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ABSTRACT

We introduce a financial model for limit order book with two main features: First, the limit orders
and market orders for the given asset both appear and interact with each other. Second, the high
frequency trading (HFT, for short) activities are allowed and described by the scaling limit of
nearly-unstable multi-dimensional Hawkes processes with power law decay. The model eventually
becomes a stochastic partial differential equation (SPDE, for short) with the diffusion coefficient
determined by a Volterra integral equation governed by a Hawkes process, whose Hurst exponent
is less than 1/2, which makes the volatility path of the stochastic PDE rougher than that driven by
a Brownian motion. We have further established the well-posedness of such a system so that a

foundation is laid down for further studies in this direction.
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CHAPTER 1: INTRODUCTION

A limit order book (LOB, for short), a list of prices and volumes for a traded asset, can be used as
a mechanism to facilitate trades in the financial market: traders can place limit orders in the order
book with pre-determined prices and volumes waiting for execution as well as submit market orders
that are executed immediately against the existing limit orders by the best available prices. For each
time ¢, the LOB provides a snapshot of the market by presenting the volumes of outstanding limit
orders at each price level. The price level increments by the minimum price change is called the
tick size. In the LOB example below, the tick size is 1 cent. The green columns visualize the
volumes of the bid orders (or, buy orders) and are negative by convention. The red columns show
the volumes of the ask orders (or, sell orders) and are positive by convention also. The highest bid
offer, $100.00 in the example, is called the bid price, while the lowest ask offer ($100.01) is called
the ask price. The mid-price of a LOB is often calculated as the average of the bid and ask prices,

which is $100.005 in the example below.

Since the LOB dynamics shows the supply and demand of a certain asset in a fundamental way
and forms the price dynamics of this asset, there has been an increasing interest in modeling the
LOB dynamics. However, most modeling attempts are hard to be analytically or computationally

tractable [40] [18] [46] [8].

Cont and Miiller [13] proposed a model in which the dynamics of the centered order book den-
sity is described by a stochastic partial differential equation (SPDE, for short) with multiplicative
Gaussian noise. We will refer to this model as the Cont-Miiller model (C-M model, for short) in
the rest of this paper. The centered order book density, u (¢, x), is the volume per unit price (tick
size) of the limit order at time ¢ and the position x is the distance away from the mid-price, with

x € [—L, L] for some L > 0. It is easy to see that rational investors will not submit limit orders



Illustrative Limit Order Book at 10:00 am
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Figure 1.1: Illustrative LOB at 10:00 am

far away from the mid-price, and that all the previously-submitted orders were cancelled as soon
as their price levels became too far away from the mid-price. This assumption is reflected by the

setting that u(t,z) = 0 when = ¢ (—L, L) (See [13]).

The C-M model that presents the dynamics of centered book density u(t, z) is as follows ([13],



with small modifications):
du(t,z) = [naAu(t, x) + B Vu(t, x) — aqu(t, x) + f“(x)] dt + oau(t, z)dW(t), z € (0,L)

du(t,z) = [nbAu(t, x) — BpVu(t,z) — apu(t, z) — fb(x)} dt + oyu(t, z)dW*(t), x € (—L,0)
u(t,z) <0, x<0, u(t,x) >0, x>0
u(t,04) = u(t,0—) =0, u(t,—L) =u(t,L) =0,

where 74, My, Ba, B, Oa, Op, g, g, > 0 are some constants, ¢, f° : [—=L, L] — [0,00) are given
functions, and (W4, W?) is a two-dimensional Brownian motion (with possibly correlated compo-
nents). In these equations, non-high frequency trading (non-HFT, for short) order submissions are

modeled by f(x) and f°(z), all kinds of non-HFT order cancellations by
naAu(t, ) + 8. Vu(t,x) — agu(t, x)l, [nbAu(t, x) — BpyVu(t, z) — apult, ac)],

and high frequency trading (HFT, for short) order dynamics by o,u(t, z)dW*(t) and opu(t, z)dW°(t),
on the ask and bid sides respectively. We will provide detailed explanations of the relevant terms

when introducing our model in Section 3.

The C-M model [13] has both the analytical and computational tractability for applications, and
the price dynamics was naturally derived from the model. However, there are two main limitations

in that model.

First, the C-M model did not reflect the effect to the centered order book density from market
ask/bid orders. Indeed, the only terms regarding order submissions are f*(z) and f°(z), which
only increase the volumes on the ask and bid sides, whereas the market order submissions affect

the LOB in a different way since they decrease the LOB volumes. Thus, the market orders should



be taken into account.

Second, the C-M model used multiplicative Gaussian noise terms to model the order dynamics
from HFT at coarse-grained time scale of the average (non-HFT) market participants. This im-
plies that each increment of the HFT is independent of the previous HFT incremental changes.
However, many evidence shows that HFT markets are highly endogenous, meaning HFT orders
tend to generate other HFT orders. Furthermore, many HFT orders are part of a larger order (or
metaorder) that takes a relatively long time to fully execute, which causes a given HFT order to
have a relatively long-term influence on other HFT orders. Thus, it is better to use self-exciting
and long term dependency process to model HFT, rather than Brownian motions (as in the C-M

model) [16].

In this paper, we propose a new model. First, we include the effect from market orders so that the
limit orders and market orders interact with each other, which looks more realistic. Second, we
have used the scaling limit of a sequence of nearly-unstable multivariate Hawkes process (which
is self-exciting) with power-law tails to model the HFT dynamics at a coarse-grained time scale,

reflecting the dependencies among HFT orders.

The remaining of this paper is arranged as follows. Chapter 2 provides a brief overview on the
Hawkes process. Chapter 3 presents our new model with both the non-HFT and HFT components.
Chapter 4 gives the proof for the scaling limit of the Hawkes processes, while Chapter 5 presents
the SPDE of the market model and its well-posedness In Chapter 6, we derive the price dynamics
based on the order book dynamics. We also provide analyses for the parameters in the price model.
Some simulation results will be collected in Chapter 7. Finally, some lengthy and technical results

will be put in the appendices.



CHAPTER 2: MATHEMATICAL PRELIMINARIES

In this chapter, we provide an overview of the d-dimensional Hawkes process (with d > 1). Most

of the following definitions and propositions are from [34].

2.1 One-Dimensional Hawkes Process

Definition 2.1. A discrete random variable X is said to have a Poisson distribution with parameter
A* > 0, if it has a discrete probability distribution:
( % ) k e—A*

N =B(X = k) = 22—, Wk =0,1,2,..

We denote it as X ~ Poi(\*).

Definition 2.2. A counting process is a stochastic process (N (t) : ¢t > 0) taking values in the set
{0,1,2, ...} that satisfies N(0) = 0, almost surely finite, and is a right-continuous non-decreasing

step function with increments of size +1.

Further, denote by (#(u) : u > 0) a right continuous filtration, that is, an increasing sequence
of o-algebras, such that H(u) = () ., H(u + €). The filtration H (u) represents the history of the

counting process N (-), namely, it is generated by N (-).

Definition 2.3. Consider a counting process N (-) with associated histories #(+). If a (non-negative)

function A(t) exists such that

A(t) = tim BV @+ ) = N(O)[H(1)]

> :
hl0 h ’ =20, @D

then it is called the conditional intensity function of N(-).
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Definition 2.4. A counting process (N (t) : t > 0) is called an (inhomogeneous) Poisson process

with rate function A(¢) > 0 if

1. For any interval I = (a,b], N(I) has a Poisson distribution with parameter fab A(s)ds, i.e.,

b b k,—([? A(s)ds)
A(s)d .
zwnwpmp/xgmg,<x MNU%:MZ(L Q)if . Vk=0,1,2,..

2. For any n disjoint interval Iy, I, ..., I,,, the random variables N ([;), N(ls),..., N(1,,) are

independent.

If the rate function is a constant A > 0, then N (-) is called a homogeneous Poisson process.

Definition 2.5. A counting process (N(t) : ¢t > 0) is called a Hawkes process if the following

conditions hold:

(i). The conditional increment against its history (#(¢) : t > 0) satisfies

(

1= At)h+o(h), m=0
B(N(t+h) = N(t) = mlH(®) = { \p)h+ o(h),  m—1 2.2)

o(h), m > 1

\

for some conditional intensity function A(-).

(ii). The conditional intensity function \(-) is of the form

szmw+A%@—mm@» 03

where p(t), called the background intensity, is a deterministic function of ¢ that is integrable

over any finite intervals and has a finite limit u(co0) > 0 as ¢ — oo, and ¢ : (0,00) —

6



0, 00), called the excitation function, is assumed to be a positive function. This means that
the exogenous events arrive according to an inhomogeneous Poisson process with the rate
function p(t), and the direct offspring of any event arrives according to an inhomogeneous

Poisson process with the rate function ¢(t).

When ¢(-) = 0, the Hawkes process N (t) becomes an inhomogeneous Poisson process. Thus the

former is an extension of the latter.

According to [24] and [51], Hawkes process exists as long as f0°° o(t)dt < 1, p(t) is positive,

integrable over any finite intervals, and has a finite limit y(c0) > 0 as ¢t — oo.

For any f(-) which is integrable on R, we define

FIO=F00 o0 = [ e = [ -

which are called convolution powers of f(-). The following lemma will be useful below.

Lemma 2.1. For any integrable function f : R — R, the following holds for all n € Z*:

[ [ ray

Proof. We use the principle of mathematical induction to prove this. When n = 1, we have

/Z ft)dt = /Z f(t)dt = (/Z f(t)dt)l

Suppose that the equation holds for n, then using the definition of convolution and Fubini’s theo-

rem, we have

/_Z FO @) dt = /: [/: F(t— 8) £ (s)ds | dt



_ /Z £(s) [/: (¢~ s)dt)ds
([ seas)'[ [~ s = ([ swrar)™

By the principle of mathematical induction, we have finished this proof. [

Proposition 2.1. Let N be a one-dimensional Hawkes process, and \(¢) be its conditional intensity
process of form (2.3) with 1(-) and ¢(-) given as in Definition 2.5. In addition, if [;° ¢(s)ds < 1,
then

Jim EN0)] = oo

Proof. Note that from (2.1), we have
E[dN ()] = E[A(£)]dt.
Denote X(t) — E[A(t)], then
A0 =lt) + [ ol = (s)ds = [+ 053]0

= [utoxutoxd)]t)=- = [(i_oj«zs*")*u}(t)-

As t goes to infinity, by the dominated convergence and monotone convergence theorems, along

with Lemma 2.1, we have

lim E[A(¢)] = lim i p(t —s) Z ¢ (s)ds = /000 p(o00) Z ¢ (s)ds

t—o0 t—o0

~ )y [ onas = o) 3 ([ otepan)” = T

n=0



When [° ¢(s)ds > 1, A(t) — oo as t — t* for some ¢* < oo, and hence the Hawkes process in

this case explodes almost surely.

2.2  Multi-Dimensional Hawkes Process

An extension of the one-dimensional Hawkes process is a multi-space valued Hawkes process.
In [34], the term multi-dimensional Hawkes process was reserved only for the multi-dimensional
space valued process where the components are decoupled, and hence the components are not
mutually exciting. Meanwhile, in [16], [7], [4], [36], [2], it was assumed that the components are
coupled so that they are mutually exciting. In our paper, by multi-dimensional Hawkes process,
we mean the process is not only multidimensional but also mutually exciting. More precisely, we

have the following definition:

Definition 2.6. Consider ({N(¢)} : ¢ > 0) a vector process formed by m counting processes

{N1(t),...Np(t)}. If for each i = 1, ..., m, N;(t) has a conditional intensity of the form
m. ot
MO =)+ Y [ ot = )N
j=1"0

for some positive function p;(¢) with limg . 11;(t) = p(00) > 0, ¢;; : (0,00) — [0, 00), and

¢i;(-) € L*(0,00), then N is called a multi-dimensional Hawkes process.

We can also write conditional intensity of the multi-dimensional Hawkes process in vector form as

At) = p(t) + /Ot ®(t — s)dN(s).

Note that p(-) is an m-dimensional vector-valued functions, A(-) and N(-) are m-dimensional

processes, and ®(-) is an m x m square matrix-valued function with the entries ¢; ;(-).



Remark 2.1. In our definition of the multi-dimensional Hawkes process, the background intensity
w(t) is allowed to be a vector-valued function that converges to a constant vector with positive
components as ¢ — oco. This is different from [34], where the background intensity can only be a

constant vector with positive components.

10



CHAPTER 3: THE MODEL

We now propose a model that describes the LOB dynamics of orders from both HFT and non-HFT
investors. For the non-HFTs, we use the centered order book density model similar to that in [13].

To model the dynamics of HFT orders, we use the multi-dimensional Hawkes process.

Let the volume of orders awaiting execution at time ¢ and price p be U(¢,p). By convention,
U(t,p) > 0 for ask orders, and U (¢, p) < 0 for bid orders. We define the ask price (the lowest ask
offer) s%(t) and bid price (the highest bid offer) s°(¢) as follows:

s*(t) :== inf{p > 0,U(t,p) > 0}, s*(t) .= sup{p > 0,U(t,p) < 0}

We assume that all the investors are rational. Thus, they could not offer a lower price to sell than

any ask price, or a higher price to buy than any bid price. Therefore,

S <0, {up

() < p < sa@)} ~ 2.

With the above 5?(t) and s°(t), we define the mid-price to be

We can see that p < S(t) < s%(t) implies U(t,p) < 0,and p > S(t) > s°(t) implies U(t,p) > 0.
Let the tick size of the market be § > 0, and let v(¢,p) ~ U(t,p)/d be the volume density. We

define

v(t, S(t) + x), forx e [—L,L]
u(t,x) =
0, otherwise

where L. > 0, and z represents a distance from the mid-price. When z < 0, S(t) + = < S(t),

11



and hence u(t,z) = v(t,S(t) + ) < 0. Similarly, when > 0, u(¢t,z) > 0. We call u(¢, x) the

centered order book density at (¢, x).

3.1 Non-HFT Orders

In this subsection, we are modeling non-HFT orders. We observe the following different LOB

events with each corresponding term appeared on the right-hand side of the equation:

1. Outright cancellation of orders without replacement: Let (,,(, > 0. When z > 0, then
u(t,z) > 0, and we use a term —(,u(t, z) to model the decrease of u(t, z) from the outright
proportional cancellation of limit ask orders at the price level S(¢) + x. When = < 0, then
u(t,z) <0, and we use a term —(u(t, x) = (p|u(t, x)| to model the decrease of the absolute
value of u(t, z) from the outright cancellation of limit bid orders at the price level S(¢) + x.

The C-M Model [13] also contained these two terms.
2. Symmetric changes:

(1) @ > 0: gy, (t, z) with n, > 0:
This term models the symmetric changes of limit ask orders at a distance = from the
mid-price. For example, in the illustrative LOB (1.1), the volume at the price level
$100.03 is lower than all the neighboring price levels, $100.02, $100.04, and $100.05,
which acts roughly like a local minimum and makes u,,(t,z) > 0, assuming every-
thing is smooth. Some of the limit ask orders at the neighboring price levels will be can-
celled and added to the price level $100.03. So at the price level $100.03, u(t, z) goes
up with a possible change 7, ., (t,z) > 0. On the other hand, the volume at the price
level $100.02 is higher than the neighboring price levels, $100.01, $100.03, $100.04

and $100.05, which acts roughly like a local maximum and it makes wu,,(t,z) < 0,

12



assuming again everything is smooth. Some of the limit ask orders at the price level
$100.02 will be cancelled and added to the neighboring price levels. So at the price

level $100.02, u(t, x) goes down with a possible change 7,u,.(t, z) < 0.

(2) & < 0: Mty (t, x) with n, > 0:
This term models the symmetric changes of limit bid orders at a distance |z| from the
mid-price. It is similar to the ask case but applied in the opposite way since u(t, z) < 0
by convention. For example, in the illustrative LOB (1.1), the volume at the price level
$99.97 is lower than all the neighboring price levels, $99.96, $99.98, and $99.99. Since
u(t, z) < 0, it acts roughly like a local maximum and leads to u,, (¢, z) < 0, assuming
everything is smooth. Some of the limit bid orders at the neighboring price levels will
be cancelled and added to the price level $99.97. So u(t, x) at the price level $99.97
should go down with a possible change 7,u,..(f, z) < 0, which makes u(t, z) smaller
or the absolute value |u(t, z)| larger. On the other hand, the volume at the price level
$99.99 is higher than the neighboring price levels, $99.96, $99.97, $99.98 and $100.
Since u(t,x) < 0, it acts roughly like a local minimum and leads to wu,,(t,z) > 0,
assuming again everything is smooth. Some of the limit bid orders at the price level
$99.99 will be cancelled and added to the neighboring price levels. So u(t, z) at the
price level $99.99 should go up with a possible change 7,u,, (¢, ) > 0, which makes

u(t, x) larger or the absolute value |u(t, z)| smaller.

The C-M Model [13] also contained these two terms. We slightly modify the notation: for

example, instead of Au(t, z), we use u,,(t, z) to clarify that x is one-dimensional.
3. Cancellation of orders with asymmetric replacement:
(1) @ > 0: —B,[u.(t, )]~ with 8, > 0

This term models the cancellation of ask orders at a distance x from the mid-price and

13



replacement of these orders closer to the mid-price. When wu,(t,x) < 0, it roughly
means that there are more ask orders at lower prices than S(¢) + x. Therefore, in order
to sell the shares at the price level S(¢) + x faster, some investors will likely cancel
their limit ask orders and resubmit them as limit ask orders at a price level closer to the
mid-price, or even market ask orders. Thus, at price level S(t) + x, a certain portion
of the volume will be decreased. This amount is assumed to be — (3, [u, (¢, 2)]”. When
uz(t,x) > 0, it roughly means that there are more ask orders at higher prices than
S(t) + z. Therefore, most rational investors will not cancel the orders, as their ask
orders are already better than most other orders. Hence, these orders will most likely

be unchanged or the change will be —f,[u, (¢, z)]” = 0.

(2) © < 0: Bplug(t, )]~ with 5, > 0:
This term models the cancellation of bid orders at a distance |z| from the mid-price
and replacement of these orders closer to the mid-price. When u, (¢, z) < 0, it roughly
means that there are more bid orders at higher prices than S(t) — |z| = S(¢) + =.
Therefore, in order to buy the shares at the price level S(t) — |z| faster, some investors
will likely cancel their limit bid orders and resubmit them as limit bid orders at a price
level closer to the mid-price, or even submit market bid orders. Thus, at price level
S(t) — |x|, a certain portion of the volume will be decreased. This amount is assumed
to be By[u.(t,x)]” > 0. When u,(t,z) > 0, it roughly means that there are more bid
orders at lower prices than S(¢) — |x| = S(t) + x. Therefore, most rational investors
will not cancel the orders as their bid orders are already better than most other orders.
Hence, these orders will most likely be unchanged or the change will be 3, [u, (¢, )]~ =

0.

This treatment is different from the C-M model [13]. We zero out the term u,(t, z) when

uz(t, x) > 0 so that the dynamics of limit order resubmission only goes towards the middle

14



price. This is significantly different from the usual convection in the heat transfer situation.

. Cancellation of orders with market order replacement:
When the queues are long around the mid-price, some investors will likely cancel their limit
orders in these queues, and resubmit the orders as market orders so that their orders can get

executed immediately.

For example, in the illustrative LOB (1.1), an investor originally placed a limit ask order
of 70 shares at the price level $100.01 at 10:00 am. She wants to sell her shares relatively
quickly, but she has to wait until the 3000 shares, placed before 10:00 am at the same or
lower prices, to be sold first. If she wants to sell her 70 shares by 10:15 am, and she does
not think the 3000 shares will be sold by that time, she might cancel her order and resubmit
it as a market ask order. She would take a total loss of $0.70, but the 70 shares can be sold
immediately, executed against the existing limit bid queue at the price level $100.00. In
this case, the limit ask queue at the price level $100.01 is decreased by 70 shares due to the
cancellation, and the limit bid queue at $100.00 is also decreased by 70 shares due to the

resubmitted market ask order.

On the opposite side, another investor originally placed a limit bid order of 80 shares at the
price level $100.00 at 10:00 am. He wants to buy 80 shares relatively quickly, but he has to
wait until the 2000 offers, placed before 10:00 am at same or higher prices, to be executed
first. If he wants to buy 80 shares by 10:10 am, and he does not think the 2000 offers will
be executed by that time, he might cancel his order and resubmit it as a market bid order.
He would have to pay $0.80 more than his previous offer, but he would get the 80 shares
immediately from the existing limit ask queue at the price level $100.01. In this case, the
limit bid queue at the price level $100.00 is decreased by 80 offers due to the cancellation,
and the limit ask queue at $100.01 is also decreased by 80 shares due to the resubmitted

market bid order.
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To model the impact from this LOB event, we first set a threshold uy > 0 such that a queue
u(t, x) is “too long” if |u(t, z)| > wug. In other words, this LOB event will not happen when

|u(t, |93|)| < Ug.

For = > 0, when u(t, x) > g, it means that the limit ask queue is too long for the investors.
Therefore, the investors that want to sell their shares of the stock quickly will likely cancel
their limit ask orders and resubmit them as market ask orders. The cancellation will cause
the limit ask volume density to decrease, and we model this impact by —j(z) (u(t, z) —uo) ”
with j(z) a positive function decreasing in > 0, meaning that the positively farther away
a price level is from the mid-price, the less likely the investors will cancel the limit ask
orders at the price level, as otherwise the loss would be too large. Assuming all the cancelled
limit ask orders become market orders, these orders will cause the absolute value of the
bid volume density to decrease, and we model this impact by j(|z|) (u(t, |z]) — u0)+. In

summary, we model this scenario by
. + . +
—j(x) (u(t, x) — uo) | FE) —l—j(|$|)(u(t, lx|) — uo) 1i,<0y-

For z < 0, it is symmetric. When u(¢, ) < —uy, it means that the limit bid queue is too long
for the investors. Therefore, the investors that want to buy the stock quickly will likely cancel
their limit bid orders and resubmit them as market bid orders. The cancellation will cause
the absolute value of the limit bid volume density to decrease, and we model this impact
by j(z)(u(t,z) + uo) , with j(z) a positive function increasing in z < 0. The meaning
is similar to the case of z > 0. Also, assuming that all cancelled limit bid orders become
market bid orders, then these orders will cause the limit ask volume density to decrease, and
we model this impact by —j(—|z|) (u(t, —|z|) + uo) . In summary, we model this scenario
by

J(@) (ut, ) + 1) Ligcoy — J(=lz]) (ult, —|2]) +u0) L0y
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Therefore, the rate of cancellation with market order replacement at time ¢ and price level

S(t) + x can be modeled as

J(x,ult, 2)) = Lgsoy [ — 4 (@) (ult, ) —uo) " — j(—|a]) (ult, —|2]) + o) ]

+ Lgeoy [5(12]) (ult, |2]) = uo) " + ji(2) (ult, 2) +uo) ],

with j(x) a positive function decreasing in > 0 and increasing in x < 0. Since the

decreased density should not exceed the existing volume density above the threshold, we set

J() <1

. Submission of Orders: The submission of limit orders and market orders are both largely
influenced by the price, which in turn is largely influenced by the difference between the

volume of the ask and bid orders around the mid-price. We introduce

() = / "t y)dy,

L

with § < ¢ <« L. If £(t) > 0, then there are more limit ask orders than limit bid orders
around the mid-price. If /(¢) < 0, then there are more limit bid orders than limit ask orders

around the mid-price.

For z > 0, when /(t) > 0, there are already too many ask orders. Therefore, rational
investors are less likely to submit limit ask orders and maybe some investors will cancel
their limit ask orders and wait until the ask and bid queues are balanced again. This will lead
to the decreasing tendency of the limit ask orders. Clearly, it is acceptable that the larger the
((t), the larger the decreasing tendency. Hence, we model this by G(x, £(t)), with a function

G(x,{) strictly decreasing in ¢ and G(x,0) = 0.

For x > 0 and /(t) < 0, there are already too many bid orders, which might signal a large
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demand for the stock. Therefore, rational investors are more likely to submit limit ask orders
than to rush the sale with market ask orders, for a potential increase in the mid-price. This
will lead to the increasing tendency of the limit ask orders. Clearly, it is acceptable that the
smaller the (), the larger the increasing tendency. Hence, we still model this by G(x, £(t))

strictly decreasing in ¢ and G(z,0) = 0.

For x < 0, it is symmetric: If (t) < 0, then there are already too many bid orders. Thus,
rational investors are less likely to submit limit bid orders and maybe some investors will
cancel their limit bid orders and wait until the ask and bid queues are balanced again. This
will lead to the decreasing tendency of the limit bid orders. Clearly, it is acceptable that the
smaller the ¢(t), the larger the decreasing tendency to the absolute value of limit bid orders,
which means the larger the increasing tendency to the bid volume density. Hence, we still

model this by G(z, ¢(t)) strictly decreasing in ¢ and G(z,0) = 0.

For x < 0 and ¢(t) > 0, there are already too many ask orders, which might signal a large
supply for the stock. Therefore, rational investors are more likely to submit limit bid orders
that to rush the purchase with market bid orders, for a potential decrease in the mid-price.
This will lead to the increasing tendency of the limit bid orders. Clearly, it is acceptable that
the larger the ¢(¢), the larger the increasing tendency to the absolute value of limit bid orders,
which means the larger the decreasing tendency to the bid volume density. Hence, we still

model this by G(z, ¢(t)) strictly decreasing in ¢ and G(z,0) = 0.

The impact of the non-HFT order flows can be summarized by the following differential equation

for the centered order book density w:

du(t, z) = |1(x)uee(t, ©) = B() sgn(@)[ua(t, 2)]” = C(w)ult, z) + J (z, ult, ) + Gz, (1)) | dt,
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where

e T 0,L o T 0,L W T 0,L
T T T B L S T B
M € {—L,O) Bb T c [_L70) Cb T c [—L,O)

with 14, 7, Ba, Bb, Ca, (p positive constants, and

J(z,u(t, ) = Loy | — j(@) (ult,z) — u0)+ — (= lz]) (u(t, —|z]) + uo) ]

+ gy [5(12]) (ult, 2]) — uo) " + ji(2) (ult, 2) +uo) ],

with ug > 0, and j(z) < 1 a positive function decreasing in = > 0 and increasing in x < 0. The

function G(z, £(t)) is strictly decreasing in ¢(¢) and G(z,0) = 0, with

w- [ "t y)dy.

L

3.2 HFT Orders

In this subsection, we are modeling the HFT orders. We assume that the HFT orders mainly occur
near the mid-price and on average provide zero or very small net contribution in volume to the
limit order book. Thus, roughly speaking, the HFT dynamics are alsmost like a zero mean noise

process.

3.2.1 A microscopic volume model

In order to model the volume of HFT orders on both sides of the market, we consider the following

six types of market events: Submission of limit ask/bid orders, cancellation of limit ask/bid orders,
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and submission of market ask/bid orders. To simplify the HFT microscopic model, we reduce the
dimension of our model by combining the cancellation of limit ask (bid) orders with the submission
of market bid (ask) orders since their impacts on the order dynamics are the same: decrease the
volume of limit ask (bid) orders. For example, by cancelling an limit ask order, it is equivalent to
putting a same size market bid order since both orders are executed against the existing limit ask

orders.

Viewing HFT macroscopically, it is just like a noise, and viewing it microscopically, it is mutually
self-exciting. Assume the average trading speed of HFT is n times per millisecond. Then, during
the time interval [0, ¢] (with ¢ being measured by second), there would be 1000n¢ tradings. Thus,
the number of HFTs is roughly the same as that of non-HFTs during [0, 1000¢]. Now, in general
if the ratio of the fast and slow times is T' (instead of 1000), then within the (normal) time interval
[0, t], the average number of HFTs is roughly the same as those non-HFTs during [0, ¢7°]. Hence, it
is a suitable approach to investigate the HFT as follows: For a very large 7' > 0, consider a multi-
dimensional Hawkes process (so that it is mutually exciting) on [0, tT']. Then letting 7" — oo with

a proper scaling (normalization), the limit will be a good approximation of a model for the HFT.

Our microscopic volume model is based on one 4-dimensional Hawkes process on [0, t77], defined
as the following:
Nt (T

Nb+

(T
{NQT)} >0 =

)

(¢T)
Ne-@r) |
Nb&=(T)
where N *(tT') (N®*(tT')) corresponds to the accumulative number of limit ask (bid) orders
submitted in the time interval [0,¢7], and N~ (tT') (N*~(tT)) to the accumulative number of

combined market ask (bid) orders and cancelled bid (ask) orders in the time interval [0, tT]. See

right below for details.

20



3.2.2 The HFT density

How do we use the limit of N7 (¢7") to model the market macroscopically? First, we let the volume

of HFT around the mid price St (t7") at time tT" be V7 (¢T'). Then V(1) can be written as
Vp(tT) = N&H(tT) + N2t (tT) — N&~(tT) — N2~ (7).

Since Vp(¢T') is not density like u(t, ), we cannot simply add V7 (¢T") to the centered order book

density equation. However, we can write u(t, z) into the following generic equation:
u(t, ) = non-HFT density + HFT density.
Since the HFT density is a part of u(¢, x), we let
HFT density = f(t) - u(t, x),

with some function f(¢) valued in (0, 1), which serves as a ratio function in the model, so that f(¢)-
u(t, x) preserves the same macroscopic properties of a normalized V- (¢7'). Such a normalization
is necessary because the amplitude of Vi (¢T') is divergent as T — oo, and only the limit of the
normalized HFT volume can eventually capture the nature of the mean zero noise of HFT. Hence,

we have
im Vp(tT)
T—o0 h(T) ’

ft) =

for some scalar factor i (7). Therefore, we can model the change of HFT density as

af (t) - u(t,x) + f(t) - du(t, ).
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Since the change of u(t, x), observed in normal time like seconds, is significantly slower than the
change of V- (tT'), the impact from du to the change of HFT density is almost negligible. So we set
f(t) - du(t, ) ~ 0. Combining with the non-HFT density model, we have the following centered

order book density equation:

du(t,z) = [num(t, x) — Bsgn(z)|ug(t, z)]” — Cu(t,z) + J(x,u(t,z)) + G(x, ul(t, ))] dt

+ u(t, x)df (1),

where

Vp(tT) = N&H(tT) + N2t (tT) — N&~(tT) — N2~ (7).

3.2.3 Settings of the Hawkes conditional intensity process

In this subsection, we provide settings of A(¢7"), the conditional intensity process associated with

the Hawkes process {IN(¢T) }+1>0, to encode properties of the HFT market. We define

A@T

)\b,—l—

v

A0

and it is of the form

A(T) = p(tT) + / . T — 5)dN(s) = pu(tT) + [@ x dN] (tT),
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where

/ﬂ’+ P11
b+
w ©21
p(-) = (),  @()=
e P31
b P41

P12 P13 P14

P22 P23 P24

P32 ¥33 P34

Pa2 P43 P44

For the subscripts of each entry of ®(-), 1 stands for limit ask orders, 2 for limit bid orders, 3 for

market ask orders, and 4 for market bid orders.

In the conditional intensity process, p models the conditional intensity that a new HFT order event

is induced exogenously. For example, u%*(-) models the conditional intensity that a new HFT

limit ask order is submitted due to some exogenous reason. The kernel matrix ®(-) models the

endogenous induction power from past events. For example, |

0

©a2(- — 8)dN®*(s) models the

conditional intensity of market bid order submission induced by past limit bid order submissions.

We summarize in the following table the endogenous induction power from all the entries in ®(-):

Table 3.1: Endogeneous Induction Power of Conditional Intensity Parameters

Conditional intensity of current order sub-

Current Order Submission

-mission induced by past order submission | Limit Ask | Limit Bid | Market Ask | Market Bid
Limit Ask 1 ¥ AN | 0o x dN®T | g1 % dNYT | o4 x dN®T
Past Order | Limit Bid 019 ¥ AN T | oo % ANPT | 39 x ANPT | g0 % dAN®T
Submission | Market Ask P13 % AN | o3 x dN®" | 33 xdN®" | @3 xdN*~
Market Bid 014 % ANP" | 0oq x ANP~ | 3 * AN~ | gq ¥ AN>~

Now we examine the relationships among the functions ;;(-)’s to simplify the matrix ®(-):

1. Institutional investors normally split large orders (called parent orders) into smaller orders

(called children orders) and execute these smaller orders in an extended time period [1] [35].

Therefore, we can assume that the conditional intensity of one type of HFT limit (market)

order induced by the same type of HFT limit (market) orders in the past should be the same.
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In other words, the conditional intensity of the submission of one limit ask order induced
by past submissions of limit ask orders can be assumed to be the same with the conditional
intensity of the submission of one limit bid order induced by past submissions of limit bid

orders. We let this inducing effect be

©11(+) = @aa(-) = ©(+), where p(-) is a positive bounded function with / o(s)ds = 1.
0
3.1)

As for the market orders, we also assume that the conditional intensity of the submission
of one market ask order induced by past submissions of market ask orders is the same with
the conditional intensity of the submission of one market bid order induced by past submis-
sions of market bid orders. However, institutional investors tend to use limit parent orders
over market parent orders, due to the lack of price control of the market parent orders [47].

Therefore, we let the inducing effect between market orders be 5;p(+) with 5; < 1.

We also assume momentum effect in market orders because some individual investors want
to follow the market move and they usually want to execute their orders immediately. How-
ever, these individual investors usually do not have orders nearly as large as the ones from
institutional investors, and hence this inducing power is less than that from the parent orders.
We use fBa(+) with 0 < By < (31 to model this momentum effect. Combining the momentum

effect with the inducing effect on market orders, we let

©33(+) = paa(+) = (B + B2)p (). (3.2)

Note that there will be no restriction of the size on the positive number 5, + s, so it is

possible that 3; + B2 > 1, or namely, it is possible that

©33(-) = paa() > p11(-) = ()
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2. Market orders near the mid-price can potentially deplete the queues near the mid-price,
which could lead to price changes, and the price changes in turn could lead to the sub-
mission of limit orders on the same side. For example, in the illustrative LOB (1.1), if an
investor places a market ask order for 2000 shares at 10:01 am, the market ask order will be
executed at the price level $100.00 against the bid queue at that price level. Since the bid
queue at the price level $100.00 only has 2000 shares, it will be depleted and the best bid
price will decrease by 1 tick to $99.99. Meanwhile, the best ask price will also decrease by
1 tick to $100.00. This will likely induce the submission of limit ask orders at the new best
ask price by market makers, who place limit orders at the best bid and ask prices to earn the
spread. We assume that this inducing effect from market orders to limit orders on the same
side is the same momentum effect between market orders, since they are both driven by price

changes, so we also use 5 to model this effect, namely,

@13(') = @24(') = 52@(')

On the other hand, the high frequency limit orders signal a demand on one side, which
could induce market order on the same side because speculating investors might want to act
before large limit orders. For example, if an investor observes a stable flow of incoming limit
bid orders from the same institution, this could signal a parent limit bid order, which will
typically take hours or even days to complete and will potentially raise the price due to the
increased demand. The investor might want to submit market bid orders so that she can buy
shares of the stock at $100.01, the current best ask price, before the potential price increase
caused by the completion of this parent limit bid order. After the entire parent limit bid order
is placed, she could place a market ask order to sell these shares back to the institution at a
price higher than $100.01. For the first step of this strategy, we assume that this inducing

effect from limit orders to market orders on the same side is the same momentum effect
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between market orders, since they are both driven by price changes, so we still use 35 to

model this effect, namely,

©31(-) = @aa(-) = Bao(*)

As for the second step of this strategy, the investor in our example might have the wrong
speculation: The flow of limit bid orders might not end up being a parent limit bid order, or
the price might not increase from the sequence of limit bid orders. In this case, the investor
might not submit the market ask order since it would not profit her. Therefore, we assume
that the inducing effect from limit orders to market orders on the opposite side is less than

that to the market orders on the same side, namely,

a1 () < @a1(-), ©32(-) < aa(-).

We use 53 < 1 to model the inequalities and have

@41(') = 53@31(') = 5352%0(')7 9032(') = 53%042(’) = 535290(').

. We assume that the same event on opposite sides induce each other in the same way but very
close to 0. For example, we assume that the submissions of limit ask orders barely induce
the submissions of limit bid order, which is observed by the numerical results from [2] and

[7]. So we have

P12(+) = @a1(-) = @3a(-) = pa3(-) = 0 (3.3)

. We assume that the inducing power between child orders of the same parent order is much
larger than the inducing power between different types of orders. For example, an institu-
tional investor wants to buy 50,000 shares of a stock and he uses an HFT algorithm to submit

the limit bid orders sequentially. Some individual speculators might want to submit market
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bid orders to buy some shares before the parent order and then submit market ask orders to
sell these shares back to the institutional investor to make a profit. A child limit bid order
almost guarantees the submission of another child limit bid order since they are both a part
of the same parent order, while the market bid and ask orders might not be induced by a
child limit bid order, since the speculators might not foresee the parent order or believe the
price will increase. Adding (3.3), we can assume that the past limit ask order submissions
are more likely to induce limit ask order submissions than they induce limit bid order sub-
mission, market ask order submission, and market bid order submission combined. This

example roughly translates to

P11(1) > a1(+) + @a1(") + ar ().

After we apply this assumption to all the order events, we have

P22 (") > p12(+) + p32(+) + paa(-),

©33(*) > p13(+) + p23() + pa(*),
@aa(*) > 014(+) + p21() + @3 ("),

These inequalities lead to:

1 — 3283 — B2 >0 (3.4)

5. Since we assume that the HFT orders provide zero net contribution in volume to the limit

order book on average, we have

E[dV (tT)] = E[dN®T(tT) + dN*"(tT) — dN“~ (tT) — dN>~(tT)] = 0
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Note that
E[AN“*(tT)] + E[dN®>*(tT)] = E]A“T (tT)]d(tT) + B[\ (tT)]d(tT),

RE[AN®~(tT)] + E[dN"~ (tT)] = E]\>~ (tT)]d(tT) + E[\>~ (¢tT))d(tT)

and

BT = )+ [ T~ BN s + [ puleT — B ()]s
[ onter = e (olds + [ T - BN (o)
=)+ [T - R s
[ ople = ED s + [ T - BN ()l

E[ (7)) = @m+ﬁ7mwwwEWﬂww+ﬁtwﬁrﬂEWHﬂw

tT

03(tT — s)E[A (s)]ds + /Ot 0ou(tT — 8)E[N>(s)]ds

_l’_
Nt

1:

BT + /0 (1T — s)E[X"(s)]ds

-/ @%aT—@Euww@u&+A Bap(tT — sYE[N ()]s,

B\ (¢T)] = p® (tT) /0 " o (1T — BN (s)]ds + /0 " aa(tT — SEPH(s)]ds
B <>u&+At¢er—@mv’@wm

0

T + /52<ptT—s)E[Aa+( Jlds
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+ /Ot BaBsp(tT — s)E[NT(s)]ds + /Ot [(B1 + B2)p(tT — s)|E[A""(s)]ds

B\~ (tT)] = p>~ (tT) + /o o (1T — 8)E[X"T(5)]ds + /0 ©012(tT — $)E[NT(s)]ds
+ /0 wa3(tT — s)E[A (s)]ds + /0 0as(tT — s)E[N> (s)]ds
= u>(tT) + /Ot Baf3p(tT — s)EN“T(s)]ds

T T
4 [ BT - SN (s + [ (B + BT — BN (5))ds
0 0
Therefore, we have

BT (#T)] + BN (tT)] = p®(tT) + b+ (tT)

O(tT — s)E[X"(s)]ds

[Bop(tT — 5) + o3(tT — 5)|E[A" (s)]ds

o
/

N /O " (T — EDH(s)]ds
/
/

(01 (tT — 8) + Bop(tT — 8)|E[A>"(s)]ds,
and

E\“~(#T)] + E[N~(tT)] = p* (ﬁr)+-u ~(tT)

+ 2 + 5253 tT — S)E[)\a’+(8)]d8

o\»

+ 52 + B2B3)p(tT — $)E[A"T(s)]ds

o

+ 51 + B2)p(tT — s)JE[A" (s)]ds

[e=]
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¢T
+ [ B+ Bl - BN (9)ds
0
Inspired by the simplification of a similar equation in [16], we assume that
,u“’+ (tT) + ,Ub’Jr (tT) = ,Lta’i(tT> + /Jjb’i(tT), @Qg(tT) = ()014(tT>,

E\T(tT)] + B[N (tT)] = E]N>(tT)] + E[\> (¢T)].

and get
() + B2p(+) + p1a(-) = BaBsp(-) + Bap() + (81 + B2)e (),

©(+) + Bao(+) + pa3(-) = Bafz(-) + Basp(-) + (Br + B2)e(+),

which gives us

©14(-) = (B + Ba + Bofs — D)(+),  wa3() = (B1 + B2+ P25 — 1)(+). (3.5)

. We assume that the same-side limit-market order induction power is greater than the opposite-
side limit-market induction power, which is observed by the numerical results from [2] and
[7]. For example, limit ask order submissions are more likely induced by past market ask
order submissions than past market bid order submissions. Therefore, we have By > 3503,

which is consistent with the setting that f3 < 1. From this assumption, we also have

Po > P+ B2+ Bafs — 1 (3.6)
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Having the above, we have ®(-) = ®,¢(-), where

1 0
B 0 1
B s
Bubls B

B

(B1+ B2+ Bafs — 1)

(B + B2)

0

(B1 4+ B2+ 283 — 1)

B2
0

(B1 + B2)

with ¢(-) a positive bounded function that satisfies [ ¢(s)ds = 1, and

0<52<ﬁ1<1,

Proposition 3.1.

0<f3<1,

1. The eigenvalues of ® are given by the following:

Moreover, it holds that A\; > Ay > A3 > \4. This also means that ® is diagonalizable.

2. Define:

V1 =

They are eigenvectors of ® corresponding to i, A2, A3, Ay, respectively.

A1 = B1+ P23 + 2,

A3 = 1 + [a2/33,

B2(B3+1)
B1+B283+282—1

B2(B3+1)
B1+B283+282—1

1

1

Vo =

31

Ao = =233 + B2 + 1,

V3 =

Ay =083 = B2+ 1

B2(B3—1)
B1+P283—1

_ _Ba(B3-1)
B1+pB203—1

—1

1

B+ B2f83 <1 < B1+ B2+ Bof3s.

Vg4 =

(3.7



Proof. We provide the calculation of the eigenvalues in the appendices at A. We show here the
inequalities among the eigenvalues can be easily shown using the assumptions. First, since 55 > 0,

A2 > A4. Second, since

Br+ B2+ B2ffs — 1> 0> — 303,

we have

B+ B2ff3 > —P283 — B2 + 1,

which leads to A3 > \,. As for Ay and A3, using (3.6), we have

P+ Bofis = [(B1+ Bo + Pafs — 1) + Boffs| — B+ 1 — (235

<2Bp— P+ 1—Pof83 =—Fofs+ P+ 1

We have shown that Ay > A3. Lastly, we are left to show \; > \,. Indeed, since
Br+28283+ B — 1> 1+ B283+ B2 — 1 >0,

B+ B2f33 + 2P2 > —B2f3 + B2 + 1,

and hence \3 < A;. [

We define
Or() = L)@, (3.8)

with {ar}rez+ an undetermined sequence of positive constants that are less than 1 but converge
to 1. Then the largest eigenvalue of each fooo ®(-) forms the sequence {ar}rcz+. Based on the
cluster representation of Hawkes process, illustrated and discussed in the appendices at B, we use

the largest eigenvalue of fooo ®(s)ds to model the percentage of endogenous orders in the HFT
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market, and thus in our model, the HFT market gets more and more endogenous over time.
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CHAPTER 4: SCALING LIMIT OF THE MICROSCOPIC VOLUME

MODEL

In this section, we find f(¢), the scaling limit of V(¢T") as well as the ratio function of the HFT

density. We also find the proper expression of the normalizing factor 4(7") in the process.

4.1 An asymptotic framework

We first set up an asymptotic framework for our Microscopic volume mode. Let {N(t7") };>( be a
sequence of 4-dimensional Hawkes processes defined on [0, 7] in a sequence of probability spaces
(Qr, Zr,Pr), indexed by T' € Z*, where T goes to infinity. For each T, N7 (0) = 0, %7 is the

o-algebra generated by N1 (¢7"), and the conditional intensity process { Az (t7") };>o is

>\T<tT) = ,U,T(tT) + /tT ‘I)T(tT — S)dNT(S), (41)

with ®r(-) defined in (3.8). This setting allows {IN7(t7") };> to tend to an unstable Hawkes
process, while maintaining stability for each N1 (¢7"). For each ®7(-) and each i = 1,2, 3,4, the

eigenvalues can be calculated as
arAip(-)

Ari(+) = N

Furthermore, the eigenvectors of each (®7(-))" can be taken as the ones of ®, which are calcu-

lated in Proposition 3.1, so we still denote them as vy, vy, v3, V4.

We let

MT(t) = NT(t) — /Ot )\T(s)ds, (42)
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which is the martingale associated with N1 (t), see [34]. Then
dNT(t) = dMT<t> + AT(S)dS,
and we have

Ar(t) = prlt) + / Br(t — $)dN(s)
= pp(t) —l—/o D, (t — s)dMyp(s) + /0 B (t — s)Ar(s)
= [y + P x Mp + §p x Ap|(1)

= [pr + @y x My + ®p * (pup + Bp x My + $p o Ap)|(2)

= [pr + Pr x pp + Pr *« My + Pp s B« My + B« Pp o+ A7 (2)

m m+41
(S0 e+ (0 0+ 2]
k=0 k=1

Note that

By induction,

k
B2 (1) i—i *)BE, VE>0
1
Since
e le™ N = lle™ oo < ™  Vlsollells < o < Hllloolleli™ < llplloe < 00,
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and since @ is diagonalizable, there is an invertible P so that

A 0 0 0
) 0 X 0 O
b, =PDP ", D=
0 0 X O
0 0 0 M\
Hence,
1 0 0 0
0 (22)* o 0
st —areror | B 0 P!

0 0 () o
0 0 0 ()

Consequently,

|®5F(t)| < Cal, Yk >0,

with the constant C' > 0 independent of £ > 0. Hence, by 0 < ar < 1, we see that
A (t):i(“_% )k[ s ](t)+§:(“—% )k[ 5 My (1) (4.3)
T o) ¥ T - A o) |¥ T .

1
Equation (4.3) also allows us to calculate the expected value of Ar(¢7"). Indeed, we have
(6] = > (T ) [0 + prl(t) (44)

Note that

o e mrler) = | " T — ) (s)ds

-/ P HET = ST)pp(sT)d(sT)
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= T/0 e*((t — 8)T) pp(sT)ds

and similarly,

(o™ 4 My (T) = /0 T — $)dM(s)

= /t @ (1T — sT)dMr(sT)

4.2 Assumptions and Intuitions of the Result

We first introduce an assumption on ¢(-). As we mentioned in the introduction, many HFT orders
are part of a larger parent order that typically takes hours or even days to fully execute, which can be
observed in an HFT market by child orders exciting each other during this relatively long execution
window. To model this relatively long-term influence, we need to choose an excitation function
©(+) such that the conditional intensity has a relatively slow decay. The Dirac delta function is
obviously not a good choice for the excitation function, since it would mean that an order no
longer excites other orders right after it arrives at the HFT market. Although the exponential
function, i.e. ae~® with a,b > 0, is a common choice for the Hawkes excitation function, it
yields an exponentially decaying conditional intensity, which is faster than the power-law decay.
Therefore, we model this long-term influence by giving each ¢(-) a power-law tail. This leads to

the following assumption:

Assumption 1: The function ¢(-) is positive, bounded, integrable, with fooo o(s)ds = 1, and

tliglo t* (1 - /Ot gp(s)ds) =K,
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with some « € (0, 1) and positive constant K.

The above gives the speed of convergence of fg o(s) —» last — oo.

Remark 4.1. One example of such a function o(-) is f*1(-), the Mittag-Leffler density function

with A = 1. For (o, A) € (0,1) x R, namely,
oMt = M By o(— M%), t>0,

where E,, ,, called the Mittag-Leffler function, is defined for z € C as

Eoo(z) = Z ma

n>0

with I'(+) the Gamma function. See Definition F.1.

Since the conditional intensity process essentially defines N (¢7"), we next try to find the asymp-
totic behavior, along with the proper normalizing factor, of Az (¢T"). Our first step is to find the

limit of E[A(tT)] as t — oc.

Proposition 4.1. The expectation of the conditional intensity Ay (t7"), calculated in (4.4), is as

follows:
T— 0 0 0
0 — L 0 0
lim E[Ar(iT)] = P trarCe/) 1 P! pp(00),
O O 1—aT()\3//\1) O
1
0 0 0 T—ar(Ma/M)
where

(1). The constants A1, A2, A3, A4 are eigenvalues of ®(, which are calculated in Proposition 3.1.
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(2). The matrix P is invertible and is consisting of the eigenvectors of ®, correspondent to

>\17 )\27 )\37 )\4-

(3). The vector pu;(c0), defined as

pr(o0) = lim pp(tT),

t—o00

is a four dimensional vector with positive constant entries.

Proof. Denote Ar(tT) = E[Ap(tT)], then by (4.4), we have

[e.9]

Ar(i) = pr(1T) + 37 (T ®0) o™ * uarl(1T)

As t goes to infinity, by the dominated convergence theorem and monotone convergence theorem,
along with Lemma 2.1, we have
B A () = g wriT) + iy,

0 n=1

n

~urlo0)+ [ f; (47.20)" o+ (s)proc)as
— pp(00) + [i (‘;—f%)" / ) ™" ()ds] pr(00)

= pr(c0) + [i (Z—T‘I’O>n</ooo w(S)dS)n} pr(o0)

Since ®( has distinct eigenvalues, it is diagonalizable. Thus, there exists a diagonal matrix D

whose diagonal entries are the eigenvalues of ®,, and an invertible matrix P consisting of the
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correspondent eigenvectors such that

&, = PDP!
with
A 0O 0 0
0 N 0 O
D=
0 0 X O
0 0 0 M\

Therefore, we have

i Ar(7) = [ 3 (4700) Jaroe) = (3 (4D) )P sty (o0)

Since ar < 1 and A; > max{Ag, A3, A4}, all the diagonal entries of D are less than 1, and hence

we have

T— 0 0 0
0 0 0
lim E[Ar(iT)] = P 1ar(2/X) P!y (00).
— 00
O O 1—aT(1)\3//\1) O
0 0 0 .

1—ar(Aa/A1)

For each T', we define pi7 as the sum of the entries of p,(00). Note that p and ar have different

financial meanings as well as functions in our model, and thus they are not necessarily related.
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Then we have

1-— 1-—
lim —TEA(T)] = —2F lim E[A(tT)]
t—o00 ,U’T ILLT t—o0
1 0 0 0
0 —1-er 0 0 1
- P 1—ar(A2/A1) 1 P_llTTNT(OO)~
—ar
0 0 1—ar(A3/A1) 0
1—a
0 0 0 T=ar(u/30)

Since \; < Ay for all © = 2, 3,4, this is a nontrivial limit as ¢ — oo for each T". Therefore, as

1;? , the normalized A7 (¢7T") has a nontrivial limit, meaning

T — o0, with proper assumptions on

that it is neither 0 nor oco.

1—CLT

After rescaling A (tT") with

, and by (4.3), we have
HT

Loy omy = (10— a2 a3 (‘;—f@o)”w « BT )

KT HT 1 HT .5)
= an) Y () o Moy |
— A1 Hr

Like in [16], we use the orthogonal decomposition of 1;%)\T(tT) to find its limit. Let (eq, e, €3, €4)

be an orthonormal basis of R?, such that e; - v; > 0 and

span(es, €3, €4) = span(ve, v3, V).
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Decomposing A (tT) in the basis {e1, es, €3, €4}, we have

1) =5 (T ar(em))e

i 4 (4.6)
= — (o2t er + () A(T) Jer + 3 (] Ar(eT) e
e i=2
with
r 1 € span( )
vV = e 61T’01v1 pan{vsz, vz, V).

We can see that the re-scaled asymptotic behavior of A (¢7") depends on the re-scaled asymptotic
behaviors of v, A7 (tT). In particular, under proper settings, we can show that for i = 2, 3,4, we

have v, Ar(tT') = 0, which leads to

— aTAT(tT) = 07

HT

() Ap(tT) = ¢ 2

This means that the re-scaled asymptotic behavior of 1;%)\T(tT) depends on that of v Ap(¢T).

Remark 4.2. One example of such an orthonormal basis is

( 1 )
1 1
2 0 V2 2
1 1 1
2 V2 0 2
1 ’ 1 ’ ’ 1
| |~ 0 —3
1 0 L 1
L \2 V2 2 Y,

Meanwhile, we can see for each ¢ = 1,2, 3,4 and for any k£ > 1,

53 (5r20) e(t) = > (5) wrebe
n=1 n=1
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where

o) = 30 () e 47

Therefore, along with (4.3), for each z = 1, 2, 3, 4, we have

> a n *7 a " *n
I Ar(T) = v pr(tT) + 0] ;(f%) o g 0T) + 0l 3 (S5 @) [« Mgl (17)

— o] e (iT) + / Tira(T(t - 8)) (0] pp(sT))ds + / bri(T(t — 8)) (v dM(T)).

(4.8)

For each i, the Laplace transform of ¢7;(7t) is:




Since

fori = 2,3,4,as T" — oo, we have

aT)\i N4 /\
— < 1.
N ‘p<T) BV

Hence, ¢r;(T-) goes to 0 as T — oo. Plugging this back in (4.8), we have
v Ax(tT) ~ v; pp(tT)
This means that if we assume all the entries of 1 (t7") are identical, as T goes to infinity, v, A (t7T)
goes to 0. Therefore, we have the following assumption:
Assumption 2’: For each T, the background intensity p,(¢7") has identical entries.

Under this assumption, the re-scaled asymptotic behavior of =%\, (+T") depends on that of
ur

v] Ar(tT). Indeed, we have

A = o)+ [T ()T T

/ (T 5)) (0] A (5T)
1 ! T(l — CLT)

0] r1T)) + / (70 = ) o] (5T}
YRy 1_6‘T /¢T1 t—s)\/lw (02)T A (sT)dBr (s).
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where

b Tyl dMyp(s)
B =75 | e @

() Az (t) = (v1) ' diag[Az(t)]v;

Thus,

tT d S) 2 1 tT
E[B ‘/ —/ ds = t.
[Bra( —% e (s) ] T/ s

Therefore, the limit of Br;(-) as 7" — oo is a Brownian motion (see [16], p.254). Next, we

examine the asymptotic behavior of

pT,l (.T) = T(l — (J,T)wTJ(TZC)

Indeed, the Laplace transform of p is

pra(z) = /OOO pra(z)e” “dr = (1 — aT)q/A)T,l <i> =(1- CLT)( )\Til(%>
Since

/A\TJ(Z) :/ )\le(x)e_mdx
0
=ar <1 —z / gp(s)dse‘”dx)
0 T

= ap <1 — 2 /000 (g)a[;} go(u)dux’ae’xdx),
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using Assumption 1 and the dominated convergence theorem,
Ara(z) = aT<1 ~ KT(1—a)z" + o(z))

Then we have

(1 = ar)ar (1= KT(1 ~ )5 +o(3))

hr.1(2) Kk
pPri1\%) = -
1 aT<1 — KT(1 - a)Z +o(£ ))
T(1—at)a « 1—a o
TRrieayt — (1= ar)arz® + SEEET0(3)
1—a o z
(Kl"({)a) +arz® — i1 o(%)
T(1 —
Let v = ﬁ, then as T" — oo,
~ T
pT,l — vr + Za7

which is equal to the Laplace transformation of

o n
VTq;O"lEma(—uTxa), where E, 5(2z Z

n=0

['(an + B)

Therefore, we have

T(l — CLT)wTJ(Tt) = VTta_lEa7a<—l/TtOé)
Plugging this back in the equation (4.8), we can expect (for o > %)

1—ar 1—ar ! a—1 ! 1
A1)~ g () [ (6=5) B =) o ()

(%

1—a
o‘lEaa v t—sa\/ r
\/Tl—aT ,LLT/ (=vr ) Hr

with v} = (vf;) where i € 1,2,3,4 and By, defined at (4.9). Decomposing v} in the basis

Ar(sT) - vidBri(s)
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(e1,e2,e3,€4), We get

1- w2, 1- 1-
U% . ar AT(tT) = ! Ul (1)1 . ar AT(tT>> + (61 . ’U%) <U/ . ar AT(tT))
Hur €1V Hr ur
l1—a
+ 7 (e ) (e ——EAr(iT))
2<i<d Kr
with v/ = e; — vy € span(vy, v3,v4). We can simplify this equation along with (4.6) by
€101
finding a ;- such that
1—
v X (tT) = 0
Kr

for all 7 = 2, 3, 4. Indeed, if that is true, (4.6) can be simplified to

1-— 1 1-—
ar )\T<tT) = (’U1 . ar
Hr €1+ V1 Hr

AT(tT))el,

l—ar
KT

and since for any vector v € span(vs, v3,v4), v - Ar(tT) converges to zero, v? - 1;%)\T(tT)

has the same asymptotic behavior as

el'v% 1—ar
V1t

€1+ U1 Hr

AT(tT)>

How should we choose such a p-? First, per Assumption 2°, we need all the entries of g, to be

identical. However, if we set pup(tT) := pur(1,1,1,1)" as in [16] and [30], v; - 1;? Ar(0) will

IE;T A7 (tT') converges to a process with zero initial

disappear as well. This means that as 7" — oo,

value.
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Consider a p that can solve the following equation

prt) + [ 3 (550)" 67 = o) oar s = T2t [ i “(s)1ds

(4.10)

Recall that

TZ( o) ¢ (1) = Yraltye]

Plugging it back in (4.10), we have

+ / Yri(t — s)(vi - pp(s))ds = T v - 1 +/ prpri(s)v; - 1ds
0 0

1-— ar
Then we have

1 — ar
M

%

¢
Ar(tT) = v -1+ / T(1—ar)Yr 1 (Ts)vy - 1ds
0

T(1—ar) [* I —ar
+,/T [ nalr =) A6 - taBaa)

t
14+ (1 I)I/T/ $* 1 By o(—vps®)ds

1—CLT

e [ =0 Bt = sy, [

Ar(sT) - vidBri(s),

which has a nonzero initial value. This gives us the following assumption:

Assumption 2: For each T', the background intensity g, (¢t7") is given by

pr(tT) = 7 [I—( /OtT ()ds)(ff]l br (1—a2T/0tT<p(3)ds)1 @.11)

1—CLT

with 1 the unit vector.
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Remark: Note that with this assumption, all the entries of p are identical, v; - 1;? Ar(tT) will
vanish for ¢+ = 2, 3,4. Therefore, Assumption 2 includes Assumption 2’. We will also show in
the proof of the following proposition, provided at 4.4.2, that the 1, defined in Assumption 2 is

indeed the solution to (4.10).

Proposition 4.2. The solution to the following integral equation

o0

prt) + [ 3 (52 0)" 6 = o) asg s = 2t [ 3 (SEn) "o

0

is pp defined in Equation (4.11).

With Assumption 2, we have

1-— 1 1-—
ar )\T(tT) = (’Ul . ar
ur €1 - V1 Hr

AT(tT)> e,
where

1 — ar
Hr

t
vy - Ar(tT) ~ vy -1+ (vy - l)l/T/ Sa_lEaja(—l/TSa)dS

1—aT
KT

(t —8)* ' Eyu(—vr(t — S)O‘)\/ Ar(sT) - vidBra(s),

+ il / t
VT —ar)ur Jo
with v} = (v7,) where i € 1,2,3,4 and By, () defined in (4.9).

M

1
Note that v? - A7(tT) having the same asymptotic behavior as

ep - v} 1—ar
(A
€1+ U1 Hr

AT(tT)>
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l—ar
Hr

We can see that the asymptotic behavior of A7 (tT') depends on the asymptotic settings of

1
T(1 - ar)pr

vt and

As discussed in [16] and [30], to get a non-deterministic limit of 1’ﬂ)\T(tT), we need both v
HT

1
T(1—ar)pr

and to be positive constants and hence have the following assumption:

Assumption 3: There are two positive constants 6 and x such that

Jim T ar) <OKT( —a) - and i T =

With this assumption, as 7" — oo,

0
vr — 6, and T — [ —.
T(1—ar)pr ©

Then we have

1—(ZT
KT

v -

Ar(tT) ~ vy -1+ (v - 1)/O f0(s)ds

2 pt
. 1—
L[ o0t 5)y o = na (5T B )
€1 U1 Jo Hr

1
+ R
Vou
Thus, if we introduce
1-— ar

Yr(t) :=wvy - ,
r(?) ' KT

then as 7" — oo, we can see that the limit Y'(-) of Y7(-) satisfies

Y(t):vl~1+(v1~1)/0 faﬂ(s)dﬁ%,/zz’j/o £t = 5)\/Y (s)dB(s),
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where B 1is the limit of By as T" — oo. Since we have shown that B is a Brownian motion, we
can use the following proposition, whose proof is provided in [17], to link the limit of Y with a

stochastic Volterra integral equation:

Proposition 4.3. Let ¢, ¢, c3, and 6 be positive constants, o € (%, 1) and B a Brownian motion.
Let F9(t) = f(f f%(s)ds. The process V is the solution of the following stochastic integral
equation

Vilt) = e1 + e (t) + ¢4 / 90t — $)\/Va(s)dB(s)

if and only if it is the solution of

Vo(t) =1 + %/0 (t —8)*(c1 + ca — Va(s))ds + chae) /0 (t —8)* 1/ Va(s)dB(s)

By this proposition, we can see that Y'(¢) is also the solution of

7 ! 1 O(e, - v?)
Y(t)=v -l—i-—/ t—8)*" (2 -1-Y (s))ds+ 1 / t—5)*"1/Y(s)dB(s).
() 1 F(Oz) O( ) ( 1 ()) F(Oé)u(61'v1) 0( ) () ()
1—
Therefore, as T — oo, we can derive that . a Ar(tT) converges to
T
1
Y(t
€1 - U1 ()61

The derivation in this subsection is very useful in finding the necessary assumptions for the se-

quence of Hawkes processes to converge. Next, we work directly on the Hawkes processes.
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4.3 Main Results

Similar to how we rescale the conditional intensity process, We first rescale the Hawkes process

with the space normalization factor:

Xo(t) = S IN(T), M) = / Ar(s)ds,
Zr(t) = [ (X (t) = Anlt) = [ 22 Ma(T)

The following result, proved in 4.4.1, shows that we can work with A rather than X (t):

Proposition 4.4. sup,o ) || Ar(t) — Xr(t)|| goes to 0 in probability as 7" — oo.

Since we have shown that as 7' — oo, the rescaled conditional intensity 1 —ar Ar(tT) converges
to

- %U1 Y(t)e,
where

Y(t)=v1-l+%/o (t=5)"" (201 1=Y (s))ds+ 1

Therefore, as 17" — oo, we can derive that the rescaled integral

converges to f(f Y (s)ds. By Proposition 4.4, A7 and X share the same limit as 7" — oo. There-
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fore, as " — oo, X1 (t) converges also to

- ?Ul (/OtY(s)ds)el

Theorem 4.1. Under the assumptions above, as 7" tends to infinity, the process (A7 (t), Xr(t), Zr(t))

converges in law for the topology of the convergence in measure to (A(t), X(t), Z(t))¢cjo,1], Where

Alt) = X(1) = — (/0 Y (s)ds)es,

€1 U1

- [y

where (B!, B%, B3, B%) is a 4-dimensional Brownian motion and Y is the unique solution of

Y(t):v1-1+%/o (t—s)a1(201.1—Y(3))ds+F<1a)1/Z((Z:le))/0(t—s)o‘1\/Y(s)dB(s)

(4.12)

andforl < <4

with

B = 1,01, B

1vlz1

and that Y has Holder regularity o« — 1/2 — € for any € > 0. Furthermore, Y has Holder regularity

1
a — 5 — e forany e > 0.

Remark 4.3. The fractional Brownian motion B* (¢) can be expressed as

BH (1) = ﬁ(/ot(t—s)H_édW(s)—|—/:(t—s)H_5 - (—S)H—%dms))

where W (t) is a Brownian motion, and H is the Hurst parameter associated with B (t) [38].

Therefore, we can interpret (4.12) as a Volterra integral equation with Hurst parameter o — %

Since o € (1, 1), the Hurst parameter is less than 3.

33



Applying this result to the microscopic model in 3.2.1, we have the following corollary. We provide

the proof in 4.4.3.

Corollary 4.1. We let the normalizing factor of Vr(¢tT") be

M) =\ L

Vr(tT)
h(T)

Then under the assumptions above, as 7' tends to infinity, converges in certain sense to the

following rough Heston model

_ (2B1 502+ 3603 — 1 1 oy
fe) = ( B+ 382 + 2503 — 1 ) V2y+2 /0 V()W (s)

Y is the unique solution of the following rough stochastic differential equation

Y(t)=2(7+1)+%/0(t—s)a—l(4(7+1)—Y(s))ds+F(lg),/QM(;)+ 1)/0(t—s)a_1\/Y(s)dB(s)

B2(B3+1)
B1+B283+2B2—1"

where v =

W =B'4+ B* - B® - B* B=~B'+~B?>+ B*+ B*

are two 1-dimensional Brownian motions, with B!, B2, B3, B* four 1-dimensional independent

1_

Brownian motions. Furthermore, Y has Holder regularity o — 3

e for any € > 0.

4.4 Proofs

We provide the proofs of Proposition 4.4, Proposition 4.2, Proposition 4.3, and Corollary 4.1 in

this subsection. In the following proofs, Assumption 1, Assumption 2, and Assumption 3 hold,
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and we use c to denote a generic positive constant.

4.4.1 Proof of Proposition 4.4

Proof. We show that X, — A converges uniformly to zero in probability. Since

1—CLT

Ta

XT_AT :KF<1—06> MT(tT),

by Doob’s inequality and the fact that [My, My| = Ny, we have
E[sup | X7 — Ar|?] < T E[Mp(T))? = T **E[Np(T)] < T
t€[0,1]

This shows that X7 — A7 converges uniformly to zero in probability.

4.4.2 Proof of Proposition 4.2
We show that the solution to the following equation
(t)+/ti<“—%) (i 8) (pp(s))ds = 11+ /i(“—%) " (5)1ds
Hr ) N 0] ¥ Kr 1—ar Hr ) N 0] ¥

is
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Proof. We use again the helpful expression

o0

‘I’T _ Z((I)T)*n

n=1

with the property

\IIT*‘I)T:\IIT—@T.

Then from the left hand side, we have:

[ (et [ Zl(‘;—f%)"w*”(s—u)(w(u))du)%(t—s)ds
/0 (1r(6)+ [ (s = w)pur))i) (e = 5)ds

/0 ()@ (t — 5)ds + / / Wi ()Pt — u — s)dspu(u)du
= [ )= sy [ (@rls =) = ot~ gl

-/ Wil ) (s)ds

From the right hand side, we have

/0t<1—aT1+'“T/ Z )ldu)QT(t_s)d

:/Ot(lfTTHMT/ lIlT(u)du1><I>T(t—s)ds

¢
= / ®r(t — s)lds + / / pr¥r(s —u)®r(t — s)lduds
0 1-— ar

S / b (t — s)lds + uT/ / Wy (s)Pr(t —u— s)dudsl
1 —ar Jo 0o Jo
Hr ! ‘
= / ®r(t — s)dsl + uT/ (‘IIT(t —u) — ®p(t — u))dsl
L —ar Jo 0
Uz t t t
_ / B(t— 5)ds1 + / LWt — s)dsl — / LB (t — 5)ds1
1 —ar Jo 0 0
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This means that

t t ¢
/ Wo(t—s)urp(s)ds = ach / ®r(t —s)dsl +/ pr¥r(t —s)dsl — / ur®r(t — s)dsl
L—ar Jo 0 0

Combining with (4.10), we have

t t t
pr(t) + ah / Pr(t — s)dsl + / ur¥r(t — s)dsl — / pur®r(t — s)dsl
L—ar Jo 0 0
l—i-,uT/ Wr(t — s)dsl
1 — ar
This leads to

¢ ¢
pr(t) + ah / b (t — s)dsl — / pr®r(t — s)dsl = Fr_4
0 0

1—CLT

pr(t) = KT (1 — /Ot r(t — s)dsl) + pr /Ot ®r(t — s)dsl

1—CLT

4.4.3  Proof of Corollary 4.1

We apply Theorem 4.1 to the Microscopic Model:
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in a more friendly format:

= 1= B B
LV (1T) = U (NSHAT) + NEY(T) — N%™ (tT) — N2~ (¢T))
Tur Tur

:A ¢Z;1“””>+“@W@—M@W@—m@7m
/o \/ﬁ(”ﬂs) + N (5) = AR (s) = N (9))ds.

+

Furthermore,

A7)+ A2 (8) = AT () = Az (1)

L 1-6— - -
—on( || G et = AN (s) AN 5) = AN (5) = AN} (5)
= [ e (@t )+ M (5) - M () — M ()
+ ap Lo Bobs ot — )AL (s) + Mt (s) = A% (s) — Ao (s))ds
o Bi+t BabBs+ 25 g g g g

By the Lemma C.1, we have

A7) + A2 (8) = A" (1) = A7 (1)

t
= [ rale — @M (s) + MY (s) — AN (s) — dM ()
0
Then using Fubini theorem, we get

A 646 = 2 (6) = N (s
=[ﬂA%VMWWMM@W@+m@W$—M@w@—m@wm
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1-— ar
Tpr

Hence the rescaled price process Vr(tT') can be written as

1—(1T 1_G/T

a,+ b,+ a,— b,—
= ’ ’ — Ny (tT) — Ny (¢tT
T TV (IT) = | S L NET) + NEUT) = NpTUT) — N ()

_ /0 N 1T_MjT (AME* () + dMYT (s) — AME (s) — dME ()
T izar 2t (s PH(s) — A% (s) — A2 (s))ds
[T )+ X (9) = () = X ()

:/tTdZ“+()+de+() dZg™ (s) — dZg~ (s)

,/1T_M“T /tT /tT () du(AMEH(s) + dMEF () — M (5) — dME(s))

= (Z7"(t) + 27 (1) — Zp~ (1) = Z¢~ (1))

I—ar at b+ 0= (Q) _ MO (s
T [ et )+ avi ) = () - ant (o)

1—a”
Tpr

= (Z7"(t) + 27" () = Zp~ (t) = Zy~ (1))

— / / to )¢T,4(u)du(dz;;v+(s) +dZT (s) — dZ% (s) — dZh (s))
0 T(t—s

+

/0 () du(ME(2) + MEF(£) — ME™(t) — ME(2))

n / " palu)du(ZE (1) + Z5H() — 28 (1) — 20 (1)

=1+ /OO Yra(u)du)(Zgt () + Zp*(8) = 237 (1) = Zg~ (1) = Re(1)

with

_ /0 t /T :_ | ra(w)du(dZE" (s) + dZot (s) — dZ3 (s) — dZ27 (s)).

Since

[ vntwia= [ gamz”(u)du
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Since ap < 1and 7 ([;° ®r(s)ds) < 1,

R Y A _ 1 _ By + BaBs + 25
N nZ;/O Mialu)du = 1 - fooo Ara(s)ds B B2Bs + 2B — aT (1 — Ba— BafBs)| el

Therefore, we have

1 —ap B B+ B2z + 25,
V. Tur Vr(tT) = (1 + B+ B2z + 202 —ap(l — Po — 5253)Hfa’1“1)

(23 () + 27" (t) = Z3~(t) = Zg~ (1)) — Re(1),

where

Rp(t) = /0 /T :_ | Yra(w)du(dZs™ (s) + dZoT (s) — dZ8 (s) — dZh (s))

Next, we let e; = (l 11

111 %) , then by Theorem 4.1, the process (Ar(t), X7 (t), Zr(t)) con-

verges in law for the Skorokhod topology to (X, X, Z) where

and
dB!(s)
YA dB?(s)
Z(t) —/0 2(7+1)Y(s)ds 1B
dB*(s)

where (B!, B?, B3, B*) is a 4-dimensional Brownian motion and Y is the unique solution of the

60



following rough stochastic differential equation

Y(t)=2(y+1) +i/t (t—s8)* 14y +1) = Y(s))ds
(v +1)
Sl B e e

Furthermore, Y has Holder regularity o — % — e for any € > (. Therefore,

( P+ B283 + 2B,
P14 B2B5 + 202 — ar(1 — By — B255)|lellx

converges in law to

<251 + 5082 + 362083 — 1 / Y (5 (s)

P+ 382 + 28205 — 1 27 +2
where W = B! + B? — B3 — B* and Y is defined by (4.13).

Now we are left to show that R converges to 0. Since

Ro(t) = / t ( / T Gra(u)du) (A28 (1) + dZE(8) — dZ% (t) — dZ%_(t)),

T(t—s)

there exists ¢ > 0 such that

iR 0] < [ ([ vnatundaas

LetG =Y, \(%)@]*", then we have

Y _ n Bafs — B+ 1 L
|wm_/o ¢T’4(u)du_/o ZA” du<z|ﬂl+ﬁzﬁ3+2ﬁf| =¢
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(it + 2 ) - 27 () - 25 ()



—B2B3—P2+1

G is integrable since [ 552520

¢| < 1. Therefore, we have

0] < [ ([ Gomas

Ts

< c/ol< " G (u)du)2ds

Ts

< c(/OTm(/C>Q G (u)du)?ds + /Tl_m(/T:o G (u)du)*ds)

([ Car [ ap)

T1/2

Thus, E[(R7(t))?] — 0 as T' — oo, and hence R} converges to 0.
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CHAPTER 5: DYNAMICS OF THE LOB WITH HAWKES PROCESSES

5.1 Combining the HFT and Non-HFT Volumes

With the scaling limit of the HFT order volumes V' (¢), and suppose the limit is on some filtered
probability space (2,.%#,F,P) at the coarse-grained time scale of the average (non-HF) market

participants, we model the HFT orders as a multiplicative noise term of the form:

Co(z)u(t,x)dV (t) = C,(x)u(t, z)\/Y (t)dW (1),

where
ce x € (0, L]

C? x € [—L,0)
with C2,C% > 0. Combining with the non-HFT orders, and let the relative price level be z €

[—L, L] for some positive constant L, we have the following SPDE for the centered order book

density v in a real, separable Hilbert space (H, (-, )y ):

du(t,z) = [Au(t,x) + F(t, z, u.(t, z), u(t,))]dt + C,(x)u(t,x)\/Y (¢)dW (t)
u(0,z) = up(x),

Y(t)=2(v+1)+ % fg(t —8)*4(y+1) = Y(s))ds

1 0 . . - )
L T(a)V 2u(y+1) fo (t—s5)*""/Y(s)dB(s)

(5.1)

where u : [0,7T] x [-L,L] x Q — R, ug : [-L,L] — R for some L > 0, and T" € [0, 0).

A :dom(A) C H — H is alinear operator on H defined as

Au = n(2)uze — ((2)u,
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where

. T e (0,L « € (0,L c¢ xe(0,L
pwy =1 " € (0, L] ) = G @€ (0, L] o) = € (0, L]

m x € [—L,0) G x€[-L,0) C’ ze€l[-L,0)

with 7, 7, Ca, Gy, C2, C° positive constants. Also,
Bt z,ug(t, @), ult, ) = —B(z) sgn(@)u.(t, 2)]” + J(z, u(t, z)) + G(z, (1)),

where

u(t, )] = —ug(t,x) ux(t,xz) <0 and a) = Bo x€(0,L]
0 otherwise By x€[—L,0)

with f3,, B, are positive constants. The function J is defined as

(@, ult, @) = Yasop [ = (@) (ult,@) = uo) " = j(=|]) (u(t, ~|z]) + uo) ]

+ 1geoy [7(12]) (u(t, |2]) — wo) " + j(2) (u(t, z) +uo) ],

with up > 0, and j(x) < 1 a positive function decreasing in > 0 and increasing in z < 0. The

function G(x, £(t)) is strictly decreasing in ¢(¢) and G(x,0) = 0, with

(- [ "t y)dy.

Ba(fs 4+ 1)
Bi+ Bofs +208— 1

In the equation of Y (t), a € (3,1), and y = For the diffusion term for both

of the equations,

W =DB'4+B?- B*- B, B=~B'+~yB*+ B*+ B*
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are two one-dimensional Brownian motions, with B*, B2, B3, B* four independent one-dimensional

Brownian motions.

5.2 The Existence of the Unique Solution to the SPDE

In this section, we first show that there exists a unique solution to (5.1).

Theorem 5.1. Assume that the following conditions hold:

(i) For any 7 € [0,00), there exists C'» > 0 such that for all z,y € R and t € [0, 7],
Gz, f1(1) — G(z, [2(t)] < Co|fr(t) — f2(D)].

(ii) The linear operator A generates a C semigroup of bounded linear operators S(t) with

|S(t)]| < Me“" with constants M > 1 and w > 0,

Then there exists a unique mild solution u(t, z) to (5.1) for t € [0, 7).

5.2.1 Weak Existence and Uniqueness of Y (t)

We first show that there is a unique in law continuous weak solution Y (¢) of the equation

Vi) =26+ 1) i/ - o) A+ 1) — Y ())ds

(5.2)
” 7+1 / (t —s)* /Y s)dB(s

Most of the technical results in Section G needs the kernel function to meet requirements (G.2) and

(G.3). We show in this section that (5.2) is an affine Volterra equation per (5.2) that meets these 2

requirements.
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Proposition 5.1. (5.2) is an affine Volterra equation that meets the requirements (G.2) and (G.3).

Proof. (1). The equation (5.2) is an affine Volterra equation:
We first show that (5.2) is an affine Volterra equation. Indeed, comparing it to the equation
of #'(t) (G.1), we can see that d = 1, m = 1, and % = Y (0) = 2(y + 1) € R. The kernel
2 corresponds to
a—1

H(0) = fros € Lo ).

As for the coefficients, b : R — R corresponds to
b(y) = =0y +40(y + 1),

and 0 : R — R corresponds to

0
o) = 2M7+UV@
Therefore, b(y) and
M@ZG@M@V—2M5+Dy

are affine of the form

7

a(y) = A"+ yA', with A® =0and A' = ——
v 2pu(y +1)

as well as

b(y) = b° + yb', with b° = 40(y + 1) and b = —0

We have shown that (5.2) is an affine Volterra equation. We can also find the corresponding
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2).

3).

expressions of the following important ingredients to use the results in Section G:

0

B = (b') = -0, Au) = udu" = ——
®) () 2p(y + 1)

any row vector u € (C)*.

& satisfies the requirement (G.2):
Next, we show that the kernel %~ satisfies the requirement (G.2). Indeed, let v = 2 — 1,

we have
Y

h ) B h
/o A= T asy

and

Since v € (0, 2], foh K (t)*dt = O(hY), and fOT(Ji/(t +h) — H (t))*dt = O(h") for every
T < 00, (G.2) is fulfilled.

& satisfies the requirement (G.3):

Lastly, we show that the kernel .#" satisfies the requirement (G.3). If A, % (t) = J# (t +
h) := .Z (t) is completely monotone on (0, co) and not identically zero, then (G.3) is fulfilled
by Lemma G.1 [20]. Recall that a function .%# is completely monotone on (0, co) if it is

infinitely differentiable with (—1)".%™(¢) > 0 forallt > 0andn = 0,1, ....

FOW) = f(t) = H(t+h) = ﬁ(t + RS 0
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We show that for n > 1.

1 n
J - = o toz (n+1)
F(a g (6% Z

—1
Whenn =1, 7'(t) = (a )(t + h)*~2. Suppose .Z (™ (t) holds, then

I'(a)
1 n 1 n+1
(n+1) 1) = . 1 o (n+2) . ta—((n+1)+1)
FD () F(@)a (n+1)]J(a - —F(Q)H(a Q)
=1 =1
By the Principle of Mathematical Induction, for all n > 1,
J — 1 ﬁ a (n+1)
['(«)

=1

Therefore, for all n > 1, (—1)" f™(¢) > 0. The second condition is fulfilled.

Therefore, by Lemma G.2, there is a unique in law R, -valued continuous weak solution Y of the

equation (5.2).

5.2.2 Existence of a mild solution at stopping time

In this section, we prove the existence of a solution u(¢, x) to the following SPDE:

du(t,z) = [Au(t,x) + F(t, z, u.(t, 2)u(t,-))]dt + Cy(x)u(t, 2)\/Y (t)dW
u(0,z) = ug(x)

(5.3)
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We write out the proof for the case where > 0. The case where x < 0 can be proved using the

same method.

Since A generates a Cjy semigroup of bounded linear operators S(¢), we have

t t

u(t,z) = S(t)uo(x)+/ S(t—s)F(s,z,u.(t,x),u(s, -))ds+C’g/ S(t—s)u(s,z)\/Y(s)dW(s)
0 0

We first show that the L? norm of S(t) decays exponentially. Let ¢ € Dom(A), and

—A¢(x) =vo(z), x€(—L,L)
o(z) =0, r=—Lorx=1L

We find the eigenvalue v,, and eigenfunction ¢ of the operator — A as

n’r’n;

Vn_ L2 +Ca

¢n(z) = sin(Fx)

Then for any ¢ € Dom(A),
(Ay, ) < —nly]®

and so

d , . d dt
SIS@RI? = (S0P, S@)6) + (S8, 5 5@)
= (AS(1)6, S(0)) + (S(0)Y, AS (1))
<~ 20| (1)

Hence, we have

IS@VI* < e 1S(0)3]7,
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which means
1Sy < e ™|y

2,2
T g

2 + (o > 0, we have shown that ||.S(t)|| decays exponentially.

Since v =

Let 7, = inf{t € [0, 7] : Y'(¢) > k} AT, we use the Picard’s Iteration to prove the existence of the

mild solution:

Tk/\t
WD (7 At ) = S (T A tug(x) + / S(7i At = 8)F(s,2,u™(s,-))ds
0

+co /0 " S At — 5)u®™ (5. 2) T (S AW (5)

We write out the proof for the case where z > 0. The case where x < 0 can be proved using the

same method.

2
]EHU(”“)(Tk At,z) —u™ (1, At ) ]

[ /OTkAt —BaS(Te Nt —5) ([ug(c")(s, )" — [l Y (s, x)ﬁ)ds

TN\

—j(x)S(m Nt —s) ([u(”)(s, x) —ug]t — [u(”_l)(s, x) — u0]+>ds

TN\

+

+
S—— =

—j(=x)S(me ANt — 8) <[u(")(s, —z) + ug]” — [u("_l)(s, —x) + uo]_>ds

TN\

+ S(tik At —s) (G(x,/ u™ (s,y)dy) — G(x,/

0 —t —t

4o /O N Y E)S (e A — 8) (™ (5, 1) — uD (s, 2))dW (5)

L L

u" (s, y)dy) ) ds
]

<E[| [ St At —s) (s, 0)] "~ s, ) )|




L L

+ 5E|| /0 w Stmnt—s) (G, /

—L

VY (8)S(m At —8)[(u™ (s, 2) — u" Y (s, x))]dW(s)‘Q}

u™ (s, y)dy) —G(:z:,/ u(n—l)(s’y)dy)>ds‘2}

—L
TN\t

+51E:Hcg
0

=14+ +11T+1IV+V

Since S(-) is analytical, and [u,]™ is roughly [A2u]~. Therefore, there exists a positive constant

(' such that

) TN\ 2
I <5C B3 At—s)"2 / ]E)u(")(s,x) —u™ (s, 2)| ds
0
TN\t 2
< 50155/ E)u(")(s,x) - u("_l)(s,a:)‘ ds
0

As for 11, since

01, 2) = o] — [ 1) — ]|

B ‘ [w™(t, x) — u) + [u™(t, ) —ug|  [u"I(t,2) — uo) + [ul" "V (t, z) — uol ‘
- 2 B 2

1

= 5‘[u(n)(t, x) — up| — [u("_l)(t, ) — ug) + ’u(n)(t7$) — up| — |u(n_1)(t,x) N
1

< 5[0 (t.2) = o] = W&V (t,2) = o] + [Ju (1) = ol = [u" D k) — o |
1

< 5 || @) — ol = [Vt @) = ol + |t 2) = o) = "t 2) = ol

< |u (k) = u D (e,

we have

TN\t 2
IT < 5/ ]E‘u(”)(s,:v) —uV(s,2)| ds
0
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Similarly, we have

u™ (s, —z) — u (s, —x)

TN\t
]I]SE)/ E ds
0

TN\
< 502/ ]E‘u(")(s, z) —u™ (s, z)
0

‘ 2

2

ds

for some C'5 > 0, assuming that the volume density on the opposite side with the same distance

away from the mid-price are not too different from each other.

Using the first condition of GG in Theorem 5.1, we have

TN\t 2
IV < 5LC’g/ E‘u(”)(s,x) - u(”_l)(s,x)‘
0

As for the last term, we have

2

’Tk/\t
V < 5(Co2C, / E‘Y(s) ds
0

’S(Tk At —s)(u™(s,z) — u V(s 1))

2

TN\
< 5(C’§)2Cpk62”1(7k/\t)/ E)u(")(s, z) —u™ (s, z)| ds.
0

Gathering I, I1,I11,1V,and V, there exits some constant C' that dependson 7', ¢, C'?, C», Cy, Co, 11, k

such that

2 TN\t
EHu(n+1)(Tk At,x) — u(n)(Tk At,x) ] < C/ E“u(n)(s, x) — u("*l)(s,x)P ds,
0

Since u(®) (1, A t, ) = ug(z), we also have

11

+ /OTk —BaS(Ti At — 8)[ug(x)] " ds

E Hu(l)(m At ) —uO(r AL, z)

S(1i A t)ug(x) — up(x)

72



+ / U @S At — 5)[uo(x) — ugltds
+ /OTk —j(=x)S (T Nt — 8)[ug(—x) + ug) " ds

TN\ L
+ / S(m ANt — S)G(a:,/ uo(y)dy)ds
0 —t
TN\

+Cy VY (8)S(1e At — s)ug(x)dW (s)

0

<E [G‘S(Tk A o) — 1o ()

]

‘2
+6 /OTkM —BaS (T Nt — s)[uo(x)]_ds)2

2

+6 /OTk —3(x)S (T At — 8)[up(x) — uo] " ds

2

+6 /OW\ —j(=2)S(me ANt — 8)[ug(—x) + up]~ds

L

+6 /OTkM S(me Nt — s5)G(x, /L uo(y)dy)ds)2

+6C°

T AT 2
/ VIS (i At = s)uo(a)dW (s)] |
0
Since j(x) € (0, 1] and S(t) is a bounded linear operator for all t > 0, we have

2
E||[u® (7 At 2) = (7 At )| | < 6CTuo(@)? + 68, Tluo ()
+ 6CT|ug(z)|> + 6CT|ug(z) >

+ 6.0 5T |ug(z) > + 6(C*)2Cpke* "' Tlug ()| := C’

for some constant C” > 0 that depends on |ug(x)|, C, T, ¢, C¢, vy, k, C,, C». Therefore, we have

T AT TN\ O/ C4
E[|u("+1)(7k At x) —ul™ (7, At x)|2] < C’”/ / C'ds...ds = C"—=m A" < —
0 0 n- n.
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Therefore,

m—1
lut™ (7 At w) —u (At )| = [ Y Ju® DAt a) —u®(m At o)
k=n
m—1
< St (r At @) — u®(my AL, )]
k=n

1/2

_ (E[ / 1 WD (7, At ) —u(’“)(Tk/\t,m)thD
0

k=n
< _— = _— _>
_k:n</0 n!> ;(n')

as m,n — oo. Therefore, {u™ (7, At )}, is a Cauchy sequence in (H, (-,-);). Hence

{u™ (7, At, 7))}, converges in (H, (-,-) ). Define

n=0

u(mp Aty x) = lim u™ (7, A t, )
n—oo

Now we prove that u(7y A ¢, x) satisfies (5.3): For all n and all ¢ € [0, 7], we have

TN\t TN\t T\t
u") (At ) = A u™ (s, 2)ds+ ' F(s,z,u™(t,.))ds+C® ' u™ (s, 2)\/Y (8)dW (s
(k ’ ) (7 ) (7 ) (7)) o (7 ) () ()
0 0 0

Now let n — oo. Then by the Holder inequality we get that
Tk At t
/ u™ (s, x)ds — / u(s, x)ds
0 0

TEAL TN
/ F(s,xz,u™(s,-))ds — / F(s,x,u(s,"))ds
0 0
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by the Itd isometry, it follows that

/Om ™ (s, 2)/Y (5)dW (s) — /0 (s, 2)/Y (5)dW (s)

We conclude that for all t > 0, u(7; A ¢, x) is a solution to

u(ty ANt x) = /OTk Au(s,z)ds + /OTk F(s,z,u(s,-))ds + Cy(x) /OTk u(s, )/ Y (s)dW(s)

5.2.3 Uniqueness of u(ty At,x)
In this section, we check uniqueness the solution u (¢, x). Suppose w and % are both solutions to the
equation above. We let s, = 7 A 7, Then we have

2
E’u(sk ANt x) —u(sp At,x)

= E) /OTkM S(mi At,x) <F<S,ZL’, u(s,-)) — F(s,x,u(s, -)))ds

2

o /0 " e A t) (uls, ) — (s, 7)) T E)W (s)

< C’/OTkAtE“u(s,x) - ﬂ(s,x)ﬂ ds

for some constant C' that depends on 7', ¢, C¢, C'5, Cy, Co, vy, k. Using Gronwall inequality, we
can conclude that for ¢ € [0, 7], u(sk A t,z) and @(sg A ¢, x) are modifications of each other, and
thus indistinguishable. Therefore, we have shown that for all ¢ € [0, 7%], u(7% A ¢, x) is the unique

mild solution to

u(TpAt, ) = /OTk Au(s,x)ds+/0m F(s,x,u(s,z),u(s,-))ds+Cs /OTk u(s, )/ Y (s)dW (s)
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5.24 1, — T Almost Surely

Proposition 5.2. 7, — T almost surely. This means that there exists N € F such that P(N) = 0

and 7, (w) — T forallw € N°.
Proof. Let e > 0, need to show that

lim P{\Tk —T'| < e for every k > m} =1

m—r0o0

Considering the complement event, we have
P{lTk —T| > e for some k > m}

:]P’{TkST—eforsomek;Zm}—l—]P’{TkZT—i-eforsomekZm}
:P{TkgT—eforsomek:Zm}

= IP{ sup Y (t) > k for some k > m}

t<T—e¢

< IP’{ sup Y (t) > m}

t<T—e¢

<P{Y(0)+ sup [Y(t) =Y (s)| > m}

0<s<t<T—¢

<( ! JEL swp V() ~Y(s)F]  forsomep >4

m —1Yo 0<s<t<T—e
Now we check if we can apply Lemma G.4. Indeed, we can write Y (t) as Y = . x (bdt + dM),

where

e R N E L
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By Lemma G.3, forany p > 2 and T < oo,

sup E[[Y/(8)["] < ¢

t<T—e¢

for some constant c that only depends on

T ta—l 9
t T.
s /0 [F(Oé)} d ) CLGa p, ¢ and

Therefore, by Lemma G.4, we have

EK sup |V (%) _Y(S)M < ¢ sup Ef|a(t)]P’? + [b(t)?]

0<s<t<T—e t<T—e¢

< ¢ sup E[C|Y()]"? + C1+ Y (1)) < ¢’

t<T—e

for some C’ depending on v, 0, i1, p, T, €, C;. Therefore, we have

P{jre —T| > cforsome k> m} < (———)'E[ sup V(1) ~ V()1

m — Yo 0<s<t<T—e

=)

When m — oo, IP’{ |7x — T'| > € for some k > m} — 0. Therefore, we have proved that

IN

lim ]P’{\Tk —T| < e for every k > m} =1,
—00

m

and hence 7, — T almost surely. This means that there exists N € F such that P(N) = 0 and

Tk (w) — T for all w € N°.
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5.2.5 Extension of the unique mild solution from [0, ;| to [0, T

In this section, we treat the model by truncating Y (¢). Let ¢ € [0, T], for each k € Z™, we have

M) + fg[Auk(s,x) + F(s,z,uk (s, 2),u*(s,-))]ds
—|—f(f Couk (s, z)VEIW (s), Y(t) >k
—I—fo [AuF (s, 2) + F(s,x,uf(s,z),u*(s,))]ds
\ —l—fo CouF(s,x)/Y (s)dW(s), Y(t) <k

ub(t,r) =

Y(t):2(fy+1)+% /0 (t—s)a_1(4(’y+1)—Y(s))ds+F(1a> 2u(70+ 3 /0 (t—5)*"'\/Y (s)dB(s)

Meanwhile, for each k € Z*, and for ¢ € [0, 7], we also have

ur(t, x) = ugo(x) + /0 [Auy (s, z) + F(s, x, [ug] (s, 2), ug(s, -))]ds

+/0 Clu(s,x)\/Y(s)dW(s), Y(t) <k

Y(t):2(7+1)+%/0(t—s)a_1(4(7—|—1) ds+ 1/ 7+1 / (t—s)* /Y (s)dB(s

By Proposition 5.2, there exists N € F such that P(N) = 0 and 73(w) — T for all w € N°.

Assuming the functions ulg = ugo for all k£ € Z*, we want to show that for each w € N°,
each t € [0,T), there exists k(w) such that t < Ti(w)- Following similar steps in the proof of

Proposition 5.2, we have

P{Tk < T for all k}

< IP’{ sup Y (t) > k for all k}

t<T

< ]P’{Q(’y +1)+ sup |Y(t)—Y(s)| > k forall k}

0<s<t<T
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1 P
<(—>E su Y(t)—-Y(s) for some p > 4 and all k&
< (o) @

“\k—-2(v+1)
for all k£ and some p > 4, with C’ depending on v, 0, i, o, p, T, €, C'r.;. Therefore, for all k € ZT,

we have
1

P{Tk < T for all k} < (m

p
) C’ for all k

We want to show that P{Tk < T for all k:} = 0. Suppose for contradiction that ]P){Tk < T for all k} >

0, and let it be ¢, then by the Archimedean Property, there exists an N € Z™ such that
NP > (C"/P = NPe > (',

There also exists a k € Z" such that N = |k — 2(y + 1) |. Therefore, there exists a k € Z* such

that
Q/ B Cl > C/
N T Th—2(+ DJp = (k—2(y + )

P{Tk < T for allk:} —e>

We have reached a contradiction. Therefore,
]P{Tk < T forall k} —0,

which means

P{Tk =T for some k:} =1,

or equivalently, 7, = 7" for some k almost surely. Therefore, for eachw € N¢and ¢ € [0, 7], there

exists k(w) such that Thwy =1 2 t.

When ¢ < 75, Y(t) < k(w), and u*(t, ) = uj(t, ). Therefore, we have shown that for each

we Neandt € [0,T), uP(t, ) = ug(t, z) for all k > k(w).
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CHAPTER 6: PRICE DYNAMICS

The bid and ask price dynamics are determined by the LOB dynamics. When the ask (bid) queue is
depleted, the price moves up (down) to the next level of the order book. We assume that the order
book contains no gaps so that the price increments are equal to one tick, which is ¢ as defined in
section 3.1. When the bid queue is depleted, the price decreases by one tick. When the ask queue
is depleted, the price increases by one tick. On the other hand, if the queue sizes increase rapidly
in a short period of time, it means there are excessive amount of limit orders, which will likely be
transferred to market orders and be executed towards the opposite direction. When the ask queue
size increases n times, the price will move down n ticks. When the bid queue size increases n

times, the price will move up n ticks.

We use a simple example to illustrate how the LOB dynamics determine the bid and ask prices.
Suppose in the illustrative LOB (1.1), there is a bid order of 10,000 shares, then the first 2 queues
on the ask side will be depleted, and the ask price will moving up 2 ticks, rising from $100.01 to

to $100.03.

All 3 LOB activities affect the ask and bid queues. Submission of limit orders increase the queues,
while cancellation of limit orders as well as market orders from the opposite side decrease the
queues. Therefore, the price changes are determined by the volume changes, and we model the

volume by the order book depth D® and D° [13].
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6.1 Price Dynamics Model

Let D*(t) (D®(t)) be the volume of limit ask (bid) orders at the top of the LOB at time ¢. The order

book depth can be expressed as
L 0
Dot = / u(t,z)de,  DM(t) = / u(t, z)da
0 —t

Let the change of the order book depth in the time interval [t, ¢ + dt] be dD*(t) and dD"(t). Note

that since u(t, ) > 0 on the ask side and u(¢, ) < 0 on the bid side, D(t) > 0 and D®(t) < 0.

dD*(t)
Da(t)

ticks. Therefore, the price impact from the ask

ticks. When

When dD“(t) < 0, the ask queue decreases and the ask price increases by —

dD*(t)
Da(t)

. On the other hand, when dD"(t) > 0, D(t) increases, but since D°(t) < 0,

DH(1)
D¥{1)

dD(t) > 0, the ask price decreases by

ueue is —w
4 De(t)

this means that the bid queue decreases, and the bid price decreases by — ticks. When

Db(t
dD’(t) > 0, the bid queue increases, and the bid price increases by Db—((t)> ticks. Therefore, the

DO(t
price impact from the bid queue is Db—(sﬁ)) In summary, the ask and bid price changes will be:

dD*(t)
Da(t)’

dD"(t)
DO(t)

ds®(t) = —§ ds’(t) = 0

and the price change will be

) (dDb(t) dDe(t) )
Doty D)

dﬂ@z;@ﬂw+@%»:§
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We first find the dynamics of D?(t) and D®(t). Indeed, by the Leibniz integral rule, we have

dD(t) = d/bu(t,:p)dx

= / du(t, z)dz
0

:/{hwamm—mmwm1—@ww>

— j(@) (u(t,z) — uo) " — j(—=)(u(t, —x) +uo)

+G(a, E(t))] dt}d:zc + / L {Cgu(t, x)\/%dvv(t)}dx
- /0 L { [naum(t, 2) — Balua(t, )] — Coult, z)

— j(@) (u(t,2) —uo) " — j(—) (ult, —x) + up)~

elts E(t))] dt}dx + ( /O ult, x)dx) Co\/Y () dW (1)
= [ {[postto) = Aol = Gt

— j(2) (ult,z) — uo)+ — (=) (u(t, —z) + uo)
+G(a, E(t))] dt}d:z: + DA CHY (£)dW (1)

Similarly,

dD"(t) = /O Mtk (£, ) + Bofuta (1, )] = Gu(t, @) + (=) (u(t, —2) —uo) "

+ (@) (ult, ) + uo)~ + Gla, (1 ))] dt}dx + DYHCE /Y (£)dW (2)
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Therefore, we have the price dynamics model as

(as(t) = g[ub(t) — valt))dt + 2 O(Ct — o\ TBAW (L), S(0) = So >0
Y0 =200+ 1) + s =97 4+ 1) = V()i 6.1
+r(1a) 2m@+ 0 Jo(t = 9)71/Y (s)dB(s)

where

0(0) = s /0 {[utten(t.2) = Bulualt 0] — Gt )

— (@) (ult,x) — up) " — j(—) (ult,—z) + 1)~ + Gz, e(t))} dt}dx

) = s [ { [moett )+ ufus(e. 0] = Gt

+ (=) (ult, —2) —uo) " + ji(x) (ult, ) +uo)” + Gz, E(t))] dt}dm

with 74, M, Ba, Bb, Cas G, C2, CP all positive constants. § > 0 is the tick size of the market.

In order to analyze the parameters, we need to explicitly express the parameters in the price dy-

namics. Therefore, we write (6.1) as

;

S(O)*S[)a
Y(t)—2(7+1)+r( >f0t (t —s)*H4(y + 1) — Y(s))ds
+F(1a) 7+1 fg(t—s /Y (s)dB(s
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6.2 Parameters Analysis

6.2.1 Financial Meaning of the Parameter

We summarize all the parameters in the following table:

Table 6.1: Parameters

H Parameter Expression Range H
a ¢(x) ~ —fzasx— oo, with K > 0aconstant (3,1)
T—0
_ B2(B3+1)
g Y = BafianT (0, 00)
0 7lim (1 —ar)T* =60KI'(1 —«) (0, 00)
—00

——— n

lim T %y = ——— 0
a Tosos Hr KI'(1 —«) (0,00)

The settings of 6 and p are mainly to provide the convergence order of the sequences ar and pr,

so we focus on the financial meaning of « and -y:

1) a:
o(x) e xl% means that the Hawkes kernel has a power law decay. Financially, this means
that the inducing power of the same type of LOB event decays slower than an exponential
decay, which is mainly caused by the metaorder splitting strategy. The smaller «, the slower

the decay, and the more frequently the metaorder splitting strategy is used. This will induce

a larger volatility.

(2) 7:
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B2(B3+1)

Y = B pabaios T and we can see from our Hawkess process:

Aot ot

S I T t o(t)

AL s b1+ B2 + 202

0

AT -
1 0 o (Br+ Ba+ Poffs —1) | [dNGT
0 L (Bi+Pat B2z —1) Do AN+
P2 B2 (B1+ B2) 0 dNg"™

BaPs o 0 (B + Ba) AN~

that v is the ratio between the inducing power from limit orders to market orders, and the

inducing power from market orders to limit orders. This is essentially the ratio of

Power of taking away liquidity
Power of providing liquidity

6.2.2 Price Simulation

Since we focus on the parameters and the price volatility, we zero out the drift term, and add a

small positive number € to treat the singularity. We also explicitly write out all the parameters:

[ ds(t) = 2t~ ca) /YW ()
S(0) = So,
ay () = ‘9;;)1 (4(7+1) = Y (s))dt + ;CEO;) n (79+ VY aB()
Y(0) = 2(v + 1)
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where

are two 1-dimensional Brownian motions, with B!, B?, B3, B* four 1-dimensional independent
Brownian motions. Let Sy

B',B% B3 B* are standard 1-dimensional Brownian motions that are independent from each

other.

(1) o

Stock Price

15000

10000

5000

-5000

~10000

-15000

~20000

W =B'+B?- B - B*,

100, § = 2, Cb — C* = 0.6, €

B =~B'+~B?>+ B*+ B*

We fix all the other parameters and check S and Y with 0.6 < a < 0.95. Let vy = 1.

Average Heston Price Si

ion with 10000 Brownian Motion Paths
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—— a=0.75
— o =0.6075
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400 600 800
Time Steps

1000

(@) S(t)
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1

o
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Figure 6.1: Simulated Price and Volatility of o € {0.9,0.75,0.6075}
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Figure 6.3: Simulated Price and Volatility of o € {0.95,0.9,0.85}




(2) 7:
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We fix all the other parameters and check S and Y with varying . Let a = 0.75.

Average Heston Stochastic Vol Simulation with 10000 Brownian Motion Paths
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Figure 6.4: Simulated Price and Volatility of v € {0.1,1,10}
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Figure 6.5: Simulated Price and Volatility of v € {1,0.01,0.5}
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CHAPTER 7: CONCLUSION

In this paper, we made two modifications to the C-M model: We included market orders, and
instead of modeling the HFT dynamics with Brownian Motion, we used the scaling limit of a
series of nearly-unstable multivariate Hawkes process with power-law tails. The second change

enables our model to reflect the dependencises among HFT orders.

Based on the order book dynamics, we also created a middle price dynamics model in the same
market. We analyzed parameters in the price model to determine how they impacted the price
changes. We found out that among all the parameters, «, the parameter that measures how fre-
quently the metaorder splitting strategy is used, has the most significant impact: The more fre-

quently the strategy is used, the larger volatility there will be in the price change.
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APPENDIX A: EIGENVALUE CALCULATION
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In this appendix, we calculate the eigenvalues of ®(, where

1 0 Ba (Br+ B2 + B2fs — 1)
o 0 1 (Bi+fetfofs—1) B
B2 B2fs (B1 + B2) 0
Bafs Po 0 (81 + o)

Let the eigenvalue be \ and the corresponding eigenvector be v, then we have

Pv— = (®—\)v=0,

where [ is the identity matrix. This equation has a nonzero solution if and only if det(® —AI) = 0.

Then we have
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det(® — \I)

1-Xx 0 B Pr+ B2+ fafs — 1
_ 0 1—=X Bi+Ba+ Baffzs—1 Ba
R Pa B2 b1+ P2 — A 0

Bafs Do 0 Br+ P2 — A

= X' = (260 + 280 + 2N + (81 + 451 — B; + 26152 + 48> — 28355
— 26383 = 26192 + 28505 + A" = (251 + 251 — 28; — 26,8
+ 4815 + 26, — 2835 — 288385 — 2838 — 2838 — 45,835

— 20286 + 2B\ + (97 — 20165 — 5253 + 2616 + B35}

+ 2838} + 281835} — 2638} — B35 + 28,8355 — 46353

+ B3B3 — 45 5363 + B35} — 2818y — 281838y — 48,638y

+ 20385 — 251825 + 251 525)

= (A= (8= BoBla+ 1) (N = (281 + o+ Bufl + DA

(B2 + 261 — 23 + 28 — G363 — 26365 + 265) A

— (82— 20,0 — G362 + 210 — 5363 — 368383 — 2618367 + 6363
— 2385 — 451838 + 268365 — B85 + 281 505) )

= (A= (B = o+ 1) (A + (B + afls — 1))

(A= (B + Ba)) (A = (Br + 28, + B) ) =0

Therefore, we get the eigenvalues

AL = P+ 283 + 20, Ay = —[af3 + B2 + 1,
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A3 = B1 + Baf3s, A= =03 — B2+ 1
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APPENDIX B: THE CLUSTER REPRESENTATION OF HAWKES
PROCESSES
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Another way of understanding the multi-dimensional Hawkes process is through the cluster repre-

sentation [24], also called “Immigration-Birth” Representation. Recall that our microscopic vol-

ume model N(-), a four-dimensional Hawkes process, is defined as following:

where
a,+

b,+

a,—

= T T E

b,—

P11

P21

©31

P41

P12

P22

P32

P42

¥13

P23

P33

P43

P14

P24

P34

Paa

For the subscripts of each entry of ®(-), 1 stands for limit ask orders, 2 for limit bid orders, 3 for

market ask orders, and 4 for market bid orders. We will use the following graph to illustrate the

cluster representation of N(¢):

In this graph, each circle represents an event that happens at 7;. The arrows show the root —

offspring relationship, and Gen,, specifies the generation of the event, while £ = 0 being an im-

migrant and & > 0 being the k-th generation from an immigrant. Z; ; are random variables such

that Z; o = 1 if the event that happens at 7; is an immigrant, and Z; ; = 1 if the event that happens

at 7; 1s an immediate offspring of event that happens at 7;. For example, the events that hap-
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Figure B.1: Four-Dimensional Hawkes Process Cluster Representation

pen at T, T5, Tho, and T7; are immediate offspring of the event that happens at 77, and therefore
Zoy = Zsy1 = Zijo = Z111 = 1. On the other hand, an example of immediate offspring of
a descendent will be the events that happen at Ty and 75;, which are immediate offspring of the

event that happens at 77, and therefore Zy 7 and Zy; 7 = 1.

In this representation, all the Gen, events occur following an inhomogeneous Poisson process
with rate functions as their correspondent background intensity function. For example, the arrival
of Z1, Z3,0, Z19,0, and Zy5 o follow respectively an inhomogeneous Poisson process with the rate

function p®*(+), u>*(-), u= (), and p®(-).

The immediate offspring events, Z; ;, arrive according to an inhomogeneous Poisson process with
the rate function y,,, (t—T;) for t > T;, where m, [ € {1, 2, 3,4} are the integers associated with the
type of events, with 1 corresponding to limit ask orders, 2 to limit bid orders, 3 to market ask orders,

and 4 to market bid orders. In ;,,,(+), m is correspondent to the type of the event that happened at
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Tj;, and [ to the type of the event that happened at 7;. We can also write Z; ; ~ Poi(1,,), with

Vim ::/ gplm(t—Tj)dt:/ O (s)ds.
T 0

J

For example, the events that happen at 7% and 75 are immediate offspring of the event that happens
at Ty. Note that the event that happens at T} is an N> event, the event that happens at T% is an
N®~ event and the event that happens at Tg is an N event. Therefore, the arrivals of Z7 4 and
Zs 4 follow respectively an inhomogeneous Poisson process with the rate function 35 (t — T)y) and

©12(t — Ty). We can also write Z; 4 ~ Poi(v32) and Zg 4 ~ Poi(v15), where

V32=/ 9032(5)d8, V12:/ @12(5)618-
0 0

All the events that are directly or indirectly connected to an immigrant form a cluster. For example,
the events that happen at 15, T%, 110, 111, T12, 113, Th4, T15, 117, and Tg form a cluster as offspring
of the event that happens at 7. Similarly, the event that happes at 19, 159, 152, Th3, and 154 form

another cluster. The event happens at 755 is a cluster by itself.

Focusing only on the event type of the immediate offspring, we can see that the average number of

immediate offspring that are N events, regardless of their parents’ event types, is

/OOO [9011(8) + v12(8) + p13(s) + 9014(5)] ds.

Similarly, the average number of immediate offspring that are other events are:
NO+ . / [9021(8) + p22(8) + @a3(s) + 9024(5>} ds
0
N%~ . / [9031(5) + p32(5) + @33(s) + 9034(5)} ds
0
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N~ . /000 [9041(5) + @a2(8) + @a3(s) + @aa(s) |ds

Recall that in our model,

p1(s) +¢r2() + @13() + @ua()
= ©21(+) + @22() + pa3(-) + 24 (")
= a1() + s2() + ps3() + paa(’)
= @a1() + @a2(-) + as() + paa(’)
= (B1+ B2 + 2B2) () = Aig(),

which is the largest eigenvalue of ®(-). Therefore, the expected number of events in a cluster of

our microscopic volume model can be computed as
o0 00 k
Z (/ Aup(s)ds) :
- 0

k=0

If [7° X\i¢(s)ds < 1, this infinite sum converges to

1
1— [7° Mp(s)ds

Note that fooo A1¢(s)ds can also be interpreted as the percentage of events in a cluster that are not

immigrants. To see this, we have

k oo
Py <f°o Aip(s)ds @31_%8)?98 N
i >"“' - M :/ Ap(s)ds
ZZOZO <fooo )\190(8)d8> 17[000 /\1<P(s)ds 0
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APPENDIX C: WIENER-HOPF EQUATION
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Lemma C.1. (Lemma 2 in [16], P277)
Let g be a measurable locally bounded function from R to R? and ¢ : R, — .#Z%(R) be a matrix-
valued function with integrable components such that .%( [ ®(s)ds) < 1. Then there exists a

unique locally bounded function from R, to R¢ solution of

given by t
£(t) = g(t) + / W(t - s)g(s)ds, 130

where ¥ = 3 (P)**.
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APPENDIX D: CONVERGENCE OF RANDOM PROCESSES
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Definition D.1. ([28], P347)
Let F be a Polish space and Z(FE) be the space of all probability measures on (F, &?). A subset

A of P (F) is called tight if for every ¢ > 0 there exists a compact subset K in E such that

uw(E\K) < eforall u € A.

Definition D.2. (Definition VI-3.25 [28], P351)
A sequence (X™) of processes is called C-tight if it is tight, and if all limit points of the sequence

{Z(x™)} are laws of continuous processes (i.e., if a subsequence {.Z(X"*)} converges to a limit

point P in Z(D(R%)), then P charges only the set C(R%)).

Lemma D.1. (Proposition VI-3.26 in [28], P351)

There is equivalence between

(i) The sequence (X™) is C-tight.

(ii) The sequence (X™) is tight, and for all N € N*, ¢ > 0 we have
hmP”(sup |IAX]] > e) = 0.
n t<N
Lemma D.2. (Proposition VI-4.13 in [28], P358)

We suppose that X — X[ is a locally square-integrable martingale on %" for each n, and we set

G" =3 4(X™, X™7). Then for the sequence (X") to be tight, it is sufficient that

(i) The sequence (X(') is tight in R?.
(ii) The sequence (G™) is C-tight (in D(R)).

Lemma D.3. (Theorem VI-6.26 in [28], P384)

Assume that X* 2 X >, and that the sequence (X™) is predictably uniformly tight. Then
(X7 (X X)) D (X%, X, X*]) in D(R? x (R?@®@R?)), and in particular, [X", X"] Z
[ X, X°].
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Lemma D.4. (Corollary IX-1.19 in [28], P527)
Let (M™) a sequence of local martingales which converges in law to a limit process M, and assume
that |[AM™| < b identically for some constant b. Then M is a local martingale with respect to the

filtration it generates.

Lemma D.5. (Theorem V-3.9 in [43], P203)
Let M = (M, ..., M?%) be a continuous vector local Martingale such that d(M? M?%), < dt
for every ¢. Then there exists a d-dimensional Brownian Motion B and a d x d matrix-valued

predictable process « in L (B) such that

loc

t
M, = M, +/ asdBg
0
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Definition E.1. (A.3 in [16], P277)

The fractional integral of order r € (0, 1] of a function f is defined by

If(t) = % / (t— s f(s)ds

Definition E.2. (A.31in [16], P277)

The fractional derivative of order r € (0, 1] of a function f is defined by

D) = sy [, €= 9 s

Lemma E.1. (Corollary A.2 in [30], P2879 )
Let ¢ be continuous and 1 such that z#1(z) € H* with u, A > 0. Then for any v < min(1— p, \),

D> exists, belongs to L" for some > 1 and

/ 5(t = s)(s)ds = / 16t — 5) D (s)ds

Lemma E.2. (Proposition A.3 in [30], P2879)

Let f be a differentiable function on (0, 1] such that for some K > 0,0 < 5 < 1 and any z € (0, 1],

K , K
Ea and |f (I’)| < B+

[f(@)] <

and g a continuous function on [0, 1]. Then the convolution

Fea = | 't = s)g(s)ds

has Holder regularity (1 — /).
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APPENDIX F: MITTAG-LEFFLER FUNCTIONS
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Definition F.1. (A.4 in [16], P277)

Let (o, 8) € (R%)?. The Mittag-Leffler function E,, 4 is defined for z € C by

Eop(2) = Z m

n>0

Definition F.2. (A.4in [16], P277)
For (a, \) € (0,1) x R, the Mittag-Leffler density function f** is defined by

M) = M E, o (=A%), t>0.

Also, let
t
FoA(t) = / foM(s)ds, t>0
0

Lemma F.1. (A4 in [16], P278)

For o € (%, 1), f** is square-integrable and its Laplace transform is given for z > 0 by

. o0 A
fa’)‘(Z) = /0 fa’/\(S)e_asds = T
Lemma F.2. (A.1in [17], P37)
Below are some properties of f@:
L. 7o for(t) = N1 — FoA1))
2 fo")‘(t) ~ A po—1 fa)‘(t) ~ @ (o)
' t—o+ ['(a) 7 t—oo AI'(1 — «)
A A A A 1 _
3. FoMt) = 1—E, 1 (=A%), ForMt) ~ ———t°, 1—F*(t) ¢

t—0+ (o + 1)

Lemma F.3. (Proposition 3.1 in [30], P2868)
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feXis C* on (0,1] and
A

foia) o~ miﬁa* ;
(@)~ Mo D2

et ()
Furthermore, f**2!~® has Holder regularity o on (0, 1].

For v < a, f** is v fractionally differentiable and

DY f(x) = Ae® " " By oy (—A2®)

Therefore,

It PR —

=0t ['(a — v) al-aty

and

(DY) ~ MO

=0t D(a—v) a?-otv

For v/ > 0, f* is 1/ fractionally integrable and

1

]V/fa(lf) = )\W‘E‘%a"er (—/\fL’a)

Therefore,

/ A 1
[l/ (63 ~
f (LU) 20+ F(a + V’) pl—a—v'
and for a + /' # 1,

([”lfa)’(x) Ma—1+7) 1

~Y
a0t D(a+v) z2-oV

109



APPENDIX G: AFFINE VOLTERRA PROCESS
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Consider the following d-dimenstional stochastic Volterra equation:
t t
Y (t) =%+ / H(t — s)b(# (s))ds +/ H(t —s)o(¥ (s))dB(s), (G.1)
0 0

where # € L2 (R, ,R¥9), initial condition %, € R, the coefficients b : R? — R?, o : R —

loc

R¥*™ and % an m-dimensional Brownian motion. The following results are from [27] and [20]

for the situation when a(y) := o(y)o(y) " and b(y) are affine of the form
ay) = A"+ Al + - 4y AT

b(y) = 0%+ yb" + -+ yab?

for some d-dimensional symmetric matrix A’ and vectors b’. Let B = (b - - - b%) be a d x d matrix
and

Au) = (wA'u", - uAu’)

a row vector for any row vector u € (C¢)*.

Most of the following results require the same conditions on .#". We list the conditions below to

avoid repetition.

h
A € L} (R, R)and there is v € (0, 2] such that / H (t)?dt = O(h")
0
T (G.2)
and / (H(t+h)— 2 (t)*dt = O(h) forevery T < oo.
0
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The shifted kernel A, ¢ (t) := % (t + h) is nonnegative, not identically zero,
non-increasing and continuous on (0, 00), and its resolvent of the
(G.3)

first kind . is nonnegative and non-increasing in that

s+ Z([s, s+ t]) is non-increasing in all ¢t > 0.

Lemma G.1. (Theorem 5.5.4 in [20], P159)

Let # € L. (R,,C%%) be completely monotone on (0, 00), and suppose that (v, # (t)v) > 0

loc

for some ¢ > 0 and all nonzero vectors v € C% Then .# has a resolvent of the first kind. This
resolvent is the sum of a point mass at zero and a completely monotone function. The point mass
at zero is invertible iff lim sup, , [-#|(t) < inf, and it is absent iff lim sup, (v, £ (t)v) = inf for

all nonzero vectors v € C¢.

Lemma G.2. (Theorem 6.1 in [27], P3181)

Consider the d-dimensional stochastic Volterra equation (G.1). If the following conditions hold

(i) o(y) = Cyy/y with Cy > 0.
(i) £ satisfies (G.2) and (G.3).
(iii) »° € R%,and B;; > 0 and i # .
Then the stochastic Volterra equation (G.1) has a unique in law Ri—valued continuous weak solu-

tion % for any initial condition %, € R?. For each 4, the paths of %; are Holder continuous of any

order less than ;/2, where +; is the constant associated with .Z; in (G.2).

Lemma G.3. (Lemma 3.1 in [27], P3165)

Consider the d-dimensional stochastic Volterra equation (G.1). Assume b and ¢ are continuous and
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satisfy the linear growth condition

bW Vi) < Cra(l+1y),  yeRY,

for some constant Cr¢. Let % be a continuous solution of (1.1) with initial condition %, € R%.

Then for any p > 2 and 7" < oo, one has

sup E[|% (1)["] < ¢

t<T

for some constant c that only depends on |%/(0)|, % |j0,r7, Crc, p and T

Lemma G.4. (Lemma 2.4 in [27], P3161)
Assume % satisfies (G.2) and consider a process % = ¢ « (bdt + dM ), where b is an adapted

process and M is a continuous local Martingale with (M), = |, !

o @(s)ds for some adapted process

a. Let T > 0, and p > max{2,2/7} be such that sup,., E[|a(t)[”/* + [b(t)[F] is finite. Then &
admits a version which is Holder continuous on [0, 7’| of any order & < /2 — 1/p. Denoting this

version again by ¢/, one has

EK sup 120 _%S)‘)p] < csupE[|a(t)[P/? + [b(t)|7]

0<s<t<T |t — s|@ t<T

forall « € [0,7/2 — 1/p), where c is a constant that only depends on p, #", T'. As a consequence,
if @ and b are locally bounded, then % admits a version which is Holder continuous for any order

a<vy/2.
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