
University of Central Florida University of Central Florida 

STARS STARS 

Graduate Thesis and Dissertation 2023-2024 

2024 

Models of Information Diffusion and The Role of Influence Models of Information Diffusion and The Role of Influence 

Chathura JJ Don Dimungu Arachchige 
University of Central Florida 

 Part of the Industrial Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd2023 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Graduate Thesis and Dissertation 2023-2024 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Don Dimungu Arachchige, Chathura JJ, "Models of Information Diffusion and The Role of Influence" 
(2024). Graduate Thesis and Dissertation 2023-2024. 119. 
https://stars.library.ucf.edu/etd2023/119 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2023
https://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd2023%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2023
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2023/119?utm_source=stars.library.ucf.edu%2Fetd2023%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages


MODELS OF INFORMATION DIFFUSION AND THE ROLE OF INFLUENCE

by

CHATHURA JEEWAKA JAYALATH DON DIMUNGU ARACHCHIGE
B.Sc. University of Colombo, 2014

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Industrial Engineering and Management Systems
in the College of Engineering and Computer Science

at the University of Central Florida

Spring Term
2024

Major Professor: Ivan Garibay



© 2024 Chathura Jayalath

ii



ABSTRACT

Information diffusion is significant in fields such as propagation prediction and influence maxi-

mization, with applications in viral marketing and rumor control. Despite conceptual differences,

existing diffusion models may not represent identical underlying generative structures. A clas-

sification of diffusion of information models is developed based on infection requirements and

stochasticity. The study involves analyzing seven existing DOI models on directed scale-free net-

works. The distinctive properties of each model are identified through simulations and analysis

of experimental results. Our analysis reveals that similarity in conceptual design does not im-

ply similarity in behavior concerning speed, the final state of nodes and edges, and sensitivity to

parameters. Therefore, we highlight the importance of considering the unique behavioral char-

acteristics of each model when selecting a suitable information diffusion model for a particular

application. We further investigate how the network structure and clustering affect the diffusion

of information. Our findings reveal that clustering does not consistently accelerate the spread of

information. Instead, the extent to which clustering facilitates the dissemination of information

is influenced by the interplay between the specific network structure types and the information

diffusion model employed. Another significant aspect of information diffusion is the effect of

influential nodes. Identifying highly influential nodes is of great interest for strategic targeting

in various applications such as viral marketing and information campaigns. Our follow-up study

aims to identify influential nodes using a transfer entropy-based method. In this work, we use our

method to identify influential users in Twitter data and compare the results against other existing

methods. Finally, we developed a methodology based on Transfer Entropy to evaluate influence

in the context of information diffusion. This methodology demonstrated its superiority in pre-

dicting user adoption against retweet-based metrics, marking it as a direct and reliable metric for

understanding influential users and information diffusion trends.
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CHAPTER 1: INTRODUCTION

Understanding the diffusion of information in social networks is of great interest due to its ap-

plication in various problems such as marketing, promoting societal benefits, and preventing the

spread of misinformation. The speed of this diffusion has been accelerated by the growth of social

media. While the dynamics of information diffusion is affected by factors such as peer influence

and authority pressure [2], contemporary information diffusion models identify features such as

network structure (e.g. scale-free, small-world), node activation mechanisms (e.g. probability-

based, threshold-based), and communication method (e.g. peer-to-peer, broadcast) as factors that

affect the dynamics of information diffusion within the simulation domain. Together these mod-

eling factors are representing the natural causes such as peer influence. Further, these properties

may exhibit interdependence. For example, the internal likelihood of adoption may increase when

a significant portion of the neighborhood comprises adopting neighbors. Conversely, the preva-

lence of adopting neighbors could be influenced by the internal likelihood of adoption, due to

homophily. Whether and how a user decides to actively engage with information on social media,

which we call the activation mechanism, may differ depending on a multitude of factors, including

the neighborhood network structure, activation state of neighbors, internal likelihood of adoption,

and fraction of adopting neighbors, to name a few.

Classical models of information diffusion [5, 37, 21, 16, 22, 11, 9] utilize a wide variety of node

activation mechanisms, yet have not been compared under a common framework. The lack of

such an analysis has led to the danger of misinterpreting a well fit model as confirmation that

the underlying conceptual design inspiring this model is the real-world explanation of the human

behavior that generated the observed information cascade. Hence, we explore the importance

of understanding whether or not models with differing conceptual explanations have the same

coverage of the simulation landscape, and if so, the conditions under which such similarity, and
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ambiguity in explanation, occurs. Information is propagated through social networks in a way such

that the person who adopts some received information attempts to share that information with their

peers. Classical models of information diffusion explain this adoption behavior through a variety

of conceptual definitions including adoption as infection, threshold-based activation, social norm-

driven activation, etc. These conceptual definitions result in varying model mechanisms such as,

Bayesian likelihood of adoption, adoption based on the number of known adopting neighbors, and

adoption based on fraction of adopting neighbors.

The first study contributes a conceptual framework that classifies models of information diffu-

sion into four classes based on neighbor knowledge and stochasticity. We perform comparisons

between existing models that fall under these four conceptual classes in order to establish the simu-

lation conditions under which these classes have similar final infected ratios, given their inputs. In

particular, we evaluate the Linear Absolute Threshold Model (LATM) [22], the Linear Fractional

Threshold Model (LFTM) [22, 51], the Independent Cascade Model (ICM) [21], the Bass-Rand-

Rust Model (BRRM) [37, 38], the Stochastic Linear Fractional Threshold Model (SLFTM) [6], the

Stochastic Linear Absolute Threshold Model (SLATM) (adopted from [6]), and the Dodds-Watts

model (DWM) [17] on directed scale-free networks under similar model parameter values. Our

results demonstrate that, despite belonging to the same conceptual class, the outcomes of mod-

els may be completely different from each other. Furthermore, our results confirm that despite

belonging to conceptually different classes, models may produce equal outcomes. In essence,

we conclude that similarities (or differences) in conceptual design does not guarantee similar (or

different) simulation outcomes.

As we shown that the choice of DOI model affects the final state of the system, it raises caution

when extrapolating conclusions drawn with one DOI model into another. While the choice of DOI

model is found to be a critical element that affects the diffusion outcome, it is also important to

investigate the significance of network structure and other network properties in determining the
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outcome. In addition, the effect of clustering on DOI have been discussed in previous work[52, 10]

and Watts and Strogatz[52] showed the efficiency of simple contagion models on highly clus-

tered small-world networks. Further, Centola, Eguíluz, and Macy[10] have investigated the critical

thresholds of threshold based complex contagion models on different types of networks that have

different clustering. However, there is a lack of understanding to how clustering in a network

affects different DOI models under different network types. In particular, a question arises as to

whether clustering holds greater significance than network structure when assessing the outcome of

a DOI model. In order to study this phenomenon, we investigate the effect of clustering on the dif-

fusion across multiple network types and DOI models. The following classical network types are

investigated in this study: Random networks (R) proposed by Erdos and Rényi [19], Small-world

networks (SW) proposed by Watts and Strogatz [52], and Scale-free networks (SF) proposed by

Barabási and Albert [4]. With the knowledge gained from the first study, we chose only the three

main classical DOI models to be investigated under this study: Independent Cascade Model (ICM)

[21], Linear Absolute Threshold Model (LATM) [11, 22], and Linear Fractional Threshold Model

(LFTM) [22, 51]. Through this study we show that the effect of clustering coefficient on the in-

formation spread is dependent on network type, network parameter, DOI model, and DOI model

parameter.

Thirdly, we look at a novel methodology for identifying influential nodes within the information

diffusion space. While we have demonstrated an understanding of the differences between in-

formation diffusion models and their simulation outcomes with respect to simulation parameters,

another key aspect that affects information diffusion is the influential actors (nodes). Influential

nodes in online social networks are target nodes of interest that are considered important. The in-

terest might be based on some factor such as generation of large number of retweets and popularity

for the content, with the intention of making it viral. There have been many studies that employ

basic measures such as number of retweets, number of followers, and centrality of the user in the
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network structure for studying influential nodes [12, 3, 27, 29]. We propose a Transfer Entropy-

based method to measure a node’s influence on information diffusion over a given scenario. We

then demonstrate that this measure can estimate user adoption. By comparing this measure against

the retweet-based measure using the same methodology, we show that the Transfer Entropy-based

measure is a unique and valuable indicator of influence.

Statement of Contributions

The first two parts of is study contributes to the knowledge of dynamics and characteristics of in-

formation diffusion. As described above, information diffusion models identify features such as

network structure and node activation mechanism as factors that affect the diffusion of informa-

tion. The first part of this study aims at comparing existing information diffusion models under a

common framework. The second part of the study builds upon the initial findings by exploring the

impact of clustering on information diffusion across various network structures and in the context

of different diffusion models.

• Propose a generalized conceptual framework for information diffusion models by introduc-

ing a generalized form for information diffusion models.

• Classify traditional models based on the introduced conceptual framework into four concep-

tually distinct classes.

• Develop a tool for comparison of information diffusion models under the proposed concep-

tual framework.

• Provide evidence that model specific parameters of information diffusion models that infects

all reachable nodes are only useful in changing the speed of infection.
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• Demonstrate that a stochastic version of a model created by appending a probability check

to the final step of the existing rule will yield a model that has its final state bounded by the

final state of the original model.

• Illustrate that similarity in conceptual design does not imply similarity in behavior concern-

ing speed, final state of nodes and edges, and sensitivity to parameters. Thus, highlight the

importance of considering the unique behavioral characteristics of each model when select-

ing a suitable information diffusion model for a particular application.

• Show that the existence of clustering only sometimes accelerates the spread of information.

The interaction of the type of network structure and diffusion model determines how much

clustering accelerates the spread of information.

In the third part of the dissertation we explore how information diffusion is affected by peer in-

fluence and authority pressure [2]. Therefore, highly influential nodes are of great interest [1].

There are many methods of identifying influential nodes in literature. For example, on Twitter: the

number of retweets, number of followers, and the ratio between posts and received retweets are

some of these measures [12, 24]. The second part of this study aims to propose a novel measure for

identifying influential nodes based on analysis of user activity over time. Expected contributions

of the second study are:

• Propose a Transfer Entropy-based method for identifying influential nodes.

• Develop a tool for identifying influential nodes based on the proposed strategy and compare

against other existing strategies.

• Increase the understanding of measures and strategies for identifying influential nodes.

• Show that the Transfer Entropy-based method for identifying influential nodes is capable of

estimating user adoption.
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CHAPTER 2: LITERATURE REVIEW

The dynamics of information diffusion are shaped by various factors, including the network’s struc-

ture, mechanisms of node activation, the nature of the information, methods of communication, and

the resolution and scale at which these processes are observed. Moreover, these factors can affect

one another; for instance, the way nodes are activated can vary based on their surrounding network

structure, and the network structure, independent of the communication method employed, may

constrain the extent of communication reach. Therefore, we first look at the models of network

structures and then discuss existing literature on information diffusion models.

Network Models

Contagions have been studied across various types of networks, with different network types iden-

tified through the analysis of connectivity properties. Three main models of networks are promi-

nently featured in the literature: random networks [19], small-world networks [52], and scale-free

networks [4].

Random Networks: In a random network, links between nodes are created purely stochastic, mean-

ing that any two nodes have a constant probability of being connected. This model, extensively

studied by Erdős and Rényi in their pioneering work[19], exhibits a Poisson degree distribution.

The degree of most of the nodes in random networks is comparable. Therefore, the significant

degree differences observed in real networks is absent in random networks [34]. In real networks,

a significant number of highly connected hubs exist, which are also absent in random networks.

While random networks can serve as a baseline for understanding more complex structures, they

are limited in their ability to capture the clustering and community patterns observed in real-world

7



networks.

Small-world Networks: Small-world networks was a network model introduced by Watts and Stro-

gatz [52] influenced by the the Small-world phenomenon [49]. These networks are characterized

by their high clustering coefficient and short average path lengths. These networks are in a interpo-

lation between regular lattices and random networks, featuring a tightly knit structure where most

nodes can be reached from any other through a small number of steps.

Scale-free Networks: Scale-free networks are distinguished by their power-law degree distribu-

tion, where a small number of nodes (hubs) have a very high degree, while the majority of nodes

have very low degree. Barabási and Albert provided a foundational model for understanding such

networks’ growth dynamics and robustness [4, 34]. Scale-free networks are common in both the

natural and man-made world, and they are found in the structure of the internet, citation networks,

and protein interaction networks, among others. Their topology makes them highly robust to ran-

dom failures but vulnerable to targeted attacks on their hubs [34].

Compared to other network models, scale-free networks more closely resemble real-world net-

works, making them suitable for simulations aimed at understanding information diffusion in so-

cial networks. The presence of hub nodes in scale-free networks allow the study of actors with

large following (potentially influential actors) and their impact on the spread of information within

the network. Further, scale-free networks follow a power-law distribution in node connectivity

which is also a pattern observed in online social networks [4].

Diffusion of Information Models

Various information diffusion models exist in the literature. Non-linear dynamical models provide

the facility to derive analytical solutions for the overall system in different conditions. This makes
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it easier to identify properties such as tipping points [47]. Detailed micro-level modeling is imprac-

tical with this type of models. In contrast, agent-based models provide flexibility in studying emer-

gent phenomena that arise from individual interactions of agents in the system, which is difficult

to capture in differential equation systems. This is especially true in cases where agent behaviors

and attributes are heterogeneous, or the interaction topology (network structure) is heterogeneous.

Therefore, agent-based models are more useful in modeling systems such as information diffusion

where individual behaviours can significantly influence the outcome of the system (for example: a

highly connected agent becoming infected with information might flood the whole network with

that infection). Moreover, agents that exhibit complex behaviour could easily be modeled within

ABMs[18]. In the following we briefly go through various existing models of information diffu-

sion and how they have inspired us in identifying information diffusion mechanisms that are based

on both probability-based and threshold-based techniques. The description of the implementation

of the models are given in chapter 3.

One of the earliest diffusion models, the Bass model, describes the diffusion of adoption of an

innovation and uses a hazard rate model to describe the population-level adoption of innovations

[5]. Though the model is a population-level model, it describes a conceptual, individual-level

mechanism, where the propagation of adoption was modeled as a consequence of independent

decisions and peer-to-peer influence. Early adopting consumers in the Bass model often adopt

the innovation independent of the choice of other individuals. Sometimes this is described as

having occurred due to advertising or mass media. Later on the adoption decisions of individuals

are affected by both their own independent decisions and social pressure. The probabilities of

adoption based on independent decisions and social pressures are called the innovation probability

and imitation probability, respectively. The Bass model was not really intended as a predictive

model, but as a descriptive model that could be fit to empirical data. This model was then turned

into an agent-based model by Rand and Rust [38], which we have adopted in this article as BRRM
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(Bass-Rand-Rust Model). The BRRM was later used in modeling information diffusion in urgent

situations and the authors suggest a range of parameter values that match against information

diffusion on social media [37].

In a different diffusion model, Granovetter [22] talks about explaining band-wagon behaviours

using a threshold where each individual has a threshold of their neighbors that need to become ac-

tivated before the focal user becomes activated. Some information diffusion literature have adopted

this threshold as a fraction, and defined their rule of infection such that if the fraction of infected

neighbors (number of infected neighbors divided by the size of the neighborhood) exceeds this

threshold then the focal agent becomes infected [51]. This is the basis of what we call the Linear

Fractional Threshold Model (LFTM). This model has been extended to also examine an absolute

number of neighbors, as opposed to a fraction [11], which is the basis for the Linear Absolute

Threshold Model (LATM). An interesting modification to these linear threshold models was sug-

gested by Bohlmann et al. [6]. They proposed performing a coin toss (testing a probability of

0.5) at each time-step before deciding to infect a node that have satisfied its threshold condition.

We implmeneted versions of the Bohlmann et al. model for both the LFTM and the LATM (the

original paper only applied this technique on the LFTM).

A cellular-automata based model was proposed by Goldenberg et al. [21] for simulating diffusion

of information through advertising and word-of-mouth[21]. This model considers two types of

neighbors: strong ties and weak ties. The probability of activation through strong ties is larger

than the probability of activation through weak ties and the probability of activation through weak

ties is larger than the probability of adopting because of advertising. Goldenberg et al. [21] show

that the effect of advertising is superior at the beginning of the diffusion process and the effects of

strong ties and weak ties are more significant in the middle and the late stages. It is this model that

inspired the model that we refer to as the Independent Cascade Model (ICM).
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The model proposed by Dodds and Watts [16] for simulating contagions was able to generalize

SI, SIS, SIR, and SEIR compartmental models. Their paper was focused on generalizing these

different compartmental models in epidemiology into one probability-based model for analysing

their dynamics [16, 17]. However, in this work we focus on generalizing of both threshold-based

and probability-based models under the SI compartmental model. We adopted this model into our

analysis by including network structure based contact conditions and filtering out only the SI part

of it.

Approaches for measuring influence

Influential nodes in online social networks are target nodes of interest that are considered impor-

tant. There are many ways to define influence in information diffusion domain. In most of online

social networks such as Twitter, users create and post content, vote content, and follow other users

[53]. Based on these actions we could define and quantify the influence of a user by counting

creations/posts generated, or number of posts/votes/followers received. These counts are the most

basic ways of measuring influence. In Twitter context, these would be number of tweets created

by the user, number of retweets received, number of followers, and number of times a user is

mentioned. Earilest work on literature is comparing these measurements to see how they differ

from each other [12, 3]. In their work, Cha et al. [12] and Badashian et al.[3], compared these

measurements against each other to show that having many followers doesn’t necessarily generate

more posts (e.g. retweets). A later work by Qiu et al. [35] used machine learning techniques for

analysing follower networks to identify influential users. However, their methodology didn’t yield

strong results potentially due to the usage of follower network, therefore, confirming the findings

of Cha et al. [12] as well.

Another methodology of measuring importance is based on various network centrality measure-
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ments such as closeness centrality, betweenness centrality, eigenvector centrality, page rank, and

Katz centrality [27, 29]. Some research have attempted using information theory based method

as well for measuring influence [48, 50, 42]. Ver Steeg and Galstyan [50] used Transfer Entropy

(TE) and showed that it could capture relationships that are not visible when utilizing follower or

mention networks. Transfer Entropy, introduced by Schreiber [41], is a information theoretical

measurement based on Shannon entropy [43]. Given two random processes, TE quantifies how

much uncertainty in predicting the next state of one process is reduced by incorporating the histo-

ries of both processes. Senevirathna et al. [42] used TE based influence measurement to identify

interactions between different types of influence in information diffusion, as a hierarchical cascade

of influence. They showed that there is a a significant difference between the users that are in the

top and bottom of the hierarchy.
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CHAPTER 3: A GENERALIZATION OF THRESHOLD-BASED AND

PROBABILITY-BASED MODELS OF INFORMATION DIFFUSION

In this chapter, we describe the first study. In the following methodology section we go introduce

definitions and the models, and then we go through the process of creating a generalized form of

diffusion of information (DOI) models based on our conceptual framework. Lastly, we introduce

the details of the conducted experiments and their simulations.

Methodology

We consider information diffusion as a process involving two agent states, susceptible and infected,

during short-term information cascades where agents do not experience any loss in acquired in-

formation.1 For consistency, we refer to a person who has adopted information themselves due to

exposure to adopting neighbors, as an infected agent. Infected agents exhibit activity that promotes

the further propagation of the adopted information by their neighbors in the network. Furthermore,

we define any person, who is not infected, as a susceptible agent. A susceptible agent who was

exposed to a piece of information and yet did not become infected would still be able to become

infected in the future.2

1Similar to class of Susceptible-Infected (SI) model of contagion in epidemiology [15]
2For the purpose of this study, we do not consider other states such as recovered state, which represents real-world

individuals forgetting information over time, as we are more interested in short-term information propagation, where
the likelihood of information loss is negligible.
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Definition of models

Traditionally in diffusion models, there is either a seeded set of nodes, or a probability that nodes

can adopt without social influence. Without these mechanisms no adoption would occur since the

basis of these models is a social mechanism of adoption that can not occur if there are no adoptions.

In this study, to simplify the comparison between the models, we assume that there is a seeded set

of nodes which are chosen randomly at the beginning of each simulation. This seeded set of nodes

is taken as a parameter for the model as the initial fraction of infection (φ0).

Linear Absolute Threshold Model (LATM): In LATM, a node becomes infected if its threshold is

satisfied by the number of incoming edges from its infected neighbors. The main model parameter

of LATM is the threshold value (ψ) of nodes.

Stochastic Linear Absolute Threshold Model (SLATM): In SLATM, a node becomes infected if two

conditions are satisfied. Firstly, its threshold must be satisfied by the number of incoming edges

from its infected neighbors. Secondly, if the threshold condition is satisfied, then there is a prob-

ability (pω ) that the node becomes infected. This model is adopted from the work by Bohlmann

et al. [6]. The main parameters of SLATM are the threshold value (ψ) and the probability value

(pω ).

Linear Fractional Threshold Model (LFTM): In LFTM, a node becomes infected if its threshold is

satisfied by the fraction of infected neighbors. The main model parameter of LFTM is the fractional

threshold value, θ , (0 ≤ θ ≤ 1) of nodes.

Stochastic Linear Fractional Threshold Model (SLFTM): Similar to SLATM, in SLFTM, a node

becomes infected if two conditions are satisfied. Firstly, its threshold must be satisfied by the frac-

tion infected neighbors. Secondly, if the threshold condition is satisfied, then there is a probability

(pω ) that the node becomes infected. This model is adopted from the work by Bohlmann et al. [6].
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The main parameters of SLFTM are the threshold value (θ ) and the probability value (pω ).

Independent Cascade Model (ICM): In ICM, nodes are infected through imitation and sometimes

through innovation. The model considers imitation as the process of a node becoming infected due

to the influence of its infected neighbors. An infected node can only infect its neighbors in the

time step immediately after it becomes infected. After that it is assumed that the infection failed,

but the neighbor node can become infected by one of its other neighbors that becomes infected at

some point in the future. ICM utilizes a probability parameter, q, which is the probability that a

focal susceptible node becomes infected by a neighboring infected source node. In certain versions

of the model, innovation is modeled as a probability of a node becoming infected due to events

that are exogenous to the studied system. This innovation probability is a property of the system.

In this study, we assume that there is no external effect on the diffusion process to simplify the

comparisons against other models such as LATM and LFTM [5, 37, 21].

Bass-Rand-Rust Model (BRRM): This model was proposed as an agent-based version of the orig-

inal Bass model which was used to describe the adoption of consumer durables [5, 38]. Similar

to ICM, in BRRM, nodes are infected either through imitation or innovation. In the imitation pro-

cess, nodes are infected through a probability which is dependent on a base imitation probability,

qb, and the fraction of infected neighbors, f . The probability of adopting is then qb ∗ f . However,

unlike ICM, an infected node in BRRM gets a chances to infect its neighbors at every time-step.

In the innovation process, nodes are infected through a probability which defines the innovation

probability, which represents the exogenous effect on the diffusion process, similarly to ICM.

Dodds-Watts Model (DWM): This model was proposed to be fairly general and accommodates any

population of individuals in contact, including a network structure [16, 17]. In DWM, each node

keeps track of dosage of exposure that it has received. At each time-step, there is a probability pc

that a susceptible node receives a dose of exposure from an infected neighbor (if there is at least
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one infected neighbor) due to contact. If the number of received doses satisfy a given threshold

value k, then the node becomes infected.

Since our goal is to analyze conceptually distinct models under a common framework, we first

formulated the general mechanism of information diffusion models. Using this formulation, we

created a conceptual framework based on two properties of information diffusion models: neigh-

bor knowledge, i.e., how much local neighborhood information is considered, and stochasticity,

i.e., whether the model is random at all. These two properties are used to create a two-by-two

table, which we used to identify four mechanistically distinct classes of models, which match up

with the classical DOI models. In order to compare differences between emergent properties of

these conceptually distinct models, we first compared the state space after the model has run to

completion (final state) and how soon each model reaches middle and final states, and then eval-

uated the importance of model parameters relative to network structure and initial condition by

comparing their effect on the variance of final state and the variance of propagation speed.

Conceptual Framework for Models of Information Diffusion

When designing information diffusion models, different narratives of how diffusion occurs leads to

different conceptual models with different mechanisms. Defining the conceptual space of diffusion

models will provide us with a way to explore the space of alternate hypothetical causes.

Classical agent-based models of information diffusion work by making node-level comparisons of

the intensity of exposure to infected neighbors F to a threshold function G, which we would refer

to as the rule of infection Λ. F and G are functions such that codomain is R and definition of Λ is

given by the Eq. 3.1. The models differ, in how F and G are defined. Some examples of classical

models of information diffusion and their corresponding F and G definitions are given in Table 3.1.
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Λ ≡ F ≥ G (3.1)

Table 3.1: Examples of models that use various F and G functions.

F G Example models
F = |Ix| G = c LATM, 1st condition of SLATM
F = |Ix|

|Nx| G = c LFTM, 1st condition of SLFTM
F = c G ∼U(0,1) 2nd conditions of SLATM and SLFTM

F = 1− (1−q)|Ix| G ∼U(0,1) ICM
F = qb

|Ix|
|Nx| G ∼U(0,1) BRRM

F = |Mx| G = c DWM

Ix is the subset of neighbors that are infected.
Nx is the set of neighbors.
Mx is the set of doses stored in memory of the node.
c is a fixed constant for the simulation.
U(0,1) is drawn from a uniform random number generator.

The functions F and G determines the behaviour of the information diffusion model. The function

G controls whether the mechanism is stochastic or not and F controls how much neighborhood

information is considered.

In formal terms, a key property of F is such that F may be subject to its neighbor knowledge of

the neighborhood either completely or partially, i.e., either consider the entire neighborhood Nx or

a subset of neighbors Ax where Ax ⊆ Nx. Moreover, a key property of G is that G may be either

deterministic or stochastic, i.e., either a constant such as a model parameter (e.g. ψ of LATM) or

a pseudo random number drawn at each instance of execution. Notice that some models such as

SLATM and SLFTM use multiple conditions that are applied in a step-wise fashion as shown in

the table. Moreover, some models such as DWM, performs calculations that requires maintenance

of a memory for each node. The calculation of such memory variables may not be captured inside

the Λ function although it affects the Λ (e.g., Memory of received doses in DWM). We plot these

two dimensions F and G in Table 3.2 in order to find different classes of models that we could
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generate. Further, we identified an example classical diffusion model for each class and they are

given in the table.

With this distinct breakdown of the rule of infection we have identified two distinct and mutu-

ally exclusive dimensions which generates the following conceptual framework of DOI models

(Table 3.2).

• Neighbor knowledge of infection requirement

Whether the whole local neighborhood of the susceptible node is considered when deciding

whether to become infected or not. We classify DOI models in to two classes based on

neighbor knowledge of the rule of infection.

1. Complete: The infection mechanism of these models depend on the state of the whole

local neighborhood. For example, a model that changes its probability of infection of a

susceptible node based on the fraction of infected nodes in its local neighborhood has

a complete neighbor knowledge.

2. Partial: The infection mechanism of these models depend only on a selected subset of

the local neighborhood

• Stochasticity of the model

Whether the rule of infection is deterministic or stochastic when there is at least one infected

neighbor.

1. Deterministic

2. Stochastic

The Λ of LATM, LFTM, ICM, and BRRM can be written algebraically without conditionals.

Therefore, determining the stochasticity and neighbor knowledge of these models is straight for-
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ward. LATM and LFTM are deterministic while BRRM and ICM are stochastic. LATM and ICM

requires only partial neighbor knowledge while BRRM and LFTM requires complete knowledge

of neighborhood infection. The Λ of DWM, SLATM, and SLFTM cannot be written algebraically

without conditionals. Also models such as DWM requires maintaining memory.3 Therefore, de-

termining the stochasticity and neighbor knowledge of these models is complicated. The neighbor

knowledge requirement of DWM is partial since it only requires knowledge of at least one infected

neighbor. DWM is deterministic in the sense of how many doses are required to become infected.

However, DWM is stochastic due to the way it chooses to apply a dose. Therefore, DWM belongs

in the same class as ICM in our conceptual framework. Both SLATM and SLFTM are stochastic

and their neighbor knowledge requirements retain the same as their deterministic versions. There-

fore, SLATM belongs to the same class as ICM, and SLFTM belongs to the same class as BRRM.

Table 3.2: Conceptual framework of models with examples

Stochasticity
Deterministic

G = k
Stochastic

G ∼U(0,1)
Partial

F = f (Ax ⊆ Nx)
Class I
LATM

ClassII
ICM, DWM, SLATMNeighbor Knowledge

of Infection Requirement Complete
F = f (Nx)

Class III
LFTM

Class IV
BRRM, SLFTM

This conceptual framework justifies the model selection in this work and ensures that the mecha-

nisms driving the selected models have different underlying conceptual groundings.

Experiments

In order to test the differences between models we focused on analyzing the final states and the

speed of simulations as response variables. For analyzing the final states of simulations we mea-

3It could also be argued that DWM is a multi-compartmental model that distinguishes from SI due to its property
of storing a state variable, namely, the dose of exposure
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sured: 1) the final spread of infection, as the fraction of nodes infected, and 2) the final fraction of

I → S and S → S edges, which describes how the transmission occurred. The network is directed.4

Note that the network may contain four different types of edges according to the state of nodes:

an infected node to a susceptible node (I → S), a susceptible node to another susceptible node

(S → S), susceptible node to an infected node (S → I), and an infected node to another infected

node (I → I). The I → S edges are the most important for propagation of information. The next

most important edges for the propagation are the S → S edges since they could become I → S

edges. The other two types of edges (I → I and S → I) do not contribute to further information

propagation in the discussed models, since they do not affect the overall diffusion. Therefore only

the I → S and S → S edges are considered in this study.

Since some models (e.g. BRRM and DWM) are designed to run until all reachable nodes are

infected, comparison of final state alone may not provide a meaningful comparison of their differ-

ences. Therefore, the following measures were implemented to allow us to compare and contrast

models. The number of time-steps taken by a model to reach a given amount of network infection

has been used in previous research to investigate the speed of information propagation [21, 33, 37].

Another way of looking at speed of propagation is by using Net Present Value (NPV). Stonedahl et

al. [46] used NPV as a measure for comparing effectiveness of different seeding strategies for viral

marketing, where both speed an quantity of spread was important. Thus, for analyzing the speed

of simulations5 we measured: 1) the number of time-steps taken to reach different stages (such as

50% of infection, and final state) of simulation, and 2) the NPV of infection.

The following experiments were designed mainly to test primary hypotheses that the final state

spaces described by each model are different and that the speed of convergence of models are

4Therefore an edge going from an infected node to a susceptible node (I → S) is distinctly different from an edge
going from a susceptible node to an infected node (S → I).

5We are grateful to a reviewer who recommended to incorporate the speed of infection as a measure in this study.
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different. Our first experiment is a factorial exploration of the parameter space of the models

which we denote as EXP1. The parameter value ranges of EXP1 are such that they were varied

in the range [0.05, 0.95] with step size of 0.05 except for pω in the range [0.05, 0.95] with step

size of 0.45, k in range [2,10] with step size of 1, ψ in range [1, 20] with step size of 1, and φ0 in

range [0.05, 0.35] with step size of 0.05. Each of these configurations was run with 30 replicas.

The following measured outcomes were recorded:

1. Final fraction of infection (φF ) : The number of infected nodes divided by the total number

of nodes at the end of each simulation was measured as φF .

2. Final fraction of infected to susceptible edges (I → S) : The number of I → S edges divided

by the total number of edges

3. Final fraction of susceptible to susceptible edges, (S → S) : The number of S → S edges

divided by the total number of edges

4. Number of infections occurred at each time-step.

We also performed a sensitivity analysis to examine how the model parameters affect the final

fraction of infection. Our aim in this sensitivity analysis was to investigate whether the variance

of model specific parameters of the chosen models possess adequate enough ability to affect sim-

ulation outcome with respect to the other common variables(i.e. network parameter and initial

infection). Through this analysis we aimed to compare the effects of model parameters of differ-

ent models against each other. Techniques such as traditional design of experiments approaches,

are not adequate for agent-based models due to various reasons such as non-linearity [40]. The

overview of analysis methods for agent-based models published by Lee et al. [28] shows that

variance based sensitivity analysis as the best approach for investigating the sensitivity of model

outcomes to its parameters. Therefore, we used the Sobol sensitivity analysis–a variance based
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sensitivity analysis method [45, 39, 30] for identifying the sensitivity of final state to the model

parameters. Sobol sensitivity analysis is a method for measuring influence of input variables on

the output of a model. It quantifies the contributions of each input variable, both individually and

in combination with other variables (i.e. interactions), to the overall variability of the model out-

put. It is based on the concept of variance decomposition, in which the total variance of the model

output is partitioned into contributions from individual variables and their interactions. The results

of a Sobol sensitivity analysis outputs sensitivity indices such as the first-order sensitivity index,

which represents the influence of a single variable (i.e. influence of an individual term), and the

total sensitivity index, which captures the influence of a variable and all its interactions with other

variables. By these sensitivity indices, we can identify the most influential variables and their rela-

tive importance. For each parameter m of a model, this method calculates an index that represents

the total sensitivity of the parameter (ST,m) which is a representation of the total contribution of

the parameter to the variance of the response variable. Further, this method provides the fraction

of contribution by the 1st order term of model parameter (S1,m), and the fraction of contribution by

2nd order interaction terms of individual model parameters (S2,m) to the variance of the response

variable.

Following the method employed by Ligmann-Zielinska et al. [30], we designed Sobol sensitivity

analysis experiment using low-discrepancy Saltelli sampling of parameters with 4096 samples per

parameter (i.e. more than 16000 simulations per model). Using this design we conducted two

experiments analyzing sensitivity of φF and NPV to model parameters of each model. We denote

these two experiments as EXP2 and specifically we denote the experiment of analyzing sensitivity

of φF and NPV as EXP2a and EXP2b respectively.
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Simulations:

All models were implemented in Python programming language. The number of nodes was set to

5000 for all experiments. Each simulation was run for a maximum of 10000 time-steps with 30

replicas per each parameter configuration. At each 1000th time-step (e.g., 1000, 2000, 3000, etc.)

we check if there was at least one node that changed its state during the last 1000 time-steps, and

if there was no state changes in the last 1000 time-steps then we stop the simulation. The outputs

included the fraction of infected nodes, the fractions of I → S edges, S → S edges, and number

of infections at each time-step. The python library SALib [23] was used to conduct the Sobol

sensitivity analyses in the EXP2. The boundaries of parameters for Saltelli sampling for the EXP2

was matched to the parameter ranges used in EXP1.

Network Generation:

As mentioned in the literature reveiw, in the network science literature there are many different

network structures that have been studied, such as random networks [19], small-world networks

[52], and scale-free networks [4]. The dynamics of the diffusion of information on these various

types of networks has been the focus of a number of studies [51, 14, 26]. Since scale-free networks

(SF) are well studied and comparable to real world networks, we chose to investigate the informa-

tion diffusion over SF networks in this study. Moreover, since the information flow between nodes

could be asymmetric, i.e., many users may follow celebrities on social media, but celebrities follow

very few users, we specifically use directed scale-free networks for this study. The original scale-

free network generation algorithm proposed by Barabási et al. [4] generates undirected networks,

so instead we use the algorithm proposed by Bollobás et al. [7] for generating directed scale-free

networks for our experiments. A directed network can contain unreachable nodes (nodes without

incoming edges) and terminal nodes (nodes without outgoing edges). Since such nodes are also
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a part of the system, they were not removed. In our models, terminal nodes can change state,

but can not influence the state of others, while unreachable nodes can not change state, but could

affect the state of others. The Bollobás et al. algorithm has three parameters: α , β and γ which

are probabilities such that α +β + γ = 1. The parameter β is the probability that a new edge is

added to the network between two existing nodes while the other two parameters α and γ define

the probability of adding a new node to the network through an outgoing-edge and incoming-edge

respectively. The three probability values are used to control the density and connectivity of the

generated network. Therefore, β governs the edge density of the network and also affects connec-

tivity (increasing β increases the edge density). In this study, we observed the dynamics of various

DOI models over different β values for a fixed number of nodes while keeping α and γ equal such

that α = γ = 1−β

2 .

Results

Initially, we examine the outcomes from EXP1, which detail the distributions of nodes and edges

in the DOI models. Subsequently, we explore the results of the sensitivity analysis from EXP2.

Node and edge distributions at the final state and speed of DOI

This subsection describes the results obtained from the EXP1 experiment. The violin plots6 of the

final fraction of infection (φF ) are given in Fig. 3.1. The normality test for the final fraction of

infection using Anderson-–Darling tests confirmed that none of these φF distributions are normal.

We compared the φF distributions of models against each other using Wilcoxon rank-sum tests. It

is a non-parameteric statistical test that compares two independent samples. It assesses whether the

6These are violin plots with embedded box plots which shows kernel density and spread. The kernel density shape
depicts information of peaks while box plot captures locality, spread, and skewness of data
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The image displays a comparative violin plot chart with six different models shown on the x-axis, namely BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. Each violin plot represents the distribution and probability density of the data, indicating the final fraction of infection. The shapes of the violins vary, suggesting differences in distribution and spread for the final fraction of infection across the models.

Figure 3.1: Distribution of final fraction of infection of models

Table 3.3: Mean, Std. dev., Skewness and Kurtosis of Distributions of the Final Fraction of infec-
tion of Models

Model Mean Std. Dev. Skewness Kurtosis Excess
Kurtosis

BRRM 0.503639 0.152363 -0.580979 2.661265 -0.338735
DWM 0.503608 0.152343 -0.580534 2.659739 -0.340261
ICM 0.373487 0.164751 -0.038233 2.177251 -0.822749

LFTM 0.350678 0.185220 0.223268 2.092012 -0.907988
SLFTM 0.350518 0.185232 0.224638 2.092606 -0.907394
LATM 0.236928 0.134648 0.688209 3.540513 0.540513

SLATM 0.236932 0.134686 0.689483 3.543973 0.543973

medians of the two groups are significantly different. This test is appropriate when the data do not

follow a normal distribution. For comparisons of BRRM vs DWM, SLFTM vs LFTM, and SLATM

vs LATM we received very high p-values (0.95, 0.84, 0.99 respectively), and for all else p-values

were zero. Therefore, those mentioned pairs of models have statistically similar φF distributions.

The mean, standard deviance, skewness, and kurtosis of each φF distribution of the models are

given in Table 3.3. Inspection of both the Fig. 3.1 and Table 3.3 ensures that BRRM and DWM

have left skewed φF distributions, and LATM and SLATM have right skewed φF distributions.

Notice that the shape of φF of LATM, SLATM, LFTM, and SLFTM have some jaggedness (Sine

wave like patterns). This is likely due to the discreteness of the infection condition. The infection
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The image shows box plots with seven different models on the x-axis: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. The y-axis is labeled "Final Fraction of I -> S Edges," ranging from 0.0 to 0.3.
(a) Distributions of fraction of I → S edges at final state

The image shows box plots with seven different models on the x-axis: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. The y-axis is labeled "Final Fraction of S -> S Edges," ranging from 0.0 to 0.8.
(b) Distributions of fraction of S → S edges at final state

Figure 3.2: Distributions of edge types at final state

condition of these models are directly related to number of infected neighbors, which is a discrete

value regardless of whether the threshold is a fraction or a whole number.

At the end of each simulation the fraction of each edge type was calculated. Fig. 3.2 shows these

distributions. The distributions of these edge types are results of the simulation parameters, the

model, and the network. Together they describe the infectiousness of the network at the end state

of all simulations. The fraction of I → S edges at the final state represents the number of edges that

failed in the propagation (hence it still remains as I → S). Similarly, S → S edges in the final state

represents edges that could have been used to propagate information, but were not.
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We compared the distributions of both of these edge types between all model pairs using Wilcoxon

rank–sum tests and found that, BRRM vs DWM, LFTM vs SLFTM, and LATM vs SLATM have

very high p-values and for all other pairs the p-values were zero. For values near zero, the models

produce different final states, but for the models with high p-values, the end results are not easily

differentiated. Therefore, similarly to the φF distributions, we conclude that distributions of I → S

and S → S edges resulted from the pairs BRRM vs DWM, LFTM vs SLFTM, and LATM vs

SLATM are similar.

Visual inspection of the Fig. 3.2 also shows that BRRM and DWM does not contain I → S edges

and they have the lowest amount of S → S edges left at the final state. This is due to the fact

that BRRM and DWM runs until all reachable nodes are infected, thus the behaviour of these two

models are different from the other models.

By considering the differences between both the final state of edge distributions and the final state

of spread (φF ) we can conclude that the final state space of ICM, LATM, LFTM, and BRRM are

significantly different from each other. Moreover, we conclude that final state space of the pairs

BRRM & DWM, LFTM & SLFTM, and LATM & SLATM are similar.

Since, BRRM and DWM run until all reachable nodes are infected, when these models have fin-

ished a run, the set of infected nodes is equivalent to the set of nodes that are reachable from the

initially infected nodes, regardless of the DOI model’s parameters. Therefore, φF distributions of

BRRM and DWM are actually representing the fraction of nodes in the reachable network. As a

result, the φF distributions observed after running DWM and BRRM are not determined by the

parameters of the DOI model, instead they are determined by the network generation algorithm.

Similarly the I → S and S → S edge distributions of BRRM and DWM are also determined by

the network generation algorithm. Therefore, it is not possible to have a meaningful comparison

between BRRM and DWM by just looking at the final state of nodes and edges. So, to create
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a meaningful comparison between models such as BRRM and DWM, we look at the "speed" of

infection.

Table 3.4: Mean and maximum number of time-steps taken for models to reach different stages of
simulations

φF ≥ 50% by φF ≥ 65% by φF ≥ 75% by Halt by
Model mean max mean max mean max mean max
LATM 1.71 8.0 2.28 6.0 2.61 5.0 2.77 18
ICM 1.71 12.0 2.26 6.0 2.62 5.0 5.73 19

LFTM 2.29 43.0 3.25 41.0 3.21 11.0 6.12 52
SLATM 15.96 201.0 23.98 254.0 31.89 178.0 25.41 502
SLFTM 25.98 986.0 40.75 797.0 49.60 307.0 91.06 1184
BRRM 11.69 961.0 14.90 884.0 17.64 671.0 126.85 3004
DWM 37.25 2054.0 50.41 1577.0 60.27 951.0 134.81 3093

Sorted by the mean number of time-steps taken to halt the simulation.

We measure the number of time-steps taken to infect 50%, 65% and 75% of nodes, the number of

time-steps taken to halt the simulation, and the NPV of the infections. We define the number of

time-steps taken to halt the simulation as the number of time-steps taken to reach the final state of

the simulation7. The Table 3.4 shows the number of time-steps taken by each model to reach the

different stages of simulations as described above8. LATM, ICM and LFTM are the fastest models

at all stages compared to the other four models. DWM is the slowest model to reach every stage

shown in the table. BRRM is the next slowest model to reach the final state. However, BRRM is

only slower when comparing the amount of time taken to reach end of simulation. BRRM reaches

50%, 65%, and 75% of nodes sooner than both SLATM and SLFTM on average case. On the

contrary, the max number of time-steps to reach 65%, and 75% of nodes show evidence that BRRM

might take longer times than SLATM and SLFTM to reach those stages. Another observation from

7The simulation might run past this time-step in order to identify that there was no change in the system as described
in Section 3

8Note that not all simulations will reach 75% infection (or even 50% or 65%) due to their parameter values being
less contagious (e.g., an ICM run with very low q and β values might not reach 75% infection). Such simulation runs
were omitted when calculating the mean time-step values of that respective percentile.
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this table is that both linear threshold models (LATM and LFTM) are significantly faster at reaching

every stage than their respective stochastic versions (SLATM and SLFTM). Therefore it is evident

that different models have different speeds of information spread at different stages of simulations.

In other words, while one model may be slower than another model in reaching a particular stage,

the same model may demonstrate faster progress than the other model in reaching a different stage.

NPV is able to give a summary value which represents both the quantity (i.e., number of infected

nodes) and the speed (i.e., number of time-steps spent) of infection. The basic idea is that an

adoption of the infromation today is worth more than adoption tomorrow. This is an important

aspect especially for information campaigns. For example, in a disinformation campaign, the

speed of information propagation is important since one party wants to propagate some information

before the opposition spreads a counter argument. Therefore, the amount of spread that can be

achieved "today" is more valuable than the amount of spread that we could have by "tomorrow".

We calculate NPV (with deprecation factor λ = 90% and profit factor p f = 1) using the Eq. 3.2

which is adopted from Stonedahl et al. [46]. t is the time-step index using zero based indexing. at

is the number of infections at time-step t.

NPV =
∞

∑
t=0

at p f λ
t =

∞

∑
t=0

at(0.9)t (3.2)

The NPV distributions for each model are shown in Fig. 3.3. The NPV distributions of BRRM,

ICM, and LFTM are larger than the other models. Therefore, these results help in distinguishing

those three models from the rest of the models. Combined with the results shown in Table 3.4 we

identify that BRRM infects more nodes than DWM in the early time-steps (The NPV of BRRM is

higher then DWM and BRRM is faster at reaching all stages in Table 3.4 than DWM.).
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The image shows the set of vertical box plots that represent the net present value of model runs for the 7 models. Each distribution depicted by the boxplot appears to be different from all others.

Figure 3.3: Distributions of net present value of model runs

Sensitivity analysis of the spread and speed of diffusion

This subsection describes the results obtained from EXP2 experiments. In EXP2a, we used Sobol

sensitivity analysis to observe the effects of model parameters on the variance of φF . The decom-

position of φF variance for the models are given in Fig. 3.4. Our results of the Sobol sensitivity

analysis contains three parts: total sensitivity index (ST), 1st order sensitivity index (also called

main effect index) (S1), and 2nd order sensitivity index (S2)9. The S1 is a measure of individual

model parameters and S2 is a measure of the interaction of two parameters. The S1 of a given

model parameter depicts the fraction of contribution given by independent term of the parameter

to the variance of the outcome. Similarly S2 of a given pair of model parameters depicts the frac-

tion of contribution given by the interaction of those two model parameters to the variance of the

model outcome. The ST of a model parameter depicts the overall contribution of the parameter on

the outcome variance.
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The image shows a clustered bar chart comparing the total percentage of variance explained by final infection for the seven models across their simulation parameters. Seven groups represent models: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. Each group has bars for model-specific parameters and initial infection and network parameter β . The y-axis represents the total percentage, ranging from 0% to 100%. The x-axis has the models and parameters labeled. Each bar is a different color for visual distinction. It is labeled with a percentage value on top, indicating the total percentage of variance it explains. Error bars are on top of each bar, indicating the variability or confidence interval of the estimate. The chart shows the total contribution of each parameter to the variance explained in final infection of each model.
(a) Confidence Intervals of ST Decomposition of Variance of φF

The image shows a comparative clustered bar chart visualizing the impact of the first-order term of simulation parameters on the variance of final infection outcomes across seven models. Seven groups represent models: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. Each group has bars for model-specific parameters and initial infection and network parameter β . The y-axis represents the total percentage, ranging from 0% to 100%. The x-axis has the models and parameters labeled. Each bar is a different color for visual distinction. It is labeled with a percentage value on top, indicating the total percentage of variance it explains. Error bars are on top of each bar, indicating the variability or confidence interval of the estimate. The chart shows the contribution of the first-order term of each parameter to the variance explained in each model’s final infection.
(b) Confidence Intervals of S1 Decomposition of Variance of φF

The image shows a comparative clustered bar chart visualizing the impact of the second-order terms of simulation parameters on the variance of final infection outcomes across seven models. Seven groups represent models: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. Each group has bars for model-specific parameters and initial infection and network parameter β . The y-axis represents the total percentage, ranging from 0% to 100%. The x-axis has the models and parameters labeled. Each bar is a different color for visual distinction. It is labeled with a percentage value on top, indicating the total percentage of variance it explains. Error bars are on top of each bar, indicating the variability or confidence interval of the estimate. The chart shows the contribution of the second-order terms of each parameter to the variance of final infection explained in each model.
(c) Confidence Intervals of S2 Decomposition of Variance of φF

Figure 3.4: Sensitivity of Final Fraction of Infection (φF )

Sensitivity analysis based on φF

The φF of BRRM and DWM have similar sensitivity to parameters such that the final fraction of

infection is about 90% dependent on the network parameter β and a 8.5% dependent on the initial

9We are adopting the abbreviation presented in [44, 30]
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fraction of infection φ0 (Fig. 3.5a). As further decomposition given in Fig. 3.5b and Fig. 3.5c

shows, more than 85% of their φF variance is determined by the first order term β (⪆ 81% in

Fig. 3.5b) and the second order term φ0β (⪆ 5% in Fig. 3.5c). This proves that the φF of these

two models are almost completely governed by the network parameter and the initial infection.

This is due to BRRM and DWM being run until all reachable network is infected. The φF of ICM

shows equivalent total sensitivity to both the model parameter q and network parameter β (≈ 48%

each) and shows low sensitivity (about 4%) to φ0 (Fig. 3.5a). Both LFTM and SLFTM models

show high sensitivity (≈ 66%) to their model parameter θ . SLFTM shows only tiny sensitivity to

its parameter pω which seems almost negligible. Therefore, the sensitivity of model parameters

to the φF in LFTM and SLFTM are similar. Interestingly the LATM and SLATM models do not

show similarities, although their final states which we observed in the EXP1 were similar. The

LATM model shows approximately similar sensitivities to network parameter β and it’s model

parameter ψ . The second order parameter βψ , which combines those two parameters, is showing

a considerably large effectiveness in determining the outcome of LATM as well. Therefore, we

could say that both β and ψ are equivalently effective in determining the outcome of LATM model.

SLATM model shows highest sensitivity to it’s threshold ψ and secondly to β , as evident from all

three Fig. 3.4. SLATM doesn’t seem to be sensitive to it’s other model parameter pω .

Sensitivity analysis based on NPV

In EXP2b, we evaluated the sensitivity of parameters to the NPV of infection. The results of these

experiments are shown in Fig. 3.5. There are two important things to notice about the Fig. 3.5 : (1)

Results have approximately similar sensitivity values as Fig. 3.4 for all models except BRRM and

DWM. (2) The sensitivity decomposition of BRRM and DWM have unique values. The sensitivity

index values of ICM, LFTM, SLFTM, LATM, and SLATM are almost exactly similar to their

respective values from EXP2a, which indicates the consistency of those models in responding
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The image shows a clustered bar chart comparing the total percentage of variance explained by NPV for the seven models across their simulation parameters. Seven groups represent models: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. Each group has bars for model-specific parameters and initial infection and network parameter β . The y-axis represents the total percentage, ranging from 0% to 100%. The x-axis has the models and parameters labeled. Each bar is a different color for visual distinction. It is labeled with a percentage value on top, indicating the total percentage of variance it explains. Error bars are on top of each bar, indicating the variability or confidence interval of the estimate. The chart shows the total contribution of each parameter to the variance explained in NPV of each model.
(a) Confidence Intervals of ST Decomposition of Variance of NPV

The image shows a comparative clustered bar chart visualizing the impact of the first-order term of simulation parameters on the variance of NPV outcomes across seven models. Seven groups represent models: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. Each group has bars for model-specific parameters and initial infection and network parameter β . The y-axis represents the total percentage, ranging from 0% to 100%. The x-axis has the models and parameters labeled. Each bar is a different color for visual distinction. It is labeled with a percentage value on top, indicating the total percentage of variance it explains. Error bars are on top of each bar, indicating the variability or confidence interval of the estimate. The chart shows the contribution of the first-order term of each parameter to the variance explained in each model’s NPV.
(b) Confidence Intervals of S1 Decomposition of Variance of NPV

The image shows a comparative clustered bar chart visualizing the impact of the second-order term of simulation parameters on the variance of NPV outcomes across seven models. Seven groups represent models: BRRM, DWM, ICM, LFTM, SLFTM, LATM, and SLATM. Each group has bars for model-specific parameters and initial infection and network parameter β . The y-axis represents the total percentage, ranging from 0% to 100%. The x-axis has the models and parameters labeled. Each bar is a different color for visual distinction. It is labeled with a percentage value on top, indicating the total percentage of variance it explains. Error bars are on top of each bar, indicating the variability or confidence interval of the estimate. The chart shows the contribution of the second-order term of each parameter to the variance explained in each model’s NPV.
(c) Confidence Intervals of S2 Decomposition of Variance of NPV

Figure 3.5: Sensitivity of Net Present Value (NPV)

to the parameters with respect to both speed and spread of infection. The sensitivity values of

BRRM and DWM are very different from their respective values in EXP2a. A 58% of variance

of the NPV of BRRM is governed by β . Its model parameter qb exhibits only half (≈ 28%) the

effectiveness of β . For DWM, more than 78% of NPV variance is dependent on model parameters
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pc and k. Therefore, the sensitivity decomposition of BRRM and DWM with respect to NPV are

completely different. This difference between sensitivities of BRRM and DWM model parameters

was expected since from EXP1 we found that BRRM converges faster than DWM.

Discussion

Through these experiments we have compared the seven models in a variety of ways. In this section

we are specifically going to highlight some of the most interesting differences and similarities.

Let us first look at why DWM seem to produce similar results as BRRM while yet being very dif-

ferent from each other. As discussed, both models run until all reachable nodes becomes infected.

Therefore, differences we could observe lie on the speed of information propagation and in mid

states of the simulation. Table 3.4 shows that DWM is the slowest model of among these models.

This is understandable since DWM has a long process for generating an infection compared to

other models because each interaction occurs with a probability of contact (pc) and a contact only

adds some dose of exposure to the node. A k number of such doses are required for the node to

become infected. Therefore, a susceptible node with any number of infected neighbors requires

a minimum of k time-steps to become infected in the DWM. In contrast to the DWM, all other

models discussed in this work allow a susceptible node to become infected within a single time-

step if a sufficient number of its neighboring nodes are infected. Observing both the Table 3.4 and

Fig. 3.3 we summarize that BRRM infects a greater number of nodes within a given number of

time-steps as compared to DWM. The parameters of BRRM and DWM are only able to control

the speed of the information propagation. This result could be generalized such that, the model

specific parameters of a DOI model, which infects all reachable nodes, are only useful in changing

the speed of infection.
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Let us look at the stochastic versions of LATM and LFTM models: SLATM and SLFTM. Results

in EXP1 show that both of these models produce φF , and I → S and and S → S edge distributions

which are equal to the results produced by their deterministic counter parts (Fig. 3.1 and Fig. 3.2).

However in comparison to their deterministic counterparts, stochastic models take significantly

large number of time-steps to converge to each tested simulation stage (Table 3.4). This is an

expected behavior since the only difference of these two stochastic models from their respective

deterministic counterparts are the probability based conditional checking that was added as a final

step of the decision rule. Since this final step is executed at every time-step, eventually any node

that was blocked from becoming infected solely due to this final step will become infected. There-

fore, if an LATM and SLATM was run on two identical networks with the same initial infected

nodes and same model parameter ψ values, the final states of the network nodes and edges will

be identically same regardless of the pω value. Similarly this is true for LFTM and its stochastic

version: SLFTM. The sensitivity analysis results also have confirmed that the stochastic model

parameter pω has no control over the outcome φF .

Interestingly for all models except for BRRM and DWM, we observed that the sensitivity of model

parameters with respect to NPV have the same values as sensitivity against φF . We speculate that

a correlation between the speed and spread of diffusion might be the reason for this behaviour. We

conclude that further investigation is required for uncovering the reason behind this phenomenon,

which could potentially be a future work. However, the most focused result in here was that the

model parameters of BRRM and DWM were able to exhibit their unique characteristics (without

being obscured by the fact that they run until all reachable network is infected) when sensitivity

was measured against NPV. Due to this reason NPV could be identified as a superior measurement

when it comes to sensitivity analysis of DOI models.

When considering all figures and results from EXP1, we see that LATM struggles in producing
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a large number of infections10. A reason could be because the condition for LATM to produce

infections expects a minimum number of infected neighbors irrespective of the neighborhood size.

The mean degree overall for the conducted simulations is 5. So it could be that some threshold

parameters such as ψ ≥ 6 are too high for those networks with average in degree of 5. Notice that

the range of values used for ψ was [1, 20].11 This is the reason why there are many underutilized

I → S edges left in the LATM model as seen in Fig. 3.3a.

The ICM shows more of a balanced distribution of φF compared to all other models (Fig. 3.1 and

Table 3.3). The I → S and S → S edge distributions of ICM are lowest when compared to all except

DWM and BRRM. Therefore, apart from the models that run until all reachable network becomes

infected, ICM is the model that could utilize most of the edges in the network and therefore has

the potential to infect most of the network (Fig. 3.2). When comparing speed of diffusion, ICM is

at the 2nd fastest, losing only marginally to LATM (Table 3.4). ICM has a NPV distribution that is

larger than all except BRRM and LFTM (Fig. 3.3). The conducted sensitivity analysis shows that

ICM performs similarly against both φF and NPV. The model parameter q and network parameter

β have equal control over the outcome of ICM. Therefore, we conclude that ICM has the ability to

produce models for a wide variety of final infection and speed of infection states. Therefore, ICM

could be considered as a general purpose model. An additional advantage would be that since ICM

runs in a small number of time-steps, running experiments with ICM is computationally efficient.

Since there is only one parameter that exists that is specific to the ICM model, a possible limitation

of ICM would be that changing the model parameter will change both the speed and final state in

tandem.

The LFTM and SLFTM show comparable results of φF distributions compared to ICM. When

10So does SLATM since these issues of LATM related to its final state will shadow the final state of SLATM.
11Our findings indicate that the conclusions on I → S and S → S edge distributions remain valid even when the value

of ψ is less than 6.
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considering edge distributions, LFTM and SLFTM are similar to ICM in their capacity to utilizing

edges. LFTM has high NPV and requires lesser time-steps to run. SLFTM has lower NPV and

takes comparatively large number of time-steps to run. While performance of LFTM seems to

follow ICM, the sensitivity index of LFTM parameters exhibit to be very different. Most of the

LTFM outcomes (≈ 68%) are determined by θ , and the network parameter β only has less than

20% of control over the outcomes. While the θ parameter of LFTM affects both the rate of spread

and the final state, SLFTM has the ability to affect the rate of spread independently by varying pω

12.

Overall, we have found that using our generalized framework we can classify how concepts for

different models could be classified into a common framework. However, when we investigate the

final state, speed of infection propagation, and sensitivity to final fraction of spread, we found that

these models behave in unique and different ways regardless of the class it belongs to in the con-

ceptual framework. Even though two models might belong to the same conceptual class they can

produce completely different outcomes from their simulations (e.g. BRRM vs SLFTM, ICM vs

DWM, and ICM vs SLATM). Moreover, we have found that regardless of being conceptually dif-

ferent (belonging to two different conceptual classes), two models may produce similar simulation

outcomes (e.g. BRRM vs DWM, LFTM vs SLFTM, and LATM vs SLATM).

12Similarly the rate of spread of SLATM is independently affected by pω
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CHAPTER 4: QUANTIFYING THE EFFECT OF CLUSTERING

COEFFICIENT ON MODELS OF INFORMATION DIFFUSION

In this chapter we describe the second study which is a direct extention of the previous study.

This study aims to investigate the influence of network node clustering on the dissemination of

information.

Methodology

Network clustering is quantified using the Clustering Coefficient (CC) as introduced by Watts and

Strogatz[52]. Information propagation is typically determined by the fraction of infected nodes,

denoted as φF . However, given the significant role of time in the spreading process, we selected

Net Present Value (NPV) as the metric to quantify the spread. NPV is calculated by using the

equation 3.2. We applied a depreciation factor of λ = 90% and a profit factor of p f = 1, following

the methodology outlined by Stonedahl, Rand, and Wilensky[46].

The complex contagion model described by Centola, Eguíluz, and Macy[10] is a threshold based

model similar to LFTM. The simple contagion model described by Watts and Strogatz[52] is a

probability based model similar to ICM. As there are multiple types of DOI models available in

the literature, we investigate three specific classical models of information diffusion: ICM, LATM,

and LFTM, to span the full range in our simulations. In the ICM, each infected node has a single

opportunity to infect each of its susceptible neighbors, and the probability of infection is deter-

mined by the characteristics of the connecting edge. In the LATM, each susceptible node evaluates

its threshold concerning the number of infected neighbors in order to determine infection. In the

LFTM, a susceptible node becomes infected when the fraction of infected neighbors surpasses its
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threshold value.

The aim of this research is to examine the following hypotheses:

1. The CC’s effect on NPV/Final Infection depends on the Model Types

2. The CC’s effect on NPV/Final Infection depends on the Model Parameter

3. The CC’s effect on NPV/Final Infection depends on the Network Parameter

Experiments

Our experimental design focused on generating results from three categories of networks and three

agent-based information diffusion models, each comprising 1000 nodes. These networks were

constructed using three distinct generation algorithms: (1) Watts and Strogatz (WS) [52], (2) Erdos

and Rényi (ER) [19], and (3) Barabási and Albert (BA) [4]. The probability parameter of Erdos

and Rényi algorithm and Watts and Strogatz algorithm were varied in the range [0.1,0.45] with

0.05 step size. The mean degree k of Watts and Strogatz network generator was kept constant as

k = 5. The growth parameter m of Barabási and Albert was varied in the range [4,7] with step size

of 1. The both imitation probability p of ICM and the fractional threshold θ of LFTM were varied

in the inclusive range [0.05,0.95] with 0.05 step size. The threshold ψ of LATM was varied in the

range [1,10] with step size of 1. The initial infection φ0 was varied in the range [0.025,0.35] with

0.025 as step size. Each configuration was run with 30 replicas.

Implementation

All simulations were implemented in Python using the NetworkX library for network generation

algorithms. Each simulation ran for a minimum of 1000 time steps, and the simulation stopped
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when there was no change in the network for 1000 consecutive time steps.

Statistical Analysis

We are interested in quantifying the relationships between the CC and the NPV. Specifically, we

aim to evaluate the average changes in NPV associated with a unit increase in the CC across three

model types: ICM, LATM, and LFTM. Additionally, our goal is to compare the variability of NPV

as the CC varies between 0 and 0.45 as shown on the left side of Figure 4.1.

The distribution of CC is predominantly influenced by the network type, due to the design of the

data generating process. In particular, CC in a SF network is significantly affected by the network

parameter, given that clustering is contingent on the probability inherent to the generation process.

In contrast, CC in a R network and SW network indicates linear associations with the network

parameter. Specifically, it shows a positive correlation for R network and a negative one for SW

network, as illustrated on the right side of Figure 4.1.

This image contains two graphs. The left one shows Clustering Coefficient vs NPV scatter plot graphs for each model: ICM, LATM, and LFTM. The patterns seem to be similar between the models. The graph on the right shows the scatter plot of Network parameter vs Clustering Coefficient for each network type: Random, Scale-free, and Small-world. These patterns are very different from each other. While both R and SF have positive correlation with Network parameter and CC, the SW network type has a negative correlation.

Figure 4.1: Left: CC and NPV by Model, Right: Network Parameter and CC by Network Type

We observe that NPV has a zero-inflated, left-skewed distribution, which is affected by the model

parameter. This suggests that a simple parametric distribution may not be suitable for modeling

such outcomes [31]. To determine the optimal modeling approach aligning with the study’s ob-

jectives, we investigated the sources and essential factors contributing to the zero inflation and
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left-skewed characteristics of NPV. These characteristics are associated with both the model type

and network type.

As illustrated in Figure 4.2 on the left, approximately 20% of all NPV observations have zero

NPV values. Among these zero NPVs, around 23% originate from the LATM model, while the

remaining approximately 77% are attributed to the LFTM model. This distribution aligns with

expectations, given that the ICM model has negligible initial infections, while the LFTM model has

the highest initial infection rate across all ranges. The LATM model falls between these extremes,

as shown on the right side of Figure 4.2. Furthermore, the number of initial infections gradually

decreases as the initial infection rate increases from 0.025 to 0.35. Moreover, the LFTM model

consistently exhibits nearly four times as many initial infections at each step compared to the

LATM model.

This image shows the count of simulations that had zero NPV values for each model type. ICM produced no such model runs. LFTM have produced about 60000 model runs that contained zero NPV values. LATM only produced about 20000 such model runs. This image shows 3 histograms that depict the count of model runs that produced zero NPV by different initial infection values for each model type. We can clearly see that the count of zero NPV cases decreases as initial infection increase.

Figure 4.2: Left: Count of Zero NPV by Model Types, Right: Initial Infection by Model Types for
Zero NPV

This image shows two bar charts representing number of runs that are in the dataset with respect to each model parameter of LFTM. Filtering was done by removing zero NPV cases. The left graph shows the values before filtering and the right shows after. This image shows the graph for non-zero NPV where y-axis is count of cases and x-axis is initial infection multiplied by model parameter

Figure 4.3: Left: Model Parameter Before and After the Filtering, Right: Initial Infection Times
Model Parameter for NPV>0
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The left side of Figure 4.3 indicates that a significant proportion of zero NPVs in the LFTM model

are associated with larger model parameters, accounting for approximately 39% of all observations

within the LFTM model. Similarly, zero NPVs in the LATM model are generated by relatively

large model parameters, particularly those toward the end of the interval ranging from 5 to 8. In

the LATM model, zeros make up approximately 24% of all LATM model observations, whereas

in the ICM model, this percentage is less than 0.01%.

On the right side of Figure 4.3, the distribution of initial infection times model parameters appears

similar for the ICM and LFTM models, both following a right-skewed distribution with more

values clustered around zero. In contrast, the initial infection times model parameters in the LATM

model are more evenly distributed across the range, with a higher frequency of values between 0

and 2, and a lower frequency for values beyond 2.

The sensitivity analysis of NPV and Final Infection related to initial infection, density parameter,

and model parameter has been previously studied by Jayalath et al. [25]. Their findings informed

the selection of meaningful predictors for our model in this work. According to their research,

for the ICM and LATM models, the density parameter and the model parameter each contribute

equally to nearly 50% of the outcome, while for the LFTM model, the model parameter accounts

for almost 70%, followed by the density parameter at 17%, and the initial infection at around 13%.

These proportions appear to hold relatively consistently for both NPV and Final Infection.

As shown in Figure 4.4 on the top left, there is a observable difference in mean NPV between the

ICM/LATM models and the LFTM model. However, when considering Non-Zero NPVs (bottom

right in Figure 4.4), the average NPV for the LFTM model is not significantly lower compared to

the other two models.

Similar trends are observed when examining the impact of network types on NPV. On the top right

in Figure 4.4, the mean NPV exhibits substantial variation between the SW network type and the
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This image shows four graphs, all containing boxplots. The top graphs show when data was not filtered for non-zero NPV and the bottom is when NPV > 0. The top-left graph shows the NPV value distributions by each DOI model. ICM has high NPV values and both LATM and LFTM have their boxes touching the zero NPV value. The bottom-left graph shows the NPV value distributions by each DOI model when zero NPV runs were filtered out. In here, both the ICM and LATM have high NPV values. The top-right graph shows NPV value distributions by each network type. All three network types have kind of similar distributions. The bottom-right graph shows NPV value distributions by each network type when zero NPV runs were filtered out. In here, we clearly see a difference in the Random networks, it produces high NPV values compared to others.

Figure 4.4: Top: All NPV, Bottom: NPV>0

other two network types, but this difference diminishes by approximately half for Non-Zero NPVs

(bottom right in Figure 4.4).

In summary, both model and network types prove valuable in predicting zero NPVs within our

framework. There are considerable mean differences observed between the LFTM model and the

other two models, as well as a similar mean shift between the SW network type and the other

two network types. These findings have led us to redefine the reference groups when using the

factor predictors Model Type and Network Type. We have selected LFTM and SW as baselines

for comparison in Model Type and Network Type, respectively.

Since zero NPV implies no diffusion in the network even after 1000 time-steps in our case, and

the focus of this study is to evaluate the associations between CC and NPV when some level of

diffusion occurs, we primarily concentrate on Non-Zero NPV for this work. Even after filtering

out observations with zero NPVs, the distribution of Non-Zero NPV remains left-skewed, with a
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substantial number of 1s on the lower end. These 1s constitute approximately 1.8% of the data and

will be included in the analysis, as they indicate some level of diffusion.

To interpret the associations between CC and NPV, we apply Generalized Additive Modeling

(GAM) [54] where non-linear relationships are allowed and can be captured through a sum of

functions of each feature. In this modeling approach, the response variable is Non-Zero NPVs,

and the predictor variable is mean CC adjusted with Model Type, Network Parameter, Model Pa-

rameter, and the interactions between mean CC and the two parameters. We have selected the

LFTM model and SW network type as the reference levels because we anticipate more substantial

mean differences between the LFTM model and the other two models regarding Non-Zero NPVs.

Additionally, we expect an evident contrast between Network Type SW and the other two Network

Types.

In order to find a good fit for the existing response and preserve interpretability in line with the goal

of the study, we use the original scale of NPV as well as the mean CC. We fit a GAM, which can

accommodate the non-linear relationships between the predictors and the response[54], as follows:

NPVi =α + f1(CC_i)+ f2(Modeli)+ f3(NetParameteri)+

f4(ModelParameteri)+ f5(CC_i,NetParameteri)+

f6(CC_i,ModelParameteri)+ εi

(4.1)

where α is the intercept parameter, the f j (for j = 1, · · · ,6) are smooth functions, and the εi are

independent N(0,σ2) random variables. In our case, as the model is a categorical variable with

three levels, it will lead to a parametric estimate indicating the average differences compared to

the reference model LFTM regarding their contribution to Non-Zero NPVs. We include the model

parameter and network parameter, as both are related to the NPV values during the data generating

process. All smooth terms are fitted using cubic splines with 10 basis functions along with a second
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derivative-based penalty. We denote this as Model 1, where the response is Non-Zero NPV, and

the predictors are listed below.

This image shows two graphs. The left graph shows a scatter plot of NPV against Clustering coefficient grouped by the network types and DOI models. Mostly every group within each network type is similar to each other. The right graph shows a scatter plot of final infection against Clustering coefficient grouped by the network types and DOI models. This graph also shows that there is a similarity of scatter within the same nework type regardless of the DOI model.

Figure 4.5: CC and NPV/Final Infection by Model and Network Type

Additionally, we applied the same model to the Final Infection, as initial observations from Figure

4.5 suggest that the CC has a more pronounced impact on Final Infection in relation to its effect

on Non-Zero NPV. This is referred to as Model 2, shown in equation 4.2.

Final Infectioni =α + f1(CC_i)+ f2(Modeli)+ f3(NetParameteri)+

f4(ModelParameteri)+ f5(CC_i,NetParameteri)+

f6(CC_i,ModelParameteri)+ εi

(4.2)

Furthermore, we investigated the influence of Network Type, as opposed to Model Type, on Non-

Zero NPV (referred to as Model 3) as shown in equation 4.3.

NPVi =α + f1(CC_i)+ f2(Networki)+ f3(NetParameteri)+

f4(ModelParameteri)+ f5(CC_i,NetParameteri)+

f6(CC_i,ModelParameteri)+ εi

(4.3)
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We also examined how Network Type influences the Final Infection within the same context, rep-

resented by Model 4 as shown in equation 4.4.

Final Infectioni =α + f1(CC_i)+ f2(Networki)+ f3(NetParameteri)+

f4(ModelParameteri)+ f5(CC_i,NetParameteri)+

f6(CC_i,ModelParameteri)+ εi

(4.4)

The model selection, regarding the goodness of fit, is conducted through the Analysis of Deviance

procedure using the Likelihood Ratio Test (LRT). We choose a larger model with more predictors

only if the p-value for the Analysis of Deviance is less than the significance level of 0.05.

Results

We fit the model described in Equation 4.1, and the results for Model 1 are shown in Table 4.1.

Under our setting, on average, changes in both CC and Network Parameter significantly affect the

Non-Zero NPV when other variables in Equation 4.1 are fixed. As shown in the top-left corner of

Figure 4.6, a major negative contribution to the Non-Zero NPV from CC occurs at small values

between [0,0.17] and at higher values between [0.35,0.45]. The maximum negative change toward

NPV is as large as −450 at the minimum value of CC (0.029) and −500 at the maximum CC value

(0.452). The positive effect of CC arises between [0.17,0.35]. There is a slight decrease between

[0.2,0.32], and the association turns positive again between [0.25,0.32].

Moreover, the changes of the smooth interaction terms between CC and Network Parameter, indi-

cated by the top-right plot in Figure 4.6 , as well as CC and Model Parameter, the middle-bottom

plot in Figure 4.6, both significantly contribute to the changes in Non-Zero NPV when other vari-
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Table 4.1: NPV and mean CC Associations by Model Type in Model 1

Parametric coefficients Estimate Std. Error t value Pr (t)
(Intercept) 470.22 0.80 585.43 <0.01
ModelICM 172.43 1.02 169.09 <0.01
ModelLATM 63.19 1.38 45.72 <0.01
Approximate significance of smooth terms edf Ref.df F p-value
s(CC) 4.34 5.76 4.065 <0.01
s(NetParam) 8.90 8.98 17.93 <0.01
s(CC,NetParam) 26.90 27.00 2996.83 <0.01
s(ModelParam) 8.99 9.00 302.42 <0.01
s(CC,ModelParam) 27.00 27.00 258.27 <0.01

ables are fixed. These two terms consider the effect of CC towards Non-Zero NPV, conditional on

the value of Network Parameter and Model Parameter.

The maximum positive effect from CC and Network Parameter occurs when CC is between [0.25,0.3]

and Network Parameter is between [0.22,0.28]. The maximum negative effect falls at the mini-

mum values of CC and Network Parameter, as suggested at the bottom-left corner in plot 3 from

Figure 4.6, indicated by the dark blue color.

The maximum positive effect of the CC and Model parameter interaction term, indicated by the

bright yellow color, occurs when CC is at both its minimum and maximum values while the Model

Parameter ranges from [0.5,0.6]. The maximum negative effect largely depends on the Model

Parameter, either at its maximum value or minimum value, as shown in plot 5 from Figure 4.6

In addition, the changes in NPV differ based on the model type, as shown in the bottom-right

corner in Figure 4.6. Specifically, on average, model ICM can increase the Non-Zero NPVs by

almost 172 units compared to the reference model LFTM when other variables are fixed. The

amount of changes for model LATM is even greater, around 73 units.

The same conclusion as Figure 4.4 is also observed for the response Final Infection, as shown in

Figure 4.8. When the filter condition for NPV is applied to be greater than 0, there are almost no
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This image contains 6 plots that depict the GAM output for response variable NPV. Top-left plot shows how the effect of CC on NPV (on y-axis) is behaving as the value of CC (on x-axis) is changing. We see that this is non-linear and goes up and down as CC increases. Top-middle plot shows how the effect of network parameter behaves as the network parameter is changed. We can observe that this line has a shape of a letter V. Contour plot on top-right shows how the effect of the interaction of CC and network parameter is affected by CC and network parameter. We can see that middle values of CC and middle values of network parameter gives the highest effect on the NPV. Bottom-left plot shows how the effect of model parameter changes over the values of model parameter. We can see this graph has a parabola shape. Contour plot on bottom-middle shows how the effect of the interaction of CC and model param is changed with CC and model param, and we see that middle values of model param and extreme values of CC gives high NPV values. The bottom-right plot shows how the model type affects the effect on NPV and we see that ICM model type has a high effect on NPV compared to others.

Figure 4.6: GAM Plots for Model 1

Table 4.2: Final Infection and mean CC Associations by Model Type in Model 2

Parametric coefficients Estimate Std. Error t value Pr (t)
(Intercept) 0.51 <0.01 562.95 <0.01
ModelICM 0.17 <0.01 144.36 <0.01
ModelLATM 0.07 <0.01 43.76 <0.01
Approximate significance of smooth terms edf Ref.df F p-value
s(CC) 4.69 5.82 2.01 0.06
s(NetParam) 6.05 7.28 4.29 <0.01
s(CC,NetParam) 26.21 27.00 1626.62 <0.01
s(ModelParam) 8.99 9.00 245.93 <0.01
s(CC,ModelParam) 27.00 27.00 272.80 <0.01

average differences between model types and network types.

We also conducted the same analysis with Final Infection as the response, using the smooth term

CC as one of the variables of interest (Model 2). Under the same settings, every term, other than

the smooth Network Parameter term, is significant towards the Final Infection, as shown in Table

4.2. Model types are significant at the α = 0.05 level; however, the magnitude of the changes

towards Final Infection between models is much smaller compared to the responses of Non-Zero

NPV due to scale differences.
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This image contains 6 plots that depict the GAM output for response variable final infection. Top-left plot shows how the effect of CC on final infection (on y-axis) is behaving as the value of CC (on x-axis) is changing. We see that this is non-linear and goes up and down as CC increases. Top-middle plot shows how the effect of network parameter behaves as the network parameter is changed. We can observe that this line has a shape of a letter V. Contour plot on top-right shows how the effect of the interaction of CC and network parameter is affected by CC and network parameter. We can see that middle values of CC and middle values of network parameter gives the highest effect on the final infection. Bottom-left plot shows how the effect of model parameter changes over the values of model parameter. We can see this graph has a parabola shape. Contour plot on bottom-middle shows how the effect of the interaction of CC and model param is changed with CC and model param, and we see that middle values of model param and extreme values of CC gives high final infection values. The bottom-right plot shows how the model type affects the effect on final infection and we see that ICM model type has a high effect on final infection compared to others.

Figure 4.7: GAM Plots for Model 2

We can observe that the smooth effect of CC in Model 2 has a similar shape as in Model 1, as

shown in the top left plot of Figure 4.7. The maximum negative effect falls at the minimum values

of CC and the maximum values of the Network Parameter, as suggested at the top left and bottom

right corners in plot 3 from Figure 4.7. The maximum positive effect of the CC, Model parameter

interaction term is when CC and the Model Parameter are at medium value ranges, specifically

between 0.25 and 0.3, as indicated by the bright yellow color in the middle. The same trend for

the interaction term between CC and Model parameter in Model 1 is observed in Model 2. The

maximum positive effect is at either the minimum or the maximum value of CC, as indicated by

the bright yellow color in the middle bottom plot in Figure 4.7. The maximum negative effect is

at either the minimum or the maximum value of Model Parameter, as indicated by the dark blue

color. When compared with the reference Model LFTM, Model ICM can increase the Non-Zero

NPV by 0.17 units when all other variables are fixed, and that number increases to 0.29 for Model

LATM, as also indicated in the bottom right corner plot in Figure 4.7.

To check the model assumptions, we inspected the residuals for both Table 4.1 and Table 4.2,

which appeared to follow a relatively normal distribution based on the histograms and QQ-plots,
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as seen in Figure 4.9 and 4.10. At the same time, the meaningful associations discovered in this

study can provide insights into NPV and the processes of Final Infection.

In addition to the two analyses mentioned above, we fitted the same two models using Network

Type instead of Model Type. Mean CC, our point of interest, is significant at the 0.05 level in both

Model 3 and Model 4, shows a similar smoothing effect on both responses but with less curvature

in the middle range. More details for Model 3 can be found in Table 4.5, Figure 4.11, and Model

4 results are available in Table 4.6 and Figure 4.12.

Table 4.3 and Table 4.4 below present two simpler models (as shown in equation 4.5 and equation

4.6) in which the predictors include only Model Types, CC, and the interactions between Model

Types and CC.

NPVi =α + f1(CC_i)+ f2(Modeli)+ f3(CC_i,Modeli)+ εi (4.5)

Final Infectioni =α + f1(CC_i)+ f2(Modeli)+ f3(CC_i,Modeli)+ εi (4.6)

This is designed to confirm the first hypothesis that, without all other predictors, the effect of

CC on both NPV and Final Infection depends on the Model Types. Specifically, without Model

Parameter and Network Parameters, a larger CC leads to a bigger increase in both NPV and Final

Infection, as shown in plot 1 (top left) in Figure 4.13. Conditioned on the model types, CC affects

NPV negatively, as shown in plots 2, 3, and 4 in Figure 4.13. However, the negative impact is

consistent across the entire CC interval for Model ICM. Nevertheless, there is a positive trend for

Model LFTM when CC is greater than 0.4, and the same applies for Model LATM when CC is
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less than 0.1. Similar observations can be made for Final Infection, as shown in Figure 4.14.

Table 4.3: NPV and mean CC Associations by Model Type in Model 1(a)

Parametric coefficients Estimate Std. Error t value Pr (t)
(Intercept) 416.45 0.92 452.40 <0.01
ModelICM 233.67 1.16 201.90 <0.01
ModelLATM 202.26 1.50 135.10 <0.01
Approximate significance of smooth terms edf Ref.df F p-value
s(CC) 8.63 8.74 489.61 <0.01
s(CC):ModelLFTM 8.04 8.60 65.38 <0.01
s(CC):ModelICM 0.75 0.75 178.74 <0.01
s(CC):ModelLATM 8.68 8.75 258.90 <0.01

Table 4.4: Final Infection and mean CC Associations by Model Type in Model 2(a)

Parametric coefficients Estimate Std. Error t value Pr (t)
(Intercept) 0.47 < 0.01 476.90 <0.01
ModelICM 0.21 < 0.01 172.50 <0.01
ModelLATM 0.18 < 0.01 114.40 <0.01
Approximate significance of smooth terms edf Ref.df F p-value
s(CC) 8.60 8.73 351.81 <0.01
s(CC):ModelLFTM 7.88 8.53 61.79 <0.01
s(CC):ModelICM 0.75 0.75 242.65 <0.01
s(CC):ModelLATM 8.72 8.75 157.40 <0.01

Table 4.5: NPV and mean CC Associations by Network Type in Model 3

Parametric coefficients Estimate Std. Error t value pr (t)
(Intercept) 399.81 7.56 52.92 <0.01
NetTypeBARABASI 164.78 23.36 7.054 <0.01
NetTypeRANDOM 381.07 15.60 24.44 <0.01
Approximate significance of smooth terms edf Ref.df F p-value
s(CC_mean) 6.29 7.37 10.29 <0.01
s(NetParam) 1.00 1.00 0.49 0.49
s(CC_mean,NetParam) 25.41 27.00 9.15 <0.01
s(ModelParam) 9.00 9.000 227.49 <0.01
s(CC_mean,ModelParam) 27.00 27.00 247.92 <0.01
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This image shows four graphs, all containing boxplots of final infection. The top graphs show when data was not filtered for non-zero NPV and the bottom is when NPV > 0. The top-left graph shows the final infection value distributions by each DOI model. ICM has high final infection values and both LATM and LFTM have their boxes touching the zero value. The bottom-left graph shows the final infection distributions by each DOI model when zero NPV runs were filtered out. In here, both the ICM and LATM have high final infection values. The top-right graph shows final infection distributions by each network type. All three network types have kind of similar distributions. The bottom-right graph shows final infection distributions by each network type when zero NPV runs were filtered out. In here, we clearly see a difference in the Random networks, it produces high final infection values compared to others.

Figure 4.8: Top: All NPV, Bottom: NPV>0

This image shows the histogram of residuals from model 1 and it is close to bell shaped, symmetric normal distribution with relatively large variance. The assumption of normality of the residuals is meet. This image shows the Quantile-Quantile (QQ) plot of residuals from model 1 and it is close to theoretical QQ plot. This also indicates that the assumption of normality of the residuals is meet.

Figure 4.9: Residual and QQ-plots for Model 1

This image shows the histogram of residuals from model 2 and it is also close to a normal distribution, however, with very small variance. This indicates assumption of normality of the residuals is meet. This image shows the Quantile-Quantile plot of residuals from model 2, though there is some departure from theoretical quantile, it is still close to theoretical QQ plot. This also indicates that the assumption of normality of the residuals is meet.

Figure 4.10: Residual and QQ-plots for Model 2

Discussion

In this study, we examined the impact of CC on both NPV and Final Infection, adjusting for the

three Model Types and three Network Types. Under our conditions, CC significantly influenced
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This image contains 6 plots from the GAM output for response variable NPV. Top-left plot shows how the effect of CC on NPV (on y-axis) is behaving as the value of CC (on x-axis) is changing. We see that this is non-linear and goes up and down as CC increases. Top-middle plot shows how the effect of network parameter behaves as the network parameter is changed, and it is a linear positive relationship. We can observe that this line has a shape of a letter V. Contour plot on top-right shows how the effect of the interaction of CC and network parameter is affected by CC and network parameter. We can see that middle values of CC and middle values of network parameter gives the highest effect on the NPV. Bottom-left plot shows how the effect of model parameter changes over the values of model parameter. We can see this graph has a parabola shape. Contour plot on bottom-middle shows how the effect of the interaction of CC and model param is changed with CC and model param, and we see that middle values of model param and extreme values of CC gives high final infection values. The bottom-right plot shows how the network type affects the effect on NPV and we see that Random network type has a high effect on NPV compared to others.

Figure 4.11: GAM Plots for Model 3

Table 4.6: Final Infection and mean CC Associations by Network Type in Model 4

Parametric coefficients Estimate Std. Error t value Pr (t)
(Intercept) 0.46 < 0.01 176.53 <0.01
NetTypeBARABASI 0.16 0.01 15.77 <0.01
NetTypeRANDOM 0.33 < 0.01 100.38 <0.01
Approximate significance of smooth terms edf Ref.df F p-value
s(CC_mean) 8.93 8.97 59.95 <0.01
s(NetParam) 1.00 1.00 20.36 <0.01
s(CC_mean,NetParam) 9.71 27.00 9.35 <0.01
s(ModelParam) 9.00 9.00 206.01 <0.01
s(CC_mean,ModelParam) 27.00 27.00 262.74 <0.01

Non-Zero NPV, with a more negative effect when CC was either small or large. In the middle

range of CC, a positive effect was observed, and the direction of the effect fluctuated around the

median value. However, the CC effect on Final Infection, under the same conditions as the previous

model, was negatively confounded by Model Types. The same parabolic-shaped smoothing effect

observed in Model 1 was also present in Model 2, with the maximum positive effect of CC and

Parameters occurring in the middle range for both models.

Our results support the hypothesis that the CC’s effect on both NPV and Final Infection is condi-

tionally dependent on the Model Parameter and Network Parameters at the 0.05 significance level.
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This image contains 6 plots from the GAM output for response variable final infection. Top-left plot shows how the effect of CC on final infection (on y-axis) is behaving as the value of CC (on x-axis) is changing. We see that this is non-linear and goes up and down as CC increases. Top-middle plot shows how the effect of network parameter behaves as the network parameter is changed, and it is a linear positive relationship. We can observe that this line has a shape of a letter V. Contour plot on top-right shows how the effect of the interaction of CC and network parameter is affected by CC and network parameter. We can see that middle values of CC and middle values of network parameter gives the highest effect on the final infection. Bottom-left plot shows how the effect of model parameter changes over the values of model parameter. We can see this graph has a parabola shape. Contour plot on bottom-middle shows how the effect of the interaction of CC and model parameter is changed with CC and model parameter, and we see that middle values of model parameter and extreme values of CC gives high final infection values. The bottom-right plot shows how the network type affects the effect on final infection and we see that Random network type has a high effect on final infection compared to others.

Figure 4.12: GAM Plots for Model 4

This image contains 5 plots from the GAM output for response variable NPV. The predictors are only CC mean, Model type. As we can see from top left figure that the CC has a positive effect and with a steady slope from the small value to the larger value. The top middle, top right and the bottom left indicates the CC effect by model types. They are all negatively associated with the response, however, there is a increasing trend when CC is small for the model type LATM as shown on the bottom left. The bottom-middle plot shows how the model type affects the effect on NPV and we see that ICM model type has a high effect on NPV compared to others.

Figure 4.13: GAM Plots for Model 1 (a)

The effect of CC on NPV is dependent on the Model Type, as shown in Table 4.3 and Figure 4.13.

Similarly, this dependence on Model Type applies to Final Infection, as indicated in Table 4.4 and

Figure 4.14.

Moreover, the insights from this study explain the relationship between NPV (and final infection),

analyzed through CC, DOI model, and network type. This comprehensive analysis enhances our
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This image contains 5 plots from the GAM output for response variable final infection. The predictors are only CC mean, Model type. As we can see from top left figure that the CC has a positive effect and with a steady slope from the small value to the larger value. The top middle, top right and the bottom left indicates the CC effect by model types. They are all negatively associated with the response, however, there is a increasing trend when CC is small for the model type LATM as shown on the bottom left. The bottom-middle plot shows how the model type affects the effect on final infection and we see that ICM model type has a high effect on final infection compared to others.

Figure 4.14: GAM Plots for Model 2 (a)

understanding of how clustering (existence of communities) affects the information diffusion dy-

namics concerning network types and diffusion models.
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CHAPTER 5: MEASURING INFLUENCE IN ONLINE SOCIAL

NETWORKS

Online social networks such as Twitter have become a platform enabling users to share information

and influence public opinion. Understanding the dynamics of user interaction on Twitter, such as

tweeting, retweeting, and mentioning, is essential to understanding how information spreads and

what factors contribute to an individual’s influence on the platform.

This part of our research aims to propose a meaningful method of identifying influential users in

platforms such as Twitter. We propose a methodology that utilizes Transfer-entropy as a way of

measuring importance of users in the information diffusion space. Then we develop a methodology

for comparing various influence measures of OSNs by using the user adoption as a reference. such

as measured by various methods such as the number of received retweets, number of received

mentions, and the number of posted Tweets. Further, we focus on the fact that influence changes

over time. Therefore, influence measurement of a user should be changing over time. For example,

the number of received retweets of a user would be different each day.

Methodology

We hypothesize that time periods in which certain users become influential, their influence corre-

late with the growth of the volume of tweets, suggesting that the influential power of those certain

users have amplified the information cascade. One way to measure influence is the number of

retweets a certain user receives. At each time interval, a user receives a certain total number of

retweets, which shows the user’s influence. We refer to this measurement as Received Retweet

Count (RRC) in this text. RRC was used as a influence measurement in previous work we dis-
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cussed chapter 2 [12, 3]. Another way that influence could be measured is by using TE as used

by [42]. However, in their work they calculated TE of the whole dataset at once. In our approach

we want to have a TE value for each user at each time interval. Therefore, we should calculate TE

continuously as we move forward through time, step by step through time intervals.

Data Collection

Initially, we gathered Tweets1 discussing wildfires directly through the Twitter API, collecting

data from the entire Twitter platform from January 1st to April 1st, 2022 (120 days of data). The

dataset we collected ended up having approximately 3500 unique users. Afterward, we collected

all the Tweets these users created in the same period (January 1st to April 1st, 2022). This data

set is a complete dataset that allows us to track all of the Twitter activity of these users during the

mentioned period. From this extensive dataset, we selected three highly shared hashtags that cover

distinct topics for creating three datasets for our analysis: #ukraine (56430 tweets), #climateaction

(23629 tweets), and #covid19 (35109 tweets).

Transfer-entropy based measurement

Transfer-entropy (TE), introduced by Schreiber [41], is a information theoretical measurement

based on Shannon entropy [43]. Given two random processes, TE quantifies how much uncer-

tainty in predicting the next state of one process is reduced by incorporating the histories of both

processes. In other words, TE shows weather it becomes more easy to predict a target process

when we use the history of both the target process and a source process. The value of TE obtained

is in the range [0,1] and it shows the strength of the relationship. TE is not-commutative, in other

1The term Tweets here is used loosely to represent all forms of Twitter posts such as tweets, retweets, quoted
tweets, and replies.
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words TE is directional.

Let Xt and Yt be the random processes (t ∈ N). Then Transfer-entropy from X to Y , T EX→Y is

calculated as given in equation 5.1 [41].

T EX→Y = ∑P(Yt+1,Y
(k)

t ,X (l)
t ) log

P(Yt+1|Y
(k)

t ,X (l)
t )

P(Yt+1|Y
(k)

t )
, (5.1)

Y (k)
t denotes a sequence of history of length k of the Y starting from tth time-step as: (Yt ,Yt−1, ...,Yt−k+1).

k and l are history lengths of Y and X respectively. In this study we keep the history lengths equal,

and therefore k = l. For the purpose of our study we rewrite the same equation as follows, denoting

the k as a parameter:

T EX→Y (k) = ∑P(Yt+1,Y
(k)

t ,X (k)
t ) log

P(Yt+1|Y
(k)

t ,X (k)
t )

P(Yt+1|Y
(k)

t )
, (5.2)

For each user in a dataset, we begin by extracting the activity time series, identifying all timestamps

when the user posted a Tweet. Next, we perform a resampling at a frequency f , dividing the entire

time span of the dataset into bins of size f . This results in a resampled time series of user activity,

where each time-step is marked with a 1 if the user tweeted during that interval, and a 0 if not. In

this study we have chosen the resampling frequency as f = 1 Day. This binary time-series of each

user is used for calculation of TE by applying it to the equation 5.2.

The dataset we have gathered is 120 days long. Therefore, with 1 Day time intervals, we have

120 steps. We calculate TE between all ordered pairs of users for time-step t by using a growing

window which always starts at the time-step 0 and ends at time-step t. Therefore, the amount of

influence from user A to user B at time t is T EA→B(t). We calculate the influence measurement of
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user A at time-step t by taking the total outgoing TE, which we denote as T T EA(t). In the equation

5.3 B is all potential neighbors of A which is all users except A. This calculates the total of TE

values for all outgoing edges of node A.

T T EA(t) = ∑
allB

T EA→B(t) (5.3)

With the above equation 5.3, we calculate the TE based influence measurement called the Total

Outgoing Transfer Entropy (TTE). For the rest of the text, we denote the received retweets count

as RRC which we mentioned as the traditional method of measuring influence.

For comparing the TTE and RRC we use volume curve (which is the volume of Tweets over time)

and the adoption curve (which is a curver overtime representing the number of new users joined to

the conversation at the given time interval).

Statistical Analysis

Adoption curve reflect the impact of social influencers and predicting the adoption curve can guide

the informative decisions [8]. From our Modeling Information Pathways (MIPs) perspective,

adoption curve indicates the information diffusion when it refers to the topics discussed on the

social media platforms. MIPs project aims to understand the information flow that promote early

detection of the influential messages, and accurately predict the adoption curve can help to guide

the early stage identification.

We are interested in identifying an effective measurement that can accurately predict the adop-

tion curve based on observations from a set of individuals. Specifically, we aim to compare the

following two measurements: Total Transfer Entropy (TTE), and Received Retweet Count (RRC).
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For example, the scatter plot on the left of Figure 5.1 shows the raw adoption observations about the

conversations related to the #ClimateAction, with the red line representing the smoothed adoption

curve. On the right of Figure 5.1, the total transfer entropy over time is displayed for 487 users

over a 120-day period since the eruption of the event. We are investigating the potential of using

TTE curves to predict the adoption curve.

Figure 5.1: Adoption Curve and Total Transfer Entrophy Over Time of #ClimateAction

As shown on the left of Figure 5.2, the mean TTE curve closely resembles the trend of the adoption

curve over time. Predicting using users who reveal the least amount of departure from the mean

curve is promising, as indicated by the right graph in Figure 5.2.

Figure 5.2: Adoption Curve Prediction Using Mean TTE Curve of #ClimateAction

However, the adoption curve displays distinct characteristics depending on the information cycle

as well as the influencers. For example, in Figure 5.3 below, the same 487 users are discussing

Ukraine, a different topic from the Climateaction. Unlike the topic of the Climateaction, both the
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adoption curve and volume counts for the topic Ukraine peaked near the end of the study time.

The topic-dependent adoption curve proves to be challenging to accurately model, and it is critical

to identify proper metrics that can capture the variability of the adoption curve regardless of the

topics.

Figure 5.3: Adoption Curve and Volume Curve of #Ukraine

We also explore the possible association between RRC and the adoption curve. In general, the di-

rection of movement from RRC does not align well with the shift of the adoption curve compared

to TTE. However, a potential non-direct association might be possible to connect the RRC with

the adoption curve, and that is one of the future research directions. In this paper, we juxtapose the

effective predictions from TTE and RRC in terms of L2 distance [36], which is used to evaluate

the closeness of the two curves. Specifically, denote the (Y1, t1 j), · · · ,(Yi, ti j) is the observed adop-

tion values over a compact interval T where i = 1, · · · ,n, j = 1, · · · ,m, we smooth the discretely

observed adoption observations and apply a roughness penalty. Then, we calculate the mean TTE

curve from individual TTE over time, and the mean RRC curve from individual RRC curves. The

L2-distance between the adoption curve Z(t) and the mean TTE curve Z̃(t) or mean RRC curve

Z∗](t) is defined as:

d =
∫ 1

0
{Ẑ(t)− Z̃(t)}2dt.

We aim to compare the closeness of the adoption curve prediction using the mean curve of the

TTE as well as the mean curve of RRC. Additionally, we are interested in identifying a group of
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important users from the individuals in the sample that can explain the variability of the adoption

curve.

In order to smooth the discrete adoption curve with a dense sampling design, parameter estimation

is generally estimated through penalized cubic spline functions [55]. In particular, we consider

the smoothed adoption curves can be estimated through the linear combination of basis functions

where the only unknown is the coefficients of the basis functions. Let Bm is the M-dimensional vec-

tor with the mth element equal to Bm(ti j) and β is the M-dimensional vector with the mth element

equal to βm, we consider the adoption curve such that Z(t) = ∑
M
m=1 βmBm(t). To accommodate a

large class of adoption curves, the dimension of the basis M is chosen large and the parameters

β are estimated using a penalized criterion to penalize overfitting [36, 13]. Define the penalized

log-likelihood function by

pℓ(β ) =−2ℓi(βi)+λβSβ (5.4)

where S is an M ×M known penalty matrix, representing the smoothness for the adoption curve,

and λ is a penalty parameter that ensures the smoothness of the adoption curve is captured and to

avoid the overfitting with too much curvature [54]. We use the common second order penalty with

the (m,m′)th element given by
∫
{B

′′
m(t)B

′′
m′(t)}dt, where B

′′
m(t) is the second derivative of Bm(t),

for m = 1, . . . ,M. The estimates β̂ are obtained by minimizing the penalized criterion pℓi(β ),

and the optimal value of the penalty parameter λ is selected through Generalized Cross Validation

(GCV) using Maximum Likelihood-based approach [56].

For the mean TTE curve and the mean RRC curve as well as the covariance estimation to identify

the individual variabilities, we use the fast Covariance Estimation for High-dimensional Func-

tional Data for dense grid introduced in [57] to perform the functional principal component anal-

ysis (FPCA), where a fast implementation of the sandwich smoother is adopted and a two-step

62



procedure that first applies singular value decomposition to the data matrix and then smoothes the

eigenvectors. FPCA allows us to estimate the mean function that quantifies the overall behavior

of either TTE or RRC as well as the covariance function of each which evaluate the variability of

each individual from the mean curve.

Specifically, let the FPCA be

Z̃(t) = µ̂(t)+
K

∑
k=1

ξ̂ φ̂k(t)

using a large percentage of explained variance (PVE) such as 95%, where µ̂(·) is the smooth es-

timated mean function that can be used to calculate the L-2 distance between the adoption curve,

φ̂k(·) is the kth estimated eigenfunction and ξ̂k is the predicted FPC score. In our case, we selected

the first FPCA scores that accounts for at least 87% of the varibility to identify the group of rep-

resentative users. To be specific, the high varibility users is defined as the top users who have the

largest ξ̂1 and the low varibility users is defined as the last few users who have the smallest ξ̂1.

Results

We investigate three topics, Wildfire, Ukraine War as well as Covid19, for the same group of

individuals. These individuals are selected as follows:

For each topic, we estimated the adoption curve, using the mean TTE curve and mean RRC curve

to predict the adoption curve, calculate the L2 distance bwtween the mean curve and the adoption

curve, then we selected a subset of individuals who might have the potential to predict the adoption

curve without compromising too much information. The selection criteria includes the following:

1. The high varability users
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2. The low variability users

3. Top 10% TTE sum for the first 14 days of period since the event

4. First 10% of the individuals

The L2 distance is calculated using the overall mean curve and the mean curve from the above four

criterias. We compare the results of each setting and below is the summary figure of each topic.

Figure 5.4: Climateaction TTE prediction use selected individuals
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Figure 5.5: Climateaction RRC prediction use selected individuals
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Figure 5.6: Ukraine TTE prediction use selected individuals
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Figure 5.7: Covid19 TTE prediction use selected individuals

Overall, TTE predicts the adoption curve relatively better compared to the RRC prediction under

our scenario due to the fact that TTE curve in general follows the trend of the adoption curve in

both direction and the raw value. Explore the association between the RRC as well as the adoption

curve can be an interesting next step.

Table 5.1 is the L2 distance between the adoption curve as well as the mean curves from each

setting. The smaller the value is, the better the prediction is. We can see that the L2 distance

between the adoption curvea and mean TTE curves are smaller compared to the RRC across all

topics and all scenarios. Topic Climateaction and Covid19 peak in the begining and they also both

have smaller L2 TTE distances compared to Ukraine. In some cases the RRC value looks better

than the TTE value, the actual curve given by RRC is not useful (curve is closer to 0 in all times,

thus the L2 distance better than the TTE) as shown in the respective figures. Therefore, we can
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conclude from this analysis that TTE is a better measurement than RRC when comparing their

strengths in directly estimating the user adoption curve.

Table 5.1: L2 distance between the adoption curve and mean curves

Climateaction Ukraine Covid19

L2 between adoption curve TTE RRC TTE RRC TTE RRC

Overall mean curve 1.71 3.33 24.46 25.13 22.40 17.54

High varability users 2.44 3.89 41.08 23.68 15.11 18.78

Low variability users 3.98 4.55 24.91 26.49 33.67 17.12

Top 10 TTE Sum 3.24 3.47 24.90 25.00 33.95 17.50

First 10 percent 1.90 4.70 24.82 26.55 23.86 18.76

Discussion

We observe that TTE is a smoother curve. The subset curves generated using TTE curves show

a closer direct relationship with each dataset’s adoption curve. Meanwhile, RRC is more of a

discrete curve showing different signals. We were unable to find a direct relationship between

RRC and the adoption curve. It could be either that RRC doesn’t have a useful relationship with

the adoption curve or that the relationship between RRC and the adoption curve is more complex.

The direct relationship we have drawn using the RRC and TTE shows that TTE is far more helpful

in directly estimating the adoption curve than RRC. This leads us to a new understanding of the

validity of the Transfer Entropy-based measure, TTE, in identifying influential actors within online

social networks regarding information diffusion and adoption.

Regardless of the results we also see a lot of parameters that could have been adjusted differently

such as the sampling frequency f , and history length k. Potential immediate future work resides in
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the area where different parameter settings are explored for RRC.
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CHAPTER 6: CONCLUSIONS

With the aim of comparing conceptually different models under a common framework, we for-

mulated a parametric general model of information diffusion. Using this formulation we identified

two important dimensions which led to creating a conceptual framework based on two properties of

models of information diffusion: neighbor knowledge and stochasticity. This framework allowed

us to classify existing classical DOI models into mechanistically distinct classes. We compared the

dynamics of these conceptually different DOI models on directed scale-free networks in order to

identify whether the underlying diffusion characteristics of each model differed.

We found that BRRM and DWM, regardless of having different conceptual designs, converge to

a the same final state wherein all reachable nodes are infected. Furthermore, the sensitivity of

their parameters for final state is only determined by the network parameters. Meanwhile, their

model-specific parameters are able to alter the speed of information diffusion.

Through analysis of linear threshold models (LATM and LFTM) and their stochastic counterparts

(SLATM an SLFTM) we learnt how adding stochasticity to a model may not always change the

final state. In general, a stochastic version of a model created by appending a probability check

to the final step of the existing rule will yield a model that has its final state bounded by the final

state of the original model. If the added stochastic step is allowed to run at every time-step, this

new stochastic model will be slower than the original one, will take more time-steps to converge,

and the sensitivity of the stochastic probability parameter with respect to both φF and NPV will be

close to zero. However, the sensitivity to other parameters could change.

We conclude that despite being conceptually similar, DOI models may exhibit significantly differ-

ent behavior in terms of final state, speed of infection diffusion, and sensitivity to final fraction of

spread. Models belonging to the same conceptual class may produce completely different simula-
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tion outcomes (e.g., BRRM vs SLFTM, ICM vs DWM, and ICM vs SLATM), while models be-

longing to different classes may yield similar outcomes (e.g., BRRM vs DWM, LFTM vs SLFTM,

and LATM vs SLATM ). This suggests that the behavior of models cannot be solely predicted

by their conceptual class, but rather requires a more detailed analysis of their specific dynamics.

Hence, it is important to investigate the unique behavioral characteristics of a model (despite the

conceptual design) when choosing an appropriate DOI model for a specific application.

The investigation into the impact of clustering coefficient (CC) on NPV and Final Infection un-

veiled a complex interplay between CC, model types, and network parameters. The observed

conditional dependence of CC’s effects emphasizes the complex relationship between network

topology and diffusion dynamics, highlighting the role that clustering plays in influencing infor-

mation spread.

In the follow up study we investigate the effect of clustering on the outcomes of three different DOI

models (ICM, LATM, and LFTM) under three network structure types (R, SW, and SF). Again,

the final fraction of infection (φF ) and net present value (NPV) were considered as the outcomes of

interest. Clustering of each network were measured using the mean clustering coefficient. Through

statistical analysis, we confirm that the outcomes of DOI depend on clustering and that the effect of

clustering (on both NPV and φF ) depends on network parameters and model parameters. Moreover,

we find statistical evidence that the model type determines the effect of clustering. Our findings

are a hint that both DOI model type and clustering are important in determining the final outcome

of a DOI run. Furthermore, it’s essential to acknowledge that network parameters significantly

influence the impact of clustering on diffusion outcomes. We plan to continue this investigation on

empirical networks as part of our future work, with the intention of expanding our research in this

area.

Lastly, we introduced Total Outgoing Transfer Entropy (TTE) as a Transfer Entropy-based mea-
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sure for measuring influence in a Twitter dataset. Comparing TTE versus RRC revealed TTE’s

ability to estimate adoption curve. This contrast between TTE and RRC offers a fresh perspec-

tive on assessing influence and adoption, marking TTE as a more direct and reliable metric for

understanding information diffusion trends.

Future Work

The experimental analysis in this work covers the entire parameter space of all models in an un-

biased manner since goal is to compare the outcomes of the models across the parameter space

and gain theoretical insights. However, in real-world scenarios, the parameter space of the actual

data may follow some probability distribution. Therefore, when applying these models to specific

contexts, it is crucial to understand the underlying parameter distribution of that context before

conducting a similar experimental analysis. This ensures that the results are more representative

of the actual scenario and improves the applicability of the models in real-world situations.

An additional avenue for future research would involve conducting a dis-aggregated analysis of the

parameter space to examine its impact on the final outcome of each model. By conducting such

an analysis, we can gain deeper insights into the specific contributions and interactions of different

parameters in shaping the final outcomes of the models.

In above discussions we have shown how models can have different rates of infection at different

stages of the simulation regardless of the number of final infected nodes (e.g., compare how BRRM

infects a greater number of nodes within early stages but lags behind compared to another stochas-

tic model such as SLATM after φF ≥ 65%). This results indifferent shapes of adoption curves.

Studying the patterns of the adoption curves in more detail may be a possible future work in order

to classify capabilities of different models. Another possible aspect to be investigated is the depth
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and breadth of the subnetwork of infected nodes as a characteristic of models. For instance, do

certain properties of the network structure, e.g. degree distribution, make it more likely for a node

to become infected in one of these models versus the other ones. An expansion on this would be

the notion of “structural virality”[20, 32]. Investigating the relationship between these structures

and model infection rates should be investigated in future work.

Finally, there is a lot of possible immediate future work on top of the TTE influence measure. It

could be compared against other existing measures such as centrality based measures. Also it is

critical to perform the comparison with varying sample rates, history lengths, and also with moving

windows.
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