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ABSTRACT 

 
 Hypergeometric type functions have a long list of applications in the field of sciences.  A 

brief history is given of Hypergeometric functions including some of their applications.  A 

development of a new method for finding asymptotic formulas for large arguments is given.  

This new method is applied to Bessel functions.  Results are compared with previously known 

methods. 
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1 INTRODUCTION 

There are many different types of functions that are used to model physical situations.  

Each of these functions or family of functions (i.e. Trigonometric functions) has their own 

unique set of properties.  The discovery of Hypergeometric functions allowed mathematicians to 

further generalize previously unrelated functions.  For instance the following is a partial list of 

functions that have hypergeometric representations: 2

 ( )0 0 ; ;xe F x= − −  

 ( )21
0 1 2 4cos ; ; xx F= − −  

 ( ) (1 01 ;a );x F a x−− = −  

 ( ) ( )( )1
2 1 21, ;1; x

nP x F n n −= + −  

 ( )
1

231 1
2 1 2 2 2

sin , ; ;x F x
x

−

=  

By representing each of these functions as a hypergeometric type function, we can 

identify properties that apply to all functions of this type.  In this paper we’ll be looking at large 

argument asymptotic formulas for these hypergeometric functions.  As examples, we’ll look at 

various Bessel functions, which have hypergeometric representations.  Finally, we will take a 

look at an application from optics. 
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2 GAMMA FUNCTIONS 

 The gamma function 

 ( ) ( )( ) ( )
!lim

1 2

x

n

n nx
x x x x n→∞

Γ =
+ + +L

 

whose properties were developed by Euler is a highly useful special function.  As we will see in 

this paper it is used quite extensively with Bessel functions and hypergeometric functions.  More 

useful to us in this paper is the integral representation 

  (2.1) ( ) 1

0
0t xx e t dt x

∞ − −Γ = >∫

discovered by Euler.  Some of the important properties of the gamma function are the well 

known recurrence relation  

 ( ) ( )1x
x

x
Γ +

Γ =  (2.2) 

and Legendre’s duplication formula  

 ( ) ( ) ( )2 1 1
22 x 2x x π− Γ Γ + = Γ x . (2.3) 

A useful special value for ( )xΓ  is 

 ( )1
2 πΓ = . (2.4) 

Finally, we’ll have need of the identity 

 ( ) ( )1
sin

x x
x

π
π

Γ Γ − = . (2.5) 
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3 HYPERGEOMETRIC FUNCTIONS 

Much of what is done in this paper deals with hypergeometric functions.  Before 

introducing the hypergeometric function we introduce the Pochhammer symbol 

 ( ) ( )
( )n

a n
a

a
Γ +

=
Γ

. (3.1)  

If we make the substitution  in (3.1), we are left with  n k→ − n

 ( ) ( )
( )k n

a k n
a

a−

Γ + −
=

Γ
. (3.2) 

We then multiply the top and bottom of the right hand side of (3.2) by ( )a kΓ +  and perform a 

bit of simple algebra. 

 ( ) ( )
( )

( )
( )k n

a k n a k
a

a a− k
Γ + − Γ +

= ⋅
Γ Γ +

 

 ( )
( )

( )
( )

a k a k n
a a k

Γ + Γ + −
= ⋅

Γ Γ +
 

 
( )
( )

( )

k
a
a k

a k n

=
Γ +

Γ + −

 

 
( )

( )( ) ( )1 2
k

a
a k a k a k n

=
+ − + − + −L

 

 ( ) ( ) ( )
( )

1
1

n

k
k n

n

a
a

a k−

−
=

− −
 (3.3) 

In a future section of this paper we will need a representation for ( ) n
a

−
.  If we set 0k = , 

we see that  
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 ( ) ( )
( )

1
1

n

n
n

a
a

−

−

−
=

−
. (3.4) 

 
The general hypergeometric function is given by  

 ( )
( )

( )
1

1 1
0

1

; ;
!

p

k nn
k

p q p q q
n

k n
k

a
xF a a b b x
nb

∞
=

=

=

=
∏

∑
∏

L L . (3.5) 

Some of what we deal with in this paper will concern (3.5), but for the most part we will 

deal with specific cases of the general hypergeometric function.  For instance if we let 2p =  and 

, we have the function  1q =

 ( ) ( ) ( ) ( )
( )2 1

0
, ; ; , ; ;

!

n
n n

n n

a b xF a b c x F a b c x
c n

∞

=

= =∑ , (3.6)  

where semicolons separate the numerator parameters from those of the denominator.  This 

function is called the Hypergeometric function.  It can be easily shown, by using the ratio test, 

that this series converges for 1x < .  The integral representation of (3.6) is  

 ( ) ( )
( ) ( ) ( ) ( )

1 11
2 1 0

, ; ; 1 1c b abc
F a b c x t t xt dt

b c b
− − −−Γ

= −
Γ Γ − ∫ − . (3.7)  

Another special case is that of the confluent hypergeometric function 

 ( ) ( )1 1; ; ; ;M a c x F a c x=  (3.8) 

with integral representation 

 ( ) ( )
( ) ( ) ( )

1 11
1 1 0

; ; 1 c axt ac
F a c x e t t dt

a c a
− −−Γ

=
Γ Γ − ∫ − . (3.9) 

An interesting result is obtained if we make the substitution 1t s= − . 
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 ( ) ( )
( ) ( )

( ) ( ) ( )
0 1 11

1 1 1
; ; 1 a c ax sc

F a c x e s s ds
a c a

− − −−Γ
= − −

Γ Γ − ∫  

 ( )
( ) ( ) ( ) ( )

1 1 1

0
1c a ax xsc

e e s s ds
a c a

− − −−Γ
= −
Γ Γ − ∫  

The integral in the last line is, of course, ( )1 1 ; ;F a c x .  Therefore, we have established the identity 

 ( ) ( )1 1 1 1; ; ; ;xF a c x e F c a c x= − − . (3.10) 

We will also be working with the confluent hypergeometric function of the second kind, 

which written in terms of  the confluent hypergeometric function is 

 ( ) ( )
( ) ( ) ( )

( ) ( )1
1 1 1 1

1 1
; ; ; ; 1 ;2 ;

1
cc c

U a c x F a c x x F a c c x
a c a

−Γ − Γ −
= + +
Γ + − Γ

− −  (3.11) 

with associated integral representation, 

 ( ) ( ) ( ) 11

0

1; ; 1 c axt aU a c x e t t dt
a

∞ − −− −= +
Γ ∫ . (3.12) 
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4 THE MELLIN TRANSFORM 

The famous Fourier Integral Theorem, named after the French Physicist Jean Baptiste 

Joseph Fourier, is our basis for developing the Mellin-Barnes integral. 

Theorem 1:  (Fourier Integral Theorem) If and f f ′  are piecewise continuous functions on 

every finite interval, and if 

 ( )f x dx
∞

−∞
< ∞∫ , 

then  

 ( ) ( ) ( )1
0

cosf x f t s t xπ

∞ ∞

−∞
= −⎡ ⎤⎣ ⎦∫ ∫ dtds  

at points, , where  is continuous.  If  is a point of discontinuity of , the above integral 

converges to the average value 

x f x f

( ) ( )1
2 f x f x+⎡ +⎣

− ⎤⎦  of the right-hand and left-hand limits. 

Through the use of Euler’s formula, ( )1
2cos ix ixx e e−= + , we can derive the exponential 

form of this theorem 

 ( ) ( )1
2

isx istf x e e f t dπ

∞ ∞−

−∞ −∞
= ∫ ∫ tds . (4.1) 

For convenience let’s change (4.1) to  

 ( ) ( )1
2

imp imtg p e e g t dtdmπ

∞ ∞−

−∞ −∞
= ∫ ∫ . 

where we have made the simple substitutions, x p= , s m= , and f g= .  In order to develop the 

Mellin transform we make the substitutions tx e= py e= , and s c im= + .  Upon making the 

substitution and changing the order of integration we obtain  

 ( ) ( ) 11
2 0

ln ln
c ic s c s

i c i
g y y y g x x x dxdsπ

+ ∞ ∞− − − −

− ∞
= ∫ ∫ . 
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If we define the function ( ) ( )ln cf x g x x−= , we obtain the Mellin transform formulas 

  (4.2) ( ) ( )1

0

sF s x f x dx
∞ −= ∫

 ( ) ( )1
2

c i s
i c i

f x x Fπ

+ ∞ −

− ∞
= ∫ s ds  (4.3) 

where (4.2) is called the Mellin transform, ( ){ };M f x s , and (4.3) is the inverse Mellin 

transform, ( ){ }1 ;M F s x− . 

 It can be shown quite trivially that { } ( );xM e s s− = Γ  by looking at the definition.  It is a 

bit more challenging to show that ( ){ }1 ; xM s x e− −Γ = .  Let’s start with the inverse Mellin 

transform,   

 ( ){ } ( )1 1
2;

c i s
i c i

M s x x s dsπ

+ ∞−

− ∞
Γ = Γ∫ − . (4.4) 

Observe that all of the poles occur at values of the gamma function where  s n= − ( )0,1,2,...n = .  

This implies that in the right half plane the gamma function is analytic.  We can evaluate the 

integral by considering the contour in Figure 1.   
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Figure 1:  Inverse Mellin Transform Contour 

Based on residue theory, we can conclude that    

 ( ){ } ( ){1

0

; Res ;s

n
}M s x x s n

∞
− −

=

Γ = Γ −∑ . (4.5) 

In order to show that ( ){ }1 ; xM s x e− Γ = −

)

 we recall equation (2.5) and rewrite it as 

 ( ) ( ) (1 sin
s

s s
π

π
Γ =

Γ −
. (4.6) 

By substituting (4.6) into (4.5) we obtain 

 ( ){ } ( )
1

0

; Res ;
1 sin

s

n

M s x x n
s s
π

π

∞
− −

=

⎧ ⎫⎪ ⎪Γ = −⎨ ⎬
Γ −⎪ ⎪⎩ ⎭

∑ . (4.7) 

Because the poles in (4.7) are simple poles (ie., the zeros of sin sπ ) , the following theorem will 

be useful. 

Theorem 2 - Let ( ) ( )
( )

P z
f z

Q z
= , where the functions ( )P z  and ( )Q z  are both analytic at , 

and Q  has a simple zero at , and 

0z

0z ( )0 0P z ≠ , then 

 ( ) ( )
( )

0
0

0

Res ;
P z

f z
Q z

=
′

. (4.8) 
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Applying Theorem 2 to (4.7), we find the following result. 

 ( ){ } ( ) ( ) ( ) ( )0

Res ;
1 cos 1 cos

s n
s

ns n

x xx s n
s s n nπ π

− ∞
−

==−

Γ − = =
Γ − Γ + −∑  

 
( )

( )
0 0 !! 1

nn
x

n
n n

xx e
nn

∞ ∞
−

= =

−
= =

−
∑ ∑ =  

Thus we have shown that  

 ( ){ } ( ){ } ( )1

0 0

1
; Res ;

!

n n
s x

n n

x
M s x x s n e

n

∞ ∞
− −

= =

−
Γ = Γ − = =∑ ∑ −  (4.9) 

and consequently, 

 ( )1
2

c ix s
i c i

e xπ

+ ∞− −

− ∞
= Γ∫ s ds . (4.10) 

As stated previously (see Figure 1), the poles of ( )sΓ  occur in the left hand plane.  Because the 

number of poles is infinite, this will produce an ascending infinite series as seen in (4.9).  If our 

function has poles in the right hand plane, this will produce a descending series.  
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5 THE MELLIN-BARNES INTEGRAL 

Recall the Mellin-Barnes integral from the previous section 

 ( )1
2

c iz s
i c i

e zπ

+ ∞−

− ∞
= Γ −∫ s ds

s

s

. (5.1) 

Notice that we have made the substitution  and replaced the real variable  with the 

complex variable .  This allows us to use a contour in the right-hand plane for evaluating (5.1) 

using the poles .  Because we made the change of variable , we will 

now produce an ascending series by enclosing the poles in the right hand plane.  A descending 

series will be found by enclosing the poles in the left hand plane.  We wish to generalize (5.1) to 

other functions defined by 

s →− x

z

, 0,1, 2,3,s n n= = K s →−

 ( ) ( )1
1 1 2,..., ; ,..., ; s

p q i L
f a a c c z s z dπ χ= ∫ s  (5.2) 

where, for non-negative integers p  and ,  q

 ( )
( )

( )
( )1

1

p

j
j
q

j
j

a s
s

c s
χ =

=

Γ +
s= Γ −

Γ +

∏

∏
. (5.3) 

For this new function, semicolons are used to separate the numerator parameters, 

, from those in the denominator, .  The contour 1, , pa aK 1, , qc K c L  is the contour starting at i∞  

and running to  curving around the poles of i− ∞ ( )ja sΓ +  so that they are to the left of the 

contour, while keeping the poles of ( )sΓ  on the opposite side (see Figure 2).   
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Figure 2:  Sample Barnes Integral Contour enclosing the poles in the right hand plane 

 

 

We make the assumption that ja  is a non-integer and 0,1, 2,...j ka c− ≠  for all .  

Recall that as ,  will enclose all of the poles of 

,j k

R →∞ RC ( )sΓ − , and .  The 

integral converges absolutely if  

( ) 0
R

s

C

s z dsχ →∫

 ( ) ( ) 2arg 1z p q π< + − . (5.4) 

This last condition will be of great importance as we near the end of the section. 
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6 DIRECT RELATION BETWEEN ( )1 1,..., ; ,..., ;p qf a a c c z  AND ( )1 1,..., ; ,..., ;p q p qF a a c c z−  

There is a direct relation between the functions ( )1 1,..., ; ,..., ;p qf a a c c z  and the 

generalized hypergeometric functions denoted by ( )1 1,..., ; ,..., ;p q p qF a a c c z− .  For instance, if we 

set , then we have the following  0p q= =

 ( ) ( )0 0; ; ; ;zf z e F z−− − = = − − − . 

Let’s begin our discussion by looking at the case ( ); ;f a z−  where  and .  

Thus, we have the equation  

1p = 0q =

 ( ) ( ) ( )1
2; ; , 0, 1, 2,s

i L
f a z a s s z ds aπ− = Γ + Γ − ≠ − −∫ K . (6.1) 

 
For the purposes of this paper, we will assume that a  is a real variable, although it can be 

complex as well.  Using residue calculus and the contour shown in figure 2 to evaluate the 

integral in (6.1), we have the series 

 ( ) ( ) ( ){
0

; ; Res ;s

n
}f a z a s s z n

∞

=

− = − Γ + Γ −∑ , (6.2) 

where the negative sign appears due to clockwise orientation of the contour.  Using (2.5) as a 

substitution, we get 

 ( ) ( )
( ) ( )0

; ; Res ;
1 sin

s

n

a s z
f a z n

s s
π
π

−∞

=

⎧ ⎫Γ +⎪ ⎪− = ⎨ ⎬Γ +⎪ ⎪⎩ ⎭
∑ , 

 
where we have also used the identity ( )sin sinx x− = − .  According to the theory of residues,  

 ( ) ( )
( ) ( )

( ) ( )
0 0

1
; ;

1 cos !

nn n

n n

a n z a n z
f a z

n n nπ

∞ ∞

= =

Γ + − Γ +
− = =

Γ +∑ ∑ . 
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Next we make use of the substitution ( ) ( ) ( )n
a n a aΓ + = Γ  from (2.2). 

 ( ) ( ) ( ) ( ) ( ) ( )1 0
0

; ; ; ;
!

n

n
n

z
f a z a a a F a z

n

∞

=

−
− = Γ = Γ − −∑  

Thus we have shown that there is a direct relationship between ( ); ;f a z−  and ( )1 0 ; ;F a z− − .  By 

applying the ratio test, we can easily show that this series converges for 1z < .   

Let’s continue this process for another example.  This time we consider the function 

 ( ) ( ) ( )
( )

1
2; ;

s

i L

a s s z
f a c z ds

c sπ

Γ + Γ −
=

Γ +∫ . (6.3) 

Notice that the contour does not change for this integral, as there are no poles for the additional 

( )c sΓ +  term.  That is, 
( )
1
sΓ

 is an analytic function.  Thus we can continue the process as done 

previously  

 ( ) ( ) ( )
( )0

; ; Res ;
s

n

a s s z
f a c z n

c s

∞

=

⎧ ⎫Γ + Γ −⎪ ⎪= − ⎨ ⎬
Γ +⎪ ⎪⎩ ⎭

∑  

 ( )
( ) ( ) ( )0

Res ;
1 sin

s

n

a s z
n

c s s s
π

π

∞

=

⎧ ⎫Γ +⎪ ⎪= ⎨ ⎬
Γ + Γ +⎪ ⎪⎩ ⎭

∑  

 ( ) ( )
( ) ( )

( )
( )

( )
( )

( )
0 0

1
1 !

n nn
n

n n n

aa n z a z
c n n c c n

∞ ∞

= =

− Γ + Γ −
= =

Γ + Γ + Γ∑ ∑ , 

which yields 

 ( ) ( )
( ) (1 1; ; ; ;
a )f a c z F a c z
c

Γ
= −
Γ

. (6.4) 

 13



It would then appear that there is a direct relationship between ( )1 1,..., ; ,..., ;p qf a a c c z  

and ( 1 1,..., ; ,..., ;p q p q )F a a c c z− .  Indeed we can continue this process one more time 

 ( ) ( ) ( ) ( )
( ) ( )

11
1 1 2

1

,..., ; ,..., ;
s

p
p q i L

q

a s a s s z
f a a c c z d

c s c sπ

Γ + Γ + Γ −
=

Γ + Γ +∫
L

L
s  

 
( ) ( ) ( )

( ) ( )
1

0 1

Res ;
s

p

n q

a s a s s z
n

c s c s

∞

=

⎧ ⎫Γ + Γ + Γ −⎪ ⎪= − ⎨ ⎬
Γ + Γ +⎪ ⎪⎩ ⎭

∑
L

L
 

 
( ) ( )

( ) ( ) ( )
1

0 1

Res ;
1 sin

s
p

n q

a s a s z
n

c s c s s s

π

π

∞

=

⎧ ⎫Γ + Γ +⎪ ⎪= − ⎨ ⎬
Γ + Γ + Γ +⎪ ⎪⎩ ⎭

∑
L

L
 

 
( ) ( ) ( )
( ) ( ) ( )

1

0 1

1

1

n n
p

n q

a n a n z

c n c n n

∞

=

− Γ + Γ +
=

Γ + Γ + Γ +∑
L

L
 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )11

01 1 !

n
pp n n

nq qn n

a aa a z
nc c c c

∞

=

Γ Γ −
=
Γ Γ ∑

LL

L L
, 

or, 

 ( ) ( ) ( )
( ) ( ) ( )1

1 1 1 1
1

,..., ; ,..., ; ,..., ; ,..., ;p
p q p q p q

q

a a
f a a c c z F a a c c z

c c

Γ Γ
= −
Γ Γ

L

L
. (6.5) 

Therefore we have the following useful theorem. 

Theorem 3 If ( )Re 0z >  and if no  and ma jc  is zero or a negative integer, 

then ( )
( )

( )

( ) ( )

( )
0 0

1 1

0 0

1,..., ; ,... ;
2

s
n m

m m
p q p q q qL

m n
n n

c s z a
F a a c c z

ia cπ

−

= =

= =

Γ Γ − Γ
− =

Γ Γ

∏ ∏
∫

∏ ∏

p p

s

s

+

+
, 
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where L  is the Barnes path as shown in figure 2. 

Every  function is defined by a series, which is at least valid, with , for all p qF 1p q≤ +

1z < .  We can use this series to find asymptotic formulas for functions defined by 

hypergeometric series for small values of .  For this paper we seek a series, in reciprocal 

powers of z, that will be valid for 

z

1z > .  We can find such a series by enclosing the poles in the 

left hand plane while excluding those in the right hand plane (see figure 3).  As stated in chapter 

5 (page 10), enclosing the poles in the left hand plane will produce the descending series that we 

seek.  We can then use this series to find asymptotic formulas for large values of . z

 

 

Figure 3:  Sample Barnes Integral Contour enclosing the poles in the left hand plane 

 

Let’s re-examine the ( )1 0 ; ;F a z− −  function.  By Theorem 3,  

 ( ) ( ) ( ) ( )1 0
1; ;

2
s

L
F a z s s a z ds

i aπ
− − = Γ − Γ +

Γ ∫ . 
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This time we make a change of variable ( )s s→− + a .  The Barnes integral will be very similar 

to the one used in Figure 2.  Because of the change of variable, though, enclosing the poles in the 

right hand side will produce a descending series.  The change of variable leads to 

 
( ) ( ) ( )

2

a
s

L

z s a s z ds
i aπ

−
−= Γ + Γ −

Γ ∫ . 

Observe that the integral has remained virtually the same.  The only difference being that 

we have picked up an extra  term outside the integral and that a−z sz−  has replaced sz .  This will 

be a powerful change, as we shall see.  We recognize the right hand side as being 

( )1a−
1 0 ; ; zz F a − − .  Thus we have discovered the identity 

 ( ) ( )1
1 0 1 0; ; ; ;a

zF a z z F a−− − = − − . 

Notice that the right hand side is valid for 1z > .  Thus if we have a function that is 

represented by the hypergeometric function ( )1 0 ; ;F a z− − , we can then find an asymptotic 

formula for this function for large values of  using the above identity.   z

Let’s now look at another special case.  We start with the hypergeometric function 

 ( ) ( )
( )

( ) ( )
( )1 1

1; ;
2

s

L

c s a s
F a c z ds

a i c sπ
Γ Γ + Γ −

− =
Γ Γ +∫

z
. (6.6) 

Again we make the change of variable ( )s s→− + a , which produces 

 ( ) ( )
( )

( ) ( )
( )1 1 ; ;

2

sa

L

c s a s zzF a c z ds
a i c a sπ

−−Γ Γ + Γ −
− =

Γ Γ − −∫  

  By choosing the Barnes Integral in Figure 2, we enclose all of the poles of  ( )sΓ −
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 ( ) ( )
( )

( ) ( )
( )1 1

0
; ; Res ;

a s

n

c z s a s z
F a c z n

a c a s

− −∞

=

⎧ ⎫Γ Γ + Γ −⎪ ⎪− = − ⎨ ⎬Γ Γ − −⎪ ⎪⎩ ⎭
∑ . (6.7) 

Again, we use (2.5), but we apply it to the ( )sΓ −  term.  

 ( ) ( )
( )

( )
( ) ( )1 1

0
; ; Res ;

1 sin

s
a

n

c a s z
F a c z z n

a c a s s
π

π

−∞
−

= s
⎧ ⎫Γ Γ +⎪ ⎪− = ⎨ ⎬Γ Γ − − Γ +⎪ ⎪⎩ ⎭

∑  

 ( )
( )

( )
( ) ( ) ( )0 1 cos

n
a

n

c a n z
z

a c a n n nπ

−∞
−

=

Γ Γ +
=
Γ Γ − − Γ +∑  

 ( )
( )

( ) ( )( )
( )0

1
!

n n
a n

n

a ac zz
a c a n n

−∞
−

=

Γ −Γ
=
Γ Γ − −∑  (6.8) 

 

At this point it is wise to review our goal in this process.  We are seeking to rewrite the 

hypergeometric function 1 1  as another hypergeometric function that will converge for 

large values of .  We have almost achieved our goal except for the 

( ); ;F a c z−

z ( )c a nΓ − −  term in (6.8).  

By using (2.2) and (3.4) we can rewrite ( )c a nΓ − −  as  

 ( ) ( ) ( )n
c a n c a c a

−
Γ − − = − Γ −  (6.9) 

 ( ) ( ) ( )
( )
1
1

n

n

c a
c a n

c a
− Γ −

Γ − − =
− +

. (6.10) 

After substituting (6.10) into (6.8), we obtain  

 ( ) ( )
( ) ( ) ( )1 1

0

; ; 1
!

n
a

n n
n

c zF a c z z a c a
c a n

−∞
−

=

Γ
− = − +

Γ − ∑  
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 ( )
( ) ( 1

2 0 ,1 ; ;a
z

c
z F a c a

c a
−Γ

= −
Γ −

)+ − . (6.11) 

Observe that the series on the right approaches zero for  and large values of .  This is the 

exact result that we wanted.  We can then state that 

0a > z

 ( ) ( )
( )1 1 ; ; ,ac

F a c z z z
c a

−Γ
−

Γ −
� →∞ . (6.12) 

It will be useful for us to find a general result for the hypergeometric function  

 ( )
( )

( )
( ) ( )

( )
1

1 1

1

1; ,..., ;
2

k

n
sn

k k k
L

n
n

c a s s
F a c c z z ds

a i c sπ
=

=

Γ
Γ + Γ −

− =
Γ Γ +

∏
∫
∏

 

Appendix A offers a proof of the following result. 

 ( )
( )

( )
( ) 1

1
1 1 1 0 1

1

1
; ,..., ; ,1 ,...,1 ; ;

k

kj
j a

k k k kk

j
j

c
F a c c z z F a a c a c

zc a

+
= −

+

=

Γ ⎛ ⎞−
− = + − + − −⎜ ⎟

⎜ ⎟
⎝ ⎠Γ −

∏

∏
(6.13) 
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7 ASYMPTOTICS FOR BESSEL FUNCTIONS 

It is well known that for large arguments of , x

 ( ) ( )1
22~ cos ,

2p

p
J x x x

x
π

π
⎡ ⎤+
− →∞⎢ ⎥

⎣ ⎦
 (7.1) 

 ( ) ~ ,
2

x
pK x e x

x
π − →∞  (7.2) 

 ( ) ~ ,
2

x

p
eI x x

xπ
→∞ . (7.3) 

In Appendix B, we verify these statements.  We seek to achieve these same results using 

the Mellin-Barnes integral.  In order to accomplish this, we first need to represent each of the 

above Bessel functions in terms of a hypergeometric function.  Once this has been accomplished, 

we’ll apply the asymptotic formulas that we’ve already developed.  Although the results may 

also apply for complex arguments, we will use only the real variable  in the discussion below. x

 

7.1 The Modified Bessel Function of the First Kind 

 

Let’s start with the integral representation of ( )pI x , 2  

 ( ) ( )
( )

( )
1
212 2

1 1
2

1
px p xt

pI x t
pπ

− −

−
= −

Γ + ∫ e dt

t

. 

We make the substitution , to produce  1 2t → −
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 ( ) ( )
( )

( )
1
212 2 2

1 0
2

2 4
px px x

p
tI x e t t

pπ
−−= −

Γ + ∫ e dt  

 
( )

( )
( )

1 1
2 2

2 1
12 2

1 0
2

2
1

p px
p pxe t t e

pπ

−
− −−= −

Γ + ∫ xtdt . (7.4) 

Our goal is to represent the given Bessel function in terms of a hypergeometric function.  This 

can by done by using (3.9), the integral definition of ( )1 1 ; ;F a c x  

 ( ) ( )
( ) ( ) ( )

1 11
1 1 0

; ; 1 c axt ac
F a c x e t t dt

a c a
− −−Γ

= −
Γ Γ − ∫ , 

 

where, for equation (7.4), we recognize that 1
2a p= +  and 2c p 1= + .  Applying the integral 

representation we obtain 

 ( ) ( ) ( ) ( )
( ) ( )

( )
2 1 1 1

2 2 2 1
1 1 21

2

2
;2 1;2

2 1

p px

p

p p
I x F p

p pπ

− Γ + Γ +
= +

Γ + Γ +
p x+  

 ( ) ( )
( ) (2 1

1 1 2 ;2 1;2
1

px
x

p )I x e F p p
p

−= +
Γ +

x+ . (7.5) 

In the last step we used Legendre’s duplication formula to obtain the result.  At this point 

we are halfway to our goal of finding an asymptotic formula.  Next we turn to (6.12), our 

asymptotic representation of ( )1 1 ; ;F a c x . 

 ( ) ( )
( )

( )
( )

1
22

1
2

2 1
2 ,

1

px
p x

p

p
I x x e x

p p
− − −Γ +

→∞
Γ + Γ +

�  

 
( )
( ) ( )2 1

2

2 1
,

2 2 1
x

p

p
e x

x p p
−Γ +

→∞
Γ + Γ +

�  

or, 
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 ( ) 1 ,
2

x
pI x e x

xπ
− →∞� . (7.6) 

 

7.2 The Modified Bessel Function of the Second Kind 

 

 The Modified Bessel function of the second kind, ( )pK x , presents a slightly different 

challenge.  We start with the integral representation, 2

 ( ) ( )
( ) ( )

1
22 2

1 1
2

1
px p xt

pK x t e dt
p
π ∞ − −= −

Γ + ∫  (7.7) 

and make the change of variable .   2 1t t→ +

 ( ) ( )
( ) ( )

1
22 2 2

1 0
2

2
4 4

px px x
pK x e t t e dt

p
π ∞ −− −= +

Γ + ∫ t  

 

 ( )
( ) ( )

11
222

1 0
2

2
1

p
ppx xtx

e e s t d
p

π ∞ −−− −=
Γ + ∫ t+  (7.8) 

The integral in (7.8) is an integral representation of (3.12), the Confluent Hypergeometric 

Function of the Second Kind 

 ( ) ( ) ( ) 11

0

1; ; 1 c axt aU a c x e t t dt
a

∞ − −− −= +
Γ ∫  

with 1
2a p= +  and .  Equation (7.8) then simplifies to  2c p= +1

 ( ) ( ) ( )1
22 ;2p x

p 1;2K x x e U p pπ −= + x+ . (7.9) 
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 Thus far we have developed an asymptotic formula for ( )1 1 ; ;F a c x , but now we are 

presented with the challenge for .  The process is very similar although we now appeal 

to the Barnes integral representation for 

( ; ;U a c x)

( ); ;U a c x  1

 ( ) ( ) ( ) ( ) ( ) ( )1 1; ; 1
1 2

c ia s

c i
U a c z z s a s a c s z ds

a a c iπ
+ ∞− −

− ∞
= Γ − Γ + Γ +
Γ Γ + − ∫ − + (7.10) 

 
( ) ( ) ( ) ( ) ( ){ }

0

1 Res 1 ;
1

a s

n
z s a s a c s

a a c

∞
− −

=

= − Γ − Γ + Γ + − +
Γ Γ + − ∑ z n  

 
( ) ( )

( ) ( )
( )0

11 ;
1 1 sin

a s

n

a s a c s
z z

a a c s s
π

π

∞
− −

=

n
⎧ ⎫Γ + Γ + − +⎪ ⎪= ⎨ ⎬Γ Γ + − Γ +⎪ ⎪⎩ ⎭

∑ , 

which simplifies to  

 ( ) ( ) ( ) ( )
0

; ; 1
!

n
a

n n
n

z
U a c z z a a c

n

−∞
−

=

−
= + −∑ . 

The simple asymptotic relation is  

 . (7.11) ( ); ; ,aU a c z z z− →∞�

Applying (7.11) to (7.9) we find that 

 ( ) ( ) ( )
1
22 2 ,p px

pK x x e x xπ − −− →∞�  

or more simply, 

 ( ) ,
2

x
pK x e x

x
π − →∞�  

which is the result that we wanted. 
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7.3 The Bessel Function 
 

 We start with the integral representation of ( )pJ x , 2

 ( ) ( )
( )

( )
1
212 2

1 1
2

1
px p ixt

pJ x t e dt
pπ

−

−
= −

Γ + ∫ . (7.12) 

We make the change of variable . 2 1t t→ −

 ( ) ( )
( )

( )( ) ( )
1
21 2 2 12

1 0
2

2 1 2 1
px p ix t

pJ x t e dt
pπ

−
−= − −

Γ + ∫  

 
( )

( )
( )

1
212 2 2

1 0
2

2 4 4
p ixx p ixte

t t e d
pπ

−
−

= −
Γ + ∫ t  

 
( )

( )
( )

1
212 2 2

1 0
2

2 4 4
p ixx p ixte

t t e d
pπ

−
−

= −
Γ + ∫ t  

 
( )

( )
( )

11
22

2
12 2

1 0
2

2
1

p ix px
pp ixte

t t e
pπ

−
−−= −

Γ + ∫ dt  (7.13) 

In order to proceed we appeal to equation (3.9), 

 ( ) ( )
( ) ( ) ( )

1 11
1 1 0

; ; 1 c axt ac
F a c x e t t dt

a c a
− −−Γ

= −
Γ Γ − ∫ . 

By comparing (3.9) with (7.13) we find that 1
2a p= +  and 2c p 1= + .  This means that  

 ( ) ( )
( )

( ) ( )
( ) ( )

2 1 1
2 2 2 1

1 1 21
2

2
;2 1;2

2 1

p ix px

p

e p p
J x F p p ix

ppπ

− Γ + Γ +
= +

Γ +Γ +
+  

 
( ) ( )

( )
( )

2 1
2 2 1

1 1 2

2
;2 1;2

2 1

p ix px e p
F p p ix

pπ

− Γ +
= +

Γ +
+ . 

Finally we use (2.3) with 1
2x p= +  to obtain 
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 ( ) ( )
( ) (2 1

1 1 2 ;2 1;2
1

px
ix

pJ x e F p p ix
p

−= +
Γ +

)+ . (7.14) 

 Again, we are at the halfway point.  Notice that for the first time, we have pure imaginary 

arguments in the confluent hypergeometric function.  This argument, with , does not 

meet condition (5.4), which says that the Barnes integral will converge absolutely if 

1p q= =

( ) ( ) 2arg 1z p q π< + − .  We need to devise another scheme for dealing with these arguments.  

We start with (3.12) 

 ( ) ( )
( ) ( ) ( )

( ) ( )1
1 1 1 1

1 1
; ; ; ; 1 ;2 ;

1
cc c

U a c z F a c z z F a c c z
a c a

−Γ − Γ −
= + +
Γ + − Γ

− − . 

By replacing with , and  with a c a− z z− , equation (3.12) becomes  

 ( ) ( )
( ) ( ) ( )

( ) ( ) ( )1
1 1 1 1

1 1
; ; ; ; 1 ;2 ;

1
cc c

U c a c z F c a c z z F a c z
a c a

−Γ − Γ −
− − = − − + − − − −

Γ − Γ −
 

 ( )
( ) ( ) ( )

( ) ( ) ( )1
1 1 1 1

1 1
; ; 1 ;2 ;

1
c c ic c

F c a c z z e F a c z
a c a

π− ±Γ − Γ −
= − − − − −
Γ − Γ −

−  

 ( )
( ) ( ) ( )

( ) ( ) ( )1
1 1 1 1

1 1
; ; 1 ;2 ;

1
cz c i zc c

e F a c z z e e F a c
a c a

π−− ± −Γ − Γ −
= − +

Γ − Γ −
c z− − , 

where in the last step we used Kummer’s transformation.  Finally by multiplying by  we 

obtain  

ze

 ( ) ( )
( ) ( ) ( )

( ) ( ) ( )1
1 1 1 1

1 1
; ; ; ; 1 ;2 ;

1
cz c ic c

e U c a c z F a c z z e F a c c z
a c a

π− ±Γ − Γ −
− − = − + − −

Γ − Γ −
.(7.15) 

 Notice that in equations (7.15) and (3.12) we have the same 1  functions.  By 

eliminating the function , we are left with  

1F

(1 1 1 ;2 ;F a c c z+ − − )
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )1 1 1 1

1 1
; ; ; ; ; ; ; ;

1 1

c iz c i c e ce eU c a c z U a c z F a c z F a c z
a c a a a c a a c

ππ ±± Γ − Γ −
− − + = +

Γ Γ − Γ Γ − Γ − Γ + −
, 

where we multiplied (3.12) by 
( )

c ie
c a

π±

Γ −
 and (7.15) by 

( )a
1

Γ
 to eliminate .  ( )1 1 1 ;2 ;F a c c z+ − −

Continuing with the simplification process we find 

 ( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) (1 1

1 1
; ; ; ; ; ;

1 1

c i z c ic e c e e )F a c z U c a c z U a c z
a a c a a c a c a

π π± ±⎡ ⎤Γ − Γ −
+ = − − +⎢ ⎥

Γ Γ − Γ − Γ + − Γ Γ −⎢ ⎥⎣ ⎦
.(7.16) 

We need to simplify the coefficient of ( )1 1 ; ;F a c z .  To do this we recall (2.5), and apply this to 

the coefficient of ( )1 1 ; ;F a c z  to produce 

 ( )
( ) ( )

( )
( ) ( ) ( )

( )1 1 sin sin1
1 1 sin

c i c ic e c a e c
a a c a a c c c

π ππ π
π

± ±⎡ ⎤ ⎛ ⎞Γ − Γ − + −
+ = ⎜ ⎟⎢ ⎥Γ Γ − Γ − Γ + − Γ ⎝ ⎠⎣ ⎦

a
 

 
( )

( ) ( )( )1
c a i a c ia i a i c i

c i c i

e e e e e

c e e

π ππ π π

π π

− −− ±

−

⎛ ⎞− + −
⎜=
⎜Γ −
⎝ ⎠

⎟
⎟

, (7.17) 

where we have written the sine functions in terms of complex exponentials. Upon simplification, 

(7.17) becomes 

 ( )
( ) ( )

( )
( ) ( )

( )

( )
1 1

1 1

c i c a ic e c e
a a c a a c c

π π± ± −⎡ ⎤Γ − Γ −
+⎢Γ Γ − Γ − Γ + − Γ⎣ ⎦

=⎥ . (7.18) 

Applying (7.18) to (7.16), we can represent ( )1 1 ; ;F a c z  in terms of U  functions. 

 
( )

( ) ( ) ( ) ( ) ( ) ( )1 1 ; ; ; ; ; ;
c a i z c ie e eF a c z U c a c z U a c z

c a c a

π π± − ±

= − − +
Γ Γ Γ −

 

 ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )1 1 ; ; ; ; ; ;a c i a c iz cc c iF a c z e e U c a c z e e U a c z
a c a

π π π± − ± − ±Γ Γ
= − − +
Γ Γ −
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 ( ) ( )
( ) ( ) ( )

( )
( ) (1 1 ; ; ; ; ; ;a c ia i zc c )F a c z e U a c z e e U c a c z

c a a
ππ ± −±Γ Γ

= +
Γ − Γ

− −  (7.19) 

We have already discovered an asymptotic result for ( ); ;U a c z .  Applying (7.11) to (7.19) we 

find that 

 ( ) ( )
( )

( )
( )

( ) ( ) ( )
1 1 ; ; c aa c ia i a zc c
F a c z e z e e z

c a a
ππ − −± −± −Γ Γ

+ −
Γ − Γ

�  

 ( ) ( )
( )

( )
( ) ( ) ( )

1 1 ; ; c aa i a zc c
F a c z e z e z

c a a
π − −± −Γ Γ

+
Γ − Γ

� . (7.20) 

If we apply (7.20) to (7.14) we obtain 

 ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )1 11

2 222 2
1 1
2 2

2 1 2 1
2 2

1

px
p pp iix ix

p

p p
J x e e ix e ix

p p p
π − + − ++− ⎛ ⎞Γ + Γ +

+⎜ ⎟⎜ ⎟Γ + Γ + Γ +⎝ ⎠
�  

 ( )
( )

( )
( ) ( ) ( ) ( )( )1 1

2 22 2
1
2

2 1
2

1

px
p p iix ixp

e ix e e
p p

π− + +−Γ +
+

Γ + Γ +
�  

 ( ) ( ) ( )( )1 1
2 2 21

2
p p iix ixe i e e

x
π

π
− + +− +� . (7.21) 

  Finally, through a bit of complex algebra, we obtain our desired result 

 ( ) ( )
( ) ( )( )

1
2 1

2 2 21
2

p
i p iix ix

pJ x e e e e
x

π
π

π

+
− +− +�  

 
1 1
2 2

2 21
2

p p
i x i x

e e
x

π π

π

+ +⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

�  

or, 

 ( ) ( )1
2

2
2 cos ,p

pJ x x x
x

π
π

+− →∞�  (7.22) 
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8 AN APPLICATION 

 Thus far we have spent time developing the above method for finding asymptotic 

formulas for hypergeometric type functions.  In the paper by Andrews 4, a hypergeometric 

function arises in calculating the aperture averaging figure of various optical scintillations.   

 ( )2 2
7 3

2 2 6 2 4, ;2,3; mDA F κ−= , (8.1) 

where  is the diameter of the circular aperture, and D
0

5.92
m lκ = , with  being the turbulence.  We 

would like to calculate the aperture averaging figure for large values of 

0l

2 2

4
mDκ− .  In his paper Dr. 

Anrdrews found that ( ) ( )
7
3

0

3
0.453 0.215D

lA
−
−�

0

D
l

−
 for large arguments of 

0

D
l .  This time we are 

dealing with a hypergeometric type function of the form ( )2 2 , ; , ;F a b c d x .  Let’s explore the 

asymptotics of such a function. 

 ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )2 2 , ; , ; s

L

c d a s b s
F a b c d z s z ds

a b c s d s
Γ Γ Γ + Γ +

=
Γ Γ Γ + Γ +∫ Γ −  (8.2) 

Notice that we have two sets of poles in the left hand plane.  By using the contour in Figure 3 

and residue theory we can write (8.2) as 

 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

2 2
0

0

, ; , ; Res ;

Res ;

s

n

s

n

c d a s b s
F a b c d z s z n a

a b c s d s

c d a s b s
s z n b

a b c s d s

∞

=

∞

=

⎧ ⎫Γ Γ Γ + Γ +⎪ ⎪= Γ − − −⎨ ⎬Γ Γ Γ + Γ +⎪ ⎪⎩ ⎭
⎧ ⎫Γ Γ Γ + Γ +⎪ ⎪+ Γ − − −⎨ ⎬Γ Γ Γ + Γ +⎪ ⎪⎩ ⎭

∑

∑ . (8.3) 

Next we’ll need to apply (2.5) to ( )a sΓ +  in the first summation and  in the 

second summation.  By doing so, and applying Theorem 2, we can simplify (8.3) to  

(b sΓ + )
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( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0

0

1
1

1
1

n n a

n

n n b

n

c d b a n n a z
a b c a n d a n n

c d a b n n b z
a b c b n d b n n

− −∞

=

− −∞

=

Γ Γ − Γ − − Γ +
=
Γ Γ Γ − − Γ − − Γ +

Γ Γ − Γ − − Γ +
+
Γ Γ Γ − − Γ − − Γ +

∑

∑ . (8.4) 

Finally we use (6.10) to find our desired asymptotic formula 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )2 2 , ; , ; ,a bc d b a c d a b

F a b c d z z z z
b c a d a a c b d b

− −Γ Γ Γ − Γ Γ Γ −
+ →∞

Γ Γ − Γ − Γ Γ − Γ −
� .(8.5) 

If we apply (8.5) to (8.1) we find that  

 
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
7 3

2 2 2 26 2
1 1
3 3

4 43 5 7 311 1
2 6 6 6 2 2

2 3 2 3
m mD DA κ κ

− −
− −Γ Γ Γ Γ Γ Γ −

+
Γ Γ Γ Γ Γ Γ

�  

 ( ) ( )
7
3

0

3
0.453 0.215D

lA
0

D
l

− −
−� , (8.6) 

which agrees with the results achieved by Dr. Andrews. 
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9 CONCLUSION 

 We’ve presented an alternate method for developing large argument asymptotic formulas 

for Hypergeometric type functions.  Specifically, we’ve looked at the Bessel functions.  The 

method and its results have been verified by comparing it to previously obtained results.   

 The purpose of this paper has never been to show that this method is better than others, or 

that it is more efficient.  The goal has simply been to show that another method does exist, which 

under other circumstances, may prove to be not only efficient, but also necessary.  Continued 

research in this area would be beneficial to the development of asymptotic formulas and beyond. 
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PROOF OF THEOREM 3  
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By Theorem 1 

 ( )
( )
( )

( ) ( )

( )
1

1 1

1

1; ,..., ;
2

k

j
j s

k k k
L

j
j

c
a s s

F a c c z z ds
a i c sπ

=

=

Γ
Γ + Γ −

− =
Γ Γ +

∏
∫
∏

 

Make the change of variable . ( )s s→− + a

 
( )
( )

( ) ( )

( )
1

0

1

Res ;

k

j
j a s

k
n

j
j

c
a s s

z z
a c a s

∞
= − −

=

=

n

⎧ ⎫
Γ ⎪ ⎪Γ + Γ −⎪ ⎪= − ⎨ ⎬Γ ⎪ ⎪Γ − −

⎪ ⎪⎩ ⎭

∏
∑

∏
. 

Applying (2.5) we find that, 

 
( )
( ) ( )

( )

( )
1

1
0

1

Res ;
1 sin

k

j
j a s

k k
n

j
j

c
a s

F z z
a s s c a s

π
π

∞
= − −

=

=

n

⎧ ⎫
Γ ⎪ ⎪Γ +⎪ ⎪= ⎨ ⎬Γ Γ +⎪ ⎪Γ − −

⎪ ⎪⎩ ⎭

∏
∑

∏
 

 
( )
( )

( )

( ) ( )
1

0

1

Res ;
1 cos

k

j
j a s

k
n

j
j

c
a s

z z
a s s c a sπ

∞
= − −

=

=

n

⎧ ⎫
Γ ⎪ ⎪Γ +⎪ ⎪= ⎨ ⎬Γ ⎪ ⎪Γ + Γ − −

⎪ ⎪⎩ ⎭

∏
∑

∏
 

 
( )
( )

( )

( ) ( )
1

0

1

1 cos

k

j
j a n

k
n

j
j

c
n a

z z
a n n c a nπ

∞
= − −

=

=

⎛ ⎞
Γ ⎜ ⎟Γ +⎜ ⎟=

⎜ ⎟Γ Γ + Γ − −⎜ ⎟
⎝ ⎠

∏
∑

∏
 

By using (6.10), we come up with the desired result. 

 ( )
( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( )
1 1

1 1
0

1

1 1 1
; , , ;

1

k k
n n

j jn n
j ja n

k k k
n

j
j

c a a c a
F a c c z z z

a n c a

∞
= =− −

=

=

⎛ ⎞
Γ − Γ − − +⎜ ⎟

⎜ ⎟− =
⎜ ⎟Γ Γ + Γ −⎜ ⎟
⎝ ⎠

∏ ∏
∑

∏
K  
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( ) ( ) ( ) ( )1

0 1

1

1 1
1

!

k

n knj nk
j a

jk n n
n j

j
j

c
z

z a c a
nc a

−∞
= −

= =

=

Γ ⎛ ⎞− −
= − +⎜ ⎟

⎜ ⎟
⎝ ⎠Γ −

∏
∑ ∏

∏
 

 
( )

( )
( ) ( )

( )( )1

1

0 1

1

1
1

!

k
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j k
j a

jk n n
n j

j
j

c z
z a c a

nc a

−+
∞

= −

= =

=

⎛ ⎞Γ −⎜ ⎟= − +⎜ ⎟
⎜ ⎟Γ − ⎝ ⎠

∏
∑ ∏

∏
 

 
( )

( )
( ) 1

1
1 0 1

1

1
,1 ,...1 ; ;

k

kj
j a

k kk

j
j

c
z F a c a c a

zc a

+
= −

+

=

Γ ⎛ ⎞−
= − + − +⎜ ⎟

⎜ ⎟
⎝ ⎠Γ −

∏

∏
−  
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 In order to derive asymptotic formulas for ( )pK x , ( )pJ x , and ( )pI x  we start with the 

integral representation of , ( )pK x

 ( ) ( )
( ) ( )

1
22 2 1

21 1
2

1
px pxt

pK x e t dt p x
p
π ∞ −−= − >

Γ + ∫ , 0− > , (8.1) 

 
and immediately make the substitution 1 u

xt = + .  This leads to  

 ( ) ( )
( )

( ) ( )( )
1
2212

1 0
2

1 1
u
x

px px u
p xK x e du

p x
π −∞ − += +

Γ + ∫ −  

 ( )
( ) ( )

1
2 2

2
2 2

1 0
2

p xx pu u u
x x

e
e d

p x
π −

−∞ −= +
Γ + ∫ u  

 ( )
( ) ( )

1
2 2

2
2 2

1 0
2

p xx pu u u
x x

e
e d

p x
π −

−∞ −= +
Γ + ∫ u  

 ( ) ( )
( ) ( )

1
2 11

222
21 0

2

2 1
p p xx

ppu u
p x

eK x e u du
p x x
π − − ∞ −−−⎛ ⎞= +⎜ ⎟Γ + ⎝ ⎠ ∫ . 

For large values of  we use the relationship x ( )
1
2

21 1,pu
x x u−

+ � �  to obtain  

 ( ) ( )
1
2

1 0
22

x
pu

p
eK x e u du

x p
π − ∞ −−

Γ + ∫�  (8.2) 

Notice that the integral in (8.2) is ( )1
2pΓ + .  This implies that 

 ( ) ,
2

x
pK x e x

x
π − →∞� , (8.3) 

which is our desired asymptotic formula. 
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 In order to develop asymptotic formulas for ( )pJ x , ( )pI x  we need to refer to the 

relationship between  and the Hankel functions ( )pK x ( ) ( )1
pH x . 

 ( ) ( ) ( )111
2

p
pK x i H xπ += p  (8.4) 

After making the change of variable x ix→ −  and solving for ( ) ( )1
pH x , (8.4) becomes 

 ( ) ( ) ( ) ( )1 12 p
p pH x i K ix

π
− += − , 

where, upon assuming that (8.4) is valid for complex arguments, we obtain 

 ( ) ( ) ( ) ( )1
21 12 2

2
pp ix ix

pH x i e i e
ix x
π

π π
− +− +

−
� � . 

 
Upon writing 2

i

i e
π

=  we find  

 ( ) ( )
( )1

2
21 2

p
i x

pH x e
x

π

π

+⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦�  

 ( )( ) ( )( )1 1
2 2

2 2
2 cos sin ,p px i x x
x

π π

π
+ +⎡ ⎤− + − →⎢ ⎥⎣ ⎦

� ∞ . 

Finally, we use the relationship ( ) ( ) ( ) ( )1
p p pH x J x iY x= +  and equat real and imaginary terms to 

obtain the desired result  

 ( ) ( )( )1
2

2
2 cos p

pJ x x
x

π

π
+

−� . (8.5) 

To reach an asymptotic result for ( )pI x  we use the relation ( ) ( )p
p pI x i J ix−=  to find  

 ( )
2

x

p
eI x

xπ
� . (8.6) 
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