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 “One wonders what the computationalists do with the simple reality that minds, as they 

currently exist on the face of the earth, are most surely organic processes and are in some deep 

and perhaps essential way grounded in non-mental organic processes” (Gallagher, 2008, p. 19).  
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ABSTRACT 

Traditionally, the concept of cognition has been tied to the brain or the nervous system. 

Recent work in various noncomputational cognitive sciences has enlarged the category of 

“cognitive phenomena” to include the organism and its environment, distributed cognition across 

networks of actors, and basic cellular functions. The meaning, scope, and limits of ‘cognition’ 

are no longer clear or well-defined. In order to properly delimit the purview of the cognitive 

sciences, there is a strong need for a clarification of the definition of cognition. This paper will 

consider the outer bounds of that definition. Not all cognitive behaviors of a given organism are 

amenable to an analysis at the organismic or organism-environment level. In some cases, 

emergent cognition in collective biological and human social systems arises that is irreducible to 

the sum cognitions of their constituent entities. The group and social systems under consideration 

are more extensive and inclusive than those considered in studies of distributed cognition to date. 

The implications for this ultimately expand the purview of the cognitive sciences and bring back 

a renewed relevance for anthropology and introduce sociology on the traditional six-pronged 

interdisciplinary wheel of the cognitive sciences. 

Keywords: social cognition; animal cognition; 4EA cognition; systems science 
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CHAPTER 1: INTRODUCTION 

Not all cognitive behaviors of a given organism are amenable to an analysis at the 

organismic or organism-environment level. In some cases, emergent cognition in collective 

biological and human social systems arises that is irreducible to the sum cognitions of their 

constituent entities. The term ‘social cognition’ generally captures the broad phenomena under 

consideration.1 Social cognition is usually conceived of reductively as an interaction between the 

cognition of individual agents. A brief introduction to the problem of the borders of cognition is 

first given. Next, two key terms are defined: CRUM and 4EA cognition. The approach of this 

paper is then defined in relation to 4EA cognition. Next, the method used for the discovery of the 

upper bounds of cognition is outlined. A taxonomy of social cognition is then presented, 

including three types of nonreductive social cognition: distributed cognition, swarm intelligence, 

and superorganismic cognition. Finally, a series of case studies in collective biological and 

human social systems is presented. They include systems far larger and more extensive than have 

previously been considered under the heading of social cognition. Ultimately, presenting these 

cases as cognitive systems serves to expand the bounds of “cognition.” 

 

1.1 The Problem: The Bounds of Cognition 

The cognitive sciences are in the midst of a scientific revolution. The cognitive revolution 

began over half a century ago, establishing the dominance of the computational-representational 

understanding of mind (CRUM). “Cognition” was generally accepted as referring to higher-order 

                                                           
1 Social cognition is not an approach to cognition akin to connectionism, embodied cognition, or 

extended cognition. It merely designates cognition that occurs in groups. 
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thought, such as language, logic, and problem-solving. The borders of cognition were seemingly 

intuitive, starting and ending in the brain or nervous system. Today, this orthodoxy is facing 

challenges on multiple fronts. Multiple competing theoretical and experimental paradigms are 

being developed that question both the meaning and the extent of cognition. Basic intuitions 

about cognition are being subjected to critique and it is no longer certain precisely where the 

bounds of cognition lie. Multiple approaches—sometimes mutually incompatible—now compete 

for dominance and neither its upper nor lower bounds are clearly defined. The aim of this study 

is to demonstrate that emergent cognition occurs in collective biological and human social 

systems in order to delimitate the outer limits of cognition.  

For CRUM, cognition is localizable in the brain or the nervous system of an individual 

organism. Part of the intuitiveness of this idea stems from the historical dominance of CRUM 

itself. Throughout history, different loci of the mind or cognition have been considered to be 

intuitive. The heart has been considered as such a locus by civilizations as diverse as ancient 

Greece, India, and China (Lind, 2007). Many of the new approaches to cognition pose a 

challenge to that well-defined and intuitive border. Enactivism posits that microscopic, 

autopoietic bacteria are primitive cognitive systems (Maturana & Varela, 1980). Extended 

cognition, as its name suggests, posits cognition as extending beyond the brain and into specific 

tools in the world (Clark & Chalmers, 1998). Distributed cognition posits cognition as a property 

of social and technical systems, such as a navy ship (Hutchins, 1995a) or the Hubble Space 

Telescope (HST; Giere, 2006). Embodied cognition posits cognition as anywhere from being 

influenced by a body to being in principle inseparable from it. Radical embodied cognitive 

science (RECS) posits cognition as an emergent property of an organism-environment system 
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(Chemero, 2009). Radical embodied cognitive neuroscience RECN posits cognition as a 

systems-level property of a nervous system-organism-environment system (Favela, 2014). 

Across these multiple perspectives, cognition has been variously localized in systems as small as 

microscopic bacteria and as large as a ship, an airplane cockpit, or the HST. It possibly extends 

even beyond that. Unlike with CRUM, none of these conceptions are particularly intuitive. This 

makes conceptualization particularly difficult and controversial. The entire range of cognitive 

phenomena, from the inner bounds of the minimally-cognitive to the outer bounds of the 

maximally-cognitive, is here defined as the “noosphere.”2 It is the set of all cognitive systems. 

 

1.2 The Historical Background: The Cognitive Revolution in Revolt 

The cognitive sciences formally emerged as a discipline—or more precisely as an 

interdisciplinary nexus of disciplines—from the cognitive revolution in psychology. From the 

1920s until the late 1950s, experimental psychology in the United States was dominated by 

behaviorism. In 1956, two conferences forever changed the historical course of psychology. At 

Dartmouth, the Summer Research Project on Artificial Intelligence convened to determine how 

to utilize the new computer technology to create artificial intelligence. That September, the 

Symposium of Information Theory was held at MIT. George A. Miller there presented his now 

legendary paper on the capacity of short-term memory, effectively undermining the behaviorist 

assumption that the mind could not be studied empirically (1956). Inspired by the Dartmouth 

                                                           
2 The concept of the noosphere was introduced by Teilhard de Chardin (1955/2008) to describe 

the range of “higher” cognitive functions and consciousness. Here, the term is appropriated to 

describe the entire range of cognitive phenomena, “higher” and “lower,” without reference to 

consciousness. 
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conference, Herb Simon and Alan Newell developed Logic Theorist as the first practical AI 

system. During this annus mirabilis, the cognitive revolution, or modern computationalism, was 

born.3 

The cognitive revolution did not develop in a cultural, scientific, and technological 

vacuum. Several developments set up the preconditions for the new computational outlook of the 

two conferences of 1956. In the 1930s, Edward Tolman began challenging behaviorist 

epistemology with his introduction of the concept of the “cognitive map.” Although himself a 

behaviorist, he argued that rats navigate through mazes using mental representations of spaces, 

or cognitive maps. Such a mentalistic explanation was forbidden territory for behaviorists, but 

his work nevertheless achieved empirical rigor. In the 1930s and 40s, Alan Turing developed the 

Turing machine, one of the first theories of serial computing. In 1945, John von Neumann 

introduced von Neumann architecture, an abstract flow diagram for computer architecture (see 

Figure 1). Notably, he saw the computer as an analogical model of the brain (Neumann, 1993). 

In the late 1930s and early 1940s, Horst Zuse developed the Z1, Z2, and Z3 computers in 

Germany. In 1942, John Atanasoff and his student Clifford Berry produced the ABC, also known 

as the Atanasoff-Berry computer. During the Second World War, the British developed the 

Bombe to decode the German Enigma codes. IBM completed ENIAC, the first major digital 

computer, soon after the end of the Second World War (O'Regan, 2012). 

                                                           
3 Computationalism itself dates back to Thomas Hobbes and its model was arithmetic (Chemero, 

2009). Modern computationalism is CRUM and its model is the serial computer. 
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Figure 1. A flow diagram of von Neumann architecture, first described in von Neumann (1993). Adapted 

from Rojas & Hashagen (2000, p. 77). 

 

Noam Chomsky and Donald Broadbent were two further major contributors to the 

cognitive revolution. Chomsky spearheaded the cognitive approach to linguistics with his 

generative grammar. Beginning in 1956, he began to bring a new “precision of mathematics” to 

linguistics countering the nebulous behaviorist theory of reinforcement (Miller, 2003). This 

exploratory work was formalized in 1957 in his Syntactic Structures. A year later, Donald 

Broadbent developed the first testable model of the mind (1958). Inspired by serial processing 

models of computing, Broadbent developed a flow diagram for his filter theory of attention and 

hence created the first mental module (see Figure 2). The influence of the emerging computer 

technology and the mathematics of information processing on this model is evident (cf. Figure 

1). Just as hydraulic technology once inspired Descartes’ model of the brain (Hoffman, Cochran, 

& Nead, 1990), the computer inspired the nascent computationalism of the 1950s. 
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Figure 2. The first flow diagram of the mind, inspired by models of serial computing. Adapted from 

Broadbent (1958, p. 299). 

 

From out of the cognitive revolution, the cognitive sciences were born. Although there 

was no unified term for the field until the late 1970s, it first established itself as a formal 

discipline in the early 1960s. Early labels for it included ‘cognitive studies,’ ‘information-

processing psychology,’ and ‘cognitive science’ (Miller, 2003). The cognitive revolution led to 

several other subdisciplines, as well, including cognitive psychology, computational linguistics, 

and AI (subdisciplines such as cognitive anthropology came later). Six core disciplines were 

defined as constituting the cognitive sciences: philosophy, linguistics, anthropology, 

neuroscience, computer science, and psychology (Sloan Foundation, 1978). 

The cognitive revolution had some of the characteristics that Thomas Kuhn identified as 

characteristic of revolutionary science (Kuhn, 1962/1996). Kuhn’s model is ultimately too linear 

and teleological to account for the dynamic complexities of the actual history of psychology, 

cognitive science, and neuroscience. Nevertheless, it provides a useful starting point. Kuhn’s 
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model predicts that behaviorism would accumulate a mounting series of inconsistencies or 

anomalies until it reached a crisis that put it in generalized doubt. At this point, multiple 

competing theoretical paradigms would arise to vie for dominance and ultimately replace 

behaviorism. The historical details differ in several points from Kuhn’s model, but some central 

elements remain. It was not so much the breakdown of behaviorism as a theoretical paradigm 

that precipitated the rise of modern computationalism or CRUM. Rather, it was the development 

of information processing and the computer that allowed for the development of a new model of 

cognition. It was new technology, rather than a series of mounting anomalies, that led 

psychology into a crisis. Furthermore, behaviorism was not a monolithic scientific approach in 

psychology as was Newtonianism. Several other fields of psychology never accepted the 

behaviorist bracketing of the mind, including the fields of clinical and social psychology (Miller, 

2003). 

During the crisis period, cybernetics vied for dominance with cognitivism. Cybernetics 

was an early form of systems theory and flourished from the 1940s to the 1970s, afterwards 

falling into decline. Its influences were also mathematical and technological, but it took its 

inspirations from engineering and biology rather than serial computing. It was an early form of 

antireductionist systems thinking with a focus on feedback mechanisms. In the 1950s, the 

ecological psychology of James J. Gibson also began to develop as an alternative. Like 

cybernetics, it was antireductionist but was influenced less by problems in engineering and 

biology than by Gestalt psychology and problems of perception-action. Cognitivist approaches 

were the only theoretical paradigm to directly challenge the behaviorist orthodoxy (e.g. 

Chomsky, 1959). Behaviorism as a theoretical paradigm began to lose institutional legitimacy as 
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these competing theoretical paradigms demonstrated a new, rigorous science of the mind.4 

Cognitivism ultimately became the major successor of behaviorism, although (contra Kuhn) the 

other two major theoretical paradigms did not simply die out. Cybernetics flourished into the 

1980s (e.g. Bateson, 1987) and continues to inspire autopoietic theories of life and cognition (see 

Maturana & Varela, 1980). Ecological psychology is still vigorous to this day and furthermore 

has inspired novel approaches such as RECS and RECN. Rather than “losing” in a teleological 

struggle with behaviorism, it has coexisted in parallel with the developments of computationalist 

science. 

Over sixty years since its inception, the cognitive revolution is itself in revolt.5 Since the 

1980s, a proliferation of new approaches to cognition has sprung up, including connectionism6, 

embodied cognition, dynamical systems-inspired approaches, extended cognition, distributed 

cognition, enactivism, RECS, and RECN. In the 1970s, work in semantic maps began to 

challenge the computational, serial processing metaphor of cognition. Nevertheless, this work 

was fraught with difficulties, not the least being its unfalsifiability. In the 1980s, inspired by 

semantic maps but invigorated with the rigor of mathematics, connectionism arose as the first 

significant contender to computationalism. Later in the decade, embodied robotics began to 

emerge in the laboratory of Rodney Brooks. In the 1990s, a flurry of new approaches emerged, 

                                                           
4 Behavioral analysis did not die out, however. In many cases, studies make little meaningful 

distinction between cognition and behavior (Favela & Martin, 2016). As Kuhn (1962/1996) 

notes, elements of the old paradigm are sometimes incorporated into the new one. 
5 I owe the idea that the cognitive sciences are revolutionary in the Kuhnian sense of the term to 

Dr. Luis H. Favela. 
6 In some cases, CRUM has transformed itself to adapt to the new approaches. For example, it 

has been implemented on connectionist architecture (Fodor & Pylyshyn, 1988) and has coopted 

the problem of perception (Thagard, 2005). 
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including dynamical systems, extended cognition, and distributed cognition. In the late 20th and 

early 21st centuries, a new wave of approaches integrating dynamical systems theory, the 

enactive stance in biology, ecological psychology, and phenomenology began to burgeon 

(Protevi, 2010). Among them are enactivism, RECS, and RECN. 

While connections exist among several of them, many of these competing paradigms are 

mutually incompatible. This proliferation is the hallmark of the revolutionary phase of a science 

(Kuhn, 1962/1996). As with cognitivism and cybernetics, they have been influenced by 

emerging computer technologies and mathematics. Connectionism took its model from the new 

parallel computing architectures of the 1980s. Dynamical systems approaches, such as RECS and 

RECN, were inspired by the mature development of complexity theory and nonlinear dynamics 

in the 1990s. These many different schools of thought are today vying with the established 

cognitivism for dominance. Today, we are in the middle of a scientific revolution. 

 

1.3 The Computational-Representational Understanding of Mind (CRUM) 

CRUM is the main theoretical lens of the cognitive revolution in linguistics, philosophy, 

psychology, neuroscience, and the cognitive sciences. It is furthermore the dominant conceptual 

paradigm in studies of social cognition (Gilbert, 1999). For CRUM, cognition is a series of 

computations that are performed on mental representations (Thagard, 2005). These computations 

are analogous to computer algorithms implemented in a serial processing architecture. The 

human mind is its prototypical case. Cognition is considered to be exclusively the domain of 

higher-level mental or neural functions. These functions include language, thinking, knowing, 

believing, judging, and planning, among others. Different functions are often conceived of as 
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being processed by different mental modules. Its use of the term ‘cognition’ is conservative and 

preserves its Latin root meaning of “knowledge.” Affective functions and functions of 

perception-action are generally not considered to be cognitive phenomena. They are lower 

functions that cognition may operate with and command. CRUM is implemented in an 

individual’s neural architecture, either being the brain alone or the wider nervous system. Its 

borders are in the head or, at furthest, spread throughout the body. 

CRUM is not a unitary theory of cognition. Rather, it is a family of related approaches 

that share the core computational-representational belief and the core analogical inspiration of 

the serial computer. The approaches themselves are based in logic, rules, concepts, analogies, 

and images (Thagard, 2005). Logic refers to using systems of formal logic to model the mind or 

its various cognitive functions—although this approach currently has little support among 

psychologists. Rule-based approaches are far more flexible than those based in formal logic. 

They are one of the oldest approaches in the cognitive sciences and began with Simon and 

Newell’s Logic Theorist in 1959. Concept-based approaches began with semantic maps in the 

1970s and are focused on clusters of meanings. Analogy-based approaches understand cognition 

to be fundamentally analogical, applying known cases to novel analogs. Image-based approaches 

focus on the otherwise neglected area of visual perception. 

 

1.4 Beyond the Computational Framework: 4EA Approaches to Cognition 

The first significant challenge to CRUM was the parallel computing model of 

connectionism. Since the 1990s, the newer cluster of approaches challenging the dominance of 
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CRUM can be broadly referred to as 4EA7 cognition (embodied-embedded-extended-enactive-

affective). These include approaches as diverse as embodied cognition, RECS, RECN, 

enactivism, distributed cognition, and extended cognition, among others. Like CRUM, they are a 

family of related approaches rather than a single, unified theory. Unlike CRUM, however, they 

do not share any single core beliefs or analogical models. Rather, they share a set of practices, 

including dynamical systems theory, the enactive stance, ecological psychology, and 

phenomenology (Protevi, 2010). Their stance is nonreductive and is a form of systems theory. 

Notions of self-organization and emergence replace reductionism. In this respect, they are the 

heirs of the lost field of cybernetics. 

Enactivism serves as an illustrative example of the vast conceptual differences between 

CRUM and 4EA approaches. Enactivism is a twofold approach viewing perception as 

continuous with action, which via its recurrent patterns, founds cognition as an emergent 

organization (Varela, Thompson, & Rosch, 1993, p. 173). In Protevi’s (2010) criteria for 4EA 

approaches, its primary practices are phenomenology and the enactive stance. For many 

enactivists, the human mind is a complex case of cognition, but minimally cognitive systems also 

abound in nature. A minimally cognitive system is the least complex system to which one could 

ascribe cognition in accordance with the deep continuity hypothesis. The deep continuity 

hypothesis of life and mind states that “[m]ind is life-like and life is mind-like” (Thompson, 

2007, p. 128). By this conception of life and mind, bacteria are minimally cognitive systems 

                                                           
7 4E is the more common term. 4EA, or 4E + Affective, also acknowledges Deleuzian 

approaches (see Protevi, 2006, 2010). 



12 
 

(Maturana & Varela, 1980; Varela et al., 1993). Ticks are another example of minimally 

cognitive systems, acting only upon perceiving butyric acid (Uexküll, 2010). 

An enactive understanding of cognition includes phenomena such as perception-action 

and basic self-organized modes of organismic organization. The rudiments of mind are found in 

the organization of bacteria, which is different from their structure. Organization is a self-

organized, metastable process that persists across the material changes of structure. Structure 

refers to the material composition of a system and can vary over time (Maturana & Varela, 

1980). It is self-producing, or “autopoietic.” For example, an alveolar cell will continue its basic 

functions even as tar from tobacco smoke begins to change its chemical makeup (its structure). 

Its functioning will incorporate the new chemical changes with only slight modifications of its 

organization, until a threshold is passed and the cell’s organization begins to fail. According to 

enactivists like Thompson and Varela, such processes are forms of primitive cognition. Higher 

cognitive functions are different in form, but not different in kind, from such primitive cases. 

Humans, for example, are larger autopoietic systems consisting of a hierarchy of autopoietic 

subsystems like lungs or alveolar cells. 

For CRUM, the notion that a bacterium, a tick, or an alveolar cell could be cognitive 

systems is patently absurd. The deep continuity hypothesis is, for CRUM, equally absurd. Rather 

than cognition being a continuity of processes of varying complexity, it is an entirely novel 

structure forming by a saltation. This saltatory conception of cognition leaves a significant 

burden of explanation as to why humans are cognitive. 

The work in this paper is broadly 4EA in approach. It is a form of nonreductive systems 

theory and is informed by dynamical systems theory, the enactive stance, and ecological 
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psychology. Dynamical systems theory provides the mathematical tools used to model the 

empirical studies here considered. The enactive stance is taken to view social systems as unified 

modes of cognitive organization. Ecological psychology informs the basic understanding of 

perception-action throughout. It does not incorporate phenomenology, as it seeks to understand 

an exteriority of relations (such as a swarm of ants in frenetic motion) rather than discover an 

interiority of depths “within” the mind (cf. Deleuze & Guattari, 1987). This paper uses 4EA 

approaches to present counterevidence to CRUM, although no final judgment is made on the 

viability of the latter.  

 

1.5 A Method for the Discovery of the Upper Bounds of Cognition 

In order to discover the outer limits of cognition, it is first necessary to develop a 

taxonomy of nonreductive social cognition (Neemeh & Favela, forthcoming). Distributed 

cognition is one of the few nonreductive concepts of social cognition extant. Nevertheless, it is 

rooted in case studies of technical-scientific human social systems, including a navy ship, an 

airplane cockpit, and the HST. This specificity makes it inapt to describe many social systems in 

nature, whether animal or human. Many types of social phenomena may be cognitive, yet lack 

any formal framework for recognizing them as such. The development of a taxonomy of 

nonreductive social cognition, incorporating a wide range of social organizations in nature and 

human societies, will allow for the expansion of the borders of the “cognitive.” Likewise, it will 

allow for a clear recognition of the outer limits of cognition. In the following chapter, distributed 

cognition is described and given a set of formal criteria consistent with Hutchins (1995a; 1995b), 

Giere (2006), and Kirsh (2006). Next, two additional concepts of nonreductive social cognition 
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are developed. An exploratory taxonomy of three different types of nonreductive social cognition 

is thus established. This list is intended to be a programmatic contribution opening the way for 

further research, not an exhaustive classificatory system. It is then used to explore a variety of 

social systems across human and nonhuman populations. Few of these cases have previously 

been considered as cognitive systems, primarily due to a lack of a diversity of concepts of social 

cognition. 
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CHAPTER 2: A TAXONOMY OF SOCIAL COGNITION 

 

2.1 Collective Biological and Human Social Systems as Cognitive Systems 

Collective biological systems are social groupings of nonhuman organisms such as bird 

flocks, eusocial insect swarms, wolf packs, and schools of fish.8 Human social systems such as 

small groups, crowds, and societies are distinguished from them primarily by the added 

complexities of language and culture. This distinction is functional rather than absolute, as other 

species (particularly nonhuman primates) may express the rudiments of culture, such as social 

learning (Whiten, 2017), tool use (Mosley & Haslam, 2016), symbolic communication (Gupta & 

Sinha, 2016), and behaviors specific to local groups of a species (Sapolsky, 2006). However, 

there is traditionally a wide gulf between these systems insofar as they are objects of scientific 

investigation. Collective biological systems are traditionally objects in the domain of zoology, 

ethology, genetics, and other biological disciplines. Human social systems are typically objects 

of the social sciences, including sociology, anthropology, and social psychology. Sociobiology, 

evolutionary psychology, and biological or physical anthropology are some of the few instances 

in which a biological approach to human social systems is taken. Purely cultural and historical 

approaches have been criticized as being biologically naive (Pinker, 2003) or outright dismissive 

(Marsland & Leoussi, 1996).  

A cognitive understanding of collective biological and human social phenomena cuts 

across disciplinary boundaries and trite nature/nurture controversies. Couzin (2008) first 

                                                           
8 The discussion of nonhuman organisms must be very careful to avoid any anthropomorphic 

ascriptions of mental states, feelings, beliefs, and desires. 
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suggested that collective biological systems are cognitive systems. Some human social systems, 

such as a navy ship, an airplane cockpit, and the HST, have been defined as cognitive systems 

(Hutchins, 1995a, 1995b; Giere, 2006). As cognitive systems, they may be expressive of genetic, 

ethological, sociological, historical, chemical, and cultural properties without being exclusively 

defined by any single one. 

Both collective biological and human social systems are cognitive systems.9 There is no 

universally-accepted definition of ‘cognition’ with which to substantiate this claim, however. 

The multiple theoretical paradigms of cognition operating in the cognitive sciences are often 

mutually incompatible. In an attempt to bridge the gap, Theiner and O’Connor introduce a “big 

tent” approach that attempts to capture the common properties of cognition in these various 

theoretical paradigms. Their big tent lists the common properties of cognition presented by 

competing theories in order to arrive at an ecumenical and minimally-controversial definition of 

cognition (Theiner & O'Connor, 2010). Unfortunately, their big tent is not as ecumenical as they 

think and is inconsistent with nonrepresentational approaches (Chemero, 2009; Favela, 2014; 

Hutto & Myin, 2013; Thompson, 2007). Rather than argue that collective biological and human 

social systems are cognitive systems in general (as a “big tent” approach might), they are 

presented as different cases of specific types of cognitive systems. 

In the following, an exploratory taxonomy is developed to subsume the variety of cases 

of social cognition. First, social cognition in CRUM is defined as collective cognition. The terms 

‘self-organization’ and ‘emergence’ are then discussed in order to facilitate the presentation of 

                                                           
9 “Consciousness” and “cognition” are loosely related terms and are sometimes conflated with 

one another, but they remain discrete concepts (Davies, 1999). Flocks of birds, for example, are 

emphatically not conscious, although individual birds within the flock are. 
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the taxonomy of nonreductive social cognition. Three types are identified: distributed cognition, 

swarm intelligence, and superorganismic cognition. This list is not presented as exhaustive and 

other, yet-to-be-discovered types may exist. Furthermore, they are not presented as absolute 

categories and there may be significant slippage across them. 

 

2.2 Social Cognition in CRUM: Collective Cognition 

Social cognition in CRUM is “collective cognition.” Collective cognition is a reductionist 

understanding of social cognition in which the cognitive properties of the whole are reducible to 

the causal interactions of the cognitions of its agentic parts (Giere, 2006). Groups are only 

cognitive insofar as its members are cognitive. For CRUM, cognition begins and ends with the 

individual. Any social grouping therefore cannot be characterized as cognitive other than by 

noting that its members are such. Collective cognition is compatible with and comparable to 

methodological individualism in economics and sociology, which understands individuals as the 

basic, atomic unit of analysis in society (Hayek, 2010). That is, the group is nothing more than 

an epiphenomenon of the interactions of its individual members. Thus, to say that a wolf pack is 

a collective cognitive system is simply to note that individual wolves are cognitive systems and 

that they interact with one another. 

Collective cognition, like methodological individualism, is not necessarily 

“computational” in the standard sense of algorithms and serial processing. Dynamical systems 

models of methodological individualism have been developed (Sawyer, 2005) and some CRUM 

approaches are tentatively opening up to this kind of modeling (Thagard, 2005). In these cases, 
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any emergent properties are considered to be simply effects of our current ignorance (referred to 

below as “epistemological emergence”). 

 

2.3 A Note on Meaning of ‘Self-Organization’ and ‘Emergence’ 

In order to introduce the taxonomy of nonreductive social cognition, it is first necessary 

to discuss the otherwise ambiguous terms ‘self-organization’ and ‘emergence.’ Self-organization 

is a situation in which a system’s organization is established by its very own functioning. That is, 

its organization is not heteropoietic. A heteropoietic system (or “machine” in Maturana and 

Varela’s parlance) is organized or controlled by an extraneous process. When heteropoiesis is 

defined as “occur[ring] in the space of human design,” a common feature of human-produced 

machines is captured: that of heteronomous control (Maturana & Varela, 1980). They are 

“activated, steered, and controlled from the outside” (“Heteropoietic,” 2004). For example, a 

mechanical clock is a heteropoietic system. Its purpose—to keep time—is imposed upon it by its 

human creators and users. Its organization is designed and maintained by the clockmaker rather 

than arising from the inner workings of the clock itself. If its gears begin to malfunction, then an 

expert must repair it. 

Self-organization arises simultaneously from the inner, local workings of a system and 

from its global behavior. There is no overarching plan or purposive organization imposed upon a 

self-organized system. Often they are seen in nonlinear dynamical systems (Depew & Weber, 

1999). They express “spontaneous patterning and order” (Riley & Holden, 2012, p. 595). 

Rayleigh-Bénard convection cells are a paradigm case of self-organization. As the lower-

temperature top surface is heated by the higher-temperature bottom surface, a spontaneous order 
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arises observable as a series of adjacent cells (Prigogine & Stengers, 1984). These cells and the 

dynamical convectional flows sustaining them are created by the local interactions of molecules 

being heated (see Figure 3). There is no plan, intentional order, or computational controller 

organizing these convection cells. They are nothing like the gears of a mechanical clock, which 

are calculating mechanisms created by an engineer for the specific purpose of keeping time. To 

identify a cognitive system as self-organizing is to say that it is not organized by a controller like 

a self, a homunculus, or any such “ghost in the machine”. Computational and homuncular 

accounts of cognition, such as the concept of collective cognition, are therefore not self-

organized.

 

Figure 3. Rayleigh-Bénard convection currents as seen from the surface. Blue mica suspended in oil. 

Author photo. 
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Emergence is a far more nuanced concept. Within complexity science, self-organized 

systems are usually identified as emergent, but these are discrete concepts. I will focus on three 

principle types of emergence: epistemological emergence, weak ontological emergence, and 

strong ontological emergence (cf. Theiner & O'Connor, 2010). Emergence entails a causal and 

ontological autonomy from the lower-level entities or processes a system depends upon (Wilson, 

2015). It is entirely possible that this “autonomy” can be specious and merely an effect of an 

investigator’s ignorance. The proverbial case of such specious autonomy is water, whose 

properties were once thought to emerge from H2O molecules (Stengers, 2011). It is now known 

that the properties of water can be fully understood reductively in terms of the properties of 

hydrogen and oxygen atoms alone. This is a case of epistemological emergence, which includes 

any “emergent” property that does not entail a denial of reductionist explanation.  

Ontological emergence can be weak or strong (cf. Wilson, 2015). Weak ontological 

emergence entails a non-reductive physicalism. Strong ontological emergence is inconsistent 

with the causal closure of physics (Theiner & O'Connor, 2010). For the purposes of this essay, 

the differences between these are irrelevant. To identify a cognitive system as emergent is to say 

that it arises but is causally and ontologically autonomous (whether weakly or strongly) from the 

lower-level processes constituting it (e.g. the nervous system or the individual birds of a flock). 

A system that is both self-organized and emergent organizes at the local level and gives rise to a 

global level that in turn has a reciprocal causal efficacy over the local. 

 

2.4 Distributed Cognition 

Edwin Hutchins introduced distributed cognition as an alternative understanding of 
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cognition in collective systems. Distributed cognition emerges as a property at the system level. 

Paradigm cases include a navy ship, an airplane cockpit, and the HST (Hutchins, 1995a, 1995b; 

Giere, 2006). A network of agents and tools working continuously and in tandem towards a 

collective goal constitutes distributed cognition. It differs from extended cognition in that it is 

disbursed over a network of multiple agents and nonagentic tools, whereas a single agent and 

nonagentic tools paradigmatically constitute extended cognition. Furthermore, in a distributed 

cognitive system, no single agent or nonagentic tool has a complete survey of the entire system. 

Amon and Favela provide a useful set of criteria for distributed cognitive systems. 

However, their understanding of distributed cognition differs from that of Hutchins, as they seek 

to distinguish extended from distributed cognition. While this is admittedly something that 

remains confused in the literature (see Kirsh, 2006), it is not a relevant distinction here. The 

following is a modified list of their criteria of distributed cognition (Amon & Favela, 2017) 

consistent with the usages of Hutchins (1995a, 1995b), Giere (2006), and Kirsh (2006). S is a 

distributed cognitive system if: 

D1. S is emergent or exhibits emergent behavior. 

D2. There is a continuous coordination of agents and nonagentic tools as members of 

S. 

D3. Each agent maintains a degree of individual agency within S. 

D4. Each agent actively participates in the overall goal or joint task in which S is 

engaged. 

D5. There is a specialization of functions among the members of S. 

D6. The cognitive behavior of S is complex and not limited to perception and 
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locomotion. 

Distributed cognition is not a property of the system itself (Giere, 2006). It is a property 

of individuals composing the system and is preserved insofar as they constitute that system. 

Individual agency is not significantly diminished or lost when individuals constitute a distributed 

cognitive system. For example, the captain of a ship is still a fully-fledged individual and only 

enacts the role of captain insofar as they desire to (the captain can derelict their duties or even 

sabotage the mission). Agents in these cases are in themselves complex cognitive systems. Note 

that, although it may be emergent, distributed cognition is not necessarily self-organized. The 

HST, for example, is a straightforward example of a heteropoietic (other-organized) machine. 

The engineers, scientists, technicians, and astronauts that designed and operate it determine its 

organization. It is not produced and maintained by its own internal processes and functions. 

Distributed cognition requires individuals with strong agency and complex individual 

cognition in order to be constituted. For example, the HST is not simply an orbital telescope 

generating images of remote celestial objects. As a technical-scientific institution, it produces 

falsifiable scientific claims (e.g. about the age of the universe). However, many organisms, such 

as ants and fish, are minimally cognitive and agentic (if at all). Although some have considered 

such systems as cases of distributed cognition (e.g. O’Donnell et al., 2015), they do not have the 

requisite agency or cognitive complexity to be true cases of distributed cognition. Two more 

fitting ways to think of such systems are in terms of swarm intelligence and superorganisms. 

 

2.5 Swarm Intelligence 

Swarm intelligence is a concept born in computing and is not a concept of cognition. It is 
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a form of biologically inspired computing in which algorithms are abstracted from swarming 

organisms such as bees, ants, wolves, and other collectivist organisms (Beekman, Sword, & 

Simpson, 2008). These algorithms describe emergent and self-organizing phenomena (Yang & 

Karamanoglu, 2013). This terminology is appropriated to describe simple, self-organizing, 

emergent cognitive systems capable only of rudimentary behavior and having a roughly 

isomorphic organizational structure10. A system S is swarm-intelligent if: 

SI1. S is self-organizing and emergent. 

SI2. There is a continuous coordination of individuals as members of S. 

SI3. Individual agency is minimal insofar as the individual constitutes S. 

SI4. The cognitive behavior of S is limited to perception and locomotion.11 

SI5. Communication or interaction between members of S is minimal and there is no 

communication of intentions. 

SI6. The organization of S is relatively isomorphic. There is no specialization of 

functions between members of S. 

Swarm intelligence entails a minimal level of agency on the part of the system’s 

individual members. This does not mean that the individuals qua individuals are necessarily 

minimally agentic, although they may be. Rather, individuals insofar as they constitute the 

collective cognitive system are minimally agentic. A person caught up in a stampede serves as a 

prime example of an agent that nevertheless may be transiently and contextually minimally 

                                                           
10 By this I mean not that the organizational pattern is uniform, but that the organizing principles 

are. There is no specialization and all organisms qua members of the system perform the same 

function. 
11 This can also be conceived of as a single loop of perception-action (Gibson, 1979/2015).  
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agentic. The person has a complex set of personality traits, beliefs, desires, memories, ideas, and 

linguistic capabilities. Nevertheless, within a large, energetic crowd, their behaviors may be 

limited to a very circumscribed set of perceptions and movements. Few of the complexities of 

language and communication may persist in such a crowded and noisy situation. For the 

individual to run in a certain direction, it suffices that the crowd is collectively running in that 

direction. The individual may or may not even know specifically from what they are running 

from or towards.  

 

2.6 Superorganismic Cognition 

Some minimally agentic systems may not be limited to simple movement, however. 

Superorganisms are capable of comparatively complex behavior. Two different concepts are 

extant in the literature: medical and sociobiological. The medical concept of the superorganism 

sees the human as a network of organisms, from the human itself to its microbiome, parasites, 

and foreign DNA (Kramer & Bressan, 2015). The sociobiological concept of the superorganism 

describes the evolutionary and organizational properties of eusocial insect colonies. This 

terminology is appropriated here to describe complex, self-organizing, emergent cognitive 

systems capable of moderately complex behavior and having an anisomorphic organizational 

structure. A system S is superorganismic if: 

SO1. S is self-organizing and emergent. 

SO2. There is a continuous coordination of individuals as members of S. 

SO3. Individual agency is not preserved insofar as the individual constitutes a member 

of S. 
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SO4. Each individual actively participates in the joint tasks in which S is engaged, 

although these tasks may be atelic. 

SO5. The cognitive behavior of S is moderately complex and is able to perform more 

than perceptual and locomotive functions. 

SO6. Communication between members of S is moderately varied and complex, but 

there is no communication of intentions. 

SO7. The organization of S is complex; there is a specialization of functions among 

members of S. 

Superorganismic cognitive systems entail a collective participation in a joint task. 

However, unlike with distributed cognition, this joint task may not be purposive or intentional. 

For example, the sailors of a ship are self-aware of a common goal, even if that goal varies 

slightly from person to person: navigate to point A. Ants, however, have no such comparable 

self-awareness when they are constructing an anthill or are converging upon a food source. 

Nevertheless, they perform the tasks conjointly and in accordance with a differentiation of 

function. 

In the following, seven case studies are evaluated as cases of collective, distributed, 

swarm-intelligent, or superorganismic cognition. They are divided into two series: collective 

biological systems (four cases) and human social systems (three cases). As previously noted, this 

division is purely practical and is not necessarily intended to reflect any essential differences in 

the phenomena studied. For each case, the evidence is presented and then evaluated according to 

the taxonomic criteria of nonreductive social cognition. 

  



26 
 

CHAPTER 3: CASE STUDIES OF COLLECTIVE BIOLOGICAL 

SYSTEMS 

 

3.1 Collective Biological Systems 

The idea of a collective mind—and, indeed, the term ‘superorganism’ itself—dates back 

to the sociology and psychology of the 19th century (Theiner & O'Connor, 2010). Until recently, 

it was not possible to study the properties of collective systems like flocks of birds by analyzing 

the individual movements of its members. In 1995, Tamás Vicsek developed the first model 

capable of realistically modeling swarming behavior. This has become known as the Vicsek 

model and is the standard by which other models of swarming behavior are compared. Such 

models are based in statistical mechanics and are known as self-propelled particle (SPP) models. 

New advances in computer and video technology have also made it possible to record data on the 

kinematics of organisms within groups (Couzin, 2008), for example, the movement and vectors 

of individual pigeons in a flock (Kattas, Xu, & Small, 2012). The following studies are of bird 

flocks, eusocial insect swarms, wolf packs, and schools of fish. Each case is analyzed for 

evidence of being a specific type of cognitive system (distributed cognition, swarm intelligence, 

or superorganismic cognition) according to the previously established criteria. 

 

3.2 Bird Flocks 

 

3.2.1 Evidence. Flocks of birds are among some of the most profoundly enigmatic and 

beautiful phenomena in biology. A murmuration of starlings, for example, is a massive, 
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sinuously twisting, whirling, and chaotically evolving flock that acts as a unit. It can evade 

predators like falcons, find food and water, and navigate to roosts. Already this suggests flocks 

may be a minimally cognitive system with complex locomotive and perceptual faculties. It can 

evade predators (perception of danger + evasion), it can locate food and water (perception of 

resources + goal-like movement), it can navigate to roosts (memory + goal-like movement), and 

it can migrate. 

 SPP models and empirical vector analyses of individual birds in flocks show that the 

global behavior of flocks can arise from the local interactions of individual birds. Starling 

(Sturnus vulgaris) flocks can be realistically modeled by aligning neighboring birds to one 

another. A single bird maintains a set of proximal birds with which to keep aligned. Such local 

interactions result in an emergent directionality for the flock as a whole (Bialek et al., 2012). 

There is a limit to how many birds a given bird can align with. In simulations, if a bird is set to 

align with too many neighboring birds, the entropy of the system destabilizes it and breaks apart 

the flock into several smaller grouping (Castellana, Bialek, Cavagna, & Giardina, 2016). 

Individual birds coordinate their movement with a small number of neighboring birds (Bialek et 

al., 2012). Similar results have been obtained studying the flight vectors of homing pigeons 

(Columba livia domestica; Kattas et al., 2012). 

SPP models are still in their infancy, as are computerized vector analyses of individual 

bird flight data in a flock. Nevertheless, it is clear at this point that flocks emerge from the 

limited interactions of individual birds rather than more widespread, even flock-wide, 

interactions. That is, unless other strong, cohesive social forces as yet unknown exist 

counteracting the entropy of the system (Castellana et al., 2016). 
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The cohesiveness and unified directionality of flocks of birds is maintained through a 

simple system of alignment (Bialek et al., 2012; Couzin, 2008). Couzin and colleagues (2002) 

analyzed the formation of swarms, flocks, and schools in terms of three basic parameters: 

attraction, repulsion, and alignment or orientation (see Figure 4). Changes in the values of these 

parameters creates different aggregate patterns: swarm, torus, dynamic parallel group, and highly 

parallel group. Flocks exhibit the swarm aggregation type, which is the least efficient medium 

for the propagation of information, allowing less cohesive and swift of a response to e.g. an 

oncoming predator (Couzin, Krause, James, Ruxton, & Franks, 2002). Nevertheless, it is 

effective enough to allow starlings, for example, to successfully evade a predating hawk. 

 

Figure 4. Individual birds within a flock coordinate their movements relative to the positions of a small 

number of proximal birds. The outer circle represents the zone of attraction, the inner circle the zone of 

repulsion, and the space in between them. From Neemeh and Favela (forthcoming). 

 

The directionality of the flock is an emergent property of local interactions of individual 

birds. The local interactions of birds serve as the foundation for the long-range spatial 

correlations and behavior of the flock (Cavagna, Giardina, & Ginelli, 2013). One local group 

may begin to change direction as the individuals notice a hawk in the distance. As they begin to 
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shift, their neighbors likewise shift, causing a chain reaction propagating throughout the entire 

flock as a wave (Couzin, 2008). The flock then moves away from the hawk, although only a few 

individuals in one locale may have actually seen it or “know” why they are shifting directions. 

The overall directionality of the flock is continuously punctuated by smaller perturbations and 

shifts in direction. This gives flocks their wisp-of-smoke-like appearance and is due to their 

imperfect, noisy alignments (Cavagna, Duarte Queirós, Giardina, Stefanini, & Viale, 2013; 

Chen, 2015). This leads to the continuously shifting movements of the flock as a whole. 

 

3.2.2 Bird flocks as swarm-intelligent systems. Couzin (2008) is one of the sole studies 

to categorize flocks as cognitive. In the Vicsek and other SPP models of biological systems, 

flocks are categorized as swarms. While this may be useful for modeling, the behavior of flocks 

and swarms are fundamentally different. Flocks are capable of far less complex behaviors than 

are swarms. Similarly, the communication within a flock is highly circumscribed, while a colony 

of ants has up to 12 different communication modalities (Hölldobler & Wilson, 1990). Flocks are 

best understood as swarm-intelligent systems. 

Flocks are self-organizing and emergent (SI1). The movement and directionality of the 

flock does not unfold as part of any intentional plan and it is not organized by a controller. It is 

thus not heteropoietic. It is wholly organized by the local interactions of individual birds. 

Furthermore, these local interactions give rise to global behavior relatively autonomous from the 

individual birds themselves. This global behavior in turn is causally affects individual birds. 

Individual birds within the flock, qua members of the flock, do not retain any appreciable 

measure of agency as does the captain of a ship. Although the perception of the hawk is indeed 
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distributed in only a local area of individual birds, the flock is not a distributed cognitive system. 

Neither is it a superorganism, however suggestive the sight of a murmuration may be. Rather, 

flocks are swarm-intelligent cognitive systems. There is a continuous coordination of individuals 

as members of the flock (SI2). SPP models are inspired by the statistical mechanics of particles, 

but birds are by no means mere blind particles stochastically bouncing off one another. 

Individual birds maintain alignment (with a degree of noise) with a small set of proximal birds 

(Bialek, et al., 2012; Cavagna et al., 2013). Individual birds actively coordinate their movements 

in the flock. The mechanism of this alignment is possibly a simple repulsive effect or an effect 

created by repulsion, alignment, and attraction (Castellana et al., 2016; Couzin et al., 2002).  

Individual agency is minimal insofar as the individual constitutes a part of the flock 

(SI3). Birds are not free to interpret their tasks, perform other tasks, or even decline to perform a 

task. The system is too simple to allow for the complexity of agency. The cognitive behavior of 

the flock is limited to perception and locomotion (SI4). Swarms of yellow meadow ants (Lasius 

flavus), for example, herd and harvest aphids (Ivens, Kronauer, Pen, Weissing, & Boomsma, 

2012). Nearly all swarms of ants form physical colonies out of dirt, sand, or stone. Flocks of 

birds are unable to perform comparably complex behaviors. Nesting is irrelevant as nests are 

built by individuals, not by flocks as such. The flock is limited to evasion, migration, and food-

locating behaviors. 

Communication or interaction between members of the flock is minimal and there is no 

communication of intentions (SI5). There is no direct communication, per se. There is no leader 

squawking orders or warning of impending raptors. Rather, the only interaction is through 

proximity—repulsion, alignment, and attraction. The organization of the flock is simple and 
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there is no specialization of functions between its members (SI6). All birds in the flock have the 

same function within the flock, viz. the same relations of repulsion, alignment, and attraction. 

Flocks therefore fulfill the criteria SI1-6 and are swarm-intelligent systems. 

 

3.3 Eusocial Insect Swarms 

 

3.3.1 Evidence. Swarms are the paradigm case of superorganisms in the sociobiological 

sense of the term.12 The case must be made whether they constitute superorganisms in the 

cognitive sense of the term I have defined. In the literature, these swarms mostly include eusocial 

species of Hymenoptera—ants, bees, and wasps—but also termites (of a different order, 

Blattodea) and some beetles (Austroplatypus incompertus).13 Ants have a range of degrees of 

cohesiveness as a collective, from the tiny, loosely-associated colonies of Temnothorax 

albipennis to the sprawling masses of army ants (a name covering a variety of convergently-

evolved species) carpeting the forest floors. They are characterized by a caste structure that is 

formed in the process of sociogenesis (Hölldobler & Wilson, 2009). Individuals express up to 

twelve distinct types of communication, including alarm, simple attraction, recruitment, 

grooming, trophallaxis, exchange of food, facilitating or inhibiting a group activity, recognition, 

caste determination, control of reproducers, territorial signals and nest markers, and sexual 

                                                           
12 The sociobiological definition of a superorganism is a eusocial colony characterized by 1) a 

caste system, 2) multigenerational coexistence, and 3) a situation in which non-reproducers care 

for the young (Hölldobler & Wilson, 2009). Intergroup competition is also fundamental (Reeve 

& Hölldobler, 2007). 
13 Non-eusocial insect swarms, such as of mosquitos, are not considered in this section and do 

not constitute superorganismic cognitive systems. 
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communication (Hölldobler & Wilson, 1990). This contrasts sharply with flocking birds, which 

are limited to visual flight alignment. 

Ants themselves function according to a series of basic functions. Ant colonies arise 

precisely from these basic processes governing local ant interactions. Surprisingly complex 

behaviors on the collective level can arise from these simple, local interactions (Sekara et al., 

2015). Particularly striking examples of emergent behavior includes army ants creating shelters 

out of their bodies and termites building “air-conditioned” nests (Hölldobler & Wilson, 2009). A 

common example of how such algorithms result in emergent, self-organized behavior is how ants 

find food sources. Not only are they able to locate food sources, but they are also able to 

“discern” their relative qualities through the mechanism of positive feedback in pheromone trails 

(Beekman, Sword, & Simpson, 2008). Such positive feedback loops leading to the incitement to 

working behavior are known as stigmergic. These pheromone trails effectively create dynamic 

routes to food sources by incrementally strengthening a strong lead. For example, an ant locates 

a food source and leaves a pheromone trail. Another ant follows that trail, thereby strengthening 

it with pheromones. This strengthened pheromone trail attracts even more ants, who further 

strengthen it. Smaller food sources will run out before a very strong trail is built up, so their trails 

remain weak. Thus, the colony is able to “discern” the quality of a food source and “send” 

workers to collect it—the “goal” being ultimately atelic. This stigmergic structure in ant swarms 

is reminiscent of Hebbian learning (Couzin, 2008). 

 

3.3.2 Eusocial insect swarms as superorganisms. The few extant studies of swarms as 

cognitive systems have categorized them as cases of distributed cognition (O'Donnell et al., 
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2015; Couzin, 2008). In SPP modeling, swarms are categorized along with flocks, schools of 

fish, and sometimes human crowds as instances of swarming (cf. Moussaid, Garnier, Theraulaz, 

& Helbing, 2009). Distributed cognition is not useful for understanding swarms because they are 

markedly different from systems such as the Hubble Space Telescope or a ship. There is little to 

no agency in constituent members of a swarm, although their behavior is far more complex than 

that of flocks of birds. Neither are they cases of swarm intelligence, as their complexity is of an 

order far surpassing flocks. They are best understood as superorganisms. 

Swarms are self-organizing and emergent (SO1). The organization of the swarm is 

maintained through sociogenesis and the local interactions of ants themselves. The sociogenesis 

of the caste structure arises largely through epigenetics, though the caste forms themselves are 

genetically coded (Hölldobler & Wilson, 2009). Ant ontogeny is epigenetically determined into 

one of several castes. Depending upon the species, the number of castes can be two or more 

(Hölldobler & Wilson, 1990). This contrasts with flocks, where each individual member is 

functionally equivalent to the next. Individual ants, functionally and ontogenetically specialized 

into castes, produce the global organization of the nest by their local behaviors. This global 

organization in turn affects the individual ants causally, e.g. in stigmergy. The queen is not a 

controller, nor is there any central plan or computational system. Thus, it is self-organizing. 

Furthermore, swarms are emergent. Individual insects are the substrate upon which the swarm 

depends upon for existence, but the swarm itself operates autonomously from these individuals. 

There is a continuous coordination of individuals as members of the swarm (SO2). This 

coordination occurs through stigmergy and other modes of communication, such as exciting 

other ants by brushing with antennae. This coordination allows the swarm to achieve collective 
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behaviors like defense, resource collection, and nest building. Individual insects are not agentic 

insofar as they constitute the swarm (SO3). Although intergroup competition exists, the 

individual is unable, like the captain of a ship, to choose to thwart the swarm or defect. It is 

doubtful, however, that ants or bees could be said to be agentic to begin with. Each individual 

actively participates in the joint tasks in which the swarm is engaged (SO4). Every ant in the 

swarm has a function that it performs. There are no “freeloader ants” or nonfunctional units 

within the colony. 

The cognitive behavior of the swarm is moderately complex and is able to perform more 

than perceptual and locomotive functions (SO5). Unlike flocks, swarms are capable of gathering 

food, building nests, and other complex behaviors. Correlatively, communication between 

members of the swarm is moderately varied and complex, but there is no communication of 

intentions among the swarming insects (SO6). As noted, ants exhibit up to 12 different types of 

communication patterns. The organization of the swarm is complex; there is a specialization of 

functions between members of the swarm (SO7). This is evident in the caste structure of the 

swarm and contrasts with flocks, whose members are functionally equivalent. Swarms thus fulfill 

SO1-7 and are best understood to be superorganisms. 

 

3.4 Wolf Packs 

 

3.4.1 Evidence. Wolf packs range from as few as four to as many as 30 members and are 

generally family units (Mech, Smith, & MacNulty, 2015). These groups are far smaller than 

anything on the scale of swarms and flocks. Individual wolves are far more cognitively complex 
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than individual birds or ants. This in itself, however, does not necessarily imply anything about 

their group dynamics. Birds, as we have seen, certainly have larger cognitive capacities than 

ants, and yet flocks are less complex than swarms. 

Wolves in a pack are markedly different from SPP models of swarming. They move and 

hunt as individuals, yet they maintain pack formation. That is, individuals converge upon prey 

and a single wolf ultimately takes it down (Tang, Fong, Yang, & Deb, 2012). The smaller the 

pack is, the more efficient it is at hunting (Mech et al., 2015). Packs with up to 30 members are 

far less cohesive and unified in function. In simulations of wolf hunting behavior, the only 

information individual wolves require to perceive and communicate is other wolves’ spatial 

positions (Muro, Escobedo, Spector, & Coppinger, 2011). This explains why wolves appear to 

have no explicitly organized hunting strategy (Mech et al., 2015). Their hunting behavior is 

emergent rather than controlled. Their movement arises out of a few basic rules such as 

following the prey and simultaneously following the breeder14 (see Figure 5). The wolves 

individually have similar goals (e.g., catching the deer), but the behavior of the pack is not telic 

or intentional. Even apparent hunting strategies such as encircling, ambushing, and relay hunting 

are explicable in terms of basic rules creating emergent patterns (Muro et al., 2011). 

During the hunt, wolf packs exhibit some level of coordinated behavior even though they 

maintain strong individual agency. They do not consistently employ coordinative techniques 

(Mech et al., 2015). In some situations, however, it appears that wolves communicate intentions 

such as waiting in ambush (Mech, 2007). Nevertheless, the typical hunting patterns of encircling, 

ambushing, and relay hunting do not necessarily require planning or explicit control to enact. 

                                                           
14 A breeder (“alpha” in older literature) is an older, dominant wolf (Mech et al., 2015). 
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These hunting patterns can emerge from the local interactions of individual wolves (Tang et al., 

2012). Encircling, for example, emerges from two simple procedures of interaction: move 

towards prey and away from other encircling wolves (Muro et al., 2011).  

 
 

Figure 5. D1. Individual wolves continuously coordinate their movements based on the spatial positions of 

the breeder (top right) and prey (center). D2. This can result in emergent hunting patterns, such as 

encirclement. From Neemeh and Favela (forthcoming). 

 

3.4.2 Wolf packs as distributed cognitive systems. Wolf packs are best understood as 

distributed cognitive systems. Packs are self-organizing collectives, although this is not a 

necessary condition for D1. A breeder may loosely help serve as a focal point for the pack, but 

there is no command structure or central controller within the pack itself. The breeder is neither a 

guide nor a leader. Although Mech (2007) notes that wolves have a degree of mutual 

understanding of one another’s behaviors and intentions, they do not communicate complicated 

hunting strategies. The typical hunting patterns of encircling, ambush, and relay hunting arise out 

of simple rules of local interaction among the wolves and their quarry. The organization, 

coordination, and hunting patterns of wolf packs are emergent (D1). 

There is a continuous coordination of wolves as members of the pack (D2). This 

coordination is primarily visual and is based on spatial information. Wolves coordinate their 

movements among themselves by reference to the spatial positions of breeders and the prey. This 
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continuous and dynamic spatial coordination leads to the emergent hunting patterns sometimes 

observed. Each wolf maintains a degree of individual agency within the pack (D3). Wolves are 

not tightly bound to their behavior as are ants. Wolves are only loosely associated within the 

pack and they take many individual initiatives while hunting (cutting off an animal, for 

example). 

Each wolf actively participates in the overall goal or joint task in which the pack is 

engaged (D4). Even very young and incapable wolves participate, less to actually catch prey than 

to learn how to hunt. Breeders tend to make the kill, while other wolves focus on wearing out 

prey (Mech et al., 2015). There is a specialization of functions among the members of the pack. 

Packs are hierarchical and this hierarchy determines the functional specialization of its members. 

Along with the prey, the breeder serves as a reference point for the spatial coordination of other 

wolves (Tang et al., 2012). The breeder’s role as a coordinating reference is stable throughout 

time and is not a transient position. The cognitive behavior of the pack is complex and not 

limited to basic perception and locomotion (D6). Hunting is a goal-oriented process of food 

gathering. This food gathering is a collective effort, for while a single wolf usually makes the 

kill, the pack devours it collectively. Flocks of birds, in contrast, are limited to movement. Packs 

thus fulfill the criteria D1-6 and are distributed cognitive systems. In itself, this is a remarkable 

finding. It implies that there are some organizational similarities between some human technical-

scientific systems and wolf packs. 
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3.5 Schools of Fish 

 

3.5.1 Evidence. Schools of fish vary widely in size, density, composition, and structure. 

Schools of fish are not always exclusively composed of a single species and some contain 

several species. This is particularly interesting because it potentially points to more than a mere 

genetic determination of schooling behavior and structure.  

Couzin and colleagues (2002) abstract swarming behavior into four basic patterns: 

swarm, torus, dynamic parallel group, and highly parallel group. Viscido and colleagues (2002) 

note even more differences among schools. “Swarming,” according to their criteria, entails basic 

processes of attraction and repulsion without any process of orientation. Members of the group 

do not seek to align themselves with one another, but they do seek to both avoid getting to close 

to and too far away from neighbors. Some types of schools exhibit this type of minimal structure 

(Pitcher & Parrish, 1993). The toroidal formation, or what Moussaid and colleagues (2009) refer 

to as vortices or mills, is characteristic of some species such as barracuda. Most schools, 

however, are generally characterized by either the dynamic parallel group or the highly parallel 

group. In other words, they operate through processes of attraction, repulsion, and alignment 

(Couzin et al., 2002). 

These patterns are themselves dynamic and schools of fish may transition between any 

number of them. Such transitions (e.g. from a dynamic parallel group to a torus) occur in 

response to environmental changes such as an oncoming predator (Couzin et al., 2002; Moussaid 

et al., 2009). As with bird flocks, not all of the constituent members of the school perceive the 

oncoming predator (Moussaid et al., 2009). This would be particularly impossible in schools 
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upwards of a million fish. Nevertheless, the school as a unit works to avoid the predator. While 

birds in a flock maintain the processes of attraction, repulsion, and alignment visually, fish use 

two parallel systems. Alongside their visual system, fish have an organ known as the lateral line 

system. It is sensitive to changes in water flow and directionality, ultimately informing the fish 

about the movements of its neighbors (Moussaid et al., 2009). 

 

3.5.2 Schools of fish as swarm-intelligent cognitive systems. Schools of fish are best 

understood as instances of swarm intelligence. In fact, they bear many organizational similarities 

to bird flocks. They are both self-organizing and emergent collective organization (SI1; Parrish 

& Viscido, 2002). There is no external, heteropoietic control mechanism such as a leader or 

group of leaders (Moussaid et al., 2009). As with bird flocks, the overall organization results 

from the local interactions of attraction, repulsion, and alignment. There may be more variations 

in the patterns that schools can assume, however. Parrish and Viscido (2002) identify upwards of 

nine. These processes are continuous and the school is perpetually in motion so long as it 

maintains its unity and identity. There is thus a continuous coordination of individual fish as 

members of the school (SI2).  

Individual agency is minimal insofar as the individual fish constitutes the school (SI3). 

For example, scientists and engineers working on the HST have the capacity to relinquish their 

duties, perform them incorrectly, or neglect to perform them altogether. Fish have no comparable 

capacity to “rebel” against the school. Their behavior within the school is largely deterministic in 

the sense that they will perform the processes of attraction, repulsion, and alignment unless 

rendered incapable of doing so by illness or accident. 
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The cognitive behavior of the school is limited to perception and locomotion (SI4). 

Individual fish have more complex abilities, such as feeding or producing offspring. However, 

insofar as the fish constitutes the school, it is limited to the three basic processes of alignment. Its 

further capacities are not preserved within the school. The fish does not lose its capacities; rather, 

it only performs them qua individual (or, at best, a small group). Communication or interaction 

between members of the school is minimal and there is no communication of intentions (SI5). 

The communication of spatial position and directionality is achieved through the visual and 

lateral line systems. The shifts in direction (e.g. in response to a predator) or the shifts in pattern 

are not planned out or dynamically communicated. They emerge from the local alignment 

interactions of the fish themselves.  

Finally, the organization of the school is relatively isomorphic. There is no specialization 

of functions between its members (SI6). The only functionally distinguishing features among 

different fish of the school are relative speeds. Faster fish tend to be at the front of the school, 

while slower fish tend to be towards its end (Moussaid et al., 2009). This does not imply any 

hierarchy of control, however. Overall, schools of fish satisfy SI1-6 and are best understood as 

swarm-intelligent cognitive systems. 
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CHAPTER 4: CASE STUDIES OF HUMAN SOCIAL SYSTEMS 

 

4.1 Human Social Systems 

Human social systems have been studied far longer than their nonhuman counterparts. 

Aristotle (1995) first studied the society as a unit nearly two-and-a-half millennia ago. The 

scientific study of these systems primarily takes place within the disciplinary confines of 

sociology, anthropology, social psychology, and economics. Certain types of technical-scientific 

systems were first studied as cognitive systems by Edwin Hutchins in the mid-1990s. Hutchins 

developed the concept of distributed cognition to explain the behavior of a navy ship (1995a) and 

an airplane cockpit (1995b). Giere (2006) later applied this concept to understand the working of 

the Hubble Space Telescope (HST). In these studies, both human agents and nonagentic tools 

such as speed bugs (a type of airspeed indicator) are considered as a unified cognitive system 

(Giere & Moffatt, 2003). The present study does not dispute the categorization of these systems 

as distributed cognition, although they do fail to distinguish between elements of distributed 

cognition and extended cognition within them (Amon & Favela, 2017). These three cases are all 

technical or scientific institutions, however, and may not be applicable to the wide range of 

human social setups (Neemeh & Favela, forthcoming). 

This chapter studies three human social systems for evidence of distributed cognition, 

swarm intelligence, or superorganismic cognition using the previously established criteria. These 

include small groups, crowds, and entire societies. These cases are presented as a progressively-

widening series of human social systems. That is, small groups are preceded by the much larger 

crowd phenomenon, in turn preceded by societies in their entirety. This is done in order to push 
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outward the bounds of what are considered to be cognitive phenomena. Crowds and societies 

prove to be particularly complex and complicated cases, with inconclusive evidence. 

Consequently, they are presented as open cases to direct future research. 

 

4.2 Small Groups 

 

4.2.1 Evidence. Small human groups have at least two members, but their upper bound is 

fuzzy. They are here defined as two or more humans collected in the same, continuous space that 

is small enough to maintain personal contact between the members. It may not be proper to 

consider a single numerical upper limit for the individuals constituting a small group. Their size 

may vary with context. Examples of small groups include couples, several friends together, a 

small study session, and an orchestra. A corporation or an educational institution does not count, 

as they are divided into separate rooms, buildings, cubicles, or even campuses. A large group 

collected into a single, continuous space is no longer able to maintain personal contact between 

its members and is instead a crowd. 

Groups of four individuals (ABCD) arguing over a highly controversial topic (abortion) 

were studied by Lisiecka (2013). Emergent patterns of interaction were found according to 

whether the groups agreed or disagreed. Patterns of interaction wherein two individuals engaged 

back-and-forth (and ABAB pattern) was indicative of strong disagreement, independent of the 

content of the conversation. Other patterns of interaction (ABAC, ABCA, ABCB, or ABCD) 

were less associated with heated debate and polarization. The overall patterns of interaction 

within the groups of four were emergent. 
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The smallest human groups are composed of only two members. Intimate couples are one 

prominent example of such a group persisting over an extended period of time (months, years, or 

decades). Groups collaborating together typically show a marked deficit in memory over 

individuals. This effect is known as collaborative inhibition and its effects are persistent over 

different types of groups (Harris, Barnier, Sutton, & Keil, 2014). While some intimate couples 

are also subject to this effect, others’ memory recall instead improves when working in concert. 

Not all intimate couples are equally collaborative, empathetic, or involved with one another, and 

this is not a surprising find. 

Notably, couples themselves tend to shift their use of pronouns from “I” to “we” when 

collaboratively remembering. Higher use of the first person plural pronoun is correlated with 

more rapid collaboration. Episodic memories are enhanced in some older couples, while they 

generally decline in older individuals. Colloquially, it is said that someone “jogs” another’s 

memory. This assumes that the memory is stored as a complete whole within the other’s mind. 

This folk psychological description is misleading, at least in the case of couples. These episodic 

memories are emergent insofar as they are constituted by the interaction of the two individuals 

(Harris, Barnier, Sutton, & Keil, 2014). Neither person individually remembers all of the details 

of the episode, but they together recall a shared memory. An example best serves to illustrate this 

common phenomenon, and it will probably strike the reader as familiar. The interviewer asks a 

couple about their early courtship: 

“Husband: No, I asked her out that night, but she said she couldn’t go. 

Wife: No, that’s right. 

H: So then I started to pester her the next week. 
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W: You did, you turned up after my classes. 

H: Cooking classes. 

W: On Monday night. 

H: That’d be it. 

W: And took me for coffee. 

H: Yes, the next Monday night. 

W: And impressed me. 

H: Yes” (Harris et al., 2014, p. 292). 

Different accounts of the same episodes are given when the same individuals qua 

individuals are asked to recall them (Harris et al., 2014). Not only are they attenuated, but the 

individuals emphasize different details. Compare the previous emergent remembrance with the 

following. The same couple was earlier asked the same question individually. Their accounts are 

markedly less fluent, less distinct, less precise, and do not emphasize the same details. Note that 

they are presented serially but are not responding to one another: 

“Husband: Ah, I used to turn up…down her…she used to give, umm, what do you call it, 

teaching, she used to teach, umm, women in Manly how to cook. So she ran 

teaching classes. So I used to turn up there after, and take her out for coffee or 

something. 

Wife: And then the next week he appeared at my work after the evening class had 

finished, taking me out for coffee – that was the beginning of the courtship” 

(Harris et al., 2014, p. 292). 
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4.2.2 Small groups as distributed cognition. Small groups are best understood as 

distributed cognitive systems. Distributed cognition was developed primarily to explain 

technical-scientific institutions. Nevertheless, it is not limited to such situations, as the case of 

wolf packs made clear. Small groups exhibit emergent behavior (D1), such as conversational 

patterns and collective remembering (Lisiecka, 2013; Harris et al., 2014). They are themselves 

not necessarily emergent organizations, however. Although some small groups form 

spontaneously or without planning, many are assigned together by commands or institutional 

structures. There is a continuous coordination of members of the small group (D2). In the above 

examples, this coordination was linguistic rather than locomotive or spatial. More items are able 

to be coordinated because of the greater complexity of human individuals. The couple seamlessly 

and fluently remembered the event of their first meeting, each taking turns in adding more details 

and completing the memory. In Lisiecka’s (2013) study of patterns of disagreement, the 

individuals likewise continuously engaged one another in dialog.  

Each member of the small group maintains a strong degree of individual agency (D3). 

Individuals in a small group do not become overwhelmingly subordinated by it, even in the 

presence of peer pressure or other influencing factors. The conversations between individuals are 

relatively free and individuals are not compelled by any internal necessity to continue their 

conversations (although extraneous necessities may constrain them to in some cases, such as a 

jury being forced to come to a decision by the court). 

Each member actively participates in the overall goal or joint task in which the small 

group is engaged (D4). In the examples, this joint task is remembering or debating a point of 

controversy. There is a specialization of functions among the members of the small group (D5). 
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This specialization of functions may be well-developed or rudimentary. Well-developed 

specialization of functions include positions of leadership and dominance. More rudimentary 

specialization of functions can be noted in the example of the couple reminiscing. There is a 

primary responder and a secondary responder. The primary responder is the person to whom the 

question is addressed, and the secondary responder is the other member of the couple who assists 

the first with recalling the episodic memory. Finally, the cognitive behavior of the small group is 

complex and is not limited to perception and action (D6). The linguistic capacities of individuals 

can be fully exercised within the small group in ways that is not possible with exponentially 

larger groups. The group is small enough that individuals are able to give their full attention to 

one another. Small groups fulfill SI1-6 and are thus best thought of as distributed cognitive 

systems. 

 

4.3 Crowds 

 

4.3.1 Evidence. Crowds are large groups of humans collected together in one continuous 

space. There is no precise numerical definition of how many individuals constitute a crowd. The 

salient distinction is that the group must be too large to permit personal contact between its 

members. This contrasts with small groups, wherein more personal and intimate communication 

is able to take place. Examples of crowds include a music concert audience, a large group 

stampeding during the Hajj, a mass of people running out of a burning building, or a peloton (a 

massive group of cyclists). The seated audiences of theaters, orchestras, operas, and other 

performances are crowds when they act in concert, such as clapping. They do not constitute 
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crowds when they are sitting individually disengaged from group behavior. Moussaid and 

colleagues (2009) classify crowds as instances of distributed cognition primarily because they 

are self-organized rather than heteropoietic. This is not a sufficient condition for distributed 

cognition, however, and is shared by swarm intelligence and superorganismic cognition. It is the 

same paucity of concepts of social cognition that leads them to this erroneous classification as 

led O’Donnell and colleagues (2015) to a similar classification of wasps. Trenchard (2015) 

classifies the peloton as a superorganism. Once again, this term is used imprecisely. It appears 

that terms like ‘distributed cognition’ and ‘superorganism’ are sometimes loosely applied to 

describe any cognition transcending the individual. 

As with bird flocks evading a raptor, not all of the individuals constituting the crowd may 

be aware of the salient information guiding the collective as a whole. Dyer and colleagues (2007) 

tested students in a circle, most of whom were uninformed or “naïve” and a minority of which 

were informed (given a target). The movement of the entire group converged upon the targets 

previously made known to the informed individuals. Nevertheless, these individuals cannot be 

said to have been explicit leaders or guides. They did not communicate intentions or otherwise 

direct naïve individuals. Rather, the convergence upon the target was an emergent effect of the 

movement of the group as a whole. This is analogous to the local group of birds in a flock that 

actively seek to evade a predating hawk. Most birds do not necessarily perceive the predator, but 

an evasive behavior nonetheless emerges in the flock (Neemeh & Favela, under review). 

More dispersed crowds, such as large numbers of pedestrians flowing through a city, 

share with ants a form of stigmergic communication. One way stigmergic path formation can 

operate is by the gradual physical imprinting of paths in the ground (Moussaid et al., 2009). This 
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process is slow and does not represent crowd behavior. Within cities, however, similar 

mechanisms of stigmergic communication and path formation appear. Using Ant Colony 

Optimization (ACO), Kheiri (2016) simulated the flow of pedestrians in through the busy 

Honarmadan Park in central Tehran. Pedestrian flow is organized around six separate entrances 

and is structured around individuals’ perceptions of others’ locations and movements. Moussaid 

and colleagues (2009) further note that pedestrian flows spontaneously organize into two lanes, 

although there is a cultural contribution to this phenomenon as well.  

 

4.3.2 Towards a classification of crowds. Crowds express similar properties to swarm 

intelligence, but they diverge from this class in several respects. Crowds are self-organizing and 

emergent (SI1). When moving across discrete paths, they display stigmergic communication 

(Kheiri, 2016; Moussaid et al., 2009), a form of self-organized and emergent behavior 

(Hölldobler & Wilson, 2009). In more amorphous crowds, principles similar to the mechanisms 

of repulsion and attraction keep the mass bound together. There is a continuous coordination of 

individuals as members of the crowd (SI2). This coordination can include direct, verbal and 

nonverbal communication, however. In this respect, they diverge from systems such as schools 

of fish or bird flocks. 

Individual agency can be but is not necessarily minimal insofar as the individual 

constitutes the crowd (¬SI3). In very large crowds, such as a stampede, there is little opportunity 

for any other behavior aside from running in the direction of the crowd flow. In more open and 

dispersed crowds, however, there is ample opportunity to autonomously switch directions or 
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disengage from the crowd. The cognitive behavior of the crowd is not limited to perception and 

locomotion (¬SI4).  

Communication or interaction between members of the crowd is minimal but there is a 

communication of intentions (¬SI5). There may be a communication of intentions in crowds, 

although the entire crowd does not necessarily have to share the intention. A few individuals may 

shout “fire!” in a building and a stampeding crowd may ensue. Many of the individuals may 

share an intention of ‘fire.’ Nevertheless, as Dyer and colleagues (2007) have shown, crowd 

behavior can manifest without any such shared intentions. Although crowds can operate without 

shared intentions, here they differ from other swarm intelligent systems. 

The organization of the crowd is relatively isomorphic. There is no specialization of 

functions between the members of the crowd (SI6). In Dyer and colleagues’ (2007) study, the 

informed individuals were not leaders. They acted by the same locomotive principles as their 

fellow naïve participants. They are only called “leaders” in a loose sense, as with “leader” birds 

in a flock. The only difference between informed and naïve individuals is that the former have an 

intention not shared with the latter. This situation also obtains in crowds fleeing burning 

buildings. A few informed individuals may “lead” the rest of the crowd towards the exits. 

Crowds are closest to swarm intelligence but they do not completely fulfill SI3-5. Given their 

similarities to swarm intelligent systems, however, there is strong evidence that they may be 

social cognitive systems. It remains to be determined how to precisely understand cognition in 

these systems. 
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4.4 Societies 

 

Societies are the largest collections of humans. They can range from hamlets, villages, 

towns, cities, and megalopoleis to entire nations or civilizations. It is not entirely clear if any of 

these societies operate on some level as unified cognitive systems. It is possible they are merely 

networks of smaller cognitive systems. A city, for example, is possibly a network of thousands or 

millions of individuals, small groups, crowds, institutions, and technical-scientific institutions in 

the vein of Giere’s (2006) HST. DeLanda (2000) argues cities operate as complex systems built 

on top of older, more “primitive” structures such as natural processes of mineralization. Even if 

DeLanda is correct, this is only a necessary and not a sufficient condition for social cognition. 

Many complex systems are not cognitive, such as hurricanes, tornados, and galaxies (Parrish, 

Viscido, & Grünbaum, 2002). 

Lisiecka (2013) similarly notes there are multiple, coexistent levels of emergent order, or 

a supervenience of levels: atoms, molecules, individuals, living systems, and groups. On the 

group level, these emergent orders include group culture, memory, social practices, and 

conversational routines. Sawyer (2005) adds to this list language shifts over time, and Nowak 

and colleagues (2013) add opinions, attitudes, politics, religions, fashion, and farming 

techniques. These analyses of complexity in societies are all of specific elements constituting 

societies. Within social psychology itself, there are few unified theories and most consider 

isolated elements within societies (Nowak, Vallacher, Strawińska, & Brée, 2013). Although 

these social elements are to a degree conceptually and experimentally isolable, they ultimately 

are inextricable from the broader society to which they belong. 
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“Most social properties are nonaggregative, many social systems are not decomposable, 

most are not functionally localizable, and all depend on symbolic communications that 

use the full richness of human language” (Sawyer, 2005, p. 99). 

It is this symbolic communication that significantly makes societies differ from collective  

biological systems. In crowds, there may be a minimum of symbolic communication and this 

may aid in the construction of collective intentions (e.g., “fire!”). In societies, however, symbolic 

communication is at the apex of its complexity. Integrating the intricacies of language into a 

social cognitive paradigm is a formidable task and is well beyond the scope of this study.  

Kesebir (2012) classifies societies as partial superorganisms and even likens them to 

slime molds (see Bonner & Raper, 1976). Unlike in ant colonies, other eusocial insect swarms, 

or slime molds, however, individual humans’ agency is strongly preserved in societies. Sawyer 

(2005) suggests they have features akin to swarm intelligence. Their behavior extends far beyond 

the confines of perception and locomotion, however. Of the three types of social cognition 

presented in this study, societies are closest to distributed cognition. They are emergent (D1; 

DeLanda, 2000; Lisiecka, 2013; Nowak et al., 2013; Sawyer, 2005). It is not clear how to answer 

the second criterion, however (¬D2). Is there a continuous coordination of agents and 

nonagentic tools as members of the society? What would it even mean for the components of a 

society to be continuously coordinated? Each agent does, however, maintain a degree of 

individual agency within the society (D3). In considering the fourth criterion, once again it is 

unclear how this would be applied to societies (¬D4). Does each agent actively participate in the 

overall goal or joint task in which the society is engaged? DeLanda indicates that there are 

society-wide behaviors, such as the expansion of a city according to its geographical situation 
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(2000) or integration into a new nation by conquest (2006).15 Can such behavior be said to be a 

joint task, perhaps unrecognized by individuals in a similar way to ants building a nest? Here, it 

is perhaps even more a lack of an adequate philosophical vocabulary and conceptual clarity than 

a lack of empirical studies that makes this question unanswerable. 

The final two criteria are easier to analyze. There is a very pronounced specialization of 

functions among members of societies, including professional, governmental, familial, and other 

roles (D5). Finally, the cognitive behavior of societies is complex and not limited to perception 

and locomotion (D6). Societies build infrastructure, buildings, institutions, factories, and other 

cultural artifacts. Several of the criteria, however, are—within the terms of the theory 

presented—simply unanswerable either affirmatively or negatively. 

The evidence for societies, including hamlets, villages, towns, cities, and megalopoleis, is 

far less conclusive than that for crowds. The difficulty with crowds was in introducing collective 

intentionality. It is a well-defined problem that future research can directly address. For societies, 

there is a far stronger lack of conceptual clarity. Instead of clear problems, we can at this point 

only pose suggestive questions. We are only at the beginning stages of the exploration of 

societies as cognitive systems. Dynamical social psychology (Nowak et al., 2013), dynamical 

systems sociology (Sawyer, 2005), and Material Engagement Theory (Malafouris, 2013) are on 

the frontiers of this new exploration. Are societies cognitive systems, or are they merely complex 

systems? Are they networks of interconnected individuals, small groups, crowds, and 

                                                           
15 Memphis, TN, for example, historically grew northeastwards in a diamond shape because of 

its location at the corner of the Mississippi River and the state of Mississippi. 
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institutions? Or do they have an ontological status in their own right? Ultimately, an adequate 

philosophical vocabulary must be constructed to be able to answer these many questions.  
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CHAPTER 5: CONCLUSION 

 

5.1 Cognition Is a Property of Group and Social Systems 

A preliminary taxonomy of social systems with criteria was developed with three types: 

distributed cognition, swarm intelligence, and superorganismic cognition. Two series of cases 

across collective biological and human social systems were analyzed according to the previously 

established criteria. This division is practical and is not indicative of any absolute differences. 

Wolf packs and small human groups are cases of distributed cognition. Bird flocks, schools of 

fish, and human crowds are cases of swarm intelligence. Eusocial insect swarms are cases of 

superorganismic cognition. By establishing criteria of different types of social cognitive systems, 

these vastly different phenomena can be compared with one another. The categories themselves 

may not be absolutes, and there may very well be some slippage among them. They are intended 

to be pragmatic, exploratory descriptors rather than exhaustive accounts. Common to them all is 

a global-level cognition that emerges from the local interactions of organisms in the collectivity. 

The perception and movement of individual birds within a flock cannot simply be 

understood as a function of the individual, even in reference to its neighbors. For the individual 

bird is part of a dynamical system fluctuating in time and curling, pullulating, and whirling like a 

wisp of smoke. In order to understand its local behavior, the global behavior of the flock must be 

understood. The cognitive behaviors of the ant, too, are better understood nonreductively. To 

understand how the individual ant with its miniscule brain ended up at the food source, the 

emergent effects of stigmergy in the swarm must be understood. Likewise, to understand why an 

ant is defending an aphid from attack by a ladybug, both the ant’s and the aphid’s place in the 



55 
 

structure of the swarm must be understood. For wolves, the convergence of several wolves on a 

prey animal can only be understood as a group function. Schools of fish, like bird flocks, emerge 

as collective units through the local interactions of individual fish. In small human groups, 

individuals work together to achieve goals and express emergent cognition in doing so. Crowds 

function by much the same processes as bird flocks and schools of fish. A leader does not control 

them, but their actions emerge through the local interactions of neighboring individuals.  

Therefore, in collective biological and human social systems—including bird flocks, 

eusocial insect swarms, wolf packs, schools of fish, small human groups, and human crowds—

cognition is an emergent property irreducible to the sum of the cognitions of the member 

organisms. To understand a single organism’s cognition within the context of these collectivities 

necessitates a systems approach. This is not to deny that individuals have cognition qua 

individuals. This is especially apparent with human individuals in a crowd, which are 

individually quite complex cognitive systems unto themselves, but together constitute a 

markedly simple cognitive system.  

 

5.2 Expanding the Bounds of the “Cognitive” 

For CRUM, cognition begins and ends at the brain or nervous system. 4EA approaches 

have expanded those boundaries to phenomena as small as the individual cell and as large as the 

organism-environment system. A consequence of this study is the further expansion of the outer 

bounds of cognition. This work is intended to motivate future research into further cases of social 

cognition and additional types of social cognitive systems. The series of case studies presented is 

by no means exhaustive and similar social cognitive systems surely exist. They are merely 



56 
 

particularly well-researched cases. Further cases may not all fit into the threefold taxonomy here 

devised. This taxonomy was presented programmatically in the hope that more types of social 

cognitive systems will be discovered. Possessing a wide range of concepts of social cognition is 

an indispensable tool to exploring the outer bounds of cognition. 

In this study, the status of crowds and societies was not decisively determined. 

Suggestions for further research are given to guide those first steps into exploring further cases 

of social cognition and types of social cognitive systems. Evidence is given that they may be 

cognitive systems, but it remains to be determined. If they are indeed cognitive systems, it must 

be resolved whether they are unified systems or rather a network of smaller social cognitive 

systems. For societies, there particularly lacks a conceptual clarity that must be addressed by 

future philosophical work. 

Human societies are possibly cognitive, but the outer bounds of cognition find their 

absolute limit at the Earth as a unified, homeostatic system. Lovelock’s (2000) Gaia may share 

certain features with cognitive systems, such as homeostatic mechanisms and emergent behavior. 

Nevertheless, emergence in itself is not a sufficient condition for cognition. Tornados, galaxies, 

and hurricanes are also emergent systems and bear striking similarities to some animate 

formations (Parrish et al., 2002), but that does not make them cognitive. There exists a deep and 

profound mathematical unity between these physical phenomena and cognitive phenomena that 

dynamical systems theory is only beginning to uncover. Self-organizing criticality (SOC) is 

possibly the holy grail of systems theory that Ludwig von Bertalanffy (1968) searched for and 
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may be a fundamental organizational principle of the universe.16 Nevertheless, despite 

Lovelock’s sometimes romantic metaphors, Gaia has no more faculty for perception-action than 

galaxies or tornadoes. The noosphere is at least as broad as collective biological and human 

social systems, perhaps as expansive as entire human societies, and not as large as the Earth as a 

unified system. It remains to be determined precisely where the outer boundaries of the 

noosphere lie. 

 

5.3 Towards a Renewed Relevance of the Social Sciences in the Cognitive Sciences 

A corollary consequence of the expansion of the scope of cognition is the renewed 

relevance of the social sciences within the interdisciplinary matrix of the cognitive sciences. In 

1978, the six-pronged interdisciplinary wheel of the cognitive sciences was first published (see 

Figure 4; Sloan Foundation). Since then, the relevance of anthropology has tapered off and is 

only given a passing acknowledgement or a symbolic nod in the cognitive sciences (Hutchins, 

2010; Thagard, 2010). This study suggests that the social sciences, including anthropology and 

sociology, have a renewed relevance to the cognitive sciences. The old idea of incorporating 

anthropology was to incorporate cross-cultural perspectives into cognitive models. This would 

escape the trap of naively studying the Western individual as if they were the universal 

individual. The new idea is that groups and societies themselves are actually relevant objects of 

study. Small groups, crowds, and possibly societies are nonreductive social cognitive systems. 

This also expands the potential contribution of biology to the cognitive sciences to also include 

                                                           
16 See Jensen (1998) for SOC in physical systems and biological evolution and Favela 

(forthcoming) for SOC in the cognitive sciences. 
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sociobiological work on flocks, swarms, colonies, and other such emergent group entities 

(Hölldobler & Wilson, 2009). 

 

Figure 6. The interdisciplinary matrix of the cognitive sciences. After Sloan Foundation (1978). 
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