The Use Of Filters In Topology

Abdellatif Dasser

University of Central Florida

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

https://stars.library.ucf.edu/etd/177
The Use of Filters in Topology

By

ABDELLATIF DASSER
B.S. University of Central Florida, 2002

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science
in the Department of Mathematics
in the College of Arts and Sciences
at the University of Central Florida
Orlando, Florida

Fall Term
2004
Sequences are sufficient to describe topological properties in metric spaces or, more generally, topological spaces having a countable base for the topology. However, filters or nets are needed in more abstract spaces. Nets are more natural extension of sequences but are generally less friendly to work with since quite often two nets have distinct directed sets for domains. Operations involving filters are set theoretic and generally certain to filters on the same set. The concept of a filter was introduced by H. Cartan in 1937 and an excellent treatment of the subject can be found in N. Bourbaki (1940).
ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Richardson, for many insightful conversations during the development of the ideas in this thesis, his understanding, endless patience, and encouragement.

I would also like to think my defense committee members, Dr. Mohapatra and Dr. Han for asking me excellent questions.

Finally, but not least, I would like to think Ahmed Ameur for the friendship and comic relief when things started to get difficult.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION AND EXAMPLES ... 1
CHAPTER 2 FILTERS ... 4
CHAPTER 3 ULTRAFILTERS ... 8
CHAPTER 4 CONVERGENCE AND FILTERS ... 12
CHAPTER 5 COMPACTNESS AND FILTERS ... 15
CHAPTER 6 INITIAL STRUCTURES ... 17
CONCLUSION .. 19
LIST OF REFERENCES .. 20
CHAPTER 1
INTRODUCTION AND EXAMPLES

The study of filters is a very natural way to describe convergence in general topological space. Filters were introduced in 1937 by Cartan (1937 a,b). Bourbaki (1940) employed filters in order to prove several results in their text. In the same year Tukey (1940) studied sets, filters, and various modifications of the two concepts. A complete reliance on filters for the development of topology can be found in Kowalsky (1961). There are traces of the concept of filters as early as 1914 in Root’s article. More recently, filters play a fundamental role in the development of fuzzy spaces which have applications in computer science and engineering. Filters are also an important tool used by researchers describing non-topological convergence notions in functional analysis. (e.g see Beattie and Butzmann,2002). Moreover, Preuss (2002) has applied filters throughout his book on categorical topology.

The purpose of this paper is to provide thorough discussion of filters and their applications. Filters are used in general topology to characterize such important concepts as continuity, initial and final structures, compactness, etc.

The following examples are given to show that sequences are not sufficient to characterize points of closure, continuity, and compactness.

Example 1.1 let X to be an uncountable set and fix $x_0 \in X$.

Define $\tau = \{A \subseteq X : (x_0 \notin A) \text{or} (x_0 \in A \text{ and } A^c \text{ is countable})\}$. Then τ is a topology for X.

(a) $\phi, X \in \tau$
(b) $A, B \in \tau$ implies that $A \cap B \in \tau$

(c) $A_{\alpha} \in \tau, \alpha \in J$ implies that $\bigcup_{\alpha} A_{\alpha} \in \tau$. The latter holds since if $x_0 \in A_{\alpha_0}$ for some α_0, then $\left(\bigcup_{\alpha} A_{\alpha} \right)^c = \bigcap_{\alpha} A_{\alpha}^c \subseteq A_{\alpha_0}^c$ which is countable. Thus, $\bigcup_{\alpha} A_{\alpha} \in \tau$.

We claim that $x_n \xrightarrow{\tau} x$ if and only if $x_n = x$ eventually (ie $x_n = x \forall n \geq N$).

(a) Suppose that $x \neq x_0$. Since $\{x\} \in \tau$, $x_n \xrightarrow{\tau} x$ if and only if $x_n = x$ eventually.

(b) Suppose that $x = x_0$ and $x_n \neq x_0$ for infinitely many n. Define $F = \{x_n : x_n \neq x_0\}$. Then $F^c \in \tau$ and $x_n \in F^c$ eventually fails to hold. Hence $x_n \neq x_0$ infinitely often. Therefore, x_n does not converge to x_0. Conversely, if x_n does not converge to x_0, then there exist $O \in \tau, x_0 \in O$ such that $x_n \notin O$ infinitely often. That is, $x_n \neq x_0$ infinitely often. Hence, $x_n \xrightarrow{\tau} x_0$ if and only if $x_n = x_0$ eventually.

A: $x_0 \in \{x_0\}^c$ but it does not exist a sequence $\{x_n\}$ in $\{x_0\}^c$ such that $x_n \xrightarrow{\tau} x_0$.

If $x_n \in \{x_0\}^c$, then $x_n \neq x_0$ for all $n \geq 1$ and by above results, x_n does not converge to x_0. Hence, there is no sequence contained in $\{x_0\}^c$ that converges to x_0. However, $x_0 \in \{x_0\}^c$ since $O \cap \{x_0\}^c \neq \emptyset$ for each $O \in \tau, x_0 \in O$. And therefore, sequences do not characterize points of closure.

B: Let σ be the discrete topology for X, ie σ is the set of all subsets of X. One can see that $x_n \xrightarrow{\sigma} x_0$ if and only if $x_n = x_0$ eventually. Hence, σ and τ have the same convergent sequences. Let the $\text{Id}: (X, \tau) \rightarrow (X, \sigma)$ denote the identity function. The
function Id is sequentially continuous since τ and σ have the same convergent sequences. However, since $\tau \subset \sigma$, the above function is not continuous. Hence, sequences do not characterize continuity.

Example 1.2 Let (X, d) be a metric space that is not compact. And let (X^*, τ^*) be the Stone-Cech compactification of (X, d). Since (X, d) is not sequentially compact, there exist $\{x_n\}$ contained in X which has no convergent subsequence in (X, d). It is known that no sequence contained in X converges to a point in $X^* - X$. Hence, (X^*, τ^*) is not sequentially compact. Therefore, sequences do not characterize compactness.
CHAPTER 2
FILTERS

Definition 2.1 Consider an arbitrary set X. A set τ of subsets of X satisfying the conditions:

(a) $\phi \in \tau$ and $X \in \tau$

(b) $U \cap V \in \tau$ whenever $u \in \tau$ and $V \in \tau$

(c) The union of the members of an arbitrary subset of τ belongs to τ

is called a topology on X. A topological space is a pair (X, τ) where τ is a topology on X.

The members of τ are called open sets.

Definition 2.2 Consider a set $X \neq \phi$. A filter F on X is a set of subsets of X satisfying the conditions:

(a) $F \neq \phi$ and $\phi \notin F$

(b) If $A, B \in F$ then $A \cap B \in F$

(c) If $A \in F$ and $A \subseteq B \subseteq X$ then $B \in F$

A subset $\beta \subseteq F$ is called a base for the filter F if every member of F contains some member of β. The definition of a filter base for some filter is as follows:

Definition 2.3: β is called a base for a filter on X if and only if β is a set of subsets of X satisfying the conditions:

(a) $\beta \neq \phi$, $\phi \notin \beta$
(b) \(B_1, B_2 \in \beta \Rightarrow \exists B_3 \in \beta \) such that \(B_3 \subseteq B_1 \cap B_2 \).

Example 2.4 Let \(X \neq \emptyset \) be an arbitrary set. Fix \(x_0 \in X \) and then

\[\mathcal{X}_0 = \{A : A \subseteq X \text{ and } x_0 \in A\} \]

is a filter on \(X \).

Note that \(\{x_0\} \in \mathcal{X}_0 \).

Example 2.5 Fix a set \(\phi \subset A_0 \subseteq X \), then \(\mathcal{A}_0 = \{B \subseteq X : B \supseteq A_0\} \) is a filter on \(X \). In particular, if \(A_0 = X \), \(\mathcal{X} = \{X\} \) is the “smallest” possible filter on \(X \).

Example 2.6 If \(X \) is any nonempty set and \(\{x_n\} \) is a sequence in \(X \). Define

\[B_n = \{x_k : k \geq n \geq 1\} \]

Then, \(\mathcal{F} = \{A \subseteq X : A \supseteq B_n \ \exists n \geq 1\} \) is a filter on \(X \) and is called the elementary filter determined by \(\{x_n\} \).

Example 2.7 If \(X \) is an infinite set then \(\mathcal{F} = \{F \subseteq X : F^c \text{ is finite}\} \) a filter on \(X \) and is called the cofinite or Fréchet filter.

Example 2.8 If \(X \) is a topological space and \(x \in X \), then the family \(U(x) \) of all neighborhoods of \(x \) is a filter and is called the neighborhood filter of \(x \).

Example 2.9 The family of all ‘tails’ of the sequence \(\{x_n\} \) on \(X \) is a base for the corresponding elementary filter; a tail is the set of the form \(\mathcal{B}_N = \{x : n \geq N\} \).

Example 2.10 The family \(\{\{x\}\} \) is a base for the filter \(\mathcal{X} \) on \(X \).

Let \(F(X) \) denote the set of all filters on a set \(X \) and \(F, G \in F(X) \). We call a filter \(G \) finer than the filter \(F \) if \(F \subseteq G \), we also call \(F \) coarser than \(G \). Note that \(F = \{X\} \) is the coarsest member in \(F(X) \). It is easy to verify that \((F(X), \leq)\) is a poset.
Also, $F(X, \leq)$ is not linearly ordered since $x \not\leq y$ or $y \not\leq x$. Before discussing filter and convergence, one wants to prove and define various things about filters. DeMorgan’s law states that if $X \neq \phi$ and $\{ A_\alpha : \alpha \in I \}$ is a collection of subsets of X. Then:

\[(a) \left(\bigcup_{\alpha \in I} A_\alpha \right)^c = \bigcap_{\alpha \in I} \neg A_\alpha^c \]

\[(b) \left(\bigcap_{\alpha \in I} A_\alpha \right)^c = \bigcup_{\alpha \in I} \neg A_\alpha^c \]

Proposition 2.11 Assume that $X \neq \phi$ and $F_\alpha \in F(X)$, $\alpha \in I$ (index set) then

$\bigcap F_\alpha \in F(X)$ is the finest filter on X which is coarser than each F_α, $\alpha \in I$.

Proof (a): Note that $\phi \notin F_\alpha$, $\alpha \in I$, implies that $\phi \notin \bigcap F_\alpha$ and also X belongs to each F_α, $\alpha \in I$.

Thus $X \in \bigcap F_\alpha$ and it follows that $\bigcap F_\alpha \neq \phi$.

Proof (b): Let $A, B \in \bigcap F_\alpha$; then A and B belong to each F_α. Therefore, $A \cap B$ belongs to each F_α, $\alpha \in I$, and thus $A \cap B \in \bigcap F_\alpha$.

Proof (c): Let $A \in \bigcap F_\alpha$; then $A \in$ each F_α, $\alpha \in I$. Let $B \supseteq A$ thus B belongs to each F_α since B is an over set of A. It follows that $B \in \bigcap F_\alpha$. Since (a), (b) and (c) are satisfied, $\bigcap F_\alpha$ is a filter. Clearly $\bigcap F_\alpha \subseteq F_\alpha$, for each $\alpha \in I$.

6
Next, let $G \subseteq F_\alpha$ for each $\alpha \in I$ and let us prove that $G \subseteq \bigcap_{\alpha \in I} F_\alpha$. Let $A \in G$; thus A belongs to each F_α, $\alpha \in I$, and then $A \in \bigcap_{\alpha \in I} F_\alpha$. It follows that $G \subseteq \bigcap_{\alpha \in I} F_\alpha$.

In general, the union of two filters may or may not be a filter. For example, if F and G may contain disjoint members.

Proposition 2.12 Let F_α, $\alpha \in I$, be filters on X. Then

$$
\bigcap_{\alpha \in I} F_\alpha = \{ A \subseteq X : A = \bigcup_{\alpha \in I} F_\alpha \text{ for some } F_\alpha \in F \}
$$

Proof Let $B \in \bigcap_{\alpha \in I} F_\alpha$; then B belongs to each F_α and thus $B = \bigcup_{\alpha \in I} F_\alpha$ by choosing each $F_\alpha = B$. Conversely, Let $A \subseteq X : A = \bigcup_{\alpha \in I} F_\alpha$ for some $F_\alpha \in F \}$.

thus $B = \bigcup_{\alpha \in I} F_\alpha$ for some $F_\alpha \in F_\alpha$ and thus B belongs to each F_α. Hence

$$B \in \bigcap_{\alpha \in I} F_\alpha$$

Let $\phi \subseteq X \subseteq Y$. If $F \in F(X)$, then F is a filter base on Y. That is

$$\{ A \subseteq Y : F \subseteq A \exists F \in F \}$$

is a filter on Y generated by F. The generated filter is denoted by $[F]$. Conversely, if G is a filter on Y and $G \cap X \neq \phi$ for each $G \in G$, then

$$F = \{ G \cap X : G \in G \} \in F(X).$$

This filter is called the induced filter on X, or the trace of G on X.

Example 2.13 Let $X = [0,1], Y = R$ and let G be the filter on Y whose base is

$$\{(\varepsilon, \varepsilon): \varepsilon > 0\}.$$ Then the trace of G on X is the filter on X having a base $\{[0,\varepsilon]: \varepsilon > 0\}$.

7
CHAPTER 3
ULTRAFILTERS

Definition 3.1 An ultrafilter is a maximal filter in the poset \((F(X), \leq)\), where the ordering \(F \leq G\) means that \(F \subseteq G\). That is a filter \(U\) on \(X\) is an ultrafilter provided \(U \subseteq G\) implies that \(U = G\).

Proposition 3.2 (Zorn’s lemma) If \(X\) is partially ordered set in which every linearly ordered subset (any two elements are comparable) has an upper bound, then \(X\) has a maximal element. That is, there exists \(x \in X\) such that there is no \(y \neq x\) with \(x \leq y\).

Proposition 3.3 Let \(X\) be a set and \(F\) a filter on \(X\). Then there exists an ultrafilter \(U\) on \(X\) that is finer than \(F\).

Proof: Consider the family \(P = \{G \in F(X) : G \text{ is a filter that finer than } F\}\). The family \(P\) is partially ordered by \(\subseteq\). Suppose that \(C = \{G_\alpha : \alpha \in I\}\) is a chain in \(P\). That is \(C\) is linearly ordered subset of \(P\) for each \(G \in P\).

Denote \(H = \bigcup \{G_\alpha : \alpha \in I\} = \{A : A \in G_\alpha \exists \alpha \in I\}\)

(a) \(F \in P\) by construction, thus \(H \neq \emptyset\)

(b) \(\emptyset \not\in H\) since \(\emptyset \notin G\), for each \(G \in P\)

(c) Let \(A, B \in H\); then \(A \in G_\alpha, B \in G_\beta\) for some \(\alpha, \beta\). Now, either \(G_\beta \subseteq G_\alpha\) or \(G_\beta \subseteq G_\alpha\) holds. Then \(A, B \in G_\beta\) and thus \(A \cap B \in G_\beta\) since \(G_\beta\) is a filter. Then, \(A \cap B \in H\).

(d) If \(A \in H\) then \(A \in G_\alpha\) for some \(G_\alpha \in C\). If \(B \supseteq A\) then \(B \in G_\alpha\) and thus \(B \in H\).
Therefore, \(H \) is a filter and hence an upper bound for \(C \) in \(P \). The partially ordered set \(P \) satisfies the assumptions of Zorn’s lemma; hence there is a maximal element \(U \in P \). Therefore, \(U \) is an ultrafilter containing \(F \). □

Proposition 3.4 Let \(F \) be a filter on a set \(X \); then, the following are equivalent:

(a) \(F \) is an ultrafilter.

(b) For any two subsets \(A \) and \(B \) of \(X \) we have: If \(A \cup B \in F \) then \(A \in F \) or \(B \in F \).

c) For every subset \(A \) of \(X \) either \(A \in F \) or \(A^c \in F \).

Proof (a) \(\Rightarrow \) (b): Assume \(A \cup B \in F \) and \(A \not\in F \) and \(B \not\in F \).

Define \(G = \{ C \subseteq X : A \cup C \in F \} ; \text{ then } G \subseteq F(X) \). Further, \(F \subseteq G \) , \(B \in G \) and thus \(F \neq G \). But \(F \) is an ultrafilter. Thus, there is a contradiction. Therefore, \(A \in F \) or \(B \in F \).

(b) \(\Rightarrow \) (c): Clearly \(A \cup A^c = X \in F \); therefore \(A \in F \) or \(A^c \in F \) using (b).

(c) \(\Rightarrow \) (a): Let \(G \) be a filter that is finer than \(F \) and let \(A \in G \) be arbitrary. Then \(A^c \not\in F \) because \(A \) has nonempty intersection with every element of \(F \). It follows that \(A \in F \). Thus, \(G = F \). □

Proposition 3.5 Let \(F \in F(X) \). Then:

\[
F = \bigcap \{ U : U \supseteq F , U \text{ is an ultrafilter on } X \}
\]

Proof Clearly \(F \subseteq \bigcap \{ U : U \supseteq F , U \text{ is an ultrafilter on } X \} \). Assume that there exists an \(A \in \bigcap \{ U : U \supseteq F , U \text{ is an ultrafilter on } X \} \) such that \(A \not\in F \). Then \(F \cap A^c \neq \emptyset \) for each \(F \in F \) and thus \(\beta = \{ F \cap A^c : F \in F \} \) is a base for a filter \(G \). Note that \(F \subseteq G \).
Let U_G be an ultrafilter containing G. Since, $F \subseteq U_G$, $A \in U_G$. However, $A^c \in G$ and thus $A^c \cap A \in U_G$, a contradiction. Therefore,

$$F = \cap \{ U : U \ni F , U \text{ is an ultrafilter on } X \}.$$

Proposition 3.6 Let U be an ultrafilter on the set X. If A_1, A_2, \ldots, A_n are subsets of X such that $\bigcap_{i=1}^n A_i$ belongs to U, then at least one of the sets A_i belongs to U.

Proof If no A_i belongs to U, then A_i^c belongs to U for $i = 1, 2, \ldots, n$ by Proposition 2.3, and hence $\bigcap A_i^c = (\bigcup A_i)^c$ belongs to U, which is impossible since $\bigcap_{i=1}^n A_i$ is given to belong to U.

Proposition 3.7 Let U be an ultrafilter on X and $A \subseteq X$ such that $U \cap A \neq \emptyset$ for all $U \in U$. Then $A \in U$.

Proof Assume that $A \notin U$ and define $\beta = \{ U \cap A : U \in U \}$. Note that $\phi \notin \beta$ and $\beta \neq \phi$ since $U \cap A \neq \emptyset$ for all $U \in U$. Also, $\left(U_1 \cap A \right) \cap \left(U_2 \cap A \right) = \left(U_1 \cap U_2 \right) \cap A \in \beta$ since $\left(U_1 \cap U_2 \right) \in U$. Thus β is a base filter for some filter G. Note that $A \in G$ because $A \supseteq U \cap A$ and $A \in U$.

Therefore, $U \subseteq G$, a contradiction and hence $A \in U$.

Proposition 3.8 Let $f : X \to Y$ be a function and U is an ultrafilter on X. Then $f(U)$ is an ultrafilter on Y.

Proof Assume that $A \notin f(U)$; then for each $U \in U$, $A^c \cap f(U) \neq \emptyset$.

10
Hence, $f^{-1}(A^c) \cap U \neq \emptyset$ for each $U \in \mathcal{U}$ and thus by Proposition 2.6, $f^{-1}(A^c) \in \mathcal{U}$.

Therefore, $f(f^{-1}(A^c)) \in f(U)$ and thus $A^c \in f(U)$ since $f(f^{-1}(A^c)) \subseteq A^c$. Hence, $f(U)$ is an ultrafilter on Y. \Box

CHAPTER 4

CONVERGENCE AND FILTERS

Definition 4.1 Let \((X, \tau) \) be a topological space and let \(U(x) \) denote the neighborhood filter at \(x \). A filter \(F \) on \(X \) converges to \(x \) if \(U(x) \subseteq F \).

Proposition 4.2 Let \(A \) be a subset of a topological space \(X \). Then, for \(x \in X \), \(x \in \overline{A} \) if and only if there exists a filter on \(X \) which contains \(A \) and converges to \(x \).

Proof Assume that \(x \in \overline{A} \). Then any neighborhood of \(x \) has a nonempty intersection with \(A \). Now all the sets \(A \cap U \), where \(U \) is a neighborhood of \(x \), form a filter base, and the corresponding filter converges to \(x \). Conversely, assume that \(F \) is a filter containing \(A \) and converging to \(x \). Choose any neighborhood \(U \) of \(x \). Then \(U \cap A \neq \phi \) since \(A \subseteq F \). This proves that \(x \in \overline{A} \).

Definition 4.3 A topological space \((X, \tau) \) is Hausdorff or \(T_2 \) provided if \(x \neq y \), then there exist sets \(O_x, O_y \in \tau \) such that \(x \in O_x, y \in O_y \) and \(O_x \cap O_y = \phi \).

Proposition 4.4 \((X, \tau) \) is \(T_2 \) if and only if each filter converges to at most one point, i.e. \(\overrightarrow{F} \) implies \(x=y \).

Proof Suppose that \((X, \tau) \) is Hausdorff and suppose \(\overrightarrow{F} \) \(x, y \) where \(x \neq y \).

Then there exist \(O_x, O_y \in \tau \) such that \(x \in O_x, y \in O_y \) and \(O_x \cap O_y = \phi \). However, \(\overrightarrow{F} \) \(x, y \) implies that \(O_x \in F \), \(O_y \in F \), and
$O_x \cap O_y = \emptyset \in F$ which is a contradiction. Therefore, each filter converges to at most one point. Conversely, suppose that $x \neq y$ and assume that $O_x \cap O_y \neq \emptyset$ for each

$O_x, O_y \in \tau, x \in O_x, y \in O_y.$

We claim that $\beta = \{O_x \cap O_y : \forall O_x \in \tau, O_y \in \tau, x \in O_x, y \in O_y\}$ is a base for some filter $F.$ Observe that $(O_x \cap O_y) \cap (G_x \cap G_y) = (O_x \cap G_x) \cap (O_y \cap G_y) \in \beta$ since $(O_x \cap G_x)$ is an open set containing x and $(O_y \cap G_y)$ is an open set containing $y.$ Thus β is a base for some filter F since $O_x \supseteq (O_x \cap O_y)$ implies that each $O_x \in F,$ F converges to $x.$ Likewise, $O_y \supseteq (O_x \cap O_y)$ implies that $O_y \in F,$ and thus F converges to $y,$ a contradiction. Therefore, there doesn’t exist an O_x and O_y such that $O_x \cap O_y \neq \emptyset$ where $x \in O_x$ and $y \in O_y.$ Hence (X, τ) is Hausdorff.

The following result shows that continuity of maps between topological spaces can be characterized in terms of convergence of filters. Recall that a mapping $g : X \rightarrow Y$ between two topological spaces is \textit{continuous at x} provided that for each neighborhood V of $g(x),$ there exist a neighborhood U of x such that $g(U) \subseteq V.$

\textbf{Proposition 4.5} Let X, Y be topological spaces with $x \in X$ and

$g : X \rightarrow Y.$ Then g is continuous at x if and only if whenever F is a filter such that $F \rightarrow x,$ $g(F) \rightarrow g(x).$

\textbf{Proof} Suppose g is continuous at x and $F \rightarrow x.$ Let V be a neighborhood of $g(x).$ By continuity there is a neighborhood U of x such that $g(U) \subseteq V.$ Since $U \in F,$
\(g(U) \in g(F) \). And thus \(V \in g(F) \). Hence \(g(F) \to g(x) \). Conversely, suppose that whenever \(F \to x \), \(g(F) \to g(x) \). Then \(g(U(x)) \to g(x) \) by hypothesis. Then, for each neighborhood \(V \) of \(g(x) \), \(V \in g(U(x)) \). Then there exists a \(U \in U(x) \) such that \(g(U) \subseteq V \) and thus \(g \) is continuous at \(x \).
Recall that a topological space \((X, \tau)\) is compact provided each open covering of \(X\) has a finite subcovering. It is shown below that compactness can be characterized in terms of convergence of ultrafilters.

Proposition 5.1 Let \((X, \tau)\) be a topological space. Then the following statements are equivalent:

(a) \((X, \tau)\) is compact

(b) Each ultrafilter on \(X\) converges

(c) \(\bigcap \{ A : A \in F \} \neq \emptyset\) for each filter on \(X\)

Proof (a) \(\Rightarrow\) (b): Suppose \((X, \tau)\) is compact and that there exist an ultrafilter \(F\) that doesn’t converge. Then for each \(x \in X\), there exists \(V_x \notin F\) and thus \(C = \{ V_x : x \in X \}\) is an open cover of \(X\). Hence \(\bigcup_{i=1}^n V_{x_i} = X\). Since \(F\) is an ultrafilter, implies that

\[V_x^c \in F \text{ for each } x \in X \text{ and therefore } X^c = \bigcap_{i=1}^n V_{x_i}^c = \emptyset \in F, \text{ which is a contradiction.} \]

Thus, each ultrafilter on \(X\) converges.

(b) \(\Rightarrow\) (c): Given any filter \(F\) on \(X\); let \(G\) be an ultrafilter containing \(F\). Then \(G\) converges to \(x\) in \((X, \tau)\), for some \(x \in X\). Given any neighborhood \(V\) of \(x\) and \(A \in F\); then \(A \in G\) and \(V \in G\). Hence, \(A \cap V \in G\) and thus \(A \cap V \neq \emptyset\). Therefore, \(x \in \overline{A}\).
(c) ⇒ (a): Suppose \((X, \tau)\) is not compact. Let \(C = \{O_\alpha : \alpha \in J\}\) be an open cover of \(X\) with no finite subcover. Then, \(\bigcap_{i=1}^n O_{\alpha_i} \neq X\), for each \(n\). Let \(F\) be the filter on \(X\) whose base \(\left\{ \bigcap_{i=1}^n O_{\alpha_i} : n \geq 1, O_{\alpha_i} \in C \right\}\). However, \(\bigcap \{A : A \in F\} \subseteq \bigcap O_\alpha = (\bigcup_{\alpha \in J} O_\alpha)^c = X^c = \emptyset\), which is a contradiction.

Proposition 5.2 Let \(f : (X, \tau) \to (Y, \sigma)\) be a continuous function and onto. If \((X, \tau)\) is compact then \((Y, \sigma)\) is compact.

Proof Let \(U\) be an ultrafilter on \(Y\), \(F = f^{-1}(U)\) and by Proposition 2.2 there exist an ultrafilter on \(X\). \(G \supseteq F\). Then: \(G \overset{\tau}{\rightarrow} x\), for some \(x \in X\) since \((X, \tau)\) is compact.

The continuity assumption of \(f\) implies that \(f(G) \to f(x)\) according to Proposition 4.6.

Since \(G \supseteq F\), then \(f(G) \supseteq f(F) = f(f^{-1}(U)) \supseteq U\). Also \(f\) is onto and thus

\[f(f^{-1}(U)) = U. \]

Hence, \(f(G) \supseteq U\) and since \(U\) is an ultrafilter \(f(G) = U\).

Consequently, \(f(G) \to f(x)\) implies that \(U \to f(x)\). Therefore, by Proposition 4.1, \((Y, \sigma)\) is compact.
CHAPTER 6
INITIAL STRUCTURES

Proposition 6.1 Consider the source \(X \xrightarrow{\iota} (Y_{\alpha}, \tau_{\alpha}), \alpha \in J \) where \(J \), is an index class.

Then:

(a) There exists a coarsest (smallest) topology \(\tau_i \) on \(X \) for which each \(f_{\alpha} : (X, \tau_i) \to (Y_{\alpha}, \tau_{\alpha}) \) is continuous, \(\alpha \in J \).

(b) Each \(g : (Y, \sigma) \to (X, \tau) \) is continuous if and only if \(f_{\alpha} \circ g : (Y, \sigma) \to (Y_{\alpha}, \tau_{\alpha}) \) is continuous, for each \(\alpha \in J \).

(c) \(\tau_i \) is the unique topology for \(X \) which obeys (b)

(d) Given \(F \in F(X), F \xrightarrow{\iota} x_i \) if and only if \(f_{\alpha}(F) \xrightarrow{\iota} f(x_{\alpha}) \)

for each \(\alpha \in J \).

Proof A subbase for \(\tau_i \) is \(S = \left\{ f_{\alpha}^{-1}(O_{\alpha}) : O_{\alpha} \in \sigma \right\} \).

(a) It easily follows that \(\tau_i \) is the coarsest such topology such that each \(f_{\alpha} \) is continuous.

(b) The composition of two continuous functions is continuous. Conversely, assume that \(f \circ g \) is continuous, for each \(\alpha \in J \). Let \(f_{\alpha}^{-1}(O_{\alpha}) \in S \) then,

\[
g^{-1}(f_{\alpha}^{-1}(O_{\alpha})) = (f_{\alpha} \circ g)^{-1}(O_{\alpha}) \in \sigma \quad \text{and thus} \quad g^{-1}(f_{\alpha}^{-1}(O_{\alpha})) \in \sigma.
\]

Since continuity of \(g : (Y, \sigma) \to (X, \tau_i) \) is determined by the subbase \(S \) for \(\tau_i \), it follows that \(g : (Y, \sigma) \to (X, \tau_i) \) is continuous.
(c) Let \(\tau_X \) be another topology for \(X \) obeying (b). Since \(\text{id}: (X, \tau) \to (X, \tau_X) \) is continuous, \(f_\alpha : (X, \tau_X) \to (Y_\alpha, \tau_\alpha) \) is continuous, for each \(\alpha \in J \). Hence by (a), \(\tau_I \subseteq \tau_X \).

Moreover, consider \(\text{id}: (X, \tau_X) \to (X, \tau_I) \).

Since \(f_\alpha = f_\alpha \circ \text{id} : (X, \tau_I) \to (Y_\alpha, \tau_\alpha) \) is continuous for each \(\alpha \in J \), the hypothesis implies that \(\text{id}: (X, \tau_I) \to (X, \tau_X) \) is continuous. Hence, \(\tau_X \subseteq \tau_I \) and thus \(\tau_X = \tau_I \).

(d) Since each \(f_\alpha : (X, \tau_I) \to (Y_\alpha, \tau_\alpha) \) is continuous, \(\varphi \stackrel{\tau_I}{\longrightarrow} x \) implies that \(f_\alpha(F) \rightarrow f_\alpha(x) \). Conversely, assume that \(f_\alpha(F) \rightarrow f_\alpha(x) \) for each \(\alpha \in J \). Now, \(f_\alpha^{-1}(O_\alpha) \in S \) and if \(x \in f_\alpha^{-1}(O_\alpha) \), \(f_\alpha(x) \subseteq O_\alpha \subseteq f_\alpha(F) \) and thus \(f_\alpha(F_\alpha) \subseteq O_\alpha \) for some \(F_\alpha \subseteq F \). Hence \(f_\alpha^{-1}(O_\alpha) \supseteq F_\alpha \) and thus \(f_\alpha^{-1}(O_\alpha) \in F \). Since \(\bigcap_{i=1}^{n} f_\alpha^{-1}(O_\alpha_i) \) is a base member for \(\tau_I \), it follows that base members containing \(x \) belong to \(F \). Hence \(\varphi \stackrel{\tau_I}{\longrightarrow} x \).

In particular, when \(X = \Pi X_\alpha \) is a product set and \(f_\alpha = P_\alpha \) are projection maps, \(\tau_I \) is called the **product topology** for \(X \). According to Proposition 5.1 \(\tau_I \) is the coarsest topology for \(X \) such that each projection map is continuous.
CONCLUSION

A discussion of filters and their applications to the theory of general topology has been presented. These ideas have been primarily developed by European mathematicians, beginning with the work of H. Cartan and recorded in the various texts written under the pseudonym “N. Bourbaki.” The Moore-Smith “net convergence” has been more widely taught in American universities. Both are used to characterize topological concepts in more abstract spaces.
LIST OF REFERENCES

