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ABSTRACT 

As digital images become ubiquitous in many applications, the need for efficient and 

effective retrieval techniques is more demanding than ever. Query by Example (QBE) and Query 

by Concept (QBC) are among the most popular query models. The former model accepts 

example images as queries and searches for similar ones based on low-level features such as 

colors and textures. The latter model allows queries to be expressed in the form of high-level 

semantics or concept words, such as “boat” or “car,” and finds images that match the specified 

concepts. Recent research has focused on the connections between these two models and 

attempts to close the semantic-gap between them. This research involves finding the best method 

that maps a set of low-level features into high-level concepts. 

Automatic annotation techniques are investigated in this dissertation to facilitate QBC. In 

this approach, sets of training images are used to discover the relationship between low-level 

features and predetermined high-level concepts. The best mapping with respect to the training 

sets is proposed and used to analyze images, annotating them with the matched concept words. 

One principal difference between QBE and QBC is that, while similarity matching in QBE must 

be done at the query time, QBC performs concept exploration off-line. This difference allows 

QBC techniques to shift the time-consuming task of determining similarity away from the query 

time, thus facilitating the additional processing time required for increasingly accurate matching. 

Consequently, QBC’s primary design objective is to achieve accurate annotation within a 

reasonable processing time. This objective is the guiding principle in the design of the following 

proposed methods which facilitate image annotation: 
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• A novel dynamic similarity function. This technique allows users to query with 

multiple examples: relevant, irrelevant or neutral. It uses the range distance in each 

group to automatically determine weights in the distance function. Among the 

advantages of this technique are higher precision and recall rates with fast matching 

time. 

• Object recognition based on skeletal graphs. The topologies of objects’ skeletal graphs 

are captured and compared at the node level. Such graph representation allows 

preservation of the skeletal graph’s coherence without sacrificing the flexibility of 

matching similar portions of graphs across different levels. The technique is robust to 

translation, scaling, and rotation invariants at object level. This technique achieves high 

precision and recall rates with reasonable matching time and storage space. 

• ASIA (Automatic Sampling-based Image Annotation) is a technique based on a new 

sampling-based matching framework allowing users to identify their area of interest. 

ASIA eliminates noise, or irrelevant areas of the image. ASIA is robust to translation, 

scaling, and rotation invariants at the object level. This technique also achieves high 

precision and recall rates. 

While the above techniques may not be the fastest when contrasted with some other 

recent QBE techniques, they very effectively perform image annotation. The results of applying 

these processes are accurately annotated database images to which QBC may then be applied. 

The results of extensive experiments are presented to substantiate the performance advantages of 

the proposed techniques and allow them to be compared with other recent high-performance 
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techniques. Additionally, a discussion on merging the proposed techniques into a highly effective 

annotation system is also detailed. 
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

Digital images have become more ubiquitous than ever before. Digital data is replacing 

traditional textual data and becoming a prominent medium in many application domains. This 

growth is due to the fact that image acquisition, manipulation and storage are becoming so 

affordable these days: inexpensive and high-resolution digital cameras and camera-equipped 

mobile phones are flooding the market, powerful image-processing software is freely available 

and the price of mass storage is decreasing every day ([46], [47] and [48]). Digital pictures are 

now taken by ordinary people and professionals alike, modifying, sharing, publishing and storing 

them in vast numbers. Meanwhile, other traditional applications of images continue to 

accumulate huge quantities of data in digitized formats. New applications such digital museums 

are also growing in number.  

This phenomenon is the main drive for recent research in image manipulation such as 

archiving and retrieval. Efficient search techniques are critical for large image databases in 

image management systems [46]. Although there has been much research tackling this problem, 

it is still very challenging for an average user to search for particular images from a large 

collection. In the following section, recent query models for image retrieval are surveyed, the 

weaknesses of previous methods are highlighted, and the proposed approaches addressing these 

weaknesses are summarized.  
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1.2 Related Work 

Many techniques have been proposed to search for images from a large image database 

([1]-[4], [10], [12]-[18], [49]-[55], etc.) These techniques can be divided into Query-by-Example 

(content-based) and Query-by-Concept (keyword-based) searches depending on how queries are 

posed. 

Query-by-Example (QBE) has been the focus of a lot of research (e.g., [1]-[3], [12]-[18]). 

In a typical QBE system, users present an example image and the system searches for similar 

images using low-level visual features from the example (such as color, texture and structure). 

The performance of QBE systems depend greatly on how close the example is to the desirable 

images. Given a bad example, even the best similarity measures would rank relevant images 

poorly. Even more challenging is the idea of searching for objects, which are often a small part 

of the example. With no mechanism in most QBE systems to isolate the desired object from the 

example’s irrelevant regions, the result set contains many false hits and false dismissals. 

Consequently, it is difficult for users to find desirable images.  

Query-by-Concept (QBC) is focused on keyword-based image retrieval ([4] and [10]) 

and has not been as widely studied as QBE. In these systems, users can retrieve images by 

entering keywords that describe the desired images. Manual keyword description of images has 

long been criticized as subjective, tedious, and limited. Recent keyword-based image retrieval, 

however, is designed around annotation, a process of naming (i.e., annotating) images with high-

level concept keywords such as “car” or “tree”. The annotation process is content-based, 

objective and fully automatic. Given an accurate annotation, relevant images can be retrieved 
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efficiently by employing high performance low-dimensional indexing techniques. Thus, in order 

to support QBC, it is critical to accurately annotate images based on their visual content. 

One principal difference between the two query models is that while similarity matching 

in QBE must be done at the query time, QBC performs concept exploration off-line. As a result, 

QBC techniques are able to shift the time-consuming task of determining similarity away from 

the query time and thus affording additional processing time for more accurate matching. 

Consequently, QBC’s primary design objective is to achieve accurate annotation with reasonable 

processing time. This objective is the guiding principle in the design of QBC methods. 

1.3 Features of the Proposed Techniques 

Some recent image retrieval techniques to facilitate image annotation are surveyed. In a 

typical image annotation system, sets of training images are used to discover the relationship 

between low-level features and predetermined high-level concepts. The best mapping with 

respect to the training sets is proposed and used to analyze images, annotating them with the 

matched concept words. This section highlights the major features of the proposed techniques 

which will be discussed in detail in subsequent chapters. 

1.3.1 Noise in the Whole-Matching Image Retrieval 

In most content-based image retrieval (CBIR) systems, images features are extracted 

from the entire image area. Noise greatly compromises the outcome of similarity computations 

[4]. This issue is discussed in more detail and the proposed technique [58] to address the problem 

 3



is presented in the next chapter. The manner in which this technique advances the quality of 

image annotation is addressed. 

1.3.2 Handling Translation, Scaling, and Rotational Invariants  

Robustness to translation, scaling, and rotation at the object level is desirable in many 

applications. Few retrieval systems, however, can handle the rotational invariant well. Chapters 2 

and 4 address this problem and present techniques for handling the rotational invariant ([56], 

[57] and [58]). 

1.3.3 Effectiveness of the Proposed Techniques 

The most important measure of any image matching technique is how accurately the 

relevant images are identified. The manner in which the performances of the present techniques 

[56 – 59] measure up against competitors is described in Chapters 2, 3 and 4. 

1.3.4 Time Complexity and Space Overhead 

Although response time and space overheads are not the primary performance metrics of 

an annotation system, minimization of these overheads are always desirable measures, especially 

for very large databases. The range-distance and skeleton-matching techniques are able to reduce 

processing time and storage space for image features. The performance of the proposed 

techniques ([56], [57] and [59]) will be analyzed in Chapters 3 and 4. 

 4



1.4 Organization of the Dissertation 

As stated above, this thesis focuses on accurate image annotation to support QBC. 

Towards this goal, several techniques are proposed to address different challenges of image 

matching. In chapter 2, ASIA, an automatic annotation technique for general images, is 

presented. ASIA employs a novel sampling-based matching framework to achieve robustness to 

rotation, scaling, and translation of interested objects. As noted, the first phase of QBC is in fact 

an efficient QBE used to annotate images at the build time. The focus of Chapters 3 and 4 is 

image matching given query examples. In Chapter 3, queries are formed by a set of examples. 

The set consists of three possible subgroups: positive, negative and neutral groups. The positive 

group is the group of images that possess the visual attributes that relevant images should have. 

The negative group consists of examples that are irrelevant. They and their resemblance should 

be filtered out from the returned set. The neutral group simply includes those images that should 

not belong to either of the clear-cut groups. They contain mixed features such that the user is 

unsure about their relevancy as a whole. Chapter 4 discusses another challenging matching 

problem: image matching based on shape. A skeleton-matching technique is proposed to address 

this problem. This technique achieves accuracy in identifying matched objects while reducing 

time complexity and storage space.  

In Chapter 5, the prototype for each technique is described, and the advantages and 

disadvantages for each technique as compared to other recent approaches are highlighted. 

Finally, the conclusions and future work are discussed in Chapter 6. 

 

 5



CHAPTER TWO: ASIA  

ASIA stands for an Automatic Sampling-based Image Annotation technique for high-

level image retrieval. ASIA consists of two phases. In the first phase, an annotated image 

database with high-level image concepts using low-level image features, such as the colors and 

structure of sample objects, is created off-line. This annotation technique uses a new sampling-

based matching framework which has been shown to be more robust than previous approaches to 

the scaling and translation invariants. This approach is also the first that is robust to the rotation 

invariant at the matching object level. In the second phase, the user can query the annotated 

image database using text-only concepts. Experimental results indicate that the ASIA method is 

significantly better than a recently proposed alternative the Monotonic Tree (MT) method. ASIA 

has the ability to identify more relevant images, while producing fewer false matches. 

2.1 Introduction 

Two popular query models for image retrieval systems are as follows: 

• Query by Example (QBE): This approach accepts an image as a query and 

searches for similar images in the database. 

• Query by Concept (QBC): This approach accepts concepts stated in text format as 

a query and searches for images in the database that match the specified concepts. 

QBE requires the ability to automatically extract low-level image features such as color, 

texture, shape, etc to facilitate image matching. A limiting factor of this approach is finding an 

appropriate example query image. The required search time is too slow for a large image 
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database. In comparison, QBC accepts high-level concepts such as “boat” or “car” as queries, 

which are relatively easier to use. This faster QBC approach requires an efficient and reliable 

technique to annotate the database images. The ASIA (Automatic Sampling-based Image 

Annotation) technique, which enables us to exploit the power of low-level image features to 

support the convenience of QBC, is proposed in this chapter. 

The ASIA process starts with a training set of sample images to train visual concepts for 

an image database. Each image in the training set represents a high-level concept such as “car,” 

“sky,” “flower,” etc. Database images are annotated with high-level concepts based on the 

matched training images. The matching is done in a new sampling-based framework, in which 

each training image has a contour indicating the “area of interest.” Thus, noise such as 

background and irrelevant object areas are excluded from the similarity computation to ensure 

the high quality of the annotation. The extracted features of the noise-free training images can be 

maintained in a Concept Library to support annotation of new images in the future.  

In comparison with existing QBE techniques, the ASIA approach has the following 

advantages: 

• Since image matching is done off-line, ASIA can afford substantially more time 

to achieve better quality matching. 

• Noise in such a query can dilute the true intension of a query and may lead to 

unintended query results. Unlike the traditional QBE, which treats the entire 

image area as the query (even though a significant portion of the image may not 

be relevant) ASIA focuses on only the specific area of interest. Therefore, ASIA 

should give more accuracy.  
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Experimental studies indicate that ASIA significantly outperforms a recent QBC 

technique called the Monotonic Tree approach [10]. ASIA provides greater accuracy and is 

robust to rotation, scaling, and translation invariants at the matching object level. 

The remainder of this chapter is organized as follows. In Section 2.2, some related 

previous work are reviewed. The ability to handle rotation, scaling, and translation invariants of 

objects in image matching for ASIA is discussed in Section 2.3. An indexing method for this 

environment is presented in Section 2.4. The ASIA annotation environment is introduced in 

Section 2.5. The experimental results are provided in Sections 2.6. Finally, concluding remarks 

are discussed in Section 2.7. 

2.2 Related Work 

There have been many proposals of QBE techniques (e.g., [1], [2], [3], [12], [13], [14], 

[15], [16], [17], [18], etc.); however, far fewer studies on automatic annotation techniques for the 

QBC approach. This section reviews some recent QBC approaches and discusses known 

problems for each approach.  

The Monotonic Tree technique [10] represents each image as a hierarchical structure of 

the image elements similar to XML. The basic elements, called structure elements, correspond to a 

homogeneous region in the image and are used to store the low-level features of the region such 

as color, shape, harshness and spatial location. A knowledge base is used to organize such 

structure elements into higher-level concepts in the Monotonic Tree. For instance, a higher level 

concept “sky without cloud” is defined in the knowledge base as a smooth blue region in the 
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upper part of an image. Thus, images are annotated in this technique based on models of various 

high-level concepts. The drawbacks of this approach are as follows: 

• The models are rudimentary and not specific enough to differentiate real-life 

objects. 

• Building the knowledge base involves specifying many thresholds to define each 

concept. This process, done manually, is tedious and fairly subjective. 

Another QBC technique, called CAMEL (Concept Annotated iMagE Libraries), is presented 

in [4]. This scheme addresses the second problem of the Monotonic Tree approach by using 

sample images to define visual concepts instead of characterizing them with a model. A content-

based search method, called WALRUS (WAveLet-based Retrieval of User-specified Scenes) [3], 

is used to extract features from these sample images. To process a QBC query, CAMEL matches 

the feature vectors of the corresponding sample images with those of the images in the database. 

The drawbacks of this approach are as follows: 

• The feature vectors are extracted from the entire image area. Including the noise 

areas in the similarity computation seriously affects the outcome of the image 

matching. 

• The search technique is based on matching low-level features. This mechanism is 

relatively slow. 

• This method does not support the rotation invariant at object level. 

In the following section, a new QBC technique, called ASIA, that addresses all of the 

aforementioned shortcomings, is introduced. 
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2.3 The ASIA Approach 

The image retrieval problem and image annotation problem are different in one subtle 

way. Short query response time is a key requirement of image retrieval systems. Unless a search 

technique is sufficiently fast, it is not practical for QBE systems. In contrast, since image 

matching techniques developed for image annotation are executed off-line, their primary design 

objective is to achieve highly accurate annotation even at the expense of a slow matching 

process. ASIA is designed following this perspective. 

The ASIA environment is presented in this section, and the techniques for handling 

rotation, scaling, and translation of image objects are discussed. 

2.3.1 Preprocessing of the Training Image 

The ASIA approach allows the user to draw a contour on a training image to precisely 

outline the image area relevant to the visual concept being used for the annotation. The first step 

of the ASIA annotation procedure is to reduce the training image to the smallest square region 

that completely encloses the area of interest. This is done as follows: 

• X0 and X1 coordinates are identified that fully cover the area of interest in the 

horizontal direction, and the width of the contour is computed as  

   width = 10 XX −  

• Similarly, Y0 and Y1 coordinates are identified that fully cover the area of interest 

in the vertical direction, and the height of the contour is computed as: 

height = 10 YY −  
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• MIN(width, height) and MAX(width, height) are defined as the minimum and 

maximum values, respectively, between the width and height of the area of 

interest. The reduced training image is a square region with dimension c c× , 

where c = MAX(width, height), such that its center coincides with the centroid of 

the area of interest as illustrated in Figure 1.  

• Finally, the dimensions of the reduced training image are rounded up to the 

nearest square selected from the following sizes: 96×96, 128×128, 160×160, 

192 192, 224×224, and 256× ×256 pixels. 

It will be clear later why one of the above six square sizes is used to reduce the original 

training image. For convenience sake, hereafter, the reduced training image will be referred as 

the training image. 

 

 

Figure 1: Finding the reduced area of a training image 
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2.3.2 Image Sampling  

The ASIA matching technique is motivated by the process of digitizing audio waveforms. 

An audio waveform is approximated by taking samples of the waveform over time. This concept 

is adapted for images by taking samples over space (i.e., the image area). In ASIA, a sample is a 

circular block of image pixels. The diameter of this block is 16 pixels. The rationale is that the 

correlation between pixels tends to decrease after 15 to 20 pixels ([1], [5]). Using sample blocks 

with a 16-pixel diameter allows us to represent each block by its average color, called local 

average, to save storage and computation. The locations of the sample blocks are illustrated in 

Figure 2. They form eight concentric circles called sample circles. From a different perspective, 

these circular blocks form 16 sampling rays radiated from the center of the image. These 

sampling rays are uniformly spaced out at 22.5 degrees between adjacent sampling rays. 

 

 

Figure 2: Sample blocks form eight concentric circles 
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Image matching is done in the ASIA framework by comparing the local averages of the 

corresponding sample blocks in the two images. To facilitate similarity computation, the local 

averages from RGB color is transformed and quantized them to 256 values in the Munsell (H, V, 

and C) system using the mathematical transformation presented in [19]. In this uniform color 

system, the dissimilarity of two colors is simply the distance between them. 

2.3.3 Noise-Free Matching 

To support noise-free matching, only the local averages spatially falling within the area 

of interest outlined by the contour are compared. For instance, to annotate relevant database 

images with the concept “car,” a contour is drawn around a car in a sample (or training) image, 

and use it to match against the images in the database. For each database image that has the same 

contour area matching the one in the training image, this database image is annotated with the 

concept “car.” Compared to CAMEL, the ASIA annotation technique is noise-free and therefore 

more reliable. ASIA also processes queries substantially faster because it compares the QBC 

query against the pre-computed annotations stored in the database instead of matching low-level 

features. In comparison with the Monotonic Tree approach, the ASIA technique is more reliable 

since it is based directly on the sample images, not thresholds subjectively defined by human 

users. ASIA is also more reliable due to the fact that its annotation process is based on individual 

sample images. Matching any one of these images (e.g., car pictures taken from different points 

of view) is sufficient to declare a positive match. In contrast, a model for a concept, as used in 

the Monotonic Tree, represents the average case derived from the experience of the human user. 

Using average data to look for matches is not specific enough and is prone to errors. 
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Let  be the average color of a sample block TrifvTr i falling inside the contour of a 

training image. Similarly,  denotes the average color of a sample block DBifvDB i falling within 

the contour of a database image. The similarity of these two sample blocks is computed as 

follows: 

)ifvDBi(fvTriDist −=    (1) 

To determine the similarity of the two contour areas, compute the matching score as 

follows: 

∑
= +

=
n

1i iDist1
w

Score i     (2) 

Let n represent the number of sample blocks inside each contour. A ‘1’ is added to the 

denominator to prevent division by zero. In the numerator, wi is a weighting factor which can be 

set to indicate the significance of the match at sample block i. Since not all colors are equally 

likely in real-world images, matches on rare colors are more discriminating. The frequencies of 

the 256 possible average colors are determined from the images in the database. wi is 

proportional to the inverse frequency of the average color . If a similarity score is below a 

predefined threshold, it is not a match. 

ifvTr

ASIA can be viewed as a structured-based or skeleton-based matching technique. This 

matching scheme implicitly takes into account the spatial correlation among the different 

meaningful parts of the matching object. 
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2.3.4 Handling Rotation in Matching Objects 

Let A be a training image and B a database image to be annotated. The feature vector of A 

is denoted as A0 = {A1, A2, ..., A16}, where Ai represents the ith sample ray of A. Similarly, the 

feature vector of B is B0 = {B1, B2, ..., B16}. The 16 different configurations of the feature vector 

of A are also defined as follows:  

A0 = {A1, A2, ..., A15, A16} 

A1 = {A2, A3, ..., A16, A1} 

A2 = {A3, A4, ..., A1, A2} 

... 

A15 = {A16 , A1, ..., A14 , A15} 

That is, An is obtained by a rotational left shift of A(n-1). The similarity matching of images 

A and B is done by performing the following 16 comparisons: A0 versus B0, A1 versus B0, ... and 

A15 versus B0. Each comparison is done as described in Section 2.3.2. If any one of these 16 

comparisons results in a match, the whole matching process is considered as a match. 

Informally, the matching process can be described as superimposing and rotating the 

training image over the database image for one complete circle at 22.5 degree increments. For 

each rotation position, the corresponding local averages falling inside the two contours are 

compared as discussed in Section 2.3.2. This matching scheme is illustrated in Figure 3. The best 

match occurs when A15 and B0 are compared. 
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                                                       (A)                                                                         (B)   
 

Figure 3: Training image A and database image B 

 

Training image A matches database image B when A15 and B0 are compared. 

2.3.5 Handling Translation in Matching Objects 

Handling translation requires comparing the training image against various local regions 

in the database image. In ASIA, subimages of six different sizes are considered as follows: 121 

subimages of size 96×96 pixels, 81 of size 128×128, 49 of size 160×160, 25 of size 192×192, 9 

of size 224 224 and 1 of size 256×256. The subimages of each size are evenly spaced out to 

cover as much of the whole image area as possible. Please note that subimages smaller than 

96×96 pixels are not interesting for most image retrieval applications.  

×

In total, there are 286 subimages for each database image. For matching purposes, each 

of these subimages is treated as an image and the same sampling rate is applied to all of them. As 

a result, the number of sample circles for each subimage size is as follows: 
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• a 96×96 subimage has 3 sample circles 

• a 128×128 subimage has 4 sample circles 

• a 160×160 subimage has 5 sample circles 

• a 192×192 subimage has 6 sample circles 

• a 224×224 subimage has 7 sample circles 

• a 256×256 subimage has 8 sample circles 

Processing a training image in ASIA is done as follows: 

1) Six different sampling rates are applied to the training image. A higher sampling 

rate results in more sample blocks, and therefore, more sample circles over the 

same image area. This process creates six different training configurations with 3, 

4, 5, 6, 7 and 8 sample circles, respectively. 

2) Since the smallest dimensions of a training image are 96×96 pixels, a smaller 

sample block with a 6-pixel diameter is used in order to fit up to 8 sample circles 

in a 96×96 area. For each sampling rate, the sample blocks are evenly space out 

on their sample ray. 

3) Each of the subimages is compared in the database against the training 

configuration with the same number of sample circles using Equations 1 and 2. 

4) If a subimage matches any one of the training configurations, the database image 

containing the matching subimage is annotated with the corresponding concept. 
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2.3.6 Handling Scaling in Matching Objects 

Since image comparison is done at various sampling rates, as described in Section 2.3.4, 

ASIA can match the same objects of different sizes as illustrated in Figure 4. It shows, at the top, 

the sample blocks of a database image. The three imaginary circles indicate the sample blocks 

inside each circle belong to the corresponding contain square subimage. The three images at the 

bottom represent three training images, each with the same star of a different size. Three 

different sampling rates are applied to these training images. If these three training images are 

compared with the appropriate subimage of the database image, they all match the star object in 

the database, although at different scales. The left training image, using a sampling rate higher 

than the sampling rate of the database image, is able to match a bigger star in the database image. 

The middle training image, using the same sampling rate used for the database image, can find a 

star of the same size. Similarly, the right training image, using a lower sampling rate, can match 

a smaller star. 
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                               (B)                                                  (C)                                                    (D) 

Figure 4: One example of scaling-invariant matching 

 

This illustrates one fixed sampling rate for the database image in Figure 4 (A) and three 

sampling rates for the training images in Figure 4 (B, C and D) in order to match the database 

image with a bigger object, same-size object and smaller object, respectively. 
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2.4 Indexing 

Although speed is not the primary performance metric for an annotation system, an 

indexing technique is presented in this section to help speed up the annotation process. This 

access structure is particularly important to applications that require frequent update to the 

Concept Library. 

To leverage an indexing mechanism, the area of interest is approximated in a training 

image by a core area that maximizes the signal-to-noise ratio. This core area covers as many of 

the relevant local averages as possible without including too many irrelevant local averages (i.e., 

noise). An algorithm, presented in [2], can be used to compute this core area. 

Internally, each database image is represented as five hyperrectangles in a 

multidimensional space. A multidimensional index such as R* tree is built on these database 

rectangles. To annotate the database images with a particular visual concept, the core area of the 

corresponding training image is used to probe the R* tree to search for potentially matching 

images in the database. Since the search results based on the core area is not noise-free, the 

candidate images returned in this phase are subject to a second-phase validation process in which 

the candidate images are compared against the training image using the technique described in 

Section 2.3.  

To further explain this strategy, each of the 286 subimages of each database image is 

referred to as its indexing subimage. Internally, each indexing subimage is represented as a 14-

element signature. To support the rotational invariant matching, the signature needs to be 

rotational invariant. It is computed as seven statistical average-variance pairs as follows: 
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1) Compute the color histogram to determine the three colors with the highest 

frequency, say C1, C2, and C3, respectively. 

2) The first statistical average-variance pair is computed from the colors of all pixels 

in the indexing subimage. 

3) For each of the six color pairs (Ci, Cj), where i and j can be 1, 2, or 3, compute an 

average-variance pair for the signature as follows. The distance between any two 

pixels is defined at (x1 , y1) and (x2 , y2), respectively, as 

d = max (|x1- x2|, |y1- y2|). 

For each pixel pi of color Ci , compute the counts of the number of pixels of color Cj that 

are at distance 1, 3, 5, and 7, respectively, from pi. Then compute the average and variance of 

these counts weighed by their respective distances. Thus, the signature has 14 total values. 

Each signature in the database can be treated as a data point, also called signature point, 

in a 14-dimensional signature space. Since each database image has 286 indexing subimages, it 

has 286 signature points. To reduce the complexity, the signature points are clustered of each 

indexing subimage into five minimum bounding rectangles (MBRs). In other words, each 

database image is ultimately represented by its five MBRs in the 14-dimensional signature space. 

After applying a certain sampling rate to a training image with an area of interest outlined 

by a contour, core area is determined and its signature point is computed as in the case of 

indexing subimages. This signature point can be treated as a tiny MBR, with essentially no 

dimension, in the 14-dimensional signature space. If this tiny MBR falls within any MBR of an 

indexing subimage, the corresponding database image is considered as a potential match for the 

training image. To speed up the search operation, a multidimensional access structure such as the 

R* tree can be used to index the MBRs in the database. 
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ASIA is still effective when the area of interest is slim and long as seen in the 

experimental results presented in Section 2.6. This is due to the fact that the core area is only 

used to eliminate database images that have no chance of matching the training image. A core 

area of a slim and longer area of interest is less specific. As a result, the index structure returns a 

longer list of image candidates. The irrelevant candidates will eventually be eliminated by the 

detailed block-to-block comparisons performed in the validation phase. 

2.5 The ASIA Annotation Environment 

The ASIA environment is illustrated in Figure 5. The numbers 1 through 7 label the steps 

involved in the annotation process. These steps are discussed as follows: 

1) The Fill-in Polygon algorithm, presented in [9], is used to mark pixels in the area 

of interest. The reduced training image is then determined using the procedure 

given in Section 2.3.1. 

2) For each sampling rate applied to the reduced training image, its feature vector is 

computed. This vector consists of the local averages as shown in Figure 2. These 

feature vectors are saved into the Concept Library to support annotation of new 

images in the future. The following steps are performed for each of the sampling 

rates. 

3) Compute the core area of the area of interest using the algorithm given in [2]. 

4) Compute the signature of the core area. 

5) The signature point of the core area is used as a dimension with less MBR to 

probe the R* tree to identify the potentially matching subimages in the database. 
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For each of these candidate indexing subimages, perform the following steps 6 

and 7. 

6) Compare the indexing subimage with the core area using the rotational matching 

technique presented in Section 2.3.4. For each rotation step, only the local 

averages within the area of interest are compared. The rotation stops as soon as a 

match is found. 

7) If Step 6 results in a match, the database image corresponding to the matching 

index subimage is annotated with the visual concept being processed. 
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Figure 5: The ASIA algorithm 
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2.6 Experimental Study 

Experimental studies are presented in this section. First, the database used for the 

experiments is discussed. Then the test environment is described. Finally, the experimental 

results are examined. 

2.6.1 Image Database 

A commercial image database titled Art Explosion, available from Nova Development is 

used. This database contains 15,000 square images. Each has 256 x 256 pixels. The images have 

been partitioned by content into 120 categories. 125 more images of cars, cups, plates, etc, are 

added to facilitate studies. Please note some of these pictures are not realistically oriented. 

However, they were designed to test and demonstrate the effectiveness of the proposed 

technique. 

Sample training images, which would yield unfair advantages, were deleted from the 

database. In total, there were 70 training images from 25 main categories, including: fish, shell, 

coral, worm, starfish, sea lion, crab, building, art status, art picture, people, animal, balloon, bird, 

boat, sea, car, cup, bowl, plate, tree, water, sky and ground. For each training image, a contour 

was drawn around the desired object to indicate the area of interest. This area determines its 

category concept label. 
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2.6.2 Test Systems 

Experiments were processed on a 1-GHz Pentium III processor running the Microsoft 

Windows 2000 operating system. The off-line annotation for the database of 15,125 images took 

ASIA approximately one day. To facilitate comparisons, the system based on the Monotonic 

Tree approach was processed with the same database on a Sun Ultra 5. This annotation process 

took approximately eight days. 

2.6.3 Experiments 

Some of the experimental results for the ASIA system are presented in Figures 6 through 

10. For each test case, a sample noise-free training image is shown with its associated contour, 

followed by the top-20 matching image candidates selected by the ASIA system. Each of these 

images, indeed, contains the visual concept being annotated. 

The results for the Monotonic Tree approach are summarized in Table 1. The results for 

the ASIA approach are summarized in Table 2. The images selected by Monotonic Tree 

approach is not shown because it does not rank the results. Instead, data can be only reported on 

the number of images annotated correctly, incorrectly or missed. Since there are too many 

database images, the amount of manually scanned database images have to be limited to 1,000. 

They are judged for accuracy with reference to visually correct interpretations. The results 

indicate that the Monotonic Tree approach is not as effective. The result of “sky” annotation is 

significantly better than the other three cases. This is due to the fact that a simple model is 

sufficient for the “sky” concept whose characteristics are relatively simple. On the contrary, one 

cannot rely on a simple model representing the average case to capture the characteristics of 
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water, which may reflect the surrounding environment. As a result, the accuracy for “water” 

annotation is very low. From table 2, the ASIA approach gives high percentage correct 

annotations for all these test cases. 

 

Table 1: Experimental results for the Monotonic Tree approach (MT) 

Test cases for visual concepts  

water sky building tree 

Visually correct  219 671 212 278 

MT annotations 88 526 144 149 

MT correct annotations 65 485 70 137 

MT incorrect annotations 23 41 74 12 

MT misses 154 186 142 141 

Percentage correct annotations 29.7 72 33 49 
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Table 2: Experimental results for ASIA 

 

Test cases for visual concepts 

water sky building tree 

Visually correct 219 671 212 278 

ASIA annotations 313 630 283 350 

ASIA correct annotations 217 558 201 232 

ASIA incorrect annotations 96 72 82 118 

ASIA misses 2 113 11 46 

Percentage correct annotations 99.0 83.0 94.8 83.4 

The visual concepts of “water,” “sky,” “building,” and “tree” for the above studies are 

picked because the Monotonic Tree system, obtained from its authors, does have those same 

concepts in its relatively smaller Concept Library. To demonstrate that ASIA is robust with 

respect to translation, rotation and scaling of the matching objects, the experimental results are 

shown based on the visual concept “cup” in Figure 10. Again, it shows that ASIA annotated 

correctly the first 19 out of the 20 highest-ranked images regardless of the translation, rotation 

and scaling in the cup object. The result sets show robustness to translation, scaling, and rotation 

invariants at matching object level. 

2.7 Conclusions 

In this chapter, the ASIA approach is presented to support query-by-concept in image 

retrieval systems. Compared to traditional systems based on the query-by-example model, ASIA, 

based on textual queries, is easier to use. It is substantially faster on-line because extraction and 
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comparisons of low-level physical features are not necessary. ASIA is also more reliable since it 

has the luxury to spend substantially more time to compare the images off-line during the 

annotation process.  

Few fully automatic query-by-concept systems have been reported. In comparison with a 

recent system based on the Monotonic Tree technique, my experimental results indicate that 

ASIA is significantly more accurate. This is due to the fact that the Monotonic Tree approach is 

based on comparing database images with models of various visual concepts. Their models 

represent the average cases and are not specific enough to accurately recognize all cases. 

Another drawback is due to the fact that building these models involves specifying many more 

thresholds to define various concepts. This process is tedious and fairly subjective. 

Another recent query-by-concept system is CAMEL (Concept Annotated iMagE Libraries). 

CAMEL is not available to the public to access to this system. Therefore, CAMEL is not 

included in this comparative study. Nevertheless, CAMEL does not support noise-free training 

images and is not rotation invariant. These limitations would affect its performance significantly. 

Another drawback of this system is that query processing still relies on comparing low-level 

physical features. That search mechanism is relatively slow. ASIA does not have any of the 

above drawbacks. 
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Figure 6: ASIA result set 1 

 

This result set 1 (increasing rank: left-to-right) returned in response to the noise-free 

training images (left). All top-ranked annotated images contain “water” at any location. 
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Figure 7: ASIA result set 2  

 

This result set 2 (increasing rank, left-to-right) returned in response to the noise-free 

training images (left). All top-ranked annotated images, except one, contain “sky.” 
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Figure 8: ASIA result set 3 

 

This result set 3 (increasing rank, left-to-right) returned in response to the noise-free 

training images (left). All top-ranked annotated images contain “building,” which has many 

similarity matches. 
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Figure 9: ASIA result set 4  

 

This result set 4 (increasing rank, left-to-right) returned in response to the noise-free 

training image (left). All top-ranked animated images contain “tree” of any size and at any 

location. 
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Figure 10: ASIA result set 5  

 

This result set 5 (increasing rank, left-to-right) returned in response to the noise-free 

training image (left). All the first 19 out of 20 top-ranked annotated images contain “cup” of any 

size, rotation and at any location. 
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CHAPTER THREE: RANGE-DISTANCE  

The first phase of ASIA is an efficient new design of the QBE method. Example query 

images used as a training set are plugged into the designed QBE. Their result sets are annotated 

and retained for the annotated image database. This is an important phase for creating an 

accurately annotated image database. Although ASIA produces more accurate annotation than 

other techniques, ASIA uses many dimensions of low-level features and its matching time is 

quite higher than other QBE techniques. Chapters 3 and 4 focus on novel techniques which 

become efficient QBE techniques for solving the drawbacks of ASIA. Range-distance, the 

second technique, is the focus of this chapter.  

For more than a decade query-by-one-example has been a popular query system for 

content-based image retrieval (CBIR). One query image is not sufficient to form its semantics or 

concept. For example, to build a concept “car,” one needs many examples of car images in 

various colors. While the distance metric is used for measuring the similarity between images, all 

N dimensions of features (the static) have been used in the distance metric for other previous 

QBE techniques. For matching car images in any color, the color features should be discarded in 

the distance metric. Proposed is a novel approach called range-distance. In this approach, users 

can query by using one query image or by using multiple groups of query images. There are 

three possible groups: relevant (positive), irrelevant (negative) or neutral groups. For each 

feature within these groups of query images, their range distances are used for adjusting weights. 

As a result, some features may not be employed in the distance metric. This distance metric then 

becomes a dynamic distance metric for QBE. The range-distance approach is able to achieve a 

higher degree of precision and recall and, at the same time, significantly reduces the time 
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complexity of matching. This approach is tested against the ImageGrouper method. The results 

show that this range-distance approach is an effective and efficient technique for query-by-

example(s). Similar to ASIA, the proposed range-distance approach is suitable for image 

database annotation. 

3.1 Introduction 

The most current QBE research [27-32] uses query-by-one-example for multimedia 

information. There exists previous research ([20] and [21]) that has used the combination of 

query images. From [21], this paper discussed analyzing feature-to-semantics mapping that such 

a query-by-one-example cannot realistically lead to scalable, satisfactory query performance. 

More specifically, they cluster a small image dataset based on the images’ perceptual features 

and show that these image clusters are not coherent to the semantic categories of the images. 

Though some image categories are separated from the others in the input space formed by the 

perceptual features, most categories are co-located in more than one cluster. For a query concept 

that is mixed with others in a number of clusters, the query-by-one-example simply lacks 

information to clearly identify the target of the query concept and thus cannot achieve 

satisfactory query results. 

ImageGrouper is described in [20]. It contains a Graphical User Interface (GUI) that 

allows users to interactively compare different combinations of query examples by dragging and 

grouping images on the workspace. The user can quickly review the query results as they are 

displayed in another portion of the workspace. Combining different queries is also easily done. 

Users can query with multiple positive groups and negative groups. Each group is composed of a 
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user’s cluster of images; according to what the user thinks would be good representative images. 

This system uses the Euclidean distance of all of the static N dimensions of those features in a 

distance metric. They use the covariant between features contained within each group and 

between groups to adjust the weights in the distance metric. The covariant metric is minimized 

within the positive group and, concurrently, the covariant metric is maximized between the 

negative and positive groups. 

An effective approach for QBE is still an open research problem. Range-distance, a novel 

QBE approach, is proposed in this chapter. In this approach users can query using a single query 

image or with multiple groups of query images. Users can specify three possible types of groups: 

positive, negative or neutral groups. For each feature within these groups of query images, their 

range distances are used for adjusting weights. As such, some features may not be employed in 

the distance metric. Therefore, the distance metric becomes a dynamic distance metric. In this 

chapter a novel dynamic distance metric is proposed. The number of features in a dynamic 

distance metric can be varied from 1 to N, where N is the dimensionality of the features. In other 

words, the dynamic distance metric is the distance metric with a various number of feature 

vectors. The range-distance approach is based on the matching of the dynamic distance metric. 

The matching algorithm is a fast computation and provides a high percentage of recall and 

precision. Experimental results show that this method offers a significant improvement over the 

ImageGrouper method, a recently proposed alternative. The range-distance technique is 

presented in the next section. 
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3.2 Feature Vectors 

For each image, the extracted features of ImageGrouper are modified, because when used 

in this manner, both approaches get better results than the previous ImageGrouper’s extracted 

features. The visual image features in the range-distance approach consist of thirty-seven 

dimensional numerical values from three groups of features: color, texture and edge structure. 

Extracted features in the texture group are modified as follows. The standard deviation is a good 

representation if there are a large number of query images. Unfortunately, users do not normally 

have enough time to select many query images. For that reason, the average is a good 

representation when using just a few query images. Therefore, in the texture group, the average 

is used as a feature instead of the standard deviation. For the remainder (color and edge 

structure), extracted features are identical to the previous extracted features in the 

ImageGrouper. These features are extracted from the images and indexed in the meta-data 

database offline. 

For color features, the HSV color space is used. The first, second and third moments for 

each of the H, S and V components are computed as features. Therefore, there are nine color 

features for each image. 

For texture, Wavelet-based Texture Features [21][22][23] are used. First, the Wavelet 

Filter Bank [21][24] method is applied to each image, where the images are decomposed into ten 

de-correlated sub-bands (3 levels), as shown in Figure 11. The upper left image in the wavelets 

image is the low frequency sub-band, while the lower right image is the high frequency sub-

band. For each sub-band, the average of the wavelet coefficients is extracted. Therefore, the total 

number of these texture features for each image is ten. 
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   Feature Extraction  Wavelet Image 

 

Figure 11: The wavelet texture features  

 

For the edge structures, the Water-Filling Algorithm [25][21] is applied to the edge maps 

of the images. The Sobel filter is applied to each image and then followed by the thinning 

operation [26] to generate its corresponding edge maps. From the edge map, eighteen elements 

are extracted. These features include the longest edge length, the histogram of the edge length 

and the number of forks on the edges. 

3.3 Query Sets 

The query set consists of three possible groups: positive, negative or neutral. The positive 

group is the group of images that either have very high scores or are very close to a user’s 

preference in deciding what most closely resembles his query. The negative group consists of the 

group of images that the user may want to filter from the result sets. The neutral group consists 

of that group of images about which the user is unsure. 

 39



3.4 Range Distance 

Definition 1: For feature fi, the lower bound (li) = min{∀fi} and the upper bound (ui) = 

max{∀fi}. The range distance (di) = |ui – li|. 

From Section 3.2, there are a total of 37 extracted features for each image. For each 

feature in each user’s cluster (positive, negative and neutral groups), the corresponding lower 

and upper bounds are computed. The range distance is the distance between the lower bound and 

upper bound for each feature, as shown in Figure 12. 

In Figure 12, only two dimensional features, fi and fj, are illustrated. Assume there are 

three images, called A, B and C. For feature fi, li = min{fiA, fiB, fiC} and ui = max{fiA, fiB, fiC}. Then di 

= |ui – li|. Similarly, for feature fj, lj = min{fjA, fjB, fjC} and uj = max{fjA, fjB, fjC}. Then dj = |uj – lj|. 

 

 

Figure 12: The range distances di and dj  
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3.5 Dynamic Distance Metric  

Definition 2: The distance metric D(I,q) between any image (I) and query image (q) is 

defined as D(I,q)=Σwi|Ii-qi|, where wi is a weight in range [0,1] for the feature i. Ii is the feature i 

of database image I. The qi is the feature i of query image q.  

In the range-distance approach, users can query using a single query image or with 

multiple groups of query images. Users can specify positive, negative or neutral groups. Within 

each of these groups of query images, the range distances are utilized to adjust the weights in the 

distance metric. An algorithm describing how to adjust the weight is in the following section. 

Some weights will be zero and may not be used in the distance metric; this is called a dynamic 

distance metric. 

3.6 The Range-Distance Algorithm  

The matching algorithm is as follows: 

1) For each positive, negative and neutral group 

• For each feature (fi), compute the lower bound (li), the upper bound 

(ui) and then compute its range distance (di) = ui - li 

• Therefore, there are dip, dine, dinu for the range distance in positive, 

negative and neutral groups, respectively. 

2) For each feature (fi) 

• compute Min_di = min{dip, dine, dinu} 
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flagi = 0; 

if Min_di = dine, then wi = 0 

else if Min_di = dinu, then flagi = 2 

        else flagi = 1 

3) For each feature i and ( flagi = 1 or flagi = 2) 

3.1) Compute D = ∑
i

id  

 where if flagi = 1, then di = dip 

  else if flagi = 2, then di = dinu 

3.2) Compute di' = di / D 

 where if flagi = 1, then di = dip 

  else if flagi = 2, then di = dinu 

3.3) Compute weight wi = 1- di' 

   if flagi = 2, then compute wi  = wi/num 

   where num =  the number of members in the neutral group 

4) Calculate the distance metric 

For each feature i in the positive group, compute the feature average 

(qi) from all group members. This forms the query features (q). For 

each database image I, compute the distance metric D(I,q) with the 

following equation. 

    D(I,q) = Σ (|Ii-qi| . wi )/(Σwi) 
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Where wi/(Σwi) is a normalization of a weight feature i into the range 

[0,1]. Then the results are sorted in the ascending order and then 

displayed with the top K nearest neighbor. 

For each feature, its smaller range distance dominates the bigger ones. From step 2, if 

Min_di = dine, then wi = 0. On another hand, if a feature i in the negative group dominates the 

feature i in the positive group, it means that users do not want this feature to be included. 

Therefore, the feature i should be discarded from the distance metric. This makes the distance 

metric become dynamic. Steps 2 and 3 are an automatic approach to adjusting the weights from 

the user’s information. The dominant features between the positive group and the neutral group 

are selected in the dynamic distance metric. The motivation for adjusting the weights comes 

from the fact that the smaller range distances should have more weight. Each group is the user’s 

cluster of images. If user indicates more correct clusters, then this range-distance approach 

produces a higher percentage of the precision and recall results. 

In the ImageGrouper approach, there is no meaning for the neutral groups. In the range-

distance approach, however, these neutral groups are set with a lower weight when compared 

with the positive groups, as shown in step 3.3 of the above algorithm. 

3.7 Time Complexity 

Assume there are N dimensions of features and k is the number of members in all groups. 

From finding weights (in step 1-3 of the range-distance algorithm) in the last section, the time 

complexity is O(kN). The range-distance approach uses the simple absolute distance metric. In 

the ImageGrouper approach, covariants between features in each group are used to adjust the 
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features’ weights. The time complexity for finding weights is O(kN2). They use the Euclidian 

distance metric that has a higher time complexity than the range-distance approach. Time 

requirements of both methods are reported in the experimental study section. 

3.8 Experimental Study 

The various datasets are described and the comparative study is discussed in the 

following sub-sections. 

3.8.1 Datasets and Metrics 

A dataset of about 3,000 images was selected from the COREL image database and the 

other images were added to test various features of the range-distance technique. To compose 

queries, images were selected from five categories: dishes, lions, views of the sky, flowers and 

cars. There are 18 images of 3-brown-dishes, 10 images of lions, 53 images of skies, 36 images 

of flowers and 165 images of cars in this dataset. 

For each dataset image and query image, the 37 features were extracted in three groups 

(color, texture and edge structure) as described in section 3.2. Test sets were processed on a 

microcomputer with a 2.4 GHz Pentium IV processor. Programs are coded in C language and 

Java codes are used for their GUI. 

The ImageGrouper approach used software that was downloaded from Image Formation 

and Processing Group at University of Illinois at Urbana-Champaign 

(http://www.ifp.uiuc.edu/~nakazato/grouper/). 
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3.8.2 Comparative Study 

There were a total of 150 query sets. These query sets consisted of a variety of images 

including positive, negative and neutral groups. The same query sets were tested with both the 

range-distance approach and the ImageGrouper approach. The average time required for 

ImageGrouper was 0.456 seconds, while the average time required in the range-distance 

approach was 0.000667 seconds. In this experiment, the range-distance approach is more than 

600 times faster than that of the ImageGrouper approach. 

Some experimental result sets are shown in Figures 13-15. In Figures 13-15, (A) was the 

result set from the range distance approach and (B) was the result set from the ImageGrouper 

approach. The query set is on the right-hand side and the results on the left-hand side. The results 

are ordered from left to right and top to bottom. In Figure 13, this query tried to query images of 

dishes that have a 3-dish structure, excluding images of only one dish. From the results, the 

range-distance approach is more efficient and more accurate than the ImageGrouper approach. 

In Figure 14, this query tried to retrieve images of the red or pink flowers. People wearing red 

and black clothes were selected in the negative query group. The red car was selected as a neutral 

query set. Again, in this example, the range-distance approach is more effective than the 

ImageGrouper approach. In Figure 15, this query tried to retrieve images of brown lions, but not 

a white tiger. Again, in this experiment, the range-distance approach produces a better quality set 

of matching images than the ImageGrouper approach. The reasons that the range-distance is a 

faster and more accurate approach than the ImageGrouper approach are as follows: 

• The range distance can be used to identify the dominant features and discard the 

less important features. 
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• Only the dominant features in the distance metric make the range-distance 

approach more effective. The ImageGrouper uses all of the same N-features in 

the distance metric. The less important features that are employed in the distance 

metric can not filter out the irrelevant images. 

• The range-distance approach computes only the absolute distance features in the 

dynamic distance metric. In comparing the time complexity between the two 

approaches to adjust the weights, the range-distance approach takes O(kN) time 

while the ImageGrouper spends O(kN2) time. The ImageGrouper computes the 

Euclidian distance of all the same N-features in the static distance metric. Thus 

the range-distance approach is faster than the ImageGrouper approach.  

A summary of the recall and the precision rates between the range-distance approach and 

the ImageGrouper approach is shown in Table 3. The approach that had higher rates was more 

precise. The range-distance approach gave better recall and precision rates than the 

ImageGrouper approach for all categories of the query sets. Therefore, the range-distance 

approach is a more efficient approach than the ImageGrouper approach. 
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3.9 Conclusions 

An efficient and effective approach for QBE is still an important open research problem. 

An algorithm is proposed to automatically adjust all the features’ weights by using their range 

distances. These weights are varied, not static, and are also used in the dynamic distance metric. 

The presented technique achieves a high recognition rate and, at the same time, significantly 

reduces time complexity of matching. The results show that the range-distance approach is an 

effective and efficient technique for QBE. 

 

Table 3: Summary of the recall and precision rates in example categories 

                   Range-distance approach               ImageGrouper approach Categories 

          Recall            Precision           Recall           Precision 

Dishes            1.0                 0.8             0.56                0.45 

Lions            0.94                 0.9             0.75                0.75 

Sky            0.87                 0.97             0.72                0.83 

Flowers            0.83                 0.94             0.72                0.86 

Cars            0.84                 0.88             0.54                0.65 
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(A) (B)

 

Figure 13: Result set 1 (the range-distance approach & the ImageGrouper approach) 

 

Figure 13 (A) is an example of the range-distance approach, while Figure 13 (B) provides 

an example of the ImageGrouper approach. For each approach, there is a query set containing 

two groups of images on the right-hand side, while the top ranked result set is on the left-hand 

side. The results are ordered from left to right and top to bottom. This query set tries to query 

images of dishes containing a 3-dish structure, while excluding images of only one dish. From 

the results, the range-distance approach is more efficient and more accurate than the 

ImageGrouper approach. 
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(A) (B) 

 

Figure 14: Result set 2 (the range-distance approach & the ImageGrouper approach) 

 

Figure 14 (A) is another example of the range-distance approach. Figure 14 (B) displays 

another example of the ImageGrouper approach. For each approach, the query set contains three 

groups of images on the right-hand side, while the top ranked result set is on the left-hand side. 

This query tries to query images of red or pink flowers, but not people who wear red clothes. 

Again, in this experiment, the range-distance approach is more effective than the ImageGrouper 

approach. 
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(A) (B) 
 

Figure 15: Result set 3 (the range-distance approach & the ImageGrouper approach) 

 

Figure 15 (A) provides another example of the range-distance approach. Figure 15 (B) 

presents an example of the ImageGrouper approach. For each approach, the query set consists of 

two groups of images on the right-hand side, while the top ranked result set is on the left-hand 

side. This query tries to query images of lions that are brown in color, but should not find a white 

tiger. Again, this experimental result shows that the range-distance approach produces a better 

quality set of matching images. 
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CHAPTER FOUR: SKELETON-MATCHING 

Skeleton-matching, the third technique is addressed in this chapter. A skeletal graph is a 

shape representation recently developed for shape recognition. In this chapter, a novel many-to-

many matching algorithm, called skeleton-matching, is proposed, for matching skeletal graphs. 

The topology of skeletal graphs is captured and compared at the node level. Such graph 

representation allows preservation of the skeletal graph’s coherence without sacrificing the 

flexibility of matching similar portions of graphs across different levels. By using appropriate 

sampling resolution, the skeleton-matching approach is able to achieve a high recognition rate 

and, at the same time, significantly reduces space and time complexity of matching. The 

skeleton-matching approach was tested against the Directed Acyclic Graph (DAG) method on 

noisy graphs and occluded or cluttered scenes. The results show that the skeleton-matching 

approach is an effective and efficient technique for shape recognition. 

4.1 Introduction 

Although there has been extensive work in the area of shape representation and matching, 

an effective approach to shape recognition is still an open research problem. It is well known that 

the underlying representation of the shape of objects can have a significant impact on the 

effectiveness of a recognition strategy. Shapes have been represented by their outline curves [35, 

36], point sets, feature sets [37, 38] and by their medial axis [39, 40], among others. Each has its 

own strength and weaknesses, but few have not been extensively tested on noisy, occluded or 
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cluttered scenes. High space, time complexity and moderate recognition rate are still the limiting 

factors for their acceptance. 

In this chapter, a technique called skeleton-matching is proposed. The skeleton-matching 

significantly reduces space and time requirements while improving recognition rate. The 

skeleton-matching approach is based on many-to-many graph matching of skeletal graphs 

constructed from shapes. Skeletal graphs are encoded at the node level: the topology of nodes 

(length to parent node, children and their relative positions) is captured in a table. The metric 

matches nodes at their children level not only to preserve coherence of shapes, but also the 

flexibility of matching across levels. The matching algorithm is shown robust to scaling, rotation 

and translation. It is less sensitive to noise and occlusion. Experimental results show that the 

skeleton-matching method is significantly better than a recently proposed alternative shock graph 

represented in the Directed Acyclic Graph (DAG) method. 

Section 4.2 reviews related work in the area of shape recognition. Section 4.3 discusses 

the skeleton-matching technique in detail and its properties are proved. Section 4.4 presents the 

results of the experimental study. Concluding remarks are given in Section 4.5. 

4.2 Related Work 

Below, some recent work on shape matching are reviewed. The distinguishing features of 

a work are shape representation and matching, based on the extracted shape features. 

In curve-based representations of shapes, the matching is typically based on either 

aligning feature points by an optimal similarity transformation or by finding a mapping from one 

curve to the other that minimizes an “elastic” performance functional, penalizing the “stretching” 
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and “bending” energies of deformation [35, 36]. The curve outline-based matching methods 

often suffer from one or more of the following drawbacks: asymmetric treatment of the two 

curves, sensitivity to sampling, lack of rotation, scaling invariants and sensitivity to articulations 

and deformations of parts. 

Another type of shape representation models the shape outline as a point set and matches 

the point set using an assignment algorithm. Gold et al. [38] use graduated assignment to match 

image boundary features. In a more recent approach, Belongie et al [37] use the Hungarian 

method to match unordered boundary points, using a coarse histogram of the relative location of 

the remaining points as features. These methods have the advantage of not requiring ordered 

boundary points; however, the match does not necessarily preserve the coherence of shapes in 

that the relationship among portions of shape in the process of matching may not be preserved. 

Shapes have also been represented by their medial axis, which can then be used for 

matching. Zhu and Yuille [41] have proposed a framework (FORMS) for matching animate 

shapes by comparing their skeletal graphs, using a branch and bound strategy. The inherent 

instabilities of their skeletal representation are accounted for by using a priori defined model 

graph. The applicability of their approach to inanimate objects is limited due to the choice of 

primitives used in modeling. 

A variant of the medial axis is the shock structure, which is obtained by viewing the 

medial axis as the locus of singularities (shocks), formed in the course of wave propagation 

(grass-fire) from boundaries [42]. Many approaches to shock graph matching have emerged, 

including [34, 39, 40 and 44]. However, these approaches have not been extensively tested on 

noisy graphs, occluded scenes or cluttered scenes. 
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4.3 Many-to-Many Skeletal Graphs Matching 

A skeleton is an undirected tree captured from a silhouette of a binary image using the 

medial-axis method [43], see Figure 16. A skeleton tree consists of nodes and edges. There is a 

length associated with each edge. Each node has a maximum of eight connected neighbors. The 

angle between edges is a multiple of 45 degrees. The level of a node is defined as how close it is 

to the center of the tree, where a center is a vertex u such that the maximum value of the 

distances between u and all other vertices is a minimum. It is a well-known fact a tree has either 

a single center, or two centers connected via an edge [45]. A skeletal tree will be represented 

from the leaf nodes toward the center(s). The “root” of this representation corresponds to a center 

node. In the case of two centers, selecting either as root node will determine the level of all nodes 

in the skeleton. 

In order to represent a skeletal graph, the topology of its individual nodes, i.e., the nodes’ 

connected neighbors, the relationship with each neighbor and the length of the edges is captured. 

A signature table is constructed to record information regarding the topology of nodes in the 

graph. There is only one table to store the nodes’ information for the entire dataset. 

The signature table consists of three attributes: signature, ID and “node detail”. Thus, a 

row in the table is a 3-tuple. ID is a positive integer assigned to each signature. It serves as an 

identification of a node’s topology. A signature consists of eight fields, corresponding to eight 

possible connected neighbors. Each field identifies the existence of a connected neighbor, the 

topology via an ID and the relationship with the node. A field containing 0 signifies there is no 

connected neighbor at that angle. A field of 3, for example, indicates there is a connected 

neighbor whose topological ID is 3, while a field of “P” implies the connected neighbor is its 
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parent node. The fields are filled starting with P (the parent) or the highest ID for root nodes and 

going in the clockwise direction. 

Node detail captures the fact that there could be many nodes with the same signature and 

ID. It is a linked list of nodes, each in the form node/length/parent_node/image_number (list of 

children nodes or parent), and length is the length of the edge connecting the node with its 

parent_node. 

Table 4 shows the signature table filled with node information of the two examples of 

skeleton trees. The first row encodes the information for all leaf nodes. They have signature 

(P,0,0,0,0,0,0,0), which is assigned ID = 1. Node detail is a linked list of all leaves in both trees 

in the order of processing. 

The next type of node, whose ID = 2, has signature (1,1,1,0,1,0,0,0). There is only one 

node, node 2 of Figure 16, is of this type. Therefore, node detail contains 2/0/0/1(3,4,5,1). The 

signature and the node detail indicate that node 2 of Figure 16 is the root node (length=0, and no 

parent), whose children nodes are nodes 3, 4, 5 and 1, counting clockwise. 

The last row of Table 4 describes node 3 of Figure 17. This node is the root node and has 

three children nodes: 5, 2 and 4. Its signature indicates that its children node 5 is a node of ID=4, 

node 2 of ID= 3 and node 4 of ID=1, see Figure 17. 
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Figure 16: A skeleton tree in database 

 

 

Figure 17: Another skeleton tree in database 
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Table 4: The signature table for Figure 16 and Figure 17 

Signature ID Node detail 

Node/length/parent/figure number (nodes 

of children or parent) 

(P,0,0,0,0,0,0,0) 1 1/74/2/16 (2), 3/68/2/16 (2), 4/37/2/16 (2), 

5/23/2/16 (2), 

1/28/2/17 (2), 4/75/3/17 (3), 6/60/5/17 (5), 

7/62/5/17 (5), 8/60/2/17 (2) 

(1,1,1,0,1,0,0,0) 2 2/0/0/16 (3,4,5,1)  

(P,0,1,0,0,0,1,0) 3 2/14/3/17 (3,8,1) 

(P,0,1,0,1,0,0,0) 4 5/22/3/17 (3,6,7) 

(4,0,3,0,0,0,1,0) 5 3/0/0/17 (5,2,4) 

 

4.3.1 Construction of the Signature Table 

Node’s signature is coded from leaves to root. The procedure to construct the signature 

table is given below. For each skeletal graph: 

1) While the skeleton tree is not empty, 

2) Code all leaf nodes. 

3) Temporarily store the configuration of the parent nodes of the leaves (e.g., 

positions).  

4) Delete all leaves from the skeleton tree. 

5) Go to step 1. 
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Figure 18 shows a query skeleton. This is a 2-root skeleton, (i.e., there are 2 centers, 

nodes 2 or 3); therefore, two different signature tables are possible, one corresponding to each 

root node, see Tables 5 and 6. Note the assigned IDs in the tables; new IDs are created because 

new topologies were detected. 

 

 

Figure 18: A query skeleton tree 

 

 

Table 5: The signature table for Figure 18 with node 2 as root 

Signature ID Node detail 

(P,0,0,0,0,0,0,0) 1 1/28/2/18 (2), 4/75/3/18 (3), 5/22/3/18 (3), 6/60/2/18 (2) 

(P,0,0,0,1,0,1,0) 6 3/14/2/18 (2,4,5) 

(6,0,1,0,0,0,1,0) 7 2/0/0/18 (3,6,1) 
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Table 6: The signature table for Figure 18 with node 3 as root 

Signature ID Node detail 

(P,0,0,0,0,0,0,0) 1 1/28/2/18 (2), 4/75/3/18 (3), 5/22/3/18 (3), 6/60/2/18 (2) 

(P,0,1,0,0,0,1,0) 3 2/14/3/18 (3,6,1) 

(3,0,0,0,1,0,1,0) 6 3/0/0/18 (2,4,5) 

 

4.3.2 Matching Shapes 

The idea behind skeleton-matching for shape recognition is as follows. First, note that 

signatures are designed to ensure translation and rotation invariance. For non-root nodes, “P” is 

fixed at the beginning of the signature. Since there is no parent for the root node, circular-left-

shift the query signature of the root node is done to identify all matches with DB nodes. In the 

similarity measure, this method also takes into consideration matching similar topologies in 

different scales. 

When a skeleton is a 2-root type, there are two possible configurations (Figure 18). To 

ensure matching, e.g., between a 2-root query and a 2-root skeleton, both configurations of either 

need to be compared. One configuration for each database skeleton is chosen to code, either 1-

root or 2-root. 2-root queries will be coded in both configurations. 

Signatures are used to identify two types of matches: an exact match for two nodes of the 

same topology and at the same level, and a close match for two nodes of similar topologies at 

any levels. Exact matches can be declared when the two signatures are the same. 
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When neither of the DB node nor the query node is a root node, it is a close match if 

query node’s children match some children of the DB node. For example, query signature 

(P,0,0,0,1,0,1,0) is a close match with the DB signature (P,0,1,0,1,0,1,0). 

When the query node is a root node, the DB signature is compared with all circular-left-

siftings of the query signature. For example, query’s signature (3,0,0,0,1,0,1,0) is shifted to 

(1,0,1,0,3,0,0,0) and then to (1,0,3,0,0,0,1,0), where a close match with DB signature 

(4,0,3,0,0,0,1,0) is declared. For a close match, the order of the children in node detail is updated 

to reflect the change in its signature (shown in Table 7). 

 

Table 7: An example for matching signatures (query signature: Table 6, DB signature: Table 4) 

 

Query Database 

Signature Node detail Signature Node detail 

(P,0,0,0,0,0,0,0) 1/28/2/18 (2), 

4/75/3/18 (3), 

5/22/3/18 (3), 

6/60/2/18 (2) 

(P,0,0,0,0,0,0,0) 1/74/2/16 (2), 3/68/2/16 (2), 

4/37/2/16 (2), 5/23/2/16 (2) 

1/28/2/17 (2), 4/75/3/17 (3), 

6/60/5/17 (5), 7/62/5/17 (5), 

8/60/2/17 (2) 

(P,0,1,0,0,0,1,0) 2/14/3/18 (3,6,1) (P,0,1,0,0,0,1,0) (exact match) 2/14/3/17 (3,8,1) 

(3,0,0,0,1,0,1,0) 3/0/0/18 (2,4,5) No match  

(1,0,1,0,3,0,0,0) 3/0/0/18 (4,_,5,2) (1,1,1,0,1,0,0,0) (close match) 2/0/0/16 (3,4,5,1) 

(1,0,3,0,0,0,1,0) 3/0/0/18 (5,2,4) (4,0,3,0,0,0,1,0) (closest match) 3/0/0/17 (5,2,4) 
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The matching algorithm is summarized as follows: 

1) Clear all marks on the DB signatures. 

2) While there are query signatures: 

i. Select one query signature, 

ii. Identify all DB exact and close matched signatures, 

iii. Mark all DB matches accordingly, 

iv. Remove the query signature. 

The procedure produces a set of marked signatures. From their node details, gather a set 

of matched nodes, and for each candidate match, their corresponding node details are paired. 

Since query images might be occluded, there can be fewer children for the query node. In that 

case, the list of children of the query node is expanded by using “_” to fill the positions. For 

example, a close match between (1,0,1,0,3,0,0,0) and (1,1,1,0,1,0,0,0), see row 4 of Table 7, also 

indicates a missing child in node 3/0/0/18(4,5,2), which is extended to 3/0/0/18(4,_,5,2) to 

compare against node 2/0/0/16(3,4,5,1). The similarity of the nodes’ topology can be tested by 

comparing nodes 3,4,_,5,2 of the query skeleton with nodes 2,3,4,5,1, respectively, see Table 7. 

To filter out unlikely (close) matches, (DB node_length)/(query node_length) ratios are 

used and computed their median. Matches whose ratio is outside the range [median ratio – 

threshold, median ratio + threshold] are eliminated, as shown in Tables 8 and 9. For each of the 

remaining matching pairs, exact or close match, the matching score is computed: 

score = w )
|)||,max(|

),(

21

21

TT
TTCN(  + (1-w) )

|)||,max(|
1),((

21

21

TT
TTCP +  

Where CN is the number of matched nodes, CP the number of matched nodes whose 

ratios in the range [median ratio – threshold, median ratio + threshold]. |T1| is the size of query 
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skeleton tree T1, and |T2| is the size of DB skeleton tree T2. w is the weight in range [0,1], which 

is set to adjust the relative significance of the two terms. In experiments, weight and threshold 

are set: w = 0.5 and threshold = 0.25. 

With respect to Figure 18, the formula produces Figure16’s score = 0.5(4/6) + 0.5((2 + 

1)/6) = 0.58 and Figure17’s score = 0.5(6/8) + 0.5((5 + 1)/8) = 0.75. This indicates Figure 17 is 

more similar to Figure 18 than Figure 16. 

 

Table 8: An example for matching nodes from Table 7 between query image and Figure 16 

Query nodeslength DB nodeslength ratio CN CP 

128 - - 0 0 

214 174 5.28 1 0 

30 20 - 1 0 

475 368 0.9 1 1 

522 523 1.04 1 1 

660 - - 0 0 

  Median =1.04 Total CN = 4 Total CP = 2 
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Table 9: An example for matching nodes from Table 7 between query image and Figure 17 

DB nodeslength Query nodeslength 

Begin Final 

Ratio CN CP 

128 128 128 1 1 1 

214 214  214 1 1 1 

30 30 30 - 1 0 

475 475 475 1 1 1 

522 522 522 1 1 1 

660 860 860 1 1 1 

  Median =1 Total CN = 6 Total CP = 5 

 

4.3.3 Properties of the Algorithm 

To prove the properties of the skeleton-matching algorithm, a distance measure is defined 

that it is equivalent to the scoring function: 

d(T1, T2) = 1- score = 1–w 
|)||,max(|

),(

21

21

TT
TTCN -(1-w)

|)||,max(|
1),(

21

21

TT
TTCP +  

Theorem 1: For any skeleton trees T1, T2 and T3 the following properties hold true. (See 

proof at Appendix.) 

0 ≤ d(T1, T2) ≤ 1 

d(T1, T2) = 0 ⇔ T1 and T2 are isomorphic to each other 

d(T1, T2) = d(T2, T1) 

d(T1, T3) ≤ d(T1, T2) + d(T2, T3) 
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Theorem 1 indicates that the distance measure in skeleton-matching is a distance metric. 

It is also clear that the matching procedure based on node topology is translation and rotation 

invariant, and robust to scaling. 

 

 

Level 1

Level k-1

 
Level k

Figure 19: The skeleton graph is translated into levels of graph 

4.3.4 Complexity Analysis 

It can be shown that the number of rows, m, in the signature table is O(n), when the table 

contain a single graph, where n is the number of nodes of the graph. To see this, let n1, n2, ….., 

nk-1, and nk be the number of nodes at level 1, 2, …, k-1 and k, respectively. The total number of 

nodes therefore is n1+ n2 + … + nk-1 + nk = n. Since all nodes at level k are leaf nodes, they are 

encoded in the first row. Since there are nk-1 nodes at level (k-1), there are no more than nk-1 rows 

for this level. Generally, there are no more than nk-i rows for nodes at level (k-i), for 1< i < k. m 

is therefore bounded by nk-1 + nk-2 + … + n2 + n1 ≤ n or O(n). Finally, the number of entries in 

the node detail of all records is precisely n, for each node is encoded exactly once. It follows that 

the procedure requires O(n) space. Note that the number of nodes in a skeleton can be reduced by 

down-sampling the image, i.e., changing its resolution. 
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Similarly, the time complexity of the algorithm in the worst case is O(nm), where n is the 

number of query’s nodes. This is true because of, for each query node, finding its exact and close 

matches in m rows. 

Compared with the DAG method, the skeleton-matching method is a significant 

improvement. The DAG method takes O(n3M) time for matching, where M is the number of 

database images. In experiments, there were about m = 1,700 signatures for a total of M=4,000 

database images. In terms of storage space, DAG uses the eigenspaces of the adjacent matrix, 

costing O(n2) for each image. The results of analysis are summarized in the following theorem. 

Theorem 2: The space complexity of the skeleton-matching technique is O(n) for each 

query, and the time complexity is O(mn) for executing a query against the entire database, where 

m = the number of rows in the signature table, and n = the number of nodes in the query’s 

skeletal graph. 

4.4 Experiment Study 

This section is divided into three sub-sections. The datasets are described in Section 

4.4.1. The configuration of the datasets is explained in Section 4.4.2. In this section, the best 

resolution for the datasets is defined. The comparative study is discussed in Section 4.4.3. 

4.4.1 Datasets 

The dataset was from the Computer Science department at University of Toronto 

(http://www.cs.toronto.edu/~dmac/download.html) and some images were added to test various 
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features of the skeleton-matching technique. Images are views computed from 3-D graphics 

models. Each is centered in a uniformly tessellated view-sphere and a silhouette is generated for 

each vertex in the tessellation. A skeletal graph is computed for each silhouette with a particular 

block size. The depth first search algorithm is used to traverse the graph, and then mark it as a 

node where the graph changes direction. A total of 147 queries (occluded or unoccluded images) 

are executed. Recognition rates are used as the main performance metric, as they are for the 

DAG method. 

4.4.2 Configuration 

Since the block size greatly affects both processing time and recognition rate, first the 

best block size is determined to construct skeleton trees. Five different block sizes were 

experimented as follows: 1x1, 2x2, 4x4, 8x8 and 16x16. As expected, the processing time 

reduces as the block size increases, see Table 10. 

 

Table 10: Processing times for various resolutions 

Block size 

(pixels) 

Processing time (mins.) 

for 4,000 images 

1x1 28 

2x2 17 

4x4 11.29 

8x8 8.46 

16x16 8 

 66



The relationship between recognition rates and block size is more interesting; see Figure 

20. When block size is increased from the pixel level of 2x2 to 4x4, the recognition rate 

improves. This indicates that block size 4x4 helps remove noise and smooth out the skeletal 

graphs. Recognition rates, however, deteriorate rapidly for larger block sizes. This is attributed to 

the fact that the skeletal graphs now become too coarse to capture shapes in sufficient detail. 

Since block size 4x4 yields the highest recognition rate at reasonable processing time, this block 

size is used for the skeleton-matching technique in subsequent experiments. 
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Figure 20: Recognition performance as a function of sampling resolution 

 

4.4.3 Comparative Study 

In this experiment, the performance of the skeleton-matching technique and the DAG 

method are evaluated on a set of unoccluded queries. The same dataset were used as the DAG’s, 

consisting of up to 1,408 views of 11 objects with each object having 128 views. The recognition 

rates were measured as the database size increased. As seen from Figure 21, the recognition rate 

of the skeleton-matching approach is consistently better than the DAG’s. 

 67



           

90

92

94

96

98

100

384 640 896 1152 1408

Database size (sampling resolution = 128)

R
ec

og
ni

tio
n 

ra
te

skeleton-matching method DAG

 

Figure 21: Recognition performance as a function of object database size 

 

Figure 22 compares the performance of the skeleton-matching technique and the DAG on 

a set of unoccluded queries as the number of views varies. The results indicate that as the number 

of views per object increases, the skeleton-matching method achieves higher recognition rate 

faster than the DAG does. 
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Figure 22: Recognition performance as a function of sampling resolution 

Figure 23 shows the performance of both methods on a set of queries with various 

degrees of occlusion. The recognition rates comparably reduce as the percentage of occlusion 

grows. Both methods yield recognition of greater than 70, even for 50% occluded queries. 
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Figure 23: Recognition performance as a function of degree of occlusion 

 

4.4.4 Example Queries 

Figures 24 to 27 show the results of some example queries against the database of about 

4,000 images. For each query, top-ranked images are displayed along with their scores. The 

higher the score is, the closer the match. Table 11 summarizes the results of these queries. 
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Figure 24: Result set 1: query image and top-ranked images 

 

 

Figure 25: Result set 2: query image and top-ranked images 
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Figure 26: Result set 3: query image “unoccluded dog” and top-ranked images 

 

 

Figure 27: Result set 4: query image “occluded dog” and top-ranked images 

 

Table 11: summary of the results of the queries 

Figure Query Relevant Retrieved Recall 

24 “human” 63 58 92% 

25 “dolphin” 52 46 88% 

26 “dog” 28 26 92.8% 

27 “dog” 28 26 92.8% 
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Observe that the ranks of relevant images are very high, and the images are views at 

various angles and scaling of the queried object. In the last query, see Figure 27, for heavily 

occluded queried objects (dog’s legs are occluded), the skeleton-matching approach is still 

effective to achieve high recall (compared with the recall in the previous query: “unoccluded 

dog”, see Table 26). 

4.5 Conclusion 

Shape matching is an important yet open problem. Skeleton graphs are used to represent 

shapes. A matching algorithm for skeletal graphs is proposed that the topology of skeletal graphs 

is captured and compared at the node level. Such graph representation allows preservation of the 

skeletal graph’s coherence without sacrificing the flexibility of matching similar portions of 

graphs across different levels. The present technique achieves a high recognition rate, and at the 

same time, significantly reduces space and time complexity of matching. The results show that 

the skeleton-matching approach is an effective and efficient technique for shape recognition. 
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CHAPTER FIVE: THE GRAPHICAL USER INTERFACE 

This chapter focuses on the graphical user interface (GUI) for the software that 

implements the proposed algorithms. Sections 5.1, 5.2 and 5.3 describe the respective GUIs for 

the ASIA, range-distance, and skeleton-matching techniques. Section 5.4 then illustrates the 

advantages and disadvantages for each technique. 

5.1 The ASIA Search Engine 

The ASIA algorithm is illustrated in Figure 5 of Chapter 2. To construct a query with 

ASIA, a user uses the GUI to select a training image from the image database. The user then 

identifies and marks an area of interest in the image which becomes the noise-free training 

image. This noise-free training image is the input to ASIA algorithm as described in Figure 5 of 

Chapter 2. The GUI implemented for ASIA is described as follows: 

1) The main window is shown in Figure 28. Users first select a directory of database 

images. In this example, a user has chosen the database images located in the 

directory “e:\db.” Having selected an appropriate directory, there are three ways 

to browse for images: by image category, image ID or randomly.  

The image ID and random browsing features are self-explanatory. The image 

category allows users to browse images in the category of their interest. In the Figure 

28 example, “dsc,” or the dish category, has been selected. The upper area of the 

main window shows images in the specified category, “dsc.” The number of pages 

required to show the images in the category is displayed in the lower portion of the 
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window. The example indicates “p.4/5” meaning there are a total of five pages of 

images in this category and the current page is number 4. Users can navigate between 

the pages of images by clicking the “<<<” and “>>>” buttons in the lower portion of 

the window. Users choose a query image by clicking on the desired image and then 

clicking the “Select image” button. The image file name will be shown in the text 

box. 

 

   

Figure 28: The main window for ASIA  
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2) After highlighting the image name and clicking on the “View image” button 

shown in Figure 28, The “area of interest” window pops up, as shown in Figure 

29.  

 

       

Figure 29: “The area of interest” window 
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3) As shown in Figure 30, users can then mark the boundary points in the image by 

using the mouse to click around the boundary. One of three contour options may 

be selected. The “None” button, illustrated below; means there are no connected 

lines between any two consecutive points. 

 

        

Figure 30: Contour points in “The area of interest” window  
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4) Selecting the “Outlined” contour button, causes connected lines to be drawn 

between consecutive points, from the beginning point to the ending point, as 

shown in Figure 31. 

 

        

Figure 31: The contour points and their connected lines 
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5) In Figure 31, the contour is not closed. Selecting the “Closed” contour button 

closes the contour along the contour points by connecting the beginning and 

ending points, as shown in Figure 32. 

 

       

Figure 32: The closed contour along the contour points 
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6) The default color of the contour lines is black. Because some images may be to 

dark for a black contour line to be easily visible, the GUI allows a user to select 

the color of the contour line. Figure 33 illustrates how a contour can be changed 

into a selected color. In this example, the color green is selected in place of black.  

 

 

Figure 33: The window for color choices  
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7) Figure 34 shows the image with the new green contour that was selected in step 6. 

The “clear” button may be clicked a any time to remove all of the contour points 

and curves.  

 

         

Figure 34: A green contour selected from Figure 33 
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8) The area of interest is inside the contour. Users can adjust the curve of the contour 

by clicking one of the contour points and dragging it and ending with a right 

mouse click to lock in the new position of the curve of the contour. Users can 

click the “Ok” button at any time in Figures 30, 31, 32 or 34. Users have to click 

the “Show result” button in the main window as shown in Figure 28. The ASIA 

search engine calculates the query’s features and matches with the database’s 

features as described in Figure 5 in Chapter 2. The results are shown in Figure 35. 

 

 

Figure 35: The result set  
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5.2 The Range-Distance Search Engine 

The range-distance algorithm is explained in Section 3.6 of Chapter 3. Figure 37 

illustrates the algorithm in Section 3.6. In the range-distance method, the GUI is used to collect 

information from the user in order to group images into the three possible groups: positive, 

negative or neutral. After these groups of images are identified, four steps will be processed, as 

explained in Section 3.6 of Chapter 3. The GUI for the range-distance method is shown in Figure 

36. 

 

 

Figure 36: GUI for the range-distance method  
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In Figure 36, images are initially shown in a random ordering. Users can click the 

“Random” button to access other random images. Alternatively, users can also browse images by 

image ID or by image category. The images are shown at the left panel and the user can drag an 

image from the left panel and drop it on the right panel. A box can then be drawn around the 

images and then a right mouse click to identify the group type (positive, negative or neutral). 

Here, for example, there are two groups: the positive group and the negative group. There is one 

image for each group type. Upon clicking the “Query” button, the range-distance algorithm is 

processed (as shown in Figure 37) and the image results are shown on the left panel of the 

window shown in Figure 36. 

 

 

Figure 37: Skeleton-matching algorithm 
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5.3 The Skeleton-Matching Search Engine 

The skeleton-matching algorithm is explained in Sections 4.3.1 and 4.3.2 of Chapter 4 

and as illustrated in Figure 38. In the skeleton-matching method, the GUI is used to collect the 

users’ information about the query image. After the query image is identified, all of the steps on 

the right-hand side of Figure 38 will be processed. All steps on the left-hand side, in the dashed 

box, in Figure 38, are processed off-line. The GUI for the skeleton-matching method is shown in 

Figures 39-42. Note that although the GUIs for the ASIA and skeleton-matching algorithms are 

similar, the algorithms they execute are different. 

 

 

Figure 38: The skeleton-matching algorithm 
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Figure 39: The main window for the skeleton-matching  

 

In Figure 39, users browse images by the category type “ali” or “alien.” In this example, 

the image on the top row at the extreme left is selected as a query image, as shown in Figure 40. 

After users click the “Ok” button in Figure 40 and clicks the “Show result” button in Figure 39, 
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the result set is shown in Figure 41. The new window pops up to show the compared skeletons 

between the first and the last matches as shown in Figure 42. 

 

        

Figure 40: The query image in skeleton-matching approach 
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Figure 41: The result set after clicking the “Show result” button from Figure 39 
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Figure 42: The compared skeletons between the first and the last matches 
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5.4 Discussions 

The advantages and disadvantages for each proposed technique are discussed in this 

section.  

5.4.1 ASIA 

• Advantages of the ASIA method: 

� ASIA returns matching result sets with higher accuracy as compared to the 

Monotonic Tree approach. 

� ASIA is a matching technique that is robust to translation, scaling, and 

rotation invariants at matching object level. 

• Disadvantages of the ASIA method: 

� For handling translation and scaling invariants, ASIA slides six different 

sizes of windows along the horizontal and vertical accesses of each image. 

Each window is called a subimage. There are 286 subimages for each 

image. ASIA retains features in 128 sampling circles for each subimage. 

ASIA retains more feature elements, resulting in higher accuracy; 

however, ASIA requires excessive storage space for all of the features, per 

image, that are stored. 
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5.4.2 Range-Distance Method 

• Advantages of the range-distance method: 

� The range-distance method returns matching result sets with higher 

accuracy as compared to the ImageGrouper approach. 

� The range-distance method requires very little storage space for each 

image’s features as compared with the other methods. It needs space for 

only 37 feature elements per image. 

� The range-distance method automatically adjusts weights in the distance 

metric, resulting in a variety of weights. Some of the weights may be zero 

in value. Therefore, the distance metric becomes a dynamic distance 

metric.  

� With a single query image or with multiple groups of query images, the 

range-distance method learns the user preferences more quickly than most 

traditional QBE approaches.  

� The range-distance method has a lower matching time complexity than the 

ImageGrouper approach. 

• Disadvantages of the range-distance method: 

� The range-distance method handles translation, scaling, and rotation 

invariants among elements in the whole image; however, the range–

distance method does not handle translation, scaling, and rotation 

invariants at the matching object level.   
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� The range-distance method does not provide for a noise-free training 

image. 

These two disadvantages for the range-distance method can be resolved by using 

a design similar to that used in the ASIA method. 

5.4.3 Skeleton-Matching Method 

• Advantages of the skeleton-matching method: 

� The skeleton-matching method returns matching result sets with higher 

accuracy as compared to the DAG approach. 

� The skeleton-matching method is a shape matching technique that is 

robust to translation, scaling, and rotation invariants at the matching object 

level. 

� The skeleton-matching method has a lower matching time complexity than 

the DAG approach. 

� The skeleton-matching method requires less storage space for each 

image’s features than does the DAG approach. 

� The skeleton graph can be used as feature vectors. Because the skeleton-

matching method supports matching graphs with high accuracy, the 

skeleton graph is a good feature vector.  

• Disadvantages of the skeleton-matching method: 

� The skeleton-matching method is tested only for binary images. The 

skeleton-matching method requires a good object segmentation approach. 
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CHAPTER SIX: CONCLUSION 

6.1 Remarks 

ASIA is a technique that uses query-by-example to annotate image databases. These 

query examples are used to create annotated databases that support query-by-concept. Since 

ASIA does not need to compare low-level features, the processing done during the query-by-

concept phase will be fast. ASIA eliminates noise and irrelevant image areas by allowing users to 

identify the area of interest. It is designed as a new sampling-based framework which is robust to 

translation, scaling, and rotational invariants at the object level. Without the noisy areas and with 

this new framework, ASIA produces higher accuracy rates than a recently proposed alternative, 

the Monotonic Tree method. 

The first phase of ASIA is QBE. The more effective QBE results in a more accurate 

annotated image database. Therefore, modifying the QBE to become more effective is essential. 

Different query groups may focus on different features. For example, query-by-example with car 

images specifies a car of any color. The color features should not factor in the similarity distance 

metric. At the same time, weights in the distance metric should be varied, rather than static. The 

range-distance technique is proposed to solve all of these defects. The range-distance technique 

allows users to identify positive, negative and neutral groups of query images. It then uses this 

information to automatically adjust the weights in the distance metric. When compared with the 

ImageGrouper approach, range-distance achieves better performance in terms of both precision 

and recall with less matching time complexity. 
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The matching time complexity and storage space for image features are important factors 

for an efficient QBE. The skeleton-matching technique is proposed to reduce matching time 

complexity and require less storage space for image features. A skeleton graph is used to 

represent shape. Skeleton-matching is a method for matching skeleton graphs that are robust to 

translation, scaling, and rotational invariants at object level. It results in higher precision and 

recall rates, while requiring less matching time complexity and less storage space for image 

features when compared with the DAG approach. 

6.2 Future Work 

Three efficient techniques for QBE have been proposed. They are the fundamental work 

to support an efficient annotation database system. This work can be extended as follows. 

6.2.1 Combine the Techniques for the Image Annotation System 

There are advantages and disadvantages for each technique as mentioned in Section 5.4 

of Chapter 5. There are means to combine ASIA with the range-distance method because the 

disadvantage of the ASIA approach is the advantage of the range-distance method, and vice 

versa.  

Efficient skeleton-matching requires an efficient object segmentation technique. Efficient 

object segmentation is also an open research topic. In other words, skeleton graphs for each 

image are represented as features. Skeleton-matching supports matching these features, thus it 

may be possible to combine these three techniques. Combining the effectiveness of these three 
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techniques, while eliminating some of the disadvantages, is the next step in creating an efficient 

system for the automatic annotation of database images for query-by-concept. 

6.2.2 Leveraging Relevant Feedback for Image Annotation 

From the query set, the results may include some irrelevant images. These results reduce 

the precision rate. Interactive image retrieval is a technique that learns the users’ preferences 

from the relevant feedback. This technique increases the precision and recall rates by eliminating 

irrelevant images and making it possible to achieve a higher percentage of relevant images. The 

range-distance technique supports relevant feedback because it is a technique that automatically 

adjusts the weights in the dynamic distance metric. Therefore, the relevant feedback with the 

combined system in Section 6.2.1 is an efficient system for automatic annotation database 

images for query-by-concept. 
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APPENDIX 

PROOF OF THEOREM 1 
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From Chapter 4, ratio = (DB node_length)/(query node_length) is defined and their 

median is computed, where CN is the number of matched nodes, CP is the number of matched 

nodes whose ratios in the range [median ratio – threshold, median ratio + threshold], |Ti| is the 

size of query skeleton tree Ti, and  w is the weight in range [0,1]. 

 

Definition 1: A distance measure is defined that it is equivalent to the scoring function: 

d(T1, T2) = 1- score = 1–w 
|)||,max(|
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TTCN -(1-w)
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Theorem 1: For any trees T1, T2  and T3, the following properties hold true: 

(a) 0 ≤ d (T1, T2) ≤ 1 

(b) d (T1, T2) = 0 ⇔ T1 and T2 are isomorphic to each other 

(c) d (T1, T2) = d (T2, T1)  

(d) d (T1, T3) ≤ d (T1, T2) + d (T2, T3) 

Proof Properties (a)-(c) following directly from Definition 1. The triangle in equality of property 

(d) will be proofed. There are two cases for proofing the property (d).  
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Case I: disjoint between CN (T1, T2) and CN (T1, T3) 

 

                      T1                                    T2                                        T3 

 

This disjoint case ⇒ CN (T1, T2) + CN (T2, T3) ≤  |T2| 

                           And (CP (T1, T2)+1) +(CP (T2, T3)+1) ≤  |T2|   

(w CN (T1, T2) +(1-w) (CP (T1, T2)+1) + w CN (T2, T3) +(1-w) (CP (T2, T3)+1)) ≤  |T2|            (1) 

From the property (d), 
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                                                                         (2) 

If LHS ≥ 1 is proofed, then (2) is true. 
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LHS ≥ 1 ⇔ max (|T1|,|T2|) max (|T2|,|T3|)  

                      ≥ (w CN (T1, T2) + (1-w)(CP (T1, T2)+1)) max (|T2|,|T3|) 

                         + (w CN (T2, T3) + (1-w)(CP (T2, T3)+1)) max (|T1|,|T2|)                                    (3) 

Case 1: |T1| ≥ |T2| ≥ |T3| 

Then (3) is |T1| |T2| ≥ (w CN (T1, T2) + (1-w)(CP (T1, T2)+1)) |T2| 

                                  + (w CN (T2, T3) + (1-w)(CP (T2, T3)+1)) |T1|                               (4) 

From (1),   |T1| |T2| ≥ (w CN (T1, T2) + (1-w)(CP (T1, T2)+1)) |T1| 

                                   + (w CN (T2, T3) + (1-w)(CP (T2, T3)+1)) |T1| 

Since     |T1| ≥ |T2|, thus, (4) is true. 

 

Case 2: |T1| ≥ |T3| ≥ |T2| 

Then (3) is |T1| |T3| ≥ (w CN (T1, T2) + (1-w)(CP (T1, T2)+1)) |T3| 

                                   + (w CN (T2, T3) + (1-w)(CP (T2, T3)+1)) |T1|                               (5) 

From |T3| ≥ |T2|,   |T1| |T3| ≥  |T1| |T2|   

From (1),              |T1| |T3| ≥  |T1|(w CN (T1, T2) +(1-w)(CP (T1, T2)+1)) 

                                                + |T1|(w CN (T2, T3) +(1-w) (CP (T2, T3)+1)) 

Since    |T1| ≥ |T3|, therefore, (5) is true. 
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Other cases: Performed in similar manner to previous cases 

                        |T2| ≥ |T1| ≥ |T3| 

                        |T2| ≥ |T3| ≥ |T1| 

                        |T3| ≥ |T1| ≥ |T2| 

                        |T3| ≥ |T2| ≥ |T1|  
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Case II: There is some common between CN (T1, T2) and CN (T1, T3) 

 

        T1                                      T2                                        T3 

 

Let N = CN (CN (T1, T2), CN (T2, T3))> 0 

Each of these CN (T1, T2), CN (T1, T3), CN (T2, T3) ≥ N 

Each of these (CP (T1, T2)+1), (CP (T1, T3)+1), (CP (T2, T3)+1) ≥ N 

w (CN (T1, T2) + CN (T2, T3) – N)≤ w |T2| 

(1-w)((CP (T1, T2)+1) + (CP (T2, T3)+1)  – N) ≤ (1-w) |T2| 

w CN (T1, T2) +w CN (T2, T3) +(1-w) (CP (T1, T2)+1) + (1-w)(CP (T2, T3)+1) – N ≤ |T2|         (6) 

From (2), If LHS ≥ 1 - 
),max( 31 TT

N is proofed, then (2) is true.  

LHS ≥ 1 - 
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               ⇔ max (|T1|,|T3|) max (|T1|,|T2|) max (|T2|,|T3|)  

                                           ≥ (w CN (T1, T2)+(1-w) (CP (T1, T2)+1)) max (|T2|,|T3|) max (|T1|,|T3|)  

                                           + (w CN (T2, T3)+ (1-w)(CP (T2, T3)+1)) max (|T1|,|T3|) max (|T1|,|T2|) 

                                            - N max (|T1|,|T2|) max (|T2|,|T3|)                                                      (7) 

Case 1: |T1| ≥ |T2| ≥ |T3| 

Then (7) is |T1| |T1| |T2| ≥ (w CN (T1, T2) + (1-w)(CP (T1, T2)+1))|T2||T1| 

                                        + (w CN (T2, T3) + (1-w)(CP (T2, T3)+1)) |T1||T1| - N |T1||T2| 

                         |T1| |T2| ≥ (w CN (T1, T2) + (1-w)(CP (T1, T2)+1))|T2| 

                                       + (w CN (T2, T3) + (1-w)(CP (T2, T3)+1)) |T1| - N |T2|              (8)  

From (6)           |T1| |T2| ≥ (w CN (T1, T2) + (1-w) (CP (T1, T2)+1))|T1| 

                                          + (w CN (T2, T3) + (1-w) (CP (T2, T3)+1)) |T1| - N |T1| 

Since (w CN (T1, T2) + (1-w)(CP (T1, T2)+1)) - N > 0) and |T1| ≥ |T2|. Thus, (8) is true. 

 

Case 2: |T1| ≥ |T3| ≥ |T2| 

Then (7) is |T1| |T1| |T3|  ≥ (w CN (T1, T2) + (1-w) (CP (T1, T2)+1))|T3||T1| 

                                         + (w CN (T2, T3) + (1-w) (CP (T2, T3)+1)) |T1||T1| - N |T1||T3| 

                         |T1| |T3|  ≥ (w CN (T1, T2) + (1-w) (CP (T1, T2)+1))|T3| 

                                        + (w CN (T2, T3) + (1-w) (CP (T2, T3)+1)) |T1| - N |T3|            (9) 
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From (6)          |T1| |T3|  ≥  |T1| |T2|  ≥ (w CN (T1, T2) + (1-w)(CP (T1, T2)+1))|T1| 

                                                        + (w CN (T2, T3) + (1-w) (CP (T2, T3)+1)) |T1| - N |T1| 

Since (w CN (T1, T2) + (1-w) (CP (T1, T2) +1) - N > 0) and |T1| ≥ |T3|, therefore (9) is 

true. 

 Other cases: Performed in similar manner to previous cases 

                       |T2| ≥ |T1| ≥ |T3| 

           |T2| ≥ |T3| ≥ |T1| 

           |T3| ≥ |T1| ≥ |T2| 

           |T3| ≥ |T2| ≥ |T1|  
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