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ABSTRACT

We introduce a financial model for limit order book with two main features: First, the limit orders

and market orders for the given asset both appear and interact with each other. Second, the high

frequency trading (HFT, for short) activities are allowed and described by the scaling limit of

nearly-unstable multi-dimensional Hawkes processes with power law decay. The model eventually

becomes a stochastic partial differential equation (SPDE, for short) with the diffusion coefficient

determined by a Volterra integral equation governed by a Hawkes process, whose Hurst exponent

is less than 1/2, which makes the volatility path of the stochastic PDE rougher than that driven by

a Brownian motion. We have further established the well-posedness of such a system so that a

foundation is laid down for further studies in this direction.
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CHAPTER 1: INTRODUCTION

A limit order book (LOB, for short), a list of prices and volumes for a traded asset, can be used as

a mechanism to facilitate trades in the financial market: traders can place limit orders in the order

book with pre-determined prices and volumes waiting for execution as well as submit market orders

that are executed immediately against the existing limit orders by the best available prices. For each

time t, the LOB provides a snapshot of the market by presenting the volumes of outstanding limit

orders at each price level. The price level increments by the minimum price change is called the

tick size. In the LOB example below, the tick size is 1 cent. The green columns visualize the

volumes of the bid orders (or, buy orders) and are negative by convention. The red columns show

the volumes of the ask orders (or, sell orders) and are positive by convention also. The highest bid

offer, $100.00 in the example, is called the bid price, while the lowest ask offer ($100.01) is called

the ask price. The mid-price of a LOB is often calculated as the average of the bid and ask prices,

which is $100.005 in the example below.

Since the LOB dynamics shows the supply and demand of a certain asset in a fundamental way

and forms the price dynamics of this asset, there has been an increasing interest in modeling the

LOB dynamics. However, most modeling attempts are hard to be analytically or computationally

tractable [40] [18] [46] [8].

Cont and Müller [13] proposed a model in which the dynamics of the centered order book den-

sity is described by a stochastic partial differential equation (SPDE, for short) with multiplicative

Gaussian noise. We will refer to this model as the Cont-Müller model (C-M model, for short) in

the rest of this paper. The centered order book density, u(t, x), is the volume per unit price (tick

size) of the limit order at time t and the position x is the distance away from the mid-price, with

x ∈ [−L,L] for some L > 0. It is easy to see that rational investors will not submit limit orders

1



Figure 1.1: Illustrative LOB at 10:00 am

far away from the mid-price, and that all the previously-submitted orders were cancelled as soon

as their price levels became too far away from the mid-price. This assumption is reflected by the

setting that u(t, x) = 0 when x /∈ (−L,L) (See [13]).

The C-M model that presents the dynamics of centered book density u(t, x) is as follows ([13],
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with small modifications):

du(t, x) =
[
ηa∆u(t, x) + βa∇u(t, x)− αau(t, x) + fa(x)

]
dt+ σau(t, x)dW

a(t), x ∈ (0, L)

du(t, x) =
[
ηb∆u(t, x)−βb∇u(t, x)−αbu(t, x)− f b(x)

]
dt+σbu(t, x)dW

b(t), x ∈ (−L, 0)

u(t, x) ≤ 0, x < 0, u(t, x) ≥ 0, x > 0

u(t, 0+) = u(t, 0−) = 0, u(t,−L) = u(t, L) = 0,

where ηa, ηb, βa, βb, σa, σb, αa, αb > 0 are some constants, fa, f b : [−L,L] → [0,∞) are given

functions, and (W a,W b) is a two-dimensional Brownian motion (with possibly correlated compo-

nents). In these equations, non-high frequency trading (non-HFT, for short) order submissions are

modeled by fa(x) and f b(x), all kinds of non-HFT order cancellations by

[
ηa∆u(t, x) + βa∇u(t, x)− αau(t, x)],

[
ηb∆u(t, x)− βb∇u(t, x)− αbu(t, x)

]
,

and high frequency trading (HFT, for short) order dynamics by σau(t, x)dW a(t) and σbu(t, x)dW b(t),

on the ask and bid sides respectively. We will provide detailed explanations of the relevant terms

when introducing our model in Section 3.

The C-M model [13] has both the analytical and computational tractability for applications, and

the price dynamics was naturally derived from the model. However, there are two main limitations

in that model.

First, the C-M model did not reflect the effect to the centered order book density from market

ask/bid orders. Indeed, the only terms regarding order submissions are fa(x) and f b(x), which

only increase the volumes on the ask and bid sides, whereas the market order submissions affect

the LOB in a different way since they decrease the LOB volumes. Thus, the market orders should

3



be taken into account.

Second, the C-M model used multiplicative Gaussian noise terms to model the order dynamics

from HFT at coarse-grained time scale of the average (non-HFT) market participants. This im-

plies that each increment of the HFT is independent of the previous HFT incremental changes.

However, many evidence shows that HFT markets are highly endogenous, meaning HFT orders

tend to generate other HFT orders. Furthermore, many HFT orders are part of a larger order (or

metaorder) that takes a relatively long time to fully execute, which causes a given HFT order to

have a relatively long-term influence on other HFT orders. Thus, it is better to use self-exciting

and long term dependency process to model HFT, rather than Brownian motions (as in the C-M

model) [16].

In this paper, we propose a new model. First, we include the effect from market orders so that the

limit orders and market orders interact with each other, which looks more realistic. Second, we

have used the scaling limit of a sequence of nearly-unstable multivariate Hawkes process (which

is self-exciting) with power-law tails to model the HFT dynamics at a coarse-grained time scale,

reflecting the dependencies among HFT orders.

The remaining of this paper is arranged as follows. Chapter 2 provides a brief overview on the

Hawkes process. Chapter 3 presents our new model with both the non-HFT and HFT components.

Chapter 4 gives the proof for the scaling limit of the Hawkes processes, while Chapter 5 presents

the SPDE of the market model and its well-posedness In Chapter 6, we derive the price dynamics

based on the order book dynamics. We also provide analyses for the parameters in the price model.

Some simulation results will be collected in Chapter 7. Finally, some lengthy and technical results

will be put in the appendices.
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CHAPTER 2: MATHEMATICAL PRELIMINARIES

In this chapter, we provide an overview of the d-dimensional Hawkes process (with d ≥ 1). Most

of the following definitions and propositions are from [34].

2.1 One-Dimensional Hawkes Process

Definition 2.1. A discrete random variable X is said to have a Poisson distribution with parameter

λ∗ > 0, if it has a discrete probability distribution:

f(k;λ∗) = P(X = k) =
(λ∗)ke−λ∗

k!
, ∀k = 0, 1, 2, ...

We denote it as X ∼ Poi(λ∗).

Definition 2.2. A counting process is a stochastic process (N(t) : t ≥ 0) taking values in the set

{0, 1, 2, ...} that satisfies N(0) = 0, almost surely finite, and is a right-continuous non-decreasing

step function with increments of size +1.

Further, denote by (H(u) : u ≥ 0) a right continuous filtration, that is, an increasing sequence

of σ-algebras, such that H(u) =
⋂

ϵ>0H(u + ϵ). The filtration H(u) represents the history of the

counting process N(·), namely, it is generated by N(·).

Definition 2.3. Consider a counting processN(·) with associated histories H(·). If a (non-negative)

function λ(t) exists such that

λ(t) = lim
h↓0

E[N(t+ h)−N(t)|H(t)]

h
, t ≥ 0, (2.1)

then it is called the conditional intensity function of N(·).
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Definition 2.4. A counting process (N(t) : t ≥ 0) is called an (inhomogeneous) Poisson process

with rate function λ(t) > 0 if

1. For any interval I = (a, b], N(I) has a Poisson distribution with parameter
∫ b

a
λ(s)ds, i.e.,

N(I) ∼ Poi
(∫ b

a

λ(s)ds
)
, or P(N(I) = k) =

(
∫ b

a
λ(s)ds)ke−(

∫ b
a λ(s)ds)

k!
, ∀k = 0, 1, 2, ...

2. For any n disjoint interval I1, I2, ..., In, the random variables N(I1), N(I2), ..., N(In) are

independent.

If the rate function is a constant λ > 0, then N(·) is called a homogeneous Poisson process.

Definition 2.5. A counting process (N(t) : t ≥ 0) is called a Hawkes process if the following

conditions hold:

(i). The conditional increment against its history (H(t) : t ≥ 0) satisfies

P(N(t+ h)−N(t) = m|H(t)) =


1− λ(t)h+ O(h), m = 0

λ(t)h+ O(h), m = 1

O(h), m > 1

(2.2)

for some conditional intensity function λ(·).

(ii). The conditional intensity function λ(·) is of the form

λ(t) = µ(t) +

∫ t

0

ϕ(t− s)dN(s), (2.3)

where µ(t), called the background intensity, is a deterministic function of t that is integrable

over any finite intervals and has a finite limit µ(∞) > 0 as t → ∞, and ϕ : (0,∞) →

6



[0,∞), called the excitation function, is assumed to be a positive function. This means that

the exogenous events arrive according to an inhomogeneous Poisson process with the rate

function µ(t), and the direct offspring of any event arrives according to an inhomogeneous

Poisson process with the rate function ϕ(t).

When ϕ(·) = 0, the Hawkes process N(t) becomes an inhomogeneous Poisson process. Thus the

former is an extension of the latter.

According to [24] and [51], Hawkes process exists as long as
∫∞
0
ϕ(t)dt < 1, µ(t) is positive,

integrable over any finite intervals, and has a finite limit µ(∞) > 0 as t→ ∞.

For any f(·) which is integrable on R, we define

f ∗1(·) = f(·), f ∗(n+1)(·) =
∫ ∞

−∞
f ∗n(· − s)f(s)ds =

∫ ∞

−∞
f(· − s)f ∗n(s)ds,

which are called convolution powers of f(·). The following lemma will be useful below.

Lemma 2.1. For any integrable function f : R → R, the following holds for all n ∈ Z+:

∫ ∞

−∞
f ∗n(t)dt =

(∫ ∞

−∞
f(t)dt

)n

Proof. We use the principle of mathematical induction to prove this. When n = 1, we have

∫ ∞

−∞
f ∗1(t)dt =

∫ ∞

−∞
f(t)dt =

(∫ ∞

−∞
f(t)dt

)1

Suppose that the equation holds for n, then using the definition of convolution and Fubini’s theo-

rem, we have

∫ ∞

−∞
f ∗(n+1)(t)dt =

∫ ∞

−∞

[ ∫ ∞

−∞
f(t− s)f ∗n(s)ds

]
dt

7



=

∫ ∞

−∞
f ∗n(s)

[ ∫ ∞

−∞
f(t− s)dt

]
ds

=
(∫ ∞

−∞
f(s)ds

)n[ ∫ ∞

−∞
f(t)dt

]
=

(∫ ∞

−∞
f(t)dt

)n+1

By the principle of mathematical induction, we have finished this proof.

Proposition 2.1. LetN be a one-dimensional Hawkes process, and λ(t) be its conditional intensity

process of form (2.3) with µ(·) and ϕ(·) given as in Definition 2.5. In addition, if
∫∞
0
ϕ(s)ds < 1,

then

lim
t→∞

E[λ(t)] =
µ(∞)

1−
∫∞
0
ϕ(s)ds

Proof. Note that from (2.1), we have

E[dN(t)] = E[λ(t)]dt.

Denote λ̄(t) = E[λ(t)], then

λ̄(t) = µ(t) +

∫ t

0

ϕ(t− s)λ̄(s)ds =
[
µ+ ϕ ∗ λ̄

]
(t)

=
[
µ+ ϕ ∗ (µ+ ϕ ∗ λ̄)

]
(t) = · · · =

[( ∞∑
n=0

ϕ∗n
)
∗ µ

]
(t).

As t goes to infinity, by the dominated convergence and monotone convergence theorems, along

with Lemma 2.1, we have

lim
t→∞

E[λ(t)] = lim
t→∞

∫ t

0

µ(t− s)
∞∑
n=0

ϕ∗n(s)ds =

∫ ∞

0

µ(∞)
∞∑
n=0

ϕ∗n(s)ds

= µ(∞)
∞∑
n=0

∫ ∞

0

ϕ∗n(s)ds = µ(∞)
∞∑
n=0

(∫ ∞

0

ϕ(s)ds
)n

=
µ(∞)

1−
∫∞
0
ϕ(s)ds

8



When
∫∞
0
ϕ(s)ds ≥ 1, λ(t) → ∞ as t → t∗ for some t∗ ≤ ∞, and hence the Hawkes process in

this case explodes almost surely.

2.2 Multi-Dimensional Hawkes Process

An extension of the one-dimensional Hawkes process is a multi-space valued Hawkes process.

In [34], the term multi-dimensional Hawkes process was reserved only for the multi-dimensional

space valued process where the components are decoupled, and hence the components are not

mutually exciting. Meanwhile, in [16], [7], [4], [36], [2], it was assumed that the components are

coupled so that they are mutually exciting. In our paper, by multi-dimensional Hawkes process,

we mean the process is not only multidimensional but also mutually exciting. More precisely, we

have the following definition:

Definition 2.6. Consider ({N(t)} : t ≥ 0) a vector process formed by m counting processes

{N1(t), ...Nm(t)}. If for each i = 1, ...,m, Ni(t) has a conditional intensity of the form

λi(t) = µi(t) +
m∑
j=1

∫ t

0

ϕi,j(t− s)dNj(s)

for some positive function µi(t) with limt→∞ µi(t) = µi(∞) > 0, ϕi,j : (0,∞) → [0,∞), and

ϕi,j(·) ∈ L1(0,∞), then N is called a multi-dimensional Hawkes process.

We can also write conditional intensity of the multi-dimensional Hawkes process in vector form as

λ(t) = µ(t) +

∫ t

0

Φ(t− s)dN(s).

Note that µ(·) is an m-dimensional vector-valued functions, λ(·) and N(·) are m-dimensional

processes, and Φ(·) is an m×m square matrix-valued function with the entries ϕi,j(·).

9



Remark 2.1. In our definition of the multi-dimensional Hawkes process, the background intensity

µ(t) is allowed to be a vector-valued function that converges to a constant vector with positive

components as t → ∞. This is different from [34], where the background intensity can only be a

constant vector with positive components.
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CHAPTER 3: THE MODEL

We now propose a model that describes the LOB dynamics of orders from both HFT and non-HFT

investors. For the non-HFTs, we use the centered order book density model similar to that in [13].

To model the dynamics of HFT orders, we use the multi-dimensional Hawkes process.

Let the volume of orders awaiting execution at time t and price p be U(t, p). By convention,

U(t, p) ≥ 0 for ask orders, and U(t, p) ≤ 0 for bid orders. We define the ask price (the lowest ask

offer) sa(t) and bid price (the highest bid offer) sb(t) as follows:

sa(t) := inf{p > 0, U(t, p) > 0}, sb(t) := sup{p > 0, U(t, p) < 0}

We assume that all the investors are rational. Thus, they could not offer a lower price to sell than

any ask price, or a higher price to buy than any bid price. Therefore,

sb(t) < sa(t),
{
U(t, p)

∣∣∣ sb(t) < p < sa(t)
}
= ∅.

With the above sa(t) and sb(t), we define the mid-price to be

S(t) =
sa(t) + sb(t)

2
.

We can see that p < S(t) < sa(t) implies U(t, p) ≤ 0, and p > S(t) > sb(t) implies U(t, p) ≥ 0.

Let the tick size of the market be δ > 0, and let v(t, p) ≈ U(t, p)/δ be the volume density. We

define

u(t, x) =

 v(t, S(t) + x), for x ∈ [−L,L]

0, otherwise

where L > 0, and x represents a distance from the mid-price. When x < 0, S(t) + x < S(t),

11



and hence u(t, x) = v(t, S(t) + x) ≤ 0. Similarly, when x > 0, u(t, x) ≥ 0. We call u(t, x) the

centered order book density at (t, x).

3.1 Non-HFT Orders

In this subsection, we are modeling non-HFT orders. We observe the following different LOB

events with each corresponding term appeared on the right-hand side of the equation:

1. Outright cancellation of orders without replacement: Let ζa, ζb > 0. When x > 0, then

u(t, x) ≥ 0, and we use a term −ζau(t, x) to model the decrease of u(t, x) from the outright

proportional cancellation of limit ask orders at the price level S(t) + x. When x < 0, then

u(t, x) ≤ 0, and we use a term −ζbu(t, x) = ζb|u(t, x)| to model the decrease of the absolute

value of u(t, x) from the outright cancellation of limit bid orders at the price level S(t) + x.

The C-M Model [13] also contained these two terms.

2. Symmetric changes:

(1) x > 0: ηauxx(t, x) with ηa > 0:

This term models the symmetric changes of limit ask orders at a distance x from the

mid-price. For example, in the illustrative LOB (1.1), the volume at the price level

$100.03 is lower than all the neighboring price levels, $100.02, $100.04, and $100.05,

which acts roughly like a local minimum and makes uxx(t, x) > 0, assuming every-

thing is smooth. Some of the limit ask orders at the neighboring price levels will be can-

celled and added to the price level $100.03. So at the price level $100.03, u(t, x) goes

up with a possible change ηauxx(t, x) > 0. On the other hand, the volume at the price

level $100.02 is higher than the neighboring price levels, $100.01, $100.03, $100.04

and $100.05, which acts roughly like a local maximum and it makes uxx(t, x) < 0,
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assuming again everything is smooth. Some of the limit ask orders at the price level

$100.02 will be cancelled and added to the neighboring price levels. So at the price

level $100.02, u(t, x) goes down with a possible change ηauxx(t, x) < 0.

(2) x < 0: ηbuxx(t, x) with ηb > 0:

This term models the symmetric changes of limit bid orders at a distance |x| from the

mid-price. It is similar to the ask case but applied in the opposite way since u(t, x) < 0

by convention. For example, in the illustrative LOB (1.1), the volume at the price level

$99.97 is lower than all the neighboring price levels, $99.96, $99.98, and $99.99. Since

u(t, x) < 0, it acts roughly like a local maximum and leads to uxx(t, x) < 0, assuming

everything is smooth. Some of the limit bid orders at the neighboring price levels will

be cancelled and added to the price level $99.97. So u(t, x) at the price level $99.97

should go down with a possible change ηbuxx(t, x) < 0, which makes u(t, x) smaller

or the absolute value |u(t, x)| larger. On the other hand, the volume at the price level

$99.99 is higher than the neighboring price levels, $99.96, $99.97, $99.98 and $100.

Since u(t, x) < 0, it acts roughly like a local minimum and leads to uxx(t, x) > 0,

assuming again everything is smooth. Some of the limit bid orders at the price level

$99.99 will be cancelled and added to the neighboring price levels. So u(t, x) at the

price level $99.99 should go up with a possible change ηbuxx(t, x) > 0, which makes

u(t, x) larger or the absolute value |u(t, x)| smaller.

The C-M Model [13] also contained these two terms. We slightly modify the notation: for

example, instead of ∆u(t, x), we use uxx(t, x) to clarify that x is one-dimensional.

3. Cancellation of orders with asymmetric replacement:

(1) x > 0: −βa[ux(t, x)]− with βa > 0:

This term models the cancellation of ask orders at a distance x from the mid-price and

13



replacement of these orders closer to the mid-price. When ux(t, x) < 0, it roughly

means that there are more ask orders at lower prices than S(t) + x. Therefore, in order

to sell the shares at the price level S(t) + x faster, some investors will likely cancel

their limit ask orders and resubmit them as limit ask orders at a price level closer to the

mid-price, or even market ask orders. Thus, at price level S(t) + x, a certain portion

of the volume will be decreased. This amount is assumed to be −βa[ux(t, x)]−. When

ux(t, x) > 0, it roughly means that there are more ask orders at higher prices than

S(t) + x. Therefore, most rational investors will not cancel the orders, as their ask

orders are already better than most other orders. Hence, these orders will most likely

be unchanged or the change will be −βa[ux(t, x)]− = 0.

(2) x < 0: βb[ux(t, x)]− with βb > 0:

This term models the cancellation of bid orders at a distance |x| from the mid-price

and replacement of these orders closer to the mid-price. When ux(t, x) < 0, it roughly

means that there are more bid orders at higher prices than S(t) − |x| = S(t) + x.

Therefore, in order to buy the shares at the price level S(t)− |x| faster, some investors

will likely cancel their limit bid orders and resubmit them as limit bid orders at a price

level closer to the mid-price, or even submit market bid orders. Thus, at price level

S(t)− |x|, a certain portion of the volume will be decreased. This amount is assumed

to be βb[ux(t, x)]− > 0. When ux(t, x) > 0, it roughly means that there are more bid

orders at lower prices than S(t) − |x| = S(t) + x. Therefore, most rational investors

will not cancel the orders as their bid orders are already better than most other orders.

Hence, these orders will most likely be unchanged or the change will be βb[ux(t, x)]− =

0.

This treatment is different from the C-M model [13]. We zero out the term ux(t, x) when

ux(t, x) > 0 so that the dynamics of limit order resubmission only goes towards the middle
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price. This is significantly different from the usual convection in the heat transfer situation.

4. Cancellation of orders with market order replacement:

When the queues are long around the mid-price, some investors will likely cancel their limit

orders in these queues, and resubmit the orders as market orders so that their orders can get

executed immediately.

For example, in the illustrative LOB (1.1), an investor originally placed a limit ask order

of 70 shares at the price level $100.01 at 10:00 am. She wants to sell her shares relatively

quickly, but she has to wait until the 3000 shares, placed before 10:00 am at the same or

lower prices, to be sold first. If she wants to sell her 70 shares by 10:15 am, and she does

not think the 3000 shares will be sold by that time, she might cancel her order and resubmit

it as a market ask order. She would take a total loss of $0.70, but the 70 shares can be sold

immediately, executed against the existing limit bid queue at the price level $100.00. In

this case, the limit ask queue at the price level $100.01 is decreased by 70 shares due to the

cancellation, and the limit bid queue at $100.00 is also decreased by 70 shares due to the

resubmitted market ask order.

On the opposite side, another investor originally placed a limit bid order of 80 shares at the

price level $100.00 at 10:00 am. He wants to buy 80 shares relatively quickly, but he has to

wait until the 2000 offers, placed before 10:00 am at same or higher prices, to be executed

first. If he wants to buy 80 shares by 10:10 am, and he does not think the 2000 offers will

be executed by that time, he might cancel his order and resubmit it as a market bid order.

He would have to pay $0.80 more than his previous offer, but he would get the 80 shares

immediately from the existing limit ask queue at the price level $100.01. In this case, the

limit bid queue at the price level $100.00 is decreased by 80 offers due to the cancellation,

and the limit ask queue at $100.01 is also decreased by 80 shares due to the resubmitted

market bid order.
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To model the impact from this LOB event, we first set a threshold u0 > 0 such that a queue

u(t, x) is “too long” if |u(t, x)| ≥ u0. In other words, this LOB event will not happen when∣∣u(t, |x|)∣∣ < u0.

For x > 0, when u(t, x) ≥ u0, it means that the limit ask queue is too long for the investors.

Therefore, the investors that want to sell their shares of the stock quickly will likely cancel

their limit ask orders and resubmit them as market ask orders. The cancellation will cause

the limit ask volume density to decrease, and we model this impact by −j(x)
(
u(t, x)−u0

)+,

with j(x) a positive function decreasing in x > 0, meaning that the positively farther away

a price level is from the mid-price, the less likely the investors will cancel the limit ask

orders at the price level, as otherwise the loss would be too large. Assuming all the cancelled

limit ask orders become market orders, these orders will cause the absolute value of the

bid volume density to decrease, and we model this impact by j(|x|)
(
u(t, |x|) − u0

)+. In

summary, we model this scenario by

−j(x)
(
u(t, x)− u0

)+1{x>0} + j(|x|)
(
u(t, |x|)− u0

)+1{x<0}.

For x < 0, it is symmetric. When u(t, x) ≤ −u0, it means that the limit bid queue is too long

for the investors. Therefore, the investors that want to buy the stock quickly will likely cancel

their limit bid orders and resubmit them as market bid orders. The cancellation will cause

the absolute value of the limit bid volume density to decrease, and we model this impact

by j(x)
(
u(t, x) + u0

)−, with j(x) a positive function increasing in x < 0. The meaning

is similar to the case of x > 0. Also, assuming that all cancelled limit bid orders become

market bid orders, then these orders will cause the limit ask volume density to decrease, and

we model this impact by −j(−|x|)
(
u(t,−|x|) + u0

)−. In summary, we model this scenario

by

j(x)
(
u(t, x) + u0

)−
1{x<0} − j(−|x|)

(
u(t,−|x|) + u0

)−
1{x>0}.
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Therefore, the rate of cancellation with market order replacement at time t and price level

S(t) + x can be modeled as

J(x, u(t, x)) = 1{x>0}
[
− j(x)

(
u(t, x)− u0

)+ − j(−|x|)
(
u(t,−|x|) + u0

)−]
+ 1{x<0}

[
j(|x|)

(
u(t, |x|)− u0

)+
+ j(x)

(
u(t, x) + u0

)−]
,

with j(x) a positive function decreasing in x > 0 and increasing in x < 0. Since the

decreased density should not exceed the existing volume density above the threshold, we set

j(·) ≤ 1.

5. Submission of Orders: The submission of limit orders and market orders are both largely

influenced by the price, which in turn is largely influenced by the difference between the

volume of the ask and bid orders around the mid-price. We introduce

ℓ(t) =

∫ ι

−ι

u(t, y)dy,

with δ ≤ ι ≪ L. If ℓ(t) > 0, then there are more limit ask orders than limit bid orders

around the mid-price. If ℓ(t) < 0, then there are more limit bid orders than limit ask orders

around the mid-price.

For x > 0, when ℓ(t) > 0, there are already too many ask orders. Therefore, rational

investors are less likely to submit limit ask orders and maybe some investors will cancel

their limit ask orders and wait until the ask and bid queues are balanced again. This will lead

to the decreasing tendency of the limit ask orders. Clearly, it is acceptable that the larger the

ℓ(t), the larger the decreasing tendency. Hence, we model this by G(x, ℓ(t)), with a function

G(x, ℓ) strictly decreasing in ℓ and G(x, 0) = 0.

For x > 0 and ℓ(t) < 0, there are already too many bid orders, which might signal a large
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demand for the stock. Therefore, rational investors are more likely to submit limit ask orders

than to rush the sale with market ask orders, for a potential increase in the mid-price. This

will lead to the increasing tendency of the limit ask orders. Clearly, it is acceptable that the

smaller the ℓ(t), the larger the increasing tendency. Hence, we still model this by G(x, ℓ(t))

strictly decreasing in ℓ and G(x, 0) = 0.

For x < 0, it is symmetric: If ℓ(t) < 0, then there are already too many bid orders. Thus,

rational investors are less likely to submit limit bid orders and maybe some investors will

cancel their limit bid orders and wait until the ask and bid queues are balanced again. This

will lead to the decreasing tendency of the limit bid orders. Clearly, it is acceptable that the

smaller the ℓ(t), the larger the decreasing tendency to the absolute value of limit bid orders,

which means the larger the increasing tendency to the bid volume density. Hence, we still

model this by G(x, ℓ(t)) strictly decreasing in ℓ and G(x, 0) = 0.

For x < 0 and ℓ(t) > 0, there are already too many ask orders, which might signal a large

supply for the stock. Therefore, rational investors are more likely to submit limit bid orders

that to rush the purchase with market bid orders, for a potential decrease in the mid-price.

This will lead to the increasing tendency of the limit bid orders. Clearly, it is acceptable that

the larger the ℓ(t), the larger the increasing tendency to the absolute value of limit bid orders,

which means the larger the decreasing tendency to the bid volume density. Hence, we still

model this by G(x, ℓ(t)) strictly decreasing in ℓ and G(x, 0) = 0.

The impact of the non-HFT order flows can be summarized by the following differential equation

for the centered order book density u:

du(t, x) =
[
η(x)uxx(t, x)− β(x) sgn(x)[ux(t, x)]

− − ζ(x)u(t, x) + J(x, u(t, x)) +G(x, ℓ(t))
]
dt,
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where

η(x) =

 ηa x ∈ (0, L]

ηb x ∈ [−L, 0)
, β(x) =

 βa x ∈ (0, L]

βb x ∈ [−L, 0)
, ζ(x) =

 ζa x ∈ (0, L]

ζb x ∈ [−L, 0)

with ηa, ηb, βa, βb, ζa, ζb positive constants, and

J(x, u(t, x)) = 1{x>0}
[
− j(x)

(
u(t, x)− u0

)+ − j(−|x|)
(
u(t,−|x|) + u0

)−]
+ 1{x<0}

[
j(|x|)

(
u(t, |x|)− u0

)+
+ j(x)

(
u(t, x) + u0

)−]
,

with u0 > 0, and j(x) ≤ 1 a positive function decreasing in x > 0 and increasing in x < 0. The

function G(x, ℓ(t)) is strictly decreasing in ℓ(t) and G(x, 0) = 0, with

ℓ(t) =

∫ ι

−ι

u(t, y)dy.

3.2 HFT Orders

In this subsection, we are modeling the HFT orders. We assume that the HFT orders mainly occur

near the mid-price and on average provide zero or very small net contribution in volume to the

limit order book. Thus, roughly speaking, the HFT dynamics are alsmost like a zero mean noise

process.

3.2.1 A microscopic volume model

In order to model the volume of HFT orders on both sides of the market, we consider the following

six types of market events: Submission of limit ask/bid orders, cancellation of limit ask/bid orders,
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and submission of market ask/bid orders. To simplify the HFT microscopic model, we reduce the

dimension of our model by combining the cancellation of limit ask (bid) orders with the submission

of market bid (ask) orders since their impacts on the order dynamics are the same: decrease the

volume of limit ask (bid) orders. For example, by cancelling an limit ask order, it is equivalent to

putting a same size market bid order since both orders are executed against the existing limit ask

orders.

Viewing HFT macroscopically, it is just like a noise, and viewing it microscopically, it is mutually

self-exciting. Assume the average trading speed of HFT is n times per millisecond. Then, during

the time interval [0, t] (with t being measured by second), there would be 1000nt tradings. Thus,

the number of HFTs is roughly the same as that of non-HFTs during [0, 1000t]. Now, in general

if the ratio of the fast and slow times is T (instead of 1000), then within the (normal) time interval

[0, t], the average number of HFTs is roughly the same as those non-HFTs during [0, tT ]. Hence, it

is a suitable approach to investigate the HFT as follows: For a very large T > 0, consider a multi-

dimensional Hawkes process (so that it is mutually exciting) on [0, tT ]. Then letting T → ∞ with

a proper scaling (normalization), the limit will be a good approximation of a model for the HFT.

Our microscopic volume model is based on one 4-dimensional Hawkes process on [0, tT ], defined

as the following:

{N(tT )}t≥0 =



Na,+(tT )

N b,+(tT )

Na,−(tT )

N b,−(tT )


,

where Na,+(tT ) (N b,+(tT )) corresponds to the accumulative number of limit ask (bid) orders

submitted in the time interval [0, tT ], and Na,−(tT ) (N b,−(tT )) to the accumulative number of

combined market ask (bid) orders and cancelled bid (ask) orders in the time interval [0, tT ]. See

right below for details.
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3.2.2 The HFT density

How do we use the limit of NT (tT ) to model the market macroscopically? First, we let the volume

of HFT around the mid price ST (tT ) at time tT be VT (tT ). Then VT (tT ) can be written as

VT (tT ) = Na,+
T (tT ) +N b,+

T (tT )−Na,−
T (tT )−N b,−

T (tT ).

Since VT (tT ) is not density like u(t, x), we cannot simply add VT (tT ) to the centered order book

density equation. However, we can write u(t, x) into the following generic equation:

u(t, x) = non-HFT density + HFT density.

Since the HFT density is a part of u(t, x), we let

HFT density = f(t) · u(t, x),

with some function f(t) valued in (0, 1), which serves as a ratio function in the model, so that f(t)·

u(t, x) preserves the same macroscopic properties of a normalized VT (tT ). Such a normalization

is necessary because the amplitude of VT (tT ) is divergent as T → ∞, and only the limit of the

normalized HFT volume can eventually capture the nature of the mean zero noise of HFT. Hence,

we have

f(t) = lim
T→∞

VT (tT )

h(T )
,

for some scalar factor h(T ). Therefore, we can model the change of HFT density as

df(t) · u(t, x) + f(t) · du(t, x).
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Since the change of u(t, x), observed in normal time like seconds, is significantly slower than the

change of VT (tT ), the impact from du to the change of HFT density is almost negligible. So we set

f(t) · du(t, x) ≈ 0. Combining with the non-HFT density model, we have the following centered

order book density equation:

du(t, x) =
[
ηuxx(t, x)− β sgn(x)[ux(t, x)]

− − ζu(t, x) + J(x, u(t, x)) +G(x, u(t, ·))
]
dt

+ u(t, x)df(t),

where 
f(t) = limT→∞

VT (tT )

h(T )
,

VT (tT ) = Na,+
T (tT ) +N b,+

T (tT )−Na,−
T (tT )−N b,−

T (tT ).

3.2.3 Settings of the Hawkes conditional intensity process

In this subsection, we provide settings of λ(tT ), the conditional intensity process associated with

the Hawkes process {N(tT )}tT≥0, to encode properties of the HFT market. We define

λ(tT ) :=



λa,+

λb,+

λa,−

λb,−


(tT ),

and it is of the form

λ(tT ) = µ(tT ) +

∫ tT

0

Φ(tT − s)dN(s) ≡ µ(tT ) +
[
Φ ∗ dN

]
(tT ),
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where

µ(·) =



µa,+

µb,+

µa,−

µb,−


(·), Φ(·) =



φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44


(·).

For the subscripts of each entry of Φ(·), 1 stands for limit ask orders, 2 for limit bid orders, 3 for

market ask orders, and 4 for market bid orders.

In the conditional intensity process, µ models the conditional intensity that a new HFT order event

is induced exogenously. For example, µa,+(·) models the conditional intensity that a new HFT

limit ask order is submitted due to some exogenous reason. The kernel matrix Φ(·) models the

endogenous induction power from past events. For example,
∫ ·
0
φ42(· − s)dN b,+(s) models the

conditional intensity of market bid order submission induced by past limit bid order submissions.

We summarize in the following table the endogenous induction power from all the entries in Φ(·):

Table 3.1: Endogeneous Induction Power of Conditional Intensity Parameters

Conditional intensity of current order sub-
-mission induced by past order submission

Current Order Submission
Limit Ask Limit Bid Market Ask Market Bid

Past Order
Submission

Limit Ask φ11 ∗dNa,+ φ21 ∗dNa,+ φ31 ∗dNa,+ φ41 ∗dNa,+

Limit Bid φ12 ∗ dN b,+ φ22 ∗ dN b,+ φ32 ∗ dN b,+ φ42 ∗ dN b,+

Market Ask φ13 ∗dNa,− φ23 ∗dNa,− φ33 ∗dNa,− φ43 ∗dNa,−

Market Bid φ14 ∗ dN b,− φ24 ∗ dN b,− φ34 ∗ dN b,− φ44 ∗ dN b,−

Now we examine the relationships among the functions φij(·)’s to simplify the matrix Φ(·):

1. Institutional investors normally split large orders (called parent orders) into smaller orders

(called children orders) and execute these smaller orders in an extended time period [1] [35].

Therefore, we can assume that the conditional intensity of one type of HFT limit (market)

order induced by the same type of HFT limit (market) orders in the past should be the same.
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In other words, the conditional intensity of the submission of one limit ask order induced

by past submissions of limit ask orders can be assumed to be the same with the conditional

intensity of the submission of one limit bid order induced by past submissions of limit bid

orders. We let this inducing effect be

φ11(·) = φ22(·) = φ(·), where φ(·) is a positive bounded function with
∫ ∞

0

φ(s)ds = 1.

(3.1)

As for the market orders, we also assume that the conditional intensity of the submission

of one market ask order induced by past submissions of market ask orders is the same with

the conditional intensity of the submission of one market bid order induced by past submis-

sions of market bid orders. However, institutional investors tend to use limit parent orders

over market parent orders, due to the lack of price control of the market parent orders [47].

Therefore, we let the inducing effect between market orders be β1φ(·) with β1 < 1.

We also assume momentum effect in market orders because some individual investors want

to follow the market move and they usually want to execute their orders immediately. How-

ever, these individual investors usually do not have orders nearly as large as the ones from

institutional investors, and hence this inducing power is less than that from the parent orders.

We use β2φ(·) with 0 < β2 < β1 to model this momentum effect. Combining the momentum

effect with the inducing effect on market orders, we let

φ33(·) = φ44(·) = (β1 + β2)φ(·). (3.2)

Note that there will be no restriction of the size on the positive number β1 + β2, so it is

possible that β1 + β2 > 1, or namely, it is possible that

φ33(·) = φ44(·) > φ11(·) = φ22(·)
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2. Market orders near the mid-price can potentially deplete the queues near the mid-price,

which could lead to price changes, and the price changes in turn could lead to the sub-

mission of limit orders on the same side. For example, in the illustrative LOB (1.1), if an

investor places a market ask order for 2000 shares at 10:01 am, the market ask order will be

executed at the price level $100.00 against the bid queue at that price level. Since the bid

queue at the price level $100.00 only has 2000 shares, it will be depleted and the best bid

price will decrease by 1 tick to $99.99. Meanwhile, the best ask price will also decrease by

1 tick to $100.00. This will likely induce the submission of limit ask orders at the new best

ask price by market makers, who place limit orders at the best bid and ask prices to earn the

spread. We assume that this inducing effect from market orders to limit orders on the same

side is the same momentum effect between market orders, since they are both driven by price

changes, so we also use β2 to model this effect, namely,

φ13(·) = φ24(·) = β2φ(·)

On the other hand, the high frequency limit orders signal a demand on one side, which

could induce market order on the same side because speculating investors might want to act

before large limit orders. For example, if an investor observes a stable flow of incoming limit

bid orders from the same institution, this could signal a parent limit bid order, which will

typically take hours or even days to complete and will potentially raise the price due to the

increased demand. The investor might want to submit market bid orders so that she can buy

shares of the stock at $100.01, the current best ask price, before the potential price increase

caused by the completion of this parent limit bid order. After the entire parent limit bid order

is placed, she could place a market ask order to sell these shares back to the institution at a

price higher than $100.01. For the first step of this strategy, we assume that this inducing

effect from limit orders to market orders on the same side is the same momentum effect
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between market orders, since they are both driven by price changes, so we still use β2 to

model this effect, namely,

φ31(·) = φ42(·) = β2φ(·)

As for the second step of this strategy, the investor in our example might have the wrong

speculation: The flow of limit bid orders might not end up being a parent limit bid order, or

the price might not increase from the sequence of limit bid orders. In this case, the investor

might not submit the market ask order since it would not profit her. Therefore, we assume

that the inducing effect from limit orders to market orders on the opposite side is less than

that to the market orders on the same side, namely,

φ41(·) < φ31(·), φ32(·) < φ42(·).

We use β3 < 1 to model the inequalities and have

φ41(·) = β3φ31(·) = β3β2φ(·), φ32(·) = β3φ42(·) = β3β2φ(·).

3. We assume that the same event on opposite sides induce each other in the same way but very

close to 0. For example, we assume that the submissions of limit ask orders barely induce

the submissions of limit bid order, which is observed by the numerical results from [2] and

[7]. So we have

φ12(·) = φ21(·) = φ34(·) = φ43(·) = 0 (3.3)

4. We assume that the inducing power between child orders of the same parent order is much

larger than the inducing power between different types of orders. For example, an institu-

tional investor wants to buy 50,000 shares of a stock and he uses an HFT algorithm to submit

the limit bid orders sequentially. Some individual speculators might want to submit market
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bid orders to buy some shares before the parent order and then submit market ask orders to

sell these shares back to the institutional investor to make a profit. A child limit bid order

almost guarantees the submission of another child limit bid order since they are both a part

of the same parent order, while the market bid and ask orders might not be induced by a

child limit bid order, since the speculators might not foresee the parent order or believe the

price will increase. Adding (3.3), we can assume that the past limit ask order submissions

are more likely to induce limit ask order submissions than they induce limit bid order sub-

mission, market ask order submission, and market bid order submission combined. This

example roughly translates to

φ11(·) > φ21(·) + φ31(·) + φ41(·).

After we apply this assumption to all the order events, we have

φ22(·) > φ12(·) + φ32(·) + φ42(·),

φ33(·) > φ13(·) + φ23(·) + φ43(·),

φ44(·) > φ14(·) + φ24(·) + φ34(·),

These inequalities lead to:

1− β2β3 − β2 > 0 (3.4)

5. Since we assume that the HFT orders provide zero net contribution in volume to the limit

order book on average, we have

E[dV (tT )] = E[dNa,+(tT ) + dN b,+(tT )− dNa,−(tT )− dN b,−(tT )] = 0
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Note that

E[dNa,+(tT )] + E[dN b,+(tT )] = E[λa,+(tT )]d(tT ) + E[λb,+(tT )]d(tT ),

E[dNa,−(tT )] + E[dN b,−(tT )] = E[λa,−(tT )]d(tT ) + E[λb,−(tT )]d(tT )

and

E[λa,+(tT )] = µa,+(tT ) +

∫ tT

0

φ11(tT − s)E[λa,+(s)]ds+
∫ tT

0

φ12(tT − s)E[λb,+(s)]ds

+

∫ tT

0

φ13(tT − s)E[λa,−(s)]ds+
∫ tT

0

φ14(tT − s)E[λb,−(s)]ds

= µa,+(tT ) +

∫ tT

0

φ(tT − s)E[λa,+(s)]ds

+

∫ tT

0

β2φ(tT − s)E[λa,−(s)]ds+
∫ tT

0

φ14(tT − s)E[λb,−(s)]ds,

E[λb,+(tT )] = µb,+(tT ) +

∫ tT

0

φ21(tT − s)E[λa,+(s)]ds+
∫ tT

0

φ22(tT − s)E[λb,+(s)]ds

+

∫ tT

0

φ23(tT − s)E[λa,−(s)]ds+
∫ tT

0

φ24(tT − s)E[λb,−(s)]ds

= µb,+(tT ) +

∫ tT

0

φ(tT − s)E[λb,+(s)]ds

+

∫ tT

0

φ23(tT − s)E[λa,−(s)]ds+
∫ tT

0

β2φ(tT − s)E[λb,−(s)]ds,

E[λa,−(tT )] = µa,−(tT ) +

∫ tT

0

φ31(tT − s)E[λa,+(s)]ds+
∫ tT

0

φ32(tT − s)E[λb,+(s)]ds

+

∫ tT

0

φ33(tT − s)E[λa,−(s)]ds+
∫ tT

0

φ34(tT − s)E[λb,−(s)]ds

= µa,−(tT ) +

∫ tT

0

β2φ(tT − s)E[λa,+(s)]ds
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+

∫ tT

0

β2β3φ(tT − s)E[λb,+(s)]ds+
∫ tT

0

[(β1 + β2)φ(tT − s)]E[λa,−(s)]ds

E[λb,−(tT )] = µb,−(tT ) +

∫ tT

0

φ41(tT − s)E[λa,+(s)]ds+
∫ tT

0

φ42(tT − s)E[λb,+(s)]ds

+

∫ tT

0

φ43(tT − s)E[λa,−(s)]ds+
∫ tT

0

φ44(tT − s)E[λb,−(s)]ds

= µb,−(tT ) +

∫ tT

0

β2β3φ(tT − s)E[λa,+(s)]ds

+

∫ tT

0

β2φ(tT − s)E[λb,+(s)]ds+
∫ tT

0

[(β1 + β2)φ(tT − s)]E[λb,−(s)].ds

Therefore, we have

E[λa,+(tT )] + E[λb,+(tT )] = µa,+(tT ) + µb,+(tT )

+

∫ tT

0

φ(tT − s)E[λa,+(s)]ds

+

∫ tT

0

φ(tT − s)E[λb,+(s)]ds

+

∫ tT

0

[β2φ(tT − s) + φ23(tT − s)]E[λa,−(s)]ds

+

∫ tT

0

[φ14(tT − s) + β2φ(tT − s)]E[λb,−(s)]ds,

and

E[λa,−(tT )] + E[λb,−(tT )] = µa,−(tT ) + µb,−(tT )

+

∫ tT

0

(β2 + β2β3)φ(tT − s)E[λa,+(s)]ds

+

∫ tT

0

(β2 + β2β3)φ(tT − s)E[λb,+(s)]ds

+

∫ tT

0

[(β1 + β2)φ(tT − s)]E[λa,−(s)]ds
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+

∫ tT

0

[(β1 + β2)φ(tT − s)]E[λb,−(s)]ds

Inspired by the simplification of a similar equation in [16], we assume that

µa,+(tT ) + µb,+(tT ) = µa,−(tT ) + µb,−(tT ), φ23(tT ) = φ14(tT ),

E[λa,+(tT )] + E[λb,+(tT )] = E[λa,−(tT )] + E[λb,−(tT )].

and get

φ(·) + β2φ(·) + φ14(·) = β2β3φ(·) + β2φ(·) + (β1 + β2)φ(·),

φ(·) + β2φ(·) + φ23(·) = β2β3φ(·) + β2φ(·) + (β1 + β2)φ(·),

which gives us

φ14(·) = (β1 + β2 + β2β3 − 1)φ(·), φ23(·) = (β1 + β2 + β2β3 − 1)φ(·). (3.5)

6. We assume that the same-side limit-market order induction power is greater than the opposite-

side limit-market induction power, which is observed by the numerical results from [2] and

[7]. For example, limit ask order submissions are more likely induced by past market ask

order submissions than past market bid order submissions. Therefore, we have β2 > β2β3,

which is consistent with the setting that β3 < 1. From this assumption, we also have

β2 > β1 + β2 + β2β3 − 1 (3.6)
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Having the above, we have Φ(·) = Φ0φ(·), where

Φ0 =



1 0 β2 (β1 + β2 + β2β3 − 1)

0 1 (β1 + β2 + β2β3 − 1) β2

β2 β2β3 (β1 + β2) 0

β2β3 β2 0 (β1 + β2)


, (3.7)

with φ(·) a positive bounded function that satisfies
∫∞
0
φ(s)ds = 1, and

0 < β2 < β1 < 1, 0 < β3 < 1, β1 + β2β3 < 1 < β1 + β2 + β2β3.

Proposition 3.1.

1. The eigenvalues of Φ0 are given by the following:

λ1 = β1 + β2β3 + 2β2, λ2 = −β2β3 + β2 + 1,

λ3 = β1 + β2β3, λ4 = −β2β3 − β2 + 1

Moreover, it holds that λ1 > λ2 > λ3 > λ4. This also means that Φ0 is diagonalizable.

2. Define:

v1 =



β2(β3+1)
β1+β2β3+2β2−1

β2(β3+1)
β1+β2β3+2β2−1

1

1


, v2 =



−1

1

−1

1


, v3 =



β2(β3−1)
β1+β2β3−1

− β2(β3−1)
β1+β2β3−1

−1

1


, v4 =



−1

−1

1

1


,

They are eigenvectors of Φ⊤
0 corresponding to λ1, λ2, λ3, λ4, respectively.
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Proof. We provide the calculation of the eigenvalues in the appendices at A. We show here the

inequalities among the eigenvalues can be easily shown using the assumptions. First, since β2 > 0,

λ2 > λ4. Second, since

β1 + β2 + β2β3 − 1 > 0 > −β2β3,

we have

β1 + β2β3 > −β2β3 − β2 + 1,

which leads to λ3 > λ4. As for λ2 and λ3, using (3.6), we have

β1 + β2β3 =
[
(β1 + β2 + β2β3 − 1) + β2β3

]
− β2 + 1− β2β3

< 2β2 − β2 + 1− β2β3 = −β2β3 + β2 + 1

We have shown that λ2 > λ3. Lastly, we are left to show λ1 > λ2. Indeed, since

β1 + 2β2β3 + β2 − 1 > β1 + β2β3 + β2 − 1 > 0,

β1 + β2β3 + 2β2 > −β2β3 + β2 + 1,

and hence λ3 < λ1.

We define

ΦT (·) =
aT
λ1
φ(·)Φ0, (3.8)

with {aT}T∈Z+ an undetermined sequence of positive constants that are less than 1 but converge

to 1. Then the largest eigenvalue of each
∫∞
0

ΦT (·) forms the sequence {aT}T∈Z+ . Based on the

cluster representation of Hawkes process, illustrated and discussed in the appendices at B, we use

the largest eigenvalue of
∫∞
0

ΦT (s)ds to model the percentage of endogenous orders in the HFT
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market, and thus in our model, the HFT market gets more and more endogenous over time.
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CHAPTER 4: SCALING LIMIT OF THE MICROSCOPIC VOLUME

MODEL

In this section, we find f(t), the scaling limit of VT (tT ) as well as the ratio function of the HFT

density. We also find the proper expression of the normalizing factor h(T ) in the process.

4.1 An asymptotic framework

We first set up an asymptotic framework for our Microscopic volume mode. Let {NT (tT )}t≥0 be a

sequence of 4-dimensional Hawkes processes defined on [0, T ] in a sequence of probability spaces

(ΩT ,FT ,PT ), indexed by T ∈ Z+, where T goes to infinity. For each T , NT (0) = 0, FT is the

σ-algebra generated by NT (tT ), and the conditional intensity process {λT (tT )}t≥0 is

λT (tT ) = µT (tT ) +

∫ tT

0

ΦT (tT − s)dNT (s), (4.1)

with ΦT (·) defined in (3.8). This setting allows {NT (tT )}t≥0 to tend to an unstable Hawkes

process, while maintaining stability for each NT (tT ). For each ΦT (·) and each i = 1, 2, 3, 4, the

eigenvalues can be calculated as

λT,i(·) =
aTλiφ(·)

λ1

Furthermore, the eigenvectors of each (ΦT (·))⊤ can be taken as the ones of Φ⊤
0 , which are calcu-

lated in Proposition 3.1, so we still denote them as v1, v2, v3, v4.

We let

MT (t) = NT (t)−
∫ t

0

λT (s)ds, (4.2)
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which is the martingale associated with NT (t), see [34]. Then

dNT (t) = dMT (t) + λT (s)ds,

and we have

λT (t) = µT (t) +

∫ t

0

ΦT (t− s)dNT (s)

= µT (t) +

∫ t

0

ΦT (t− s)dMT (s) +

∫ t

0

ΦT (t− s)λT (s)

= [µT +ΦT ∗MT +ΦT ∗ λT ](t)

= [µT +ΦT ∗MT +ΦT ∗ (µT +ΦT ∗MT +ΦT ∗ λT )](t)

= [µT +ΦT ∗ µT +ΦT ∗MT +ΦT ∗ΦT ∗MT +ΦT ∗ΦT ∗ λT ](t)

= ...

=
[( m∑

k=0

Φ∗k
T

)
∗ µT +

(m+1∑
k=1

Φ∗k
T

)
∗MT +Φ∗(m+1) ∗ λT

)]
(t)

Note that

Φ∗2
T (t) = (ΦT ∗ΦT )(t) =

∫ t

0

ΦT (t− s)ΦT (s)ds =
aT
λ21

( ∫ t

0

φ(t− s)φ(s)ds
)
Φ2

0 =
a2T
λ21
φ∗2(t)Φ2

0

By induction,

Φ∗k
T (t) =

akT
λk1
φ∗k(t)Φk

0, ∀k ≥ 0.

Since

sup
t≥0

∥φ∗k(t)∥ ≡ ∥φ∗k∥∞ ≤ ∥φ∗(k+1)∥∞∥φ∥1 ≤ ... ≤ ∥φ∥∞∥φ∥k−1
1 ≤ ∥φ∥∞ <∞,
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and since Φ0 is diagonalizable, there is an invertible P so that

Φ0 = PDP−1, D =



λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4


Hence,

Φ∗k
T (t) = akTφ

∗k(t)P



1 0 0 0

0
(
λ2

λ1

)k
0 0

0 0
(
λ3

λ1

)k
0

0 0 0
(
λ4

λ1

)k


P−1

Consequently,

|Φ∗k
T (t)| ≤ CakT , ∀k ≥ 0,

with the constant C > 0 independent of k ≥ 0. Hence, by 0 < aT < 1, we see that

λT (t) =
∞∑
k=0

(aT
λ1

Φ0

)k

[φ∗k ∗ µT ](t) +
∞∑
k=1

(aT
λ1

Φ0

)k

[φ∗k ∗MT ](t) (4.3)

Equation (4.3) also allows us to calculate the expected value of λT (tT ). Indeed, we have

E[λT (t)] =
∞∑
k=0

(aT
λ1

Φ0

)k

[φ∗k ∗ µT ](t) (4.4)

Note that

[φ∗k ∗ µT ](tT ) =

∫ tT

0

φ∗k(tT − s)µT (s)ds

=

∫ t

0

φ∗k(tT − sT )µT (sT )d(sT )
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= T

∫ t

0

φ∗k((t− s)T
)
µT (sT )ds

and similarly,

[φ∗k ∗MT ](tT ) =

∫ tT

0

φ∗k(tT − s)dMT (s)

=

∫ t

0

φ∗k(tT − sT
)
dMT (sT )

4.2 Assumptions and Intuitions of the Result

We first introduce an assumption on φ(·). As we mentioned in the introduction, many HFT orders

are part of a larger parent order that typically takes hours or even days to fully execute, which can be

observed in an HFT market by child orders exciting each other during this relatively long execution

window. To model this relatively long-term influence, we need to choose an excitation function

φ(·) such that the conditional intensity has a relatively slow decay. The Dirac delta function is

obviously not a good choice for the excitation function, since it would mean that an order no

longer excites other orders right after it arrives at the HFT market. Although the exponential

function, i.e. ae−bt with a, b > 0, is a common choice for the Hawkes excitation function, it

yields an exponentially decaying conditional intensity, which is faster than the power-law decay.

Therefore, we model this long-term influence by giving each φ(·) a power-law tail. This leads to

the following assumption:

Assumption 1: The function φ(·) is positive, bounded, integrable, with
∫∞
0
φ(s)ds = 1, and

lim
t→∞

tα
(
1−

∫ t

0

φ(s)ds
)
= K,
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with some α ∈ (0, 1) and positive constant K.

The above gives the speed of convergence of
∫ t

0
φ(s) → 1 as t→ ∞.

Remark 4.1. One example of such a function φ(·) is fα,1(·), the Mittag-Leffler density function

with λ = 1. For (α, λ) ∈ (0, 1)× R+, namely,

fα,λ(t) = λtα−1Eα,α(−λtα), t > 0,

where Eα,α, called the Mittag-Leffler function, is defined for z ∈ C as

Eα,α(z) =
∑
n≥0

zn

Γ(αn+ α)
,

with Γ(·) the Gamma function. See Definition F.1.

Since the conditional intensity process essentially defines NT (tT ), we next try to find the asymp-

totic behavior, along with the proper normalizing factor, of λT (tT ). Our first step is to find the

limit of E[λT (tT )] as t→ ∞.

Proposition 4.1. The expectation of the conditional intensity λT (tT ), calculated in (4.4), is as

follows:

lim
t→∞

E[λT (tT )] = P



1
1−aT

0 0 0

0 1
1−aT (λ2/λ1)

0 0

0 0 1
1−aT (λ3/λ1)

0

0 0 0 1
1−aT (λ4/λ1)


P−1µT (∞),

where

(1). The constants λ1, λ2, λ3, λ4 are eigenvalues of Φ0, which are calculated in Proposition 3.1.
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(2). The matrix P is invertible and is consisting of the eigenvectors of Φ0 correspondent to

λ1, λ2, λ3, λ4.

(3). The vector µT (∞), defined as

µT (∞) := lim
t→∞

µT (tT ),

is a four dimensional vector with positive constant entries.

Proof. Denote λ̄T (tT ) = E[λT (tT )], then by (4.4), we have

λ̄T (tT ) = µT (tT ) +
∞∑
n=1

(aT
λ1

Φ0

)n

[φ∗n ∗ µT ](tT )

As t goes to infinity, by the dominated convergence theorem and monotone convergence theorem,

along with Lemma 2.1, we have

lim
t→∞

λ̄T (tT ) = lim
T→∞

µT (tT ) + lim
T→∞

∫ tT

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(s)µT (tT − s)ds

= µT (∞) +

∫ ∞

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(s)µT (∞)ds

= µT (∞) +
[ ∞∑

n=1

(aT
λ1

Φ0

)n
∫ ∞

0

φ∗n(s)ds
]
µT (∞)

= µT (∞) +
[ ∞∑

n=1

(aT
λ1

Φ0

)n(∫ ∞

0

φ(s)ds
)n]

µT (∞)

=
[ ∞∑

n=0

(aT
λ1

Φ0

)n]
µT (∞)

Since Φ0 has distinct eigenvalues, it is diagonalizable. Thus, there exists a diagonal matrix D

whose diagonal entries are the eigenvalues of Φ0, and an invertible matrix P consisting of the
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correspondent eigenvectors such that

Φ0 = PDP−1

with

D =



λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4


.

Therefore, we have

lim
t→∞

λ̄T (tT ) =
[ ∞∑

n=0

(aT
λ1

Φ0

)n]
µT (∞) = P

( ∞∑
n=0

(aT
λ1

D
)n)

P−1µT (∞).

Since aT < 1 and λ1 > max{λ2, λ3, λ4}, all the diagonal entries of D are less than 1, and hence

we have

lim
t→∞

E[λT (tT )] = P



1
1−aT

0 0 0

0 1
1−aT (λ2/λ1)

0 0

0 0 1
1−aT (λ3/λ1)

0

0 0 0 1
1−aT (λ4/λ1)


P−1µT (∞).

For each T , we define µT as the sum of the entries of µT (∞). Note that µT and aT have different

financial meanings as well as functions in our model, and thus they are not necessarily related.
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Then we have

lim
t→∞

1− aT
µT

E[λT (tT )] =
1− aT
µT

lim
t→∞

E[λT (tT )]

= P



1 0 0 0

0 1−aT
1−aT (λ2/λ1)

0 0

0 0 1−aT
1−aT (λ3/λ1)

0

0 0 0 1−aT
1−aT (λ4/λ1)


P−1 1

µT

µT (∞).

Since λi < λ1 for all i = 2, 3, 4, this is a nontrivial limit as t → ∞ for each T . Therefore, as

T → ∞, with proper assumptions on 1−aT
µT

, the normalized λT (tT ) has a nontrivial limit, meaning

that it is neither 0 nor ∞.

After rescaling λT (tT ) with
1− aT
µT

, and by (4.3), we have

1− aT
µT

λT (tT ) = (1− aT )
µT (tT )

µT

+ (1− aT )
∞∑
n=1

(aT
λ1

Φ0

)n

[φ∗n ∗ µT

µT

](tT )

+ (1− aT )
∞∑
n=1

(aT
λ1

Φ0

)n

[φ∗n ∗ MT

µT

](tT )

(4.5)

Like in [16], we use the orthogonal decomposition of 1−aT
µT

λT (tT ) to find its limit. Let (e1, e2, e3, e4)

be an orthonormal basis of R4, such that e1 · v1 > 0 and

span(e2, e3, e4) = span(v2, v3, v4).
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Decomposing λT (tT ) in the basis {e1, e2, e3, e4}, we have

λT (tT ) =
4∑

i=1

(
e⊤i λT (tT )

)
ei

=
1

e⊤1 v1

(
v⊤1 λT (tT )

)
e1 +

(
(v′)⊤λT (tT )

)
e1 +

4∑
i=2

(
e⊤i λT (tT )

)
ei,

(4.6)

with

v′ = e1 −
1

e⊤1 v1
v1 ∈ span(v2, v3, v4).

We can see that the re-scaled asymptotic behavior of λT (tT ) depends on the re-scaled asymptotic

behaviors of v⊤i λT (tT ). In particular, under proper settings, we can show that for i = 2, 3, 4, we

have v⊤i λT (tT ) = 0, which leads to

(v′)⊤λT (tT ) = e⊤i
1− aT
µT

λT (tT ) = 0,

This means that the re-scaled asymptotic behavior of 1−aT
µT

λT (tT ) depends on that of v⊤1 λT (tT ).

Remark 4.2. One example of such an orthonormal basis is





1
2

1
2

1
2

1
2


,



0

1√
2

− 1√
2

0


,



1√
2

0

0

− 1√
2


,



1
2

−1
2

−1
2

1
2




Meanwhile, we can see for each i = 1, 2, 3, 4 and for any k ≥ 1,

v⊤i

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(t) =
∞∑
n=1

(aT
λ1

)n

v⊤i Φ
k
0φ

∗n(t)
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=
[ ∞∑

n=1

(aTλi
λ1

)n

φ∗n(t)
]
v⊤i

= ψT,i(t)v
⊤
i ,

where

ψT,i(t) :=
∞∑
n=1

(aTλi
λ1

)n

φ∗n(t) (4.7)

Therefore, along with (4.3), for each i = 1, 2, 3, 4, we have

v⊤i λT (tT ) = v⊤i µT (tT ) + v⊤i

∞∑
n=1

(aT
λ1

Φ0

)n

[φ∗n ∗ µT ](tT ) + v⊤i

∞∑
n=1

(aT
λ1

Φ0

)n

[φ∗n ∗MT ](tT )

= v⊤i µT (tT ) +

∫ t

0

TψT,i(T (t− s))(v⊤i µT (sT ))ds+

∫ t

0

ψT,i(T (t− s))(v⊤i dMT (sT )).

(4.8)

For each i, the Laplace transform of ψT,i(Tt) is:

ψ̂T,i(T ·)(z) =
∫ ∞

0

ΨT,i(Tx)e
−xzdx

=

∫ ∞

0

∞∑
k=1

(aTλi
λ1

)k

φ∗k(Tx)e−xzdx

=
∞∑
k=1

(aTλi
λ1

)k
∫ ∞

0

φ∗k(Tx)e−xzdx

=
∞∑
k=1

(aTλi
λ1

)k

φ̂∗k(T ·)(z)

=
∞∑
k=1

(aTλi
λ1

)k 1

T
φ̂∗k

( z
T

)
=

1

T

∞∑
k=1

(aTλi
λ1

)k(
φ̂
( z
T

))k

=
1

T

∞∑
k=1

[aTλi
λ1

φ̂
( z
T

)]k
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=

aTλi

λ1
φ̂
( z
T

)
T
(
1− aTλi

λ1
φ̂
( z
T

))
Since

φ̂
( z
T

)
=

∫ ∞

0

φ(x)e−
zx
T dx,

for i = 2, 3, 4, as T → ∞, we have

aTλi
λ1

φ̂
( z
T

)
→ λi

λ1
< 1.

Hence, ψT,i(T ·) goes to 0 as T → ∞. Plugging this back in (4.8), we have

v⊤i λT (tT ) ∼ v⊤i µT (tT )

This means that if we assume all the entries of µT (tT ) are identical, as T goes to infinity, v⊤i λT (tT )

goes to 0. Therefore, we have the following assumption:

Assumption 2’: For each T , the background intensity µT (tT ) has identical entries.

Under this assumption, the re-scaled asymptotic behavior of 1−aT
µT

λT (tT ) depends on that of

v⊤1 λT (tT ). Indeed, we have

1− aT
µT

v⊤1 λT (tT ) =
1− aT
µT

(v⊤1 µT (tT )) +

∫ t

0

T (1− aT )

µT

ψT,1(T (t− s))(v⊤1 µT (sT ))ds

+

∫ t

0

1− aT
µT

ψT,1(T (t− s))(v⊤1 dMT (sT ))

=
1− aT
µT

(v⊤1 µT (tT )) +

∫ t

0

T (1− aT )

µT

ψT,1(T (t− s))(v⊤1 µT (sT ))ds

+

√
T (1− aT )

µT

∫ t

0

ψT,1(T (t− s))

√
1− aT
µT

(v21)
⊤λT (sT )dBT,1(s).
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where

BT,1(t) =
1√
T

∫ tT

0

v⊤1 dMT (s)√
(v21)

⊤λT (s)
, (4.9)

with v21 = (v21,1, v
2
1,2, v

2
1,3, v

2
1,4). Note that

(v21)
⊤λT (t) = (v1)

⊤diag[λT (t)]v1.

Thus,

E[BT,1(t)
2] = E

[∣∣∣ ∫ tT

0

d(v⊤1 MT )(s)√
T (v21)

⊤λT (s)

∣∣∣2] = 1

T

∫ tT

0

ds = t.

Therefore, the limit of BT,1(·) as T → ∞ is a Brownian motion (see [16], p.254). Next, we

examine the asymptotic behavior of

ρT,1(x) := T (1− aT )ψT,1(Tx)

Indeed, the Laplace transform of ρ is

ρ̂T,1(z) =

∫ ∞

0

ρT,1(x)e
−zxdx = (1− aT )ψ̂T,1

( z
T

)
= (1− aT )

λ̂T,1

(
z
T

)
(
1− λ̂T,1

(
z
T

))
Since

λ̂T,1(z) =

∫ ∞

0

λT,1(x)e
−zxdx

= aT

(
1− z

∫ ∞

0

∫ ∞

x

φ(s)dse−zxdx
)

= aT

(
1− zα

∫ ∞

0

(x
z

)α
∫ ∞

x
z

φ(u)dux−αe−xdx
)
,
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using Assumption 1 and the dominated convergence theorem,

λ̂T,1(z) = aT

(
1−KΓ(1− α)zα + O(z)

)

Then we have

ρ̂T,1(z) =
(1− aT )aT

(
1−KΓ(1− α) zα

Tα + O( z
T
)
)

1− aT

(
1−KΓ(1− α) zα

Tα + O( z
T
)
)

=

Tα(1−aT )aT
KΓ(1−α)

− (1− aT )aT z
α + (1−aT )aT

KΓ(1−α)
TαO( z

T
)

(1−aT )Tα

KΓ(1−α)
+ aT zα − aT

KΓ(1−α)
TαO( z

T
)

.

Let νT =
Tα(1− aT )

KΓ(1− α)
, then as T → ∞,

ρ̂T,1 =
νT

νT + zα
,

which is equal to the Laplace transformation of

νTx
α−1Eα,α(−νTxα), where Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)

Therefore, we have

T (1− aT )ψT,1(Tt) = νT t
α−1Eα,α(−νT tα)

Plugging this back in the equation (4.8), we can expect (for α > 1
2
)

v1 ·
1− aT
µT

λT (tT ) ∼
1− aT
µT

(v1 ·µT (tT ))+νT

∫ t

0

(t−s)α−1Eα,α(−νT (t−s)α)
1

µT

(v1 ·µT (Ts))ds

+
νT√

T (1− aT )µT

∫ t

0

(t− s)α−1Eα,α(−νT (t− s)α)

√
1− aT
µT

λT (sT ) · v21dBT,1(s)

with v21 = (v21,i) where i ∈ 1, 2, 3, 4 and BT,1 defined at (4.9). Decomposing v21 in the basis
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(e1, e2, e3, e4), we get

v21 ·
1− aT
µT

λT (tT ) =
e1 · v21
e1 · v1

(
v1 ·

1− aT
µT

λT (tT )
)
+ (e1 · v21)

(
v′ · 1− aT

µT

λT (tT )
)

+
∑
2≤i≤4

(ei · v21)
(
ei ·

1− aT
µT

λT (tT )
)

with v′ = e1 −
1

e1 · v1
v1 ∈ span(v2, v3, v4). We can simplify this equation along with (4.6) by

finding a µT such that

vi ·
1− aT
µT

λT (tT ) = 0

for all i = 2, 3, 4. Indeed, if that is true, (4.6) can be simplified to

1− aT
µT

λT (tT ) =
1

e1 · v1

(
v1 ·

1− aT
µT

λT (tT )
)
e1,

and since for any vector v ∈ span(v2, v3, v4), v · 1−aT
µT

λT (tT ) converges to zero, v21 · 1−aT
µT

λT (tT )

has the same asymptotic behavior as

e1 · v21
e1 · v1

(
v1 ·

1− aT
µT

λT (tT )
)

How should we choose such a µT ? First, per Assumption 2’, we need all the entries of µT to be

identical. However, if we set µT (tT ) := µT (1, 1, 1, 1)
⊤ as in [16] and [30], v1 · 1−aT

µT
λT (0) will

disappear as well. This means that as T → ∞, 1−aT
µT

λT (tT ) converges to a process with zero initial

value.
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Consider a µT that can solve the following equation

µT (t) +

∫ t

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(t− s)(µT (s))ds =
µT

1− aT
1 + µT

∫ t

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(s)1ds

(4.10)

Recall that

v⊤i

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(t) = ψT,i(t)v
⊤
i

Plugging it back in (4.10), we have

vi · µT (t) +

∫ t

0

ψT,i(t− s)(vi · µT (s))ds =
µT

1− aT
vi · 1+

∫ t

0

µTψT,i(s)vi · 1ds

Then we have

v1 ·
1− aT
µT

λT (tT ) = v1 · 1 +

∫ t

0

T (1− aT )ψT,1(Ts)v1 · 1ds

+

√
T (1− aT )

µT

∫ t

0

ψT,1(T (t− s))

√
1− aT
µT

λT (sT ) · v21dBT,1(s)

∼ v1 · 1 + (v1 · 1)νT
∫ t

0

sα−1Eα,α(−νT sα)ds

+
νT√

T (1− aT )µT

∫ t

0

(t− s)α−1Eα,α(−νT (t− s)α)

√
1− aT
µT

λT (sT ) · v21dBT,1(s),

which has a nonzero initial value. This gives us the following assumption:

Assumption 2: For each T , the background intensity µT (tT ) is given by

µT (tT ) =
µT

1− aT

[
I −

(
a2T

∫ tT

0

φ(s)ds
)Φ0

λ1

]
1 =

µT

1− aT

(
1− a2T

∫ tT

0

φ(s)ds
)

1 (4.11)

with 1 the unit vector.
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Remark: Note that with this assumption, all the entries of µT are identical, vi · 1−aT
µT

λT (tT ) will

vanish for i = 2, 3, 4. Therefore, Assumption 2 includes Assumption 2’. We will also show in

the proof of the following proposition, provided at 4.4.2, that the µT defined in Assumption 2 is

indeed the solution to (4.10).

Proposition 4.2. The solution to the following integral equation

µT (t) +

∫ t

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(t− s)(µT (s))ds =
µT

1− aT
1 + µT

∫ t

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(s)1ds

is µT defined in Equation (4.11).

With Assumption 2, we have

1− aT
µT

λT (tT ) =
1

e1 · v1

(
v1 ·

1− aT
µT

λT (tT )
)
e1,

where

v1 ·
1− aT
µT

λT (tT ) ∼ v1 · 1 + (v1 · 1)νT
∫ t

0

sα−1Eα,α(−νT sα)ds

+
νT√

T (1− aT )µT

∫ t

0

(t− s)α−1Eα,α(−νT (t− s)α)

√
1− aT
µT

λT (sT ) · v21dBT,1(s),

with v21 = (v21,i) where i ∈ 1, 2, 3, 4 and BT,1(t) defined in (4.9).

Note that v21 ·
1− aT
µT

λT (tT ) having the same asymptotic behavior as

e1 · v21
e1 · v1

(
v1 ·

1− aT
µT

λT (tT )
)

49



We can see that the asymptotic behavior of 1−aT
µT

λT (tT ) depends on the asymptotic settings of

νT and
1√

T (1− aT )µT

As discussed in [16] and [30], to get a non-deterministic limit of 1−aT
µT

λT (tT ), we need both νT

and 1√
T (1−aT )µT

to be positive constants and hence have the following assumption:

Assumption 3: There are two positive constants θ and µ such that

lim
T→∞

Tα(1− aT ) = θKΓ(1− α) and lim
T→∞

T 1−αµT =
µ

KΓ(1− α)

With this assumption, as T → ∞,

νT → θ, and
νT√

T (1− aT )µT

→

√
θ

µ
.

Then we have

v1 ·
1− aT
µT

λT (tT ) ∼ v1 · 1 + (v1 · 1)
∫ t

0

fα,θ(s)ds

+
1√
θµ

√
e1 · v21
e1 · v1

∫ t

0

fα,θ(t− s)

√
v1 ·

1− aT
µT

λT (sT )dBT,1(s)

Thus, if we introduce

YT (t) := v1 ·
1− aT
µT

,

then as T → ∞, we can see that the limit Y (·) of YT (·) satisfies

Y (t) = v1 · 1 + (v1 · 1)
∫ t

0

fα,θ(s)ds+
1√
θµ

√
e1 · v21
e1 · v1

∫ t

0

fα,θ(t− s)
√
Y (s)dB(s),
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where B is the limit of BT,1 as T → ∞. Since we have shown that B is a Brownian motion, we

can use the following proposition, whose proof is provided in [17], to link the limit of YT with a

stochastic Volterra integral equation:

Proposition 4.3. Let c1, c2, c3, and θ be positive constants, α ∈ (1
2
, 1) and B a Brownian motion.

Let Fα,θ(t) =
∫ t

0
fα,θ(s)ds. The process V is the solution of the following stochastic integral

equation

V1(t) = c1 + c2F
α,θ(t) + c3

∫ t

0

fα,θ(t− s)
√
V1(s)dB(s)

if and only if it is the solution of

V2(t) = c1 +
θ

Γ(α)

∫ t

0

(t− s)α−1(c1 + c2 − V2(s))ds+
c3θ

Γ(α)

∫ t

0

(t− s)α−1
√
V2(s)dB(s)

By this proposition, we can see that Y (t) is also the solution of

Y (t) = v1 ·1+
θ

Γ(α)

∫ t

0

(t−s)α−1(2v1 ·1−Y (s))ds+
1

Γ(α)

θ(e1 · v21)
µ(e1 · v1)

∫ t

0

(t−s)α−1
√
Y (s)dB(s).

Therefore, as T → ∞, we can derive that
1− aT
µT

λT (tT ) converges to

1

e1 · v1
Y (t)e1

The derivation in this subsection is very useful in finding the necessary assumptions for the se-

quence of Hawkes processes to converge. Next, we work directly on the Hawkes processes.
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4.3 Main Results

Similar to how we rescale the conditional intensity process, We first rescale the Hawkes process

with the space normalization factor:

XT (t) :=
1− aT
TµT

NT (tT ), ΛT (t) :=
1− aT
TµT

∫ tT

0

λT (s)ds,

ZT (t) :=

√
TµT

1− aT
(XT (t)−ΛT (t)) =

√
1− aT
TµT

MT (Tt)

The following result, proved in 4.4.1, shows that we can work with ΛT rather than XT (t):

Proposition 4.4. supt∈[0,1] ∥ΛT (t)−XT (t)∥ goes to 0 in probability as T → ∞.

Since we have shown that as T → ∞, the rescaled conditional intensity
1− aT
µT

λT (tT ) converges

to
1

e1 · v1
Y (t)e1,

where

Y (t) = v1 ·1+
θ

Γ(α)

∫ t

0

(t−s)α−1(2v1 ·1−Y (s))ds+
1

Γ(α)

θ(e1 · v21)
µ(e1 · v1)

∫ t

0

(t−s)α−1
√
Y (s)dB(s).

Therefore, as T → ∞, we can derive that the rescaled integral

ΛT (t) =

∫ t

0

1− aT
µT

λT (sT )ds

converges to
∫ t

0
Y (s)ds. By Proposition 4.4, ΛT and XT share the same limit as T → ∞. There-
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fore, as T → ∞, XT (t) converges also to

1

e1 · v1
(

∫ t

0

Y (s)ds)e1.

Theorem 4.1. Under the assumptions above, as T tends to infinity, the process (ΛT (t),XT (t),ZT (t))

converges in law for the topology of the convergence in measure to (Λ(t),X(t),Z(t))t∈[0,1], where

Λ(t) = X(t) =
1

e1 · v1
(

∫ t

0

Y (s)ds)e1,

and for 1 ≤ i ≤ 4

Zi(t) =

∫ t

0

√
e1,i
e1 · v1

Y (s)dBi(s)

where (B1, B2, B3, B4) is a 4-dimensional Brownian motion and Y is the unique solution of

Y (t) = v1 ·1+
θ

Γ(α)

∫ t

0

(t−s)α−1(2v1 ·1−Y (s))ds+
1

Γ(α)

√
θ(e1 · v21)
µ(e1 · v1)

∫ t

0

(t−s)α−1
√
Y (s)dB(s)

(4.12)

with

B =
1√
e1 · v21

4∑
i=1

√
e1,iv1,iB

i

and that Y has Hölder regularity α− 1/2− ϵ for any ϵ > 0. Furthermore, Y has Hölder regularity

α− 1
2
− ϵ for any ϵ > 0.

Remark 4.3. The fractional Brownian motion BH(t) can be expressed as

BH(t) =
1

Γ(H + 1
2
)

(∫ t

0

(t− s)H− 1
2dW (s) +

∫ 0

−∞
(t− s)H− 1

2 − (−s)H− 1
2dW (s)

)

where W (t) is a Brownian motion, and H is the Hurst parameter associated with BH(t) [38].

Therefore, we can interpret (4.12) as a Volterra integral equation with Hurst parameter α − 1
2
.

Since α ∈ (1
2
, 1), the Hurst parameter is less than 1

2
.
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Applying this result to the microscopic model in 3.2.1, we have the following corollary. We provide

the proof in 4.4.3.

Corollary 4.1. We let the normalizing factor of VT (tT ) be

h(T ) =

√
TµT

1− aT
.

Then under the assumptions above, as T tends to infinity,
VT (tT )

h(T )
converges in certain sense to the

following rough Heston model

f(t) =
(2β1 + 5β2 + 3β2β3 − 1

β1 + 3β2 + 2β2β3 − 1

) 1√
2γ + 2

∫ t

0

√
Y (s)dW (s)

Y is the unique solution of the following rough stochastic differential equation

Y (t) = 2(γ+1)+
θ

Γ(α)

∫ t

0

(t−s)α−1(4(γ+1)−Y (s))ds+
1

Γ(α)

√
θ

2µ(γ + 1)

∫ t

0

(t−s)α−1
√
Y (s)dB(s)

where γ = β2(β3+1)
β1+β2β3+2β2−1

,

W = B1 +B2 −B3 −B4, B = γB1 + γB2 +B3 +B4

are two 1-dimensional Brownian motions, with B1, B2, B3, B4 four 1-dimensional independent

Brownian motions. Furthermore, Y has Hölder regularity α− 1
2
− ϵ for any ϵ > 0.

4.4 Proofs

We provide the proofs of Proposition 4.4, Proposition 4.2, Proposition 4.3, and Corollary 4.1 in

this subsection. In the following proofs, Assumption 1, Assumption 2, and Assumption 3 hold,
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and we use c to denote a generic positive constant.

4.4.1 Proof of Proposition 4.4

Proof. We show that XT −ΛT converges uniformly to zero in probability. Since

XT −ΛT = KΓ(1− α)
1− aT
Tαµ

MT (tT ),

by Doob’s inequality and the fact that [MT ,MT ] = NT , we have

E[ sup
t∈[0,1]

|XT −ΛT |2] ≤ cT−4αE[MT (T )]
2 = cT−4αE[NT (T )] ≤ cT−2α

This shows that XT −ΛT converges uniformly to zero in probability.

4.4.2 Proof of Proposition 4.2

We show that the solution to the following equation

µT (t) +

∫ t

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(t− s)(µT (s))ds =
µT

1− aT
1 + µT

∫ t

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(s)1ds

is

µT (t) =
µT

1− aT

[
I −

(
a2T

∫ t

0

φ(s)ds
)Φ0

λ1

]
1 =

µT

1− aT

(
1− a2T

∫ t

0

φ(s)ds
)

1
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Proof. We use again the helpful expression

ΨT =
∞∑
n=1

(ΦT )
∗n

with the property

ΨT ∗ΦT = ΨT −ΦT .

Then from the left hand side, we have:

∫ t

0

(
µT (s) +

∫ s

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(s− u)(µT (u))du
)
ΦT (t− s)ds

=

∫ t

0

(
µT (s) +

∫ s

0

ΨT (s− u)(µT (u))du
)
ΦT (t− s)ds

=

∫ t

0

µT (s)ΦT (t− s)ds+

∫ t

0

∫ t−u

0

ΨT (s)ΦT (t− u− s)dsµT (u)du

=

∫ t

0

µT (s)ΦT (t− s)ds+

∫ t

0

(ΨT (s− u)−ΦT (s− u))µT (u)du

=

∫ t

0

ΨT (t− s)µT (s)ds

From the right hand side, we have

∫ t

0

( µT

1− aT
1 + µT

∫ s

0

∞∑
n=1

(aT
λ1

Φ0

)n

φ∗n(u)1du
)
ΦT (t− s)ds

=

∫ t

0

( µT

1− aT
1 + µT

∫ s

0

ΨT (u)du1
)
ΦT (t− s)ds

=

∫ t

0

µT

1− aT
ΦT (t− s)1ds+

∫ t

0

∫ s

0

µTΨT (s− u)ΦT (t− s)1duds

=
µT

1− aT

∫ t

0

ΦT (t− s)1ds+ µT

∫ t

0

∫ t−u

0

ΨT (s)ΦT (t− u− s)duds1

=
µT

1− aT

∫ t

0

ΦT (t− s)ds1 + µT

∫ t

0

(
ΨT (t− u)−ΦT (t− u)

)
ds1

=
µT

1− aT

∫ t

0

ΦT (t− s)ds1 +

∫ t

0

µTΨT (t− s)ds1 −
∫ t

0

µTΦT (t− s)ds1
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This means that

∫ t

0

ΨT (t− s)µT (s)ds =
µT

1− aT

∫ t

0

ΦT (t− s)ds1+
∫ t

0

µTΨT (t− s)ds1−
∫ t

0

µTΦT (t− s)ds1

Combining with (4.10), we have

µT (t) +
µT

1− aT

∫ t

0

ΦT (t− s)ds1 +

∫ t

0

µTΨT (t− s)ds1 −
∫ t

0

µTΦT (t− s)ds1

=
µT

1− aT
1 + µT

∫ t

0

ΨT (t− s)ds1

This leads to

µT (t) +
µT

1− aT

∫ t

0

ΦT (t− s)ds1 −
∫ t

0

µTΦT (t− s)ds1 =
µT

1− aT
1

Therefore, we have

µT (t) =
µT

1− aT

(
1 −

∫ t

0

ΦT (t− s)ds1
)
+ µT

∫ t

0

ΦT (t− s)ds1

=
µT

1− aT

(
I − a2T

λ1

∫ t

0

φ(s)dsΦ0

)
1

=
µT

1− aT

(
1− a2T

∫ t

0

φ(s)ds
)

1

4.4.3 Proof of Corollary 4.1

We apply Theorem 4.1 to the Microscopic Model:
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Proof. We first write
VT (tT )

h(T )
in a more friendly format:

√
1− aT
TµT

VT (tT ) =

√
1− aT
TµT

(Na,+
T (tT ) +N b,+

T (tT )−Na,−
T (tT )−N b,−

T (tT ))

=

∫ tT

0

√
1− aT
TµT

(dMa,+
T (s) + dM b,+

T (s)− dMa,−
T (s)− dM b,−

T (s))

+

∫ tT

0

√
1− aT
TµT

(λa,+T (s) + λb,+T (s)− λa,−T (s)− λb,−T (s))ds.

Furthermore,

λa,+T (t) + λb,+T (t)− λa,−T (t)− λb,−T (t)

= aT (

∫ t

0

1− β2 − β2β3
β1 + β2β3 + 2β2

φ(t− s)(dNa,+
T (s) + dN b,+

T (s)− dNa,−
T (s)− dN b,−

T (s)))

=

∫ t

0

aT
1− β2 − β2β3
β1 + β2β3 + 2β2

φ(t− s)(dMa,+
T (s) + dM b,+

T (s)− dMa,−
T (s)− dM b,−

T (s))

+

∫ t

0

aT
1− β2 − β2β3
β1 + β2β3 + 2β2

φ(t− s)(λa,+T (s) + λb,+T (s)− λa,−T (s)− λb,−T (s))ds

By the Lemma C.1, we have

λa,+T (t) + λb,+T (t)− λa,mT (t)− λb,mT (t)

=

∫ t

0

ψT,4(t− s)(dMa,+
T (s) + dM b,+

T (s)− dMa,−
T (s)− dM b,−

T (s))

Then using Fubini theorem, we get

∫ x

0

λa,+T (s) + λb,+T (s)− λa,−T (s)− λb,−T (s)ds

=

∫ x

0

(

∫ x−s

0

ψT,4(u)du)(dM
a,+
T (s) + dM b,+

T (s)− dMa,−
T (s)− dM b,−

T (s))
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Hence the rescaled price process
√

1− aT
TµT

VT (tT ) can be written as

√
1− aT
TµT

VT (tT ) =

√
1− aT
TµT

(Na,+
T (tT ) +N b,+

T (tT )−Na,−
T (tT )−N b,−

T (tT ))

=

∫ tT

0

√
1− aT
TµT

(dMa,+
T (s) + dM b,+

T (s)− dMa,−
T (s)− dM b,−

T (s))

+

∫ tT

0

√
1− aT
TµT

(λa,+T (s) + λb,+T (s)− λa,−T (s)− λb,−T (s))ds

=

∫ tT

0

dZa,+
T (s) + dZb,+

T (s)− dZa,−
T (s)− dZb,−

T (s)

+

√
1− aT
TµT

∫ tT

0

∫ tT−sT

0

ψT,4(u)du(dM
a,+
T (s) + dM b,+

T (s)− dMa,−
T (s)− dM b,−

T (s))

= (Za,+
T (t) + Zb,+

T (t)− Za,−
T (t)− Zb,−

T (t))

−
√

1− aT
TµT

∫ t

0

∫ ∞

T (t−s)

ψT,4(u)du(dM
a,+
T (s) + dM b,+

T (s)− dMa,−
T (s)− dM b,−

T (s))

+

√
1− aT

TµT

∫ ∞

0

ψT,4(u)du(M
a,+
T (t) +M b,+

T (t)−Ma,−
T (t)−M b,−

T (t))

= (Za,+
T (t) + Zb,+

T (t)− Za,−
T (t)− Zb,−

T (t))

−
∫ t

0

∫ ∞

T (t−s)

ψT,4(u)du(dZ
a,+
T (s) + dZb,+

T (s)− dZa,−
T (s)− dZb,−

T (s))

+

∫ ∞

0

ψT,4(u)du(Z
a,+
T (t) + Zb,+

T (t)− Za,−
T (t)− Zb,−

T (t))

= (1 +

∫ ∞

0

ψT,4(u)du)(Z
a,+
T (t) + Zb,+

T (t)− Za,−
T (t)− Zb,−

T (t))−RT (t)

with

RT (t) =

∫ t

0

∫ ∞

T (t−s)

ψT,4(u)du(dZ
a,+
T (s) + dZb,+

T (s)− dZa,−
T (s)− dZb,−

T (s)).

Since ∫ ∞

0

ψT,4(u)du =

∫ ∞

0

∞∑
n=1

(aT )
nλ∗n4 (u)du
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Since aT < 1 and S (
∫∞
0

ΦT (s)ds) < 1,

=
∞∑
n=1

∫ ∞

0

λ∗nT,4(u)du =
1

1−
∫∞
0
λT,4(s)ds

=
β1 + β2β3 + 2β2

β1 + β2β3 + 2β2 − aT (1− β2 − β2β3)∥φ∥1

Therefore, we have

√
1− aT
TµT

VT (tT ) = (1 +
β1 + β2β3 + 2β2

β1 + β2β3 + 2β2 − aT (1− β2 − β2β3)∥fα,1∥1
)

(Za,+
T (t) + Zb,+

T (t)− Za,−
T (t)− Zb,−

T (t))−RT (t),

where

RT (t) =

∫ t

0

∫ ∞

T (t−s)

ψT,4(u)du(dZ
a,+
T (s) + dZb,+

T (s)− dZa,−
T (s)− dZb,−

T (s))

Next, we let e1 =

(
1
2

1
2

1
2

1
2

)
, then by Theorem 4.1, the process (λT (t),XT (t),ZT (t)) con-

verges in law for the Skorokhod topology to (λ,X,Z) where

λ(t) = X(t) =
1

2γ + 2

(∫ t

0

Y (s)
)

1

and

Z(t) =

∫ t

0

√
1

2(γ + 1)
Y (s)ds



dB1(s)

dB2(s)

dB3(s)

dB4(s)


where (B1, B2, B3, B4) is a 4-dimensional Brownian motion and Y is the unique solution of the
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following rough stochastic differential equation

Y (t) = 2(γ + 1) +
θ

Γ(α)

∫ t

0

(t− s)α−1(4(γ + 1)− Y (s))ds

+
1

Γ(α)

√
θ(γ2 + 1)

µ(γ + 1)

∫ t

0

(t− s)α−1
√
Y (s)dB(s)

(4.13)

Furthermore, Y has Holder regularity α− 1
2
− ϵ for any ϵ > 0. Therefore,

(
1 +

β1 + β2β3 + 2β2
β1 + β2β3 + 2β2 − aT (1− β2 − β2β3)∥φ∥1

)(
Za,+

T (t) + Zb,+
T (t)− Za,−

T (t)− Zb,−
T (t)

)

converges in law to

(2β1 + 5β2 + 3β2β3 − 1

β1 + 3β2 + 2β2β3 − 1

) 1√
2γ + 2

∫ t

0

√
Y (s)dW (s)

where W = B1 +B2 −B3 −B4, and Y is defined by (4.13).

Now we are left to show that RT
t converges to 0. Since

RT (t) =

∫ t

0

(∫ ∞

T (t−s)

ψT,4(u)du)(dZ
a,+
T (t) + dZb,+

T (t)− dZa,−
T (t)− dZb,−

T (t)
)
,

there exists c > 0 such that

E[(RT (t))
2] ≤ c

∫ t

0

(

∫ ∞

Ts

ψT,4(u)du)
2ds

Let G =
∑∞

n=1 |(
−β2β3−β2+1
β1+β2β3+2β2

)φ|∗n, then we have

|ψT,4| =
∫ ∞

0

ψT,4(u)du =

∫ ∞

0

∞∑
n=1

λ∗nT,4(u)du ≤
∞∑
n=1

| −β2β3 − β2 + 1

β1 + β2β3 + 2β2
φ|∗n = G
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G is integrable since
∫∞
0

| −β2β3−β2+1
β1+β2β3+2β2

φ| < 1. Therefore, we have

E[(RT (t))
2] ≤ c

∫ t

0

(

∫ ∞

Ts

G(u)du)2ds

≤ c

∫ 1

0

(

∫ ∞

Ts

G(u)du)2ds

≤ c(

∫ T−1/2

0

(

∫ ∞

Ts

G(u)du)2ds+

∫ 1

T−1/2

(

∫ ∞

Ts

G(u)du)2ds)

= c(T−1/2(

∫ ∞

0

G)2 + (

∫ ∞

T 1/2

G)2)

Thus, E[(RT (t))
2] → 0 as T → ∞, and hence RT

t converges to 0.
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CHAPTER 5: DYNAMICS OF THE LOB WITH HAWKES PROCESSES

5.1 Combining the HFT and Non-HFT Volumes

With the scaling limit of the HFT order volumes V (t), and suppose the limit is on some filtered

probability space (Ω,F ,F,P) at the coarse-grained time scale of the average (non-HF) market

participants, we model the HFT orders as a multiplicative noise term of the form:

Cσ(x)u(t, x)dV (t) = Cσ(x)u(t, x)
√
Y (t)dW (t),

where

Cσ(x) =

 Ca
σ x ∈ (0, L]

Cb
σ x ∈ [−L, 0)

with Ca
σ , C

b
σ > 0. Combining with the non-HFT orders, and let the relative price level be x ∈

[−L,L] for some positive constant L, we have the following SPDE for the centered order book

density u in a real, separable Hilbert space (H, ⟨·, ·⟩H):



du(t, x) = [Au(t, x) + F (t, x, ux(t, x), u(t, ·))]dt+ Cσ(x)u(t, x)
√
Y (t)dW (t)

u(0, x) = u0(x),

Y (t) = 2(γ + 1) +
θ

Γ(α)

∫ t

0
(t− s)α−1(4(γ + 1)− Y (s))ds

+
1

Γ(α)

√
θ

2µ(γ + 1)

∫ t

0
(t− s)α−1

√
Y (s)dB(s)

(5.1)

where u : [0, T ] × [−L,L] × Ω → R, u0 : [−L,L] → R for some L > 0, and T ∈ [0,∞).

A : dom(A) ⊂ H → H is a linear operator on H defined as

Au = η(x)uxx − ζ(x)u,
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where

η(x) =

 ηa x ∈ (0, L]

ηb x ∈ [−L, 0)
, ζ(x) =

 ζa x ∈ (0, L]

ζb x ∈ [−L, 0)
, Cσ(x) =

 Ca
σ x ∈ (0, L]

Cb
σ x ∈ [−L, 0)

with ηa, ηb, ζa, ζb, Ca
σ , C

b
σ positive constants. Also,

F (t, x, ux(t, x), u(t, ·)) = −β(x) sgn(x)[ux(t, x)]− + J(x, u(t, x)) +G(x, ℓ(t)),

where

[ux(t, x)]
− =

 −ux(t, x) ux(t, x) < 0

0 otherwise
, and β(x) =

 βa x ∈ (0, L]

βb x ∈ [−L, 0)

with βa, βb are positive constants. The function J is defined as

J(x, u(t, x)) = 1{x>0}
[
− j(x)

(
u(t, x)− u0

)+ − j(−|x|)
(
u(t,−|x|) + u0

)−]
+ 1{x<0}

[
j(|x|)

(
u(t, |x|)− u0

)+
+ j(x)

(
u(t, x) + u0

)−]
,

with u0 > 0, and j(x) ≤ 1 a positive function decreasing in x > 0 and increasing in x < 0. The

function G(x, ℓ(t)) is strictly decreasing in ℓ(t) and G(x, 0) = 0, with

ℓ(t) =

∫ ι

−ι

u(t, y)dy.

In the equation of Y (t), α ∈ (1
2
, 1), and γ =

β2(β3 + 1)

β1 + β2β3 + 2β2 − 1
. For the diffusion term for both

of the equations,

W = B1 +B2 −B3 −B4, B = γB1 + γB2 +B3 +B4
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are two one-dimensional Brownian motions, withB1, B2, B3, B4 four independent one-dimensional

Brownian motions.

5.2 The Existence of the Unique Solution to the SPDE

In this section, we first show that there exists a unique solution to (5.1).

Theorem 5.1. Assume that the following conditions hold:

(i) For any T ∈ [0,∞), there exists CT > 0 such that for all x, y ∈ R and t ∈ [0,T ],

|G(x, f1(t))−G(x, f2(t))| ≤ CT |f1(t)− f2(t)|.

(ii) The linear operator A generates a C0 semigroup of bounded linear operators S(t) with

∥S(t)∥ ≤Meωt with constants M ≥ 1 and ω ≥ 0,

Then there exists a unique mild solution u(t, x) to (5.1) for t ∈ [0,T ].

5.2.1 Weak Existence and Uniqueness of Y (t)

We first show that there is a unique in law continuous weak solution Y (t) of the equation

Y (t) = 2(γ + 1) +
θ

Γ(α)

∫ t

0

(t− s)α−1(4(γ + 1)− Y (s))ds

+
1

Γ(α)

√
θ

2µ(γ + 1)

∫ t

0

(t− s)α−1
√
Y (s)dB(s)

(5.2)

Most of the technical results in Section G needs the kernel function to meet requirements (G.2) and

(G.3). We show in this section that (5.2) is an affine Volterra equation per (5.2) that meets these 2

requirements.
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Proposition 5.1. (5.2) is an affine Volterra equation that meets the requirements (G.2) and (G.3).

Proof. (1). The equation (5.2) is an affine Volterra equation:

We first show that (5.2) is an affine Volterra equation. Indeed, comparing it to the equation

of Y (t) (G.1), we can see that d = 1, m = 1, and Y0 = Y (0) = 2(γ + 1) ∈ R. The kernel

K corresponds to

K (t) =
tα−1

Γ(α)
∈ L2

loc(R+,R).

As for the coefficients, b : R → R corresponds to

b(y) = −θy + 4θ(γ + 1),

and σ : R → R corresponds to

σ(y) =

√
θ

2µ(γ + 1)

√
y.

Therefore, b(y) and

a(y) = σ(y)σ(y)⊤ =
θ

2µ(γ + 1)
y

are affine of the form

a(y) = A0 + yA1, with A0 = 0 and A1 =
θ

2µ(γ + 1)

as well as

b(y) = b0 + yb1, with b0 = 4θ(γ + 1) and b1 = −θ

We have shown that (5.2) is an affine Volterra equation. We can also find the corresponding
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expressions of the following important ingredients to use the results in Section G:

B = (b1) = −θ, A(u) := uA1u⊤ =
θ

2µ(γ + 1)
u2

any row vector u ∈ (C)∗.

(2). K satisfies the requirement (G.2):

Next, we show that the kernel K satisfies the requirement (G.2). Indeed, let γ = 2α − 1,

we have ∫ h

0

K 2dt =
hγ

(Γ(α))2γ

and ∫ T

0

(K (t+ h)− K (t))2dt ≤ hγ

(Γ(α))2

∫ ∞

0

((t+ 1)α−1 − tα−1)2dt

≤ hγ

(Γ(α))2
(
1

γ
+

1

2− 2γ
)

Since γ ∈ (0, 2],
∫ h

0
K (t)2dt = O(hγ), and

∫ T

0
(K (t + h)− K (t))2dt = O(hγ) for every

T <∞, (G.2) is fulfilled.

(3). K satisfies the requirement (G.3):

Lastly, we show that the kernel K satisfies the requirement (G.3). If ∆hK (t) = K (t +

h) := F (t) is completely monotone on (0,∞) and not identically zero, then (G.3) is fulfilled

by Lemma G.1 [20]. Recall that a function F is completely monotone on (0,∞) if it is

infinitely differentiable with (−1)nF (n)(t) ≥ 0 for all t > 0 and n = 0, 1, ....

F (0)(t) = f(t) = K (t+ h) =
1

Γ(α)
(t+ h)α−1 > 0
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We show that for n ≥ 1.

F (n)(t) =
1

Γ(α)

n∏
i=1

(α− i)tα−(n+1)

When n = 1, F ′(t) =
(α− 1)

Γ(α)
(t+ h)α−2. Suppose F (n)(t) holds, then

f (n+1)(t) =
1

Γ(α)
(α− (n+ 1))

n∏
i=1

(α− i)tα−(n+2) =
1

Γ(α)

n+1∏
i=1

(α− i)tα−((n+1)+1)

By the Principle of Mathematical Induction, for all n ≥ 1,

F (n)(t) =
1

Γ(α)

n∏
i=1

(α− i)tα−(n+1)

Therefore, for all n ≥ 1, (−1)nf (n)(t) ≥ 0. The second condition is fulfilled.

Therefore, by Lemma G.2, there is a unique in law R+-valued continuous weak solution Y of the

equation (5.2).

5.2.2 Existence of a mild solution at stopping time

In this section, we prove the existence of a solution u(t, x) to the following SPDE:

 du(t, x) = [Au(t, x) + F (t, x, ux(t, x)u(t, ·))]dt+ Cσ(x)u(t, x)
√
Y (t)dW (t)

u(0, x) = u0(x)
(5.3)
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We write out the proof for the case where x > 0. The case where x < 0 can be proved using the

same method.

Since A generates a C0 semigroup of bounded linear operators S(t), we have

u(t, x) = S(t)u0(x)+

∫ t

0

S(t−s)F (s, x, ux(t, x), u(s, ·))ds+Ca
σ

∫ t

0

S(t−s)u(s, x)
√
Y (s)dW (s)

We first show that the L2 norm of S(t) decays exponentially. Let ϕ ∈ Dom(A), and

 −Aϕ(x) = νϕ(x), x ∈ (−L,L)

ϕ(x) = 0, x = −L or x = L

We find the eigenvalue νn and eigenfunction ϕ of the operator −A as

 νn =
n2π2η2a
L2

+ ζa

ϕn(x) = sin(nπ
L
x)

Then for any ψ ∈ Dom(A),

⟨Aψ,ψ⟩ ≤ −ν1∥ψ∥2

and so
d

dt
∥S(t)ψ∥2 = ⟨ d

dt
S(t)ψ, S(t)ψ⟩+ ⟨S(t)ψ, dt

d
S(t)ψ⟩

= ⟨AS(t)ψ, S(t)ψ⟩+ ⟨S(t)ψ,AS(t)ψ⟩

≤ −2ν1∥S(t)ψ∥2

Hence, we have

∥S(t)ψ∥2 ≤ e−2ν1t∥S(0)ψ∥2,
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which means

∥S(t)ψ∥ ≤ e−ν1t∥ψ∥

Since ν1 =
π2η2a
L2

+ ζa > 0, we have shown that ∥S(t)∥ decays exponentially.

Let τk = inf{t ∈ [0, T ] : Y (t) > k}∧T , we use the Picard’s Iteration to prove the existence of the

mild solution:

u(n+1)(τk ∧ t, x) = S(τk ∧ t)u0(x) +
∫ τk∧t

0

S(τk ∧ t− s)F (s, x, u(n)(s, ·))ds

+Ca
σ

∫ τk∧t

0

S(τk ∧ t− s)u(n)(s, x)
√
Y (s)dW (s)

We write out the proof for the case where x > 0. The case where x < 0 can be proved using the

same method.

E
[∣∣∣u(n+1)(τk ∧ t, x)− u(n)(τk ∧ t, x)

∣∣∣2]
= E

[∣∣∣ ∫ τk∧t

0

−βaS(τk ∧ t− s)
(
[u(n)x (s, x)]− − [u(n−1)

x (s, x)]−
)
ds

+

∫ τk∧t

0

−j(x)S(τk ∧ t− s)
(
[u(n)(s, x)− u0]

+ − [u(n−1)(s, x)− u0]
+
)
ds

+

∫ τk∧t

0

−j(−x)S(τk ∧ t− s)
(
[u(n)(s,−x) + u0]

− − [u(n−1)(s,−x) + u0]
−
)
ds

+

∫ τk∧t

0

S(τk ∧ t− s)
(
G(x,

∫ ι

−ι

u(n)(s, y)dy)−G(x,

∫ ι

−ι

u(n−1)(s, y)dy)
)
ds

+ Ca
σ

∫ τk∧t

0

√
Y (s)S(τk ∧ t− s)(u(n)(s, x)− u(n−1)(s, x))dW (s)

∣∣∣2]
≤ 5E

[∣∣∣ ∫ τk∧t

0

βaS(τk ∧ t− s)
(
[u(n)x (s, x)]− − [u(n−1)

x (s, x)]−
)
ds
∣∣∣2]

+ 5E
[∣∣∣ ∫ τk∧t

0

j(x)S(τk ∧ t− s)
(
[u(n)(s, x)− u0]

+ − [u(n−1)(s, x)− u0]
+
)
ds
∣∣∣2]

+ 5E
[∣∣∣ ∫ τk∧t

0

j(−x)S(τk ∧ t− s)
(
[u(n)(s,−x) + u0]

− − [u(n−1)(s,−x) + u0]
−
)
ds
∣∣∣2]
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+ 5E
[∣∣∣ ∫ τk∧t

0

S(τk ∧ t− s)
(
G(x,

∫ ι

−ι

u(n)(s, y)dy)−G(x,

∫ ι

−ι

u(n−1)(s, y)dy)
)
ds
∣∣∣2]

+ 5E
[∣∣∣Ca

σ

∫ τk∧t

0

√
Y (s)S(τk ∧ t− s)[(u(n)(s, x)− u(n−1)(s, x))]dW (s)

∣∣∣2]
:= I + II + III + IV + V

Since S(·) is analytical, and [ux]
− is roughly [A

1
2u]−. Therefore, there exists a positive constant

C1 such that

I ≤ 5C1β
2
a(τk ∧ t− s)−

1
2

∫ τk∧t

0

E
∣∣∣u(n)(s, x)− u(n−1)(s, x)

∣∣∣2ds
≤ 5C1β

2
a

∫ τk∧t

0

E
∣∣∣u(n)(s, x)− u(n−1)(s, x)

∣∣∣2ds
As for II , since

∣∣∣[u(n)(t, x)− u0]
+ − [u(n−1)(t, x)− u0]

+
∣∣∣

=
∣∣∣ [u(n)(t, x)− u0] + |u(n)(t, x)− u0|

2
− [u(n−1)(t, x)− u0] + |u(n−1)(t, x)− u0|

2

∣∣∣
=

1

2

∣∣∣[u(n)(t, x)− u0]− [u(n−1)(t, x)− u0] + |u(n)(t, x)− u0| − |u(n−1)(t, x)− u0|
∣∣∣

≤ 1

2

[∣∣∣[u(n)(t, x)− u0]− [u(n−1)(t, x)− u0]
∣∣∣+ ∣∣∣|u(n)(t, x)− u0| − |u(n−1)(t, x)− u0|

∣∣∣]
≤ 1

2

[∣∣∣[u(n)(t, x)− u0]− [u(n−1)(t, x)− u0]
∣∣∣+ ∣∣∣[u(n)(t, x)− u0]− [u(n−1)(t, x)− u0]

∣∣∣]
≤

∣∣∣u(n)(t, x)− u(n−1)(t, x)
∣∣∣,

we have

II ≤ 5

∫ τk∧t

0

E
∣∣∣u(n)(s, x)− u(n−1)(s, x)

∣∣∣2ds
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Similarly, we have

III ≤ 5

∫ τk∧t

0

E
∣∣∣u(n)(s,−x)− u(n−1)(s,−x)

∣∣∣2ds
≤ 5C2

∫ τk∧t

0

E
∣∣∣u(n)(s, x)− u(n−1)(s, x)

∣∣∣2ds
for some C2 > 0, assuming that the volume density on the opposite side with the same distance

away from the mid-price are not too different from each other.

Using the first condition of G in Theorem 5.1, we have

IV ≤ 5ιCT

∫ τk∧t

0

E
∣∣∣u(n)(s, x)− u(n−1)(s, x)

∣∣∣2
As for the last term, we have

V ≤ 5(Ca
σ)

2Cp

∫ τk∧t

0

E
∣∣∣Y (s)

∣∣∣∣∣∣S(τk ∧ t− s)(u(n)(s, x)− u(n−1)(s, x))
∣∣∣2ds

≤ 5(Ca
σ)

2Cpke
−2ν1(τk∧t)

∫ τk∧t

0

E
∣∣∣u(n)(s, x)− u(n−1)(s, x)

∣∣∣2ds.
Gathering I, II, III, IV , and V , there exits some constantC that depends on T, ι, Ca

σ , CT , C1, C2, ν1, k

such that

E
[∣∣∣u(n+1)(τk ∧ t, x)− u(n)(τk ∧ t, x)

∣∣∣2] ≤ C

∫ τk∧t

0

E
[
|u(n)(s, x)− u(n−1)(s, x)|2

]
ds,

Since u(0)(τk ∧ t, x) = u0(x), we also have

E
[∣∣∣u(1)(τk ∧ t, x)− u(0)(τk ∧ t, x)

∣∣∣2] = E
[∣∣∣S(τk ∧ t)u0(x)− u0(x)

+

∫ τk∧t

0

−βaS(τk ∧ t− s)[u0(x)]
−ds
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+

∫ τk∧t

0

−j(x)S(τk ∧ t− s)[u0(x)− u0]
+ds

+

∫ τk∧t

0

−j(−x)S(τk ∧ t− s)[u0(−x) + u0]
−ds

+

∫ τk∧t

0

S(τk ∧ t− s)G(x,

∫ ι

−ι

u0(y)dy)ds

+ Ca
σ

∫ τk∧t

0

√
Y (s)S(τk ∧ t− s)u0(x)dW (s)

∣∣∣2]
≤ E

[
6
∣∣∣S(τk ∧ t)u0(x)− u0(x)

∣∣∣2
+ 6

∣∣∣ ∫ τk∧t

0

−βaS(τk ∧ t− s)[u0(x)]
−ds

∣∣∣2
+ 6

∣∣∣ ∫ τk∧t

0

−j(x)S(τk ∧ t− s)[u0(x)− u0]
+ds

∣∣∣2
+ 6

∣∣∣ ∫ τk∧t

0

−j(−x)S(τk ∧ t− s)[u0(−x) + u0]
−ds

∣∣∣2
+ 6

∣∣∣ ∫ τk∧t

0

S(τk ∧ t− s)G(x,

∫ ι

−ι

u0(y)dy)ds
∣∣∣2

+ 6Ca
σ

∣∣∣ ∫ τk∧t

0

√
Y (s)S(τk ∧ t− s)u0(x)dW (s)

∣∣∣2]

Since j(x) ∈ (0, 1] and S(t) is a bounded linear operator for all t ≥ 0, we have

E
[∣∣∣u(1)(τk ∧ t, x)− u(0)(τk ∧ t, x)

∣∣∣2] ≤ 6C|u0(x)|2 + 6βaT |u0(x)|2

+ 6CT |u0(x)|2 + 6CT |u0(x)|2

+ 6ιCT T |u0(x)|2 + 6(Ca
σ)

2Cpke
−2ν1tT |u0(x)|2 := C ′

for some constant C ′ > 0 that depends on |u0(x)|, C, T, ι, Ca
σ , ν1, k, Cp, CT . Therefore, we have

E
[
|u(n+1)(τk ∧ t, x)− u(n)(τk ∧ t, x)|2

]
≤ Cn

∫ τk∧t

0

...

∫ τk∧t

0

C ′ds...ds = CnC
′

n!
τk ∧ tn ≤ C4

n!
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Therefore,

∥u(m)(τk ∧ t, x)− u(n)(τk ∧ t, x)∥ = ∥
m−1∑
k=n

u(k+1)(τk ∧ t, x)− u(k)(τk ∧ t, x)∥

≤
m−1∑
k=n

∥u(k+1)(τk ∧ t, x)− u(k)(τk ∧ t, x)∥

=
m−1∑
k=n

(
E
[ ∫ 1

0

|u(k+1)(τk ∧ t, x)− u(k)(τk ∧ t, x)|2dt
])1/2

≤
m−1∑
k=n

(∫ t

0

C4

n!

)1/2

=
m−1∑
k=n

(C4

n!

)1/2

→ 0

as m,n → ∞. Therefore, {u(n)(τk ∧ t, x)}∞n=0 is a Cauchy sequence in (H, ⟨·, ·⟩H). Hence

{u(n)(τk ∧ t, x)}∞n=0 converges in (H, ⟨·, ·⟩H). Define

u(τk ∧ t, x) := lim
n→∞

un(τk ∧ t, x)

Now we prove that u(τk ∧ t, x) satisfies (5.3): For all n and all t ∈ [0, T ], we have

u(n+1)(τk∧t, x) = A

∫ τk∧t

0

u(n)(s, x)ds+

∫ τk∧t

0

F (s, x, u(n)(t, ·))ds+Ca
σ

∫ τk∧t

0

u(n)(s, x)
√
Y (s)dW (s)

Now let n→ ∞. Then by the Hölder inequality we get that

∫ τk∧t

0

u(n)(s, x)ds→
∫ t

0

u(s, x)ds

∫ τk∧t

0

F (s, x, u(n)(s, ·))ds→
∫ τk∧t

0

F (s, x, u(s, ·))ds
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by the Itô isometry, it follows that

∫ τk∧t

0

u(n)(s, x)
√
Y (s)dW (s) →

∫ τk∧t

0

u(s, x)
√
Y (s)dW (s)

We conclude that for all t > 0, u(τk ∧ t, x) is a solution to

u(τk ∧ t, x) =
∫ τk∧t

0

Au(s, x)ds+

∫ τk∧t

0

F (s, x, u(s, ·))ds+ Cσ(x)

∫ τk∧t

0

u(s, x)
√
Y (s)dW (s)

5.2.3 Uniqueness of u(τk ∧ t, x)

In this section, we check uniqueness the solution u(t, x). Suppose u and ũ are both solutions to the

equation above. We let sk = τk ∧ τ̃k Then we have

E
∣∣∣u(sk ∧ t, x)− ũ(sk ∧ t, x)

∣∣∣2
= E

∣∣∣ ∫ τk∧t

0

S(τk ∧ t, x)
(
F (s, x, u(s, ·))− F (s, x, ũ(s, ·))

)
ds

+ Ca
σ

∫ τk∧t

0

S(τk ∧ t, x)
(
u(s, x)− ũ(s, x)

)√
Y (s)dW (s)

∣∣∣2
≤ C

∫ τk∧t

0

E
[
|u(s, x)− ũ(s, x)|2

]
ds

for some constant C that depends on T, ι, Ca
σ , CT , C1, C2, ν1, k. Using Gronwall inequality, we

can conclude that for t ∈ [0, τk], u(sk ∧ t, x) and ũ(sk ∧ t, x) are modifications of each other, and

thus indistinguishable. Therefore, we have shown that for all t ∈ [0, τk], u(τk ∧ t, x) is the unique

mild solution to

u(τk∧t, x) =
∫ τk∧t

0

Au(s, x)ds+

∫ τk∧t

0

F (s, x, ux(s, x), u(s, ·))ds+Ca
σ

∫ τk∧t

0

u(s, x)
√
Y (s)dW (s)
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5.2.4 τk → T Almost Surely

Proposition 5.2. τk → T almost surely. This means that there exists N ∈ F such that P(N) = 0

and τk(ω) → T for all ω ∈ N c.

Proof. Let ϵ > 0, need to show that

lim
m→∞

P
{
|τk − T | < ϵ for every k ≥ m

}
= 1

Considering the complement event, we have

P
{
|τk − T | ≥ ϵ for some k ≥ m

}

= P
{
τk ≤ T − ϵ for some k ≥ m

}
+ P

{
τk ≥ T + ϵ for some k ≥ m

}
= P

{
τk ≤ T − ϵ for some k ≥ m

}
= P

{
sup

t≤T−ϵ
Y (t) > k for some k ≥ m

}
≤ P

{
sup

t≤T−ϵ
Y (t) > m

}
≤ P{Y (0) + sup

0≤s≤t≤T−ϵ
|Y (t)− Y (s)| > m}

≤
( 1

m− y0

)p

E[ sup
0≤s≤t≤T−ϵ

|Y (t)− Y (s)|p] for some p ≥ 4

Now we check if we can apply Lemma G.4. Indeed, we can write Y (t) as Y = K ∗ (bdt+ dM),

where

K (t) =
tα−1

Γ(α)
, b(y) = −θy + 4θ(γ + 1), a(y) =

θ

2µ(γ + 1)
y
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By Lemma G.3, for any p ≥ 2 and T <∞,

sup
t≤T−ϵ

E[|Y (t)|p] ≤ c

for some constant c that only depends on

γ,

∫ T

0

[ tα−1

Γ(α)

]2
dt, CLG, p, ϵ, and T.

Therefore, by Lemma G.4, we have

E
[(

sup
0≤s<t≤T−ϵ

|Y (t)− Y (s)|
)p]

≤ c′ sup
t≤T−ϵ

E[|a(t)|p/2 + |b(t)|p]

≤ c′ sup
t≤T−ϵ

E[C|Y (t)|p/2 + C(1 + |Y (t)|p)] ≤ C ′

for some C ′ depending on γ, θ, µ, p, T, ϵ, CLG. Therefore, we have

P
{
|τk − T | ≥ ϵ for some k ≥ m

}
≤

( 1

m− y0

)p

E[ sup
0≤s≤t≤T−ϵ

|Y (t)− Y (s)|p]

≤
( 1

m− y0

)p

C ′

When m→ ∞, P
{
|τk − T | ≥ ϵ for some k ≥ m

}
→ 0. Therefore, we have proved that

lim
m→∞

P
{
|τk − T | < ϵ for every k ≥ m

}
= 1,

and hence τk → T almost surely. This means that there exists N ∈ F such that P(N) = 0 and

τk(ω) → T for all ω ∈ N c.
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5.2.5 Extension of the unique mild solution from [0, τk] to [0, T ]

In this section, we treat the model by truncating Y (t). Let t ∈ [0, T ], for each k ∈ Z+, we have

uk(t, x) =



uk0(x) +
∫ t

0
[Auk(s, x) + F (s, x, ukx(s, x), u

k(s, ·))]ds

+
∫ t

0
Ca

σu
k(s, x)

√
kdW (s), Y (t) > k

uk0(x) +
∫ t

0
[Auk(s, x) + F (s, x, ukx(s, x), u

k(s, ·))]ds

+
∫ t

0
Ca

σu
k(s, x)

√
Y (s)dW (s), Y (t) ≤ k

Y (t) = 2(γ+1)+
θ

Γ(α)

∫ t

0

(t−s)α−1(4(γ+1)−Y (s))ds+
1

Γ(α)

√
θ

2µ(γ + 1)

∫ t

0

(t−s)α−1
√
Y (s)dB(s)

Meanwhile, for each k ∈ Z+, and for t ∈ [0, τk], we also have

uk(t, x) = uk,0(x) +

∫ t

0

[Auk(s, x) + F (s, x, [uk]x(s, x), uk(s, ·))]ds

+

∫ t

0

Ca
σuk(s, x)

√
Y (s)dW (s), Y (t) ≤ k

Y (t) = 2(γ+1)+
θ

Γ(α)

∫ t

0

(t−s)α−1(4(γ+1)−Y (s))ds+
1

Γ(α)

√
θ

2µ(γ + 1)

∫ t

0

(t−s)α−1
√
Y (s)dB(s)

By Proposition 5.2, there exists N ∈ F such that P(N) = 0 and τk(ω) → T for all ω ∈ N c.

Assuming the functions uk0 = uk,0 for all k ∈ Z+, we want to show that for each ω ∈ N c,

each t ∈ [0, T ], there exists k̃(ω) such that t ≤ τk̃(ω). Following similar steps in the proof of

Proposition 5.2, we have

P
{
τk < T for all k

}
≤ P

{
sup
t≤T

Y (t) > k for all k
}

≤ P
{
2(γ + 1) + sup

0≤s≤t≤T
|Y (t)− Y (s)| > k for all k

}
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≤
( 1

k − 2(γ + 1)

)p

E[ sup
0≤s≤t≤T

|Y (t)− Y (s)|p] for some p ≥ 4 and all k

≤
( 1

k − 2(γ + 1)

)p

C ′

for all k and some p > 4, with C ′ depending on γ, θ, µ, α, p, T, ϵ, CLG. Therefore, for all k ∈ Z+,

we have

P
{
τk < T for all k

}
≤

( 1

k − 2(γ + 1)

)p

C ′ for all k

We want to show that P
{
τk < T for all k

}
= 0. Suppose for contradiction that P

{
τk < T for all k

}
>

0, and let it be ϵ, then by the Archimedean Property, there exists an N ∈ Z+ such that

Nϵ1/p > (C ′)1/p ⇒ Npϵ > C ′,

There also exists a k ∈ Z+ such that N = ⌊k − 2(γ + 1)⌋. Therefore, there exists a k ∈ Z+ such

that

P
{
τk < T for all k

}
= ϵ >

C ′

Np
=

C ′

⌊k − 2(γ + 1)⌋p
≥ C ′

(k − 2(γ + 1))p

We have reached a contradiction. Therefore,

P
{
τk < T for all k

}
= 0,

which means

P
{
τk = T for some k

}
= 1,

or equivalently, τk = T for some k almost surely. Therefore, for each ω ∈ N c and t ∈ [0, T ], there

exists k̃(ω) such that τk̃(ω) = T ≥ t.

When t ≤ τk̃(ω), Y (t) ≤ k̃(ω), and uk̃(t, x) = uk̃(t, x). Therefore, we have shown that for each

ω ∈ N c and t ∈ [0, T ], uk̃(t, x) = uk̃(t, x) for all k ≥ k̃(ω).
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CHAPTER 6: PRICE DYNAMICS

The bid and ask price dynamics are determined by the LOB dynamics. When the ask (bid) queue is

depleted, the price moves up (down) to the next level of the order book. We assume that the order

book contains no gaps so that the price increments are equal to one tick, which is δ as defined in

section 3.1. When the bid queue is depleted, the price decreases by one tick. When the ask queue

is depleted, the price increases by one tick. On the other hand, if the queue sizes increase rapidly

in a short period of time, it means there are excessive amount of limit orders, which will likely be

transferred to market orders and be executed towards the opposite direction. When the ask queue

size increases n times, the price will move down n ticks. When the bid queue size increases n

times, the price will move up n ticks.

We use a simple example to illustrate how the LOB dynamics determine the bid and ask prices.

Suppose in the illustrative LOB (1.1), there is a bid order of 10,000 shares, then the first 2 queues

on the ask side will be depleted, and the ask price will moving up 2 ticks, rising from $100.01 to

to $100.03.

All 3 LOB activities affect the ask and bid queues. Submission of limit orders increase the queues,

while cancellation of limit orders as well as market orders from the opposite side decrease the

queues. Therefore, the price changes are determined by the volume changes, and we model the

volume by the order book depth Da and Db [13].
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6.1 Price Dynamics Model

Let Da(t) (Db(t)) be the volume of limit ask (bid) orders at the top of the LOB at time t. The order

book depth can be expressed as

Da(t) =

∫ ι

0

u(t, x)dx, Db(t) =

∫ 0

−ι

u(t, x)dx

Let the change of the order book depth in the time interval [t, t + dt] be dDa(t) and dDb(t). Note

that since u(t, x) > 0 on the ask side and u(t, x) < 0 on the bid side, Da(t) > 0 and Db(t) < 0.

When dDa(t) < 0, the ask queue decreases and the ask price increases by −dD
a(t)

Da(t)
ticks. When

dDa(t) > 0, the ask price decreases by
dDa(t)

Da(t)
ticks. Therefore, the price impact from the ask

queue is −dD
a(t)

Da(t)
. On the other hand, when dDb(t) > 0, Db(t) increases, but since Db(t) < 0,

this means that the bid queue decreases, and the bid price decreases by −dD
b(t)

Db(t)
ticks. When

dDb(t) > 0, the bid queue increases, and the bid price increases by
dDb(t)

Db(t)
ticks. Therefore, the

price impact from the bid queue is
dDb(t)

Db(t)
. In summary, the ask and bid price changes will be:

dsa(t) = −δdD
a(t)

Da(t)
, dsb(t) = δ

dDb(t)

Db(t)

and the price change will be

dS(t) =
1

2
(dsa(t) + dsb(t)) =

δ

2

(dDb(t)

Db(t)
− dDa(t)

Da(t)

)
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We first find the dynamics of Da(t) and Db(t). Indeed, by the Leibniz integral rule, we have

dDa(t) = d

∫ ι

0

u(t, x)dx

=

∫ ι

0

du(t, x)dx

=

∫ ι

0

{[
ηauxx(t, x)− βa[ux(t, x)]

− − ζau(t, x)

− j(x)
(
u(t, x)− u0

)+ − j(−x)
(
u(t,−x) + u0

)−
+G(x, ℓ(t))

]
dt
}
dx+

∫ ι

0

{
Ca

σu(t, x)
√
Y (t)dW (t)

}
dx

=

∫ ι

0

{[
ηauxx(t, x)− βa[ux(t, x)]

− − ζau(t, x)

− j(x)
(
u(t, x)− u0

)+ − j(−x)
(
u(t,−x) + u0

)−
+G(x, ℓ(t))

]
dt
}
dx+

(∫ ι

0

u(t, x)dx
)
Ca

σ

√
Y (t)dW (t)

=

∫ ι

0

{[
ηauxx(t, x)− βa[ux(t, x)]

− − ζau(t, x)

− j(x)
(
u(t, x)− u0

)+ − j(−x)
(
u(t,−x) + u0

)−
+G(x, ℓ(t))

]
dt
}
dx+Da(t)Ca

σ

√
Y (t)dW (t)

Similarly,

dDb(t) =

∫ ι

0

{[
ηbuxx(t, x) + βb[ux(t, x)]

− − ζbu(t, x) + j(−x)
(
u(t,−x)− u0

)+
+ j(x)

(
u(t, x) + u0

)−
+G(x, ℓ(t))

]
dt
}
dx+Db(t)Cb

σ

√
Y (t)dW (t)
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Therefore, we have the price dynamics model as


dS(t) =

δ

2
[νb(t)− νa(t)]dt+

δ

2
(Cb

σ − Ca
σ)
√
Y (t)dW (t), S(0) = S0 > 0

Y (t) = 2(γ + 1) +
θ

Γ(α)

∫ t

0
(t− s)α−1(4(γ + 1)− Y (s))ds

+
1

Γ(α)

√
θ

2µ(γ + 1)

∫ t

0
(t− s)α−1

√
Y (s)dB(s)

(6.1)

where

νa(t) =
1

Da(t)

∫ ι

0

{[
ηauxx(t, x)− βa[ux(t, x)]

− − ζau(t, x)

− j(x)
(
u(t, x)− u0

)+ − j(−x)
(
u(t,−x) + u0

)−
+G(x, ℓ(t))

]
dt
}
dx

νb(t) =
1

Db(t)

∫ ι

0

{[
ηbuxx(t, x) + βb[ux(t, x)]

− − ζbu(t, x)

+ j(−x)
(
u(t,−x)− u0

)+
+ j(x)

(
u(t, x) + u0

)−
+G(x, ℓ(t))

]
dt
}
dx

with ηa, ηb, βa, βb, ζa, ζb, Ca
σ , C

b
σ all positive constants. δ > 0 is the tick size of the market.

In order to analyze the parameters, we need to explicitly express the parameters in the price dy-

namics. Therefore, we write (6.1) as



dS(t) =
δ

2
[νb(t)− νa(t)]dt+

δ

2
(Cb

σ − Ca
σ)
√
Y (t)dW (t)

S(0) = S0,

Y (t) = 2(γ + 1) +
θ

Γ(α)

∫ t

0
(t− s)α−1(4(γ + 1)− Y (s))ds

+
1

Γ(α)

√
θ

2µ(γ + 1)

∫ t

0
(t− s)α−1

√
Y (s)dB(s)
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6.2 Parameters Analysis

6.2.1 Financial Meaning of the Parameter

We summarize all the parameters in the following table:

Table 6.1: Parameters

Parameter Expression Range

α φ(x) ∼
x→∞

K
x1+α as x→ ∞ , with K > 0 a constant (1

2
, 1)

γ γ = β2(β3+1)
β1+β2β3+2β2−1

(0,∞)

θ lim
T→∞

(1− aT )T
α = θKΓ(1− α) (0,∞)

µ lim
T→∞

T 1−αµT =
µ

KΓ(1− α)
(0,∞)

The settings of θ and µ are mainly to provide the convergence order of the sequences aT and µT ,

so we focus on the financial meaning of α and γ:

(1) α:

φ(x) ∼
x→∞

K
x1+α means that the Hawkes kernel has a power law decay. Financially, this means

that the inducing power of the same type of LOB event decays slower than an exponential

decay, which is mainly caused by the metaorder splitting strategy. The smaller α, the slower

the decay, and the more frequently the metaorder splitting strategy is used. This will induce

a larger volatility.

(2) γ:
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γ = β2(β3+1)
β1+β2β3+2β2−1

, and we can see from our Hawkess process:



λa,+t

λb,+t

λa,−t

λb,−t


=



µa,+

µb,+

µa,−

µb,−


+

∫
t

0

φ(t)

β1 + β2β3 + 2β2



1 0 β2 (β1 + β2 + β2β3 − 1)

0 1 (β1 + β2 + β2β3 − 1) β2

β2 β2β3 (β1 + β2) 0

β2β3 β2 0 (β1 + β2)





dNa,+
s

dN b,+
s

dNa,−
s

dN b,−
s


that γ is the ratio between the inducing power from limit orders to market orders, and the

inducing power from market orders to limit orders. This is essentially the ratio of

Power of taking away liquidity
Power of providing liquidity

6.2.2 Price Simulation

Since we focus on the parameters and the price volatility, we zero out the drift term, and add a

small positive number ϵ to treat the singularity. We also explicitly write out all the parameters:



dS(t) =
δ

2
(Cb

σ − Ca
σ)
√
Y (t)dW (t)

S(0) = S0,

dY (t) =
θϵα−1

Γ(α)
(4(γ + 1)− Y (s))dt+

ϵα−1

Γ(α)

√
θ

2µ(γ + 1)

√
Y (t)dB(t)

Y (0) = 2(γ + 1)
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where

W = B1 +B2 −B3 −B4, B = γB1 + γB2 +B3 +B4

are two 1-dimensional Brownian motions, with B1, B2, B3, B4 four 1-dimensional independent

Brownian motions. Let S0 = 100, δ = 2, Cb
σ − Ca

σ = 0.6, ϵ = 10−15, θ = 0.1, µ = 0.8,

B1, B2, B3, B4 are standard 1-dimensional Brownian motions that are independent from each

other.

(1) α:

We fix all the other parameters and check S and Y with 0.6 ≤ α ≤ 0.95. Let γ = 1.

(a) S(t) (b) Y (t)

Figure 6.1: Simulated Price and Volatility of α ∈ {0.9, 0.75, 0.6075}

86



(a) S(t) (b) Y (t)

Figure 6.2: Simulated Price and Volatility of α ∈ {0.9, 0.83, 0.75}

(a) S(t) (b) Y (t)

Figure 6.3: Simulated Price and Volatility of α ∈ {0.95, 0.9, 0.85}
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(2) γ:

We fix all the other parameters and check S and Y with varying γ. Let α = 0.75.

(a) S(t) (b) Y (t)

Figure 6.4: Simulated Price and Volatility of γ ∈ {0.1, 1, 10}
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(a) S(t) (b) Y (t)

Figure 6.5: Simulated Price and Volatility of γ ∈ {1, 0.01, 0.5}

(a) S(t) (b) Y (t)

Figure 6.6: Simulated Price and Volatility of γ ∈ {1, 5, 10}
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CHAPTER 7: CONCLUSION

In this paper, we made two modifications to the C-M model: We included market orders, and

instead of modeling the HFT dynamics with Brownian Motion, we used the scaling limit of a

series of nearly-unstable multivariate Hawkes process with power-law tails. The second change

enables our model to reflect the dependencises among HFT orders.

Based on the order book dynamics, we also created a middle price dynamics model in the same

market. We analyzed parameters in the price model to determine how they impacted the price

changes. We found out that among all the parameters, α, the parameter that measures how fre-

quently the metaorder splitting strategy is used, has the most significant impact: The more fre-

quently the strategy is used, the larger volatility there will be in the price change.

90



APPENDIX A: EIGENVALUE CALCULATION
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In this appendix, we calculate the eigenvalues of Φ0, where

Φ =



1 0 β2 (β1 + β2 + β2β3 − 1)

0 1 (β1 + β2 + β2β3 − 1) β2

β2 β2β3 (β1 + β2) 0

β2β3 β2 0 (β1 + β2)


Let the eigenvalue be λ and the corresponding eigenvector be v, then we have

Φv − λv = (Φ− λI)v = 0,

where I is the identity matrix. This equation has a nonzero solution if and only if det(Φ−λI) = 0.

Then we have
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det(Φ− λI)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 0 β2 β1 + β2 + β2β3 − 1

0 1− λ β1 + β2 + β2β3 − 1 β2

β2 β2β3 β1 + β2 − λ 0

β2β3 β2 0 β1 + β2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ4 − (2β1 + 2β2 + 2)λ3 + (β2

1 + 4β1 − β2
2 + 2β1β2 + 4β2 − 2β2

2β
2
3

− 2β2
2β3 − 2β1β2β3 + 2β2β3 + 1)λ2 − (2β2

1 + 2β1 − 2β3
2 − 2β1β

2
2

+ 4β1β2 + 2β2 − 2β3
2β

2
3 − 2β1β

2
2β

2
3 − 2β2

2β
2
3 − 2β3

2β3 − 4β1β
2
2β3

− 2β2
1β2β3 + 2β2β3)λ+ (β2

1 − 2β1β
3
2 − β2

1β
2
2 + 2β1β2 + β4

2β
4
3

+ 2β4
2β

3
3 + 2β1β

3
2β

3
3 − 2β3

2β
3
3 − β4

2β
2
3 + 2β1β

3
2β

2
3 − 4β3

2β
2
3

+ β2
1β

2
2β

2
3 − 4β1β

2
2β

2
3 + β2

2β
2
3 − 2β4

2β3 − 2β1β
3
2β3 − 4β1β

2
2β3

+ 2β2
2β3 − 2β2

1β2β3 + 2β1β2β3)

=
(
λ− (β2 − β2β3 + 1)

)(
λ3 − (2β1 + β2 + β2β3 + 1)λ2

+ (β2
1 + 2β1 − 2β2

2 + 2β2 − β2
2β

2
3 − 2β2

2β3 + 2β2β3)λ

− (β2
1 − 2β1β

2
2 − β2

1β2 + 2β1β2 − β3
2β

3
3 − 3β3

2β
2
3 − 2β1β

2
2β

2
3 + β2

2β
2
3

− 2β3
2β3 − 4β1β

2
2β3 + 2β2

2β3 − β2
1β2β3 + 2β1β2β3)

)
=

(
λ− (β2 − β2β3 + 1)

)(
λ+ (β2 + β2β3 − 1)

)
(
λ− (β1 + β2β3)

)(
λ− (β1 + 2β2 + β2β3)

)
= 0

Therefore, we get the eigenvalues

λ1 = β1 + β2β3 + 2β2, λ2 = −β2β3 + β2 + 1,
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λ3 = β1 + β2β3, λ4 = −β2β3 − β2 + 1
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APPENDIX B: THE CLUSTER REPRESENTATION OF HAWKES

PROCESSES
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Another way of understanding the multi-dimensional Hawkes process is through the cluster repre-

sentation [24], also called “Immigration-Birth” Representation. Recall that our microscopic vol-

ume model N(·), a four-dimensional Hawkes process, is defined as following:

N(·) :=



Na,+(·)

N b,+(·)

Na,−(·)

N b,−(·)


with the associated conditional intensity:

λ(·) = µ(·) +
∫ ·

0

Φ(· − s)dN(s),

where

µ(·) =



µa,+

µb,+

µa,−

µb,−


(·), Φ(·) =



φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44


(·).

For the subscripts of each entry of Φ(·), 1 stands for limit ask orders, 2 for limit bid orders, 3 for

market ask orders, and 4 for market bid orders. We will use the following graph to illustrate the

cluster representation of N(t):

In this graph, each circle represents an event that happens at Ti. The arrows show the root →

offspring relationship, and Genk specifies the generation of the event, while k = 0 being an im-

migrant and k > 0 being the k-th generation from an immigrant. Zi,j are random variables such

that Zi,0 = 1 if the event that happens at Ti is an immigrant, and Zi,j = 1 if the event that happens

at Ti is an immediate offspring of event that happens at Tj . For example, the events that hap-

96



Figure B.1: Four-Dimensional Hawkes Process Cluster Representation

pen at T2, T5, T10, and T11 are immediate offspring of the event that happens at T1, and therefore

Z2,1 = Z5,1 = Z1,10 = Z1,11 = 1. On the other hand, an example of immediate offspring of

a descendent will be the events that happen at T9 and T21, which are immediate offspring of the

event that happens at T7, and therefore Z9,7 and Z21,7 = 1.

In this representation, all the Gen0 events occur following an inhomogeneous Poisson process

with rate functions as their correspondent background intensity function. For example, the arrival

of Z1,0, Z3,0, Z19,0, and Z25,0 follow respectively an inhomogeneous Poisson process with the rate

function µa,+(·), µb,+(·), µa,−(·), and µa,−(·).

The immediate offspring events, Zi,j , arrive according to an inhomogeneous Poisson process with

the rate function φlm(t−Ti) for t > Ti, wherem, l ∈ {1, 2, 3, 4} are the integers associated with the

type of events, with 1 corresponding to limit ask orders, 2 to limit bid orders, 3 to market ask orders,

and 4 to market bid orders. In φlm(·), m is correspondent to the type of the event that happened at

97



Tj , and l to the type of the event that happened at Ti. We can also write Zi,j ∼ Poi(νlm), with

νlm :=

∫ ∞

Tj

φlm(t− Tj)dt =

∫ ∞

0

φlm(s)ds.

For example, the events that happen at T7 and T8 are immediate offspring of the event that happens

at T4. Note that the event that happens at T4 is an N b,+ event, the event that happens at T7 is an

Na,− event and the event that happens at T8 is an Na,+ event. Therefore, the arrivals of Z7,4 and

Z8,4 follow respectively an inhomogeneous Poisson process with the rate function φ32(t− T4) and

φ12(t− T4). We can also write Z7,4 ∼ Poi(ν32) and Z8,4 ∼ Poi(ν12), where

ν32 =

∫ ∞

0

φ32(s)ds, ν12 =

∫ ∞

0

φ12(s)ds.

All the events that are directly or indirectly connected to an immigrant form a cluster. For example,

the events that happen at T2, T5, T10, T11, T12, T13, T14, T15, T17, and T18 form a cluster as offspring

of the event that happens at T1. Similarly, the event that happes at T19, T20, T22, T23, and T24 form

another cluster. The event happens at T25 is a cluster by itself.

Focusing only on the event type of the immediate offspring, we can see that the average number of

immediate offspring that are Na,+ events, regardless of their parents’ event types, is

∫ ∞

0

[
φ11(s) + φ12(s) + φ13(s) + φ14(s)

]
ds.

Similarly, the average number of immediate offspring that are other events are:

N b,+ :

∫ ∞

0

[
φ21(s) + φ22(s) + φ23(s) + φ24(s)

]
ds

Na,− :

∫ ∞

0

[
φ31(s) + φ32(s) + φ33(s) + φ34(s)

]
ds

98



N b,− :

∫ ∞

0

[
φ41(s) + φ42(s) + φ43(s) + φ44(s)

]
ds

Recall that in our model,

φ11(·) + φ12(·) + φ13(·) + φ14(·)

= φ21(·) + φ22(·) + φ23(·) + φ24(·)

= φ31(·) + φ32(·) + φ33(·) + φ34(·)

= φ41(·) + φ42(·) + φ43(·) + φ44(·)

= (β1 + β2β3 + 2β2)φ(·) = λ1φ(·),

which is the largest eigenvalue of Φ(·). Therefore, the expected number of events in a cluster of

our microscopic volume model can be computed as

∞∑
k=0

(∫ ∞

0

λ1φ(s)ds
)k

.

If
∫∞
0
λ1φ(s)ds < 1, this infinite sum converges to

1

1−
∫∞
0
λ1φ(s)ds

.

Note that
∫∞
0
λ1φ(s)ds can also be interpreted as the percentage of events in a cluster that are not

immigrants. To see this, we have

∑∞
k=1

( ∫∞
0
λ1φ(s)ds

)k

∑∞
k=0

( ∫∞
0
λ1φ(s)ds

)k
=

∫∞
0 λ1φ(s)ds

1−
∫∞
0 λ1φ(s)ds

1
1−

∫∞
0 λ1φ(s)ds

=

∫ ∞

0

λ1φ(s)ds
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APPENDIX C: WIENER-HOPF EQUATION
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Lemma C.1. (Lemma 2 in [16], P277)

Let g be a measurable locally bounded function from R to Rd and ϕ : R+ → M d(R) be a matrix-

valued function with integrable components such that S (
∫∞
0

Φ(s)ds) < 1. Then there exists a

unique locally bounded function from R+ to Rd solution of

f(t) = g(t) +

∫ t

0

Φ(t− s)f(s)ds, t ≥ 0

given by

f(t) = g(t) +

∫ t

0

Ψ(t− s)g(s)ds, t ≥ 0

where Ψ =
∑∞

k=1(Φ)∗k.
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APPENDIX D: CONVERGENCE OF RANDOM PROCESSES
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Definition D.1. ([28], P347)

Let E be a Polish space and P(E) be the space of all probability measures on (E,P). A subset

A of P(E) is called tight if for every ϵ > 0 there exists a compact subset K in E such that

µ(E\K) ≤ ϵ for all µ ∈ A.

Definition D.2. (Definition VI-3.25 [28], P351)

A sequence (Xn) of processes is called C-tight if it is tight, and if all limit points of the sequence

{L (xn)} are laws of continuous processes (i.e., if a subsequence {L (Xnk)} converges to a limit

point P in P(D(Rd)), then P charges only the set C(Rd)).

Lemma D.1. (Proposition VI-3.26 in [28], P351)

There is equivalence between

(i) The sequence (Xn) is C-tight.

(ii) The sequence (Xn) is tight, and for all N ∈ N∗, ϵ > 0 we have

lim
n
P n

(
sup
t≤N

|∆Xn
t | > ϵ

)
= 0.

Lemma D.2. (Proposition VI-4.13 in [28], P358)

We suppose that Xn −Xn
0 is a locally square-integrable martingale on Bn for each n, and we set

Gn =
∑

j≤d⟨Xn,j, Xn,j⟩. Then for the sequence (Xn) to be tight, it is sufficient that

(i) The sequence (Xn
0 ) is tight in Rd.

(ii) The sequence (Gn) is C-tight (in D(R)).

Lemma D.3. (Theorem VI-6.26 in [28], P384)

Assume that Xn B−→ X∞, and that the sequence (Xn) is predictably uniformly tight. Then

(Xn, [Xn, Xn])
B−→ (X∞, [X∞, X∞]) in D(Rd × (Rd

⊗
Rd)), and in particular, [Xn, Xn]

B−→

[X∞, X∞].
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Lemma D.4. (Corollary IX-1.19 in [28], P527)

Let (Mn) a sequence of local martingales which converges in law to a limit processM , and assume

that |∆Mn| ≤ b identically for some constant b. Then M is a local martingale with respect to the

filtration it generates.

Lemma D.5. (Theorem V-3.9 in [43], P203)

Let M = (M1, ...,Md) be a continuous vector local Martingale such that d⟨M i,M i⟩t ≪ dt

for every i. Then there exists a d-dimensional Brownian Motion B and a d × d matrix-valued

predictable process α in L2
loc(B) such that

Mt =M0 +

∫ t

0

αsdBs
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Definition E.1. (A.3 in [16], P277)

The fractional integral of order r ∈ (0, 1] of a function f is defined by

Irf(t) =
1

Γ(r)

∫ t

0

(t− s)r−1f(s)ds

Definition E.2. (A.3 in [16], P277)

The fractional derivative of order r ∈ (0, 1] of a function f is defined by

Drf(t) =
1

Γ(1− r)

d

dt

∫ t

0

(t− s)−rf(s)ds

Lemma E.1. (Corollary A.2 in [30], P2879 )

Let ϕ be continuous and ψ such that xµψ(x) ∈ Hλ with u, λ > 0. Then for any α < min(1−µ, λ),

Dαψ exists, belongs to Lr for some r > 1 and

∫ t

0

ϕ(t− s)ψ(s)ds =

∫ t

0

Iαϕ(t− s)Dαψ(s)ds

Lemma E.2. (Proposition A.3 in [30], P2879)

Let f be a differentiable function on (0, 1] such that for someK > 0, 0 < β < 1 and any x ∈ (0, 1],

|f(x)| ≤ K

xβ
, and |f ′(x)| ≤ K

xβ+1
,

and g a continuous function on [0, 1]. Then the convolution

f ∗ g(t) =
∫ t

0

f(t− s)g(s)ds

has Hölder regularity (1− β).
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Definition F.1. (A.4 in [16], P277)

Let (α, β) ∈ (R∗
+)

2. The Mittag-Leffler function Eα,β is defined for z ∈ C by

Eα,β(z) =
∑
n≥0

zn

Γ(αn+ β)

Definition F.2. (A.4 in [16], P277)

For (α, λ) ∈ (0, 1)× R+, the Mittag-Leffler density function fα,λ is defined by

fα,λ(t) = λtα−1Eα,α(−λtα), t > 0.

Also, let

Fα,λ(t) =

∫ t

0

fα,λ(s)ds, t ≥ 0

Lemma F.1. (A.4 in [16], P278)

For α ∈ (1
2
, 1), fα,λ is square-integrable and its Laplace transform is given for z ≥ 0 by

f̂α,λ(z) =

∫ ∞

0

fα,λ(s)e−asds =
λ

λ+ zα

Lemma F.2. (A.1 in [17], P37)

Below are some properties of fα,λ:

1. I1−αfα,λ(t) = λ(1− Fα,λ(t))

2. fα,λ(t) ∼
t→0+

λ

Γ(α)
tα−1, fα,λ(t) ∼

t→∞

α

λΓ(1− α)
t−(α+1)

3. Fα,λ(t) = 1−Eα,1(−λtα), Fα,λ(t) ∼
t→0+

λ

Γ(α + 1)
tα, 1−Fα,λ(t) ∼

t→∞

1

λΓ(1− α)
t−α

Lemma F.3. (Proposition 3.1 in [30], P2868)
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fα,λ is C∞ on (0, 1] and

fα,λ(x) ∼
x→0+

λ

Γ(α)
xα−1,

(fα,λ)′(x) ∼
x→0+

λ(α− 1)

Γ(α)
xα−2.

Furthermore, fα,λx1−α has Hölder regularity α on (0, 1].

For ν < α, fα,λ is ν fractionally differentiable and

Dνfα(x) = λxα−1−νEα,α−ν(−λxα)

Therefore,

Dνfα(x) ∼
x→0+

λ

Γ(α− ν)

1

x1−α+ν

and

(Dνfα)′(x) ∼
x→0+

λ(α− 1− ν)

Γ(α− ν)

1

x2−α+ν
.

For ν ′ > 0, fα is ν ′ fractionally integrable and

Iν
′
fα(x) = λ

1

x1−α−ν′
Eα,α+ν′(−λxα).

Therefore,

Iν
′
fα(x) ∼

x→0+

λ

Γ(α + ν ′)

1

x1−α−ν′

and for α + ν ′ ̸= 1,

(Iν
′
fα)′(x) ∼

x→0+

λ(α− 1 + ν ′)

Γ(α + ν ′)

1

x2−α−ν′
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Consider the following d-dimenstional stochastic Volterra equation:

Y (t) = Y0 +

∫ t

0

K (t− s)b(Y (s))ds+

∫ t

0

K (t− s)σ(Y (s))dB(s), (G.1)

where K ∈ L2
loc(R+,Rd×d), initial condition Y0 ∈ Rd, the coefficients b : Rd → Rd, σ : Rd →

Rd×m, and B an m-dimensional Brownian motion. The following results are from [27] and [20]

for the situation when a(y) := σ(y)σ(y)⊤ and b(y) are affine of the form

a(y) = A0 + y1A
1 + · · ·+ ydA

d

b(y) = b0 + y1b
1 + · · ·+ ydb

d

for some d-dimensional symmetric matrix Ai and vectors bi. Let B = (b1 · · · bd) be a d× d matrix

and

A(u) = (uA1u⊤, · · · , uAdu⊤)

a row vector for any row vector u ∈ (Cd)∗.

Most of the following results require the same conditions on K . We list the conditions below to

avoid repetition.

K ∈ L2
loc(R+,R) and there is γ ∈ (0, 2] such that

∫ h

0

K (t)2dt = O(hγ)

and
∫ T

0

(K (t+ h)− K (t))2dt = O(hγ) for every T <∞.

(G.2)
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The shifted kernel ∆hK (t) := K (t+ h) is nonnegative, not identically zero,

non-increasing and continuous on (0,∞), and its resolvent of the

first kind L is nonnegative and non-increasing in that

s 7→ L ([s, s+ t]) is non-increasing in all t ≥ 0.

(G.3)

Lemma G.1. (Theorem 5.5.4 in [20], P159)

Let K ∈ L1
loc(R+,Cd×d) be completely monotone on (0,∞), and suppose that ⟨v,K (t)v⟩ > 0

for some t > 0 and all nonzero vectors v ∈ Cd. Then K has a resolvent of the first kind. This

resolvent is the sum of a point mass at zero and a completely monotone function. The point mass

at zero is invertible iff lim supt↓0 |K |(t) < inf, and it is absent iff lim supt↓0⟨v,K (t)v⟩ = inf for

all nonzero vectors v ∈ Cd.

Lemma G.2. (Theorem 6.1 in [27], P3181)

Consider the d-dimensional stochastic Volterra equation (G.1). If the following conditions hold

(i) σ(y) = Cσ
√
y with Cσ > 0.

(ii) K satisfies (G.2) and (G.3).

(iii) b0 ∈ Rd
+, and Bij ≥ 0 and i ̸= j.

Then the stochastic Volterra equation (G.1) has a unique in law Rd
+-valued continuous weak solu-

tion Y for any initial condition Y0 ∈ Rd. For each i, the paths of Yi are Hölder continuous of any

order less than γi/2, where γi is the constant associated with Ki in (G.2).

Lemma G.3. (Lemma 3.1 in [27], P3165)

Consider the d-dimensional stochastic Volterra equation (G.1). Assume b and σ are continuous and
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satisfy the linear growth condition

|b(y)| ∨ |σ(y)| ≤ CLG(1 + |y|), y ∈ Rd,

for some constant CLG. Let Y be a continuous solution of (1.1) with initial condition Y0 ∈ Rd.

Then for any p ≥ 2 and T <∞, one has

sup
t≤T

E[|Y (t)|p] ≤ c

for some constant c that only depends on |Y (0)|, K |[0,T ], CLG, p and T .

Lemma G.4. (Lemma 2.4 in [27], P3161)

Assume K satisfies (G.2) and consider a process Y = K ∗ (bdt + dM), where b is an adapted

process and M is a continuous local Martingale with ⟨M⟩t =
∫ t

0
a(s)ds for some adapted process

a. Let T ≥ 0, and p > max{2, 2/γ} be such that supt≤T E[|a(t)|p/2 + |b(t)|p] is finite. Then Y

admits a version which is Hölder continuous on [0, T ] of any order α < γ/2− 1/p. Denoting this

version again by Y , one has

E
[(

sup
0≤s<t≤T

|Y (t)− Y (s)|
|t− s|α

)p]
≤ c sup

t≤T
E[|a(t)|p/2 + |b(t)|p]

for all α ∈ [0, γ/2− 1/p), where c is a constant that only depends on p,K , T . As a consequence,

if a and b are locally bounded, then Y admits a version which is Hölder continuous for any order

α < γ/2.
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