usefulness to guide slot compaction after
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digit decomposition. SM minimizes memory usage by distributing digit decomposition across as

few ciphertexts as possible.

Note that the slot compaction opportunity requires three conditions: (1) the existence of compari-

son, (2) the comparison being preceded by other operations such as convolution or matrix multipli-

cation, and (3) slot usefulness information being tracked and passed to the digit decomposer. The

presence of the three conditions enables the SM to significantly reduce the number of ciphertexts

for comparison input. However, when at least one of the conditions is absent, we just perform slot

compaction for the case when the input size does not align with the ciphertext format.

Non-Blocking Comparison

When many numbers are compared together, the cost of comparison operation could be amortized

using BGV SIMD-style processing. However, when an application only needs to compare a pair

of numbers (or a small number of pairs), comparison latency is hard to amortize. This case occurs

when the comparison occurs inside an if statement.

Listing 4.1 shows an example code that performs a query without FHE (i.e., on unencrypted data).

It takes three inputs: query type (q) and two data operands (op1 and op2). The code performs

an operation (addition, multiplication, or exponentiation) based on the query type, with operand

value specified by one of the two data operands. It has three comparisons each involving a pair of

numbers. The semantic-equivalent FHE version is shown in Listing 4.2. With FHE, the query type

is not in plaintext form, hence we must use the EQ(.) function to test for equality. Furthermore,

the comparison results are also in ciphertext, hence conditional branches are replaced by code

straightlining, resulting in Listing 4.2.

To hide the comparison latency that is hard to amortize, we propose non-blocking comparison.
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When the comparison is solely used to determine the taken branch path, there is no dependency

relation between the main computation and the branch evaluation. Consequently, we can execute

the branch evaluation and the main computation concurrently. Listing 4.3 shows the resulting code

with our non-blocking comparison optimization. The branch evaluation that computes equality

functions EQ(.) is performed by a helper thread in parallel to the arithmetic operations performed

by the main thread. The final data update is performed after the helper thread joins the main thread.

Listing 4.1: Private query on plaintext

data.

1 privateQuery(q, op1 , op2){

2 if(q == add)

3 Data += op1

4 else if(q == mult)

5 Data *= op1

6 else if(q == power)

7 Data = Data^op2

8 else

9 Data = Data }

Listing 4.2: Private query’s straight-

lined code on encrypted data.

1 privateQuery(q, op1 , op2){

2 c1 = EQ(q, add)

3 c2 = EQ(q, mult)

4 c3 = EQ(q, pwr)

5

6 Data1 = Data + op1

7 Data2 = Data * op1

8 Data3 = Data.Power(op2)

9 Data = Data1 * c1 + Data2 *

10 c2 + Data3 * c3 }

Listing 4.3: Private query with non-blocking comparison.

1 EvalBranch(c1 , c2, c3, q){

2 c1 = EQ(q, add)

3 c2 = EQ(q, mult)

4 c3 = EQ(q, pwr)

5 }

6 privateQuery(q, op1 , op2) {

7 helper_thread(EvalBranch(c1, c2, c3, q))

8 Data1 = Data + op1

9 Data2 = Data * op1

10 Data3 = Data.Power(op2)

11 thread_1.join()

12 Data = Data1 * c1 + Data2 * c2 + Data3 * c3 }
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Figure 4.7: Illustrating the saved cycles due to the non-blocking comparison optimization.

To illustrate the benefit, Figure 4.7 compares the original straightlined code performance (top)

vs. with our non-blocking optimization (bottom). With non-blocking, the execution of branch

evaluation overlaps with the main computation.

BluesteinNTT Acceleration

BluesteinNTT is a time-consuming function in HElib, transforming a ciphertext polynomial from

a coefficient representation into an integer DFT representation. The BluesteinNTT computation

involves element-wise multiplication (2 times), radix-2 NTT/INTT conversion, element-wise ad-

dition, and polynomial filtering. To accelerate it, we adopted the state-of-the-art radix-2 NTT/INTT

implementation [47], applied an optimization [64], and used the Barret reduction for modular op-

erations [54]. We discovered that the remaining performance bottleneck is in polynomial filtering,

which is not parallelizable due to loop-carried dependency.

Polynomial filtering alters the polynomial length from m to N. In Listing 4.4, the update of the vari-
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able j is control-dependent on the loop iterator i, creating a loop-carried dependence that hinders

loop-level parallelization. If executed sequentially with a single GPU thread, it would be ineffi-

cient due to the comparatively slower speed of a single GPU thread compared to a CPU thread.

Instead, we propose a branch removal optimization by breaking down the code into two phases

(Listing 4.5): the offline phase and the online phase. The offline phase removes loop-carried de-

pendences by pre-computing indices to set the target index for final_result. This is achieved by

computing the prefix-sum of the value array of ZmStar. Additionally, since all the inputs for index

pre-computation are available before FHE computation, we can pre-compute it on the CPU. As

a result, the online phase, when it performs selective copy, becomes parallelizable as we remove

the branch and can benefit from GPU execution. This transformation also leverages efficient GPU

pipeline computation and enables the use of multi-streaming to further improve GPU utilization.

Listing 4.4: BluesteinNTT polynomial filtering code showing loop-carried dependence due the if

statement and j++.

1 for (i = 0, j = 0; i < m; i++)

2 if (zMStar ->inZmStar(i))

3 final_result[j++] = coeff(result , i);

Listing 4.5: Branch removal optimization that removes loop-carried dependence in polynomial

filtering.

1 // offline phase: index pre -computation to remove loop -carried dependence

2 prefixSum(sumZmStar , inZmStar , getM);

3 // online phase:selective copy executed in parallel with GPU

4 __global__ filterBluestein(tmp , inZmStar , sumZmStar , m){

5 int i = blockDim.x * blockIdx.x + threadIdx.x;

6 if (i < m && inZmStar[i] != 0)

7 final_result[sumZmStar[i]] = result[i]; }
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BluesteinFFT Acceleration

BluesteinFFT significantly contributes to the comparison operation latency in HElib. To ensure the

correctness of the ciphertext, HElib checks the noise level after each operation using BluesteinFFT.

While one could use a very large Q value to prevent noise budget exceedance, this may reduce

computation efficiency. Opting for smaller Q values, though requiring noise estimation using

BluesteinFFT, may enhance computation efficiency.

HElib utilizes the CPU library PGFFT, which we replace with the cuFFT library for GPU of-

floading. Before using BluesteinFFT with cuFFT, a configuration step is necessary, involving plan

creation for optimal thread organization. Two distinct strategies are under consideration to opti-

mize the utilization of cuFFT: the first involves the creation of the execution plan before every

BluesteinFFT operation, a straightforward yet computationally expensive approach; the second

strategy, denoted as plan reuse, configures the plan once at the initiation of FHE computation.

Subsequently, during the execution of BluesteinFFT, pointers for twiddle factors and the GPU ex-

ecution plan are conveyed, effectively eliminating the need for plan creation on the critical path of

the operation.

Accelerating Element-Wise Operations

Element-wise operation in HElib multiplies two matrices of size (L+1)×ϕ(m) by iteratively mul-

tiplying and adding. Each matrix is dynamically allocated because a homomorphic operation may

add and/or delete rows during execution. The dynamic allocation may result in non-contiguous

memory addresses, which creates a problem for cudamemcpy which only copies contiguous mem-

ory address range. Thus, copying an entire matrix to the GPU using cudamemcpy may lead to

copying unrelated data. Moreover, copying the matrix result back is not feasible, as it may over-
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write unrelated data processed by other threads. We explore several options to address the issue.

One possible approach is to perform the element-wise operation row-by-row, similar to Intel HEXL

library [7]. However, Intel HEXL relies on CPU. If we use this approach for GPU, we may suf-

fer from high memory copying latencies for each row of the matrices and from a low degree of

parallelism on the GPU, which may result in underutilized GPU. An alternative approach involves

copying the entire matrix to the GPU row-by-row and then executing the element-wise operation

for the entire matrix. This generally reduces the total kernel time. However, it still results in PCIe

bandwidth wastage since only a small amount of data is copied to the GPU multiple times.

Thus, we use a third approach, which we refer to as layout transformation, to create a contiguous

memory allocation in the CPU buffer, which allows the element-wise operation for the entire matrix

to be offloaded in a single GPU kernel. Figure 4.8 illustrates the steps for this optimization: 1

data from the original matrix with non-contiguous row locations is copied over to a new buffer

with contiguous mapping. 2 the entire matrix with contiguous rows is transferred to the GPU.

3 element-wise operation is performed on the GPU, producing results in the GPU buffer. 4

data in the GPU buffer is copied back. 5 the resulting matrix is copied back to the original buffer.

This approach incurs additional CPU-to-CPU memory copying but maximizes PCIe bandwidth

utilization and allows a high degree of GPU parallelization.

Methodology

Experiment Platforms

We evaluate BoostCom on a combination of GPU and CPU platforms. The GPU platform has

an NVIDIA RTX 3090 GPU with 82 Streaming Multiprocessors (SMs). Each SM contains 128

CUDA cores, operating at a core clock speed of 1695 MHz. The GPU is equipped with a combined
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Figure 4.8: Layout optimization for offloading the element-wise operation to the GPU, utilizing
additional copying at the CPU side to maximize the CPU-GPU memcpy bandwidth and paralleliza-
tion degree.

10 MB of L1 data cache and shared memory, along with a separate 6 MB L2 cache. The GPU

memory system has a 24GB size and 936 GB/s bandwidth.

The CPU platform has an AMD Ryzen PRO 3955WX CPU with 16 cores and 128 GB of memory.

Each core has a clock speed of 3.9 GHz, with a 4.3 GHz maximum turbo frequency. It has 64MB

L3 Cache Memory and its main memory has eight-channel ECC DDR4-3200 DRAMs. The CPU

runs Ubuntu OS version 22.04 and NVIDIA driver version 525.85.12. We used CUDA version

12.0 and GCC version 7.5.0 for compilation.

Workload Evaluation Methodology

We evaluate BoostCom with full applications to measure overall application performance as well

as with microbenchmark to measure comparison performance specifically. In both cases, our eval-

uation measures end-to-end performance, in contrast to extrapolating from the measurement of

each operation that is common in prior works. End-to-end performance measurement gives a
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fuller and more reliable picture of the performance. For all measurements, we repeat each exper-

iment 10 times and report their average. We use the NVIDIA Nsight system to collect hardware

performance statistics.

Microbenchmark

To measure comparison-only performance, we form a microbenchmark that performs a comparison

of a pair of 64-bit integers. We vary the BGV parameters to form 10 different configurations

following prior work [25]. Each configuration is expressed as a tuple of (p m N) and was selected

to maximize the number of SIMD slots as shown in Table 4.2. They are sorted in the order of

increasing plaintext modulus p values. Each configuration uses bivariate and univariate circuits

with differing vector space dimension d, vector length l, and the product of prime moduli Q. The

resulting security level λ and number of integers that can fit in one ciphertext are shown in the last

two columns.

Table 4.2: Parameters and Statistics

Params (p m N) Circuit (d l) log(Q) λ no of int

p1 (3 34511 34510) B (6 7) 324 298 290
U (16 4) 472 189 507

p2 (5 19531 19530) B (7 4) 324 155 697
U (7 6) 354 141 465

p3 (7 20197 19116) B (6 4) 354 137 531
U (8 4) 406 110 531

p4 (11 15797 15796) B (5 4) 342 162 359
U (5 5) 378 145 287

p5 (13 30941 30940) B (5 4) 354 338 1547
U (4 6) 378 313 1031

p6 (17 41761 41760) B (4 4) 413 402 1305
U (7 3) 472 344 1740

p7 (19 29989 29988) B (4 4) 378 302 833
U (5 4) 385 296 833

p8 (23 37745 30192) B (5 3) 413 275 838
U (9 2) 456 245 1258

p9 (29 18157 17820) B (5 3) 360 175 990
U (6 3) 413 150 990

p10 (31 52053 34700) B (5 3) 512 252 2313
U (4 4) 512 252 1735
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Applications

We used the following applications that utilize BoostCom for all BGV operations using our cuHE-

lib including comparison.

sorting is an application that sorts an array of 16 encrypted 32-bit integers from [25]. It uses uni-

variate circuit for comparison, utilizes a matrix of Hamming weights to establish the relationship

between any pair of elements in the encrypted array.

min is an application that finds a minimum integer from an array of 16 elements of 32-bit integers

from [25]. It uses univariate circuit and combines the Hamming weight matrix and the tournament

methodology, reducing the circuit’s depth for improved efficiency.

mlp is a simple machine learning program utilizing Multi-Layer Perceptron that we wrote to clas-

sify images. It has three layers: a fully-connected layer, ReLU, and another fully-connected layer.

In contrast to prior works that usually did not support ReLU, by supporting comparison, we allow

ReLU operation. The bivariate circuit is used for comparison in the ReLU layer. mlp performs

inference using encrypted 16-bit integers. The input image has 28x28 pixels, stored in a single

ciphertext. It trains on MNIST datasets and outputs ten nodes.

img_col is an image recolorizing application that we developed to calculate the distance of every

pixel inside an image to a threshold value. When the distance is below the threshold, it transforms

the pixel by multiplying its color value with the pre-set value. The bivariate circuit is used for

comparison. This application enables private medical data image analysis on an untrusted cloud

server. The input is an encrypted image, threshold value, and pre-set pixel transformation value.

The input image is encoded into 16 ciphertexts and each ciphertext consists of 700 pixels.

private_q is a simple application that we developed to perform a private query to manipulate data
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Table 4.3: Memory Usage for each Workload (GB).

sorting min mlp img_col private_q gmean

BoostCom 5.5 8.4 1.6 2.8 2.2 3.5
BoostCom+SM 4.5 6.5 1.1 1.6 1.4 2.5
Mem. Reduc-
tion

19% 23% 32% 44% 35% 29.3%

in encrypted databases, based on Listing 4.7. This application helps evaluate the proposed non-

blocking comparison.

Evaluation Results

sorting min_element mlp img_col private_q gmean
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Figure 4.9: The acceleration achieved by BoostCom in comparison to the baseline for five impor-
tant workloads.

Workloads Speedup

Figure 4.9 illustrates the speedups achieved by various levels of BoostCom optimizations compared

to a 16-core CPU-only baseline (i.e., HElib [22]), for all applications and their geometric mean
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speedup. Basic BoostCom (second bars) include library-level optimizations, i.e., hybrid CPU/GPU

parallelization, BoostCom+SM (third bars) adds a slot manager, and NB (fourth bars) adds the

non-blocking optimization.

On average, the basic BoostCom achieved a gmean speedup of 6.0× over the baseline. It is impor-

tant to note that the speedups are measured for end-to-end execution times, encompassing various

operations, not just the comparison. This includes all overhead such as CPU-GPU memory copy,

kernel launches, synchronization, etc. The gmean speedup nearly doubles when slot compaction

is added, reaching 11.1×. This demonstrates the effectiveness of slot compaction that reduces the

number of ciphertexts involved in comparison. Finally, the non-blocking optimization adds some

speedup to private_q.

The effectiveness of slot compaction is due to both memory usage and computation reduction

from working with fewer ciphertexts. Table 4.3 shows the reduction in memory usage (29.3% on

average), which clearly correlates with the speedups; the greater the memory usage reduction, the

higher the speedup.

In the subsequent subsection, we analyze the effect of each optimization at the library level em-

ployed in BoostCom concerning only the comparison operation.

Comparison Operation Speedup

Figure 4.10 compares the end-to-end execution time of comparison of encrypted 64-bit integers,

over the 16-core CPU-only baseline for Bivariate (top) and Univariate (bottom) circuits, across

10 different BGV configurations from Table 4.2. For each configuration, six bars are shown with

increasing optimization levels, starting from the baseline, layout transformation, branch removal,

plan reuse, the combination of three said optimizations (all), digit level parallelization with CPU
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Figure 4.10: Speedups of the comparison operation for the Bivariate (top) and Univariate (bottom)
circuit over the 16-core CPU baseline.

multithreading (mt), and all optimizations including multithreading (all+mt). Note that slot com-

paction and non-blocking comparison optimizations are not applicable here since there is no other

computation aside from the comparison itself.

For both circuits across all configurations, each optimization adds additional speedups, indicating

their effectiveness. With all, the geometric mean (gmean) speedup is 2.8× for both circuits. On its

own, multithreading for digit-level parallelization is somewhat effective (gmean speedup of 2.9×

69



941 2017 4013 8011 15797 20197 417610

10

20

Sp
ee

du
p

BluesteinNTT BluesteinFFT
45.2 66.6 71.2 101.8

Figure 4.11: The comparison between BluesteinNTT and BluesteinFFT speedup over each base-
line with the increasing parameter m.

(Bivariate) and 2.2× (Univariate)). But when combined with all other optimizations, multithread-

ing enables much higher speedups, reaching 7.8× (Bivariate) and 5.8× (Univariate), due to the

synergistic effect where multithreading significantly improving the GPU utilization (by between

30% and 260%).

Roughly, as p increases, the effectiveness of multithreading increases whereas that of other opti-

mizations remain unchanged. This is because as the degree d increases, the fraction of execution

time spent on the BivarCircuit, EqualityCircuit, and UnivarCircuit increases (as shown in Figure

4.3).

BluesteinNTT and BluesteinFFT Sensitivity Study

Increasing multiplicative depth without sacrificing security may lead to larger m. To evaluate its

effect on BoostCom, we vary m from 941 to 41,761, resulting in polynomial size expansions rang-

ing from 2,048 to 131,072. The resulting speedups of BluesteinNTT and BlusteinFFT, calculated
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Figure 4.13: Speedups of optimizations without vs. with non-blocking as the branch evaluation
computation increases with larger exponent values.

over CPU-only execution are shown in Figure 4.11 (top). The figure shows that the larger the m,

the higher the speedups, indicating BoostCom’s scalability.
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Element-wise Sensitivity Study

Figure 4.12 compares the speedups of BoostCom’s layout transformation compared to performing

element-wise operation row-by-row, as Q increases. A larger Q increases the noise budget and al-

lows a more complex application but with slower computation. The figure shows that the speedups

of our layout optimization is quite stable across all values of Q.

Non-blocking Comparison Sensitivity Study

To evaluate the sensitivity of BoostCom’s non-blocking optimization performance, we vary the

exponent (op2) from 64 to 1024 as exponentiation is the most expensive operation. (Figure 4.13).

The figure shows the speedups are stable, with increasing non-blocking effectiveness (as a larger

portion of the branch evaluation is hidden).

Conclusion

In this study, we proposed accelerating fully homomorphic BGV scheme on CPU/GPU systems,

via novel optimizations that include comparison-friendly parameter tuning, hybrid CPU/GPU par-

allelization, slot compaction, non-blocking comparison semantic, as well as other optimizations

applied to BluesteinNTT, BluesteinFFT, and element-wise operations. The amalgamation of the

proposed optimizations demonstrated significant effectiveness, yielding a speedup of 11.1× (up

to 26.7×) across five crucial FHE applications when compared to an industry-level FHE library

running on a 16-core CPU.

72



CHAPTER 5: BOOSTING FHE COMPUTATION VIA CIPHERTEXT

COMPRESSION

In this chapter, we address the challenges of accelerating privacy-preserving computation through

ciphertext compression.

Introduction

Fully Homomorphic Encryption (FHE) represents a groundbreaking advancement in secure com-

puting by enabling confidential computations without the necessity of sharing secret keys. This

innovation relies on the manipulation of high-degree polynomials with substantial coefficients. To

support intricate applications and bootstrapping, these coefficients typically range from 1600 to

2000 bits in size. In FHE, data undergoes encoding into plaintext polynomials before encryption

into ciphertext, comprising pairs of large polynomials, upon which FHE computations directly

operate.

However, despite its promise, the current FHE scheme encounters challenges, particularly concern-

ing ciphertext expansion and low arithmetic intensity. The expansion rate, denoting the increase

in ciphertext size compared to the original message, poses a significant concern. For instance, the

BGV scheme, utilizing all available slots, exhibits a message expansion rate spanning three to five

orders of magnitude. Furthermore, due to the substantial ciphertext size, only a fraction fits within

GPU cache, leading to frequent memory accesses during computation. Compounded by FHE’s

low arithmetic intensity[11][30][1], characterized by less than one operation per byte, achieving

data reuse becomes challenging.

This confluence of factors impedes the practical applicability of FHE, necessitating solutions to en-
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hance its efficiency for real-world usage. While efforts have focused on augmenting cache size and

memory bandwidth, the exploration of ciphertext compression remains relatively unexplored, save

for considerations within network transmission contexts[42]. Compressing ciphertext presents

unique hurdles, as it comprises pairs of matrices with elements represented as random numbers,

defying traditional compression algorithms.

In this research, we propose a novel multi-level ciphertext compression approach, leveraging in-

sights from application and algorithm knowledge to address these challenges. Our strategy en-

compasses two levels: first, by reconfiguring data layout to reduce bandwidth requirements and

introducing specialized instructions for efficient data access; second, by dynamically generating

one-half of the ciphertext based on seed for read-only or freshly encrypted data, thereby reducing

storage demands. Additionally, for critical workloads like Deep Neural Networks, we expedite the

costly ReLU activation function by omitting digits irrelevant to comparisons, accepting a minor

error margin, which has negligible impact on machine learning tasks.

Through modeling and evaluation, we demonstrate the efficacy of our compression strategy, achiev-

ing notable speedups of 5.4× compared to 100x[30], on neural network workloads like Cryp-

toDL[23]. Moreover, our approach compresses read-only ciphertext to only 4.6× of its original

size, leading to substantial reductions in memory usage and marked acceleration in performance

across FHE applications.

Background

Encryption Algorithm

The BGV scheme is an encryption method constructed from Ring Learning with Error (RLWE).

Algorithm 1 outlines the steps to encrypt a plaintext. Initially, a plaintext in the form of a polyno-
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Table 5.1: Homomorphic Operation Building Block of BGV Scheme.

HE Op Description Composing Kernel
HADD Add two ciphertexts Element-wise add
PADD Add ciphertext with plaintext Element-wise add to constant

PMULT Multiply ciphertext with plaintext Hadamard-Mult
HMULT Multiply two ciphertexts NTT, Hadamard-Mult, Conv, Element-wise Add

HROTATE Circular rotate ciphertext ForbeniusMap, NTT, Hada-Mult, Ele-Add, Conv

mial with coefficients under modulus q is required. Next, a polynomial A(X) is sampled, where the

polynomial is represented as a matrix due to its size. Subsequently, polynomial B(X) is computed

based on polynomial A(X) and randomly generated polynomials. The output ciphertext consists

of a pair of polynomials A(X) and B(X). Since the polynomial A(X) is randomly generated from

a seed, for fresh ciphertext, we can regenerate the polynomial from the seed.

Algorithm 1 RLWE-Encrypt
Input: µ(X) ∈ Rp

sample A(X)← Rq and E(X)← χ ▷ A(X) is randomly sampled from a seed
B(X) = A(X).S(X)+δ .µ(X)+E(X) mod Rq

Output: C(X) = (A(X),B(X))

Homomorphic Operation

Table 5.1 enumerates the homomorphic operations natively supported by the BGV scheme. No-

tably, HMULT and HROTATE are complex operations composed of multiple expensive kernel

operations such as NTT.
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Overview of 3-Level Ciphertext Compression
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Figure 5.1: Three-level ciphertext compression based on application knowledge, algorithm knowl-
edge, and data layout modification.

Architecture Design

Overall Architecture

The architecture for ciphertext compression is outlined in Figure 5.1, illustrating three stages of

reduction in ciphertext usage.

Beginning with the leftmost rectangle, performing homomorphic comparison necessitates decom-

posing ciphertext/plaintext into multiple digits for subsequent comparison. Decomposition from

ciphertext input yields multiple digits already in ciphertext format, while decomposition from

plaintext input requires encryption of the resulting digit. The depicted output of the digit de-
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composer includes five digits, yet only three are utilized for computation. The decomposer adjusts

the number of digits based on an acceptable accuracy threshold determined beforehand, consider-

ing the degree of accuracy drop due to comparison errors. By disregarding certain digits, fewer

ciphertexts are stored and compared, resulting in reduced computational load.

Moving to the second level, based on algorithmic insights, fresh or read-only ciphertext comprises

a pair of matrices. Instead of retrieving the generated matrix from memory, it can be generated on-

the-fly using a seed employed during encryption. An instruction supported by hardware facilitates

pseudo-random number generation (PRNG), enabling storage of only half the original data size

and saving memory bandwidth. Embedding seeds into application source code allows assignment

of a single seed to each variable.

The final level of ciphertext compression involves modifying the data layout. Matrix elements,

represented as integers under a chosen modulus, are typically smaller than 64 bits for performance

reasons but large enough to meet precision requirements. Previous studies recommend a modulus

of up to 36 bits for integers [34]. Storing data as arrays of bits rather than integers eliminates

unused bits that occupy memory, thereby optimizing bandwidth usage. Since the data is stored

as arrays of bits, accessing and utilizing it requires transforming the integer representation from

arrays of bits. Given that FHE computations uniformly manipulate matrices, a new instruction

for loading/storing ciphertext at a larger granularity is introduced, similar to the usage of matrix

fragments in tensor cores.

Data Flow of a Ciphertext

As data is stored in memory as arrays of bits, conversion to a usable format is necessary. Figure

5.2 illustrates the process of fetching compressed data from memory to L1 cache for computation

by the GPU core.
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Figure 5.2: Data flow from memory to ALU (top) of a compressed ciphertext. Data fetched from
memory to L2 cache is an array of bits. The converter module (bits to int) converts the array into
integers. PRNG generates the read-only ciphertext part based on a seed.

The figure depicts the ciphertext being fetched from memory to L2 cache. For read-only cipher-

text, one matrix is stored, and the other is generated using a seed. After fetching to L2 cache, a

fragment of the ciphertext limb is retrieved and converted from arrays of bits to integers using a

new instruction detailed in the subsequent subsection. The converted integers are then placed in

L1 cache/shared memory for GPU core computation. For read-only data, part of the matrix is gen-

erated on-the-fly using PRNG, conserving memory bandwidth. PRNG implementation can be a

GPU kernel in software or a hardware-backed PRNG engine. Opting for the latter reduces latency

in matrix generation, hence the preference for a hardware-backed PRNG generator.
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Reduced Precision of Comparison Operation

In FHE, performing a comparison operation necessitates decomposing numbers into multiple dig-

its and comparing corresponding digits from two ciphertexts. For machine learning workloads,

slight errors in these comparisons can be tolerated while maintaining acceptable inference accu-

racy. However, it’s crucial to determine the extent of precision reduction that still yields acceptable

results. To achieve maximum reduction while preserving accuracy, we employ a stepwise approach

outlined in Figure 5.3.

Reduced Precision Computation

• For machine learning workloads, some degree of error in the 
computation can be tolerated and still produce acceptable inference 
accuracy.
• To perform comparison in BGV scheme, the number is decomposed 

into multiple digits and compared with the corresponding digits from 
another ciphertext.
o To reduce some space and computation overhead, we can skip the lesser 

significant digits. 
oHow much error can it tolerate? Need to run experiment

223

Reduce one digit Run inference Check accuracy Stop

Above treshold

Figure 5.3: Steps to determine the minimum number of digits for acceptable accuracy.

Starting with the highest precision, we gradually reduce the number of digits in the comparison and

assess if the resulting inference accuracy meets the minimum acceptable threshold. This iterative

process continues until the optimal threshold is identified. Notably, reducing comparison precision

decreases the number of ciphertexts involved, thereby improving execution time.

Load/Store Interface for Read-Only Ciphertext

In scenarios where the ciphertext exhibits a read-only access pattern, storing all ciphertext matrices

becomes unnecessary. Instead, one matrix can be generated from a seed, while the other is stored

in memory. We introduce new instructions for load/store operations to facilitate this generation, as

depicted in Table 5.2.

This interface, inspired by matrix fragments used in Tensor Core operations for accelerating ma-
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Table 5.2: Pseudo-Random Number Generator APIs

Variable declaration and interface for loading/storing PRNG generated matrix
wmma::fragment<unused, num_of_element, unused, unused, unused, unused> A_frag
wmma::load_limb_fragment_prng(A_frag, seed+index, modulus);
wmma::store_limb_fragment_prng(mem_destination, A_frag, modulus);

trix multiplication, enables efficient declaration and execution of load/store instructions. The

num_of_element parameter in the variable declaration specifies the number of elements in the frag-

ment limb to be generated. Operations are executed at the warp-level granularity. Given that

the current FHE implementation fetches one element of a ciphertext matrix per thread, setting

num_of_element to 32 allows fetching and generating 32 elements simultaneously, enhancing effi-

ciency.

Load/Store Interface for Data Layout Modification

The matrix stored in memory is represented as an array of bits. To recover integers from this array,

we introduce variable declarations and load/store APIs, as outlined in Table 5.3.

Table 5.3: Data Layout Converter APIs

Variable declaration and interface for loading/storing compressed ciphertext
wmma::fragment<unused, num_of_element, unused, unused, unused, unused> A_frag
wmma::load_limb_fragment(A_frag, mem_source, log2(modulus));
wmma::store_limb_fragment(mem_destination, A_frag, log2(modulus));

As depicted in the table, we begin by declaring a variable to hold the fetched matrix elements,

specifying the number of elements to be fetched. Subsequently, the load/store APIs are utilized to

retrieve the array of bits and transform the layout into 64-bit integers. This layout transformation

is performed by dedicated hardware situated between the L1 and L2 cache. Notably, the number
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Figure 5.4: Timeline diagram depicting the matrix loads and stores for the sequential operations of
PMULT, HADD, and PADD. Combining these operations will reduce the number of loads/stores
for the matrix, as highlighted by the red oval lines.

of bits to be translated into a single 64-bit integer is specified as the last argument in the new

load/store instructions.

Homomorphic Operation fusion and Lazy Operation

For PMULT, PADD, and HADD, these operations are bottlenecked by matrix loads and stores. For

instance, HADD spends 67% of its time on matrix loads, 29% on matrix stores, and 4% on com-

putation, kernel launch, and modulus data fetch. Therefore, reducing the number of loads/stores

for these operations will significantly impact the operation latency. Figure 5.4 depicts a timeline

diagram showing the sequential operations of PMULT, HADD, and PADD. These operations are

typically found in the Convolutional and Fully Connected (FC) layers. As indicated by the red oval

lines, by fusing these operations together, we can save some matrix loads and stores.
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Figure 5.5: Timeline diagram illustrating the online and offline stages of the PMULT, HADD, and
PADD operations, with the offline parts delayed to conserve matrix loads.

Table 5.4: GPU Configuration.

SM Configuration 82 SMs, 1395 MHz
Register File 256 KB/SM, 20.5 MB in total
Process Size 8 nm
L1D and Shared Mem. 128 KB
L2 cache 2 banks per memory partition, each L2 cache bank is 128 KB, 6 MB in total.
DRAM 24GB running at 1219 MHz, 24 partitions, 936.2 GB/s
PRNG engine 1 pipelined PRNG/SM with 40 cycles latency
Layout Converter 1 converter/SM with 5 cycles latency

Moreover, as depicted in Figure 5.5, we can divide the stages of the PMULT, HADD, and PADD

operations into online and offline stages. The online stage involves loading matrices from memory,

while the offline stage does not require matrix loads; instead, it is generated by a PRNG engine.

Additionally, we can postpone the offline parts of the operation until the data is used, combining

them with the online parts in HMULT operations. Delaying the offline part of the operation allows

us to conserve matrix loads, thereby reducing the execution times of the operations.
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Table 5.5: Practical FHE parameter used for homomorphic operation.

N log(Q) L L_boot dnum λ

216 1728 23 17 3 128

Methodology

We employ Accel-sim [33] to model our scheme. The GPU configuration utilized to simulate

the proposed architecture is detailed in Table 5.4, which mirrors the specifications of the Nvidia

RTX 3090 based on the Ampere Architecture. Additionally, the table includes latency figures

for the PRNG and the data converter from bits to integers. The simulation environment operates

on Ubuntu OS version 18.04, NVIDIA driver version 525.105.17, CUDA version 12.0, and GCC

version 8.4.0.

We configure the homomorphic operation for the BGV scheme using open-source GPU kernel code

from [30]. Each homomorphic encryption is simulated until all GPU kernels have completed exe-

cution. We adopt FHE parameters conducive to bootstrapping, as outlined in Table 5.5, consistent

with those used in [55]. We evaluate the performance of a Convolution Neural Network appli-

cation employing the BGV scheme from CryptoDL [23] [64], where inputs are encrypted while

weights remain unencrypted. The total execution times of the application are measured based on

the latency of each homomorphic operation executed within the application.

83



Table 5.6: Homomorphic Operation Speedup over the Baseline [30].

HE Op Layout Layout+Prng Layout+Prng+Lazy TensorFHE
HADD 2.3× 3.2× 4.6× 2.4×
PADD 1.9× 2.4× 3.2× 2.3×

PMULT 1.9× 2.4× 3.2× 1.9×
HMULT 2.3× 2.5× - 1.9×

HROTATE 2.4× 2.5× - 1.9×

Evaluation

Homomorphic Operation Performance Speedup

First, we evaluate the speedup achieved for each homomorphic operation based on our scheme

relative to the baseline of 100x [30], as outlined in Table 5.6. The layout modification, involving

storing matrix elements as arrays of bits and fetching only one matrix of the ciphertext, signifi-

cantly enhances execution times. Incorporating a PRNG provides further improvement, particu-

larly for HADD, PADD, and PMULT, as these operations are heavily bottlenecked by matrix loads

and stores. Lazy operation further enhances performance by eliminating matrix loads and stores

during the offline stage through delayed operations. The last column demonstrates the speedup

of TensorFHE[18] over the baseline. As observed, our achieved speedup with all optimizations

surpasses the speedup achieved by TensorFHE for all operations.

Reduced Precision of Homomorphic Comparison

We conduct a comprehensive analysis of the error rate associated with performing homomorphic

comparisons with reduced precision, as summarized in Table 5.7, utilizing the MNIST dataset. Ini-

tially, we perform comparisons with all digits (full precision) and progressively reduce the number
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Table 5.7: Number of Homomorphic Operations for Each Comparison Operation with Different
Precision and Error Rates.

HE Op Full Precision (100%) 75% 50% 25%
HADD 103 80 57 18
PADD 15 12 9 6

PMULT 82 64 46 10
HMULT 45 34 23 12

HROTATE 5 5 5 5
Error rate 0% 1% 3% 10%

of digits compared until only 25% of the digits remain.

As depicted in the table, each comparison between ciphertexts involves multiple homomorphic op-

erations. While comparing all digits ensures exact results, reducing the number of digits decreases

computational overhead but introduces some comparison error. Remarkably, these errors remain

tolerable within machine learning workloads, maintaining acceptable levels of inference accuracy.

Speedup on Neural Network Application

Figure 5.6 illustrates the speedup achieved by our schemes compared to TensorFHE relative to

the baseline of 100x. As depicted in the figure, Our Work, which utilizes all optimizations except

for comparison precision reduction, outperforms TensorFHE. Additionally, Our Work+ further

improves the speedup; however, it comes with a reduction in inference accuracy.

To assess the efficacy of our optimizations in each homomorphic operation, we estimate the exe-

cution time achieved by the scheme and compare it against the baseline of 100x [30], as depicted

in Figure 5.7. As illustrated in the figure, each optimization contributes to additional performance

improvement. Furthermore, increasing the degree of precision reduction leads to higher speedups.

Specifically, by utilizing only 25% of the digits for comparison, combined with other optimiza-
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Figure 5.6: Comparison of the speedup achieved between TensorFHE, Our Work, and Our Work+
relative to the baseline (100x) for CNN applications.
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Figure 5.7: Speedup in execution time compared to the baseline for CNN application with varying
degrees of precision reduction.

tions, we achieve a remarkable speedup of 5.6× over the baseline. Table 5.8 presents the accuracy

of inference with varying comparison precision. As evident from the table, we achieve substantial

execution time improvements with a mere 3% reduction in accuracy.
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Table 5.8: The Accuracy of Neural Network Inference with Varying Comparison Precision.

Full precision (100%) 75% 50% 25%
97.94% 97.67% 97.35% 94.81%

Conclusion

In this study, we addressed the substantial computational demands of Fully Homomorphic En-

cryption (FHE) by implementing a three-level FHE computation memory usage reduction strategy

derived from algorithmic insights, application-specific considerations, and data access patterns.

Through evaluation using CNN workloads, we achieved a notable speedup of 5.6× with only

approximately 3% accuracy reduction. This highlights the effectiveness of reducing memory ac-

cesses in highly memory-constrained workloads, leading to a significant acceleration of execution

times.
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CHAPTER 6: THESIS CONCLUSION

The GPU offers significant improvements in accelerating computation on non-confidential data.

However, the computation of confidential data needs to be handled with special technology to

ensure its confidentiality. This can be achieved either through a Trusted Execution Environment

(TEE) or Fully Homomorphic Encryption (FHE) technology. Therefore, accelerating computations

with GPUs requires a different approach compared to plaintext data processing.

In this thesis, we address the challenge of GPU acceleration for confidential computations using

TEE or FHE. For TEE-based acceleration, we focus on the co-design problem discussed in Chap-

ter 3. It’s important to note that when CPU and GPU TEEs use different encryption modes, data

re-encryption is necessary to match the encryption mode used at the destination. If the CPU and

GPU TEEs are not co-designed and come from different manufacturers with varying hardware

cycles, achieving this co-design can be complex. To overcome this, we propose the utilization of

a software-based GPU TEE instead of a hardware-based one due to its flexibility. This approach

allows for encryption mode adjustments in accordance with the CPU TEE even after manufac-

turing, avoiding the costly memory re-encryption process. However, managing the 128-bit data

blocks required by AES encryption through the software layer presents challenges. We present

three optimization strategies that effectively mitigate these challenges. With all three optimizations

combined, we significantly reduce data collection and encryption overhead, making it negligible

for regular benchmarks and acceptable (only 56% overhead) for irregular benchmarks.

For FHE-based confidential computation acceleration, especially focusing on comparison opera-

tions like "less than" and "equality," we target the BGV scheme, one of the most promising FHE

schemes. The BGV scheme operates on integer data and operations, allowing a single ciphertext

to store numerous input elements, enabling SIMD-style processing. While previous research has

88



explored GPU acceleration for FHE, the acceleration of comparison operations using an acceler-

ator within the BGV scheme has been overlooked. In Chapter 4, we concentrate on accelerating

BGV comparison operations through GPU and CPU parallelism. We identify and address several

challenges related to offloading the most time-consuming parts of the FHE library to the GPU,

such as dynamic memory allocation, buffer initialization, race conditions, and parallelizing se-

quential codes. Through our proposed solutions and optimizations, along with the inclusion of

CPU parallelism, our approach achieves a noteworthy 11.1× speedup over the CPU-based FHE

library.

Moreover, we demonstrate an alternative approach to mitigate the substantial computational over-

head inherent in FHE applications: reducing the working memory footprint through ciphertext

size compression, achieved by leveraging a combination of algorithmic and application-specific

insights. This compression leads to smaller ciphertext size. Our investigation reveals that reducing

precision for homomorphic comparisons combined with ciphertext compression results in a 5.6×

performance improvement over the baseline on Convolution Neural Network inference workload.

Successfully addressing these challenges also opens up potential avenues for future research. The

depth and breadth of future work can be expanded. In-depth investigations can focus on refining the

solutions presented in this thesis to achieve lower overhead for TEE technology or greater speedup

for the FHE approach. Additionally, widening the scope of this thesis could involve delving further

into topics like enhancing integrity protection for GPU TEEs or exploring acceleration techniques

for other components within the BGV bootstrapping mechanism.
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