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ABSTRACT

Advancements in high-throughput technologies have led to an exponential increase in the genera-

tion of multi-modal data in computational biology. These datasets, comprising diverse biological

measurements such as genomics, transcriptomics, proteomics, metabolomics, and imaging data,

offer a comprehensive view of biological systems at various levels of complexity. However, inte-

grating and analyzing such heterogeneous data present significant challenges due to differences in

data modalities, scales, and noise levels. Another challenge for multi-modal analysis is the com-

plex interaction network that the modalities share. Understanding the intricate interplay between

different biological modalities is essential for unraveling the underlying mechanisms of complex

biological processes, including disease pathogenesis, drug response, and cellular function. Ma-

chine learning algorithms have emerged as indispensable tools for studying multi-modal data in

computational biology, enabling researchers to extract meaningful insights, identify biomarkers,

and predict biological outcomes.

In this dissertation, we first propose a multi-modal integration framework that takes two intercon-

nected data modalities and their interaction network to iteratively update the modalities into new

representations with better disease outcome predictive abilities. The deep learning-based model

underscores the importance and performance gains achieved through the incorporation of network

information into integration process. Additionally, a multi-modal framework is developed to esti-

mate protein expression from mRNA and microRNA (miRNA) expressions, along with the mRNA-

miRNA interaction network. The proposed network propagation model simulates in-vivo miRNA

regulation on mRNA translation, offering a cost-effective alternative to experimental protein quan-

tification. Analysis reveals that predicted protein expression exhibits a stronger correlation with

ground truth protein expression compared to mRNA expression. Moreover, the effectiveness of

integrative models is contingent upon the quality of input data modalities and the completeness
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of interaction networks, with missing values and network noise adversely affecting downstream

tasks. To address these challenges, two multi-modal imputation models are proposed, facilitat-

ing the imputation of missing values in time series data. The first model allows the imputation

of missing values in time series gene expression utilizing single nucleotide polymorphism (SNP)

data for children at high risk of type 1 diabetes. The imputed gene expression allows us to predict

the progression towards type 1 diabetes at birth with six years prediction horizon. Subsequently, a

follow-up study introduces a generalized multi-modal imputation framework capable of imputing

missing values in time series data using either another time series or cross-sectional data collected

from the same set of samples. These models excel at imputation tasks, whether values are miss-

ing randomly or an entire time step in the series is absent. Additionally, leveraging the additional

modality, they are able to estimate a completely missing time series without prior values. Finally,

to mitigate noise in the interaction network, a link prediction framework for drug-target interaction

prediction is developed. This study demonstrates exceptional performance in cold start predictions

and investigates the efficacy of large language models for such predictions.

Through a comprehensive review and evaluation of state-of-the-art algorithms, this dissertation

aims to provide researchers with valuable insights, methodologies, and tools for harnessing the

rich information embedded within multi-modal biological datasets.
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CHAPTER 1: INTRODUCTION

Multi-omics data holds immense importance in contemporary biomedical research due to its ability

to provide a comprehensive understanding of complex biological systems. By integrating infor-

mation from multiple omics layers, such as genomics, transcriptomics, proteomics, metabolomics,

and epigenomics, researchers gain a more holistic view of biological processes and disease mecha-

nisms [2, 3, 4, 5]. This multi-dimensional approach enables the identification of intricate molecular

interactions, biomarkers, and pathways that may be missed when studying individual omics layers

in isolation [6, 7, 8]. Multi-omics data also facilitates the discovery of novel disease biomarkers,

therapeutic targets, and personalized treatment strategies by uncovering hidden patterns and corre-

lations across different molecular levels [9, 10, 11, 12, 13, 14, 15]. Furthermore, the integration of

multi-omics data with clinical and phenotypic information enhances our ability to predict disease

risk, prognosis, and treatment response with greater accuracy, specifically for heterogeneous dis-

eases [16, 17, 18]. Overall, multi-omics data holds the potential to revolutionize precision medicine

and usher in a new era of personalized healthcare by providing deeper insights into the molecular

underpinnings of health and disease.

Several advanced multi-omics data integration frameworks have been developed [19, 20, 21, 22].

However, few approaches link different omics profiles using molecular interaction [23]. Most

of them ignore the relations across different biological layers in their analysis. To address this

issue, we proposed a generative adversarial network-based framework, omicsGAN that can incor-

porate the interaction information in the multi-omics integration. We aimed to answer whether

the inclusion of the interaction network improves the predictive ability of the integrated datasets.

Furthermore, we investigated the effect of network integrity on the quality of the integrated data

and consequently the downstream tasks. The model was evaluated on breast cancer, lung cancer,

and ovarian cancer datasets and showed significant gain in performance over the baselines. We de-
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signed another study to validate the use of network-based multi-omics integration. We estimated

protein abundance in a cell from mRNA and miRNA expression and our estimated protein expres-

sion showed higher correlation with ground truth protein expression. However, these models were

adversely affected by the availability and integrity of network information. Data availability is

defined by the rate of missing values in the input data. Longitudinal studies, specially biological

studies often suffer from high rate of missing values. Our multi-omics type 1 diabetes study had

higher than 98% missing values in the time series gene expression. Noisy interaction network is

also unavoidable in many scenarios as yet to be discovered connections are prevalent in real life.

Therefore, we proposed new studies to address the limitations of data quality and network integrity

to ultimately increase the ceiling of multi-omics integrative models.

In the following section, we provide a comprehensive literature review of our three proposed tasks,

multi-modal integration, missing value imputation, and link prediction. First, we introduce state-

of-the-art multi-modal integration models followed by the existing models for missing value im-

putation and drug-target interaction prediction. The current challenges and limitations of these

tasks are also included in the description. In chapter 3, we present our proposed network-based

multi-omics integration framework that overcomes many of the limitations of existing frameworks.

In chapter 4, we use a multi-omics approach to estimate protein abundance to show the utility of

network-based multi-omics integration. In chapter 5 and 6, we proposed missing value imputation

frameworks and evaluated its performance on participants of a type 1 diabetes study. This missing

value imputation technique can offer crucial advantage for to multi-omics integration frameworks.

Chapter 7 presents a drug-target interaction prediction framework to represent our multi-modal

link prediction. lastly, in chapter 8, we draw our concluding remarks and discuss the potential for

future works on this studies.
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CHAPTER 2: LITERATURE REVIEW

2.1 Multi-Modal Integration Models

In this dissertation, we primarily focus on the omics data modalities. Integration of bulk multi-

omics data through network-driven approaches can be classified according to the nature of the

network employed. We delineate three main network types based on their structural character-

istics: intra-omics, inter-omics, and mixed interaction networks. In intra-omics frameworks, a

single homogeneous network is built from a specific type of omics data. INF [11] and MoGCN

[24] the interaction networks from pairwise similarity of samples within the omics data that are

fused together on early stage of the framework. MOGLAM [9], MOGONET [25], SUPREME

[26] utilize similarity-based interaction networks for each omics data, leveraging graph neural net-

works to process both the omics data and their respective interaction networks separately. These

frameworks then integrate the learned embeddings for each omics using various late-stage inte-

gration schemes. Additionally, some frameworks incorporate known interaction networks, such as

protein-protein networks [10]. Early-stage integration involves the fusion of network information

prior to the generation of embeddings within the framework, often employing similarity network

fusion [8]. Late-stage integration typically utilizes graph convolutional networks and integrates

the data in the embedding space. In inter-omics frameworks, a heterogeneous interaction network

is constructed between the features of multiple omics datasets without intra-omics connections. In

contrast, mixed networks contain both intra- and inter-omics connections within the multi-omics

heterogeneous interaction network.

MOGLAM [9] uses GCN and attention mechanism to integrate multi-omics data for a specific

task. Representations for each omics is obtained using dynamic graph neural network with feature

selection (FSDGCN) that can adjust the graph structure based on the classification performance.
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Weighted cosine similarity is used to build up the graph. An attention mechanism is employed to

obtain the importance of embedding information in different omics and merge information from

all omics into the downstream task. Shafi et al. [10] proposed a statistical framework to inte-

grate multi-omics datasets. They identify differentially expressed genes (DEGs) and differentially

methylated genes (DMGs) from two p-values, one from classical hypethesis testing and another

from effect size estimation. DEGs, DMGs, and known protein-protein interaction (PPI) network

are solved for maximum clique problem to identify functional subnetwork. INF [11] proposed a

ranked similarity network fusion (rSNF) based approach to select features to train a classifier using

multi-omics data. First, a classifier is trained on the juxtaposed multi-omics data, ranking features

by ANOVA F-value (juXT). A classifier is again trained on the juxtaposed dataset, with rSNF to

rank the features. Finally, the classifier is trained on the juxtaposed dataset restricted to the inter-

section of top discriminant features from the juXT and rSNF pipelines. MDICC [12] uses sample

affinity matrices to represent the network in the multi-omics data. An affinity matrix is constructed

for each omics data using euclidean distance and K nearest neighbors algorithm (KNN). The omics

specific networks are fused into a single network to integrate the available information and reduce

the impact of noise on the original networks. The integrated affinity matrix is then clustered us-

ing K-means++ for survival analysis and identification of biomarkers. MoGCN [24] proposes a

GCN based framework where the features are generated by an autoencoder from the multi-omics

data. The multi-omics autoencoder have multiple encoders and decoders that share a common

latent layer. Therefore, the latent representation in the autoencoder contain information from all

omics. Euclidean distance based similarity matrix is constructed for each omics and fused together

using SNF. The fused network acts as the adjacency matrix in the GCN along with the combined

features to classify patients. MOGONET [25] also proposes a GCN based multi-omics integration

framework. They construct a weighted sample similarity network for each type of omics data using

cosine similarity. An individual GCN works on each omics data to predict the labels for omics spe-

cific learning. View Correlation Discovery Network (VCDN) at the label space is then utilized for
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multi-omics integration and predict the final labels. Wang et al. [27] uses a feature -level fusion

and a network-level fusion to integrate multi-omics data. First they construct patient similarity

network (PSN) based on Pearson’s correlation coefficients between patients. Feature vector for

each node in the PSNs is generated using spectral clustering and Stochastic Block Model (SBM)

clustering. Feature-level fusion is achieved by concatenating the feature vectors from individual

datasets. SNF is employed to achieve Network-level fusion followed by generation of feature vec-

tors from the fused PSN. Feature vectors from network-level fusion and feature-level fusion are

used in a deep neural network to predict clinical outcome. SUPREME [26] builds up similarity

matrices based on Pearson’s correlation for each omics data. GCNs are used to generate omics

specific embedding. They choose different combination of omics and concatenate them to be used

in the final prediction of cancer sub types.

2.2 Missing Value Imputation

In this dissertation, we focus on the imputation of missing values in time series data. Handling

techniques of missing values in a time series data can be broadly divided into two classes. The first

class is case deletion where incomplete observations are removed from the analysis [28]. This is

a useful approach if the missing rate is low. As the missing rate increases, case deletion presents

a significant drawback by ignoring important information in deleted data. The second approach

is imputing the missing value with a reasonable estimation. It can be simple imputation methods

such as mean imputation, median imputation, and last observation imputation. However, these

techniques fail to utilize temporal information as well as capture the relation among features of the

same observation in the time series data. There are also more advanced machine learning-based

algorithms for missing value imputation. e.g. KNN based imputation [29], Matrix Factorization-

based imputation [30], and maximum likelihood Expectation-Maximization (EM) based imputa-
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tion [31]. Although they can capture relations among features, they still cannot exploit temporal

information. Recently, deep learning-based imputations, powered by recurrent neural networks,

and generative adversarial networks have shown remarkable success in estimating missing values

due to their ability to interpret temporal dependency in data and map complex relations among

features [32, 33].

Existing studies for time series imputation are uni-modal and self-imputation where the missing

values are imputed only using the available values in the same dataset [34, 35]. However, the

real world is filled with multi-modal time series data that is being increasingly used in studies

[36], thanks to the advancement in data collection and processing technologies. Generally, data

from different modalities contain complementary information [37, 38] and the introduction of this

complimentary information can further improve the missing value estimation over existing self-

imputation models. Multi-modal imputation for cross-sectional data has already shown success

[39] which can also be extended to the time series domain. Nonetheless, multi-modal time series

imputation comes with some unique challenges. The first challenge is, one of the data can be

cross-sectional which means we need a model that can effectively map cross-sectional data to

another time series. The second challenge is that some samples can have no available time series

data. This may happen if the cross-sectional data is collected for a larger population compared to

the time series data due to expensive and logistically difficult data collection [40]. Multi-modal

imputation can help us estimate the data for these completely missing samples which is by default

not possible in uni-modal imputation techniques.

2.3 Drug-Target Interaction Prediction

This dissertation focuses on drug-target interaction (DTI) prediction as a representation of the

link prediction problem. Over the years, various computational approaches, including machine
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learning algorithms, network-based methods, and molecular docking simulations, have been uti-

lized for DTI prediction with demonstrated efficacy. Recent advancements in DTI prediction have

been accelerated significantly, owing to the extensive accumulation and accessibility of biomed-

ical datasets. This surge has been further fueled by the remarkable progress of deep learning

techniques, which have proven successful across diverse scientific research domains and have

become the predominant method for DTI prediction. These frameworks can be broadly catego-

rized into knowledge graph-based methods [1, 41, 42, 43, 44], 3D structure-based approaches

[45, 46, 47, 48, 49], 2D pairwise distance map-based techniques [50, 51], and 1D sequence-based

methods [52, 53, 54, 55, 56]. Knowledge graph-based methods have shown success in various

DTI prediction scenarios, including warm start and cold start predictions for drugs and proteins.

Cold start predictions, particularly involving unknown drugs or proteins, present significant chal-

lenges due to limited information during model training. Despite these challenges, knowledge

graph-based models utilize semantic relationships with other entities and diverse data sources to

achieve competitive performance. Structure and sequence-based methods, on the other hand, tend

to perform less effectively for cold start predictions, especially when the cold start protein or drug

lacks structural or sequential homologs with known interactions in the training data. Obtaining

high-quality structural data for all proteins of interest can be time-consuming and computation-

ally intensive. In contrast, 1D sequences, such as amino acid sequences for proteins and SMILES

for drugs, offer readily available input data that require less computation and simpler quality assur-

ance processes. Addressing the limitations associated with cold start problems using 1D sequences

holds promise for accurately predicting interactions across a broader spectrum of drugs and pro-

teins compared to other methods. This dissertation aims to explore and address these challenges in

DTI prediction, contributing to advancements in drug discovery and personalized medicine.
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CHAPTER 3: NETWORK-BASED MULTI-OMICS INTEGRATION

The work in this chapter has been published in the following paper:

Khandakar Tanvir Ahmed, Jiao Sun, Sze Cheng, Jeongsik Yong, and Wei Zhang (2022). “Multi-

omics data integration by generative adversarial network.” Bioinformatics, 38(1), 179-186. [38]

3.1 Introduction

Complex diseases such as cancer are highly heterogeneous with different subtypes leading to vary-

ing clinical outcomes including prognosis, response to treatment, and chances of recurrence and

metastasis [16, 17, 18]. Disease phenotype prediction has been the subject of interest to clinicians

and patients for many decades. With the advent of sophisticated technologies enabling the simul-

taneous collection of diverse biological information, researchers are now able to acquire data from

various modalities such as genomics, proteomics, metabolomics, and imaging, among others [57].

It has revolutionized medical and biological research by offering a more comprehensive view of

the underlying biological process of disease and identify accurate molecular signatures for char-

acterizing or predicting disease phenotypes [58, 59]. Therefore, studying multi-modal data has

become increasingly essential in the field of computational biology, primarily due to its ability

to provide a comprehensive understanding of complex biological systems [60]. Integrating these

diverse datasets has emerged as a crucial strategy for unraveling the intricate relationships and

interactions within biological systems, offering unprecedented insights into disease mechanisms,

biological processes, and drug responses. Analysis of multi-omics data along with clinical infor-

mation of patients can help bridging the gap between genotype and phenotype by exploring the
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flow of information within different omics layers [6].

For instance, microRNA (miRNA) regulates mRNA expression by complementarily binding to

recognition sequences in the 3’ untranslated region of their target mRNAs leading to mRNA degra-

dation and/or mRNA translation inhibition [61]. The abundance of a particular miRNA does not

illustrate the full picture without knowing which mRNAs get inhibited by that miRNA; because

miRNA does not directly influence the phenotype; rather, regulates the mRNA translation into

protein that subsequently determines the phenotype. Moreover, mRNA can be regulated by other

modulators like RNA binding protein (RBP) [62]. RBPs bind RNA through globular RNA-binding

domains (RBDs) and alter the expression of the bound RNAs [63]. RNA-RBP interaction obtained

from crosslinking and immunoprecipitation-based CLIP-Seq can also be applied to characterize

the relation between omics data. Hence, integrating the interaction network into multi-omics data

analysis will capture the regulatory effect and establish a better correlation with the phenotype.

Several advanced multi-omics data integration frameworks have been proposed in the last five years

[19, 20, 21, 22]. However, few approaches link different omics profiles using molecular interaction

[23]. Most of them ignore the relations across different biological layers in their analysis. The

power of high throughput technologies cannot be fully utilized unless the multi-omics data with its

intermodal relations are considered in studies.

In recent years, generative adversarial networks (GAN) [64] has gained popularity in solving prob-

lems within the scope of computational biology. GANs take random noise or predefined data as

input and generate plausible synthetic data similar to a real dataset by imitating the distribution

of the real data. There are several studies that use GAN based algorithms to generate data from

single or multiple omics datasets. [65] used GAN for better biomarkers identification by gener-

ating a reconstructed functional interaction network from multi-omics datasets. [66] integrated

diverse single-cell RNAseq (scRNA-seq) datasets from different labs and experimental protocols
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to simulate realistic scRNA-seq data that covers the full cell type diversity. [67] on the other hand

used GAN to generate gene expression from bulk RNA-seq datasets. GANs can learn non-linear

relationships between features of omics data during training that can be used later for additional

insight [66]. It can handle missing data and also promising for missing value imputation because

of its capability of learning and imitating any distribution of data [68]. Based on its property of

imitating distribution, we can design a GAN with one omics data from one distribution as input to

the generator and another omics data with different distribution as real dataset in the discriminator

to generate a synthetic data retaining information from both omics datasets.

3.1.1 Contribution

In this chapter, we propose a biologically-motivated deep learning-based model, omicsGAN, to

predict disease phenotype by integrating two omics data and the interaction between them (e.g.,

mRNA expression, miRNA expression, and miRNA-mRNA interaction network). The proposed

model introduces a generative adversarial method to generate a new enriched feature set for each

omics data combining information from the other omics dataset and the interaction network re-

sulting in a better prediction. Experimental results verify that our proposed framework generates

datasets with stronger molecular signatures to better understand the biological mechanism that

leads to the disease state and improve disease outcome prediction compared to the biological fea-

tures derived from single or concatenated omics data.

3.2 Methods

In this section, we first introduce the mathematical notations employed in this study, followed

by the proposed framework, omicsGAN, for generating synthetic omics data for disease outcome
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prediction using multi-omics data. The framework can take any two omics data with biological re-

lations between each other as input. In this section, we used miRNA, mRNA, and miRNA-mRNA

interaction network for illustrative purposes. We then discuss the evaluation metrics and introduce

two evaluation methods; a classification model and a penalized Cox regression model that use the

synthetic data for disease phenotype prediction and patient survival prediction, respectively.

3.2.1 Overview of the Framework

For the multi-omics data analysis, using extra omics data as an independent feature set provides

additional information for downstream analysis. However, different omics profiles are often linked

with each other through a complex biological interaction network. Our proposed framework, omic-

sGAN, can capture the information from this inter-omics network and integrate it with the omics

datasets through a generative adversarial network to update them iteratively. After successful train-

ing of the network, it will generate new feature sets corresponding to each omics data that contain

information from both modality and their interaction network. In this section, the framework is in-

troduced on mRNA and miRNA expression datasets; however, this framework can work with any

two omics data that are related to each other, given that their interactions are biologically mean-

ingful. mRNA and miRNA expression are correlated to disease phenotype, although, the bipartite

interaction network between them can be leveraged to increase the correlation by incorporating

miRNA regulation on mRNA translation. mRNAs directly influence phenotype by translating into

proteins that control all physiological activities in a cell; however, miRNA binds to mRNA and

regulates its translation into protein, thus indirectly controls the phenotype. From a biological

point of view, knowing the expression of a miRNA does not provide enough information without

knowing the mRNAs that it targets. For an accurate and realistic downstream analysis, realizing the

interaction between omics data into calculation is crucial as well as challenging for the researchers.
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Table 3.1: Notations for omicsGAN.

Name Definition

X ∈ Rm×n mRNA expression obtained from RNA-seq

Y ∈ Rp×n miRNA expression obtained from miRNA-seq

h
(k)
x ∈ Rm×n intermediate value of mRNA expression in the kth update

h
(k)
y ∈ Rp×n intermediate value of miRNA expression in the kth update

H
(k)
x ∈ Rm×n mRNA expression (synthetic) in the kth update

H
(k)
y ∈ Rp×n miRNA expression (synthetic) in the kth update

Zx ∈ Rm×n final mRNA expression (synthetic), Zx = H
(k∗)
x

Zy ∈ Rp×n final miRNA expression (synthetic), Zy = H
(k∗)
y

N ∈ {−1, 1}p×m adjacency matrix of miRNA-mRNA interaction network

DX ∈ Rm×m diagonal matrix: DX(i, i) =
∑

j |N (j, i)|
DY ∈ Rp×p diagonal matrix: DY (i, i) =

∑
j |N (i, j)|

S̃ ∈ Rp×m normalized adjacency matrix S̃ = D
− 1

2
Y ND

− 1
2

X

The notations to define the proposed model, omicsGAN, are summarized in Table 3.1. Let N

be the adjacency matrix of miRNA-mRNA interaction network and the dimension of the network

is p × m, where p is the number of miRNAs and m is the number of mRNAs. The dimensions

of the mRNA (X) and miRNA (Y ) expression data are m × n and p × n respectively, with

n being the number of samples. Updated (synthetic) mRNA (H(k)
x ) and miRNA (H(k)

y ) where

k ∈ {1, 2, 3, ...., K}, will correspond to the dimension of the input mRNA and miRNA expression

datasets respectively and K is the total number of updates in omicsGAN.

In this study, we predict disease outcome using two omics data and the interaction network be-

tween them as illustrated in Figure 3.1(a). The framework takes mRNA (X), miRNA (Y ), and

normalized interaction network (S̃) as input and iteratively updates them to find two new feature

sets that incorporates information from both omics data and their biological interactions, where

S̃ = D
− 1

2
Y ND

− 1
2

X . DX and DY are two diagonal matrices with DX(i, i) =
∑

j |N (j, i)| and
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Figure 3.1: (a) An illustration of the proposed generative adversarial framework (omicsGAN). Two
omics datasets are updated once in each box through an adversarial game between the generator
(marked by orange line) and critic (marked by blue line). Generator and critic are trained for each
omics data independently and the updated datasets are applied for disease phenotype prediction. (b)
Update of mRNA feature set. Generator uses miRNA expression data and miRNA-mRNA bipartite
network to synthesize an mRNA expression data. Both synthetic and input mRNA expression data
are passed through a critic that tries to differentiate the real and synthetic data. (c) Update of
miRNA feature set. Generator uses mRNA expression data and miRNA-mRNA bipartite network
to synthesize an miRNA expression data. Both synthetic and input miRNA expression data are
passed through a critic that tries to differentiate the real and synthetic data.

DY (i, i) =
∑

j |N (i, j)|. A classification model is then applied on the new feature sets to predict

the disease phenotype. Figures 3.1(b) and (c) illustrate the frameworks for the first update (k = 1)

of the mRNA and miRNA datasets respectively. Each box in Figure 3.1(a) represents kth update

which contains two Wasserstein GANs (wGANs) [69] for two omics data. After the wGANs are

successfully trained, each generator generates a synthetic data which will be alike the input omics

dataset and considered as the updated omics data from that box. For each update, an intermediate
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value for miRNA expression is first generated from the generator using mRNA expression and

normalized adjacency matrix representing the interaction network. An intermediate value for the

mRNA is also found in a similar procedure:

h(k)
x = G(H(k−1)

y , S̃T ) (3.1)

h(k)
y = G(H(k−1)

x , S̃). (3.2)

This mRNA (or miRNA) intermediate value h
(k)
x contains information from miRNA (mRNA) in

the last update H
(k−1)
y and interaction network S̃ but has no relation with the mRNA (miRNA)

expression value H(k−1)
x in the last update. The intermediate mRNA (or miRNA) expression value

h
(k)
x along with the input mRNA (miRNA) expression value H

(k−1)
x are then passed through a

critic to ensure they are similar to each other:

lossx = Dloss(h
(k)
x ,H(k−1)

x ) (3.3)

lossy = Dloss(h
(k)
y ,H(k−1)

y ) (3.4)

Dloss is the critic loss between the intermediate value and the input value. After training by min-

imizing the critic loss, the updated mRNA and miRNA dataset H(k)
x and H

(k)
y are learned re-

spectively. This step force the distribution of H(k)
x (or H(k)

y ) towards the distribution of H(k−1)
x

(H(k−1)
y ). The boxes (updates) in Figure 3.1(a) are arranged in a cascaded structure where each

box is trained separately. Once we have trained and got updates H(k)
x and H

(k)
y from box k, it is

used as input in the following (k+1)th box. H(0)
x = X and H

(0)
y = Y are the input to the first layer

(box) and after the Kth update, Zx = H
(k∗)
x and Zy = H

(k∗)
y are our final synthetic datasets which

are used for the disease phenotype prediction, where k∗ is the update that gives best prediction

result on a separated validation set of samples.
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3.2.2 Generative adversarial network model

Generative adversarial network (GAN) models are a class of unsupervised learning task that auto-

matically discovers and learns patterns and distribution in input data in a way that the models can

be used to generate new examples that plausibly could have been drawn from the original dataset.

It has been widely used in image generation technologies [70]. With some appropriately placed

conditions, it can also be used in computational biology to synthesize omics data. In general,

GANs use random noise to generate synthetic dataset by requiring the distribution of the random

noise towards the distribution of the original data. It does not have to retain information from the

random noise; rather, try to make the noise as close to the original data as possible in terms of

distribution. In multi-omics study, we can introduce a stream of information from one omics data

in place of random noise and incentivize the GAN to retain information from this stream by using

appropriate hyperparameters as well as forcing the distribution towards a second omics data. This

will ensure the integration of information from both omics data in the generated samples. We can

also fuse the interaction network in the model through the generator following the works of [71].

Our proposed pipeline has two separate wGANs for two omics data to update them into a new

representation. Generators in each wGAN are three layers fully connected neural network that

generates a dataset based on one omics data and the normalized adjacency matrix following the

equations:

h(k)
x = (ReLU(ReLU(S̃TH(k−1)

y W (0)))W (1))W (2) (3.5)

h(k)
y = (ReLU(ReLU(S̃H(k−1)

x W (0)))W (1))W (2) (3.6)

where W l is the weight matrix in lth layer and rectified linear unit (ReLU) is the activation func-

tion. A fully connected neural network is then trained as a critic to assign values to the obtained
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intermediate representation h
(k)
x and input dataset H(k−1)

x . The critic is trained five times for one

training of the generator. Objective function for training the critic is:

LC = C(h(k)
x )− C(H(k−1)

x ) (3.7)

where C stands for the critic. Critic assigns larger values to the real samples (i.e., H(k−1)
x ) and

smaller values to the synthetic ones (i.e., h(k)
x ), thus trained by minimizing equation 3.7. On the

other hand, generator tries to produce synthetic data that will fool the critic into thinking it as real.

Objective function for training the generator is:

LG = −C(h(k)
x ) + α∥h(k)

x −X∥2 (3.8)

where α is a coefficient to control the weight put on the two terms of the equation. For a successful

training, generator has to produce data h
(k)
x realistic enough that will be assigned a larger value by

the critic; therefore, it is trained by minimizing equation (3.8). An L2-norm is added to further steer

the updated dataset towards the original mRNA expression and preserve the feature characteristics.

h
(k)
y and H

(k)
y for miRNA update is derived using analogous equations.

3.2.3 Evaluation methods

3.2.3.1 Classification model

We designed cancer outcome classification tasks with the assumption that better quality of the

synthetic datasets will lead to better signatures for disease phenotype prediction compared to the

original omics data. Support vector machine (SVM) with linear kernel is implemented as a clas-

sifier for all experiments. The datasets are divided into a ratio of 60%, 20%, 20% as numbers

of training, validation, and test samples respectively. This model was implemented via Python
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package sklearn.svm (SVC)

3.2.3.2 Survival prediction model

A Cox proportional hazards model with Elastic Net penalty [72] is applied to study the correlation

between patient’s overall survival and omics profiles. The Elastic Net penalty uses a weighted

combination of the L1-norm and L2-norm penalties by maximizing the following log-likelihood

function,

logL(β)− α(r
m∑
i=1

|βi|+
1− r

2

m∑
i=1

β2
i ) (3.9)

where L(β) is the partial likelihood of the Cox model, α ≥ 0 is a hyper-parameter that controls

the amount of shrinkage, r ∈ [0, 1] is the relative weight of the L1-norm and L2-norm penalties,

and βi(i ∈ [1,m]) represents the coefficient for the ith genomic feature in the omics data. The

omics data is randomly splitted into training (80%) and test (20%) sets. Five-fold cross validation

is performed on training data to tune the hyper-parameter α. The high risk group and low risk

group are determined by the prognostic index (PI) on the independent test set. The PI is the

linear component of the Cox model, PI = βTX test, where Xtest is the omics profile of the test

set, and its risk coefficient was estimated from the Cox model fitted on the training set. The high

risk and low risk groups are generated for Kaplan-Meier survival plot by splitting the ordered PI

with equal number of samples in each group in the test set. Python package scikit survival [73] is

applied to implement Cox proportional hazards model with elastic net, and lifelines [74] is used

for Kaplan-Meier plotting.
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3.3 Experiments

We performed experiments on The Cancer Genome Atlas (TCGA) datasets to evaluate the per-

formance of omicsGAN with two different interaction networks (e.g., miRNA-mRNA interaction

network and transcription factor (TF)-gene interaction network). In this section, we first describe

the datasets and two interaction networks used in experiments. Next we introduce the experimen-

tal setup where we explain how to run our proposed model on TCGA data and generate synthetic

omics datasets. Lastly, we performed three experiments to evaluate the performance of omicsGAN

and the quality of its generated synthetic data: (1) comparing cancer outcome prediction power of

the real and synthetic datasets. The comparison was conducted in two ways: classifying clinical

variables of cancer patients and number of significant features identified in each dataset; (2) ex-

ploring the impact of an accurate interaction network on the prediction power of synthetic datasets;

(3) comparing the cancer patient’s overall survival prediction using real and synthetic datasets.

3.3.1 Dataset and networks

The proposed framework, omicsGAN, was tested on The Cancer Genome Atlas (TCGA) breast

invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and ovarian serous cystadenocarci-

noma (OV) datasets [75, 76, 77]. The RNA-seq mRNA expression and miRNA expression datasets

of each cancer type were downloaded from UCSC Xena Hub [78]. For the mRNA expression, the

log2(x+1) transformed RSEM normalized count with 20,531 genes was used and for the miRNA

expression, the log2(x + 1) transformed RPM value with 2,166 miRNAs was used in this study.

The clinical information of the three cancer studies was downloaded from cBioPortal [79]. In

breast cancer study, we classify the cancer patients based on estrogen receptor (ER+ vs ER-) and

triple negative (TN+ vs TN-) status. Triple negative breast cancer patients test negative for all three

receptors that are commonly found in breast cancer: estrogen receptors, progesterone receptors,
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and excess HER2 protein. For lung cancer and ovarian cancer studies, we classify the patients

based on their survival time.

The miRNA-mRNA interaction network was obtained from TargetScanHuman [80]. TargetScan-

Human reports effective miRNA-mRNA interactions with context++ model, thereby providing

valuable gene-regulatory networks with the miRNA involved. miRNA can bind to mRNA to cause

more rapid degradation of the mRNA molecule, therefore reducing the amount of protein trans-

lated from that mRNA. A modified adjacency matrix represented the interaction network, where

each interaction was valued as -1 to imitate that miRNA negatively regulates the expression of

the targeted mRNA and no interaction was valued as 1. The miRNA-mRNA bipartite network

contained 163,568 interactions in total. The TF-gene interaction network was downloaded from

RegNetwork [81]. The genes present in both lists of TFs and target genes were removed from the

list of target genes. The modified bipartite interaction network contained sets of 1053 and 2859

non overlapping genes representing transcription factors and their target genes respectively with

8170 total interactions between them.

3.3.2 Running omicsGAN on the TCGA datasets

To evaluate the proposed generative model on the TCGA omics datasets, we first updated the

mRNA and miRNA (or TF and their target gene) expression profiles 5 times (K = 5). The

generator and critic are fully connected neural networks with two hidden layers for the generator

and one for the critic. The generator hidden layers have 512 and 768 neurons respectively whereas

the critic hidden layers have 256 neurons. In both generator and critic, the activation function of the

hidden layers is ReLU and the output layer is linear. Moreover, hidden layers in critic have dropout

with a probability of 0.3. RMSprop optimizer was applied to train both the generator and the critic.

Hyperparameters were selected through grid search and details of the hyperparameters used in this
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Figure 3.2: Prediction results of triple negative (TN) status on TCGA breast cancer patients using
validation samples. AUC of the prediction results using validation samples of synthetic mRNA
and miRNA for k = [1, 2, 3, 4, 5]. Update k∗ with the best validation AUC is selected as the final
synthetic data for each omics profile.

study are listed in Table 3.2. In Table 3.2, Omics 1 is the mRNA/gene expression data for both

interaction networks, Omics 2 is miRNA expression in miRNA-mRNA interaction network and

TF in TF-gene interaction network. The learning rate was chosen from {1e-8, 1e-7, 5e-7, 1e-6,

5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2} and the candidates for the coefficient α were {1e-5,

1e-4, 1e-3, 1e-2, 0.1, 1, 10}. For batch size, we selected among the options {16, 32, 64, 128, 256},

and no mini batch. The validation set described in the Method section were employed for tuning

all hyperparameters. All updated mRNA and miRNA (or gene and TF) datasets (k = 1, 2, .., 5)

are sequentially fed into the classifier. The support vector machine based classifier described in

the Method section was used for classification in all experiments. In the classifier, the dataset

was divided into five folds with three folds for training, one fold for validation (parameter tuning

and synthetic data update selection), and one fold for testing. We repeated the five-fold splitting

50 times on each dataset. The updated mRNA/gene expression (k∗) with the highest AUC score
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for validation samples was selected as the final synthetic mRNA/gene expression output from the

model and similarly the updated miRNA/TF expression with the highest AUC score for validation

samples was selected as the final synthetic miRNA/TF expression output. Figure 3.2 illustrates

the process of selecting the final synthetic mRNA and miRNA datasets from all available updates

for TCGA breast cancer patients outcome prediction. k = 1 gives the best validation AUC for

synthetic mRNA expression whereas k = 2 gives the best validation AUC for synthetic miRNA

expression. Therefore, mRNA update 1 and miRNA update 2 are used for predicting the test

samples and the corresponding results are reported in this study. One synthetic data is generated

for breast cancer ER and TN status prediction based on the average validation AUC of the two

clinical variables.

Table 3.2: Hyperparameters in omicsGAN used in the study.

Hyperparameter
miRNA-mRNA TF-gene

BRCA LUAD OV LUAD

Omics 1 generator learning rate 5e-6 5e-6 5e-6 5e-6
Omics 1 critic learning rate 5e-5 5e-5 5e-5 5e-5
Omics 1 L2-norm coefficient (α) 0.01 0.01 0.1 0.0001
Omics 2 generator learning rate 5e-6 5e-6 5e-6 5e-6
Omics 2 critic learning rate 5e-5 5e-5 5e-5 5e-5
Omics 2 L2-norm coefficient (α) 0.001 0.001 0.001 0.001

3.3.3 Integration of mRNA and miRNA expression

We generate the synthetic mRNA and miRNA datasets by integrating the two omcis profiles and

their interaction network and assess the quality of the synthetic data through three experiments.
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3.3.3.1 omicsGAN improved cancer outcome prediction

To evaluate the quality of the synthetic datasets generated by omicsGAN, we designed cancer

outcome prediction and significant predictive signature identification tasks on the TCGA breast

cancer, lung cancer, and ovarian cancer datasets under the assumptions: (1) The synthetic datasets

learned in omicsGAN consider the expressions in both mRNA and miRNA profiles and the bi-

ological interactions between them. So they will provide better predictive signatures compared

to mRNA and miRNA expressions. (2) The better predictive signatures will improve the disease

phenotype prediction.

Table 3.3: The classification performance on TCGA breast cancer, lung cancer, and ovarian
cancer datasets. Average AUC scores of classify cancer patients clinical variables on the synthetic
mRNA, miRNA datasets generated from omicsGAN and the original mRNA, miRNA expression
datasets. ∗The difference between the results on the original expression data and the synthetic data
is statistically significant (p-value < 0.001).

Input data
Breast cancer Lung cancer Ovarian cancer
ER TN Survival time Survival time

mRNA 0.913 0.91 0.675 0.651
synthetic mRNA (omicsGAN) 0.948∗ 0.949∗ 0.733∗ 0.708∗

miRNA 0.878 0.904 0.595 0.627
synthetic miRNA (omicsGAN) 0.945∗ 0.938∗ 0.733∗ 0.721∗

mRNA+miNRA 0.905 0.921 0.67 0.658

We ran the classifier with above mentioned five-fold splitting 50 times to select the best synthetic

data among the 5 updates based on validation samples and classify the test samples using the

selected synthetic data. The average AUC scores of 50 splittings are reported in Table 3.3. There

are 185 Estrogen Receptor positive (ER+) and 54 ER negative (ER-) samples, 46 triple negative

positive (TN+) and 193 TN negative (TN-) samples in the breast cancer dataset, 95 cancer patients
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below the survival time cutoff (< 25 months) and 64 above the cutoff (> 50 months) in the lung

cancer dataset as well as 61 cancer patients below the survival time cutoff (< 25 months) and 77

above the cutoff (> 50 months) in the ovarian cancer dataset. Table 3.3 illustrates that the synthetic

mRNA and miRNA expression generated by omicsGAN achieved better average classification

results than original mRNA and miRNA expression for phenotype predictions across all three

cancer types. We also add the baseline where we perform the classification with concatenated

miRNA and mRNA expression to see whether addition of more omics data is the reason for the

improvement. We can see that concatenated data has similar or better prediction ability compared

to the original mRNA and miRNA expression dataset; however, synthetic dataset from omicsGAN

always outperforms the concatenated data by a significant margin. This signifies that even though

the addition of more omics data improves the outcome prediction performance, omicsGAN relies

on the interaction network to generate synthetic data with better predictive signal.

Table 3.4: Number of significant features. Number of significant features between synthetic
mRNA, miRNA generated by omicsGAN and the original mRNA, miRNA expression on breast
cancer, lung cancer, and ovarian cancer datasets.

Input data
Breast cancer Lung cancer Ovarian cancer
ER TN Survival time Survival time

mRNA 4144 3893 227 133
synthetic mRNA (omicsGAN) 4566 4241 372 142

miRNA 91 91 23 20
synthetic miRNA (omicsGAN) 136 127 58 12

We also evaluated the quality of the original and synthetic datasets by comparing the number of

significant features identified in each of them. We performed Student’s t-test on the expression

datasets with different clinical variables. The number of features with a p-value smaller than 0.001

in each dataset except miRNA expression for lung cancer patients are presented in Table 3.4. p-

value cutoff of 0.05 is set for miRNA expression for lung cancer patients as no feature had a
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p-value smaller than 0.001 in either the real miRNA expression or the synthetic one. We can see

an increased number of significant features in synthetic mRNA compared to the original one for

all three cancer types. Synthetic miRNA on the other hand has more significant features for breast

cancer and lung cancer, but less for ovarian cancer compared to the original miRNA expression

datasets. Therefore, omicsGAN enriches the features of synthetic datasets with better predictive

signatures that results into improved cancer outcome prediction.

3.3.3.2 Impact of interaction network on cancer outcome prediction

miRNA expression provides additional predictive signals for cancer outcome prediction on top of

the mRNA expression; therefore, integrating them into a new feature set will contain more informa-

tion compared to mRNA and miRNA expression individually. Table 3.3 and 3.4 already illustrates

the ability of omicsGAN to improve the cancer outcome prediction performance. However, we hy-

pothesized that omicsGAN harnesses the information of biological interaction between two omics

layers from multi-omics interaction network to generate the synthetic datasets with better predic-

tive signals. Hence, we want to investigate whether the improvement in performance is because of

the additional omics data or the model can exploit the interaction network for data integration. We

design an experiment to explore the effects of the interaction network on synthetic omics data and

their predictive performance where we ran the framework 10 times with same settings and input

X (mRNA expression), Y (miRNA expression) as before but a different interaction network on

TCGA lung cancer datasets. We replaced the true network with 10 different randomized networks

with same density as the true one.

miRNA expression provides additional predictive signals for cancer outcome prediction on top of

the mRNA expression; therefore, integrating them into a new feature set will contain more informa-

tion compared to mRNA and miRNA expression individually. Table 3.3 and 3.4 already illustrates
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Figure 3.3: Prediction results of the survival time on TCGA lung cancer patients using original and
synthetic mRNA expression.Prediction results using original mRNA expression, synthetic mRNA
expression generated using true interaction network, and synthetic mRNA expression generated
using random interaction network are plotted respectively. Each dot represents the AUC score from
one splitting. The statistics (mean, median, and standard deviation) of the prediction performance
of the 50 splittings are shown above each boxplot.

the ability of omicsGAN to improve the cancer outcome prediction performance. However, we hy-

pothesized that omicsGAN harnesses the information of biological interaction between two omics

layers from multi-omics interaction network to generate the synthetic datasets with better predic-

tive signals. Hence, we want to investigate whether the improvement in performance is because of

the additional omics data or the model can exploit the interaction network for data integration. We

design an experiment to explore the effects of the interaction network on synthetic omics data and

their predictive performance where we ran the framework 10 times with same settings and input

X (mRNA expression), Y (miRNA expression) as before but a different interaction network on

TCGA lung cancer datasets. We replaced the true network with 10 different randomized networks
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Figure 3.4: Prediction results of the survival time on TCGA lung cancer patients using original
and synthetic miRNA expression. Prediction results using original miRNA expression, synthetic
miRNA expression generated using true interaction network, and synthetic miRNA expression
generated using random interaction network are plotted respectively. Each dot represents the AUC
score from one splitting. The statistics (mean, median, and standard deviation) of the prediction
performance of the 50 splittings are shown above each boxplot.

with same density as the true one. The prediction results for synthetic mRNA and miRNA expres-

sion using true and random networks are shown as boxplots in Figures 3.3 and 3.4 respectively.

Prediction results using original mRNA/miRNA expression, synthetic mRNA/miRNA expression

generated using the true network, and synthetic mRNA/miRNA expression generated using ran-

dom network are plotted in each figure. The first two boxplots display the same results for lung

cancer outcome prediction as shown in Table 3.3. 50 dots in each of these two boxplots represent

the AUC corresponding to 50 random splittings. The third boxplot illustrates the results using 10

random networks, each with 50 splittings. The statistics (mean, median, and standard deviation)

of the prediction performance of the splittings are shown above each boxplot. In Figures 3.3 and

3.4, we see a reduction in performance of synthetic mRNA/miRNA expression generated using
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a random interaction network compared to the one generated using the true interaction network.

This signifies the importance of the interaction network in phenotype prediction and the capability

of our framework to capture the information within the network.

3.3.3.3 omicsGAN improved survival prediction

(b)(a)

Figure 3.5: Survival prediction on lung cancer patients with mRNA profiles. Kaplan-Meier sur-
vival plots for high (solid line) and low (dashed line) risk groups generated by (a) original mRNA,
(b) synthetic mRNA expression data on lung cancer patients. The number in the parenthesis indi-
cates the number of samples in low or high risk group. The p-value is calculated by the log-rank
test to compare the overall survival of two groups of cancer patients.

To further investigate the quality of the synthetic mRNA and miRNA expression data produced by

omicsGAN, the patient’s overall survival was predicted on breast cancer, lung cancer, and ovarian

cancer datasets. The Cox proportional hazards model with elastic net penalty as described in sec-

tion 3.2.3 evaluates the correlation between patient’s overall survival and genomic features, i.e., the

original mRNA, miRNA expressions and the synthetic mRNA, miRNA expressions in this study.

The relative weight r in equation 3.9 was set to be 0.5 to combine the subset selection property
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(b)(a)

Figure 3.6: Survival prediction on lung cancer patients with miRNA profiles. Kaplan-Meier sur-
vival plots for high (solid line) and low (dashed line) risk groups generated by (a) original miRNA,
(b) synthetic miRNA expression data on lung cancer patients. The number in the parenthesis indi-
cates the number of samples in low or high risk group. The p-value is calculated by the log-rank
test to compare the overall survival of two groups of cancer patients.

of the L1-norm with the regularization strength of the L2-norm. 80% of the patient samples were

applied to train the model and the performance was tested on 20% test samples. The low and

high risk groups on the independent test set were generated based on the prognostic index (PI)

as mentioned in section 3.2.3. The survival predictions were visualized by Kaplan-Meier plots

and compared by the log-rank test p-values. The Kaplan-Meier plots in Figure 3.5 and 3.6 exem-

plify the improved patient survival predictions on lung cancer using the synthetic mRNA, miRNA

expressions generated by omicsGAN compared to the original mRNA, miRNA expressions. The

log-rank test p-values clearly demonstrate a strong additional prognostic power of the synthetic

omics profiles beyond the original signatures. Similar observations are identified on breast and

ovarian cancer patient samples.
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3.3.4 Integration of transcription factor and gene expression

The experiments above shows the ability of omicsGAN to generate synthetic data with better pre-

dictive power by harnessing the information from miRNA-mRNA interaction network. Here, we

design another experiment using transcription factor (TF)-gene interaction network to evaluate

whether omicsGAN can show similar improvement in integrating other omics data and their in-

teraction network. We performed the lung cancer phenotype prediction based on the same clas-

Table 3.5: The classification performance on TCGA lung cancer dataset. Average AUC scores of
classification performance between synthetic gene, TF generated from omicsGAN and the original
gene, TF expression on lung cancer datasets. ∗The difference between the results on the original
expression data and the synthetic data is statistically significant (p-value < 0.001).

Input data Lung cancer

gene 0.645

synthetic gene 0.727∗

TF 0.656

synthetic TF 0.743∗

gene+TF 0.682

sification setup as described in section 3.3.3.1 on TFs and their target gene expression datasets.

The average AUC scores of 50 splittings are reported in Table 3.5. Both the synthetic TF and

target gene expression performed better in classifying the lung cancer patients based on their sur-

vival time than the original TF, gene expression, and concatenated TF and gene expression. These

findings signify that our proposed framework can work with varying set multi-omics data.
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3.4 Discussion

Disease phenotype prediction plays a key role in the fight against heterogeneous diseases like

cancer. Multi-omics data powered by next generation sequencing technologies has transformed

the field of phenotype prediction by providing a broader view of the molecular profiles. Non-

redundant predictive signals from multi-omics data make it crucial to develop an efficient and

effective framework for multi-omics data integration. However, integrating them as an independent

set of features is inadequate as multi-omics data generated for the same set of samples often have

an interactive relation among them. Incorporating the interaction network into the analysis will set

a flow of information from one omics data to another like the flow within different omics layers

in a cell. In most studies, these inter-omics relations are neglected and it is inefficient to predict

phenotype using integrated multi-omics data without considering the interactions. Therefore, the

integrating of the bipartite interaction network with multi-omics data can result in improved disease

phenotype prediction and designing frameworks capable of such integration is gaining importance.

Synthetic data generated from our proposed framework, omicsGAN, shows improvement in pre-

diction performance which illustrates the capability of the model to successfully retain information

from multiple omics data and establish a link between them. All synthetic datasets generated in

this study with two interaction networks (i.e., miRNA-mRNA and TF-gene) perform better in can-

cer outcome prediction compared to the original expression datasets; however, the same model

using a random interaction network with same density does not perform as good as the synthetic

datasets obtained through true network. It signifies that omicsGAN does not fuse information

from the two omics data directly; rather functionally incorporate the interaction network into the

integration. Synthetic miRNA expression using random interaction network works better than the

original miRNA expression (Figure 3.4) but synthetic mRNA using random interaction network

does not perform better than original mRNA expression (Figure 3.3). The reason is, without the
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true interaction network, omicsGAN can still integrate information from the two omics data to

generate synthetic datasets. In that case, the performance of one synthetic data will depend on the

additional information received from the other omics data. Synthetic miRNA receives information

from mRNA expression, which is significantly better in lung cancer outcome prediction compared

to miRNA and thus improves the performance of synthetic miRNA. Synthetic mRNA on the other

hand receives information from miRNA that is worse at prediction compared to mRNA and thus

results in a decreased performance. An L2-norm is added in equation 3.8 to ensure the similarity

between the updated and original omics data expression; thus allowing the synthetic data to retain

feature space properties of the original omics data.

The framework presents an innovative way for multi-omics data integration incorporating their

biological interaction. A larger comprehensive study involving more cancer types can draw a

better picture of the improvements in phenotype prediction. Although our study was focused on

miRNA-mRNA interaction and TF-gene interaction, the same technique can be extrapolated to any

two omics data if their interaction network is biologically meaningful. However, to integrate two

omics data with different range, distribution, and format (e.g., mutation and gene expression), an

extra pre-processing step is necessary to make them compatible. In this study, all missing data

is imputed by zero. The prediction performance can be further improved using advanced data

imputation frameworks [82, 83, 39] and multi-omics pre-processing methods [84].

3.5 Summary

Thanks to the rapid evolution of high-throughput technologies, abundant genotype data is accruing,

which is expected to grow continuously in the era of precision medicine. Because of the complex

interactive nature of omics layers, integration of multi-omics data to extract biologically meaning-

ful information of clinical relevance is a challenging task. The promise of multi-omics analysis will
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remain unfulfilled unless we can functionally incorporate the inter-omics interaction network into

the analysis. In this chapter, we introduced omicsGAN, a generative adversarial network model

to effectively integrate the interaction network and the omics datasets into new synthetic data with

better predictive signals. We observed that the synthetic data generated from omicsGAN has bet-

ter discriminative power on cancer outcome classification and cancer patients survival prediction

compared to the original omics datasets. Synthetic datasets also contain more significant features

that result in better predictive performance. Additionally, we analyzed the effect of interaction

network on the quality of synthetic data. Our results show that omicsGAN does not only gather

information from two omics datasets; rather functionally incorporate their biological interaction

into the integration. Using a random interaction network does not create a flow of information

from one omics data to another as efficiently as the true network.
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CHAPTER 4: MULTI-OMICS INTEGRATION FOR PROTEIN

ABUNDANCE ESTIMATION

The work in this chapter has been published in the following paper:

Khandakar Tanvir Ahmed, Jiao Sun, William Chen, Irene Martinez, Sze Cheng, Wencai Zhang,

Jeongsik Yong, and Wei Zhang (2021). In silico model for miRNA-mediated regulatory network in

cancer. Briefings in Bioinformatics, 22(6), bbab264. [37]

In last chapter, we proposed a general purpose network-based multi-omics integration framework

that can integrate any two interconnected datasets. The integrated data can be used for different

downstream tasks as the integration is not task specific. In this chapter, we study task specific multi-

omics integration and propose a model to estimate protein expression from mRNA and miRNA

expression without the need for wet lab experiments.

4.1 Introduction

Powered by high-throughput transcriptomic technologies, the RNA-seq method can comprehen-

sively profile the transcriptome-wide changes of gene expression in various biological models

including cancer cells [85, 86]. Currently, SRA-NCBI [87], the largest public repository for se-

quencing data, has more than 800,000 human RNA-seq samples and 730,000 mouse RNA-seq

samples. These numbers are expected to grow rapidly due to the reduction in the RNA-seq cost

per sample and the increased demand for RNA-seq experiments in biomedical research.

Currently, changes in gene expression in the transcriptome are mostly documented by differential
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gene/transcript expression analyses. This is based on the assumption that the amount of mRNAs

and their corresponding protein are positively correlated in a given biological model. However,

in reality, it is becoming evident that the correlation between the level of mRNA and the cor-

responding protein is weak; recent studies have shown that the correlation between the cellular

protein levels and the abundance of their corresponding mRNAs is approximately 0.4, implying

that ∼40% of the variations in protein abundance can be explained by measuring the changes of

mRNA amounts [88]. Consistently, this weak correlation was also found in cancer tissues, and

there are findings that question the validity of using the mRNA expression as a way to understand

gene expression [89]. The multiple layers of regulatory mechanisms involved in gene expression

after transcription is one explanation for this weak correlation. Although the mRNA expression

analysis has its own value in understanding gene expression, it does not provide comprehensive

information on the proteome. In an attempt to address this discrepancy, some studies [90, 91] have

proposed the use of gene specific RNA-to-protein (RTP) conversion factors. This method would

allow for the estimation of protein expression from transcriptomic data; however such methods use

the same RTP for all samples and therefore fail to realize the difference between different biolog-

ical contexts leading to false approximations. Consequently, to draw accurate predictions about

the proteome based on transcriptomic data, post-transcriptional regulatory mechanisms must be

considered.

Post-transcriptional gene regulation includes but is not limited to splicing, polyadenylation, nuclear

export, and miRNA-regulated translation. Numerous bioinformatics pipelines are available to pro-

file post-transcriptional events such as alternative splicing and alternative polyadenylation (APA).

Particularly, APA can occur in the 3’-untranslated region (3’-UTR) of mRNAs and can produce

an mRNA isoform with a different 3’-UTR length. Recent studies found that more than 70% of

the human genes have the capacity to produce 3’-UTR APA isoforms, suggesting the prevalence

of APA in the 3’-UTR [92]. Although APA in the 3’-UTR does not affect the coding capacity of a
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gene, this region contains binding sites for post-transcriptional regulatory mechanisms (e.g. miR-

NAs). Therefore, APA in the 3’-UTR potentially affects the mRNA stability or protein production

[93, 61]. Several studies showed that proliferating or transformed cells favor the expression of

mRNAs with shorter 3’-UTRs through APA and lead to the activation of oncogenes [94, 95]. In

addition, highly expressed mRNAs in cancer cells feature a shorter 3’-UTR with fewer miRNA-

binding sites and exhibit the decrease of miRNA-mediated translational repression [96, 97].

miRNA expression profiles differ between normal tissues and tumors in cancer patients [98, 99].

Recent studies have shown that miRNA can serve as a molecular marker for the early detection of

cancer [100, 101, 102]. Therefore, it is important to investigate how miRNAs post-transcriptionally

regulate gene expression in cancer. However, as the cancer transcriptome data and the miRNA ex-

pression data are available through high-throughput sequencing, the gene regulatory mechanism of

miRNA can only be predicted using miRNA-mRNA interaction modeling. Three miRNA-mRNA

interaction databases were built up recently [103, 104, 105] and they provide the positional infor-

mation for each miRNA-mRNA interaction in the 3’-UTR. However, considering the dynamic reg-

ulation of 3’-UTR length by APA in cancer or perturbed cells, a simple one-dimensional mapping

of miRNA-mRNA interaction based on the annotated gene structure may not provide a comprehen-

sive picture of post-transcriptional regulation of mRNAs in cancer studies. In addition, the current

competing endogenous RNA (ceRNA) model largely ignores the dynamics of 3’-UTR landscape

for miRNA-binding sites caused by 3’-UTR APA [106].

4.1.1 Contribution

In this chapter, we present a biologically motivated graph-based learning model, PTNet, to predict

the protein expression by integrating the mRNA expression, the miRNA expression, the miRNA-

mRNA interaction network, and the dynamics of 3’-UTR in the transcriptome. The proposed
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model harnesses the mRNA and miRNA expression in cancer studies and can be applied to exist-

ing big data to predict the protein expression; it eliminates the need for a large-scale proteomics

experiment. The experimental results confirm that our proposed framework provides a higher res-

olution of molecular signatures to better understand biological mechanisms that lead to the disease

state. Our model also improves a cancer outcome prediction compared to the prediction made by

considering the mRNA or miRNA expression only. An advanced deep learning method that inte-

grates the mRNA and miRNA expression data through a controlled fusion layer is also proposed as

a baseline method to compare the cancer outcome prediction performance to the proposed graph-

based learning model.

4.2 Method

In this section, we first introduce a graph-based learning model, PTNet, which is motivated by

miRNA-mediated regulation of gene expression to estimate the level of the corresponding protein.

We also introduce the strategies to evaluate the quality of the estimated protein expression. Next,

a deep learning-based fusion network model is introduced as a baseline method that integrates

multi-omics data (i.e., mRNA and miRNA in this study) to predict patient outcome. This model

considers the relation between the biological features within the same omics and across different

omics profiles by the fusion network.

4.2.1 PTNet: Graph-based learning model

4.2.1.1 miRNA-mRNA interaction and miRNA-mediated gene regulation

To estimate the protein expression from mRNA expression data, we first accessed the well-established

miRNA-mRNA interaction database TargetScan [80] and collected the position information for all
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possible miRNA-binding sites in the 3’-UTR of target mRNAs. To establish the miRNA-mRNA

interaction network, a miRNA was connected to the expressed mRNAs that contain the binding site

in their 3’-UTRs. In the miRNA-mRNA interactive bipartite network, an interaction was valued

as -1 to imitate the miRNA induced silencing on target mRNA while no interaction was valued as

1. However, this scoring is neglecting the scenario in which mRNA loses miRNA-binding sites

due to 3’-UTR APA events. If the miRNA-binding site is located within the lost 3’-UTR, the

shorter mRNA will bypass miRNA-mediated inhibitory regulation while the longer isoform will

be suppressed in translation.

4.2.1.2 Graph-based learning algorithm

The notations to define the graph-based learning algorithm are summarized in Table 4.1. Let m be

the number of mRNAs, and n be the number of miRNAs. The dimensions of the miRNA-mRNA

interaction network N , mRNA expression data X , and miRNA expression data Y are n × m,

m× k, and n× k respectively, with k being the number of samples. Predicted protein expression

F corresponds to the dimension of the mRNA expression dataset.

Given the values of mRNA expression X , miRNA expression Y , and interaction network N , we

applied a bipartite graph-based learning model PTNet to predict the abundance of protein expres-

sion F . Let G = (V ,U ,E,N ) denote an undirected bipartite graph, where V and U are two

disjoint vertex sets that represent miRNAs and mRNAs. E is a set of edges that stands for the

miRNA-mRNA interactions, and N ∈ {−1, 1} is the adjacency matrix of the network. Since the

miRNAs negatively regulate the translation of mRNAs, the elements in the interaction network N

are either 1 (no connection) or -1 (connected).

For ith sample, the miRNA vertex set V is initialized by the miRNA expression denoted by yi,

which is learned from miRNA-seq data. Similarly, the mRNA vertex set U is initialized by the
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Table 4.1: Notations for PTNet model

Name Definition

X ∈ Rm×k mRNA expression, X = [x1,x2, ..xi, ..,xk]

Y ∈ Rn×k miRNA expression, Y = [y1,y2, ..yi, ..,yk]

F ∈ Rm×k estimated protein expression, F = [f1,f2, ..fi, ..,fk]

N ∈ {−1, 1}n×m adjacency matrix of miRNA-mRNA interaction network

DX ∈ Rm×m diagonal matrix: DX(i, i) =
∑

j |N (j, i)|
DY ∈ Rn×n diagonal matrix: DY (i, i) =

∑
j |N (i, j)|

S ∈ Rn×m normalized adjacency matrix, S = D
− 1

2
Y ND

− 1
2

X

λ ∈ R+ hyper-parameter

mRNA expression denoted by xi, which is learned from RNA-seq data. Vector fi denotes the

protein expression for sample i which we desire to study and is shown in Figure 4.1. We also

introduce a vector ỹi, which can be considered as the available miRNA expression after mRNA is

translated into its corresponding protein. In this context, the cost function over G = (V ,U ,E,N )

is defined as

Ω(fi, ỹi) = ||fi||2 + ||ỹi||2 − 2fT
i Sỹi

+ λ||fi − xi||2 + λ||ỹi − yi||2, (4.1)

where S is a normalized adjacency matrix based on N as shown in Table 4.1 and λ is a regular-

ization parameter for balancing the cost terms on the right side of the equation. The first three

terms enforce the consistency between the connected vertex pairs in the miRNA-mRNA bipartite

graph. They penalize the miRNA-mRNA interaction with a high estimated protein expression but

has the available miRNA that can bind to the mRNA to further suppress its translation. The last two

terms are fitting terms which keep the estimated protein expression level and the final miRNA ex-
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Figure 4.1: An illustration of the proposed graph-based learning model on miRNA-mRNA bipartite
graph to estimate the protein expression levels. The miRNA-mRNA interaction networks are built
up based on known miRNA binding sites. The miRNA vertex and mRNA vertex are initialized with
miRNA expression and mRNA expression, respectively. A graph-based learning model PTNet is
applied to imitate the miRNA regulation on the network and to estimate the protein expression
levels.

pression level consistent with the initial mRNA expression level and the miRNA expression level,

respectively. Similar to the algorithm proposed by [107, 108, 18, 109], the optimization problem

in equation 4.1 can be solved with an iterative label propagation algorithm as follow,

f t
i = (1− α)xi + αSỹt−1

i (4.2)

ỹt
i = (1− α)yi + αSTf t−1

i (4.3)

where α = 1/(1+λ), t denotes the propagation iteration, ỹ0
i = yi and f 0

i = xi. The label propa-
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gation algorithm iteratively performs propagation between the vertices of mRNA and miRNA in

both directions as shown in Figure 4.1 and will be converged to a closed-form solution to get the

protein expression level. It imitates the post-transcriptional regulation events in cells to capture the

protein expression changes due to miRNA regulation.

4.2.2 Evaluation methods

We used two criteria to evaluate the quality of the estimated protein expression proposed by PTNet

and compare it to the mRNA expression data and the data resulting from the integration of mRNA

and miRNA expression data. First, we measured the consistency between the ground-truth protein

expression (proteomics data) and the estimated protein expression or mRNA expression by corre-

lation coefficients. Second, we designed cancer outcome classification tasks with the assumption

that a better quality of the protein expression estimation will lead to better molecular signatures

for disease phenotype prediction compared to the estimation when only considering mRNA and

miRNA expressions.

4.2.2.1 Pearson correlation coefficient

The protein expression was estimated for individual miRNA neighborhood networks by PTNet

(equation 4.1). The Pearson correlation coefficient was applied to measure the consistency between

the estimated protein expression or mRNA expression and the true protein expression. The formula

of Pearson correlation coefficient is defined as

r =

∑m
i=1(ai − ā)(bi − b̄)√∑m

i=1(ai − ā)2
√∑m

i=1(bi − b̄)2
,
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where a is the estimated protein expression or mRNA expression for one sample and b is the

ground-truth. ā and b̄ denote the average expression levels and m is the number of isoforms.

4.2.2.2 Classification model

A feed forward fully connected deep neural network was applied for binary cancer outcome clas-

sification on estimated protein expression, mRNA expression, or the integration of mRNA and

miRNA expressions. The cost function of the deep learning model is

L = −hlog(p)− (1− h)log(1− p) (4.4)

where h is the truth label of the disease patients and p is the predicted labels. Adam optimizer

was used with a learning rate of 0.01. 500 biological features that most correlated with the labels

of the training samples were selected as the input for the learning model. This is a two-hidden

layer neural network with 250 and 100 neurons in each layer respectively. Both hidden layers use

the rectified linear unit (ReLU) as the activation function and the dropout with a probability of

0.2. The output layer uses Sigmoid as the activation function. The area under receiver operating

characteristic curve (AUC) score was applied to evaluate the performance of the classifiers and the

quality of the input biological features.

4.2.3 Deep learning-based fusion network

The proposed PTNet model considered both mRNA and miRNA expressions in the analysis. To

evaluate PTNet and make a fair comparison, we also propose a deep learning-based multi-omics

feature extraction framework that considers the relations between different multi-omics features

(i.e., mRNA expression and miRNA expression) for a disease outcome prediction as a baseline
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Figure 4.2: Overview of the deep learning-based fusion network model. One autoencoder is con-
structed for each omics profiling data (left panel). Then, a fused network is learned across the
outputs from multi-omics data to identify important multi-omics features (red nodes). Next, the
fused multi-omics features are applied for disease phenotype prediction. The structure of network
parameters W in the fusion network is shown at the top right corner.

method (Figure 4.2). In this framework, one autoencoder for each input omics data is constructed to

project the high dimension low sample size omics profile onto a low-dimensional embedding. The

encoder encodes the data, whereas the decoder reconstructs the original data. The minimization of

weighted reconstruction loss enforces the features learned from the omics profiles to be salient and

robust. The autoencoders are designed with a loss function,

L =

k∑
i=1

(xi − xd
i )

k
, (4.5)
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where xi and xd
i are the original mRNA expression and reconstructed mRNA expression from

the decoder for sample i respectively. k denotes the number of samples. xd
i is enforced to be as

close to the original features as possible so that maximum retention of information in the learned

features is ensured. For miRNA expression (Y ), another autoencoder with the same loss function

is applied.

Then, the learned features, Xe and Y e from each network are transformed into an input layer

of a neural network by considering the relations between the extracted features within the same

omics profile and across different omics profiles with a controlled fusion technique. Specifically,

the network parameter W in the fusion network in Figure 4.2, is learned upon the relation of the

features within the mRNA expression data W11, the relation of the features between mRNA and

miRNA expression data W12 and so on. Different blocks in W are weighted by different regular-

ization coefficients λ and α. We apply ℓ1-regularization on the off-diagonal blocks in W with the

assumption that the connections between the features extracted from different omics profiles are

sparse. Thus, the loss function for this framework is

min
W
L(Xe,Y e,h,W , λ, α) = ||C(Xe,Y e,W )− h||22

+ λ11||W11||2F + λ22||W22||2F + α12||W12||2F + α21||W21||2F

+ λ12||W12||1 + λ21||W21||1, (4.6)

where h is the truth label of patient outcomes. The first term of the loss function is a binary cross-

entropy loss whereas the last two terms enforce the desired sparsity of W described above. W11,

W12, W21, and W22 are submatrices of W that correspond to mRNA-mRNA, mRNA-miRNA,

miRNA-mRNA, and miRNA-miRNA interaction in the fusion network respectively. The multi-

omics features are the output of the fusion network and two more layers are added after the fusion

network for a disease outcome prediction.
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In summary, in this method section, a two-step framework towards the phenotype prediction is

proposed: (1) learn the features (estimate protein expression) through the graph-based learning

model PTNet and (2) predict the disease phenotype using the learned features as input in the

classifier as described in the subsection 4.2.2.2. To predict disease outcomes using the mRNA

expression, the same classifier is applied without the first step of the framework for comparison. A

multi-omics deep learning-based fusion network is proposed to integrate these two steps allowing

the mRNA and miRNA expression datasets as input and directly predicting the disease outcome

as output. This model also learns new multi-omics features from mRNA and miRNA expression

datasets similar to the graph-based learning model using a fusion network without considering

the biological interactions between miRNAs and mRNAs (N ). Therefore, the new multi-omics

features are learned from each modality separately, instead of incorporating the knowledge from

post-transcriptional regulation.

4.3 Results

In the experiments, we first generated artificial datasets for two biological conditions to test if

the PTNet can capture the changes of protein expression by considering the miRNA-mediated

regulatory pathway. Next, we performed three experiments on The Cancer Genome Atlas (TCGA)

datasets to evaluate the performance of PTNet. The first experiment was to compare the protein

expression estimated by PTNet with the proteome data. The second experiment was to evaluate

the prediction power of the estimated protein expression on cancer patient outcomes. The last

experiment was to show the effects of 3’-UTR APA on the miRNA-mRNA interaction network

and the level of protein expression.
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4.3.1 Simulation

In this simulation experiment, we generated two artificial miRNA-mRNA bipartite networks which

have different interactions due to 3’-UTR APA events between two biological conditions as shown

in Figure 4.3(a). Both bipartite networks consist of three miRNAs and four mRNAs. The ex-

pression values of those miRNAs and mRNAs in this simulation were randomized but the two

conditions were set to maintain the expression value of corresponding RNAs the same. Due to

the 3’-UTR APA events between two biological conditions, miRNA3 loses its binding sites on

mRNA2 in Condition 1 and mRNA4 in Condition 2 as illustrated in Figure 4.3(a). Theoretically,

the expression of protein2 would then increase while the expression of protein4 would decrease

due to the reorganization of miRNA3-binding in Condition 1.

Next, we imitate the miRNA regulation based on the neighboring relations of each miRNA and

estimate the protein expression changes depending on the mRNA expression, miRNA expression,

and their role in post-transcriptional regulation as formulated in equation 4.1. We run PTNet twice,

first with the interactions corresponding to the Condition 1 and second with two interactions al-

tered to simulate the Condition 2 in Figure 4.3(a). The expression values of the mRNA2 and the

mRNA4 are plotted in Figure 4.3(b). The initial value (iteration 0) of each plot represents the

original mRNA expression whereas the final value of the plot is its corresponding estimation of

the protein expression. From these experiments, we observed that the final estimated values of the

protein expression are lower than their original mRNA values in Condition 1 since both mRNAs

are bound by miRNAs. Then in Condition 2, the estimated expression of protein2 decreases fur-

ther as a new miRNA (miRNA3) binds to the mRNA2, whereas the protein4 expression increases

as the mRNA4 is free of miRNA-binding. In Figure 4.3(b), the predicted changes of the pro-

tein expression between the two conditions are as we expected. The proposed model can imitate

miRNA-mediated regulation of gene expression and predict the corresponding protein expression.
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(a)

(b)

Figure 4.3: (a) Simulated miRNA-mRNA bipartite networks on two biological conditions. The
altered interactions due to 3’-UTR APA between two conditions are highlighted as yellow and red
lines. The miRNA vertex and mRNA vertex are initialized with miRNA expression and mRNA
expression, respectively. (b) The changes of mRNA expression level. The initial value (iteration
0) of each plot represents the original mRNA expression and the final value of the plot is its
corresponding estimated protein expression. The iteration number represents the iteration in the
label propagation algorithm to solve the optimization algorithm in equation 4.1 as discussed in
subsection 4.2.1.2.
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4.3.2 Experiments on TCGA datasets

4.3.2.1 Dataset

The proposed graph-based learning model PTNet and the baseline method were tested on TCGA

breast cancer (BRCA) and ovarian cancer (OV) datasets [75, 77]. The RNA-seq gene expression

and miRNA expression datasets were downloaded from UCSC Xena Hub [78]. For the gene

expression, the log2(x + 1) transformed RSEM normalized count was used in the analyses and

20,531 genes were included in this study. For the miRNA expression, the log2(x+ 1) transformed

RPM value was used in the analyses and 2,166 miRNAs were included in this study. The clinical

information of the cancer studies was downloaded from cBioPortal [79]. There are 185 Estrogen

Receptor positive (ER+) and 54 ER negative (ER-) samples in the breast cancer dataset and 51

cancer patients in the early stage (≤ IIIA) and 359 cancer patients in the late stage (> IIIA) in the

ovarian cancer dataset. The protein spectral counts in the proteome data downloaded from National

Cancer Institute data portal1 was used as the ground truth for the protein expression. The miRNA-

mRNA interaction network was obtained from TargetScanHuman [80] which predicts effective

miRNA target sites within mRNAs. A modified adjacency matrix with 163,568 interactions was

applied to represent the network, where each interaction was valued as -1 to imitate the miRNA-

mediated negative regulation of targeted mRNAs. No interaction was valued as 1.

4.3.2.2 PTNet improved the estimation of the protein expression

To evaluate the proposed graph-based learning model, we first investigated the effect of an individ-

ual miRNA on its neighborhood network and estimated the protein expression of the corresponding

mRNAs that bind to the miRNA. The neighborhood network is defined by a targeted miRNA, all

1https://cptac-data-portal.georgetown.edu/cptac/s/S015
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mRNAs directly bound to the targeted miRNA (first-order neighbor of targeted miRNA), and all

miRNAs directly connected to the first-order neighbor mRNAs. Interactions between the selected

miRNAs and mRNAs from the original interaction network obtained from TargetScanHuman were

applied as the interactions in the neighborhood network. We performed a comprehensive literature

review of cancer related miRNAs and selected miRNAs that were associated with breast cancer and

ovarian cancer pathogenesis (Tables 4.2 and 4.3). We then ran the proposed graph-based learning

model to estimate the protein expression for the neighborhood networks. The predicted protein

expression was compared to the ground truth spectral count in terms of Pearson correlation co-

efficients. Detailed results for TCGA breast cancer and ovarian cancer datasets are provided in

Table 4.2 and Table 4.3 respectively. The tables contain the name of the targeted miRNA, the

references that describe the relevance of the miRNAs in breast cancer or ovarian cancer, the num-

ber of mRNAs in the neighborhood network, Pearson correlation coefficient (CC) between mRNA

and ground truth spectral count, and lastly, Pearson correlation coefficient between our estimated

protein expression and the ground truth spectral count. From the results, we can see that in most

cases (i.e., 26 out of 29 in breast cancer and 20 out of 24 in ovarian cancer) the estimated protein

expression by considering miRNA regulation achieved a higher correlation with the real protein

expression than when only considering mRNA expression.

4.3.2.3 PTNet improved cancer outcome prediction

To provide an additional evaluation of the quality of the estimated protein expression, we designed

two cancer outcome prediction tasks by the assumptions that (1) protein expression is a more direct

mediator of cellular properties and it will provide more predictive power compared to mRNA ex-

pression; (2) a better estimation of protein expression can provide better molecular signatures for

cancer outcome prediction. In this experiment, the complete miRNA-mRNA interaction network

from TargetScanHuman was applied to estimate the protein expression in the PTNet. The discrim-
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Table 4.2: Protein abundance measured by proteomic data to evaluate the accuracy of estimated
protein expression in breast cancer dataset. The five columns in the table show the name of the
miRNA, the reference of the breast cancer study related to the miRNA, the number of the con-
nected mRNA, correlation coefficients (CC) between the real protein expression and the mRNA
expression, and the CC between the real protein expression and the estimated protein expression.

miRNA name literature
# of connected

mRNA
CC of
mRNA

CC of
protein

hsa-miR-487b [110] 15 0.305 0.612
hsa-miR-423-3p [111] 14 0.675 0.798
hsa-miR-10b [112] 320 0.295 0.403
hsa-miR-506-3p [113] 1262 0.285 0.314
hsa-miR-1249 [114] 13 0.753 0.859
hsa-miR-296-3p [115] 70 0.221 0.311
hsa-miR-431 [116] 152 0.286 0.375
hsa-miR-1224-5p [117] 197 0.348 0.372
hsa-miR-191 [118] 59 0.231 0.309
hsa-miR-376b [119] 243 0.398 0.469
hsa-miR-324-5p [120] 142 0.272 0.341
hsa-miR-145 [121] 849 0.254 0.322
hsa-miR-127-3p [122] 22 0.615 0.675
hsa-miR-154 [123] 162 0.325 0.38
hsa-miR-423-5p [111] 209 0.351 0.403
hsa-miR-451 [124] 28 0.446 0.498
hsa-miR-802 [125] 362 0.299 0.35
hsa-miR-140-5p [126] 419 0.301 0.35
hsa-miR-21 [127] 363 0.315 0.329
hsa-miR-29b [128] 1193 0.289 0.304
hsa-miR-155 [129] 529 0.256 0.271
hsa-miR-125b [130] 879 0.214 0.254
hsa-miR-221 [131] 480 0.348 0.372
hsa-miR-143-3p [132] 460 0.283 0.316
hsa-miR-196b [133] 355 0.457 0.429
hsa-miR-190 [134] 212 0.383 0.364
hsa-miR-146 [135] 270 0.245 0.229

inative power of the estimated protein abundance was compared with mRNA expression and the

integration of mRNA and miRNA expressions in the tasks. In each task, the dataset was divided

into five folds with three folds for training, one fold for validation (parameter tuning), and one fold

for test. A fully connected deep neural network (equation (4.4)) described in the Method Section

was applied as the classifier for the estimated protein expression and mRNA expression datasets.
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Table 4.3: Protein abundance measured by proteomic data to evaluate the accuracy of estimated
protein expression in ovarian cancer dataset. The five columns in the table show the name of
the miRNA, the reference of the ovarian cancer study related to the miRNA, the number of the
connected mRNA, correlation coefficients (CC) between the real protein expression and the mRNA
expression, and the CC between the real protein expression and the estimated protein expression.

miRNA name literature
# of connected

mRNA
CC of
mRNA

CC of
protein

hsa-miR-487b [136] 15 0.172 0.545
hsa-miR-423-3p [137] 14 0.355 0.678
hsa-miR-1249 [114] 13 0.667 0.857
hsa-miR-184 [138] 25 0.352 0.455
hsa-miR-324-5p [139] 142 0.292 0.39
hsa-miR-10b [140] 320 0.354 0.439
hsa-miR-329 [141] 338 0.251 0.333
hsa-miR-362-3p [142] 338 0.251 0.333
hsa-miR-1197 [143] 239 0.29 0.359
hsa-miR-138 [144] 660 0.268 0.334
hsa-miR-502-3p [145] 196 0.283 0.348
hsa-miR-382 [146] 206 0.27 0.33
hsa-miR-107 [147] 783 0.264 0.324
hsa-miR-145 [148] 849 0.318 0.376
hsa-miR-21 [149] 363 0.326 0.341
hsa-miR-221 [150] 480 0.295 0.311
hsa-miR-29b [151] 1193 0.260 0.309
hsa-miR-200c [152] 1144 0.312 0.366
hsa-miR-191 [153] 59 0.484 0.461
hsa-miR-152 [154] 759 0.277 0.265
hsa-miR-1251 [155] 104 0.279 0.270
hsa-miR-328 [156] 193 0.320 0.310

The proposed deep learning-based fusion network (equation (4.6)) was applied to integrate mRNA

and miRNA expressions as another baseline for comparison. We repeated the five-fold splitting

100 times by each method on each dataset.
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Figure 4.4: Prediction results of the ER status on TCGA breast cancer patients. Each dot repre-
sents the AUC score from one splitting. Statistics (mean, median, and standard deviation) of the
prediction performance of the 100 splittings are shown above each boxplot.

4.3.2.3.1 Breast cancer

The average area under the curve (AUC) of receiver operating characteristic of the 100 repeats

for predicting the ER status of the breast cancer patients are reported in Figure 4.4. Each dot

on the boxplot represents the results from one random splitting. Statistics (mean, median, and

standard deviation) of the prediction performance of the splitting are shown above each boxplot.

The protein expression estimated by PTNet achieved better average classification results (0.968)
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Table 4.4: The classification performance on TCGA breast cancer dataset. Average AUC scores
and the number of times of win/tie/loss on classification performance between estimated protein
expression and the baselines (i.e., mRNA expression and integration of mRNA and miRNA ex-
pressions) on breast cancer dataset.

Input data AUC score win/tie/loss
mRNA 0.946 11/5/84
mRNA+miRNA 0.961 30/10/60
estimated protein expression 0.968 -

than the ones using mRNA expression (0.946) and the integration of mRNA and miRNA expres-

sion (0.961). Since the miRNA expression provides additional predictive signals for breast cancer

outcome prediction on top of the mRNA expression, the integration of both with the deep learning-

based fusion network model improved the prediction performance compared to the use of mRNA

expression only. However, the fusion network model does not consider the miRNA regulation

mechanism in its formulation and the classification result is worse than the one using estimated

protein expression. In Table 4.4, we also report the number of wins, ties, and losses. The classifi-

cation results using the mRNA expression and the combination of mRNA and miRNA expression

are compared with the results using estimated protein expression. Out of the 100 splittings, the

mRNA expression-based prediction only has 11 better predictions than the estimated protein ex-

pression whereas the estimated protein expression does a better prediction in 84 splittings. The

combination of miRNA and mRNA expressions yields a better prediction than considering the

mRNA expression only. The model combining miRNA and mRNA expressions wins 30 splittings

against the estimated protein expression but loses in 60 splittings. The overall result shows the

consistent improvement of the prediction in breast cancer clinical variables using the estimated

protein abundance.
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4.3.2.3.2 Ovarian cancer
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Figure 4.5: Prediction result of cancer stage on TCGA ovarian cancer patients. Each dot repre-
sents the AUC score from one splitting. Statistics (mean, median, and standard deviation) of the
prediction performance of the 100 splittings are shown above each boxplot.

The results for cancer stage prediction on ovarian cancer patients are illustrated in Figure 4.5. The

results show the same trend as on the breast cancer dataset (Figure 4.4), though the overall AUC

score is lower than the prediction for the ER status in breast cancer patients. Prediction using the

estimated protein expression gives the best AUC score (0.752) followed by the combination of

mRNA and miRNA expression (0.726) and mRNA expression (0.719) respectively. Numbers of

wins, ties, and losses are also reported in Table 4.5. The superior discriminative power of the esti-

mated protein expression over the mRNA expression and the combination of mRNA and miRNA
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expression for both breast cancer and ovarian cancer is illustrated in this section. Therefore, esti-

mated protein expression from PTNet is a more accurate predictor of both breast cancer and ovarian

cancer phenotypes compared to mRNA expression and concatenated mRNA and miRNA expres-

sion. The improvement in cancer outcome prediction can be attributed to the miRNA-mediated

regulation mechanism which we combined with the mRNA expression.

Table 4.5: The classification performance on TCGA ovarian cancer dataset. Average AUC scores
and the number of times of win/tie/loss on classification performance between estimated protein
expression and the baselines (i.e., mRNA expression and integration of mRNA and miRNA ex-
pressions) on ovarian cancer dataset.

Input data AUC score win/tie/loss
mRNA 0.719 31/1/68
mRNA+miRNA 0.726 40/0/60
estimated protein expression 0.752 -

4.3.2.4 Effects of APA events

In this subsection, we explored the effects of 3’-UTR APA on miRNA-mediated regulation in two

folds: 1) how it changes the miRNA-mRNA interaction; 2) whether a loss of a sponging mRNA

due to APA events reroutes miRNAs to other mRNAs and consequently regulate their expression.

To investigate the effects of 3’-UTR APA on the miRNA-mRNA interaction network, the breast

cancer patients were divided into the two groups, ER positive and ER negative, and then two lists of

mRNAs undergoing APA events corresponding to each group were identified using pipeline APA-

Scan [157] which takes aligned bam file for each sample as input. APA-Scan reports the accurate

3’-UTR cleavage site for each mRNA transcript. If the identified cleavage site is upstream of

the miRNA-binding position, the transcript will avoid miRNA-mediated regulation and there will

be no interactions between the miRNA and the transcript in the network. This process perfectly
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illustrates the functional relation between the miRNA-mediated gene regulation and 3’-UTR APA.
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Figure 4.6: miRNA-mRNA interaction network for breast cancer ER positive samples.

In the experiment, we randomly picked a target mRNA from either list of genes undergoing APA

events in the ER positive samples or ER negative samples. A sub-network of its neighborhood was

built from the complete mRNA-miRNA interaction network. The neighborhood network was de-

fined by a targeted mRNA, all miRNAs directly bind to it (first-order neighbor of targeted mRNA),

and mRNAs directly connected (second-order neighbor of targeted mRNA) to the first-order neigh-

bor miRNAs. For presentation purposes, only 40 mRNAs that contain the highest number of inter-

actions with the first-order neighbor miRNAs were selected as the second-order neighbor mRNAs.
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Figure 4.7: miRNA-mRNA interaction network for breast cancer ER negative samples.

Interaction between the selected miRNAs and mRNAs followed the original interaction network.

One network for each group (the ER positive or negative group) was then constructed from this

sub-network. Figures 4.6 and 4.7 illustrate the two networks for the ER positive and ER negative

samples which were built from the same sub-network based on gene IGF2R by APA events. In this

analysis, we crosschecked the mRNAs present in the sub-network with the list of mRNAs under-

going APA events for the ER positive and ER negative samples respectively. The mRNAs showing

APA events in the ER positive samples were deleted from the network along with their miRNA

interactions in Figure 4.6. On the other hand, the mRNAs showing APA events in the ER negative

samples were marked by red color to indicate that it is only present in the ER positive network
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(Figure 4.6). The network for ER negative samples illustrated in Figure 4.7 was constructed in a

similar procedure.

As mentioned above, the two networks for the ER positive (Figure 4.6) and ER negative (Figure

4.7) samples were generated from the same sub-network; therefore, they represent the same neigh-

borhood with the exception of the connections with the mRNA undergoing 3’-UTR APA events.

The mRNAs showing APA events are marked with red rectangles whereas all other mRNAs are

marked with blue rectangles. Thus, mRNAs marked with red rectangles in Figure 4.6 will not

exist in Figure 4.7 and vice-versa. All miRNA connections are denoted by gray lines except the

mRNAs with APA events, which are marked with red lines. miRNAs are marked by green ovals.

Three miRNAs, miR-506-3p, miR-143-3p, and miR-1224-5p that are marked as yellow were listed

in Table 4.2 and found as molecular signatures in breast cancer studies. All other connections stay

the same between the two networks. These two networks illustrate the dynamic nature of miRNA-

mRNA interaction from sample to sample. For example, IGF2R marked by the red rectangle in

Figure 4.6 is an mRNA undergoing APA in the ER negative samples. Therefore, this mRNA is

present in the network of ER positive samples but absent in the network of ER negative samples.

In the ER negative samples, this absence causes additional miRNAs to be available for binding to

other mRNAs and provides negative regulation of their expression. The prognostic power of APA

events in these genes in cancer are well documented in prior studies [158, 159, 160, 161].

In Figure 4.6, miR-143-3p, which was shown to play a role in the inhibition of tumor cell pro-

liferation and invasion (Table 4.2), is connected to genes IGF2R and IGFBP5. IGF2R undergoes

3’-UTR APA in the ER negative samples and consequently loses its binding to miR-143-3p. As

a result, more miR-143-3p is available for regulatory binding to IGFBP5 mRNA. To investigate

whether this loss of connection negatively regulates the expression of IGFBP5 by allowing more

miR-143-3p to bind to IGFBP5 mRNA, the changes in the rank of the magnitude of IGFBP5 ex-

pression in the ER positive samples were compared to the ER negative samples. All ranks are
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calculated in a descending order of expression. First, in the ER positive samples, changes in the

rank (∆Rp = Rpg −Rpp) between IGFBP5 expression among all genes (Rpg) and the correspond-

ing protein among all proteins (Rpp) is calculated. Then the same approach was taken to calculate

the rank for the ER negative samples (∆Rn = Rng − Rnp) and compared with each other. We

found the change of rank in the ER negative samples to be higher than the change in the ER pos-

itive samples (-1955 vs. -1344) (∆Rn vs. ∆Rp) which signifies the negative regulatory effect of

miRNA on the IGFBP5 expression. The ranking comparison can be interpreted in such a way that

the drop of IGFBP5 expression ranking in the proteome of ER negative samples is higher than that

of ER positive samples. IGF2R mRNA, on the other hand, being free from miRNA inhibition rose

its ranking higher in the proteome of ER negative samples than the ER positive ones (902 vs. 426)

(∆Rn vs. ∆Rp). Therefore, this experiment demonstrates how 3’-UTR APA events change the

miRNA-mRNA interaction(s) and cause negative regulation on the expression of mRNAs.

4.4 Discussion

Although the proteome mostly determines biology and clinical outcomes in human disease patho-

genesis, the application of current proteome profiling technologies is less exhaustive than tran-

scriptome profiling due to technical limitations such as the dynamic range of data acquisition.

Thus, transcriptome profiling using RNA-seq experiments is widely used instead to understand the

gene expression in most big data-driven studies. Despite such popularity, the data analysis has

been one-dimensional in such a way that differential gene expression analysis has been a standard

procedure for most data processing. It limited a comprehensive understanding of the role of the

transcriptome by excluding the post-transcriptional regulations and incurred a pervasive problem

of poor correlation between the transcriptome and the proteome in big data-driven studies. In this

study, we argue that PTNet, a multi-dimensional data analysis model, can overcome the problems
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in current data analyses and provide evidence that it performs better in assessing the proteome

changes and improves the prediction of clinical outcomes compared to current data analysis tools.

Our model highly considers the changes of miRNA-binding sites in the transcriptome. Previously,

it was suggested that ceRNAs can modulate the regulatory mechanism of miRNAs [162, 163].

However, in this model, the expression level of ceRNAs has been the major focus as miRNAs were

known to target multiple mRNAs in cells. As miRNAs are known to bind to 3’-UTR of mRNAs

for the regulation of gene expression, the qualitative and quantitative information on 3’-UTR APA

events is critical to understand the regulatory network of miRNAs. So far, numerous bioinformatics

pipelines for 3’-UTR APA events have been developed using RNA-seq or 3’-end biased RNA-seq

[164, 157, 165, 166]. Although they provide a comprehensive profile of 3’-UTR APA events, we

demonstrated that integrating two sequencing results (RNA-seq and 3’-end biased RNA-seq) could

provide a better resolution of 3’-UTR APA profiling [165]. In this regard, it would be important to

develop pipelines that could provide a higher resolution of 3’-UTR APA profiling by considering

various RNA-seq resources.

4.5 Summary

In this study, we introduce a graph-based learning model to predict protein expression in cells. Our

model focuses on two particular post-transcriptional regulatory mechanisms in gene expression;

miRNA-mediated gene regulation and 3’-UTR APA events. A deep learning-based fusion network

was also proposed to combine the mRNA and miRNA expression profiles without considering the

miRNA-mRNA interactions as a baseline method. We observed the estimated protein expression

is more consistent with the true protein expression and has more discriminative power to classify

clinical variables of cancer patients compared to either the mRNA expression or the combination

of mRNA and miRNA expression. We also analyzed the effect of 3’-UTR APA events on the
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competing endogenous RNA model where multiple targeting capacity of miRNAs can show the

dynamic relationship with their target mRNAs with an intuition that an mRNA losing its miRNA-

binding site will result in the regulation of other mRNAs by the same miRNA. Our results show the

negative regulation caused by miRNA when one of its neighboring mRNAs undergo 3’-UTR APA.

Our findings in this study signify the importance of considering post-transcriptional regulation

in cancer research. The proposed efficient and scalable computational methods enable a better

understanding of the molecular basis of cancer pathogenesis and provide a previously unrecognized

perspective in cancer data mining.
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CHAPTER 5: MULTI-MODAL MISSING VALUE IMPUTATION

The work in this chapter has been published in the following paper:

Khandakar Tanvir Ahmed, Sudipto Baul, Yanjie Fu, and Wei Zhang (2023). Attention-Based Multi-

modal Missing Value Imputation for Time Series Data with High Missing Rate. In Proceedings

of the 2023 SIAM International Conference on Data Mining (SDM) (pp. 469-477). Society for

Industrial and Applied Mathematics. [167]

Previous chapters have shown the effectiveness of multi-modal integration for various downstream

tasks. The performance of these models depend on the quality and availability of input data.

High rate of missing values in the data modalities will adversely affect our ability to meaningfully

integrate the datasets. This chapter focuses on techniques for multi-modal data imputation that can

in turn improve the performance of integrative models.

5.1 Introduction

Multivariate time series data has an important bearing in many domains such as healthcare [168,

169], finance [170], and meteorology [171]. The ability of time series data to capture changes in the

system over time has made it popular in the research community. Many advanced algorithms have

been proposed for information extraction and pattern recognition in time series data to perform

various downstream tasks [172]. However, time series data is prone to incompleteness due to the

prolonged data collection procedures. Data can be missing due to damaged collecting devices,

device malfunction, sabotage, or participant not showing up for data collection [173]. Missing
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data impedes the use of statistical analysis on the dataset to find meaningful patterns. Therefore,

handling missing values in time series data has long been a key challenge for researchers.

Handling techniques of missing values in a time series data can be broadly divided into two classes.

The first class is case deletion where incomplete observations are removed from the analysis [28].

This is a useful approach if the missing rate is low. As the missing rate increases, case deletion

presents a significant drawback by ignoring important information in deleted data. The second

approach is imputing the missing value with a reasonable estimation. It can be simple imputation

methods such as mean imputation, median imputation, and last observation imputation. How-

ever, these techniques fail to utilize temporal information as well as capture the relation among

features of the same observation in the time series data. There are also more advanced machine

learning-based algorithms for missing value imputation. e.g. KNN based imputation [29], Matrix

Factorization-based imputation [30], and maximum likelihood Expectation-Maximization (EM)

based imputation [31]. Although they can capture relations among features, they still cannot

exploit temporal information. Recently, deep learning-based imputations, powered by recurrent

neural networks, and generative adversarial networks have shown remarkable success in estimat-

ing missing values due to their ability to interpret temporal dependency in data and map complex

relations among features [32, 33].

Existing studies for time series imputation are uni-modal and self-imputation where the missing

values are imputed only using the available values in the same dataset [34, 35]. However, the

real world is filled with multi-modal time series data that is being increasingly used in studies

[36], thanks to the advancement in data collection and processing technologies. Generally, data

from different modalities contain complementary information [37, 38] and the introduction of this

complimentary information can further improve the missing value estimation over existing self-

imputation models. Multi-modal imputation for cross-sectional data has already shown success

[39] which can also be extended to the time series domain. Nonetheless, multi-modal time series
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imputation comes with some unique challenges. The first challenge is, one of the data can be

cross-sectional which means we need a model that can effectively map cross-sectional data to

another time series. The second challenge is that some samples can have no available time series

data. This may happen if the cross-sectional data is collected for a larger population compared to

the time series data due to expensive and logistically difficult data collection [40]. Multi-modal

imputation can help us estimate the data for these completely missing samples which is by default

not possible in uni-modal imputation techniques.

The self-attention mechanism [174] has established itself as the primary tool for sequence model-

ing in recent times. It enables more parallelization and better capture of temporal information com-

pared to recurrent neural networks (RNN)[175], long short-term memory (LSTM)[176], and gated

recurrent neural networks (GRU)[177]. Despite being state-of-the-art in many time series domains,

the use of self-attention is still limited for missing value imputation in time series data. Lately, few

works show the potential of such model to impute missing data in a time series [178, 179]. How-

ever, all of these studies are uni-modal and not designed to harness multiple data streams.

5.1.1 Contribution

In this study, we propose a multi-modal time series imputation framework that, TSEst, offers ad-

vantages over the existing literature in the following ways. 1) It can integrate an additional stream

of information from another data modality for a better estimation of missing values. 2) The model

can efficiently map cross-sectional data to time series, thus reducing reliance on missing value-

prone time series data. 3) Samples with completely missing data can also be imputed using this

framework due to the presence of an extra data modality. A comprehensive set of experiments on

two datasets show improved performance of our proposed model over the state-of-the-art baselines.
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5.2 Problem Statement

Let X and Y be two datasets collected to describe the same participant/sample. X is an incom-

plete time series data with missing values that need to be imputed whereas Y is a complete cross-

sectional data with no missing values. Our objective is to impute the missing values in X with

reasonable estimations using available values in X and data from Y . One incomplete time series

data X with p features, observed in T = (1, 2, ..., t) is defined as X = (x1, ...,xi, ...xt) ∈ Rt×p

where xi denotes the observation of X in ith time step and xj
i is the observation of jth features in

ith time step. Mask matrix M ∈ Rt×p is introduced to keep track of missing values in X:

M j
i =


1, if xj

i is observed

0, otherwise

A fixed percentage of values in X are removed by artificial masking to obtain X̃ . X̃ is used as

input to the model whereas X works as the ground truth to train and evaluate the model. Let M1 be

the mask matrix indicating the artificially masked values. The other dataset, Y is a cross-sectional

data defined as Y ∈ R1×q where q is the number of features. Before introducing the proposed

framework TSEst, we discuss the challenges in the domain of time series imputation in this section

along with the novelty and potential of our model to solve them. Different challenges in time series

imputation can be categorized as follows:

(1) Uni-modal vs Multi-modal imputation Depending on the availability of data, imputation can

be uni-modal [173] where missing values in X are imputed using only the available data in X . It

can also be multi-modal if more than one dataset is available for the same set of samples such as

[180, 181] where they collected multiple time series and cross-sectional data from the same cohort.

In multi-modal imputation, we impute missing values in X with the help of Y and available data
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in X .

(2) Partial vs Complete missing There are two possibilities for the amount of missing data. Some

variables or time steps in X can be missing creating a partially missing dataset. Alternatively, all

time steps can be missing i.e. the time series data X was never collected for a participant, referred

to as completely missing time series in this study.

Moreover, there are two likely missing patterns in a partially missing time series data. First, vari-

ables are randomly missing in a time step because the values were not captured, or the captured

values were corrupted. Second, variables are missing in a chunk when the data collecting proce-

dure is interrupted for an extended period of time. This is a common scenario in biomedical studies

as the data is often collected from living persons. If the participant skips a visit then all variables

in that time step are missing. The followings are examples of random and chunk missing values

with t = 4 and p = 3 and “none” representing missing values. (a) shows random missing values

and (b) shows chunk missing values with t = 3 missing. A feature such as p = 3 missing for an

extended amount of time is also considered as chunk missing.

X =


10 none 6
3 14 none

none 5 8
9 none none


(a) Missing in random

X =


10 4 6
3 14 10

none none none
9 6 5


(b) Missing in chunk

(3) Time series-time series vs Cross sectional-time series imputation Multi-modal imputations

can further be divided into two classes as the data Y available to estimate missing values in X

can either be a time series or cross-sectional data. For example, [180] collects two time series

data from the samples where one dataset can be used to impute missing values in the other one.

On the contrary, [40] collects a cross-sectional and a time series data from its participants. In this

case, the cross-sectional data will be used to impute missing values in the time series to contribute
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to the imputation. There are several advantages of cross-sectional to time series imputation over

time series-time series imputation. First, limited by cost and logistics, time series data is often

collected for a subset of the participants in cross-sectional data [40]. Therefore, an effective cross-

sectional to time series imputation model can help reduce the reliance on an expensive and long-

term longitudinal data collection and still provide us with reasonable data estimation for a large

number of samples. Additionally, if a time series data has missing values, it is a fair assumption

that the other time series data collected from the same sample set will be incomplete as well. So,

it is imperative to develop a model that can estimate missing values in a time series using cross-

sectional data.

5.3 TSEst Imputation Framework

The framework TSEst consists of three components as illustrated in Fig 5.1. Component 1 takes

the cross-sectional data Y as input and extracts meaningful information to generate an intermedi-

ate time series data Z1. Component 2 takes the time series X̃ as input and generates another

intermediate time series data Z2. Both these time series data are merged into a single data using

a weighted addition technique and fed into Component 3 that makes the final prediction for the

missing values. The notations used in this manuscript are summarized in Table 5.1.

5.3.1 Overview of the workflow

Component 1 has two elements: one is a fully connected feed forward neural network (FFNN)

and a self-attention block (SA block) that follows the FFNN. Y is used as input to FFNN and

transformed into ZFFNN ∈ R1×p following equation 5.1.

Zout = {σ(WZin + b)}N (5.1)
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Table 5.1: Notations for the proposed model

Name Definition
X ∈ Rt×p Incomplete time series data
X̃ ∈ Rt×p Artificially masked time series data
Y ∈ R1×q Cross-sectional data
M ∈ Rt×p Mask matrix to represent missing values in X

M1 ∈ Rt×p Mask matrix indicating artificially missing values in X

ZFFNN ∈ R1×p Output from the feed forward neural network (FFNN)
Z1 ∈ Rt×p Output from the SA block in Component 1
Z2 ∈ Rt×p Output from the SA block in Component 2
Z3 ∈ Rt×p Weighted addition of Z1 and Z2

X̂ ∈ Rt×p Predicted data for X in Component 3

where σ denotes the activation function and W , b are the learnable parameters. N stands for the

number of stacked layers. Zin for the first layer is Y and Zout in the last layer is ZFFNN. ZFFNN is

replicated t times and fed into SA block. Each SA block uses self-attention mechanism to capture

or create time dependency in the input data to generate a plausible synthetic time series as output.

Details of SA block functionality will be provided in section 5.3.2. The output from the SA block

in Component 1, given by Z1 ∈ Rt×p represents a complete approximation for X from Y . It

should be noted that the SA block in Component 1 does not extract any temporal information from

its input ZFFNN as it is not a time series data. X̃ is used in the training of Component 1 to induce

temporal factor in Z1 and learn how Y relates to that temporal element. In another word, the

cross-sectional data can have different impact on different time steps of the time series data which

we aim to model in the estimation using Component 1.

Component 2 consists of another SA block that takes the concatenation of X̃ and M as input. The

mask matrix M helps the model to learn which values are missing in X̃ and should be ignored.

Output from Component 2, Z2 ∈ Rt×p is another complete approximation for X . Z1 and Z2 are

merged into a single dataset using a weighted addition block, which will be described in section
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Figure 5.1: Overview of the proposed framework TSEst.

5.3.2. Each time step in Z1 and Z2 are checked for their accuracy against available data in X̃ .

Then we find which time steps contributed more to those accurate estimations to calculate their

weights. Once we have calculated weights α and β for Z1 and Z2 respectively, we merge them

into Z3 ∈ Rt×p following equation 5.1, where α and β are the weights for Z1 and Z2 respectively.
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Z3 = αT ∗Z1 + βT ∗Z2 (5.2)

Z3 is a combination of synthetic time series data generated from both X̃ and Y . Values already

present in X̃ are used to replace the synthetic values in Z3 following equation 5.3, where ⊙ is the

Hadamard product.

Z
′

3 = M ⊙ X̃ + (1−M )⊙Z3 (5.3)

Component 3 is also comprised of an SA block that uses Z
′
3 concatenated with M as input to

generate X̂ . X̂ is the final output from the imputation model. If Y is a time series data as well, we

use the same model, except a long short-term memory (LSTM) in place of FFNN in Component

1. Although the model is designed to be multi-modal, in case of data unavailability, it can be used

as uni-modal by turning off Component 1.

5.3.2 Proposed modules

5.3.2.1 SA block

Self-attention (SA) block is used to capture or create time dependency in a given time series input.

We employ the self-attention mechanism proposed by [174] to build the SA blocks. For a time

series Xa ∈ Rt×pa , where pa is the number of input features, it is first embedded into a new feature

space of size pe. Positional encoding P is added with the new feature space to produce Xe ∈ Rt×pe

following equation 5.4.

Xe = [XaWe + be] + P (5.4)

We adopt the sine and cosine functions of different frequencies to represent positional encoding

P :
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P(pos,2i) = sin(pos/100002i/pe)

P(pos,2i+1) = cos(pos/100002i/pe)

where pos is the time step position and i is the dimension along pe. Xe is then linearly mapped

into query (Q), key (K), and value (V ) of dimension dk, dk, and dv respectively:

Q,K,V = XeWQ,XeWK ,XeWV

where WQ ∈ Rpe×dk , WK ∈ Rpe×dk and WV ∈ Rpe×dv are the learnable parameters. The product

between Q and K is scaled using dk, dimension of the key vector, to obtain the attention scores in

equation 5.5 and passed through softmax to get the attention weights. The output is computed as

follows:

H = SelfAttention(Q,K,V ) = Softmax(
QKT

√
dk

)V (5.5)

This architecture of finding the output is called a head and we denote the output from each head as

H ∈ Rt×dv . We set the diagonal elements in the attention matrix to zero to make the model robust

by preventing a time step from contributing to their own estimation [179]. Multi-head attention

scheme is employed to stabilize the training and capture a broader range of relationships between

time steps. In multi-head attention with h heads, the output is computed h times with different

learned parameters and concatenated to obtain a single output following equation 5.6.

X̄e = MultiHead(Q,K,V ) = (∥hk=1 Hk)Wo (5.6)

where Hk is the output from kth head and Wo ∈ Rhdv×pe is learnable parameter. Let the output of

the multi-head attention is X̄e. A position-wise feed-forward network (equation 5.7)is applied to

70



the output X̄e.

PFF(X̄e) = ReLU(X̄eW1 + b1)W2 + b2 (5.7)

where W1 ∈ Rpe×df , b1 ∈ Rdf , W2 ∈ Rdf×pe , b2 ∈ Rpe . Finally, PFF(X̄e) is projected back to

the original feature space of input data and stands as the output from the SA block.

5.3.2.2 Weighted addition

Two synthetic time series data generated by two SA blocks are merged into a single time series in

the proposed weighted addition block by taking the attention weights in their respective SA blocks

into consideration. t × t attention weight matrices are extracted from each head of the two SA

blocks that generate synthetic time series data S1 and S2 respectively. Attention weights from all

heads are averaged into A1 and A2 corresponding to the attentions for S1 and S2 respectively. ith

row in the attention matrix tells us the contribution of each time step in the generation of synthetic

data at ith time step. Our objective is to identify the time steps that contribute more towards an

accurate estimation of synthetic data and assign a higher weight to those time steps during the

addition.

Let s1i and s2i be the ith row/time step in the S1 and S2 respectively. Similarly, a1
i and a2

i denote the

ith row in the attention weight matrices A1 and A2 respectively. The correlations c1 and c2 between

true data xi and two synthetic data s1i and s2i at time step i are calculated and modified according

to lines 2-4 in Algorithm 1, where τ and κ are parameters to adjust the decaying function. We used

τ = 3 and κ = 5 in this study. c1 and c2 are then normalized using lines 5-6 to find the relative

accuracy of s1i and s2i in estimating xi. We multiply the normalized correlation values c1 and c2

with a1
i and a2

i respectively to obtain A
′
1 and A

′
2. A

′
1 and A

′
2 are averaged along the rows (column

mean) and again normalized following lines 14-15. ith value in α represents the importance of

ith time step in generating an accurate estimation of other time steps. ith value in α and β are
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Algorithm 1 Weighted addition algorithm
Input: A1, A2, S1, S2, and X
Output: X ′

1: for i = 1→ t do
2: c1← correlation(xi, s1i )
3: c2← correlation(xi, s2i )

4: c=

{
c, if c ≥ 0
expτc

κ
, otherwise

5: c1← c1/(c1 + c2)
6: c2← c2/(c1 + c2)
7: a1′

i ← a1
i *c1

8: a2′
i ← a2

i *c2
9: end for

10: A
′
1 = (a1′

i , ...,a
1′
i , ...a

1′
t )

11: A
′
2 = (a2′

i , ...,a
2′
i , ...a

2′
t )

12: A
′
1← mean along the rows(A

′
1)

13: A
′
2← mean along the rows(A

′
2)

14: α←A
′
1/(A

′
1+A

′
2)

15: β←A
′
2/(A

′
1+A

′
2)

16: X
′ = αT ∗ S1 + βT ∗ S2

multiplied with ith row in S1 and S2 to derive a scaled synthetic data. The underlying hypothesis

is if the synthetic data is accurate at one time step, then the other time steps that contributed more

to its generation must be accurate as well.

5.3.3 Missing value imputation

For an incomplete time series X̃ , we estimate a synthetic time series X̂ that closely resembles the

true values in X̃ . The loss function to train the model has three elements, one on each of the com-

ponent’s output. We use both reconstruction and imputation loss for the training. Reconstruction

loss is defined as the error in estimating the available values that the model is allowed to see during

training computation. In contrast, imputation loss refers to the error in estimating the artificially
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masked values. The loss function is given by equation 5.8.

L = ℓmae(M ,X, X̂) + λℓmae(M1,X, X̂)+

γℓmae(M , X̃,Z1) + µℓmae(Z1,Z2)

(5.8)

where λ, γ, and µ are variable weights on different parts of the equation. ℓmae(M ,X, X̂) calcu-

lates the reconstruction loss of observed values in the training data and ℓmae(M1,X, X̂) measure

imputation accuracy for the artificially masked values. ℓmae(M ,Z1, X̃) ensures that the output

from Component 1 which is generated from a cross-sectional data, learns to imitate the true time

series data, therefore, contribute meaningful information for the final estimation. ℓmae(Z1,Z2)

makes the output from Component 1 and Component 2 similar which is particularly helpful for

predicting values for completely missing samples. That way, even if test samples do not have

any time series data at all, Component 1 can still make a reasonable prediction similar to the ex-

pected output from Component 2. The impact of this element on partially missing samples can be

controlled using µ.

5.4 Experiments

We evaluate the performance of our proposed framework TSEst using two datasets. Imputation ac-

curacy of TSEst is compared with state-of-the-art recurrent neural network (RNN)-based methods

and attention-based transformer in two different missing value patterns. Moreover, we investigate

the ability of our framework to harness information from the cross-sectional data and map that to

the time series.
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5.4.1 Dataset and tasks

5.4.1.1 TEDDY

TEDDY is a longitudinal cohort study designed to find the factors affecting the progression towards

type 1 diabetes (T1D) [182]. They collected various clinical and omics datasets from the enrolled

participants including single nucleotide polymorphism (SNP) and gene expression. The time series

gene expression contains 401 samples with observations of 17039 features at 16 time steps. 79%

time steps in the gene expression are missing. This dataset only contains missing time steps i.e. if a

time step is missing, all 17039 features are missing. This missing pattern resembles chunk missing

as described previously. On the other hand, cross-sectional SNP data with 176,586 features have

no missing values. We reduced the dimension of SNP to 50 using principal component analysis

(PCA) to avoid overfitting the framework.

Table 5.2: Dataset statistics

Dataset samples length features missing rate

TEDDY 401 16 50/17,039 78.63%

Maurer 531 500 27/6 0%

DayMet 531 500 27/14 0%

5.4.1.2 CAMELS

For further evaluation of our model, we used the Catchment Attributes and Meteorological dataset

for Large-sample Studies (CAMELS) datasets [183]. We used two time series data from CAMELS,

Maurer (1
8
th degree spatial resolution) and DayMet (1km×1km spatial resolution), collected for

531 basins following the benchmarking by Newman et al[184]. 500 time steps of 6 and 14 different

weather or soil states attributes in Maurer and DayMet datasets respectively were used in this study
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along with 27 static features as cross-sectional data. There is no missing value in the datasets. The

statistics of TEDDY and CAMELS datasets are presented in Table 5.2. The features column reports

the number of features in cross-sectional data followed by the number of features in the time series

data.

5.4.2 Experimental setup

Time series datasets are artificially masked before imputation to be able to assess the imputation

accuracy. The artificial masking is done in two different ways. For r% random missing, r% of

available values are masked in the dataset randomly whereas chunk missing masks r% of available

time steps entirely. 80% of the samples are used in the training and the rest are used as test set

to evaluate the models. Further 20% of the training samples are kept for validation to tune the

hyper-parameters and select the best trained model.

5.4.3 Comparison of time series imputations

To evaluate the quality of the imputed data generated by our proposed model TSEst, we designed

three experiments on TEDDY and CAMELS datasets under the assumptions: (1) the imputed

values learned from our proposed model harness two data modalities, therefore, will generate

imputations with higher quality; (2) the impact of the additional cross-sectional data will be more

apparent with higher missing rate. The performance is compared against three uni-modal baselines:

BRTIS [185], M-RNN [32], and Transformer [174]. For all tasks, different percentage of available

data in the time series data is artificially masked and used as ground truth to measure the imputation

accuracy. Tables 5.3 and 5.4 shows the imputation accuracy for randomly missing values and chunk

missing values in the time series data at 20% artificial missing rate. The results are presented in

terms of root means square error (RMSE) and mean absolute error (MAE).

75



Table 5.3: RMSE/MAE of the imputation on test set [random missing]

Method TEDDY Maurer DayMet

Mean filling 2.533/0.529 0.826/0.602 0.706/0.370

Last filling 2.538/0.557 0.723/0.430 0.672/0.247

M-RNN —/— 0.763/0.427 0.725/0.467

BRITS —/— 0.343/0.162 0.443/0.152

Transformer 0.339/0.224 0.232/0.089 0.306/0.096

TSEst 0.294/0.178 0.238/0.088 0.223/0.065

Table 5.4: RMSE/MAE of the imputation on test set [chunk missing]

Method TEDDY Maurer DayMet

Mean filling 2.798/0.616 0.765/0.560 0.689/0.368

Last filling 2.803/0.649 0.705/0.422 0.693/0.253

M-RNN —/— 0.616/0.413 0.798/0.494

BRITS —/— 0.490/0.288 0.586/0.221

Transformer 0.311/0.215 0.354/0.194 0.369/0.113

TSEst 0.297/0.185 0.303/0.156 0.302/0.093

For all three datasets, TSEst outperforms the baselines in most cases. We could not run M-RNN

and BRTIS on our available resources with TEDDY data because of its high dimensionality and

subsequent huge memory requirement. These RNN based models work in the original high di-

mensional feature space whereas attention-based models used lower dimensional embeddings to

estimate the missing values. This is a crucial drawback for the RNN-based models as many omics

data like gene expression which is an essential part of enhancing modern medicine are high dimen-

sional. Moreover, for Maurer and DayMet datasets, RNN-based models fall behind in performance

compared to attention-based models. This is partly caused by the long-time dependencies of 500
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time steps in these datasets that RNN struggles to accurately handle [186].

Table 5.5: RMSE/MAE scores for partially missing samples at different missing rates on Maurer
data [random missing]

Method 20% 30% 40% 50% 60% 70% 80% 90%

Transformer 0.232/0.089 0.255/0.098 0.258/0.108 0.271/0.121 0.310/0.141 0.332/0.160 0.360/0.186 0.444/0.228

TSEst 0.238/0.088 0.241/0.096 0.242/0.104 0.265/0.118 0.299/0.131 0.318/0.147 0.330/0.163 0.401/0.205

In Table 5.5, we report the imputation performances for Maurer data at different missing rates and

investigate how the missing rate impacts the uni-modal transformer and our multi-modal frame-

work differently. We choose transformer as the baseline for this experiment based on the results

in Tables 5.3 and 5.4 which show that only the transformer performs close to our proposed model.

For missing rates between 20%-50%, two models perform similarly with our model slightly edg-

ing the baseline. It should be noted that our model and transformer use the same self-attention

architecture, therefore would perform comparably given the same input. For low missing rates,

available training data in the time series is enough to train the model and benefited moderately

from the inclusion of another data modality. However, at missing rates higher than 50%, we can

see a difference in imputation accuracy that can be attributed to the additional information from

the cross-sectional data. To illustrate the contribution of the cross-sectional data in more detail, we

extract the weights α and β calculated in the weighted addition block for test set. The weights

represent how much importance is put on cross-sectional data vs the time series data for generating

the imputed values. Figure 5.2 shows the distribution of the weights using kernel density estimate

(KDE) plot at missing rate=50%, 70%, and 90%. The plot for cross-sectional data at 70% and

90% missing rate shift right signifying larger weights put on the cross-sectional data during im-

putation. Therefore, adding a cross-sectional data can improve imputation at higher missing rates

which is often found in many real world datasets. TSEst provides a generalized framework for

time series imputation that can work in both multi-modal and uni-modal settings. Moreover, if
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Figure 5.2: Weight distribution at different missing rates

additional modality has a low correlation with the incomplete time series in a multi-modal impu-

tation, TSEst can automatically filter out unnecessary information from additional modality using

weighted addition.

5.4.4 Imputation of completely missing samples

We extend the framework to impute the time series data for samples with no prior data available

to investigate whether cross-sectional data can generate a reliable estimation of missing values by

itself. For this experiment, training samples have both cross-sectional and time series data whereas

validation and test samples only contain the cross-sectional data. The model is trained following

the same procedure as the partially missing samples, except a larger value of γ and µ in equation

5.8. Artificial random masking is used to remove 40% of training data for a more robust learning

and 100% of available data in validation and test samples for evaluation. During testing, we only

enable Component 1 and set Z3 = Z1. RMSE and MAE scores of this experiment for TEDDY

data are 0.320 and 0.213 respectively. The scores are comparable to imputation accuracy at 20%

missing rate as shown in Table 5.3. SNPs present in the sites for DNA methylation, transcription
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Table 5.6: RMSE/MAE scores for the completely missing samples at different length of Maurer
data

Method 20 50 100 200 300 400 500

TSEst 0.555/0.331 0.572/0.351 0.625/0.389 0.598/0.377 0.611/0.382 0.583/0.365 0.564/0.355

factor binding, or miRNA targets can alter the gene expression level. For this reason, SNP has been

successfully used before to predict cross-sectional gene expression [187]. Our results indicate that

the same performance can be extended to impute time series gene expression as well using the

proposed framework TSEst.

Another set of results for Maurer data is reported in Table 5.6 with different lengths of the time se-

ries ranging from 20-500 time steps to reflect how length impacts the ability of the cross-sectional

data to generate missing values. Unlike TEDDY, scores drop for Maurer data which can be at-

tributed to the stronger relation between SNP and gene expression that is absent in the cross-

sectional and time series data in CAMELS. However, the imputation accuracy is better than mean

filling, last filling, and M-RNN. It can be inferred from the results that cross-sectional data can

generate reasonable time series with arbitrary length without a significant drop in performance

with length increase.

5.4.5 Imputation using cross sectional vs time series data

We have shown the time series imputations using cross-sectional data in the above experiments.

However, multiple time series data can also be available for the same cohort such as Maurer and

DayMet in CAMELS dataset. In this experiment, we investigate how the model performs if we use

a time series instead of cross-sectional data to impute another time series. We impute the Maurer

data with 20% missing values using fully available DayMet data and present the results in Table
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5.7. An LSTM architecture is used in place of the fully connected feed forward neural network

(FFNN) in Component 1 to better characterize the time dependency. As the results show, using

time series data does not provide any additional benefit.

Table 5.7: RMSE/MAE scores for time series-time series imputation

Imputation method random chunk

Cross-sectional–time series 0.238/0.088 0.303/0.156

Time series–time series 0.232/0.089 0.316/0.158

5.4.6 Model analysis

We propose an adaptive and interpretable weighted addition (WA) technique for merging the two

time series data. We compare our proposed method with two baselines. The first one is directly

adding the two time series data into a single dataset. The other one is concatenating the two datasets

and then linearly transforming them to match the dimension of the original time series data. The

results at different missing rates are tabulated in Table 5.8. Proposed weighted addition shows

better performance in most cases. At a lower missing rate, all methods perform competitively,

Table 5.8: RMSE/MAE scores for model analysis

Missing rate WA Addition Concatenation

20% 0.238/0.088 0.243/0.092 0.234/0.086

50% 0.265/0.118 0.299/0.135 0.297/0.129

90% 0.401/0.205 0.447/0.237 0.432/0.232

100% 0.564/0.355 0.618/0.406 0.630/0.405
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however at a higher missing rate, there is a significant difference in imputation accuracy.

5.5 Summary

We proposed TSEst, a self-attention-based time series missing value imputation framework. TSEst

uses a multi-modal architecture, exploiting an additional data modality for the imputation. An

adaptive weighted addition technique assigns appropriate weights to each data modality for best

imputation accuracy. Using two datasets, we showed that TSEst can effectively impute time series

data using another cross-sectional data collected for the same set of samples and achieve better

performance compared to state-of-the-art models from the literature. Moreover, it can impute

time series values for samples with no prior available time series data. We demonstrated that

the weighted addition mechanism provides interpretable insight into the time dependency of the

datasets.
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CHAPTER 6: USE OF MULTI-MODAL MISSING VALUE IMPUTATION

IN TYPE 1 DIABETES STUDY

The work in this chapter has been published in the following paper:

Khandakar Tanvir Ahmed, Sze Cheng, Qian Li, Jeongsik Yong, and Wei Zhang. (2023). “Incom-

plete time-series gene expression in integrative study for islet autoimmunity prediction.” Briefings

in Bioinformatics, 24(1), bbac537. [188]

In previous chapter, we have shown the possibility and theoretical accuracy of multi-modal time

series data imputation. The results were measured in terms of mean squared error/ mean absolute

error loss without concrete proof of how they would behave in real prediction scenarios. In this

chapter, we take this idea of multi-modal time series imputation to predict disease prognosis and

aim to show that the imputed values are meaningful replacements for the missing values. Our

imputed data not only allows us to predict prognosis for all patients regardless of their prior time

series data collection status, it also improves the state-of-the-art prediction results in literature.

6.1 Introduction

Gene expression changes throughout the timeline of chronic diseases such as diabetes, hyperten-

sion, obesity, and heart disease; therefore, a periodically measured gene expression may better

explain the underlying mechanisms of these diseases compared to cross-sectional gene expres-

sion collected once per participant [189]. Some prospective longitudinal cohort studies collect

that information. However, these studies tend to suffer from loss to follow up [190, 191], which

means the time series data will have missing values if participants are absent during scheduled
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visits when data is collected. Moreover, limited by cost and logistics, data is often collected for a

subset of participants, i.e., some participants will have no gene expression data available. An ef-

fective data imputation technique is necessary to use the gene expression for downstream analyses

[33, 192]. Researchers have investigated computational methods for handling the missing value

problem in gene expression, and several algorithms have been proposed to impute gene expres-

sion. The missing gene expression problem can be broadly divided into two groups: 1) contains

participants with partially available gene expression, and 2) contains participants with no available

gene expressions. Many frameworks have been developed to solve the prior stated problem that

consider global or local relations among genes, domain knowledge, and other omics data for im-

putation [193, 68, 194, 82, 195]. The second group of missing value problems is more apparent

in multi-omics analysis, where some participants can be present in another omics type but absent

in gene expression. For such conditions, several frameworks have been developed that use other

omics data to guide the imputation of gene expression [39, 196, 197]. As most studies evaluate

gene expression profiles at a single time point, most of the available imputation frameworks are

also designed to impute such gene expression datasets. The imputation of time series data offers

additional challenges because of the time dependency among the time steps from the same partic-

ipants. A handful of frameworks were proposed for the imputation of time series gene expression

data [198, 195, 199] but they do not involve multi-omics data and participants with completely

missing gene expression. More recently, some advanced algorithms have been proposed for time

series data imputation in other domains [173, 200, 185, 32]. However, samples with no available

gene expression still complicate integrative time series analysis to study chronic diseases.

Type 1 diabetes (T1D) is a common chronic disease in children caused by the autoimmune response

against pancreatic β cells. Despite active research, the exact causes or any cure for the disease is

still unknown [201]. Islet autoimmunity (IA), which precedes the clinical onset of T1D [202]

can be used as a marker to study the progression towards T1D. The Environmental Determinants
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of Diabetes in the Young (TEDDY) is a longitudinal prospective study that uses a nested case-

control cohort to identify risk factors associated with T1D. Early and accurate identification of

high-risk children (children with a high probability of developing IA) will allow us to design a

better case-control cohort to identify risk factors, which may eventually lead to the prevention

and cure of the disease. Therefore, predicting IA has been at the center of attention in diabetes

studies for a long time [203, 169, 204]. Recent attempts to predict outcomes in T1D studies have

used genetic factors [205, 206, 207, 208, 209], metabolic status [210, 211], family history, and

environmental risk factors [203, 212, 169] for the prediction. Gene expression of the participants

has been widely ignored, even though the predictive power of gene expression is well established

in the literature to study different diseases [213, 214, 215, 37]. Integration of gene expression with

other omics profiles is also well documented to result in improved prediction results for different

objectives such as biomarker identification, patient stratification, and survival prediction [84, 216,

217, 218, 219] which may translate into a better outcome prediction for T1D. One reason for the

reluctance to use gene expression is its weak association with the outcome, partially contributed

by the high missing rate. Few previous studies [168, 169] have used time series gene expression

from TEDDY to explain the progression towards T1D and found encouraging results for the T1D

onset prediction. However, they only predict T1D for a small subset of total participants, and some

use IA information for the prediction. IA information becomes available years after the birth of

the child and their enrollment in the study. Therefore, the prediction can only be performed after a

certain time. Missing data in gene expression hinders the analyses in these studies as well. TEDDY

collects times series gene expression from its participants as well as their SNP, HLA genotype, and

family history. The gene expression is collected for less than 6% of the enrolled participants and

suffers from a large amount of missing time steps. It limits the opportunity for a comprehensive

integrative study involving all participants. However, SNP, a cross-sectional data, is available for

all participants, enabling us to impute partially or completely missing gene expression profiles.
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6.1.1 Contribution

The primary objective of this work is to propose a model that will impute partially or entirely

missing gene expressions with synthetic data. We employ a deep learning-based model to generate

synthetic gene expression from SNP data and available gene expression. We demonstrate that it

contains a competitive predictive signal compared to the true gene expression and improves state-

of-the-art prediction results. We also explore the importance of time series gene expression in

capturing the underlying mechanisms of T1D. The rest of the manuscript is organized as follows:

TEDDY study setup, our research design, and methodology are described in the next section.

The Experiments section is dedicated to experimental setups and validation of the results. The

Discussion section contains a brief discussion of the results along with our limitations and future

directions. Concluding remarks are presented in the last section.

6.2 Methods

6.2.1 Data sets and participants

TEDDY study is designed to identify the environmental risk factors impacting the development

of IA and the onset of T1D [40]. TEDDY enrolls 8,676 high-risk children in this study based on

the HLA genotype of the children and their first-degree relatives [203]. Follow-up for each child

starts at three months and lasts until 15 years of age. Children are tested for islet autoantibodies

(IAA, GADA, IA-2A, ZnT8A) at each visit, and gene expression is also measured. Visits for

the participants are three months apart for the first four years. After that, it is three months for

participants with any positive islet autoantibody test and six months for the rest. The outcome

of interest in this study, IA, is defined as the presence of two consecutive positive tests for any

particular islet autoantibody. In other words, if there are consecutive positive tests for at least
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one of the four autoantibodies, we consider that participant as IA positive. Many risk factors,

including HLA genotype, SNPs, dietary factors, family history, sex, and seroconversion age, have

been investigated in previously published works that narrow down the candidates for a predictive

study [220, 203, 221, 222, 168]. Although these risk factors are found to be weakly associated

with T1D outcome [203], these studies ignored time series gene expression which may introduce
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Figure 6.1: The number of available participants at each time step. The number of participants
with available gene expression at each time step up to 24 time steps (72 months) are plotted. The
plot shows a decrease in the availability of gene expression at later time points. 16th time step is
selected as an optimum point for gene expression cutoff.
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complementary information and time factor for better prediction results.

Many TEDDY-identified risk factors have been previously explored, and family history, HLA

genotype, and SNP were shown to be better predictors for IA status [203]. Based on the liter-
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Figure 6.2: An overall illustration of the proposed framework. Incomplete gene expression is im-
puted using SNP in the imputation model (DNN). Completed gene expression, SNP, HLA geno-
type, and family history are fed into the classifier (LSTM) to predict IA positive and IA negative
participants.
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ature, we include 12 SNPs, HLA genotype, and family history in this study. Details about the

12 SNPs can be found in [203]. We performed an exhaustive search for the best SNP combina-

tion and found rs4597342, rs12708716, rs4948088, and rs1143678 combined with HLA genotype

and family history to be the best performing combination for IA status prediction. Therefore, we

include these variables in further analyses of this study. Risk factors are binarized before feeding

them into models. Family history was categorized as first-degree relatives having T1D vs. no T1D.

SNPs were categorized as major (no copy of minor allele) vs. minor (one or two copies of minor

alleles). The HLA genotype is defined as DR3/DR4 vs. others. TEDDY participants (m = 6,812)

with available family history, HLA genotype, and SNP data are included in this study.

The gene expression in TEDDY is a time series with 2,013 time steps belonging to 401 children.

Gene expression is collected until 72 months at 3 or 6 months intervals. Approximately 79% of

time steps are missing for the 401 participants, which significantly impedes its ability to be used

in a time series study. In the cohort of 6,812 participants, the missing rate rises to 98.77%, as

the other 6,411 (94.11% of 6,812) participants have no available gene expression. Therefore, the

gene expression is unusable for downstream analyses involving a cohort of 6,812 participants.

Nevertheless, the number of missing participants changes across time steps, allowing us to remove

some time steps with fewer available participants.

The number of available participants at each time step is presented in Fig. 6.1 which illustrates

that the rate of missing participants increases in later time steps. Moreover, after 48 months,

some participants visited every six months instead of 3, resulting in an even lower data availability

rate. As available data is necessary to train the imputation model, a lower data availability rate

disrupts the model training; thus, the quality of the synthetic gene expression. To reduce the impact

of missing data and maintain a regular interval of 3 months between consecutive time steps, we

set a cutoff of 48 months for gene expression in this study. Therefore, gene expression of each

participant consists of 16 time steps corresponding to 3 to 48 months at three months intervals.
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Table 6.1: Dimensions of gene expression and SNP used in different stages of the study

Dataset Dimension

Original gene expression 401× 17, 039

Imputed gene expression 6812× 17, 039

Original SNP 6812× 176, 586

SNP (for imputation) Top 50 PCs of original SNP

SNP (for IA prediction) 12 SNPs selected from literature

Although setting a cutoff lowers the missing rate to 98.22%, it is still impractical to use gene

expression with predictive algorithms without an effective data imputation. Therefore, we propose

a deep learning-based imputation model described in the following subsection that can generate

synthetic gene expression at missing time steps from SNPs. We keep 17,039 protein-coding genes

in the gene expression. 17,039 features may overfit the model or impose a computational burden

with redundant information [223, 224]; so we find an optimal number of genes using forward

feature selection that will provide us with the best prediction results. Once we have the optimal

number of genes, gene expression, family history, and SNPs are merged into a single time series

dataset. For family history, HLA genotype, and SNPs, the same value for a participant is replicated

at every time step. Dimensions of the datasets used in different stages of this study are tabulated in

Table 6.1.

6.2.2 Imputation model overview

The overall framework of the proposed study is illustrated in Fig. 6.2. The framework has two main

components: a deep learning-based imputation model and a long short-term memory (LSTM)

based classifier. Synthetic gene expression is first generated for missing time steps through the

imputation model using SNP and available gene expression. Family history, HLA genotype, SNP,
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and completed gene expression are then fed into the classifier to predict IA positive and IA negative

participants.

Figure 6.3: An illustration of the proposed imputation model. Incomplete gene expression X is
imputed using autoencoders C0, C2 and multilayer perceptron (MLP) C1.

Although gene expression is either partially or completely missing for every participant, SNP data

is available for all of them. Therefore, our proposed imputation model is trained to map the SNP

data to gene expression and generate the value for missing time steps. The imputation is carried

out for each time step separately, i.e., the model is retrained for imputing every time step as seen

in Fig. 6.2. For imputing a time step, participants with available gene expression at that time step

are separated and randomly divided into training and validation sets with a 70-30 split ratio. All

other participants without gene expression are considered as the test set. The training samples’

SNP data and gene expression are used as input and output to train the model. The imputation

model is illustrated in Fig. 6.3. Let m be the total number of participants in the study. SNP data

(S) is available for all m participants, whereas the gene expression is available for n participants

among them. q genes from n participants in the gene expression X ∈ Rn×T×q, observed in
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t = (1, 2, ..., T ) is defined as X = [x1,x2, ...xT ] where xt ∈ Rn×q denotes the observation from

tth time step. For imputation of tth time step, we first train an autoencoder (C0) to find a lower

dimensional representation of (xt)′ ∈ Rq×n, given by zt ∈ Rq×h where ()′ represents transposition

and h is the embedding size. zt contains the property of each feature in the observed data at tth time

step, which will be later used in equation 6.7 to guide the synthetic data generation. Both encoder

and decoder are five layers feed-forward neural networks. The encoder finds the lower dimensional

embedding from the original data, which is fed to the decoder as it tries to reconstruct the original

data from the embedding. The autoencoder is trained with the reconstruction loss for 100 epochs

using Adam optimizer and a learning rate of 0.0001. Output from the encoder and decoder are

given by equations 6.1 and 6.2 respectively and the network is trained following equation 6.3.

zt = Encoder(xt) (6.1)

yt = Decoder(zt) (6.2)

LC0 = ∥yt − xt∥22 (6.3)

Then we move forward to the imputation of missing values. It consists of two components: i) a

six-layer fully connected deep neural network (C1) and ii) an autoencoder (C2) that follows the first

component (C1). C1 takes SNP data Sn ∈ Rn×p as input and generates synthetic gene expression

x̂t ∈ Rn×q for tth time step. p is the number of features in the SNP data. Dimension of the SNP

data is reduced to avoid overfitting using principal component analysis (PCA) implemented using

sklearn.decomposition.PCA package [225]. The top 50 principal components (PCs) are used in the

imputation.ˆnotation is used throughout the study to denote synthetic data and values derived from

synthetic data. The ReLU activation function follows hidden layers in the C1 network. Layers can

be formulated as:

xt
out = δ(Wxt

in + b) (6.4)
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where W , b are learnable parameters and δ is the activation function. For the first layer, xt
in = Sn

and in the final layer xt
out = x̂t. Additionally, we use the same model to generate the synthetic

gene expression x̂t
enc ∈ Rm×q for all m participants from Sm ∈ Rm×p. To recollect, m is the

total number of participants in the study and n is the participants with available gene expression;

therefore, xt
out ⊂ x̂t

enc. Afterwards, x̂t
enc is fed into the autoencoder C2 where an embedding

ẑt is generated that represents the characteristics of the imputed features in a lower dimension

following equations 6.5 and 6.6. The purpose of this autoencoder C2 is to ensure that feature

properties remain the same before and after imputation, which means generated data will have

similar properties as the true data.

ẑt = Encoder(x̂t
enc) (6.5)

ŷt = Decoder(ẑt) (6.6)

The objective functions for C1 and C2 are formulated as equations 6.7 and 6.8 respectively.

LC1 = ∥x̂t − xt∥22 +
1

ed
∥x̂t − xt′∥22 + ∥ẑt − zt∥22 (6.7)

LC2 = ∥ŷt − x̂t
enc∥22 (6.8)

The first element (∥x̂t − xt∥22) in equation 6.7 makes the synthetic gene expression for the n

participants similar to the true gene expression at tth time step. The second element ( 1
ed
∥x̂t−xt′∥22)

introduces information from previous time steps in the imputation. xt′ represents the last observed

gene expression at t′ time step while imputing data at tth time step. We assume that gene expression

at a time step is more similar to its closest time step, which provides a better estimation for the

missing gene expression. d denotes the time difference between tth and t
′ time steps which ensures

that gene expression observed in closer time step from tth has more contribution in the imputation
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compared to gene expression observed at further time steps. The last element (∥ẑt − zt∥22) in

equation 6.7 ensures that feature characteristics are similar in gene expression (X) before and

after imputation.

C1 is trained for 100 epochs using Adam optimizer with a learning rate of 0.001, and C2 is trained

for 25 epochs using Adam optimizer with a learning rate of 0.00001. C2 is fully trained at each

epoch of C1 to obtain the best embedding value. High-quality embedding generated by C2 will in

turn result in better training for C1 as seen in equation 6.7.

As most participants have no true gene expression, the imputation model must have two character-

istics to ensure the best performance. It has to be able to generate synthetic data for a participant

using only SNP and maximize the information extraction from the SNP simultaneously. In our

model, the multilayer perceptron, C1, is responsible for mapping SNP to gene expression. To en-

sure that C1 uses only SNP as input, we can not integrate available gene expression from other

time steps. On the other hand, ignoring other time steps will result in loss of valuable informa-

tion and inferior mapping of SNP to gene expression that contradicts the second characteristic. As

mentioned before, all participants in the training set have partial true gene expression. Therefore,

we employ the available gene expression from other time steps for a participant in the objective

function through the second element, whereas once trained, C1 only uses SNP data to generate

synthetic gene expression. It ensures that we can generate synthetic data for participants in the test

set with no prior gene expression and also harness the prior information from participants during

training. The validation set is used to tune the hyperparameters and choose the best model during

training. Then SNP data of the test set is fed into the network to generate gene expression values

for those participants with missing time steps. The same procedure is repeated for each time point.

The deep neural network model is implemented in PyTorch [226].
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6.2.3 Classifier and metrics

In this study, we use a long short-term memory (LSTM) based classifier [227] for time series pre-

dictions. LSTM is a type of recurrent neural network that takes time series data as input and maps

that to a label considering the time factor in the analysis. It is a three-layer network followed by

a fully connected layer and a sigmoid activation function. The hidden size of the LSTM is 200.

For predictions using only family history, HLA genotype, and SNP, we use random forest im-

plemented through sklearn.ensemble.RandomForestClassifier package. Area Under the Receiver

Operating Characteristic Curve (AUC), sensitivity, specificity, and Youden’s index are applied to

evaluate the performance of the classifiers.

6.3 Results

A total of 6,812 samples from TEDDY with family history, HLA genotype, and SNP data available

are included in our Study. 338 (4.96 %) of them develop IA within 24 months. In the experiments,

we show the proposed improvement of IA prediction after the integration of gene expression with

family history, HLA genotype, and SNP, the quality of our imputed gene expression used in the

prediction, and the enriched gene sets (e.g., pathways) are significant for T1D pathogenesis.
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6.3.1 Integration of gene expression improves IA prediction

6.3.1.1 Feature properties and selection

6.3.1.1.1 Family history, HLA genotype, and SNPs

TEDDY identified risk factors have a wide range of abilities to predict IA. Sensitivity, specificity,

Youden’s index, AUC of family history, HLA genotype, and SNPs used in this study for predicting

IA outcome at 24 months are reported in supplementary Table S1. Family history is the best

predictor of IA (Youden’s index = 0.265) followed by HLA genotype, rs4597342, rs12708716,

rs4948088, and rs1143678 respectively.

6.3.1.1.2 Gene expression

An optimum number of genes from the gene expression is added to the family history, HLA geno-

type, and SNP data to improve the IA prediction. The genes are ranked based on their variance

across the samples, and genes with the highest variances are added sequentially to the LSTM-based

classifier along with family history, HLA genotype, and SNP until its performance on validation

data goes down. Based on this result, we choose to add the top 10 genes in our analysis which

gives the highest validation AUC of 0.73.
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6.3.1.2 Prediction results

6.3.1.2.1 Improved IA outcome prediction

A collective role of omics layers determines the physiology behind a complex disease like T1D.

Therefore, integrating additional omics data into the analysis can provide complementary informa-

tion enabling a better outcome prediction. We predict the IA status of participants using: 1) family

history, HLA genotype, and SNPs, 2) synthetic gene expression, 3) combination of family history,

HLA genotype, SNPs, and synthetic gene expression. IA status labels are generated at different

time cutoff t = [24, 30, 36, 48, 72] months, individually, where all participants developing IA by tth

month are considered as IA positive, and all others are considered IA negative. Predictions using

only gene expression and a combination of family history, HLA genotype, SNPs, and gene expres-

sion are carried out employing the LSTM model described in the subsection 6.2.3. On the other

hand, predictions using family history, HLA genotype, and SNPs are carried out employing the

Table 6.2: Predictions at different IA cutoff. Results (sensitivity, specificity, Youden’s index, AUC)
of IA status prediction using three input data at different IA cutoffs are calculated. The combination
of family history, HLA genotype, SNP, and gene expression shows better performance compared
to them individually. AUC, sensitivity, and Youden’s index drop when the IA cutoff is increased
suggesting the difficulty associated with predicting further into the future. Improvements using
combined data at all cutoffs are statistically significant (p-value<0.001).

t Family history+HLA+ SNP Gene Expression Combined

Sen Spe Y index AUC Sen Spe Y index AUC Sen Spe Y index AUC

18 0.597 0.701 0.298 0.651 0.421 0.799 0.220 0.623 0.640 0.750 0.390 0.717

24 0.542 0.719 0.261 0.643 0.393 0.861 0.254 0.639 0.622 0.761 0.383 0.715

30 0.484 0.746 0.230 0.634 0.390 0.871 0.261 0.639 0.599 0.771 0.370 0.708

36 0.467 0.737 0.204 0.623 0.378 0.887 0.265 0.646 0.575 0.772 0.347 0.701

48 0.476 0.716 0.192 0.598 0.342 0.910 0.252 0.633 0.531 0.780 0.311 0.681

72 0.460 0.715 0.175 0.591 0.360 0.876 0.236 0.631 0.494 0.784 0.278 0.671
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random forest model described in the subsection 6.2.3. All predictions in this study are repeated

50 times with random splitting of samples into training, validation, and test set. The mean values

of AUC, sensitivity, specificity, and Youden’s index of test sets from 50 repetitions are reported in

Table 6.2 and all results thereafter.

The results in Table 6.2 illustrate the improvement in prediction at every time cutoff caused by

the inclusion of gene expression with other features, which signifies the importance of additional

information contained within the gene expression. Moreover, gene expression considers the time

factor and reflects the physiological changes over a period of time instead of a snapshot of the

underlying processes. We also find it more difficult to predict further into the future as sensitivity,

Youden’s index, and AUC decreases gradually with a higher cutoff value of t. AUC, sensitivity,

specificity, and Youden’s index of our proposed model show better results than the baseline where

we used only the time-invariant features. Higher sensitivity is crucial for this prediction as false

negative results can result in neglected care of a high-risk child. Moreover, for IA status cutoff at

24 months, our proposed model (AUC 0.715) outperforms the state-of-the-art result published by

the TEDDY study group in an 8-year progress report [203] (AUC 0.682). They also used family

history, HLA genotype, and SNPs in the predictive model; therefore, it can be inferred that the

improvement in our study is caused by the use of reliable synthetic gene expression. Additionally,

Table 6.3: Predictions of different IA outcomes. Results (sensitivity, specificity, Youden’s index,
AUC) of first islet autoantibody appearance at 24 months are calculated. The combination of
family history, HLA genotype, SNP, and gene expression shows better performance compared to
them individually.

t Family history+HLA+ SNP Gene Expression Combined

Sen Spe Y index AUC Sen Spe Y index AUC Sen Spe Y index AUC

IAA-first 0.486 0.721 0.207 0.635 0.454 0.798 0.252 0.627 0.615 0.716 0.331 0.690

GADA-first 0.524 0.738 0.262 0.657 0.351 0.905 0.256 0.622 0.646 0.759 0.405 0.718
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we investigated the prediction of the appearance of the first Islet autoantibody type by 24 months.

The results are tabulated in Table 6.3 which shows that combined data performs better at predicting

both IAA-first (IAA appears first) and GADA-first (GADA appears first) participants compared to

the baselines.

6.3.1.2.2 Impact of time series gene expression

As most studies collect single gene expression data from a participant, we designed an experiment

to investigate what the results would be if TEDDY collected a cross-sectional gene expression in-
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Figure 6.4: IA status prediction using one gene expression time step, family history, HLA geno-
type, and SNP. IA status is predicted at 24 months to illustrate the predictive ability of the gene
expression if collected at one time point instead of a longitudinal study.
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stead. We use the random forest to predict IA labels at 24 months using gene expression at one

time step up to 24 months along with family history, HLA genotype, and SNP. The experiment

is repeated for each time step; therefore, eight predictions correspond to the eight time steps (24

months) in gene expression. All predictions use the same value for family history, HLA genotype,

and SNP, differing only in gene expression data. The results are illustrated in Fig. 6.4 which shows

decreased performance at all time steps. The best AUC (0.704) is obtained when gene expression at

3rd time step (9 months) is used to predict the IA status. The results show a significant gain in pre-

diction performance by including the time factor of gene expression in the analysis. Moreover, the

AUC values drop at later time steps, which indicates a deteriorating predictive signal at synthetic

gene expression at later time steps. This behavior can be attributed to the insufficient availability

of true gene expression (training data) in later time steps, as shown in Fig. 6.1, which results in

a decaying training of the imputation model. However, our proposed model is not significantly

vulnerable to this limitation as LSTM considers all time steps during the prediction.

Table 6.4: Predictions with gene expression at different time cutoffs. Results (sensitivity, speci-
ficity, Youden’s index, AUC) of IA status prediction using gene expression and combined data up
to tth month are calculated. Higher value of AUC, sensitivity, and Youden’s index when the cutoff
is increased shows the improvement associated with additional time steps. ∗ denotes the results
with statistically significant differences compared to the result using all time steps (48th months).

t Gene Expression Combined

Sen Spe Y index AUC Sen Spe Y index AUC

12 0.317 0.945 0.262 0.608∗ 0.578 0.792 0.370 0.701∗

24 0.357 0.907 0.264 0.623 0.577 0.800 0.377 0.710

36 0.357 0.904 0.261 0.631 0.502 0.787 0.289 0.721

48 0.421 0.799 0.220 0.623 0.622 0.761 0.383 0.715
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6.3.1.2.3 Impact of the availability of gene expression

We used 16 time points in our time series data analysis which is determined by the regular interval

and availability of gene expression up to 48 months. We investigate the importance of using longer

time series data for prediction by setting different cutoffs to gene expression. For a cutoff at tth

month, we only use the input data up to tth month in our LSTM-based classifier, which imitates the

limitation in data availability. IA status for this experiment is generated at 24 months and is fixed

for all gene expression cutoffs. The mean AUCs, sensitivity, specificity, and Youden’s index, are

reported in Table 6.4. Using combined input data with more time steps improves the prediction,

which is expected as longer time series data can capture more physiological changes. Moreover,

our proposed model shows a robust performance with limited data availability. The AUC drops

to 0.701 from 0.715 (1.96% drop) even if we use 12 months as the cutoff for gene expression

(25% of input data). We also investigate whether SNP solely contributes to the predictive ability

of synthetic gene expression. In that case, we could use SNPs to replace gene expression and still

get similar predictive performance. We find that SNPs by themselves have a poor prediction but

can help us get an effective mapping to gene expression.

6.3.2 Quality of synthetic gene expression

The improvement in prediction with the addition of synthetic gene expression with family history,

HLA genotype, and SNP depends on the quality of the synthetic data. Here we design an exper-

iment to compare the predictive ability of synthetic gene expression against true gene expression.

Only the 401 samples with true gene expression are included in this experiment to make the results

comparable. Therefore, we have two sets of data; a true gene expression dataset and a synthetic

gene expression dataset representing the same samples. We predict IA labels at different time cut-

offs of t = [18, 24, 30, 36, 42, 48] months using the two datasets using the LSTM based classifier.
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The results are shown in Fig. 6.5 which illustrates the better predictive performance of synthetic

data across all time step cutoffs. The improvement can primarily be attributed to the higher avail-

ability of data in synthetic gene expression. As mentioned before, 79% of time steps are missing

in the cohort of 401 participants, which translates to 79% time steps having a synthetic gene ex-

pression against the 21% time steps having true gene expression. More time steps in the input

time series data resulted in better analysis and, consequently, a higher AUC. However, true gene

expression only comprises approximately 1.5% of the input time series gene expression for 6,812

participants, as most participants have no available true gene expression. It is inconsequential to

merge the true gene expression with synthetic gene expression; therefore, all predictions in the

subsection 6.3.1.2 were designed using only synthetic gene expression.
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Figure 6.5: IA status prediction using true gene expression and synthetic gene expression. IA
status is predicted using true and synthetic gene expression representing the same 401 participants.
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6.4 Discussion

Detection of IA-positive children helps the researchers in the early identification and intervention

of high-risk children. It also helps them to reduce the cohort size and increase T1D study effi-

ciency. However, detection of IA might not always be enough as children can develop IA years

after birth, whereas TEDDY participants were enrolled at birth. Hence, the prediction of IA can

play a significant role in finding high-risk children more effectively. In T1D outcome prediction,

the time series gene expression collected by TEDDY is inadequately used partly because of a high

percentage of missing data. We generated synthetic gene expression from SNP to solve the miss-

ing data problem that shows competitive performance compared to true gene expression. We also

successfully translated it into a better IA prediction, as shown in Table 6.2. Inspired by the superior

predictive ability, we identified several pathways known to be related to T1D using synthetic gene

expression reported in supplementary Table S5. Although gene expression with all true data might

improve the prediction even further, due to the longitudinal data collection procedure limitations,

missing data is also inevitable for future participants. This is evident because all 401 participants in

the existing TEDDY study have incomplete gene expression. Therefore, developing a framework

that can reduce the reliance on time series gene expression collection but accounts for the improve-

ment introduced by the time factor is an important task. In this study, not only do we predict the

IA status with higher sensitivty, specificity, Youden’s index, and AUC, but we can do it with all

synthetic gene expression in the classifier.

In our study, we used input data for up to 48 months but, in some cases, predicted IA status earlier

than 48 months, as seen in Table 6.2. For example, two critical questions arise if we try to predict

IA status at 24 months using input data up to 48 months. First, whether the prediction results are

biased due to the presence of gene expression after 24 months. Secondly, participants are tested

for islet autoantibodies when gene expression is collected at visits on or after 24 months. If the
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participants already have their IA results, further prediction becomes a moot point. To address the

first concern, in this study, all gene expressions used in classifications are synthetic data, and true

gene expression is only used to generate them. We have shown better prediction results for 6,812

participants using true gene expression from only 401 participants. Moreover, the percentage of

available gene expression is exceedingly tiny at 1.23%. Therefore, it can not create a significant

bias for the prediction results. We also showed competitive results when IA status is predicted at

24 months using input data up to 12 or 24 months in Table 6.4. For the second concern, it is to

be noted that we do not have any gene expression for approximately 94% of participants, which

is the only time series data used as input in the classifier. For future participants, we do not need

to collect gene expression; instead, the synthetic gene expression can be generated as soon as we

have their SNP data and then predict their IA status years down the line. Incomplete RNA-seq gene

expression is also available for the cohort; however, due to the inferior prediction performance we

observed, microarray gene expression was used in this study.

Our proposed method improves IA prediction after including synthetic gene expression. We fo-

cused on gene expression in early life IA prediction and identifying prognostic genes, whereas

family history, HLA genotype, and selected SNPs are used based on literature. A study involving

other datasets such as metabolites, more SNPs, and environmental variables can further improve

the prediction accuracy and draw a more detailed picture of the disease pathogenesis. Additionally,

the participants in TEDDY are all high-risk children screened using the HLA genotype. Therefore,

the true gene expression used as training data in the imputation model is also from those high-risk

participants. Synthetic gene expression for children not yet identified as high risk can be inaccu-

rate if the imputation model is trained using only the gene expression of high-risk participants.

Therefore, our proposed pipeline is not an alternative to HLA genotype-based risk assessment but

rather complements it to identify high-risk children better.
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6.5 Summary

T1D is a chronic autoimmune disease characterized by irreversible destruction of islet β-cell. The

incidence and prevalence of T1D have increased worldwide in recent years, which can disrupt the

access and affordability of insulin, the only treatment to keep a T1D patient alive. Therefore, it is

now more important than ever to find the key factors affecting the onset of this disease and develop

effective treatments or cures. A comprehensive case-control study such as TEDDY can provide

the researchers with answers to those questions. Early prediction of IA can help us design a better

case-control study and ensure in-time care for high-risk children. This study offers an approach for

generating synthetic time series gene expression from SNP and obtaining an improved and early

IA prediction. Our proposed framework improves state-of-the-art IA prediction by integrating

synthetic gene expression in the analysis. Additionally, we compared the time series gene expres-

sion against cross-sectional gene expression and showed superior performance of time series gene

expression even when it is entirely synthetic. It also widens the door for further computational

analyses to link genes to T1D outcomes and time series analyses using incomplete multi-omics

data to study other chronic diseases. This chapter also provides tangible proofs of the effective-

ness of multi-modal imputation frameworks. We not only predicted IA with better accuracy than

previous studies, we can perform this prediction even when no gene expression was available.

104



CHAPTER 7: INTERACTION PREDICTION IN HETEROGENEOUS

GRAPH

In the last chapter of this dissertation, we focus on interaction prediction in heterogeneous graph.

The problem we have chosen is drug-target interaction prediction where the problem statement is

analogous to inter-omics interaction prediction. An interaction prediction model can reduce the

noise in the network and improve the performance of multi-omics integration.

7.1 Introduction

In the relentless pursuit of novel therapeutic agents, the intricate interplay between drugs and their

biological targets has become the focal point of modern pharmaceutical research. The concept

of drug-target interaction (DTI) constitutes the cornerstone of contemporary drug discovery and

development, providing a fundamental framework for understanding the mechanistic foundations

of pharmacological interventions. Amid the ever-evolving challenges posed by drug resistance and

adverse drug reactions, the exploration of DTI not only expedites the identification of novel drug

candidates but also augments our capacity to repurpose existing compounds for diverse therapeutic

applications. Experimental assays have proven to be the gold standard for DTI identification [50].

However, research indicates that the expenses associated with the development of new drugs vary

between $314 million to $2.8 billion, while the duration of clinical development typically spans

between 8.2 to 10.0 years [228, 229]. These substantial investments in time and resources have

made DTI prediction an indispensable tool to aid the initial stages of drug discovery by expediting

the identification of potential drug-target interactions, thereby streamlining the process of lead

compound selection and, consequently, experimental validation.
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Numerous studies have demonstrated the utility of computational approaches, including machine

learning algorithms, network-based methods, and molecular docking simulations for DTI predic-

tion. In recent times, the advancement of DTI prediction has been notably accelerated, primar-

ily attributed to the extensive accumulation and accessibility of biomedical datasets. This surge

is further propelled by the remarkable progress of deep learning techniques, which have show-

cased exceptional success across diverse realms of scientific research and asserted themselves as

the predominant method for DTI prediction. Several advanced deep learning-based frameworks

for DTI prediction have emerged, utilizing diverse sets of data as input. These frameworks can

be broadly categorized into knowledge graph-based methods [1, 41, 42], 3D structure-based ap-

proaches [45, 46, 47, 48], 2D pairwise distance map-based techniques [50, 51], and 1D sequence-

based methods [52, 53, 54]. Heterogeneous knowledge graph (KG)-based methods have demon-

strated success in various scenarios of DTI prediction, including warm start, cold start for drugs,

and cold start for proteins. Cold start predictions involving unknown drugs or proteins are particu-

larly challenging as limited or no information about that drug or protein is available during model

training. Despite this challenge, KG-based models leverage semantic relationships with other en-

tities (such as shared pathways, biological processes, or functional annotations) and diverse data

sources, enabling them to achieve competitive performance in cold start predictions. However,

it’s crucial to note that KG-based methods demand large amounts of heterogeneous datasets and

substantial computational resources to achieve state-of-the-art results. Their performance is also

contingent on the completeness of the knowledge graph. Structure and sequence-based methods

generally tend to perform worse for cold start predictions if the cold start protein or drug has

no structural or sequential homologs with known interactions in training. Moreover, obtaining

high-quality structural data for all proteins of interest can be challenging and time-consuming and

requires significant computational resources. On the contrary, 1D sequences, such as amino acid

sequences for proteins and SMILES (Simplified Molecular Input Line Entry System) for drugs,

represent the most readily available form of input data and require less computation due to their
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simplified representation. Ensuring the quality of data is also more straightforward compared to

knowledge graphs and structural information. Therefore, addressing the limitations associated with

cold start problems using 1D sequences holds the potential to accurately predict interactions for a

broader spectrum of drugs and proteins compared to other methods.

The adoption of pretrained language models (LMs) has emerged as a transformative tool across a

spectrum of research domains. BERT (Bidirectional Encoder Representations from Transformers)

[230] brought about a paradigm shift in natural language processing tasks, and its impact extended

to other domains such as ESM, ProtBert, and ProteinBERT [231, 232, 233] for protein feature

extraction. Similarly, in drug-related contexts, models like ChemBERTa, ChemGPT, and MoL-

Former [234, 235, 236] have played a crucial role in extracting drug features. These pretrained

models have found applications and validation in previous DTI prediction studies, wherein embed-

dings are generated utilizing LMs [237, 238, 239]. These embeddings generated by LMs are inde-

pendent, meaning no neighborhood information is considered during their generation. While such

approaches have proven effective, recent studies, including those utilizing KG-based frameworks,

have demonstrated the efficacy of neighborhood-based embedding generation for DTI prediction

[240]. Incorporating neighborhood information into language model-based embeddings has the

potential to yield improved representations for both drugs and proteins. Moreover, previous lan-

guage model-based DTI prediction studies [237, 238] lack a comprehensive comparison with other

methods, focusing only on the comparison among the language model variants.

In this chapter, we introduce a novel framework, DTI-LM, designed for predicting drug-target

interactions by leveraging language models to generate encodings from protein amino acid and

drug SMILES sequences. Going beyond traditional approaches, we enhance the encoding pro-

cess by introducing graph attention networks (GAT). These networks enrich the representations

of proteins and drugs with neighborhood information, thereby contributing to more nuanced and

context-aware DTI predictions. Our experimental findings substantiate the effectiveness of the pro-
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posed DTI-LM framework, demonstrating superior performance compared to existing state-of-the-

art DTI prediction models while utilizing fewer data and computational resources. Furthermore,

we investigate the current limitations associated with language model-based DTI prediction. This

exploration allows us to gain insights into the challenges and boundaries that currently exist in

protein and drug language models, providing a foundation for potential future enhancements and

refinements in language model-based drug-target interaction prediction.

7.2 Methods

In this section, we first introduce the mathematical notations employed in this study, followed by

the proposed framework, DTI-LM. The framework can take protein amino acid sequences and

drug SMILES sequences as inputs in language models, followed by graph attention networks and

a multi-layer perceptron (MLP) to predict DTIs. We then discuss the baselines used in this study

to illustrate the improvements offered by our model.

7.2.1 Overview of the framework

In the context of language model-based DTI prediction frameworks, the protein embeddings pro-

duced by protein language models are inherently distinct for each protein sequence, just as the

drug embeddings generated by chemical language models remain independent for different drug

sequences [238]. Although similar proteins or drugs should generate similar embeddings, en-

hancements to these embeddings can be achieved by explicitly defining a neighborhood based

on similarities or interactions between drugs or proteins. Conversely, in GAT-based DTI predic-

tion frameworks, various encoding methods such as integer encoding, Word2Vec, position-specific

scoring matrix, or biological property-based encoding are utilized to prepare the protein sequences.
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For drug sequences, encodings like molecular fingerprint, molecular graph, and Word2Vec are em-

ployed as input for the GAT model [241, 242, 243, 244, 245]. As a step toward an integrated

approach, we propose combining both strategies by encoding the protein and drug sequences us-

ing language models and subsequently generating the final representations through the GAT model.

Figure 7.1 illustrates the overall workflow of DTI-LM.
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Figure 7.1: Overall framework of DTI-LM. In the framework, protein and drug sequences are fed
into their respective language models. Next, the generated encoding and their similarity matrix are
used in a graph attention network to generate protein and drug embeddings. The embeddings are
then concatenated and passed into a multi-layer perceptron to predict DTI.

The notations used to define the proposed model are summarized in Table 7.1. Let X = [x1,x2, ...,xm]

represent the p-dimensional encodings for m proteins generated by the protein language model
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from protein sequences represented by amino acids, where xi denotes the ith protein. Similarly,

Y = [y1,y2, ...,yn] represents the q-dimensional encodings for n drugs generated from drug

SMILES sequences. Zx and Zy are GAT protein and drug embeddings, respectively, where k,

l, and h represent the protein embedding size, drug embedding size, and the number of heads in

the GAT. The proposed framework is designed for binary prediction of the drug-target interaction

matrix, denoted by I . For the remainder of the manuscript, outputs from the LMs are designated

as encodings, and outputs from the GATs are designated as embeddings to easily differentiate

between them.

7.2.1.1 Protein encoding

We use ESM-2 [231], a 33-layer, 650-million-parameters model with an output dimension of 1280

for encoding protein sequences. It is an advanced deep learning model specifically designed to cap-

ture the complex evolutionary patterns and structural features embedded within protein sequences.

Table 7.1: Notations used in DTI-LM

Name Definition

p, q,m, n, k, l, h protein encoding size, drug encoding size, number of proteins, num-
ber of drugs, protein GAT embedding size, drug GAT embedding size,
number of heads respectively

X ∈ Rp×m protein sequence encoding generated by ESM-2

Y ∈ Rq×n drug SMILES encoding generated by ChemBERTa

Sx ∈ Rm×m protein-protein adjacency matrix

Sy ∈ Rn×n drug-drug adjacency matrix

Zx ∈ Rkh×m protein embeddings generated by GAT

Zy ∈ Rlh×n drug embeddings generated by GAT

I ∈ Rm×n drug-target interaction matrix
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The model is trained on the UniRef50 dataset, which is part of the UniProt Knowledgebase [246], a

centralized repository for protein sequences and functional information. The dataset is constructed

through the clustering of UniRef90 seed sequences, ensuring that each cluster comprises sequences

with a minimum of 50% sequence identity to, and 80% overlap with, the longest sequence in the

cluster and consists of 11,862,245 clusters [247]. By encoding protein sequences using ESM-2, we

can harness the model’s capacity to capture long-range dependencies and subtle sequence motifs,

thereby facilitating more accurate predictions of protein properties, functions, and interactions.

7.2.1.2 Drug encoding

For drug SMILES sequence encoding, we choose a prominent chemical language model, Chem-

BERTa [234], a 6-attention layer, 84-million-parameters model with an output dimension of 768.

It was trained on 10 million SMILES sequences from the PubChem database [248]. ChemBERTa

integrates the powerful language understanding capabilities of BERT with domain-specific knowl-

edge from the chemical and pharmaceutical realms. By encoding drug SMILES sequences, Chem-

BERTa enables the extraction of rich semantic representations, capturing intricate molecular struc-

tures, functional groups, and chemical properties embedded within the SMILES notations. With its

capacity to comprehend complex chemical structures and their relationships, ChemBERTa serves

as a valuable tool for drug discovery. In this study, we implemented our model using the Hug-

ging Face library [249], a widely recognized and extensively utilized platform for natural language

processing and deep learning research.

7.2.1.3 Drug-target interaction prediction

Protein and drug encodings, given by X and Y respectively, are fed into two GATs to derive

embeddings by integrating neighborhood information. To define the neighborhood of a protein, an
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m ×m Pearson correlation matrix Sx is first calculated. This correlation-based similarity matrix

is then converted into a binary adjacency matrix using a threshold where high correlation scores

above that threshold are assigned value of 1 while low scores below that threshold are assigned

value of 0. The binarized adjacency matrix will be later used to mask the attention coefficients

of the model. Whether to keep self-connections in the adjacency matrix and the thresholds used

for binarization are set as hyperparameters in the framework and tuned for the best performance.

A similar process is applied to obtain the drug neighborhood Sy. The model can accommodate

other neighborhood definitions such as the protein-protein interaction network (PPI) and drug-drug

interaction network (DDI). Once we have the adjacency matrices, we can generate the embeddings

for X and Y . For protein embedding, the attention directed to xi from its neighbor xj can be

computed as follows:

cij = a[Wxi||Wxj] (7.1)

where W ∈ Rk×p and a ∈ R1×2k represent the learnable weight parameters of a single head.

Here, k denotes the embedding size of the GAT, and || denotes the concatenation operation. Sub-

sequently, the calculated attention values undergo a LeakyReLU activation function. To incorporate

the structural information of the network, the attention values are modified by applying a mask us-

ing the adjacency matrix. Specifically, only the attention values corresponding to connected nodes

in the adjacency matrix Sx are retained, while all other values are set to zero. The attention coeffi-

cient for a neighbor xj is then calculated using the Softmax function as follows:

αij =
exp(LeakyReLU(cij))∑

r∈Ni
exp(LeakyReLU(cir))

(7.2)

where Ni represents the neighborhood of the ith protein. The embedding of xi is calculated as:

x′
i = σ(

∑
j∈Ni

αijWxj) (7.3)
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where σ is a non-linear activation function. We employ multi-head attention mechanism to capture

complex relationships and enhance the expressiveness of the learned representations. For h number

of heads, each with its separate attention mechanism, the final embedding of the sample is obtained

by concatenating the output of the heads. Therefore, the final embedding of the ith protein is given

by:

zi =

∣∣∣∣∣∣∣∣h
h=1

σ(
∑
j∈Ni

αh
ijW

hxj). (7.4)

We obtain the embeddings for all m proteins as Zx ∈ Rkh×m and follow the same procedure to

obtain the embeddings for n drugs as Zy ∈ Rlh×n, where l is the embedding size for drugs from

a single head. We design the GAT model to have the same embedding size as LM encoding i.e.

kh = p and lh = q. For simplicity, we show same number of heads h for drugs and proteins

which can be different in implementation of DTI-LM. The number of heads and number of layers

in the networks used for generating protein and drug embeddings are set as hyperparameters in the

model.

Finally, the protein embedding Zx and the encoding from the language model X are added to-

gether to obtain the final protein representations. Similarly, the drug embedding Zy and the en-

coding from the language model Y are added together to obtain the final drug representations.

These representations are concatenated and fed into a multilayer perceptron (MLP) to predict the

corresponding interactions, as given by:

Ĩ = MLP ([Zx + βX]||[Zy + γY ]) (7.5)

β and γ are hyperparameters that control the contribution of the residual connection. The model is

trained with binary cross-entropy loss, calculated as:

L = − 1

mn

mn∑
i=0

[Ii · log σ(Ĩi) + (1− Ii) · log(σ(1− Ĩi))] (7.6)
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where σ represents the Sigmoid function.

7.2.2 Baselines models

We employ several baselines to compare the performance of our proposed model, DTI-LM. Deep-

DTA [52], DeepDTI [53], and TransDTI [238] are end-to-end models that take protein and drug

sequences as input, similar to DTI-LM. DeepDTA and DeepDTI use convolutional neural networks

and deep belief networks, respectively, to process the protein and drug sequences. TransDTI, on

the other hand, uses language models for protein and drug sequences with an MLP on top of

the outputs from the language models. Additionally, DTI-LM is compared against heterogeneous

data-driven models such as DTiGEMS+ [42], DTINet [41], KGE NFM [1], and TriModel [250]

that require more data modalities to train than DTI-LM. Although DTI-LM uses protein-protein

and drug-drug similarity matrices, we can generate these matrices from the language model encod-

ing without any external information.

7.3 Experiments

7.3.1 Dataset

The proposed framework is evaluated on four datasets: DrugBank [251], BindingDB [252], Ya-

manishi 08 [253], and Luo’s dataset [41]. The DrugBank and BindingDB datasets contain only

protein and drug sequences; therefore, they were primarily utilized for comparing sequence-based

methods. In contrast, the Yamanishi 08 and Luo’s datasets include heterogeneous knowledge

graphs (KG) alongside protein and drug sequences, making them suitable for comparing both

sequence-based and heterogeneous data-driven methods. The Yamanish 08 network encompasses

25,487 nodes and 95,579 edges, whereas Luo’s dataset network consists of 12,015 nodes and
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Table 7.2: Data statistics.

Dataset Proteins Drugs KG Interactions

DrugBank 2203 1603 No 6041

BindingDB 879 9144 No 4040

Yamanishi 08 722 791 Yes 3448

Luo’s 1129 708 Yes 1526

1,895,445 edges. Statistics of the datasets can be found in Table 7.2.

7.3.2 Running DTI-LM

First, the DrugBank and BindingDB datasets are split into training, validation, and test sets, with

ratios of 0.79, 0.01, and 0.20, respectively. This splitting process adheres to three specific condi-

tions: warm start (the same drugs and proteins being allowed in both training and test sets), cold

start for drugs (drugs in training and test sets are exclusive), and cold start for proteins (proteins in

training and test sets are exclusive). The Yamanishi 08 and Luo’s datasets are obtained from the

source mentioned in [1], and the same training and test splits as utilized in that study are employed

to generate our results. While sequence-based models, including DTI-LM, are exclusively trained

on the sequences, heterogeneous data-driven models incorporate the use of KG as well. There-

fore, heterogeneous data-driven models are not compared on DrugBank and BindingDB datasets.

DrugBank, Yamanishi 08, and Luo’s datasets provide binary interaction details that were used in

our classification framework to train a binary classifier to predict interaction or no interaction for

a pair of drug and protein. In contrast, BindingDB provides binding affinity (Kd) data, which is

converted into a binary format using a threshold to align with the classification framework. The

threshold is chosen to maintain a comparable DTI density as other datasets. The hyperparameters
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of the framework are fine-tuned using Ray Tune [254], and comprehensive information regarding

the selection of hyperparameters can be found in the Supplementary Document (Table S4). All

predictions are run 10 times with different splittings, with the mean area under the Receiver Op-

erating Characteristic curve (AUROC) and the area under the Precision-Recall curve (AUPRC)

reported in the respective tables. These experiments are repeated with two variations in the ratios

of positive and negative samples in the datasets: balanced data has a 1:1 ratio, whereas unbalanced

data has a 1:10 ratio between positive and negative drug-target pairs or all samples if the ratio is

less than 1:10.

DTI-LM is thoroughly evaluated through various experiments. Firstly, we compare the perfor-

mance of DTI prediction with cutting-edge baselines, highlighting the improvements introduced

by our model. Subsequently, we conduct an in-depth analysis of DTI-LM to examine its benefits

and drawbacks, specifically focusing on the use of the language model-based encoding for DTI

prediction.

7.3.3 Prediction results

We designed two DTI prediction scenarios to illustrate the ability of DTI-LM. Firstly, we con-

ducted a comparative analysis of our model against other sequence-based models using DrugBank

and BindingDB datasets, demonstrating the enhanced predictive capabilities of our approach re-

lying solely on sequence data. We repeated the experiments with all three types of splitting, each

with balanced and unbalanced datasets. Secondly, we pitted our model against heterogeneous data-

driven models using Yamanishi 08 and Luo’s datasets, highlighting our competitive performance

despite utilizing only a fraction of the input data. Not only is protein and drug sequence data more

readily available, but it can also significantly reduce the computational complexity of a model com-

pared to heterogeneous data-driven models. In Tables 7.3, 7.4, 7.5, and 7.6, the first row associated
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Table 7.3: The classification performance on DrugBank dataset. Average AUROC and AUPRC
scores of drug-target prediction for warm start, cold start for drug, and cold start for protein data
splitting.

DTI-LM TransDTI DeepDTA DeepDTI

balanced

warm start
0.951 0.934 0.889 0.916

0.953 0.935 0.882 0.914

cold start

for drug

0.902 0.877 0.874 0.859

0.899 0.889 0.871 0.868

cold start

for protein

0.923 0.916 0.855 0.838

0.935 0.920 0.825 0.850

unbalanced

warm start
0.960 0.952 0.907 0.947

0.863 0.858 0.623 0.773

cold start

for drug

0.890 0.876 0.765 0.860

0.674 0.651 0.441 0.582

cold start

for protein

0.938 0.916 0.737 0.871

0.821 0.789 0.441 0.614

with each splitting strategy represents the AUROC, while the second row depicts the AUPRC.

The results presented in Table 7.3 and Table 7.4 showcase the average classification results of the

sequence-based model applied to the DrugBank and BindingDB datasets, respectively. They high-

light that our model outperformed the baseline models in the majority of cases. Notably, under the

warm start scenario, our model consistently demonstrated superior performance compared to all

the baselines across both datasets. The most substantial performance enhancement was observed

in the case of cold start for protein splitting despite doing worse than DeepDTA in unbalanced

BindingDB dataset. Across different splitting scenarios, our model exhibited an average improve-

ment in AUROC of 3.57% and AUPRC of 8.33% for warm start, 3.84% and 6.13% for cold start

for drug, and 5.57% and 8.93% for cold start for protein predictions, respectively. AUROC scores

are better in unbalanced splittings due to higher volume of training data. AUPRC scores are un-
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Table 7.4: The classification performance on BindingDB dataset. Average AUROC and AUPRC
scores of drug-target prediction for warm start, cold start for drug, and cold start for protein data
splitting.

DTI-LM TransDTI DeepDTA DeepDTI

0.939 0.926 0.868 0.923
warm start

0.934 0.918 0.729 0.910

0.872 0.870 0.754 0.863cold start

for drug 0.879 0.878 0.699 0.886
0.812 0.809 0.697 0.757

balanced

cold start

for protein 0.787 0.779 0.572 0.767

0.945 0.941 0.820 0.935
warm start

0.839 0.834 0.577 0.813

0.895 0.872 0.851 0.896cold start

for drug 0.744 0.708 0.637 0.743

0.831 0.818 0.869 0.761

unbalanced

cold start

for protein 0.463 0.456 0.568 0.366

surprisingly lower for unbalanced splittings as there are far less positive interactions compared to

negative interactions that makes positive interaction predictions more challenging. We also find

that DeepDTA is more unstable compared to other models with a large gap of performance be-

tween balanced and unbalanced splitting. It works better for balanced data in DrugBank while

doing better for unbalanced data in BindingDB.

Next, Tables 7.5 and 7.6 report the average classification results for both sequence-based and het-

erogeneous data-driven models on Yamanishi 08 and Luo’s datasets. Using the same publicly

available data splits as [1] enables a direct comparison of our results with those reported in that

paper. As observed, heterogeneous data-driven baselines DTiGEMS+, DTINet, TriModel, and

KGE NFM consistently outperform sequence-based baselines DeepDTI and MPNN CNN across

various scenarios, with a notable performance gap for cold start for drug and cold start for protein
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Table 7.5: The classification performance on Yamanishi 08 dataset. Average AUROC and AUPRC
scores of drug-target prediction for warm start, cold start for drug, and cold start for protein data
splitting. DeepDTI, MPNN CNN, DTiGEMS+, TriModel, and KGE NFM results are directly
reproduced from [1].

sequences-based heterogeneous data-driven

DTI-LM TransDTI DeepDTI MPNN CNN DTiGEMS+ TriModel KGE NFM

0.974 0.969 0.865 0.834 0.964 0.951 0.968
balanced warm start

0.966 0.961 0.820 0.788 0.957 0.946 0.961

0.984 0.984 0.982 0.974 0.976 0.985 0.983
warm start

0.930 0.927 0.917 0.874 0.874 0.886 0.902

0.785 0.762 0.628 0.629 0.745 0.817 0.853cold start

for drug 0.451 0.442 0.191 0.194 0.518 0.503 0.521

0.911 0.902 0.497 0.502 0.674 0.829 0.921

unbalanced

cold start

for protein 0.739 0.729 0.099 0.098 0.443 0.483 0.679

splittings. Despite being a sequence-based model, DTI-LM not only outperforms other sequence-

based baselines but also surpasses heterogeneous data-driven models for warm start and cold start

for protein prediction. For cold start for drug splitting, while we outperform other sequence-based

baselines in most cases, except MPNN CNN on Luo’s dataset, we still lag behind state-of-the-art

heterogeneous data-driven models. This underscores the findings from Tables 7.3 and 7.4 that

DTI-LM is more effective for cold start for protein splitting than cold start for drug splitting. To

gain a deeper understanding of the factors contributing to the superior performance of our model in

the context of cold start for protein as opposed to cold start for drug, we conducted an investigation

detailed in section 7.3.5.
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Table 7.6: The classification performance on Luo’s dataset. Average AUROC and AUPRC scores
of drug-target prediction for warm start, cold start for drug, and cold start for protein data splitting.
DeepDTI, MPNN CNN, DTINet, and KGE NFM results are directly reproduced from [1].

sequences-based heterogeneous data-driven

DTI-LM TransDTI DeepDTI MPNN CNN DTINet KGE NFM

0.944 0.938 0.859 0.830 0.940 0.903
balanced warm start

0.948 0.939 0.840 0.805 0.941 0.898

0.971 0.971 0.952 0.929 0.944 0.962
warm start

0.906 0.902 0.793 0.705 0.817 0.855

0.760 0.742 0.662 0.806 0.853 0.881cold start

for drug 0.393 0.383 0.225 0.462 0.592 0.555

0.832 0.823 0.487 0.431 0.778 0.813

unbalanced

cold start

for protein 0.595 0.589 0.092 0.078 0.388 0.444

7.3.4 Transition from cold start to warm start

Given the limitations in cold start for drug splitting, we investigated the transition between a cold

start and warm start prediction to determine the minimum information needed for the transition.

For each drug in the test set, we sent a number of samples (drug-target pair) to the training set

and tracked how the prediction performance changes with the inclusion of additional information.

All predictions with leaked data are also computed 10 times similar to previous results. Figure 7.2

illustrates the results for the DrugBank dataset, where we leaked two, four, and six samples from

each drug in the test set to the training set but kept at least one sample for those drugs in the test

set. AUPRC has a larger gap between warm start and cold start scenario compared to AUROC. The

figure shows that, AUPRC jumps significantly with inclusion of just 2 samples on average for each

test drug that is comparable to warm start predictions. Both AUROC and AUPRC keep gradually

increasing as we leak more samples.
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Figure 7.2: Effect of leaked samples. AUROC and AUPRC scores after 2, 4, and 6 samples leaked
into training of cold start for drug prediction.

7.3.5 Language model encoding analysis

In this section, we examine the current strengths and weaknesses of language model-based DTI

prediction. As observed in the results reported above, DTI-LM performs better in warm start and

cold start for protein predictions but lags behind in cold starts for drug predictions. In contrast,

other 1D sequence-based methods struggle with both cold starts for protein and cold starts for drug

predictions. For cold start predictions, performance depends on how much the model can learn

about an unknown drug or protein from the known drugs or proteins in the training data. The

results suggest that DTI-LM effectively learned representations for unknown proteins, given the

high AUROC and AUPRC values in cold starts for protein prediction. However, it fails to replicate

a similar level of learning for unknown drugs. If the representations are significantly different in the

training and test sets for a pair of drugs that share similar interactions, this difference can explain
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the poor performance in cold starts for drug prediction. Therefore, we compute the similarity

of drugs and proteins using their respective SMILES and amino acid sequences, as well as the

encoding generated by language models, to inspect the efficiency of the language models in finding

similar drugs and proteins.

Table 7.7: Sequence and encoding similarity. Similarity is measured based on the raw sequences
and language model encodings representing drugs and proteins.

raw sequences LM encoding

dataset drug protein drug protein

DrugBank 0.101 0.072 0.644 0.853

BindingDB 0.117 0.090 0.574 0.859

Yamansihi 08 0.104 0.089 0.554 0.853

Luo’s dataset 0.097 0.078 0.488 0.845

Table 7.8: Top 5 neighbor support. Average percentage of interactions shared by majority of the
neighbors.

raw sequences LM encoding

dataset drug protein drug protein

DrugBank 25.1% 0.0% 14.3% 30.7%

Yamansihi 08 14.1% 21.5% 6.5% 44.0%

Luo’s dataset 30.9% 0.0% 24.5% 26.4%

Table 7.7 shows the similarity of drugs and proteins in the benchmark datasets. For drug similarity

using SMILES sequences, we utilize the RDKit library [255] to measure Tanimoto similarity on

Morgan fingerprints. Clustal Omega [256] is employed to determine amino acid sequence sim-

ilarity for proteins. On the other hand, for language model encoding similarities, we calculate

the Pearson correlation for each pair of drugs or proteins separately, based on the representations

generated by the language models. This process generates two m ×m protein-protein similarity
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matrices and two n × n drug-drug similarity matrices. The mean similarity for all drug/protein

pairs is reported in Table 7.7. As shown, neither drug nor protein sequences exhibit significant

similarity. It’s important to note that sequence-level drug and protein similarity is not directly

comparable. However, both similarity metrics have a range of 0-1, with 1 indicating the highest

similarity. The lack of significant similarity is evident. In contrast, the language model encodings

are highly similar across all datasets, particularly in the case of protein encoding. This underscores

the greater ability of the protein language model (ESM-2) to capture protein similarity even when

amino acid sequences are not very similar. However, it remains a possibility that ESM-2 gener-

ates all protein encodings similarly, regardless of the actual similarity between them, which may

impede DTI prediction. Therefore, we conduct another experiment to investigate whether similar

drugs or proteins in the encoding domain also share similar interactions. We measure how many

drug-protein interactions of a given drug (or protein) are supported by the majority of its neigh-

boring drugs (or proteins). Neighbors are defined as the top N similar drugs (proteins) to a drug

(protein) using raw sequence or encoding-based similarity matrices. In this experiment, we set N

= 5, and a protein (drug) interaction of a given drug (protein) must be shared by at least 3 of its

neighboring drugs (proteins).

Table 7.8 presents the average percentage of interactions supported by the majority (3 or more) of

neighbors for a drug or protein. We employ both raw sequence-based similarities and encoding-

based similarities to construct the neighborhood. From the table, we can see that drugs receive

a higher percentage of support from neighbors compared to proteins when neighbors are selected

based on raw sequence-based similarity. However, the average percentage of support for drugs

decreases across all datasets when neighbors are selected based on language model encoding.

This suggests that encoding similarity in drugs is less meaningful, as similar drugs may exhibit

drastically different interactions.

Table 7.8 also illustrates the noteworthy increase in average percentage of support for proteins us-
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ing similarity matrix generated from language model encoding compared to raw sequence. For ex-

ample, 44% of all drug-protein interactions from proteins in Yamanishi 08 dataset are also shared

by at least three of their respective neighbor proteins. The presence of a strong neighborhood led

us to use GAT to incorporate this vital information in the DTI prediction and our implementation of

GAT successfully improves the prediction performance over TransDTI. In light of these findings,

we can see why DTI-LM demonstrates substantial improvements in cold start for proteins predic-

tions but faces challenges in the case of drugs. Existing chemical language models may struggle

to capture the complex interwoven information in the SMILES sequences as efficiently as ESM-2

does for protein sequence.

7.4 Discussion

In our comprehensive experiments, DTI-LM shows great prediction results, especially for warm

start and cold start for proteins scenarios. It successfully overcomes the traditional challenges faced

by sequence-based models for cold start for protein prediction. However, it falls short of achieving

a comparable level of performance for cold start for drugs, despite improvements over the existing

sequence-based models. We delved deeply into analyzing the reasons for the discrepancies be-

tween cold start for protein and drug predictions. Our experiments, detailed in Section 7.3.5, show

that the ESM-2 is very effective in finding similar proteins that also share similar drug interactions

based solely on amino acid sequences. In contrast, ChemBERTa lacks the same level of proficiency

for drugs. We also explored the performance of newer, larger models such as ChemGPT [235] and

observed similar outcomes.

The experiment outlined in Section 7.3.5 is not conclusive; instead, it gives us a general idea

about the performance of the protein and chemical language models. A few crucial aspects of the

experiment are discussed below.
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• In Table 7.7, we present the Pearson correlation, which ignores the non-linear relationship

that can be captured by the subsequent GAT and MLP we employ for the prediction.

• The average neighbor support, as shown in Table 7.8, paints an important but incomplete pic-

ture. The training process involves contributions from samples beyond the top 5 neighbors,

impacting results irrespective of the quality of these neighbors.

• Finding support for protein interaction and drug interaction may also pose varying levels of

difficulty due to the different numbers of drugs and proteins in each dataset. For instance,

datasets like DrugBank and Luo’s exhibit a lower number of proteins than drugs, i.e., pro-

teins have fewer options to choose from to find an interaction than drugs. Therefore, the

probability of proteins sharing similar interactions will be higher than drugs sharing similar

interactions. This circumstance can make it comparatively easier to find neighbor proteins

with similar drug interactions than neighbor drugs with similar protein interactions. How-

ever, Yamanishi 08 has more drugs than proteins (as indicated in Table 7.2) while having the

largest difference between support for proteins and drugs, as seen in Table 7.8. Therefore,

the difference cannot be completely explained by the number of proteins or drugs.

• It is possible that drugs with similar sequences inherently do not share similar interactions.

This makes finding drugs with similar interactions based solely on sequences more chal-

lenging. However, we use the support for drug interactions based on raw sequences as a

baseline (Table 7.8) and expect the language models to capture more complex similarities.

We observe that ESM-2 aligns with this expectation, showing an improved percentage of

support in LM encoding compared to raw sequences. On the other hand, ChemBERTa fails

to meet the expectation and demonstrates lower support for LM encoding compared to raw

sequences. This could be interpreted as similar drug LM encodings being further away from

sharing similar interactions than similar SMILES sequences.
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The domain of pre-trained language models is improving at an unprecedented level, giving us hope

for stronger and more advanced chemical language models in the future. This progress is expected

to address cold start for drugs issues more effectively, as ESM-2 has done for cold start for protein

predictions.

Based on the higher percentage of support for drugs using raw sequences in Table 7.8, we utilized

a raw sequence-based similarity matrix in drug GAT for DTI prediction and found worse results

(results are not shown in the manuscript). This can be attributed to the fact that similar SMILES

sequences can have different LM encodings; thus, the raw sequence-based neighborhood will be

less meaningful for LM encoding. These limitations might be prevalent in all language model-

based DTI prediction frameworks that use drug sequence data.

7.5 Conclusion

We propose DTI-LM, a language model-based DTI prediction framework that incorporates neigh-

borhood information for predictions. Our goal is to achieve state-of-the-art results in various pre-

diction scenarios and to test the limits of existing protein and chemical language models for these

tasks. DTI-LM outperformed the baselines for warm start and cold start for protein predictions.

We also tracked back on the weak performance of DTI-LM for cold start for drug predictions and

identified the chemical language model as a limiting factor. Recent notable advancements in natu-

ral language processing may pave the way for the development of improved protein and chemical

language models to address the cold start problem more efficiently. Nevertheless, DTI-LM cur-

rently excels in cold start for protein predictions, a crucial aspect for personalized medicine where

tailoring treatment to individual patients’ protein variants is essential.
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CHAPTER 8: CONCLUSION AND FUTURE WORK

This dissertation delves into the utilization of machine learning algorithms for the analysis of multi-

modal data in computational biology. It introduces two integrative models crafted to effectively

handle multi-modal data, emphasizing the utilization of inter-modal interaction networks. The dis-

sertation unfolds through structured chapters, encompassing the development and implementation

of these models, alongside methodologies devised to surmount common challenges encountered in

multi-modal integrative models. In the initial chapters, we present multi-modal integrative models,

showcasing their enhanced performance in disease outcome prediction and biomarker identifica-

tion. Notably, we observe that the efficacy of these models is contingent upon the quality of input

data. Given that missing values are indicative of data quality issues, particularly prevalent in bi-

ological datasets, we propose two missing value imputation frameworks in subsequent chapters.

These frameworks, detailed in the following sections, hold the potential to significantly enhance

the accuracy and feasibility of downstream predictions. Lastly, we introduce a link prediction

framework aimed at mitigating noise within the interaction network. Given the reliance of our

proposed multi-modal integrative models on the accuracy of the interaction network, the link pre-

diction model facilitates a smoother flow of information across data modalities.

In the future, our intention is to expand the capabilities of the multi-modal integrative models to

encompass the integration of more than two data modalities. Physiological activities are intricately

influenced by the interactions among numerous omics layers. Many lingering questions in human

biology stem from our limited understanding of this multi-layered structure and our inability to

comprehensively explore it. Integrating all omics data and their respective interaction networks

holds promise in elucidating the underlying disease mechanisms with greater precision. Further-

more, we aim to amalgamate the missing value imputation and interaction network methodologies

with the integrative models to enhance input data quality and diminish noise in a unified approach.
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Alternative generative models, such as diffusion models, could be explored as replacements for

GANs to merge multi-omics datasets. Additionally, there is potential to incorporate more domain-

specific knowledge or biological constraints to bolster prediction accuracy and reduce noise.

Validation of the proposed methodologies and models on a broader array of real-world biological

datasets is on our agenda, collaborating closely with domain experts to evaluate their efficacy in

specific computational biology tasks. We also seek to address scalability and efficiency concerns

inherent in the proposed frameworks, particularly when handling large-scale multi-modal datasets,

through the exploration of parallel computing techniques and algorithmic optimizations. Lastly,

we are committed to enhancing the biological interpretability of the results derived from integra-

tive models and interaction predictions. It is paramount that insights gleaned from computational

analyses are not only meaningful but also actionable for biologists and researchers in the field,

facilitating advancements in our understanding of complex biological processes.
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[194] Ramon Viñas, Tiago Azevedo, Eric R Gamazon, and Pietro Liò. Deep Learning Enables
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