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ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) affects 5-10% of children worldwide. Its effects

are mainly behavioral, manifesting in symptoms such as inattention, hyperactivity, and impulsivity.

If not monitored and treated, ADHD may adversely affect a child’s health, education, and social

life. Furthermore, the neurological disorder is currently diagnosed through interviews and opinions

of teachers, parents, and physicians. Because this is a subjective method of identifying ADHD, it

is easily prone to error and misdiagnosis. Therefore, there is a clear need to develop an objective

diagnostic method for ADHD.

The focus of this study is to explore the use of machine language classifiers on information from

the brain MRI and fMRI of both ADHD and non-ADHD subjects. The imaging data are prepro-

cessed to remove any intra-subject and inter-subject variation. For both MRI and fMRI, similar

preprocessing stages are performed, including normalization, skull stripping, realignment, smooth-

ing, and co-registration. The next step is to extract features from the data. For MRI, anatomical

features such as cortical thickness, surface area, volume, and intensity are obtained. For fMRI,

region of interest (ROI) correlation coefficients between 116 cortical structures are determined.

A large number of image features are collected, yet many of them may include redundant and

useless information. Therefore, the features used for training and testing the classifiers are se-

lected in two separate ways, feature ranking and stability selection, and their results are compared.

Once the best features from MRI and fMRI are determined, the following classifiers are trained

and tested through leave-one-out cross validation, experimenting with varying feature numbers,

for each imaging modality and feature selection method: support vector machine, support vector

regression, random forest, and elastic net.

Thus, there are four experiments (MRI-rank, MRI-stability, fMRI-rank, fMRI-stability) with four

iii



classifiers in each for a total of 16 classifiers trained per each feature count attempted. The results

of each classifier are the decisions of each subject, ADHD or non-ADHD. Finally, a classifier

decision ensemble is created through the combination of the outputs of the best classifiers in a

majority voting method that includes results of both the MRI and fMRI classifiers and keeps both

feature selection results independent.

The results suggest that ADHD is more easily identified through fMRI because the classification

accuracies are a lot higher using fMRI data rather than MRI data. Furthermore, significant activity

correlation differences exist between the brain’s frontal lobe and cerebellum and also the left and

right hemispheres among ADHD and non-ADHD subjects. When including MRI decisions with

fMRI in the classifier ensemble, performance is boosted to a high ADHD detection accuracy of

96.2%, suggesting that MRI information assists in validating fMRI classification decisions.

This study is an important step towards the development of an automatic and objective method for

ADHD diagnosis. While more work is needed to externally validate and improve the classification

accuracy, new applications of current methods with promising results are introduced here.
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CHAPTER 1: Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological brain

disorders in children, affecting approximately 5-10% of their population worldwide. Because di-

agnosed children may suffer from learning difficulties, behavioral abnormalities, and disobedience

or aggression towards authority, its effects may be detrimental to their health, education, and social

skills [1].

Recently, there has been a lot of effort to discover the root cause of this problem, but at present

there is no well known biological measure that exists to diagnose ADHD. Instead, physicians and

psychologists rely on behavioral symptoms reported by parents and teachers to aid in identifying

the disorder. They ask for subjective behavioral observations of inattention, impulsiveness, and

hyperactivity. When asked to identify these symptoms however, a person may be subject to confir-

mation bias, which is the tendency to interpret any evidence as a confirmation of one’s belief. As

a result, many times the diagnosis may be inaccurate, especially if a parent or teacher believes the

child has ADHD.

Nearly one in seven children within the United States and approximately one in five of male chil-

dren are affected by ADHD, as reporeted by the Center for Disease Control and Prevention. Many

physicians and scientists believe this ratio is an obvious mark of over-diagnosis, and therefore this

motivates us to develop an objective ADHD diagnostic method. By relying on the brain’s cortical

structure and functional activity, we aim to standardize the detection process and reduce the de-

pendency of subjective analysis. Furthermore, Dr. Thomas Insel, Director of the National Institute

of Mental Health, agrees with this position. Speaking about the Diagnostic and Statistical Manual

of Mental Disorders (DSM-5), he states “We need to begin collecting the genetic, imaging, phys-

iologic, and cognitive data to see how all the data - not just the symptoms - cluster and how these
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clusters relate to treatment response.”

Furthermore, the medication required to treat the inattention symptom of ADHD is prevalent

amongst college students. [2] reported after studying 1,811 undergraduates at a large, public uni-

versity that 34% anonymously admitted to the illegal use of ADHD stimulants. Especially during

highly stressful academic periods such as final exams season, the extra ”boost” that the medication

provides attracts a large market for the underground passing of the drug. How this underground

market is created is largely unknown, but the subjectivity of the ADHD diagnostic test may allow

those who do not have ADHD to act as if they do in order to gain the medication.

These issues at hand motivate us to focus on this major topic of interest: the identification of

specific structural or functional differences in brains with and without ADHD. Through this study

and future investigations, multiple biological markers can be reasoned that, when assessed together,

may point towards a definite and objective diagnosis of ADHD.

Objectives

In this study, I conduct a comparative analysis of the MRI and fMRI of brains with and without

ADHD. By utilizing state-of-the-art software and statistical techniques on clinical images for a

highly applicable purpose, I explore the possible correlates of ADHD within the brain.

My main objectives of this study include the diagnosis of ADHD via machine learning methods

on a) a full structural analysis of MRI and b) a full functional connectivity analysis of fMRI,

as well as the c) identification of significant functional correlations and d) identification of

significant cortical structures, of the brain.

For a brief overview - first relevant features (such as cortical thickness, intensity, surface area, vol-
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ume, etc.) are extracted from structural MRI in brains with ADHD matched by age and gender to

normal controls. Next significant qualities separating the ADHD vs normal subjects are identified.

Secondly, a full connectivity analysis of functional MRI in brains with ADHD matched by age and

gender to normal controls is performed. Significant correlations in the networks of the brains of

ADHD vs normal subjects are assessed. Finally, the features are ranked and ensembles of various

combinations of classifiers are experimented with to achieve a state-of-the-art 96.2% prediction

accuracy in discriminating an ADHD vs non-ADHD brain.

Functional Imaging Techniques

Most of the brain’s cognitive activities are performed through communication between neurons

via their synapses. This neural signaling is performed through the release and reception of specific

neurotransmitter molecules. The transmission process of neural signals through the many branches

(axons) of neurons is called conduction. Because these electrical signals often force molecules

against their concentration gradients, the process requires an input of energy which is derived from

the reactions of adenosine tri-phosphate (ATP). Glucose and oxygen is required for the production

of ATP in the mitochondria of cells. Therefore, whenever a region of the brain is activated by

a cognitive task, the increase in neural signaling amplifies the local energy requirement. In turn,

this requires an uptake of chemicals such as oxygen and glucose in the region in order to fuel the

signal’s conduction.

The energy required for neural signaling is generated via the oxidation of glucose through a

metabolic process called glycolysis. The glucose and oxygen is supplied via blood vessels through-

out the brain. It has been observed that the activity in a region of the brain and its local blood flow,

oxygen consumption, and glucose uptake are highly correlated. In other words, the increase of

brain activity in a region coincides with the increase of their chemical and energy needs in that
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specific area. Thus, the metabolism process of the brain is highly informative about its cognitive

activities. With this information in mind, brain functional imaging techniques take advantage of

these relationships to map activity levels of the brain by measuring its local blood flow and chemi-

cal consumptions through radiological tracers. Following are some examples of various functional

imaging techniques.

Positron Emission Tomography

In Positron Emission Tomography (PET), the subject is injected with a radioactive isotope which

is introduced via a biologically active molecule. After a short duration, the active molecules are

concentrated in the desired tissue. The subject is then placed under a scanner which records the

radioactive emission of the tracer. Through the process of radioactive decay, the tracer molecule

releases beta particles (positrons) which the scanner detects. A remote computer calculates the

location of the tracer molecule based on the collected data. While PET has a high spatial resolution

(approximately 1-10mm), it is at the cost of a low temporal resolution. Still though in this way, PET

can detect blood flow or glucose uptake rate, which as discussed previously, are indirect measures

of cognitive activity.

Multichannel Electroencephalography

As described earlier, the neurons communicate with each other via electrical signals through the

exchange of ionized particles through the synapses. This communication process causes electrical

currents in the brain. Through Multichannel Electroencephalography (EEG), the brains electrical

current is recorded for a short period of time. EEG can record the neuronal activity in a very high

temporal frequency (in the range of milliseconds), however the spatial resolution is compromised.
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Magnetoencephalography

The flow of ionized particles through neurons produces weak magnetic fields within the brain.

Magnetoencephalography (MEG) is a functional neuroimaging technique which can record the

magnetic fields produced by electrical currents due to neuronal activity. The brain activity level

is then mapped with the information from the recorded magnetic fields. Since the magnetic fields

are very weak, extremely sensitive magnetometers which use arrays of superconducting quantum

interference devices are used. Similar to EEG, it has a very high temporal resolution and low

spatial resolution.

Near Infrared Spectroscopic Imaging

Near Infrared Spectroscopic Imaging (NIRSI) is a non-invasive optical imaging technique to mea-

sure brain activity. As another functional brain imaging method, NIRSI uses near-infrared (800 nm

to 2500 nm) light to measure blood oxygen saturation changes in blood vessels of the brain. It does

so by measuring the absorption and attenuation of the near-infrared signals emitted by the source

and received by the photodiodes. An advantage of NIRSI is that it is inexpensive and portable, al-

lowing subjects to be measured while they are moving or performing tasks. NIRSI and functional

magnetic resonance imaging (fMRI) produces similar data as previous studies have shown close

spatial and temporal correlation.

Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) measures signal changes in the brain that are due

to changing neural activity. Compared to a regular structural MRI, in fMRI the brain is scanned at a

lower spatial resolution but through a higher temporal resolution. During increases of neural activ-
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ity, there is an increased demand for oxygen in the localized neurological area. The vascular system

compensates for this by increasing the amount of oxygenated blood in the area. This mechanism,

referred to as blood-oxygen-level dependent (BOLD), changes the ratio of oxygenated hemoglobin

versus deoxygenated hemoglobin. As a result, the varying ratio of the types of hemoglobin affects

the MR signal, which is recognized and processed for visual representation.

Figure 1.1: Brain fMRI

Structural Imaging Techniques

While functional imaging focuses on activity levels of the brain, structural imaging focuses directly

and only on the anatomy. These normally give little to zero information about energy or chemical

consumptions, however they do give detailed data about the brain’s physical structure. Through

state-of-the-art machine learning processes as well, the brain can be statistically analyzed to receive

data on its cortical thickness, curvature, density, thickness, volume, intensity, and more. Especially

in the past few decades, brain imaging techniques have significantly improved.

Computer Tomography

Computerized tomography (CT) refers to an x-ray imaging procedure in which an x-ray source

rotates around a patients body. The x-ray beams produce signals that are processed by the machines
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computer to generate cross-sectional images. After a number of successive slices are collected

by the machines computer, they are digitally stacked to form a three-dimensional image. CT

scans are useful in detecting tumors or lesions within the abdomen, heart disease, clots, and other

condition. In particular, CT scans are advantageous when identifying bone fractures and other

harder materials; however, it is difficult to distinguish the differences in soft tissue among organs.

Magnetic Resonance Imaging

Because we use Magnetic Resonance Imaging (MRI) for our ADHD analysis studies, we provide

the basic principles behind the data capturing method without going into the mathematics. MRI

scanners utilize strong magnetic fields, radio waves, and field gradients to generate images of inside

the body. The core concept of MRI is based upon the idea of nuclear magnetic resonance (NMR).

When placed within an external magnetic field, certain atomic nuclei can absorb and emit radio

frequency energy.

Figure 1.2: Brain MRI

In clinical MRI, hydrogen atoms are most-often used to generate a detectable radio-frequency sig-

nal that is recorded by receivers in close distance to the anatomy being examined. Since hydrogen

atoms exist naturally in humans, especially in water and fat, most MRI scans essentially map the

location of water and fat in the body. Pulses of radio waves excite the nuclear spin energy tran-
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sitions, and magnetic field gradients localize the signal in space. By varying the parameters of

the pulse sequence, different contrasts can be generated between tissues based on the relaxation

properties of the hydrogen atoms. Because MRI does not use any ionizing radiation, it is generally

favored in preference to CT or PET. Additionally, whereas CT is weak in deciphering soft tissue,

MRIs advantages lie in its relatively strong resolution of soft tissues.
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CHAPTER 2: Related Work

While literature on ADHD is vast, imaging studies on ADHD have increased almost exponentially

over the past decade. In this chapter, I discuss literature on general computer vision methods

on medical imaging, structural studies of ADHD, functional investigations, and finally machine

learning and computer vision based medical imaging studies.

Computer Vision in Medical Imaging

Medical image segmentation is an important application of computer science. The simplest method

is a threshold based process where a thresholding value is used to identify a region of interest.

These methods are simple yet have its disadvantes - they rely mainly on pixel or voxel intensities,

but are prone to intensity leakage and poor structural isolation. Because of noise, segmentation

through structural means is usually used with assistance from other methods so organs and struc-

tures can clearly be identified.

Machine learning methods are very useful because they depend on firmly ground statistical analysis

where control data are statistically compared with data positive for disease or abnormality. After

creating a model by estimating these statistical variations, new data can be tested to determine the

accuracy of the learned machine. Essentially, a high number of imaging features are iteratively

sampled to identify image characteristics which may include minute local details or larger global

patterns that show a relationship within the data and its label.

With many potential diagnostic and insightful applications, computer vision methods have been

used in studies for organ detection, cancer diagnosis, fat quantification, and neural analysis. In [3],

an atlas-based rib-bone detection is performed on X-rays. This allows lung function abnormalities
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to be more easily detected, especially in countries where health resources are limited through the

use of portable X-rays. Furthermore, in [4], the automatic segmentation and quantification of

adipose tissue is investigated in PET and CT scans. This study helps the effort in identifying risk

factors, prognoses, and long-term health outcomes due to various diseases. This is just the tip of

the iceberg in applications of computer science in the medical field; there are a vast ocean of new

technologies being developed to assist physicians.

Structural Studies

It is important to realize the structural differences in brains with and without ADHD. [5] showed

a quadratic growth model of brain development and defined a growth trajectory of cortical points.

In subjects with ADHD, he showed that there was a five-year delay in brains attaining their peak

thickness in the cerebrum. The cerebrums development is important because it controls the cog-

nitive functions needed to suppress inappropriate responses. Furthermore, [6] found that ADHD

symptoms improve with age. According to their studies, compared to other diseases, delayed neu-

rological maturation seems specific to ADHD. [7] used a global voxelwise approach to examine

the hypothesis that ADHD severity is associated with WM microstructure deformalities within the

subgenual cingulum. [8] identifies the diminished amount of dopamine receptors in the amygdala,

a clinical symptom of ADHD that overlaps with symptoms of bipolar disorder.

ADHD may manifest itself in a structural way, and therefore it is important to understand any

structural differences identified in brains of ADHD and non-ADHD subjects. In a study by [5], the

growth development of the brain was tracked through a trajectory of specific cortical points and

mapped to a quadratic growth model. The results showed that there was a three to five year delay

in brains achieving their optimal thickness within the cerebrum. The cerebrum is an important

structure pertaining to ADHD because it is a cognitive controller of appropriate and inappropriate
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responses. Furthermore, the delayed neurological maturation was shown to be specific to ADHD

in [6], and it was also found that its symptoms decrease as the children age. Another study pro-

duced by [7] determined using a global voxelwise method that the degree of ADHD is related to

white matter structural deformality within the subgenual cingulum. Finally, the concentration of

dopamine receptors was identified to be diminished in teh amygdala, which is a similar clinical

symptom that overlaps with bipolar disorder [8].

Functional Studies

Functional activity in the brain, shown by oxygen uptake or labeled chemicals may also give some

insight into the neurological differences of ADHD affected brains. In a series of studies, differ-

ences between ADHD and non-ADHD brains were identified. Altered relationships between larger

scaled networks within default networks and task networks of the brain were found in [9]. The re-

sults show that there may be a weakened regulatory control of the default network of the brain

within ADHD subjects. In another study, [10] reported that ADHD subjects showed a weakened

amplitude of low-frequency fluctuations in their study on brain default network functions. While

this study did not actually conclude a specific area which was abnormal, it also was only limited

to 13 ADHD subjects. Furthermore, [11] quantified maturational effects of the brain on ADHD

throughout 400,000 connections between structures in the brain. Ultimately, they found that there

was a lag in the development of connections in the default brain network, and that subjects exhibit-

ing more severe inattention symptoms displayed a longer lag in maturation of connections of the

default mode network.

Other studies included tasks to test functionality changes. [12] asked subjects to perform the

Counting Stroop and determined that ADHD subjects displayed a more significantly diminished

activity in the anterior cingulate cortex. In another study, [13] found that when performing the
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go/no-go task, ADHD subjects show a weaker activity in the frontostriatal region of the brain.

Finally, structural MRI were found to be important in a study by [14] where it was determined

that a higher T2 relaxation time in the putamen was found in boys with ADHD, a possible direct

correlate to a child’s impulsive response.

Furthermore, a review of functional connectivity was put together in [15]. They found ADHD

subjects exhibited significantly different resting state functional connectivities bilaterally in the

thalamus, cerebellum, insula, and pons. Another study demonstrated a decreased amplitude of

low frequency fluctuations (ALFF) in the right inferior frontal cortex, left sensorimotor cortex,

and bilateral brain stem. Other analyses revealed that ADHD subjects showed a decrease in the

functional connectivity between the anterior cingulate and posterior cingulate, as well as significant

alterations in the prefrontal temporal, and occipital cortex regions.

As it can be seen, there seems to be many different locations that play a role in ADHD’s emergence.

This makes it increasingly difficult to use only single markers as signifiers for ADHD. Thus, a

plethora of information incorporated through learning-based classifiers intuitively should provide

a better answer.

Machine Learning Studies

In terms of machine learning based classification, although group level statistics were successfully

derived to identify various regions of abnormal function and structure of brains in ADHD subjects,

an automatic method of diagnosis was lacking. There are relatively few studies exploring the

individual level of classification of ADHD subjects.

For a short review of classification studies, a brief review is provided. In [16], the regional ho-

mogeneity of fMRI data is used as a feature to classify ADHD subjects. [17] achieved an 85.29%
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accuracy on structural MRI data. Peng et. Al in [18] achieved a 90.18% accuracy by using ex-

treme learning machine-based classification of ADHD using structural MRI data. While the ELM

method looks promising, the dataset comprised only 55 ADHD subjects and 55 healthy controls.

Furthermore, using the same data from the ADHD-200 competition, [19] identified latent dimen-

sions in MRI and compared various non-negative matrix factorization algorithms to achieve On the

other hand, a study by [20] received a classification accuracy of 95% by performing a PCA-based

feature optimization with a fully connected cascade artificial neural network as the classifier. Fi-

nally, a study by [21] performs classification using only single features and achieves a relatively

good score of 65.87% accuracy.
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CHAPTER 3: Methods

In this study, we analyze structural and functional MRI and apply several statistical measures and

machine learning methods to discriminate specific features that differ amongst ADHD and non-

ADHD subjects. An array of experiments are performed on MRI features and fMRI features.

After features are extracted, several machine learning classifiers are trained and evaluated in their

accuracy of diagnosing subjects.

Dataset

Recently, a global competition named ADHD-200 was organized for researchers to develop meth-

ods to aid in the automatic diagnosis of ADHD subjects [22]. The organizers released datasets

containing fMRI, MRI, and phenotypic data of a large number of ADHD and control subjects.

In total, eight different data collection centers contributed to the data set. Since subjects from

dfiferent demographic and experimental protocols were used by different data centers, the dataset

is comprehensive and fair. In total, the ADHD-200 dataset consists of 776 resting-state fMRI and

MRI, in which 491 images were obtained from normal control individuals and 285 from children

and adolescents with ADHD. In accordance with the Health Insurance Portability and Account-

ability Act (HIPAA) guidelines, all data from ADHD-200 is anonymous and no protected health

information has been included. Each subject went through a series of tests to accurately determine

their labelling as ADHD or control.

For this study, a subset of the data from ADHD-200 is used. I evaluate my methods on a 54 subject

sub-subset of the Kennedy Krieger Institute’s (KKI) subset of 94 subjects. This sub-subset was

selected because their fMRI all had the same number of time points (124), whereas the other 40
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subjects had a different number of time points. In addition, the time cost of MRI feature extraction

limited the amount of MRI subjects able to be tested. It takes approximately eight hours for one

subject’s MRI to be pre-processed and features extracted. Thus, for efficiency and to provide a

controlled environment, only subjects with an equal number of time points from the same data

center were included in the study.

The developers of the KKI dataset performed their measurements with a Siemens Magnetom Tri-

oTim syngo MR B17 scanner, in which every subject was asked to keep their eyes closed. Other

fMRI parameters included the time of repetition (TR) set at 2500 ms and time of echo set at 30 ms.

MRI parameters included 47 number of slices each with a thickness of 3.0 mm. Of the 54 subjects,

17 were labeled as ADHD and 34 as Controls.

MRI Pre-Processing and Feature Extraction

For MRI preprocessing, we utilized the powerful FreeSurfer software to assist in the controlled

adjustment of the data. FreeSurfer is a software package developed for the analysis and visualiza-

tion of structural and functional neuroimaging data from cross-sectional or longitudinal studies. It

was developed by the Laboratory for Computational Neuroimaging at the Athinoula A. Martinos

Center for Biomedical Imaging. For our purposes, FreeSurfer provides a full processing stream for

structural MRI data, including: skull stripping, gray-white matter segmentation, region labeling on

cortical surfaces, and statistical analysis of group morphometric differences [23, 24, 25].

The original T1 anatomical MRI were processed using Freesurfer’s recon-all command for en-

tire brain segmentation and parcellation. The end result of this pipeline generates segmentations

of white matter, gray matter, subcortical volumes, and various statistics. Furthermore, a mesh

model of the cortical surface is developed and subdivided into many cortical regions according to
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Figure 3.1: MRI Pre-Processing Stages

two atlases, the Desikan-Killiany and Destrieux. Within each region, the software calculates the

surface area, gray matter volumes, cortical thicknesses, and cortical Gaussian curvatures. Also

measured were non-cortical regions such as white-matter, ventricles, intensities, and CSF. All of

these features were considered when selecting features to include in the MRI feature vector.

A number of preprocessing stages were performed including: 1) motion correction and conforma-

tion, 2) non-uniform intensity normalization, 3) Talairach transform computation, 4) first intensity

normalization, 5) skull stripping, 6) linear volumetric registration, 7) CA intensity normalization,

8) CA non-linear volumetric registration, 9) neck removal, 10) LTA with skull, 11) volumetric

labeling and statistics. A more detailed description along with the feature extraction steps can be

found on the FreeSurfer website. The final extracted features included in the study are various

structures’ cortical thickness, intensity, surface area, and volume.
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fMRI Pre-Processing and Feature Extraction

The recorded fMRI data must be preprocessed in order to account for variations and center the

focus of the analysis on only the relevant structures. For all our fMRI experiments, we used the

preprocessed fMRI data released by the ADHD-200 competition organizers. The pre-processing

is done using the AFNI [26] and FSL [27] tools and computed on the Athena computer clusters.

Figure 3.2: fMRI ROI Connection Correlations

The Athena functional data preprocessing pipeline includes 1) removal of the first four EPI vol-
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umes, 2) slice timing correction, 3) deoblique of the dataset, 4) reorientation, 5) motion correction

to the first image of the time series, 6) masking to exclude non-cortical structures (skull and neck

stripping), 7) averaging of the volumes to create a mean image, 8) co-registering the fMRI to its

corresponding T1 image, 9) writing fMRI data and mean image into a template space, 10) down-

sampling the WM and CSF masks (from the anatomical preprocessing that occurs in parallel but

not used for our experiments), 11) time-course extraction for the WM and CSF, 12) regressing out

WM, CSF, and motion time courses, 13) band-pass filtering voxel timecourses to exclude frequen-

cies not implicated in functional connectivity, and blurring of the filtered and unfiltered data using

a 6-mm FWHM Gaussian filter.

For feature extraction, a toolbox provided by University College London known as Statistical Para-

metric Mapping (SPM) is used in the analysis of the brain fMRI data sequences. Since the data

has already been preprocessed to control for any unwanted variability and unnecessary structures

within the scans, SPM is used to extract features. The chosen feature extraction method is a re-

gion of interest correlation matrix consisting of the correlation coefficients of the activity between

structures of the brain. The Automated Anatomical Labeling (AAL) atlas is used to parcellate the

volumes into 116 substructures, and the correlation coefficients between each structures’ level of

activity is calculated. Thus, there are 116x116 or 6670 correlations which serve as the features

used in the classification of ADHD vs non-ADHD subjects.

Feature Selection

A fundamental problem in machine learning and even more so a problem in the application of

machine learning to medical imaging is that the dimensionality of the data (the number of pixels

and voxels) far outnumber the amount of data that is helpful in identifying a specific class, be

it a disorder or disease. Therefore, solutions have been optimized to provide feature selection
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algorithms in order to improve classification performance by throwing out non-informative features

and including only significant features as part of the training and testing data.

Furthermore, recent studies have shown that in a cluster-wise analysis of fMRI, there is almost

a 70% false-positive rate. Thus, identifying valuable features are important in order to improve

specificity and sensitivity, and ultimately, the accuracy performance. Especially when consider-

ing the complexities and commonalities between brains, many redundant and extraneous features

are reported. As a result, they usually degrade the performance of a classifier. Thus, an impor-

tant component of our method was to only utilize features that are significantly different between

ADHD and Control subjects. In this exploratory study, two main feature selection methods are

evaluated and compared for their effectiveness: the Wilcoxon Rank Sum t-test feature ranking, and

the Stability Selection algorithm.

Feature Ranking

In order to rank the features, the Wilcoxon Rank Sum t-test is performed on each feature of the

ADHD set versus the Control set. The Wilcoxon Rank Sum t-test is a non-parametric statistical

method, which means that it does not assume that the populations are normally distributed. It is

ideal in identifying if a feature is significantly different between the populations. Based on the

z-score that is produced by the equation below, the p-value is calculated. Normally, any feature

with p-value less than 0.05 is considered significant. In this study however, numerous tests are

conducted by ranking the features by p-value from lowest to highest and then selecting a varied

amount of features for each experiment. The number of features selected will be explained further

on, however for the MRI features, we set a threshold of p-value <0.25 to be included in the ranked

list. For the fMRI features, there is no threshold because of the 6670 features, more than 1000
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features have a p-value less than 0.25.

z =
T1 −

n1(n1+n2+1)
2√√√√n1n2(n1+n2+1)

12

(3.1)

Stability Selection of Features

Stability Selection is another form of feature selection that capitalizes on a high frequency of

selected data based on a regression analysis. In the algorithm, subjects are randomly sampled

and a regression is performed on this subsample. The most discriminative features based on their

variance of this subsample are selected. This process is repeated 1000 times, and the features

receive selection probabilities. Finally, these selection probabilities are ranked, based on their

stability score, from highest to lowest.

Figure 3.3: Stability Selection Algorithm
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Machine Learning

The general method to the machine learning classification approach included first performing either

feature ranking or stability selection on the fMRI and MRI features, then carrying out a leave-one-

out cross-validation testing approach on four different classifiers while also varying the number of

features selected. This provides four sets of data: MRI feature ranking results and MRI stability se-

lection results, as well as fMRI feature ranking results and fMRI stability selection results. Finally,

within feature selection method, another set of results were generated by combining the decisions

of the classifiers in various combinations in a majority voting fashion, using the number of features

for each classifier that generated the best results in the previous four experiments. Therefore, in

total there are five sets of results reported.

Number of Features

The classifiers were tested with a varying number of features for both MRI and fMRI. There were

less MRI features available than fMRI features, and as a result, a less number of MRI features were

used for training and testing the classifiers. For MRI classification, experiments were performed

on the top-ranked (both, feature ranked and stability selected) n features, with n being tested as: 1,

3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 75, 90, 100. For fMRI classification, experiments were

performed on the top-ranked n features with n being tested as: 1, 3, 5, 10, 15, 20, 25, 30, 35, 40,

45, 50, 100, 200, 300, 400, 500, 1000.

Classifiers

The goal of machine learning is to provide a computer with the ability to learn from data without

explicitly programming it. This form of artificial intelligence allows the program to create pre-
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dictive models based on past data. For our purposes, we experiment with four different types of

machine learning classifiers - elastic net, random forest, support vector machine, and support vec-

tor regression - in order to diagnose a subject with ADHD. These classifiers are ”trained” on input

data, and then given ”test” data to test the model’s accuracy. Each method is founded in statistical

analysis, and their general approaches are explained next.

Elastic Net

The elastic net algorithm was first proposed in 2004 by [28] as a regularization and variable se-

lection method. It is quite similar to the lasso algorithm; it does automatic variable selection with

a continuous shrinkage, and also can select groups of correlated variables. [28] states “It is like a

stretchable fishing net that retains ‘all the big fish’.” In other words, the elastic net promotes the

grouping effect where highly correlated features tend to be included or not included in the model

together. Especially in the field of image processing and medical imaging, the elastic net is useful

when the number of features is much larger than the number of observations (subjects in our case).

Random Forest

Random forests are an ensemble prediction method which is similar to a divide-and-conquer ap-

proach [29]. The main principle is that many individual learners are aggregated together to create

a single output through a majority voting method. In random forest, multiple decision trees are

created by randomly sub-sampling features from the data. Each tree has a different set of weights

corresponding to different features. Ultimately, after creating the various decision trees from the

training data, the same model is utilized when experimenting with the testing data. As each deci-

sion tree outputs a diagnosis of ADHD, the ensemble aggregates the decisions for a final diagnosis.

The entire collection of trees is called a forest, and the random forest name comes from the random

22



feature sub-sampling.

Support Vector Machine

The support vector machine (SVM) algorithm was first described in the 1960s, developed in Rus-

sia, and is firmly grounded in statistical theory as it is continuously being developed [30]. Given

input data that is labeled as one of two categories (in our case ADHD or Control), the SVM train-

ing algorithm essentially builds a model that plots the data onto a space. The space may be highly

multi-dimensional, especially when the quantity of features are high [30]. The SVM then finds an

optimal hyperplane that divides the two categories of data with the highest separation between the

two classes. Once this model is developed, any new observations are similarly plotted onto this

space. Depending on which side of the hyperplane the test data falls, the SVM will assign the ob-

servation a class (diagnosis of ADHD or Control). Thus, the SVM algorithm is a non-probabilistic

linear binary classifier.

Support Vector Regression

Similar to the support vector machine, a support vector regressor (SVR) builds a model by plotting

the past observations or training data onto a space. The higher quantity of features correlates

to a higher dimensionality feature space. Unlike an SVM however, the SVR algorithm does not

separate the data based on a linear hyperplane. Instead, it is extended via nonlinear functions to

create a model that predicts a probability ratio for the classification of new data [30]. The threshold

limit for deciding if an observation is of a certain class (ADHD or Control) can then be manipulated

at the user’s discretion.
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Experiments

The general testing pipeline is displayed in Figure. First, MRI and fMRI features are ranked or

stabilized. Next, the top n features of either the (1) ranked MRI, (2) stabilized MRI, (3) ranked

fMRI, or (4) stabilized MRI are selected for classification. A leave-one-out cross validation ap-

proach is performed on all 54 subjects. In other words, the classifier or classifier(s) are trained with

53 subjects, and tested on one subject. In the first iteration, the first subject is the test subject and

the rest are training subjects. In the second iteration, the second subject is the test subject, and the

rest are training subjects (including the first subject), and so on. After 54 iterations, each subject

will have been tested once and trained classifiers 53 times. The classifier or classifier ensemble

outputs one-by-one the predicted diagnosis of the test subject.

Figure 3.4: Pipeline from Features to Diagnosis
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Ensemble Classifier

There are four classifiers being tested and compared with each other: the SVM, SVR, Elastic Net,

and Random Forest algorithms. While each respectively learns valuable information in order to

predict the test subject’s diagnosis, it is not always optimal. Because each classifier analyzes the

features in different ways, we believe that combining the decisions of each classifier and ultimately

deciding the diagnosis of a subject through a voting process can create more confident predictions

of ADHD or Controls.

After saving the predictions of each of the independent classifier experiments, the predictions of

the best performing number of features for each classifier are used in the classifier ensemble.

The classifier ensemble consists of some or all of the four classifiers for each imaging modality.

Therefore for each feature selection method, at a maximum there are eight classifiers used to decide

the final prediction, four from MRI and four from fMRI. Different feature selection methods are not

included within the classifier ensemble. Various combinations of classifiers are investigated, with

the goal of seeing if combining information from both imaging modalities improves performance.

Figure 3.5: Classifier Ensemble Experiments
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The classifier ensemble simply adds each subject’s predictions from the various classifiers included

in that particular experiment. Only if the sum of predictions is greater than two (in some cases,

three), then the final prediction for that particular subject is ADHD. In other words, at least two

classifiers within the ensemble have to had labeled the subjects as ADHD for the diagnosis to be

positive.
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CHAPTER 4: Results

An array of experiments were performed and large number of results were generated. For each

method of feature selection, four classifiers were trained and tested with the data from MRI and

then repeated again for fMRI. This allows us to compare the effects of feature ranking on MRI

and fMRI data with stability selection on MRI and fMRI data. Next, the predictions of various

combinations of classifiers (including cross-modality combinations) are summed together, and a

final label is decided upon each subject based on a majority voting of the particular combination of

classifiers. Additionally, the feature ranking algorithm through the use of Wilcoxon’s Rank Sum

t-test was used to identify the top significant features of the MRI and the top ROI correlations.

These results are also reported.

Structural Results

The Wilcoxon Rank Sum t-test was used to compare each features’ difference in distributions

between the ADHD and Control subject sets. In terms of MRI features, there were very few

features that reported significantly different (p-value ¡ 0.05) amongst the two sets. While there

were a total of 109 features that achieved a p-value less than 0.25, the Table 4.1 reports the top 10

significant features on the MRI data. In Table 4.1, R = right, L = left, Ant. = Anterior, Sup. =

Superior, Mid. = Middle, WM = White Matter.

The independent classifier results for both feature selection methods, the feature ranking method

and stability selection method, are graphed below for each experiment on the top n features. For

detailed results that include the accuracy, specificity, and sensitivity for each experiment, please

refer to the appendix.
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Functional Results

In fMRI, the Wilcoxon Rank Sum t-test was again used to compare and rank each connectivity

correlations’ difference in distributions between the ADHD and Control subject sets. There were

a maximum of 6670 correlations available because the 116 structures from the AAL atlas were

compared amongst each other. Relative to the MRI features, there were far more significantly

different (p-value < 0.05) fMRI features amongst the ADHD and Control sets. While there were

nearly 300 activity correlation coefficients between structures’ that reported a p-value less than

0.05, Table 4.2 reports the top 10 significant features from the fMRI data. In Table 4.2, R = right,

L = left, Ant. = Anterior, Sup. = Superior, Mid. = Middle, WM = White Matter.

The independent classifier results for both feature selection methods, the feature ranking method

and stability selection method, are graphed below for each experiment on the top n features. For

detailed results that include the accuracy, specificity, and sensitivity for each experiment, please

refer to the appendix.

Classifier Ensemble

Between a total of eight classifiers (four for MRI and four for fMRI) while keeping the feature

selection method results independent of each other, various combinations of majority voting pre-

dictions are evaluated. Since there a large number of possible combinations (8! to be exact),

the combinations are incrementally and intuitively decided to understand if combining MRI and

fMRI predictions improves performance. The results for feature ranking and stability selection are

compared.The integers per each bar grouping correspond to the type of classifier included in the

ensemble. 1-4 are from MRI, 5-8 are from fMRI. Classifiers 1 & 5 = Elastic Net; 2 & 6 = SVM; 3

& 7 = Random Forest; 4 & 8 = SVR.
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Finally, Table 4.3 provides the best results from our experiments and also includes results from

other studies.

MRI Features
Hemisphere Structure Attribute p-value

R. Fusiform Surface Area 0.00389
R. Choroid Plexus Volume 0.00692
R. Transverse Temporal Surface Area 0.00937
R. Rostral Ant. Cingulate Surface Area 0.01469
L. Cuneus Surface Area 0.01846
L. WM Caudal Ant. Cingulate Volume 0.02092
L. Paracentral Surface Area 0.02196
L. Sup. Temporal Surface Area 0.02197
R. Lateral Ventricle Intensity 0.02797
R. Rostral Mid. Frontal Surface Area 0.03374

Table 4.1: Top ten structural features.

MRI Features
Structure 1 Hemi. 1 p-value Hemi. 2 Structure 2
Precentral R. 0.00009 R. Calcarine

Frontal Mid. Orbital L. 0.00024 L. Frontal Sup. Med.
Frontal Mid. L. 0.00086 R. Precuneus
Frontal Sup. L. 0.00086 R. Frontal Mid. Orbital
Precuneus L. 0.00092 R. Cerebellum 4,5

Frontal Mid. L. 0.00105 R. Cerebellum 3
Cingulum Ant. R. 0.00119 L. Cuneus

Precentral L. 0.00119 L. Temporal Sup.
Frontal Sup. Med. L. 0.00119 R. Cerebellum Crus 2

Cingulum Post. L. 0.00119 R. Cerebellum 9

Table 4.2: Top ten functional ROI connection correlation features.
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Figure 4.1: Independent classifiers on MRI features selected through the Wilcoxon Rank Sum t-test. Max-
imum accuracy is 79.6% from Random Forest and SVR classifiers.

Figure 4.2: Independent classifiers on MRI features selected through the Stability Selection. Maximum
accuracy is 77.8% from SVM and SVR classifiers.
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Figure 4.3: Independent classifiers on fMRI features selected through the Wilcoxon Rank Sum t-test. Max-
imum accuracy is 92.6% from the SVR classifier.

Figure 4.4: Independent classifiers on fMRI features selected through the Stability Selection. Maximum
accuracy is 87.0% from the Elastic Net and Random Forest classifiers.
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Figure 4.5: Ensemble of classifiers including both MRI and fMRI for both feature selection methods.
Classifiers 1 & 5 = Elastic Net; 2 & 6 = SVM; 3 & 7 = Random Forest; 4 & 8 = SVR. Classifiers 1-4 are
trained from MRI, 5-8 from fMRI.
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Modality Method Accuracy Sensitivity Specificity
MRI Stability Selection 77.8% 94.6% 41.2%
MRI Rank Selection 79.6% 94.6% 47.1%
fMRI Stability Selection 87.0% 94.6% 70.6%
fMRI Rank Selection 92.6% 100% 76.5%
Both Classifier Ensemble (Stability) 92.59% 91.89% 94.11%
Both Classifier Ensemble (Rank) 96.29% 100% 88.24%
MRI Recursive Feature Elimination [17] 85.29% NP NP
MRI Extreme Learning Machine [18] 90.18% NP NP
fMRI Centrality Measures [19] 73% 63% 83%
fMRI Fully Connected Neural Network [20] 90% NP NP
Both Multi-Kernel Learning [21] 67.79% 38.29% 84.08%

Table 4.3: Overall results and comparison to other studies. Max accuracy is 96.2%. NP = Not Provided.
Note - different studies used different data sets and testing methods (i.e. K-fold or leave-one-out cross
validation).
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CHAPTER 5: Conclusion

Machine learning has proven to be useful in many medical applications, and medical imaging is a

field with no exception. We leverage its statistical foundations to train objective models that can

accurately and reliably distinguish between ADHD and non-ADHD patients.

In short, structural and functional information from brain MRI and fMRI, respectively, are sources

for the features analyzed. The features are selected via two different methods, rank selection and

stability selection. Their respective selected feature compositions are tested through the classifica-

tion system through an array of feature counts. The classification system includes four different

machine learning classifiers: support vector machine, support vector regression, random forest,

and elastic net. The outputs of the classifiers are the diagnostic decisions, and they are taken either

independently or through a majority voting procedure between various combinations of classifiers.

The methods explored in this project serve as a seed for future studies on ADHD classification.

While very promising results were received, a few limitations exist in this study. The results

would be further strengthened if validated on a larger data set, which is available but was not

used because of possible effects from different scanning machines and parameters. With a larger

dataset, better training and testing models can be created, allowing for pipeline that can easily be

generalized to the larger population, instead of the leave-one-out cross validation approach used

here. Additionally, the demographics of the patients matter. This study included both males and

females aged 8 to 13. During this young age, males and females’ bodies are undergoing many

changes, which may affect their brain’s structure or function. Separating the genders in building

ADHD models will most likely improve results. Finally, methods for combining features between

MRI and fMRI should also be explored, as they are currently tested separately. It will be interesting

to see if combining MRI features with fMRI features improves results just as voting the results
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between MRI classifiers and fMRI classifiers improves results.

A few general points can be understood as a result of the outcomes of this project, and they can

be applied in the general fields of neurological disorder diagnostics and medical imaging. First,

feature selection methods are important in determining the exact information that should be tested.

This study finds that rank selection via the Wilcoxon Rank Sum t-test outperforms the stability

selection algorithm when using the subset of features on the classifiers. A significant increase in

the accuracy of diagnosis was found when using features chosen through rank selection instead

of stability selection in both MRI and fMRI data. Additionally, there seems to be a significant

activity correlation between and within the brain’s frontal lobe and cerebellum amongst ADHD vs.

non-ADHD subjects, as well as between the left and right hemispheres, as noted from the top ten

fMRI features.

Furthermore, the results favor the statement that ADHD is mostly a functional problem within the

brain, but it also has a few anatomical elements. This can be seen in the vast number of functional

ROI correlation features with a p-value less than 0.05, as opposed to the approximately ten struc-

tural features under that threshold, found through the Wilcoxon Rank Sum t-test. This means that

there are very few significant anatomical differences, and a lot of significant connection correlation

differences between ADHD and non-ADHD subjects. When the features are subsequently tested

within the classifiers, the fMRI features outperform the MRI features in diagnostic accuracies.

Because the fMRI features generally produce stronger results for ADHD classification, we tested

to see if the predictions from MRI features added any value to the fMRI predictions if they were

combined through a voting procedure. The results show that summing the predictions of of fMRI

classifiers and MRI classifiers separately improves the results for the two imaging modalities.

When summing predictions of different combinations of classifiers from both MRI and fMRI,

the results improve even more to 96.2% in one instance. Therefore, multi-modal decision boosts
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performance, especially when MRI decisions are added to fMRI decisions.

Objective ADHD diagnostic methods will more than likely be implemented in the near future as

technology develops. However, it is clear that machine learning methods provide useful tools in its

diagnosis. Whether it is affirming a physician’s decision or used as the sole basis for classification,

the future is bright for this neurological disorder. This study is a strong step in the right direction

for early and accurate diagnosis of ADHD, which will allow preventative treatments before the

symptoms affect a child’s social, academic, and personal growth.
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