

Figure 69: Effect of HoL on the Travel Time at Plane 7 (64 Kbps). The second
graph is a zoom in where the lighter pixels correspond to the HoL strategy.

144

Table 8: Travel Time for all PDUs Received at Plane 7 by Priority (64 Kbps, 128
Kbps, 256 Kbps)

No HoL HoL
Bandwidth Priority # PDU Average # PDU Average

Bundles (seconds) Bundles (seconds)
64 Kbps: 1 11,463 7.787 11,752 25.646

5 8,291 9.538 8,218 0.405
7 7,864 6.789 7,738 0.243
9 1,892 3.495 1,882 0.176

Total: 29,510 29,590
128 Kbps: 1 13,640 0.299 13,649 0.319

5 9,363 0.275 9,360 0.270
7 8,842 0.211 8,842 0.199
9 2,089 0.159 2,085 0.142

Total: 33,934 33,936
256 Kbps: 1 14,893 0.264 14,886 0.266

5 10,161 0.237 10,163 0.238
7 9,503 0.182 9,516 0.181
9 2,181 0.130 2,189 0.127

Total: 36,738 36,754

Table 9: Travel Time for PDUs Originated at Ground Station and Received at Plane
7 by Priority (64 Kbps, 128 Kbps, 256 Kbps)

No HoL HoL
Bandwidth Priority # PDUs Average # PDUs Average

Bundles (seconds) (seconds)
64 Kbps: 1 10,993 8.119 11,284 26.709

5 7,009 11.273 6,938 0.467
7 4,594 11.598 4,467 0.398
9 798 8.198 782 0.349

Total: 23,394 23,471
128 Kbps: 1 13,139 0.309 13,149 0.330

5 7,907 0.320 7,906 0.314
7 5,368 0.337 5,372 0.318
9 901 0.328 897 0.296

Total: 27,315 27,324
256 Kbps: 1 14,375 0.274 14,368 0.276

5 8,603 0.278 8,605 0.278
7 5,927 0.287 5,941 0.285
9 945 0.279 952 0.275

Total: 29,850 29,866

145

By filtering out the PDUs from other airplanes, it is seen in Table 9 that all the

average travel times are over 0.25 seconds. The table is not much different form the

previous one and the HoL effect is still considerable. For example, at 128 Kbps we

see that paying an increment of 6.8 % in the delay of low priority ESPDUs produces

a decrement of 1.9 %, 5.6 % and 9.8 % in the latency of PDUs with priorities 5, 7

and 9, respectively. The frequently occurrence of PDUs scheduled at the same time

during negative spikes suggests the urgency of those PDUs, indicating that a PDU

priority scheme is worth of consideration.

146

CHAPTER 6

TRAFFIC OPTIMIZATION USING PACKET

ALLOYING

The analysis of negative spikes in Section 5.6.6 motivated the concept of a possi-

ble solution to eliminate or reduce them by means of aggregating the participating

PDUs. In order to do so, the PDUs were examined in more detail, looking for simi-

larities and redundancies in their fields in order to formulate an aggregation strategy.

Each type of PDU has its own internal structure made up of fields and values of

different sizes. A study of all the logged PDUs in the MR1 vignette indicated that if

two PDUs are of the same type and length then they have identical field structures,

as indicated in Section 4.4. This is a key point in the proposed bundling algorithm.

Another observation from the logged PDUs is the fact that OTB schedules some

sequences of consecutive PDUs using exactly the same timestamp, as in the sample

sequence shown in Figure 58. This causes a bottleneck in generators due to the

infeasibility of sending several packets at the same time. In most cases, consecutive

PDUs of equal type and length differed in the contents of a few fields, presenting

the possibility of merging them into a single PDU. The OMNeT simulation of the

MR1 vignette using Packet Alloying will be referred to as Simulation MR1PA.

147

6.1 Input Data Logs in Simulation MR1PA

The summary PDU files described in Figure 20 of Section 5.2 contain 4 characters

at the end of each PDU. The four characters are combinations of S standing for send,

and W standing for wait. As described below, they provide information about the

action to follow after processing each PDU. Six algorithms to predict that action

are proposed and studied. They can be classified in two groups: online algorithms,

which decide the next action based only on the already processed PDUs, and offline

algorithms, which have access to all the past and future sequences of PDUs in

advance.

In this simulation the online algorithms are Neural-Network prediction (see de-

tails on Section 4.3.2.2), Always-Wait, and Always-Send. The offline strategies are

Type, Type-Length, and Type-Length-Time, which have the capability of ideal predic-

tion due to their knowledge of the future. The assignment of OTB sites to computer

nodes in Simulation MR1PA is the same as in Simulation MR1GS, and can be found

in Section 5.7.1.

6.2 Slack Time Analysis

Figure 70 shows the slack time of the generator at the CONUS ground station for

different predictive algorithms. The graph was created assigning 64 Kbps to all the

wireless links and 100 milliseconds to the timeout period. As seen in the diagram,

up to the second 1,600, all of the algorithms behaved alike, but around that point

negative slack started to build up. The Always-Send algorithm, which is equivalent

to the non-bundling algorithm used in Simulation MR1GS (see Figure 60), incurred

in the largest negative slack, followed by a Type-Length-Time strategy. The neural

148

network approach performed relatively well, considering that its predictions are not

perfectly accurate. The other algorithms are among the best in this simulation, and

a close-up of their performance is shown in Figure 71.

Figure 70: Slack Time at Ground Station for the 6 Predictive Strategies (64 Kbps)

From the graph in Figure 71, it can be concluded that the neural network ap-

proach could be improved by using a better learning mechanism and/or neural

network architecture. The neural network algorithm predicts the PDU type based

only on the time series of the past 44 PDU types. Therefore, its performance can

be compared against the optimal Type algorithm, obtaining its competitive ratio,

as defined in [FL02], for the cost function negative slack time, which resulted in

c = 3.75 as indicated in Section 6.3.

Another observation from Figure 71 is that the decision of sending the current

bundle based solely on the upcoming PDU type, performs as well as the one that

considers the type and the length of each PDU. Therefore, a neural network approach

149

Figure 71: Comparison of Negative Slack for the Four Best Algorithms (64 Kbps)

could benefit from this observation by concentrating the effort in predicting the type

only, instead of the type and the length.

However, the most interesting observation comes from the fact that the Always-

Wait algorithm is almost as good as the one based on the Type-Length, and of

course, Always-Wait is the simplest of all the strategies. The reason is that there

is a high probability that the prediction based solely on the type agrees with the

prediction based on the type and length. For example, an offline examination of the

PDUs indicated that from the 50,230 PDUs sent by the CONUS ground station,

42,911 (85.4 %) implied the same action (wait or send) for both algorithms.

Table 10 shows the slack time average and standard deviation for all combina-

tions of algorithms and bandwidths measured at the ground station. The average

is a signed number; therefore, the larger the average is, the better the algorithm

150

performs. The average was calculated considering all the PDUs generated during

the simulation.

Table 10: Slack Time Average and Standard Deviation for All the Stud-
ied Algorithms and Bandwidth Combinations Measured at the Ground
Station. Best offline and online values are underlined

Average 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Std. Deviation

Type -0.758 -0.017 0.015 0.024

1.600 0.109 0.073 0.066

Type- -0.760 -0.018 0.015 0.024

Length 1.601 0.110 0.073 0.066

Type-Length -10.659 -0.027 0.013 0.023

-Timestamp 11.711 0.115 0.073 0.066

Always- -0.802 -0.017 0.016 0.024

Wait 1.689 0.109 0.073 0.066

Neural- -1.579 -0.044 0.008 0.022

Network 2.638 0.162 0.085 0.069

Always- -26.181 -0.054 0.006 0.021

Send 26.033 0.176 0.085 0.069

From this table it is concluded that the Always-Send is the worst of the six

algorithms, and Always-Wait is among the best. Because, Always-Send corresponds

to the non-bundling option, it is clear that the type of bundling proposed here is

advantageous compared to the DIS protocol.

Another observation comes from the fact that at 64 Kbps and 128 Kbps, the

average slack time was negative for all the algorithms, but for 256 Kbps and above

it is positive. A negative average indicates that the corresponding bandwidth is

insufficient to handle the PDU traffic. Therefore, for the MR1 vignette, the wireless

bandwidth should be at least 256 Kbps according to Table 10.

151

6.3 Travel Time Analysis

To enable analysis, each bundle sent includes the current time (Tsend) attached

with it, allowing the destinations to calculate the travel time Ttrav , as indicated in

Equation 5.5. Figure 72 shows the travel time measured at sink 0 onboard plane 0,

for the Always-Wait strategy, using 64 Kbps and 128 Kbps in wireless links. It is

clear from the graph that 64 Kbps is not sufficient to handle all the traffic required

by the simulation, even with bundling. As seen, during the interval from second

2000 to second 2400 many of the PDUs took almost 40 seconds to arrive at their

destinations, exceeding the fidelity requirements of the OTB simulation. However,

a big improvement is obtained just by duplicating the bandwidth. At 128 Kbps, the

latency was close to 0.8 seconds, as observed in Figure 73.

Figure 72: Travel Time for the Always-Wait Strategy, at Sink 0 in Plane 0 (64
Kbps and 128 Kbps)

152

Figure 73 shows that most of the PDUs take less than 0.4 seconds to reach their

destinations. It is interesting to note the large concentration of PDUs near 0.25

seconds, which is the propagation delay for satellite signals. The graph also shows

that some PDUs take less than 0.1 seconds of travel time. Those PDUs correspond

to messages sent from other airplanes without passing through the satellite.

Figure 73: Close-up of Travel Time at Sink 0 in Plane 0 (128 Kbps)

Table 11 shows the average and standard deviation of the travel time for each

combination of algorithm and bandwidth, measured at sink 0 onboard plane 0.

Considering that approximately 83 % of the PDU traffic arriving at sink 0 comes

from the ground station via satellite, and that for those PDUs, 0.255 seconds is an

unavoidable delay, the table shows a very good behavior of the algorithms at 256

Kbps or more, giving a slight advantage to Always-Wait and Neural-Network over

Always-Send.

Table 12 shows the total travel time for all the PDU bundles that arrived at

node 0 in plane 7 (sink 21). The sum of all the travel times is an example of a cost

153

Table 11: Average and Standard Deviation of Travel Time Measured at Sink 0

Avgerage 64 Kbps 128 Kbps 256 Kbps 512 Kbps
Std. Deviation

Type 9.20 0.304 0.262 0.249
13.2 0.099 0.069 0.064

Type- 9.24 0.306 0.262 0.249
Length 13.2 0.101 0.069 0.064
Always- 9.43 0.303 0.261 0.249

Wait 13.5 0.099 0.069 0.064
Neural- 28.7 0.314 0.261 0.248
Network 33.2 0.119 0.069 0.064
Always- 64.0 0.333 0.263 0.251

Send 58.0 0.153 0.062 0.057

function that can be used to estimate the constant c for the c-competitiveness of

the online algorithms, as defined in Section 4.2. According to Table 12, at 64 Kbps

the best offline algorithm is Type-Length. Based on it, Neural-Network would have

c = 3.75 and Always-Wait would have c = 1.03. However, we cannot assume that

Type-Length is the optimal offline algorithm, and we would need to calculate the cost

function for a large sample of simulation vignettes, as required by definitions 4.4 and

4.5. In fact, Type-Length can be improved in the following way. After processing a

given PDU, if Type-Length predicts W (wait) but the next PDU will arrive after the

timeout of the current bundle, then the waiting time would have been wasted. A

better online algorithm could have analyzed this case and predict S (send).

At 256 Kbps, the Type strategy appears better than Type-Length, and the online

algorithm Always-Wait results the best of all. This information is contradictory,

and we explain it by saying that there is a better offline algorithm that overcomes

the ones in the table. Nevertheless, a conclusion drawn from the table is that at

higher bandwidths the differences between the different algorithms become smaller.

For instance, at 256 Kbps Neural-Network has a c = 1.15 based on Type-Length,

instead of the previous value of 3.75.

154

Table 12: Total Travel time at sink 21 (64 Kbps, 256 Kbps)

Bandwidth Strategy Total Travel Time
(seconds)

64 Kbps Type 222,589.264
Type-Length 222,357.200
Always-Wait 228,350.418
Neural-Network 832,881.794

256 Kbps Type 8,419.056
Type-Length 8,431.477
Always-Wait 8,357.483
Neural-Network 9,725.795

6.4 Queue Length Analysis

Due to the nature of the PDU traffic in the simulation, two queues to focus

attention on are the router queue onboard any aircraft, for instance on airplane 0,

and the satellite queue. Figure 74 shows the satellite queue at 64 Kbps and 128

Kbps. It is clear from the graph that 64 Kbps is an insufficient bandwidth, causing

the satellite queue to grow unbounded once it becomes full. The reason for having a

descent after reaching a maximum of about 6,000 messages, is that the simulation is

approaching its end and no more messages are sent from the generators. However,

at 128 Kbps a significant change in the queue length is produced, keeping it at

reasonably low values.

Another observation is that at 64 Kbps the graph does not reach zero at the end.

This occurs because the queue status is reported only if another message enters the

queue. After the arrival of the last message to the queue, the messages are consumed

without being reported.

Table 13 displays the average and standard deviation of the satellite queue length

for combinations of different algorithms and bandwidths. For transmissions clearly

exceeding the channel capacity available, a Type strategy is shown to perform best,

155

Figure 74: Messages in Satellite Showing the Impact of a Higher Bandwidth on its
Queue (64 Kbps and 128 Kbps)

resulting in a 89.3 % improvement compared to an Always-Send strategy used by

DIS. However, when the channel capacity is near to that of the demanded rate then

it is seen that a single Always-Wait strategy can perform just as well, yielding a

30.3 % improvement over DIS. When the bandwidth is low, however, a Type strategy

can outperform an Always-Wait strategy by 3.1 % as shown in for 64 Kbps in Table

13. These results are not surprising because Type is an offline algorithm, and good

offline algorithms should outperform the online ones.

Among the studied online algorithms, the closest one to Type is Neural-Network

that strives to predict the type of the next PDU in the sequence. Assuming that

Neural-Network could be improved sufficiently to resemble the performance of Type,

and defining the coefficient γ as the ratio of the channel capacity to the average

bandwidth demand:

γ =
channel capacity

average bandwidth demand
(6.1)

156

Table 13: Average and Standard Deviation in the Satellite Queue
Length for Combinations of Algorithm and Bandwidth

Average: 64 Kbps 128 Kbps 256 Kbps 512 Kbps
Std. Deviation:

type 316.97 2.38 0.91 0.56
411.43 3.97 1.72 1.23

Type-Length 318.154 2.44 0.92 0.56
412.273 4.13 1.75 1.26

Always-Wait 327.278 2.30 0.85 0.49
421.161 3.88 1.69 1.16

Neural 1,028.47 3.58 1.24 0.79
Network 1,045.26 6.37 2.18 1.52

Always-Send 2,962.94 5.40 1.22 0.63
2,236.83 10.78 2.55 1.57

then the decision tree in Figure 75 can be used to select the preferred PDU bundling

strategy in each case.

Figure 75: Preferred PDU Bundling Strategy

For low values of γ the demanded bandwidth is larger than the channel capacity.

Type is the best offline algorithm in this case, but because it is offline, an improved

Neural-Network is selected. If γ is somewhat larger than 1, for instance between 1

and 2, the channel capacity is sufficient to handle the traffic on the average, but there

could be spikes of high demand. Always-Wait is the best choice in this scenario.

When γ is large, for instance larger than 2, there is an excess of bandwidth as

157

compared to the demand, and alloying is not justified. Alloying implies the addition

of a small delay while the algorithm is waiting for the next PDU. Always-Send is a

good choice in this case because it is the simpler strategy, does not incur in extra

delays and provides good performance.

6.5 Collision Accumulation

Collision accumulation in plane 7 at different bandwidth rates is given in Figure

76. The results from the simulation indicate that at 64 Kbps the highest collision

rate measured at the router aboard airplane 7 was close to 12 collisions per second,

and this occurred during the time interval [2050, 2100] in the WSP link that connects

the satellite to the planes. At 64 Kbps, fewer than 4,800 collisions were detected

in total for the Always-Send algorithm, which represents less than 8 % of the total

number of PDUs. On the other hand, at 256 Kbps the total number of collisions

for the Always-Wait algorithm was close to 2,100, or 5.3 % of all the bundles.

As Figure 76 shows, at 128 Kbps and 256 Kbps there is roughly a total difference

of 1,000 fewer collisions for the Always-Wait than for the Always-Send algorithm.

This indicates that bundling significantly reduces the number of collisions, given

the same bandwidth for both algorithms. In addition, it can be noted that as

the bandwidth increases, the number of collisions decreases, which is intuitively

explained because at higher bandwidths the packets take less transmission time,

and so the probability of a collision gets lower.

158

Figure 76: Collision Accumulation at Plane 7 (64, 256, 512, 1,024 Kbps)

6.6 Conclusions of Packet Alloying Simulation

The main conclusion of this simulation is that the type of aggregation proposed

in this dissertation proved to be successful for DIS PDU transmission. Although

their performance can vary with respect to each other, all the algorithms utilizing the

proposed bundling strategies performed significantly better than the non-bundling

Always-Send algorithm.

Furthermore, prediction based solely on the PDU type is almost as good as the

prediction based on the type and length, and these predictions are better than the

Always-Wait algorithm by half a second in some cases. Therefore, a neural network

approach could be useful if the percentage of successful guesses is sufficiently high

enough so that it outperforms the Type or Always-Wait algorithms.

Another conclusion is that the Always-Wait algorithm, although not optimal,

gives very good results that are acceptable in many cases, especially if the band-

159

width is incremented. Taking into account that the shown results are simulations

at 64 Kbps, at higher bandwidths the difference between Always-Wait and the

perfect guessing algorithms (Type, Type-Length) becomes smaller, giving the more

straightforward Always-Wait strategy more relevance. The final conclusion about

the bandwidth is that 256 Kbps in wireless channels is the minimum bandwidth for

the MR1 vignette that is sufficient by all metrics (slack time, travel time, queue

length, and collisions).

The results in this Chapter demonstrate that the DIS traffic generated by OTB

can be substantially reduced by the application of several techniques. PDU bundling

techniques can diminish the negative spikes in the slack time during traffic genera-

tion. Inter and intra PDU redundancy can be eliminated by bundling and compres-

sion techniques.

160

CHAPTER 7

CONCLUSION

The subject of the dissertation is the data transmission scheduling for distributed

simulations and the assessment of the required bandwidth, given the traffic specifi-

cations in the form of logged packets from an actual simulation. The background

of this field of research was presented in Chapter 1 and Chapter 2. A drawback in

the DIS protocol is its high network bandwidth requirements and the large com-

putational loads placed on the host computers. Several attempts have been made

to overcome the bandwidth problem. The general idea relies on finding new meth-

ods to reduce the network traffic. The methods include bundling and aggregation

of packets, delta-PDU encoding, latency compensation, dead-reckoning algorithms,

lossless data compression techniques, TCP/IP header compression, packet reschedul-

ing, multicast routing, and packet transmission using priorities. In this dissertation

we proposed a new method of the PDU alloying based on the internal structure of

the packets, which has not been studied before.

There are several sets of conclusions that can be drawn. The first set corresponds

to conclusions about the simulations performed in this dissertation. The second set

corresponds to conclusions about the architecture-independent analysis proposed as

a first approach to assess the bandwidth. The third set corresponds to conclusions

about the OTB traffic analysis and excessive redundancy detected in the PDUs. The

fourth set corresponds to conclusions about the effectiveness of the Packet Alloying

161

technique proposed, and the last set is about the importance of using HoL priority

service in OTB simulations.

It is important to mention here that through this research the project team

of Electrical and Computer Engineering Department of the University of Central

Florida was familiarized with the OMNeT software, which is a tool in the pub-

lic domain and provides a quality simulation environment for C++ programmers.

The development of the simulator for handling PDUs of an OTB application is an

example of OMNeT usage that can serve as a starting basis for other projects.

7.1 Summary of Accomplishments

Communication bandwidth and latency reduction techniques were developed for

DIS protocols. Using logs from vignettes simulated by OTB, a discrete event simu-

lator was developed to analyze PDU traffic over a wireless flying LAN. Alternative

PDU bundling and compression techniques were studied under various metrics in-

cluding slack time, travel time, queue lengths, and collisions. Based on these results,

Packet Alloying, a technique for the bundling of transmitted packets, was proposed

and evaluated.

The contributions of this dissertation include the formalization of the algorithm

for Packet Alloying, the formalization of an independent analysis to estimate the

bandwidth without using simulation, the proposal and study of different algorithms

that predict the action (Wait or Send) in the packet generator before the next PDU

becomes known, and the study of the effect of applying priority-based optimization

using HoL service.

162

7.2 Simulations Performed

A total of six sets of simulations were performed, using 3 different vignettes and

different assignment of OTB sites to simulation nodes as described below.

The first set of studies corresponds to Simulation ST: a vignette with Single

Transmitter. It is a straightforward vignette that allowed the testing of the discrete

event simulation concept. According to the results of the simulator and of the

independent analysis, 64 Kbps in the wireless links is sufficient to handle the traffic.

The second set corresponds to Simulation DT: a vignette with Dual Transmit-

ters. As predicted in the architecture-independent analysis, 64 Kbps in the wireless

channels is insufficient in this simulation due to a large demand of bandwidth con-

centrated in a short time interval. Except for that spike, 64 Kbps can handle the

remaining traffic.

The remaining four sets of simulations are based on the MR1 Vignette that con-

tains six transmitters, and one of them, the main transmitter, produces the majority

(83 %) of the PDUs. The third set was gathered from 6 transmitters and named

Simulation MR1T6 and the main transmitter was assigned to an node onboard an

airplane. The architecture-independent analysis predicted that 200 Kbps would

be sufficient to handle the traffic, but because this is not a standard bandwidth,

the conclusions considers 256 Kbps as the minimum value, which agrees with the

simulation results.

The fourth set of simulations is called Simulation MR1GS in which case the

main transmitter was assigned to the ground station. The analysis of the slack

time to transmit the next PDU revealed the occurrence of negative slack spikes at

regular time intervals. The studied PDUs participating in those negative spikes

showed that they constituted sequences scheduled at the same time or almost the

same time, and usually of the same type and length. The structure of such PDUs

163

was investigated, concluding that they were similar in structure. The three main

types of PDUs found in all negative spikes were: po fire parameters, po line

and po task state PDUs. The po fire parameters PDUs are the main sequence

responsible for negative spikes, perhaps because the generating entity (ground sta-

tion) fires bursts against some enemy. This hypothesis needs to be corroborated

against an actual run of the OTB vignette to conclude that firing activities are the

main cause of negative spikes. The phenomenon triggered the idea of bundling those

PDUs to remove redundant fields. This idea was the base of the proposed Packet

Alloying bundling. Also, the idea of assigning priorities to them was considered and

studied in the HoL simulation.

One problem with the logged data of the MR1 Vignette was that the OTB simu-

lation was run on a network of six computers, using virtual sites for the participating

entities. The effect of this scenario is that the messages sent from one site to an-

other did not travel physical distances like the satellite link and did not waited on

router queues, etc. The acknowledgments corresponding to delivered PDUs were

received in a fraction of the expected time, causing OTB to send the next PDUs

more frequently than in the real scenario. In other words, all the timestamps in

the PDUs correspond to a much faster network. The OMNeT simulator used those

timestamps unchanged, which could explain in part the reason of negative spikes.

The OTB simulation could be improved by using a variety of different computers

for different sites, and one computer for simulating the transmission and propagation

latency in the network. This environment will certainly produce logged PDUs of

more realistic quality.

The fifth simulation studied the Packet Alloying for the MR1 Vignette keeping

the same assignment of Simulation MR1GS. The effect of bundling was significant,

as indicated in the following examples. Applying Always-Wait to the MR1 vignette

setting the wireless links to 64 Kbps, a reduction in the magnitude of negative slack

164

time from -75 to -9 seconds for the worst spike was achieved, which represents a

reduction of 88 %. Similarly, at 64 Kbps, Always-Wait reduced the average satellite

queue length from 2,963 to 327 messages for a 89 % reduction.

The last simulation studied the effect of applying HoL priority service to the

satellite and router queues, using priorities based on the PDUs that were found

more frequently in negative spikes of the slack time. The results were successful in

the sense that PDUs of highest priority arrived earlier to the destinations at the

expense of lower priority PDUs that arrived with high delays.

7.3 Architecture-Independent Analysis

The architecture-independent analysis performed on the logged data is an im-

portant procedure in the assessment of bandwidth because it gives a good initial

insight about the minimum instantaneous bandwidth required at a fraction of the

cost of a complete simulation. It can be used also to identify periods of low and

high network traffic, and correlate them with actions being developed by the simu-

lated parties for a better understanding of the simulation behavior. In all the sim-

ulations performed, the bandwidth predicted by the independent analysis agreed

with the bandwidth calculated experimentally using the simulator. Proofs for the

minimum local bandwidth and minimum average bandwidth were derived showing

Bi,j = (
∑j−1

k=i 8Lk)/(Tj − Ti − (j − i)g) and Ba,b = maxa≤ k < b {Bk,b}. We conclude

that the independent analysis is a valuable procedure in bandwidth assessment, not

requiring the development of a discrete event simulator.

165

7.4 Conclusions about OTB Traffic

Several characteristics of the Embedded Simulation traffic affect the bundling

of PDUs. During the simulation, the participants interact with each other in real

time. Therefore, most PDUs are constrained to be delivered within short time

delays, usually less than one second. ES traffic contains 70 % or more of Entity

State PDUs, which in some cases are redundant or not urgent. Also, considering

that some PDUs can be rescheduled and sent in a different order without adversely

affecting the overall simulation, we conclude that the assignment of priorities to

PDUs should give better results, especially under low bandwidths.

Some high priority PDUs like fire and detonation occur in short bursts, and they

are usually sent at the same time, creating negative slack spikes that operate against

real time objectives. The main cause of those negatives spikes is the scheduling of

PDUs having exactly the same timestamp. The analysis of the largest spikes showed

that PDUs of type po fire parameters are the main components of the spikes and

sequences of eight or more PDUs were commonly found. Comparisons of samples of

po fire parameters PDUs for the same spike indicated that they are very similar in

structure and content, having differences related to PDU identification and memory

address of the PDU fields only. The magnitude of negative spikes was derived and

proved to be m = max0≤ j ≤ k {mi+j}, where mi+j = Ti+j−(Ti+j·g+(
∑j−1

u=0 Li+u)/B).

Rescheduling of the PDUs is also a technique that can alleviate the occurrence

of these negative spikes in the slack time. The rescheduling and transmission of

PDUs is an attempt to reduce the negative slack spikes by transferring some of their

PDUs to periods of positive slack. Not only the po fire parameters PDUs are

subject to be rescheduled, but any PDU that involves some sort of negative slack

could be rescheduled to obtain a traffic as close as possible to a burst-free model to

keep the channels busy yet not flooded. A side effect of reducing the PDU traffic is

166

a decrease of collisions, especially if the PDUs are relatively long, as is the case of

po fire parameters PDUs. Ten consecutive PDUs of this type account for 5,280

bytes plus the time gaps between frames. During the transmission time of these

PDUs, the channels are heavily occupied and any other attempt to transmit from

another station over the same channel will end up in a collision. By sending just one

PDU of approximately 550 bytes will decrease the probability of having a collision.

The DIS protocol is responsible for the timestamps of the PDU packets. If many

PDUs are scheduled not only at the same microsecond, but also within a very short

time interval, the effect is similar to a negative spike. The experiments with the

OMNeT simulation showed that mixed with negative spikes there are many positive

ones. The positive spikes indicate that the channel is not used during those intervals

and so rescheduling of the PDUs could bring a better utilization of the channel. If

a sequence of PDUs timestamped at almost the same time followed by periods of

rest can be recognized and predicted, then the scheduler could implement a type of

scheduling to refrain from sending those PDUs so close to each other and spread

the sending times evenly throughout the intervals of low traffic. In doing so, the

length of each PDU must be taken into account because it is proportional to the

transmission time. In this research a neural network was implemented to predict

the type of the next PDU with success of almost 70 % of correct predictions out of

27 different possible PDU types.

PDUs contain high levels of redundancy, both inside each PDU and across PDUs.

Bundling and compression are techniques that can eliminate the redundancy, lower-

ing the bandwidth demand and reducing collisions. PDUs have a definite structure

made up of fields of different sizes, that are determined by the type and length of

the PDUs. This characteristic allowed the comparison of PDUs at the field level,

facilitating the extraction of the differences, as implemented by Packet Alloying.

167

In the DIS protocol, PDUs are broadcasted. This characteristic simplifies the

PDU header since a particular destination is not needed, facilitating also the

bundling and routing process. It is easier to bundle several PDUs if all of them

have a common destination than if they were sent to different places. However,

broadcasting contributes to the proliferation of messages that might not be needed

at some sites because of their far distance or other reason. Multicast is a better

alternative already included in protocols like DIS-Lite and HLA. Bundling in multi-

cast mode should consider the destination as part of the definition of compatibility

between PDUs.

Bandwidth plays a key role in the performance of the OTB simulation, as shown

by the following observations extracted from Simulation MR1GS. Just by increasing

the bandwidth in wireless channels from 64 Kbps to 128 Kbps, the negative slack

time changed from values close to -75 seconds to values near -1.5 seconds. Increasing

the wireless bandwidth to 200 Kbps or more produces a significant change in the

travel time, as all of the PDUs fall below the level of 0.5 seconds. At 64 Kbps the

satellite queue becomes extremely long, reaching values over 6,000 messages. The

improvement from 64 Kbps to 256 Kbps is significant, requiring queue storage for 35

messages only at the highest peak. At 64 Kbps the number of collisions represents

approximately 8 % of the total number of PDUs, while at 256 Kbps the percentage

descends to 5 %.

7.5 Packet Alloying

In this dissertation, the possibility was investigated of introducing a new ag-

gregation strategy to eliminate redundancy in consecutive PDUs. For instance, if

several po fire parameters PDUs are produced, only one physical PDU bundle is

168

actually sent, including the non-redundant fields of the bundled PDUs. This aggre-

gation constitutes a lossless compression technique in which the extraction of the

original PDUs occurs at the destinations in a straightforward manner. The new

technique significantly lowered the queue lengths of routers and satellite, and de-

creased the travel times of PDUs at low bandwidths, as indicated above in Section

7.2.

Three online algorithms were proposed: Neural-Network, Always-Wait and

Always-Send, as well as three offline algorithms: Type, Type-Length and Type-

Length-Time. After analyzing the online algorithms, the main conclusion is that

Always-Wait is one of the best algorithms for predicting the action to be performed

after processing the current PDU. The possible actions are to Wait for the next

PDU in an attempt to aggregate it with the current bundle, or to Send the current

bundle starting a new bundle when the next PDU be delivered. The c-competitive

index was estimated for the online algorithms based on the offline ones. Based on

Type-Length at 64 Kbps, Neural-Network would have c = 3.75 and Always-Wait

would have c = 1.03. However, we cannot assume that Type-Length is the optimal

offline algorithm, and we would need to calculate the cost function for a large sample

of simulation vignettes, as required by definitions 4.4 and 4.5. For Always-Wait the

index was very close to 1. The conclusion of this observation is that the offline algo-

rithms are not optimal, and an example of a possible improvement was given. Also,

it can be concluded that the Neural-Network strategy can be improved, possibly by

using more neurons, a longer input sequence and extended training sessions.

For transmissions clearly exceeding the channel capacity available, a Type strat-

egy is shown to perform best, resulting in a 89.3 % improvement compared to an

Always-Send strategy used by DIS. However, when the channel capacity is near to

that of the demanded rate then it is seen that a single Always-Wait strategy can

perform just as well, yielding a 30.3 % improvement over DIS. When the bandwidth

169

is low, however, a Type strategy can outperform an Always-Wait strategy by 3.1 %

as shown in for 64 Kbps in Table 13. These results are not surprising because Type is

an offline algorithm, and good offline algorithms should outperform the online ones.

The decision tree in Figure 75 can be used to select the preferred PDU bundling

strategy in each case. For low values of γ the demanded bandwidth is larger than

the channel capacity. Type is the best offline algorithm in this case, but because it

is offline, an improved Neural-Network is selected. If γ is somewhat larger than 1,

for instance between 1 and 2, the channel capacity is sufficient to handle the traffic

on the average, but there could be spikes of high demand. Always-Wait is the best

choice in this scenario. When γ is large, for instance larger than 2, there is an excess

of bandwidth as compared to the demand, and alloying is not justified. Alloying

implies the addition of a small delay while the algorithm is waiting for the next

PDU. Always-Send is a good choice in this case because it is the simpler strategy,

does not incur in extra delays and provides good performance.

Some difficulties were assimilated during the research. OTB traffic contains

PO PDUs, which documentation is restricted. Due to this, the specific treatment

of PO PDUs and further incorporation in the OMNeT simulator during the devel-

opment stage presented an unsolved disadvantage. The treatment of PO PDUs was

handled as if they were IEEE PDUs in the DIS protocol. But even in this case,

the OTB logs were in a text format, not in binary. This caused difficulties dur-

ing the bundling operation because text fields can be of different length than the

corresponding binary ones, and comparisons are more cumbersome. The proposed

alloying technique was kept at an abstract mathematical level. If more detailed

information abut PO PDUs had been available to the research, the technique could

have reached the implementation level of PO PDUs. For instance, the subindexes

inside the bundled fields could have been specified in terms of bit length, content,

and position within the PDU.

170

All of the statistics presented indicate that bundling is an effective technique

for reducing the PDU traffic and better utilize the bandwidth. The reductions in

negative slack (Figures 70 and 71), travel time (Table 11), satellite queue length

(Table 13), and number of collisions (Figure 40) are all indicators in that sense, as

well as the results mentioned above in Section 7.2.

The replication of PDUs through bundling presented in this research differs from

other proposals [US95a, Tay95, Tay96b, Tay96a, Ful96, BCL97, PW98, WMS01] in

several ways. First, bundling takes into account the internal structure of each PDU;

only PDUs of the same type and length are put together in a bundle. Second, the

resulting bundle has a structure similar to any other PDU and can be considered a

PDU of a different type, subjectable to further bundling or compression technique if

desired. Third, the bundling algorithm is straightforward to implement, as well as

the extraction of individual PDUs at the destination. Each bundle is independent

of the others and all the information needed to extract the PDUs is contained in the

same bundle. An initial reference PDU sent to the destinations containing baseline

values is not used in this approach.

7.6 HoL Priority Service

Simulations using HoL service indicate that assignment of priorities to PDUs

have an impact on the OTB simulation that can be beneficial, especially when

the satellite and router queues are long under heavy traffic loads. At the end of

Chapter 5 the comparison given in Table 8 and Table 9 indicates that it is possible

to delay less than half of the total PDUs, which are of low priority, in return of a

large speedup of the others. At 64 Kbps, 18,050 bundles representing 61 % of the

blocks corresponding to priorities 5, 7 and 9 were received in less than 0.5 seconds

171

on average, at expenses of the other 39 % that waited more than 25 seconds. It

is possible that the assignment of priorities to PDUs given in that Chapter can be

improved. It might be that a finer granularity could produce better results. In any

case, only a man-in-the-loop simulation of the OTB vignette using HoL service can

indicate if an assignment is worthwhile, but the results stated here suggest that a

HoL strategy should be taken into consideration.

The complete impact of HoL cannot be measured by the OMNeT simulator

alone because it does not interpret the PDU contents. Therefore, sending the high

priority PDUs before those of lower priorities has an impact in the fidelity of the

OTB simulation, but not in the OMNeT traffic simulation. The study of this impact

is left as future work.

7.7 Future Work

The results in this dissertation can surely be a point of departure for further

research. One possible branch for the continuation of this work is the obtention of

a better Neural-Network predictive algorithm. The current one predicts the next

PDU type with a certainty of near 70 %. With an alternate NN architecture or more

training samples, this value could be elevated to 90 % or more. If an improved neural

network is developed, it could outperform the Always-Wait strategy. However,

a careful comparison in terms of simplicity and usage of CPU time and memory

between both algorithms would be required.

Another possible continuation of the project deals with the incorporation of

specific formats of PO PDUs in the bundling strategies, instead of assuming the

formats of IEEE PDUs. Otherwise the project cannot reach the implementation

level for maximum benefit. Future research will require access to the specific formats

172

and characteristics of PO PDUs. Also, the implicit assumption that in OTB some

PDUs can be rescheduled and be sent in a different order without adversely affecting

the overall simulation must be corroborated. It is known that only some PDU types

can be sent out of sequence without impacting the casuality of the simulation.

We propose to identify better priority levels for PDUs, combining them with HoL

queueing service. In this dissertation, the priorities were based on the occurrence of

PDUs participating in a sample of negative spikes. It is possible that other criteria

or the study of other spike samples can give better results to the simulation fidelity.

In any case, the final results of the priority assignment have to be corroborated in

a real OTB simulation.

In this dissertation standard compression techniques were not applied to the

resulting bundles. It is proposed to study the combined effect of bundling with

compression techniques, but real binary PDUs would be required for this project

follow-on. Compression can be applied at two levels: data compression of the PDU

data, and compression of the TCP/IP headers. Both compression techniques could

be investigated.

Other possibilities of future work are open. The bundling algorithm could be

extended to consider PDUs of the same type, but different length as candidates

to be included in the bundle. Also, the bundling of PDUs of different types could

also be researched as long as the resulting bundle still maintains the structure of a

PDU. The implementation of the said PDU compression and rescheduling techniques

could be made inside OTB directly, or by appending a filter to the OTB output,

together with a de-filter module at the receiving site. The filter has the advantage

of not modifying the current OTB implementation, at a cost of less than maximum

efficiency.

An additional product obtainable from the project is the development and main-

tainability of UCF OMNeT++ models and logger files based on generic libraries

173

suitable for FCS rapid prototyping generation. A self-contained executable demo is

a valuable help for future presentations of any simulation project.

The bundling strategy aimed at preserving the message structure could be ap-

plied to other communication protocols or data streams besides DIS. For instance,

if a large database needs to be transmitted through a slow network and the records

have some sequence relationship such that repeated fields are often found in consec-

utive records, the records could be bundled using the algorithms presented in this

dissertation.

174

APPENDIX A

MR1 VIGNETTE

175

This vignette is due to Dr. Avelino González.

A.1 Background

In 2014, twenty years of independence for the Trans-Caucasus States found seri-

ous socio-political, ethno-religious, and economic conflict spreading throughout the

region. Azerbaijan emerged as the leading economic power through the exploitation

of Caspian and Central Asian oil reserves. Azerbaijan’s politics were deeply divided;

its citizens and Karabakh refugees demanded the government take military action

against the Armenian Karabakh that forced them to flee. The Azerbaijani govern-

ment refused to act, and refugees from the Nagorno-Karabakh Internal Liberation

Organization (NKILO), using terror and armed force to achieve their goals, began a

cross-border unconventional campaign designed to force a confrontation between the

two countries. Observing these developments, Armenia and Iran viewed the Azer-

baijani government’s instability as an opportunity to expand their influence in the

region for political gain. Armenia began massing maneuver forces along the Azer-

baijani border and repositioned mobile Theater Ballistic Missile launchers. Both

countries perceived a low risk of failure in executing their campaign strategy and

were willing to impose a military solution upon the Azerbaijani problem.

In November 2014, initial reports of the Caspian Sea Peninsula crisis caused the

U.S. to take steps to improve its awareness of the developing situation. The Secretary

of Defense redirected intelligence assets to focus on the region and directed political

and military planners to formulate contingency plans for U.S. engagement in the

region. They determined an Army Objective Force Unit of Employment 2, operating

as the Army component of a joint force, would be required to accomplish U.S. goals

in the region and assigned operational control of the 15th Division air-ground task

176

force to USEUCOM for planning purposes. Warning orders were issued through

USEUCOM to the U.S. 15th Division air-ground task force, and supporting attack

and lift aviation assets to begin their own planning. U. S. Army Europe (USAREUR)

and its theater support command (TSC) reviewed and updated contingency plans

and refined the sustainment preparation of the theater. The TSC issued warning

orders and created a provisional logistics/sustainment task organization called the

Area Support Group (ASG) that would support land forces employed in theater.

In late November, the Azeri Islamic Brotherhood (AIB), a coalition of anti-

government factions supported by NKILO and the Azerbaijani National Front for

Revolutionary Action (ANFRA) military forces, subverted the bulk of an Azeri Mo-

torized Rifle Brigade, which mutinied to realign with this faction. The brigade seized

control of most of the historically significant Icheri Sheher (Inner Town) district in

Baku. However, a desperate defense by loyal government forces managed to secure

the centers of government within the capital city. Meanwhile, two armed clan-based

factions of the Azeri Islamic Brotherhood, the Aziz and Daha, extended their con-

trol of the eastern and western outskirts of Baku, respectively, and intensified their

efforts to overthrow the legitimate government. As a last resort, the Azerbaijani gov-

ernment requested assistance from the Russian Federation to defeat the insurgents

and preclude an anticipated invasion by Armenian forces. On 15 December, Russia

proposed a coalition of U.S. and Russian forces to restore order within Azerbaijan

and stabilize the government. Two days later, the U.S. agreed to the proposal and

the two nations created a coalition force and outlined its employment plan. The

joint force commander, United States European Command (USEUCOM), and his

Russian counterpart formed a coalition staff that included a coalition/joint theater

logistics management element (C/JTLME). The C/JTLME continued to develop

plans to logistically support coalition forces employed in theater and to determine

the most efficient use of all coalition movement, sustainment, and facilities assets.

177

United States European Command focused its main effort at developing the sit-

uation and expanding the knowledge base already resident from the Operational Net

Assessment of this region. They pre-positioned incremental force packages to estab-

lish a military presence in the region and deter any further hostilities, establishing

a C4ISR architecture, and posturing to project forces directly into Azerbaijan and

to dismantle Armenian C4ISR and fires systems. The combatant commander de-

ployed Special Operations Forces (SOF) into the region, adding an additional layer

of intelligence collection assets to the national-level space and air-based assets al-

ready operating over the region. Initially, their efforts were focused on developing

the situation in the region of the beleaguered government in Baku. But as the 15th

Division matured its plans, SOF teams shifted to provide coverage of the airfields

the 15th Division planned to use as tactical points of entry for one brigade-sized

Unit of Action (UA), the 1st Brigade UAs. The 1st Brigade UA is composed of

three Battalions, the 1st, 2nd and 3rd.

A.2 General Vignette Description

This section describes the vignette in detail. It focuses on the 3rd battalion of

the 1st Brigade Unit of Action. More specifically, it focuses on the lead element of

the 3rd battalion - the Alpha Company. This company comes upon fortified defenses

of the ANFRA forces and must destroy them to make way for the main element of

the 3rd battalion coming up behind them. This is described in this section.

178

A.2.1 Situation and Mission Prior to Start of Vignette

The 1st and 2nd Battalions of the 1st Brigade UA are already on the ground

before the beginning of this vignette. They have attacked the enemy forces in the

city of Baku, defeated the subverted Azer brigade that controlled the City Center

(referred to as the Icheri Sheher Brigade). Moreover, they confronted and routed

the AIB forces in the vicinity of Baku. The 1st Battalion was subsequently tasked

with pursuing the withdrawing AIB enemy forces retreating towards Agdam, and

to continue on to Agdam and occupy it. The 2nd Battalion was ordered to maintain

pressure on the Icheri Sheher Brigade in Baku to defeat it in detail.

In the meantime, 300 Km to the west, ANFRA forces, attacked across the Ar-

menian border, seized the city of Agdam, and continued eastward to join with the

retreating AIB forces and attempt to relieve the beleaguered Icheri Sheher Brigade

in Baku. However, surprised by the rapid defeat of their allies in Baku, the ANFRA

forces suddenly found themselves in an exposed position in the wide river valley

between Agdam and Baku. Aware that the U. S. forces (the 1st Brigade UA) were

mounting an operation to move westward to secure Agdam and restore the border,

ANFRA forces began a delaying operation, designed to buy time for establishing

a defense of Agdam while slowing and inflicting casualties on the attacking U. S.

force. Keys to their hopes of success were preservation of the delaying force and

effective use of target acquisition systems linked to long-range artillery systems.

The 3rd Battalion of the 1st UA Brigade now comes into the picture in this

vignette with orders to attack and destroy the delaying forces of the ANFRA in

order to permit the 2nd battalion to complete its mission of recapturing Agdam.

The 3rd Battalion is in the midst of an airlift operation from a transfer point in

Turkey when its specific mission is given to the commander. It must land, stage the

179

assets, organize itself and very rapidly move to accomplish its objective. Speed in

this mission is of the essence.

A.2.2 The 1st UA Prepares for Entry Operations

The commander of the 3rd Battalion, on the way to the AOR via an airlift operation,

was given a warning order to prepare to deploy immediately upon landing, and

attack and destroy the delaying forces of the ANFRA. If successful, this would permit

the 2nd Battalion of the 1st UA Brigade to complete its mission. The commander

of the 1st UA used information from coalition/joint theater logistics management

element (C/JTLME) fused with intelligence reporting from airborne assets and SOF

teams operating in the area to select one airfield in vicinity of Baku (60 Km NW of

the city) as his planned point of entry, as shown in Figure 1.

3.3 Mounted Formation Conducts Pursuit and Exploitation

Shortly after landing in their designated entry points, the 3rd Battalion of the

1st UA reorganizes and moves towards the ANFRA forces in open rolling terrain

with some variance of complexity, such as defiles and small villages. The enemy

is a combination of conventional forces, paramilitary, and special police challeng-

ing the UA forces with both direct military combat engagements and asymmetric

means. The 3rd Battalion moves to contact with the ANFRA forces with the intent

to maintain pressure on delaying forces, dislocate them, and force them into a battle

while moving through open and rolling terrain so they could be destroyed by as-

sault. To minimize his vulnerability to the enemy’s long-range artillery systems, the

commander planned to move his battalion dispersed on multiple axes while fight-

ing an aggressive counter-reconnaissance effort. The result was near autonomous

operations by each company, a common operating picture enhanced by situational

180

awareness and networked fires ensured the force remained interdependent and mu-

tually supporting.

A.3 Specific Vignette for Project

As the 3rd Battalion of the 1st brigade UA advanced rapidly to meet the flank of

the delaying force, the aviation detachment identified an enemy defensive position 60

Km in advance of the 3rd Battalion’s lead elements (the Alpha company). The posi-

tion was carefully selected by ANFRA forces to protect the AIB force withdrawing

from Baku. The positions overlooked the best approaches to a river crossing along

their line of withdrawal. Knowing that the lead Company (Alpha) would close on

the reported location in just over an hour, the aviation unit used its sensors to iden-

tify specific target locations within the enemy position. Other sensors, mounted on

unmanned aerial vehicles (UAV), were diverted from other areas to further develop

the common operational picture. Their observations revealed that the position was

well defended by a combination of dismounted infantry elements, Draega tanks,

and Garm missile launchers in hastily prepared survivability positions. Minefields

protecting the position from direct assault were still incomplete and operators of

the advanced sensors on UAVs observing the area located several exploitable gaps

and ensured they were portrayed on the common operational picture (COP). The

scenario is depicted in Figure 77.

Quickly adapting his scheme of maneuver to the developing situation, the alpha

company commander directed his reconnaissance assets to locate river crossing sites

that were beyond the line of sight of the defensive position. When one was located

north of the defensive position, the alpha company commander used his embed-

181

Figure 77: Overall View of Theater of Operations

ded collaborative planning tools to locate an ideal engagement area on routes the

defenders would probably use as they were dislodged from their positions.

The Alpha Company commander directed the first platoon to cross north of the

river and occupy positions that allowed them to place direct fires on defending forces

as they entered the engagement area. Teamed with RAH-66 Comanches from the

UA’s aviation detachment, the 1st platoon brought the integrated fires of the UA’s

network to bear on the withdrawing forces.

The Second platoon was directed to cross the river some distance south of the

defensive position and occupy positions that forced the withdrawing enemy towards

the engagement area. The remaining two platoons were ordered to attack the enemy

position and compel the defending forces to withdraw, enabling their defeat in detail.

Still 30 km from the enemy position, the alpha company commander reviewed the

continuously updated common operational picture (COP) for obstacles along his

182

intended axis of advance. While he watched, a newly identified minefield was posted

on the display. Using the same planning tools, he quickly determined new routes

for each of his platoons, directing them towards bypasses around the minefield,

using line-of-sight evaluation tools to ensure the force stayed out of the enemy’s

line-of-sight as they maneuvered around the flank of the defending forces. Figure

78 provides detail about the target defensive positions as well as the crossing points

for the 1st and 2nd platoons.

Figure 78: Details of Attack on Defensive Positions of ANFRA

When they closed to a range of 12 km, the alpha company’s mortars began the

attack on the defensive position. Pulling pin-point targeting data from the common

operational picture, they delivered precision munitions aimed directly at the vehicles

defiladed in the survivability positions within the enemy’s defense. Their lethal, top-

attack munitions quickly destroyed all but five vehicles.

183

Still too far away to directly observe the enemy positions, the Alpha Company

commander used the split screen option on his display to watch both the map

display of the common operational picture and live-video feed from the unmanned

aerial vehicles observing the enemy’s position. He watched as the five surviving

vehicles, three Draega tanks and two Garm missile launchers, left their positions

to flee towards Agdam, leaving the remaining dismounted defenders easy prey for

the mounted supported by dismounted combined arms assault that was to follow.

The icons on his common operational picture display indicated the fleeing vehicles

had taken an unanticipated route and were going to bypass the planned engagement

area. The commander quickly redirected the UAV to reconnoiter a route that his

display indicated would allow his 1st platoon to outflank the retreating vehicles while

he pursued them with his remaining two platoons.

With the reconnaissance of the UAV assuring the route was clear of obstacles,

the 1st platoon advanced rapidly and quickly overtook the fleeing enemy vehicles.

Two of the enemy tanks were destroyed with direct fire while the platoon moved

parallel to the fleeing enemy force, but the remaining three vehicles found cover

behind a low ridge that separated the two forces. Using his embedded planning

tools, the 1st platoon leader quickly identified a position in advance of the moving

forces that would give him clear shots. Accelerating to speeds of 60 Km/h, the

platoon darted in front of the enemy and was there waiting as they crested the ridge

and employed direct fire to destroy these enemy forces. With the last of the enemy

vehicles confirmed destroyed, the platoon leader ordered the platoon into a traveling

over watch formation and continued movement to the west. Figure 79 depicts the

mentioned scenario.

Though the remainder of the company was still beyond his direct observation,

his Common Operational Picture (COP) display assured him they were moving on

parallel routes and that he was well within the supporting range of their fires as

184

Figure 79: Details of Advances on the Defensive Positions After Mortal Fire

well as those of the battalion’s mortars. As they moved towards Agdam, embedded

logistics planning tools that had monitored the unit’s ammunition usage in the

recent engagement automatically transmitted an update to the battalion’s logistics

center. This constantly updated flow of information enabled the battalion staff to

effectively plan en-route re-supply operations that allowed the battalion to maintain

its momentum as they continued their pressure on the delaying enemy forces.

In summary, the 1st platoon overtakes and destroys the retreating tanks and

missile launchers. The 3rd and 4th platoon force the remaining dismounted enemy

forces in the defensive position to flee into the path of the 2nd platoon, ensuring their

surrender/destruction. The success in overcoming the defensive position enabled

the main elements of the 3rd battalion (Bravo and Echo companies) to overtake the

main elements of the ANFRA delaying forces and engage them into a pitched battle,

defeating them.

185

APPENDIX B

NED SOURCE CODE

186

This appendix contains the source code of the “.ned” files used in this simulation.

B.1 File Generator.ned

//---

// file: generator.ned

//---

simple Generator

parameters:

startTime: numeric,

fromAddr: numeric, // origin, unique ID within WAN

totalNodes: numeric; // number of nodes within WAN

// (routers not counted)

gates:

out: out;

endsimple

B.2 File Router.ned

//---

// file: router.ned

//---

simple Router

parameters:

startTime: numeric,

routerID : numeric,

nodesPerPlane: numeric,

totalNodes: numeric,

LANposition : numeric, // Local LAN position

routerServiceTime: numeric;

gates:

in: inFromLocal; // gate #0

out: outToLocal; // gate #1

187

in: inFromWirelessPP; // gate #2

out: outToWirelessPP; // gate #3

in: inFromWirelessSP; // gate #4

out: outToWirelessSP; // gate #5

endsimple

B.3 File Satellite.ned

//---

// file: satellite.ned

//---

simple Satellite

parameters:

startTime: numeric,

satelliteID : numeric,

satServiceTime : numeric,

totalNodes : numeric,

WGSposition : numeric, // Position at wirelessGS

WSPposition : numeric; // Position at wirelessSP

gates:

in: inBus1; // gate #0 (wirelessGS)

out: outBus1; // gate #1 (wirelessGS)

in: inBus2; // gate #2 (wirelessSP)

out: outBus2; // gate #3 (wirelessSP)

endsimple

B.4 File Simplebus.ned

//---

// File: simplebus.ned

// Based on an example by Andras Varga

//---

188

// Generic bus module. Features:

// - propagation delay modelling (proportional to distance)

// - data rate modelling

// - optional collision modeling

// - optional collision signalling (if turned off, collided

// frames are simply discarded)

// - full duplex or half duplex (simplex) bus. On a full duplex

// bus, frames are assumed to propagate in one direction only

// (upstream or downstream), and transmissions of opposite

// directions don’t collide.

// - models several independent channels

//

// Usage:

// Set the parameters of the bus module and connect the stations

// to it. Each station is expected to have a "position" attribute

// which holds the station’s distance from one end of the bus.

// There should be NO data rate set for the connecting links!

//

// Frames may have "channel" and "upstream" attributes; if they

// are not present, the default values are 0 and TRUE. "upstream"

// is only significant on a full duplex bus.

//

// The cMessages sent to the bus are interpreted as the start

// of a transmission. Length of transmission is calculated from

// the frame length and the bus data rate.

//

// The cMessages send out by the bus should be interpreted as the

// _end_ of the transmission. Collision signal is an empty cMessage

// with the name "collision". simple SimpleBus

parameters:

busType: string, // Types are: LAN, WPP, WSP, WGS.

numChannels, // number of independent channels

wantCollisionModeling, // collision modeling flag

wantCollisionSignal, // "send collision signals" flag

isFullDuplex, // channel mode

delaySecPerMeter, // delay of the bus

dataRateBps, // data rate of the bus

gapTime; // minimum gap between consecutive packets.

gates:

in: in[];

out: out[];

endsimple

189

B.5 File Sink.ned

//---

// file: Sink.ned

//---

simple Sink

gates:

in: in;

endsimple

B.6 File TheNet.ned

//---

// file: theNet.ned

//---

import "generator.ned";

import "simplebus.ned";

import "sink.ned";

import "router.ned";

import "satellite.ned";

// ------------ Module GroundStation -------------------------

// module GroundStation

parameters:

nodeID : numeric,

WGSposition : numeric;

gates:

out: out;

in: in;

submodules:

gen: Generator;

parameters:

startTime = ancestor startTime,

fromAddr = nodeID,

totalNodes = ancestor nodesPerPlane * ancestor numPlanes;

display: "i=gen;p=120,49;b=32,30";

sink: Sink;

display: "i=sink;p=81,49;b=32,30";

190

connections:

gen.out --> out;

sink.in <-- in;

display: "p=18,2;b=176,102";

endmodule

// ---------- Module computer Node -------------------------

module Node

parameters:

nodeID : numeric,

LANposition : numeric;

gates:

out: out;

in: in;

submodules:

gen: Generator;

parameters:

startTime = ancestor startTime,

fromAddr = nodeID,

totalNodes = ancestor totalNodes;

display: "i=gen;p=120,49;b=32,30";

sink: Sink;

display: "i=sink;p=81,49;b=32,30";

connections:

gen.out --> out;

sink.in <-- in;

display: "p=18,2;b=176,102";

endmodule

// ------------------ Module Plane -------------------------

// module Plane

parameters:

planeID : numeric,

nodesPerPlane : numeric,

totalNodes : numeric,

WPPposition : numeric,

WSPposition : numeric,

routerServiceTime : numeric;

gates:

in: inFromWirelessPP;

out: outToWirelessPP;

in: inFromWirelessSP;

191

out: outToWirelessSP;

submodules:

router: Router;

parameters:

startTime = ancestor startTime,

routerID = planeID,

nodesPerPlane = nodesPerPlane,

totalNodes = totalNodes,

LANposition = 10 * nodesPerPlane,

routerServiceTime = routerServiceTime;

display: "i=router;p=123,49;b=32,32";

//- -

node: Node[nodesPerPlane];

parameters:

nodeID = planeID*nodesPerPlane + index,

LANposition = 10 * index;

display: "b=38,32;p=43,151,row,45;i=pc";

//- -

ethernetBus: SimpleBus;

parameters:

busType = "LAN",

numChannels = 1,

wantCollisionModeling = 1,

wantCollisionSignal = 1,

isFullDuplex = 0,

delaySecPerMeter = ancestor LANdelay,

dataRateBps = ancestor LANbandwidth,

gapTime = ancestor LANgapTime;

gatesizes:

in[nodesPerPlane + 1],

out[nodesPerPlane + 1];

display: "p=88,97;b=156,10,rect";

//- -

connections:

router.outToLocal --> ethernetBus.in[nodesPerPlane];

router.inFromLocal <-- ethernetBus.out[nodesPerPlane];

router.outToWirelessPP --> outToWirelessPP;

router.inFromWirelessPP <-- inFromWirelessPP;

router.outToWirelessSP --> outToWirelessSP;

router.inFromWirelessSP <-- inFromWirelessSP;

for i=0..nodesPerPlane-1 do

node[i].out --> ethernetBus.in[i];

192

node[i].in <-- ethernetBus.out[i];

endfor;

display: "p=2,2;b=168,184";

endmodule

// ----------------- Module TheNet -------------------------

module TheNet

parameters:

startTime : numeric,

nodesPerPlane : numeric,

numPlanes : numeric,

LANgapTime : numeric,

LANbandwidth : numeric,

LANdelay : numeric,

WPPgapTime : numeric,

WPPbandwidth : numeric,

WPPdelay : numeric,

WSPgapTime : numeric,

WSPbandwidth : numeric,

WSPdelay : numeric,

WGSgapTime : numeric,

WGSbandwidth : numeric,

WGSdelay : numeric,

satServiceTime : numeric,

routerServiceTime : numeric;

submodules:

//- -

plane: Plane[numPlanes];

parameters:

planeID = index,

nodesPerPlane = nodesPerPlane,

WPPposition = 100 * index,

WSPposition = 100 * index,

totalNodes = nodesPerPlane * numPlanes,

routerServiceTime = routerServiceTime;

display: "i=airplane;p=62,90,row,60;b=35,35";

//- -

193

wirelessPP: SimpleBus;

parameters:

busType = "WPP",

numChannels = 1,

wantCollisionModeling = 1,

wantCollisionSignal = 1,

isFullDuplex = 0,

delaySecPerMeter = WPPdelay,

dataRateBps = WPPbandwidth,

gapTime = WPPgapTime;

gatesizes:

in[numPlanes],

out[numPlanes];

display: "p=264,33;b=476,10,rect";

//- -

wirelessSP: SimpleBus;

parameters:

busType = "WSP",

numChannels = 1,

wantCollisionModeling = 1,

wantCollisionSignal = 1,

isFullDuplex = 0,

delaySecPerMeter = WSPdelay,

dataRateBps = WSPbandwidth,

gapTime = WSPgapTime;

gatesizes:

in[numPlanes+1],

out[numPlanes+1];

display: "p=268,153;b=468,10,rect";

//- -

wirelessGS: SimpleBus;

parameters:

busType = "WGS",

numChannels = 1,

wantCollisionModeling = 1,

wantCollisionSignal = 1,

isFullDuplex = 0,

delaySecPerMeter = WGSdelay,

dataRateBps = WGSbandwidth,

gapTime = WGSgapTime;

gatesizes:

in[2],

194

out[2];

display: "p=272,281;b=476,10,rect";

//- -

groundStation: GroundStation;

parameters:

nodeID = nodesPerPlane * numPlanes,

WGSposition = 0;

display: "b=32,32;p=67,215,row,45;i=ground";

//- -

satellite: Satellite;

parameters:

startTime = startTime,

satelliteID = 1,

satServiceTime = satServiceTime,

totalNodes = nodesPerPlane * numPlanes,

WSPposition = 38300E3, //35800 Km + 2500 Km

WGSposition = 38300E3; //35800 Km + 2500 Km

display: "i=satellite;p=315,217;b=32,32";

//- -

connections:

for i=0..numPlanes-1 do

plane[i].outToWirelessPP --> wirelessPP.in[i];

plane[i].inFromWirelessPP <-- wirelessPP.out[i];

plane[i].outToWirelessSP --> wirelessSP.in[i];

plane[i].inFromWirelessSP <-- wirelessSP.out[i];

endfor;

groundStation.out --> wirelessGS.in[0];

groundStation.in <-- wirelessGS.out[0];

satellite.inBus1 <-- wirelessGS.out[1];

satellite.outBus1 --> wirelessGS.in[1];

satellite.inBus2 <-- wirelessSP.out[numPlanes];

satellite.outBus2 --> wirelessSP.in[numPlanes];

display: "p=10,2;b=508,308";

endmodule

// ------------------------ OTBNet -------------------------

// Instantiates the network

network OTBNet : TheNet

parameters:

startTime = input, // First PDU timestamp in seconds

nodesPerPlane = input, // Set to 3 in this simulation

numPlanes = input, // Set to 8 in this simulation

195

LANgapTime = input, // Minimum gap time between frames in the LAN

LANbandwidth = input, // LAN inside planes (set to 100 Mbps)

LANdelay = input, // nanosec/meter (set to 70% light speed)

WPPgapTime = input, // Minimum gap time in the wireless PP

WPPbandwidth = input, // Wireless bandwidth Plane-to-Plane (PP)

WPPdelay = input, // nanosec/meter (light speed)

WSPgapTime = input, // Minimum gap time in the wireless SP

WSPbandwidth = input, // Wireless bandwidth Satellite-to-Plane(SP)

WSPdelay = input, // nanosec/meter (light speed)

WGSgapTime = input, // Minimum gap time in the wireless GS

WGSbandwidth = input, //Wireless bandwidth Ground-to-Satellite(GS)

WGSdelay = input, // nanosec/meter (light speed)

satServiceTime = input,

// Service time per PDU in satellite under best conditions

routerServiceTime = input;

// Service time per PDU in routers under best conditions

endnetwork

B.7 File Omnetpp.ini

[General] network = OTBNet

ini-warnings = no

random-seed = 1

warnings = yes

snapshot-file = planes.sna

output-vector-file = planes.vec

sim-time-limit = 2550s # simulated seconds

cpu-time-limit = 20h # 20 hours of real cpu time max.

total-stack-kb = 4096 # 4 MByte, increase if necessary

[Cmdenv]

module-messages = yes

196

verbose-simulation = yes

display-update = 0.5s

[Tkenv]

default-run=1

use-mainwindow = yes

print-banners = yes

slowexec-delay = 300ms

update-freq-fast = 10

update-freq-express = 100

breakpoints-enabled = yes

[DisplayStrings]

[Parameters]

[Run 1]

OTBNet.startTime = 1034s

OTBNet.nodesPerPlane = 3

OTBNet.numPlanes = 8

OTBNet.LANgapTime = 50us

OTBNet.LANbandwidth = 100E6 # 100 MBps

OTBNet.LANdelay = 4.761904762ns # nanosec/meter (70% light speed)

OTBNet.WPPgapTime = 50us

OTBNet.WPPbandwidth = 512000

OTBNet.WPPdelay = 3.333333333ns # nanosec/meter (light speed)

OTBNet.WSPgapTime = 50us

OTBNet.WSPbandwidth = 512000

OTBNet.WSPdelay = 3.333333333ns # nanosec/meter (light speed)

OTBNet.WGSgapTime = 50us

OTBNet.WGSbandwidth = 512000

OTBNet.WGSdelay = 3.333333333ns # nanosec/meter (light speed)

OTBNet.satServiceTime = 5us

OTBNet.routerServiceTime = 5us

197

APPENDIX C

AWK SOURCE CODE

198

This appendix contains the source code of the “.awk” files used to parse and

extract data from the OTB logger files.

C.1 AWK Script for PDU Parsing

Awk program that parses the PDU file generated by OTB and creates files

“datannnn.txt” for each generator site identified as nnnn.

Process original PDU data files

with ID numbers added to each "<dis204" (juan.data)

BEGIN {

RS = "\n\\<|\n<";

\n is new line, \\< is

#finally \< and matches the empty string

#at the beginning of a word.

origsite = "";

orighost = "";

origapplic = "";

sizeof = "";

time = "";

len = "";

pduName = "";

pduCount = "?";

pduId = 0;

PDUtype = "";

}

/dis204/ {$1 = "<" $1;

if (orighost == "") orighost = origapplic;

origin = origsite orighost;

origin = origsite;

PDUlength = (len != "" \&\& len != 0 ? len : sizeof);

if (PDUtype != "") bytes[PDUtype] = bytes[PDUtype] + PDUlength;

PDUtype = $0;

199

class[PDUtype]++;

if (origin != "" \&\& time != "" \&\& PDUlength != "" \&\&

PDUlength != 0)

{if (!(origin in node)) node[origin] = nodecount++;

printf "%-12s %5d | %s %5d %s %d\n",

hextime, PDUlength, time, ++counter[node[origin]],

pduName, pduId > "data" origin ".txt";

printf "%-12s %5d | %s %5d %s %d\n",

hextime, PDUlength, time, counter[node[origin]],

pduName, pduId > "allpdu.txt";

}

else print "dis204 previous to record " NR \

" has missing parts. pduCount = " pduCount \

" origin = " origin " time = " time " len = " len;

origsite = "";

orighost = "";

origapplic = "";

sizeof = "";

time = "";

len = "";

pduName = $0;

pduCount = "?";

pduId++;

}

/\.site\>/ {if (origsite == "") origsite = $5}

/\.host\>/ {if (orighost == "") orighost = $5;}

/\.application \>/ {if (origapplic == "") origapplic = $5;}

/\.length\>/ {if (len == "" || len < $5) len = $5}

/\.sizeof\>/ {if (sizeof == "" || sizeof < $5) sizeof = $5}

/\.timestamp\>/ {if (time == "") {hextime = $3; time = $5;}}

/\.pdu_count\>/ {if (pduCount == "?") pduCount = $5;}

END {

if (orighost == "") orighost = origapplic;

origin = origsite orighost;

origin = origsite;

PDUlength = (len != "" \&\& len != 0 ? len : sizeof);

bytes[PDUtype] = bytes[PDUtype] + PDUlength;

for (i in class)

{printf "%-35s %5d : %8d\n", i, class[i], bytes[i]

> "pduTypesCount.txt";

200

tot += class[i];

btot += bytes[i];

}

printf "\nTotal PDUs = %d, bytes = %d\n", tot, btot

> "pduTypesCount.txt";

if (origin != "" \&\& time != "" \&\& PDUlength != "" \&\&

PDUlength != 0)

{if (!(origin in node)) node[origin] = nodecount++;

printf "%-12s %5d | %s %5d %s %d\n",

hextime, PDUlength, time, ++counter[node[origin]],

pduName, pduId > "data" origin ".txt";

printf "%-12s %5d | %s %5d %s %d\n",

hextime, PDUlength, time, counter[node[origin]],

pduName, pduId > "allpdu.txt";

}

else print "dis204 previous to record " NR \

" has missing parts. pduCount = " pduCount \

" origin = " origin " time = " time " len = " len;

for(origin in node) {

printf "%5d %s\n", counter[node[origin]], "data" origin ".txt"

> "nodes.txt";

close("data" origin ".txt");

}

close("nodes.txt");

close("allpdu.txt");

system("sort /R nodes.txt /O nodes.txt");

system("sort /+21 allpdu.txt /O allpdusort.txt");

RS = "\n";

getline < "nodes.txt";

system("ren " $2 " data24.txt");

system("sort /+21 data24.txt /O data24.txt");

i = 0;

while ((getline < "nodes.txt") > 0) {

system("ren " $2 " data" i ".txt");

system("sort /+21 data" i ".txt" " /O data" i ".txt");

i+=3;

}

}

201

C.2 AWK Script for Independent Analysis

This awk calculates the bandwith required to schedule sets of PDUs at time

intervals of at least 2 seconds.

BEGIN {

tsegment = 2.; # time interval of 2 seconds

gap = 0.000050; # 50 microseconds

tgaps = 0; # sum of all the gaps in this time interval

tbytes = 0; # total of bytes in this time interval

tcurr = 0; # current time within the time interval

PDUcount = 0; # number of PDUs in this time interval

firstime = "T"; # flag initially true.

printf "vector 0 \"band.awk\"

\"Minimum bandwidth requirements over time\" 1\n"

}

{

split($4, t, ":"); tsec = t[2]*60+t[3]; # timestamp in seconds

PDUcount++;

if (firstime == "T")

{

tbytes = $2;

tcurr = tsec;

tgaps = gap;

firstime = "F";

}

else {

interval = tsec - tcurr - tgaps; # current size of time interval

if (interval <= 0 || tsec - tcurr < tsegment)

{

tgaps = tgaps + gap;

tbytes = tbytes + $2;

}

else

{

bw = tbytes*8./interval;

printf "0 %f %f\n", tcurr, bw

printf "0 %f %f\n", tsec, bw

tbytes = $2;

tcurr = tsec;

202

tgaps = gap;

PDUcount = 1;

}

}

}

END {

if (interval <= 0)

{tsec += tsegment;

interval = tsec - tcurr - tgaps;

}

bw = tbytes*8./interval;

printf "0 %f %f\n", tcurr, bw;

printf "0 %f %f\n", tsec, bw;

}

C.3 AWK Scripts for Neural Network Processing

This awk script calculates the bandwith required to schedule sets of PDUs at

time intervals of at least 2 seconds.

* This script reads the file data0.txt and produces data0N45.txt

* containing patterns of 44 consecutive PDU IDs plus a binary

* description of the next PDU ID.

BEGIN {

PDU["laser"] = 1;

PDU["start_resume"] = 2;

PDU["stop_freeze"] = 3;

PDU["po_task_authorization"] = 4;

PDU["po_minefield"] = 5;

PDU["fire"] = 6;

PDU["detonation"] = 7;

PDU["acknowledge"] = 8;

PDU["po_delete_objects"] = 9;

PDU["minefield"] = 10;

PDU["po_message"] = 11;

203

PDU["signal"] = 12;

PDU["aggregate_state"] = 13;

PDU["po_simulator_present"] = 14;

PDU["po_task_frame"] = 15;

PDU["mines"] = 16;

PDU["po_point"] = 17;

PDU["po_objects_present"] = 18;

PDU["po_fire_parameters"] = 19;

PDU["iff"] = 20;

PDU["po_line"] = 21;

PDU["po_parametric_input"] = 22;

PDU["po_unit"] = 23;

PDU["po_task"] = 24;

PDU["transmitter"] = 25;

PDU["po_task_state"] = 26;

PDU["entity_state"] = 27;

count = 0;

N = 45;

init = "T";

}

{Hist[count] = PDU[$7];

count = (count+1)%N;

if (count == 0) init = "F";

if (init == "F") {

for (i=0; i<=N-2; i++)

printf "%2d ", Hist[(count+i)%N];

num = Hist[(count+N-1)%N];

for (i = 0; i <=4; i++) {

printf "%d ", num%2;

num = num/2;

}

printf "\n";

}

}

* This script calculates the longest sequence of consecutive PDUs

* bearing the same type

BEGIN {

init = "T";

prevType = "";

204

historicType = "";

historicLength = 0;

historicPosition = 0;

seqPos = 1;

counter = 0;

}

{counter++;

if (init == "T") {

prevType = $7;

currLength = 1;

init = "F";

}

if ($7 == prevType) {

currLength++;

}

else {

if (currLength > historicLength) {

historicLength = currLength;

historicType = prevType;

historicPosition = seqPos;

}

prevType = $7;

currLength = 1;

seqPos = counter;

}

}

205

APPENDIX D

SIMULATOR SOURCE CODE

206

This appendix contains the source code of the vignette simulator using the OM-

NeT++ discrete event simulator as the engine, as well as some other auxiliary

programs used to prepare the input data and extract specific statistics from the

simulator output.

//---

// file: vecstats.cpp

//---

#include <stdio.h>

#include <stdlib.h>

#include <float.h>

#include <math.h>

#define linesize 100

int main(int argc, char *argv[])

{

FILE *fd;

char line[linesize];

double min, max, sum, avg1, avg2, std, variance, area,

tInterval, minInterval, maxInterval,

t1, t2, mt1, mt2, Mt1, Mt2, val1, val2, time1, time2;

int counter;

min = DBL_MAX;

max = 0.;

sum = area = 0.;

counter = 0;

t1 = DBL_MAX;

t2 = 0.;

maxInterval = 0.;

minInterval = DBL_MAX;

if (argc < 2)

{

printf("Usage: %s <band.vec>\n", argv[0]);

return 1;

}

207

if ((fd = fopen(argv[1], "r")) == NULL)

{

printf("Cannot open %s\n", argv[1]);

return 2;

}

fgets(line, linesize, fd);

printf("%s", line);

while (fscanf(fd, " %*d %lf %lf", &time1, &val1) != EOF &&

fscanf(fd, " %*d %lf %lf", &time2, &val2) != EOF)

{

counter++;

if (time1 < t1) t1 = time1;

if (time2 > t2) t2 = time2;\

if ((time2 - time1) < minInterval)

{

minInterval = time2 - time1;

mt1 = time1;

mt2 = time2;

}

if ((time2 - time1) > maxInterval)

{

maxInterval = time2 - time1;

Mt1 = time1;

Mt2 = time2;

}

if (val1 < min) min = val1;

if (val1 > max) max = val1;

sum += val1;

area += (time2-time1)* (val1+val2)/2.;

}

tInterval = t2 - t1;

avg1 = area / tInterval;

avg2 = sum / counter;

printf("Samples = %d\n", counter);

printf("Init time = %11lf\n", t1);

printf("Final time = %11lf\n", t2);

printf("Min time interval = [%11lf, %11lf], length = %lf\n",

mt1, mt2, minInterval);

printf("Max time interval = [%11lf, %11lf], length = %lf\n",

208

Mt1, Mt2, maxInterval);

printf("Minimum bandwidth =%14.1lf\n", min);

printf("Maximum bandwidth =%14.1lf\n", max);

printf("Point average =%14.1lf\n", avg1);

printf("Area average =%14.1lf\n", avg2);

rewind(fd);

sum = 0.;

fgets(line, linesize, fd);

while (fscanf(fd, " %*d %lf %lf", &time1, &val1) != EOF &&

fscanf(fd, " %*d %lf %lf", &time2, &val2) != EOF)

{

sum += (val1 - avg2)* (val1 - avg2);

}

variance = sum / (counter - 1.);

std = sqrt(variance);

printf("Sample variance =%14.1lf\n", variance);

printf("Std deviation =%14.1lf\n", std);

}

//---

// file: pduAnal.c

//---

/*This program reads in the original PDU log file as well as the PDU

summary file corresponding to a given generator, and produces the

file "extrabyt.txt" that contains pairs of

(PDU ID, contribution in bytes of that PDU to the group)

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <assert.h>

#define true 1

#define false 0

#define MAXstring 5000

#define MAXpdus 65000

#define PDUsimilarity 0.49

209

int PDUcompareOK (FILE *fd1, FILE *fd2, long int p1, long int p2,

int len1, float threshold, int *extraBytes,

int *diffLbl);

int readStr(FILE *fd, char a[], char b[], char c[], char d[]);

char buffer[MAXstring*4], buffer2[MAXstring*4];

char pdu1[MAXstring*4], pdu2[MAXstring*4];

char a1[MAXstring], b1[MAXstring], c1[MAXstring], d1[MAXstring];

char a2[MAXstring], b2[MAXstring], c2[MAXstring], d2[MAXstring];

// --

int main(int argc, char *argv[]) {

FILE *fdO1, *fdO2, *fdS, *fdExtraBytes;

int moreData = 1, pduCount = 0, blockCount, sameBlock, newBlock,

i, j;

int ch, endf, len1, len2, id1, id2, extraBytes, diffLbl,

sumExtraBytes, sumDiffLbl;

unsigned int timeStamp1, timeStamp2;

long int fpos[MAXpdus], currpos;

char a[MAXstring], b[MAXstring], c[MAXstring], d[MAXstring];

char type1[50], type2[50];

double schedTimeSec1, schedTimeSec2, timeSpan,

hour_equiv = (pow(2.0, 31.0) - 1.0);

float threshold = PDUsimilarity;

if (argc != 3) {

printf("Usage: %s <file_itsec.data> <file_dataNN.txt>\n",

argv[0]);

return 1;

}

fdO1 = fopen(argv[1], "r"); // Original PDU file (the large one)

fdO2 = fopen(argv[1], "r"); // Original PDU file (the large one)

// Same file opened twice

fpos[0] = -1;

currpos = ftell(fdO1);

while (fgets(buffer, MAXstring*4, fdO1) != NULL) {

if (buffer[0] == ’<’) fpos[++pduCount] = currpos;

currpos = ftell(fdO1);

}

// printf ("Number of PDUs in file %s: pduCount=%d\n",

// argv[1], pduCount);

// -

fdS = fopen(argv[2], "r"); // Summary file of PDUs.

210

fscanf(fdS, "%x %d %*[^<]%*s %s %*[^:]: %d",

&timeStamp2, &len2, type2, &id2);

schedTimeSec2 = (double)(timeStamp2/2) * 3600.0 / hour_equiv;

newBlock = true;

//To store information about extra bytes.

fdExtraBytes = fopen("extrabyt.txt", "w");

while (newBlock) {

//newblock = true means not EOF yet and a new empty block is ready.

len1 = len2;

id1 = id2;

strcpy (type1, type2);

blockCount = 1;

timeSpan = 0.;

sumExtraBytes = 0;

schedTimeSec1 = schedTimeSec2;

sameBlock = true;

do {

endf = fscanf(fdS, "%x %d %*[^<]%*s %s %*[^:]: %d",

&timeStamp2, &len2, type2, &id2);

if (endf == EOF) {newBlock = false; break;}

schedTimeSec2 = (double)(timeStamp2/2) * 3600.0 / hour_equiv;

if (len1 == len2 && strcmp(type1, type2) == 0 &&

PDUcompareOK(fdO1, fdO2, fpos[id1], fpos[id2], len1,

threshold, &extraBytes, &diffLbl)) {

blockCount++;

sumDiffLbl += diffLbl;

sumExtraBytes += extraBytes;

timeSpan = schedTimeSec2 - schedTimeSec1;

fprintf(fdExtraBytes, "%d, %d\n", id2, extraBytes);

}

else sameBlock = false;

} while (sameBlock);

// if sameblock = false then a new block will start

// printf("PDUId: %5ld %-12s length: %4d #PDUs: %2d extraBytes: \

// %4d diffLabel: %4d timeSpan: %lf\n",

// id1, type1, len1, blockCount, sumExtraBytes, sumDiffLbl,timeSpan);

// printf("%5d, %-20s, %4d, %2d, %4d, %4d, %lf\n",

// id1, type1, len1, blockCount, sumExtraBytes, sumDiffLbl,timeSpan);

}

fclose(fdO1);

211

fclose(fdO2);

fclose(fdS);

fclose(fdExtraBytes);

return 0;

}

// --

int PDUcompareOK (FILE *fd1, FILE *fd2, long int p1, long int p2,

int len1, float threshold, int *extraBytes, int *diffLbl) {

int diff, diffLabel, eof1, eof2, diffFields;

float percentSimilar;

fseek(fd1, p1, SEEK_SET);

fseek(fd2, p2, SEEK_SET);

diff = 0;

diffLabel = 0;

readStr(fd1, a1, b1, c1, d1);

readStr(fd2, a2, b2, c2, d2);

assert(strncmp(a1, "dis204", 6)==0 && strncmp(a2,"dis204",6)==0);

eof1 = readStr(fd1, a1, b1, c1, d1);

eof2 = readStr(fd2, a2, b2, c2, d2);

while (eof1 != EOF && eof2 != EOF &&

strncmp(a1, "dis204", 6) != 0 &&

strncmp(a2, "dis204", 6) != 0) {

diffFields = (strcmp(a1, a2) != 0);

if (diffFields)

diffLabel++;

if (diffFields || strcmp(c1, c2) != 0 || strcmp(d1, d2) != 0)

diff += (d1[0]==’\0’) ? strlen(c1)/2-1 : strlen(d1)/2-1;

eof1 = readStr(fd1, a1, b1, c1, d1);

eof2 = readStr(fd2, a2, b2, c2, d2);

}

percentSimilar = (float)(len1 - diff) / (float)len1;

*extraBytes = diff;

*diffLbl = diffLabel;

return (diffLabel == 0 || percentSimilar > threshold);

}

// --

int readStr(FILE *fd, char a[], char b[], char c[], char d[]) {

a[0] = b[0] = c[0] = d[0] = ’\0’;

if (fgets(buffer, MAXstring*4, fd) == NULL) return EOF;

if (buffer[0] == ’\n’) return !EOF;

212

if (buffer[0] == ’<’) { sscanf(buffer, "<%[^>]>", a);

return !EOF;

}

if (strchr(buffer, ’=’) == NULL) {

fgets(buffer2, MAXstring*4, fd);

strcat(buffer, buffer2);

}

if (strchr(buffer,’"’) != NULL)

sscanf(buffer, "%s = \"%[^\"]\" = %s", a, b, c);

else sscanf(buffer, "%s = %s = %s = %s", a, b, c, d);

return !EOF;

}

//===

//---

// file: generator.cpp

//---

#include <omnetpp.h>

#include <stdio.h>

// Generator simple module class

//

class Generator : public cSimpleModule

{

// variables used

FILE *fd, *fdextra, *fdLog;

char filename[50], msgname[50], pduIniType[50], pduType[50],

firstCh, c[6], predictedAction;

char comments[200];

int commentCount, bundling;

double dataRateBps, hour_equiv, percentPosSlack;

simtime_t startTime, gapTime, transmissionTime, schedTimeSec,

slack, generatorServiceTime, blockWaitTime;

long pduIniLength, byteFrame_length, bitFrame_length, file_pos;

unsigned int eof, num_frames, numNodes, sendTime;

int pduextra[70000], extralength, pduLenIni, pduLenCurr;

int frames_sent, frame_counter, pdu_counter, positiveSlack,

my_address, toAddr, pduID;

bool firstTime, emptyBlock, blockTimedout, busy;

213

cMessage *readyToSend, *blockTimeout, *msg1;

cOutVector slackTime;

// member functions

Module_Class_Members(Generator,cSimpleModule,0)

virtual void initialize();

virtual void handleMessage(cMessage *msg);

virtual void finish();

private:

void PDUrecord1();

void PDUrecord2();

};

Define_Module(Generator);

//===

void Generator::initialize()

{

commentCount = 0;

for (pduID=0; pduID<70000; pduID++)

pduextra[pduID] = 0;

fdextra = fopen("juanTgz\\juanTgz3\\extrab.txt", "r");

fdLog = fopen("juanTgz\\juanTgz4\\PDUlog.txt", "w");

int counterextra = 0;

while (fscanf(fdextra, "%d, %d", &pduID, &extralength) != EOF) {

pduextra[pduID] = extralength;

counterextra++;

}

startTime = par("startTime");

blockWaitTime = par("blockWaitTime");

generatorServiceTime = par("generatorServiceTime");

gapTime = gate("out")->toGate()->toGate()->ownerModule()

->par("gapTime");

my_address = par("fromAddr");

c[4] = ’W’; c[5] = ’S’;

bundling = par("bundling"); printf("bundling = %d\n", bundling);

if (bundling < 1 || bundling > 6)

{printf("Error in generator %d, bundling = %d\n",

my_address, bundling);

return;}

214

numNodes = par("totalNodes");

dataRateBps = (double)gate("out")->

toGate()->toGate()->ownerModule()

->par("dataRateBps");

printf("Generator my_address=%d, numNodes=%d startTime=%lf "

"blockWaitTime=%lf generatorServiceTime=%lf gapTime=%lf\n",

my_address, numNodes, startTime, blockWaitTime,

generatorServiceTime, gapTime);

hour_equiv = (pow(2.0, 31.0) - 1.0);

frames_sent = 0;

frame_counter = 0;

pdu_counter = 0;

positiveSlack = 0;

toAddr = -1; // all packets are broadcasted

slackTime.setName("Slack Time to Send Next Message");

firstTime = true;

emptyBlock = true;

blockTimedout = false;

busy = false;

readyToSend = new cMessage("readyToSend");

blockTimeout = new cMessage("blockTimeout");

sprintf(filename, "juanTgz\\juanTgz4\\dataNew%d.txt",my_address);

if ((fd = fopen(filename, "r")) != NULL)

{

scheduleAt (startTime, readyToSend); // schedule first event

// printf("Generator my_address=%d scheduled readyToSend.\

Initialization completed.\n", my_address);

}

}

//===

void Generator::handleMessage(cMessage *msg)

{

if(msg == blockTimeout)

{

if (busy) {

blockTimedout = true; //block is sent at next readyToSend

return;

215

} // end of busy status

//- -

// status is idle (not busy)

msg1->setTimestamp(); // block will be sent immediately

transmissionTime = (double)msg1->length() / dataRateBps;

send(msg1,"out");

frames_sent++;

PDUrecord2();

emptyBlock = true;

blockTimedout = false; // block was just sent

busy = true;

if (eof != EOF) { // if EOF and block not empty,

// then readyToSend was not scheduled

cancelEvent(readyToSend); //remove previous (future time)

// readyToSend

}

scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);

return;

} //end of msg == blockTimeout

//- -

// msg is not blockTimeout, should be readyToSend

if (msg == readyToSend)

{

if (blockTimedout) {

//current block has priority over new PDUs

msg1->setTimestamp(); // block will be sent immediately

transmissionTime = (double)msg1->length() / dataRateBps;

send(msg1,"out");

frames_sent++;

PDUrecord2();

emptyBlock = true;

blockTimedout = false; // block was just sent

busy = true;

scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);

return;

} //end of blockTimedout

//- -

// msg is readyToSend & not blockTimedout

216

firstCh = getc(fd); //skips over comments indicated by

// ’%’ in first char

while (firstCh == ’#’) {

fgets(comments, 200, fd);

commentCount++;

printf("Comments # %d in %s are: %s\n",

commentCount, filename, comments);

firstCh = getc(fd);

}

ungetc(firstCh, fd);

file_pos = ftell(fd);

eof = fscanf(fd,

"%x %ld | %*s %*d <dis204 %s PDU>: %d %c %c %c %c",

&sendTime, &byteFrame_length, pduType, &pduID,

&c[0],&c[1],&c[2],&c[3]);

// c[0] is neural network (column 1)

// c[1] is type (column 2)

// c[2] is type and length (column 3)

// c[3] is type, length and timestamp (column 4)

// c[4] = W Always-Wait

// c[5] = S Always-Send

predictedAction = c[bundling-1];

if (eof == EOF) {

if (emptyBlock) { // end of generator simulation

percentPosSlack = (double)positiveSlack *

100.0 / (double)pdu_counter;

printf("EOF in file %11s at time %lf, positive slack "

"frames=%6d(%5.2lf%%), total PDUs=%6d, total frames"

" built=%6d, total frames sent=%6d\n",

filename, simTime(), positiveSlack, percentPosSlack,

pdu_counter, frame_counter, frames_sent);

fclose(fdLog);

} // end of emptyBlock

else { // block is not empty

busy = false;

cancelEvent(blockTimeout);

scheduleAt(simTime(), blockTimeout);

}

return;

} // end eof == EOF

// -

217

// msg = readyToSend & not blockTimedout & not EOF

// we read a new PDU from the summary file.

//conversion from OTB units to seconds

schedTimeSec = (double)(sendTime/2) * 3600.0 / hour_equiv;

bitFrame_length = byteFrame_length * 8;

slack = schedTimeSec - simTime();

if (firstTime) { // first time this particular PDU

// was read from the input file.

pdu_counter++;

slackTime.record(slack);

if (slack >= 0) positiveSlack++;

firstTime = false; // this particular PDU

//won’t be recorded again.

}

if (slack > 0.) {

busy = false; // we will be idle for a while

if (fseek(fd, file_pos, SEEK_SET)) perror("Fseek failed");

// next packet is scheduled at timestamp in PDU

scheduleAt(schedTimeSec, readyToSend);

return;

} // end of slack > 0.

// -

// msg = readyToSend & not blockTimedout & not EOF & slack <= 0.

// This PDU must be grouped for replication

firstTime = true; // to record slack for next PDU.

if (emptyBlock) {

//This PDU will be the first in the new block

sprintf(msgname,"Data%d F%d T%d",

++frame_counter, my_address, toAddr);

msg1 = new cMessage(msgname);

msg1->setLength(bitFrame_length);

PDUrecord1();

strcpy(pduIniType,pduType);

pduIniLength = byteFrame_length;

if (predictedAction == ’s’ || predictedAction == ’S’)

{ // predicted action = send

msg1->setTimestamp();

transmissionTime = (double)msg1->length() / dataRateBps;

send(msg1,"out");

frames_sent++;

PDUrecord2();

218

busy = true;

scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);

}

else { // predicted action = wait

scheduleAt(simTime() + blockWaitTime, blockTimeout);

busy = false;

emptyBlock = false;

scheduleAt(simTime()+generatorServiceTime, readyToSend);

}

return;

} // end of emptyBlock

// -

// msg = readyToSend & not blockTimedout &

// not EOF & slack <= 0. & not emptyBlock

if ((strcmp(pduIniType,pduType)==0) &&

(pduIniLength==byteFrame_length)) { //compatible PDU

//grouping (bundling)

msg1->setLength(msg1->length()+(pduextra[pduID]*8));

PDUrecord1();

if (predictedAction == ’s’ || predictedAction == ’S’) {

msg1->setTimestamp(); // predicted action = send

transmissionTime= (double)msg1->length() / dataRateBps;

send(msg1,"out");

frames_sent++;

PDUrecord2();

cancelEvent(blockTimeout);

emptyBlock = true;

busy = true;

scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);

} // end of predictedAction = send

else { // predicted action = wait

busy = true;

scheduleAt(simTime()+generatorServiceTime,readyToSend);

} // end of predicted action = wait

return;

} // end of compatible PDU

// -

// msg = readyToSend & not blockTimedout &

219

// not EOF & slack <= 0. & not emptyBlock & PDU not compatible

msg1->setTimestamp();

transmissionTime = (double)msg1->length() / dataRateBps;

send(msg1,"out");

frames_sent++;

PDUrecord2();

cancelEvent(blockTimeout);

sprintf(msgname,"Data%d F%d T%d",

++frame_counter, my_address, toAddr);

msg1 = new cMessage(msgname);

msg1->setLength(bitFrame_length);

PDUrecord1();

strcpy(pduIniType,pduType);

pduIniLength = byteFrame_length;

if (predictedAction == ’s’ || predictedAction == ’S’)

{ // predicted action = send

// this 1-PDU block is considered to have timedout

blockTimedout = true;

}

else { // predicted action = wait

scheduleAt(simTime() + blockWaitTime +

generatorServiceTime, blockTimeout);

} // end of predicted action = wait

busy = true;

scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);

return; // msg = readyToSend & not EOF & slack <= 0.

} // end msg == readyToSend

//- -

printf("Generator %d: Unrecognized message\n", my_address);

return;

}

//===

void Generator::finish() {

ev << "Generator " << my_address << ": No of frames sent = "

<< frame_counter << endl;

}

//===

void Generator::PDUrecord1() {

220

if (my_address == 24) fprintf(fdLog, "%d ", pduID);

}

//===

void Generator::PDUrecord2() {

double t, seconds;

int minutes;

t = simTime();

minutes = (int) t/60.;

seconds = t - minutes*60.;

if (my_address == 24) {

double t, seconds;

int minutes;

t = simTime();

minutes = (int) (t/60.);

seconds = t - minutes*60.;

fprintf(fdLog, ": %lf (:%d:%.3lf) | \tframes:%d\n",

t, minutes, seconds, frames_sent);

}

}

//---

// file: sink.cpp

//---

#include <omnetpp.h>

//

// Sink simple module class

//

class Sink : public cSimpleModule

{

int my_address, from, to, collisionCounter, framesReceived,

unrecognized, wrongAddress;

double travelTime;

cMessage *collision;

char *p;

// member functions

Module_Class_Members(Sink,cSimpleModule,0)

221

virtual void initialize();

virtual void handleMessage(cMessage *msg);

virtual void finish();

cDoubleHistogram *travelDist;

cOutVector travelHist;

cStdDev travelStats;

cOutVector collHistAccum;

};

Define_Module(Sink);

void Sink::initialize()

{

collisionCounter = 0;

my_address = parentModule()->par("nodeID");

collision = new cMessage("collision");

travelDist = new cDoubleHistogram(

"Travel Time Distribution at destination", 100);

travelDist->setRange(0, 100);

travelHist.setName("Travel Time History");

travelStats.setName("travel Stats");

collHistAccum.setName("Collision Accumulation");

framesReceived = 0;

unrecognized = 0;

wrongAddress = 0;

}

void Sink::handleMessage(cMessage *msg)

{

// msg == collision

if (strcmp(msg->name(), collision->name()) == 0)

{

collisionCounter++;

collHistAccum.record (collisionCounter);

delete msg;

return;

}

p = strchr(msg->name(),’F’);

222

if (p == NULL)

{ ev<<"Sink["<<my_address<<"] unrecognized deleted "

<<msg->name()<<endl;

delete msg; // unrecognized message, considered an error

unrecognized++;

}

else // p != NULL, this is a regular message

sscanf(p, "F%d T%d", &from, &to);

if (to == -1 || to == my_address)

{

// ev << "Sink[" << my_address << "] Frame " << msg->name()

<<" at T = " << simTime() << endl;

travelTime = simTime() - msg->timestamp();

// travel time travelStatsistics collection

travelDist->collect (travelTime);

travelHist.record(travelTime);

travelStats.collect(travelTime);

framesReceived++;

}

else wrongAddress++;

delete msg;

}

void Sink::finish()

{

long num_samples;

double smallest, largest, mean,

standard_deviation, variance;

ev << endl << endl<< "*** Module: " << fullPath()<<"***" << endl;

ev << "Total arrivals: " << travelDist->samples() << endl;

ev << "Estimation of the travel stationary \

distribution of travel time.\n";

ev << "Travel time, # of messages, estimated \

probability density function.\n";

for(int i=0; i<travelDist->cells(); ++i)

{ if(travelDist->cell(i) > 0)

{ ev << i << ":\t" << travelDist->cell(i);

ev << "\t" << travelDist->cellPDF(i) << endl;

223

}

}

recordStats("Travel Time Distribution Statistics", travelDist);

ev << "Travel Time Statistics" << endl;

num_samples = travelStats.samples();

smallest = travelStats.min();

largest = travelStats.max();

mean = travelStats.mean();

standard_deviation = travelStats.stddev(),

variance = travelStats.variance();

ev << "Number of samples: " << num_samples << endl;

ev << "Smallest time: " << smallest << endl;

ev << "Largest time: " << largest << endl;

ev << "Mean value: " << mean << endl;

ev << "Standard Dev: " << standard_deviation << endl;

ev << "Variance: " << variance << endl;

printf("Sink %d: Total frames received=%d, total collisions \

detected=%d total unrecognized=%d wrong address=%d\n",

my_address, framesReceived, collisionCounter,

unrecognized, wrongAddress);

}

//---

// file: router.cpp

//---

#include <omnetpp.h>

#include <string.h>

//

// Router simple module class

//

class Router : public cSimpleModule

{

int routerID, nodesPerPlane, totalNodes;

int inf, sup;

int from, to, inGate, outGate;

// 3 communication channels.

int collisionCount[3], collisionCountNonReset[3];

double startTime, routerServiceTime, transmissionTime,

collInterval, gapTime[4], dataRate[4];

int fromLan, toLan, fromSP, toSP, fromPP, toPP; //frame counters

224

cQueue queue;

cMessage *sendNow, *readyToSend, *collision,

*collStatsNow, *msg1, *msg2;

cDoubleHistogram *jobDist;

cOutVector jobsInSys;

cStdDev stat;

cDoubleHistogram *collDist[3];

cOutVector collInSys[3];

cOutVector collHistAccum;

// member functions

Module_Class_Members (Router, cSimpleModule,0)

virtual void initialize ();

virtual void finish ();

virtual void handleMessage (cMessage *msg);

void serveMessage();

int outputGate (int inGate, int from, int to);

};

Define_Module(Router);

//===

void Router::initialize()

{

int i;

startTime = par("startTime");

routerID = par("routerID");

nodesPerPlane = par("nodesPerPlane");

totalNodes = par("totalNodes");

routerServiceTime = par("routerServiceTime");

gapTime[0] = gate("outToLocal")->toGate()->ownerModule()

->par("gapTime");

gapTime[1] = gate("outToWirelessPP")->toGate()->toGate()

->ownerModule()->par("gapTime");

gapTime[2] = gate("outToWirelessSP")->toGate()->toGate()

225

->ownerModule()->par("gapTime");

gapTime[3] = gapTime[1] > gapTime[2] ? gapTime[1] : gapTime[2];

dataRate[0] = (double)gate("outToLocal") ->toGate()

->ownerModule()->par("dataRateBps");

dataRate[1] = (double)gate("outToWirelessPP")->toGate()->toGate()

->ownerModule()->par("dataRateBps");

dataRate[2] = (double)gate("outToWirelessSP")->toGate()->toGate()

->ownerModule()->par("dataRateBps");

dataRate[3]= dataRate[1]<dataRate[2] ? dataRate[1] : dataRate[2];

collision = new cMessage("collision");

collStatsNow = new cMessage("collStatsNow");

readyToSend = new cMessage("readyToSend");

sendNow = new cMessage("sendNow");

inf = nodesPerPlane * routerID;

sup = inf + nodesPerPlane - 1;

// msg1 = NULL because initial state is "readyToSend"

msg1 = NULL;

jobDist = new cDoubleHistogram(

"Queue Message Distribution (router)", 100);

jobDist->setRange(0, 100);

jobsInSys.setName("Messages in System (router)");

stat.setName("stat");

{ char *titles[3] = { "Collisions at inFromLocal (Ethernet)",

"Collisions at inFromWirelessPP",

"Collisions at inFromWirelessSP" };

for (i = 0; i<3; i++)

{ collisionCount[i] = 0;

collisionCountNonReset[i] = 0;

collDist[i] = new cDoubleHistogram(titles[i], 100);

collDist[i]->setRange(0, 100);

collInSys[i].setName(titles[i]);

}

}

collHistAccum.setName("Collision Accumulation");

// count collisions in 1-second intervals

collInterval = 1.;

226

// frame counters set to 0

fromLan = toLan = fromSP = toSP = fromPP = toPP = 0;

// first event to request collision statistics.

scheduleAt(collInterval+startTime, collStatsNow);

}

//===

void Router::handleMessage(cMessage *msg)

{

if (strcmp(msg->name(),collision->name())==0) // msg == collision

{ inGate = msg->arrivalGate()->id() /2; // inGate = 0 or 1 or 2

collisionCount[inGate]++;

collisionCountNonReset[inGate]++;

collHistAccum.record (collisionCountNonReset[0] +

collisionCountNonReset[1] +

collisionCountNonReset[2]);

delete msg;

return;

}

//- -

// Statistics collection requested now

else if (msg == collStatsNow)

{ for (int i=0; i<3; i++)

{ collDist[i]->collect (collisionCount[i]);

collInSys[i].record(collisionCount[i]);

// starts a new count for the next interval

collisionCount[i] = 0;

}

scheduleAt(simTime()+collInterval, collStatsNow);

return;

}

//- -

else if (msg == sendNow)

{

switch (outGate)

{

case 0:

send(msg1, "outToLocal");

toLan++;

227

break;

case 1:

send(msg1, "outToWirelessPP");

toPP++;

break;

case 2:

send(msg1, "outToWirelessSP");

toSP++;

break;

case 3:

msg2 = (cMessage *) msg1->dup();

send(msg1, "outToWirelessPP");

toPP++;

send(msg2, "outToWirelessSP");

toSP++;

break;

}

}

//- -

else if (msg == readyToSend) // last gapTime has elapsed

{

if(queue.empty()) //There are no remaining messages in queue

{

msg1 = NULL;

}

else

{

msg1 = (cMessage *) queue.pop();

// schedules a sendNow and readyToSend for msg1

serveMessage();

}

}

//- -

else // msg == regular message || unrecognized

{

// to ignore messages sent to satellite from other planes

228

char *p = strchr(msg->name(),’F’);

sscanf(p, "F%d T%d", &from, &to);

inGate = msg->arrivalGate()->id();

// gate #4: inFromWirelessSP

if ((inGate == 4) && (from != totalNodes))

{

delete msg;

return;

}

// msg arrived while server is idle, current state is "readyToSend"

if (msg1 == NULL)

// Statistics collection: queue length was 0

{ jobDist->collect(0);

jobsInSys.record(0);

stat.collect(0.);

msg1 = msg; //msg will be serviced immediately

serveMessage();

//schedules a sendNow and readyToSend for msg1

}

else // Arrival while server is busy

{

// n msgs in queue + 1 being serviced

jobDist->collect(queue.length()+1);

jobsInSys.record(queue.length()+1);

stat.collect(queue.length()+1.);

queue.insert(msg);

}

} // end of regular message

} // end handleMessage

//===

void Router::serveMessage()

{

char *p = strchr(msg1->name(),’F’);

if (p == NULL) // unrecognized message, considered an error

{

ev<<"Router["<<routerID<<"] unrecognized deleted "

<<msg1->name()<<endl;

229

delete msg1;

scheduleAt(simTime(), readyToSend);

return;

}

sscanf(p, "F%d T%d", &from, &to);

// inGate: 0/2 = 0, 2/2 = 1 or 4/2 = 2

inGate = (msg1->arrivalGate()->id()) / 2;

if (inGate==0)fromLan++;

if (inGate==1)fromPP++;

if (inGate==2)fromSP++;

// outGate = -1, 0, 1, 2, 3

outGate = outputGate(inGate, from, to);

if (outGate < 0)

{

delete msg1;

scheduleAt(simTime(), readyToSend);

return;

}

transmissionTime = msg1->length() / dataRate[outGate];

scheduleAt(simTime() + routerServiceTime, sendNow);

scheduleAt(simTime() + routerServiceTime + transmissionTime

+ gapTime[outGate], readyToSend);

}

//==

int Router::outputGate(int inGate, int from, int to)

{

switch (inGate)

{

case 0: // inFromLocal

if (to == -1) return 3; // outToWirelessSP

// and outToWirelessPP

if (to == totalNodes) return 2; // outToWirelessSP

if (to < inf || to > sup) return 1; // outToWirelessPP

return -1; // delete message

break;

case 1: // inFromWirelessPP

230

if (to == -1) return 0; // outToLocal

// delete, this case shoud not occur

if (to == totalNodes) return -1;

if (inf <= to && to <= sup) return 0; // outToLocal

return -1; // delete message

break;

case 2: // inFromWirelessSP

if (

(from == totalNodes) &&

((to == -1) || (inf <= to && to <= sup))

// from satellite (groundStation) to local broadcast

) return 0;

return -1; // delete message

break;

}

return -2; // unreachable code to eliminate C++ warning.

}

//===

void Router::finish()

{

long num_samples;

double smallest, largest, mean, standard_deviation, variance;

ev << endl << endl<< "*** Module: " << fullPath()<<"***" << endl;

ev << "Total arrivals:\t" << jobDist->samples() << endl;

ev << "Total collisions detected:"<<endl;

ev << "At inFromLocal: " << collisionCountNonReset[0]<<endl;

ev << "At wirelessPP: " << collisionCountNonReset[1]<<endl;

ev << "At wirelessSP: " << collisionCountNonReset[2]<<endl<<endl;

ev << "Estimation of the stationary distribution of messages \

as observed by an arrival.\n";

ev << "Queue length, # arrivals that saw n messages in queue, \

estimated probability density function.\n";

for(int i=0; i<jobDist->cells(); ++i)

{ if(jobDist->cell(i) > 0)

{ ev << i << ":\t" << jobDist->cell(i);

ev << "\t" << jobDist->cellPDF(i) << endl;

}

231

}

recordStats("Message Distribution Statistics", jobDist);

ev << "Queue length statistics" << endl;

num_samples = stat.samples();

smallest = stat.min();

largest = stat.max();

mean = stat.mean();

standard_deviation = stat.stddev(),

variance = stat.variance();

ev << "Number of samples: " << num_samples << endl;

ev << "Smallest queue: " << smallest << endl;

ev << "Largest queue: " << largest << endl;

ev << "Mean value: " << mean << endl;

ev << "Standar Dev: " << standard_deviation << endl;

ev << "Variance: " << variance << endl;

printf("Router %d: frames fromLan=%d, toLan=%d, fromSP=%d, \

toSP=%d, fromPP=%d, toPP=%d, in queue=%d\n",

routerID, fromLan, toLan, fromSP, toSP, fromPP,

toPP, queue.length());

}

//---

// file: satellite.cpp

//---

#include <omnetpp.h>

#include <string.h>

//

// Satellite simple module class

//

class Satellite : public cSimpleModule

{

//arrays are of length 2 because of the 2 communication channels.

int satelliteID, totalNodes;

double startTime, satServiceTime, transmissionTime,

gapTime[2], dataRate[2];

double WSPposition, WGSposition, collInterval;

int from, to, inGate, outGate, numGate;

int collisionCount[2], collisionCountNonReset[2], byteCount,

framesToGS, framesToPlanes, framesReceivedFromGS,

framesReceivedFromSP, unrecognized;

232

char *p;

cQueue queue;

cMessage *sendNow, *readyToSend, *collision, *collStatsNow,*msg1;

cDoubleHistogram *jobDist, *byteDist;

cOutVector jobsInSys, bytesInSys;

cStdDev msgStat, byteStat;

cDoubleHistogram *collDist[2];

cOutVector collInSys[2];

// member functions

Module_Class_Members(Satellite, cSimpleModule,0)

virtual void initialize();

virtual void finish();

virtual void handleMessage(cMessage *msg);

void serveMessage();

int outputGate (int inGate, int from, int to);

};

Define_Module(Satellite);

//===

void Satellite::initialize()

{

int i;

startTime = par("startTime");

satServiceTime = par("satServiceTime");

sendNow = new cMessage("sendNow");

collision = new cMessage("collision");

collStatsNow = new cMessage("collStatsNow");

readyToSend = new cMessage("readyToSend");

gapTime[0] = gate("outBus1")->toGate()->ownerModule()

->par("gapTime");

gapTime[1] = gate("outBus2")->toGate()->ownerModule()

->par("gapTime");

dataRate[0] = (double)gate("outBus1")->toGate()->ownerModule()

->par("dataRateBps");

dataRate[1] = (double)gate("outBus2")->toGate()->ownerModule()

233

->par("dataRateBps");

satelliteID = par("satelliteID");

// totalNodes = 3*8 = 24, but 0,...,24 = 25 nodes

totalNodes = par("totalNodes");

// WSPposition = par("WSPposition");

// WGSposition = par("WGSposition");

msg1 = NULL;

jobDist = new cDoubleHistogram(

"Queue Message Distribution (satellite)", 100);

jobDist->setRange(0, 100);

jobsInSys.setName("Messages in System (satellite)");

byteDist = new cDoubleHistogram(

"Queue Byte Distribution (satellite)", 100);

byteDist->setRange(0, 100);

bytesInSys.setName("Bytes in System (satellite)");

{ char *titles[2] = { "Collisions at wirelessGS",

"Collisions at wirelessSP" };

for (i = 0; i<2; i++)

{ collisionCount[i] = 0;

collisionCountNonReset[i] = 0;

collDist[i] = new cDoubleHistogram(titles[i], 100);

collDist[i]->setRange(0, 100);

collInSys[i].setName(titles[i]);

}

}

framesToGS = 0; // to count frames sent to Ground Station

framesToPlanes = 0;

framesReceivedFromGS = 0;

framesReceivedFromSP = 0;

unrecognized = 0;

byteCount = 0; // counts bytes in queue.

collInterval = 1.; // count collisions in 1-second intervals

// first event to request collision statistics.

scheduleAt(collInterval+startTime, collStatsNow);

}

//==

234

void Satellite::handleMessage(cMessage *msg)

{

if (strcmp(msg->name(), collision->name())==0) //msg == collision

{

inGate = msg->arrivalGate()->id() /2; //inGate = 0 or 1

collisionCount[inGate]++;

collisionCountNonReset[inGate]++;

delete msg;

return;

}

//- -

else if (msg == collStatsNow)

//Statistics collection requested now

{ for (int i=0; i<2; i++)

{ collDist[i]->collect (collisionCount[i]);

collInSys[i].record(collisionCount[i]);

// starts a new count for the next interval

collisionCount[i] = 0;

}

scheduleAt(simTime()+collInterval, collStatsNow);

return;

}

//- -

else if (msg == sendNow)

{

switch (outGate)

{

case 0:

send(msg1, "outBus1"); // wirelessGS

framesToGS++;

break;

case 1:

send(msg1, "outBus2"); // wirelessSP

framesToPlanes++;

break;

}

}

//- -

235

else if (msg == readyToSend) // last gapTime has elapsed

{

if (queue.empty())

// There are no remaining messages in queue

{

msg1 = NULL;

if (byteCount != 0)

printf("Satellite: Error, empty queue has byteCount=%d\n",

byteCount);

}

else

{

msg1 = (cMessage *) queue.pop();

// subtracts # bytes taken from the queue

byteCount -= msg1->length()/8;

// schedules a sendNow and readyToSend for msg1

serveMessage();

}

}

//- -

else // msg == regular message or unrecognized

{

// msg arrived while server is idle, current state is "readyToSend"

if (msg1 == NULL)

{

// Statistics collection: queue length was 0

jobDist->collect(0);

jobsInSys.record(0);

msgStat.collect(0.);

// Statistics collection: queue length was 0

byteDist->collect(0);

bytesInSys.record(0);

byteStat.collect(0.);

msg1 = msg; // msg will be serviced immediately

// schedules a sendNow and readyToSend for msg1

serveMessage();

}

else // Arrival while server is busy

{

// n msgs in queue + 1 being serviced

236

jobDist->collect(queue.length()+1);

jobsInSys.record(queue.length()+1);

msgStat.collect(queue.length()+1.);

// accumulates # bytes in new message

byteCount += msg->length()/8;

// n msgs in queue + 1 being serviced

byteDist->collect(byteCount);

bytesInSys.record(byteCount);

byteStat.collect(byteCount);

queue.insert(msg);

}

} // end of regular message

} // end handleMessage

//===

void Satellite::serveMessage()

{

char *p = strchr(msg1->name(),’F’);

if (p == NULL) // unrecognized message, considered an error

{

ev<<"Satellite: unrecognized message deleted "<<endl;

delete msg1;

unrecognized++;

scheduleAt(simTime(), readyToSend);

return;

}

sscanf(p, "F%d T%d", &from, &to);

inGate = (msg1->arrivalGate()->id()) / 2; //inGate: 0/2=0, 2/2=1

if (inGate==0) framesReceivedFromGS++;

else framesReceivedFromSP++;

outGate = outputGate(inGate, from, to); // outGate = -1, 0, 1

if (outGate < 0)

{

delete msg1;

unrecognized++;

scheduleAt(simTime(), readyToSend);

return;

}

237

transmissionTime = msg1->length() / dataRate[outGate];

scheduleAt(simTime() + satServiceTime, sendNow);

scheduleAt(simTime() + satServiceTime + transmissionTime +

gapTime[outGate], readyToSend);

}

//==

int Satellite::outputGate(int inGate, int from, int to)

{

switch (inGate)

{

case 0: // inBus1 (wirelessGS)

if (to < totalNodes) return 1; // WirelessSP

return -1; // delete message

break;

case 1: // inBus2 (wirelessSP)

if (to == -1 || to == totalNodes)

return 0; // inBus1 wirelessGS

return -1; // delete message

break;

}

return -2; // unreachable code to eliminate C++ warning.

}

//===

void Satellite::finish()

{

long num_samples;

double smallest, largest, mean, standard_deviation, variance;

ev << endl << endl<< "*** Module: " << fullPath()

<< "***" << endl;

ev << "Total arrivals:\t" << jobDist->samples() << endl;

ev << "Total collisions detected:"<<endl;

ev << "At wirelessGS: " << collisionCountNonReset[0]

<<endl;

ev << "At wirelessSP: " << collisionCountNonReset[1]

238

<<endl<<endl;

ev << "Estimation of the stationary distribution of \

messages as observed by an arrival.\n";

ev << "Queue length, # arrivals that saw n messages in \

queue, estimated probability density function.\n";

for(int i=0; i<jobDist->cells(); ++i)

{ if(jobDist->cell(i) > 0)

{ ev << i << ":\t" << jobDist->cell(i);

ev << "\t" << jobDist->cellPDF(i) << endl;

}

}

recordStats("Message Distribution Statistics", jobDist);

ev << "Queue length statistics" << endl;

num_samples = msgStat.samples();

smallest = msgStat.min();

largest = msgStat.max();

mean = msgStat.mean();

standard_deviation = msgStat.stddev(),

variance = msgStat.variance();

ev << "Number of samples: " << num_samples << endl;

ev << "Smallest queue: " << smallest << endl;

ev << "Largest queue: " << largest << endl;

ev << "Mean value: " << mean << endl;

ev << "Standar Dev: " << standard_deviation << endl;

ev << "Variance: " << variance << endl;

printf("Satellite: total frames received from GS=%d, \

sent to SP=%d\n",

framesReceivedFromGS, framesToPlanes);

printf("Satellite: received from SP=%d, sent to GS=%d, \

unrecognized=%d, in queue=%d\n",

framesReceivedFromSP, framesToGS, unrecognized, queue.length());

}

//---

// File: simplebus.cc

// Based on an example by Andras Varga, author of OMNeT++.

//---

#include <assert.h>

#include <omnetpp.h>

239

#define MAX_NUM_TAPS 50

class SimpleBus : public cSimpleModule

{

struct sTransmission

{

int tap, channel;

bool upstream;

bool isCollision;

simtime_t busyStart, busyEnd;

cMessage *endEvent;

cMessage *frame;

};

int prueba;

Module_Class_Members(SimpleBus,cSimpleModule,0);

virtual void initialize();

virtual void handleMessage(cMessage *msg);

cMessage *createMessage();

sTransmission *createTransmission();

void recycleMessage(cMessage *msg);

void recycleTransmission(sTransmission *tr);

private:

int numTaps;

int numChannels;

bool wantCollisionModeling;

bool wantCollisionSignal;

bool isFullDuplex;

double delaySecPerMeter;

double dataRateBps;

char busTypePosition[20];

double tapPositions[MAX_NUM_TAPS];

cArray tapStates;

cHead recycledMessages;

cLinkedList recycledTransmissions;

};

240

Define_Module(SimpleBus);

void SimpleBus::initialize()

{

// get parameters

// collision modeling flag

wantCollisionModeling = par("wantCollisionModeling");

// "send collision signals" flag

wantCollisionSignal = par("wantCollisionSignal");

// number of independent channels

numChannels = par("numChannels");

// channel mode

isFullDuplex = par("isFullDuplex");

// delay of the bus

delaySecPerMeter = par("delaySecPerMeter");

// data rate of the bus

dataRateBps = par("dataRateBps");

strcpy(busTypePosition, par("busType").stringValue());

strcat(busTypePosition, "position");

// busTypePosition = LANposition, WPPposition, WSPposition,

// or WGSposition

// query the number of taps and the their positions (in meters)

numTaps = gate("out")->size();

assert(numTaps < MAX_NUM_TAPS);

for (int k=0; k<numTaps; k++)

{

tapPositions[k] = gate("out",k)->toGate()->ownerModule()

->par(busTypePosition);

}

// create linked lists that will hold channel states at taps

// (sTransmission structs)

tapStates.setName("tapStates");

for (int i=0; i<numTaps; i++)

{

for (int j=0; j<numChannels; j++)

{

char listname[64];

sprintf(listname,"tap%dchannel%d",i,j);

cLinkedList *list = new cLinkedList(listname);

241

tapStates.addAt(i*numChannels+j, list);

}

}

recycledMessages.setName("recycledMessages");

recycledTransmissions.setName("recycledTransmissions");

}

cMessage *SimpleBus::createMessage()

{

return new cMessage;

}

SimpleBus::sTransmission *SimpleBus::createTransmission()

{

return new sTransmission;

}

void SimpleBus::recycleMessage(cMessage *msg)

{

delete msg;

}

void SimpleBus::recycleTransmission(sTransmission *tr)

{

delete tr;

}

void SimpleBus::handleMessage(cMessage *msg)

{

cMessage *msg_new;

// is msg a frame to be transmitted on the bus?

if (!msg->isSelfMessage())

{

// get position where packet dropped in

double packetPos = tapPositions[msg->arrivalGate()->index()];

// get channel and direction of packet

int channel = 0;

if (msg->findPar("channel")>=0)

channel = msg->par("channel");

242

bool upstream = true;

if (msg->findPar("upstream")>=0)

upstream = msg->par("upstream");

// duration of packet transmission

double duration = msg->length() / dataRateBps;

// check for collisions and schedule events at different taps

for (int tap=0; tap<numTaps; tap++)

{

// frame doesn’t reach originating tap (J.V.)

// if channel is full duplex, frames propagate in only one

// direction, so maybe this frame won’t reach this tap at all

if ((packetPos == tapPositions[tap]) || isFullDuplex &&

((upstream && packetPos>tapPositions[tap]) ||

(!upstream && packetPos<tapPositions[tap])))

continue;

// determine when frame head and tail will reach this tap

double distance = fabs(packetPos-tapPositions[tap]);

double delay = distance * delaySecPerMeter;

simtime_t start = simTime() + delay;

simtime_t end = start + duration;

#ifdef WANT_DEBUG

ev << "Start receive " << msg->name() << " at tap "

<< tap << " at T = " << start << endl;

ev << "Complete receive " << msg->name() << "at tap "

<< tap << " at T = " << end << endl;

#endif

bool hasCollision = false;

sTransmission *collisionTr = NULL;

cLinkedList *list =

(cLinkedList *)tapStates[tap*numChannels+channel];

// if needed, do collision resolution at tap[tap]

if (wantCollisionModeling)

{

for (cLinkedListIterator i(*list); !i.end(); i++)

{

243

sTransmission *tr = (sTransmission *) i();

// does frame overlap with this transmission?

if (channel==tr->channel && (!isFullDuplex ||

upstream==tr->upstream) &&

end>tr->busyStart && start<tr->busyEnd)

{

//this is a collision; if we already had one, merge this transmission

// structure into the one already holding the collision, and discard

// this transmission struct.

if (hasCollision && tr!=collisionTr)

{

// extend (start,end) interval

if (start>tr->busyStart)

start = tr->busyStart;

if (end<tr->busyEnd)

end = tr->busyEnd;

// recycle this transmission

recycleMessage(cancelEvent(tr->endEvent));

if (tr->frame)

delete tr->frame;

list->remove(tr);

recycleTransmission(tr);

// adjust collisionTr afterwards...

tr = collisionTr;

}

else

{

// set collision flags

hasCollision = true;

collisionTr = tr;

tr->isCollision = true;

// if this transmission collided, don’t need frame any more

if (tr->frame)

{

delete tr->frame;

tr->frame = NULL;

}

}

244

// adjust start and end times and reschedule events

if (tr->busyStart > start)

tr->busyStart = start;

else

start = tr->busyStart;

if (tr->busyEnd < end)

{

tr->busyEnd = end;

scheduleAt(end, cancelEvent(tr->endEvent));

}

else

end = tr->busyEnd;

#ifdef WANT_DEBUG

ev << "*****CONTENT OF STRANSMISSION STRUCT AT TAP " << tap

<< " ******" << endl;

ev << "channel = " << tr->channel << endl;

ev << "tap = " << tr->tap << endl;

ev << "busyStart = " << tr->busyStart << endl;

ev << "busyEnd = " << tr->busyEnd << endl;

ev << "***" <<endl;

#endif

}

}

}

// if no collision, add transmission structure and schedule

// associated events

if (!hasCollision)

{

// create and fill in transmission structure

sTransmission *tr = createTransmission();

tr->tap = tap;

tr->channel = channel;

tr->upstream = upstream;

tr->isCollision = false;

tr->busyStart = start;

tr->busyEnd = end;

tr->frame = (cMessage *) msg->dup();

245

// schedule event at end of transmission

tr->endEvent = createMessage();

char msgName[64];

sprintf(msgName,"tap%dchannel%d-e",tap,channel);

tr->endEvent->setName(msgName);

tr->endEvent->setContextPointer(tr);

scheduleAt(end, tr->endEvent);

// add to list

list->insertHead(tr);

}

}

// don’t need original frame any more

delete msg;

}

else // msg->isSelfMessage() is true

{

// this is a scheduled message, obtain associated

// transmission structure

sTransmission *tr = (sTransmission *)msg->contextPointer();

assert(msg==tr->endEvent);

// remove transmission structure from list

cLinkedList *list = (cLinkedList *) tapStates[tr->

tap*numChannels+tr->channel];

list->remove(tr);

// send frame or collision signal on the corresponding tap

//this section changed so that collisions can be monitored

if (tr->isCollision)

{

ev << "a collision signal output" << endl;

if (wantCollisionSignal)

{

msg_new= new cMessage("collision");

msg_new->setKind(1);

send(msg_new,"out",tr->tap);

ev<<busTypePosition[0]<<busTypePosition[1]<<

busTypePosition[2]<<

"bus:"<<simTime()<<" THE MESSAGE "<<

msg->name()<<" caused a collision"<<endl;

246

}

}

else

{

// ev << "a signal output" << endl;

msg_new=tr->frame;

msg_new->setKind(2);

send(msg_new, "out", tr->tap);

}

recycleTransmission(tr);

recycleMessage(msg);

}

}

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <assert.h>

#define Dim 100

#define sigmoid

#define true 1

#define false 0

// GRADIENT DESCENT

// ---------------------global data structures ---------------------

// I is number of output nodes

// J is number of hidden nodes

// K is number of input nodes

// L is number of patterns processed for a weight update

// (periodic updates)

// L = 1 is continuous update, L = -1 is batch update.

int I, J, K, L;

double Alpha; //Alpha is not used in this program

double X[Dim], origX[Dim];

double D[Dim];

double W1[Dim][Dim];

247

double Net1[Dim];

double Y1[Dim];

double Delta1[Dim];

double DeltaW1[Dim][Dim];

double W2[Dim][Dim];

double Net2[Dim];

double Y2[Dim];

double Delta2[Dim];

double DeltaW2[Dim][Dim];

double W3[Dim][Dim]; //weights for Adaline network (J=0)

double DeltaW3[Dim][Dim];

// ----------------------function prototypes-----------------------

double g (double x);

double gp(double x);

void clearmat (double W[Dim][Dim], int N, int M);

void iniweights (double W[Dim][Dim], int N, int M);

void readweights (FILE *fdw, double W[Dim][Dim], int N, int M);

void writeweights (FILE *fdw, double W[Dim][Dim], int N, int M);

void printmat (double W[Dim][Dim], int N, int M);

void printvec (double V[Dim], int N);

void printdata (void);

int readpat (FILE *fdtrpr, double X[Dim], int K, double D[Dim],

int I, double origX[Dim]);

void multAX (double A[Dim][Dim], double X[Dim], double B[Dim],

int N, int M);

double sqerror(FILE *fdtr, int *nok, int *nbad);

void forward(void);

void updateweights(void);

void normalize(double V[Dim], int N);

// ======================MAIN PROGRAM============================

int main(void) {

int i, j, k, p, ok, nok1, nok2, nbad1, nbad2;

int epochs, predictedType, nextType, currentType;

double sum, eta, epsilon, sq, sqOld;

int stop2;

double epsilon2; // A second criterion to stop iterations.

char justPrediction; // T=training and prediction,

248

// P=skip training, only prediction

FILE *fdtr, *fdpr, *fdpa, *fdw;

// ------------------ execution starts here ---------------

// srand(time(NULL));

srand(1); // we want a fixed sequence of random weights

sqOld = 0;

stop2 = false;

fdpa = fopen("params.pdu", "r");

fdtr = fopen("training.pdu", "r");

fdpr = fopen("predict.pdu", "r");

fdw = fopen("weights.pdu", "r");

fscanf(fdpa, "%*[^:]: %d %d %d %lf %lf %lf %d %lf %c",

&K, &J, &I, &eta, &epsilon, &Alpha, &L, &epsilon2,

&justPrediction);

assert(K>=1 && K<Dim);

assert(J>=0 && J<Dim);

assert(I>=1 && I<Dim);

printf("Network parameters:\n");

printf(" K=%d input nodes (including bias)\n", K+1);

if (J==0) printf("No hidden nodes. Adaline network assumed.\n");

else printf(" J=%d hidden nodes (including bias)\n", J+1);

printf(" I=%d output nodes\n", I);

printf(

"Learning rate eta=%lf, stop criterion epsilon=%lf\n", eta,epsilon);

printf("Weight update every L=%d patterns\n", L);

printf("Second stop criterion epsilon2=%lf\n", epsilon2);

printf("justPrediction=%c\n",justPrediction);

if (fdw == NULL) printf("No weights.pdw file exists\n");

else printf ("Weights.pdw file opened\n");

getchar();

epochs = 0;

// Step 1: initialize the weights.

printf("Initializing weights ...\n");

if (J==0) {

if (fdw == NULL) iniweights(W3, I, K);

else readweights(fdw, W3, I, K);

clearmat(DeltaW3, I, K);

}

else {

249

if (fdw == NULL) { iniweights(W1, J, K);

iniweights(W2, I, J);

}

else { printf("About to read weights\n");

readweights(fdw, W1, J, K);

readweights(fdw, W2, I, J);

printf("Weights read\n");

}

clearmat(DeltaW1, J, K);

clearmat(DeltaW2, I, J);

}

if (fdw != NULL) { fclose(fdw); printf("Weights file closed\n");}

printf("Weights are ready!\n");

if (justPrediction == ’P’) goto predict;

// Step 2: present an input pattern from the training collection

printf("Starting Training Phase\n");

step2:

rewind(fdtr);

p = 0;

while (readpat(fdtr, X, K, D, I, origX) != EOF) {

p++;

// Step 3: calculate outputs of nodes (hidden and output layer)

forward();

// Step 4: check to see whether Y2[i] = D[i]

// This step is not implemented because it is unnecessary.

// Step 5: calculate the error terms in output and hidden layers

if (J==0) {

for (i=1; i<=I; i++)

Delta2[i] = D[i]-Y2[i]; //Delta for Adaline network

}

else {

for (i=1; i<=I; i++)

Delta2[i] = gp(Net2[i]) * (D[i]-Y2[i]);

for (j=1; j<=J; j++) {

sum = 0.0;

for (i=1; i<=I; i++)

sum += W2[i][j] * Delta2[i];

Delta1[j] = gp(Net1[j]) * sum;

250

}

}

// Step 5bis: accumulate errors for periodic update

if (J==0) {

for (i=1; i<=I; i++)

for (k=0; k<=K; k++)

DeltaW3[i][k] += eta * Delta2[i] * X[k]; //Adaline weights

}

else {

for (i=1; i<=I; i++)

for (j=0; j<=J; j++)

DeltaW2[i][j] += eta * Delta2[i] * Y1[j];

for (j=1; j<=J; j++)

for (k=0; k<=K; k++)

DeltaW1[j][k] += eta * Delta1[j] * X[k];

}

//if (epochs==0) printdata();

// Step 6: change the weights if periodic update applies

if ((L>0) && (p%L == 0)) // Periodic updates apply?

updateweights();

// Step 7: Are there more patterns,

// is the convergence criterion satisfied?

step7:

} /*end of step2: while there are more patterns*/

// Last weight update for this epoch if applies

if ((L<=0) || (p%L != 0)) // Last update apply?

updateweights();

epochs++;

sq = sqerror(fdtr, &nok1, &nbad1);

if (epochs%10 == 0) {

printf("Epochs = %d, sqerror = %lf, nok1=%d, nbad1=%d\n",

epochs, sq, nok1, nbad1);

if (epochs%1000 == 0)

if (fabs(sqOld-sq) < epsilon2) stop2 = true;

else sqOld = sq;

}

251

if (sq > epsilon && !stop2) goto step2;

printf("Training complete!\n");

// printdata();

fdw = fopen("weights.pdu", "w");

if (J==0) writeweights(fdw, W3, I, K);

else { writeweights(fdw, W1, J, K);

writeweights(fdw, W2, I, J);

}

fclose(fdw);

predict:

printf("Starting Prediction Phase\n");

// Now predictions will be tested for data in the predict.dat file

p = nok1 = nok2 = nbad1 = nbad2 = 0;

int nok3=0, nbad3=0, decisionWait2 = 0, decisionSend2 = 0,

decisionWait3 = 0, decisionSend3 = 0;

//reading predictions "predict.pdu". origX = non-normalized copy of X

while (readpat(fdpr, X, K, D, I, origX) != EOF)

{

p++;

//printf("origX[%d]=%lf\n", K, origX[K]);

currentType = origX[K];

nextType = 0;

for (i=I; i>=1; i--) nextType = nextType*2 + D[i];

//printf("Line #%d, currentType %d, nextType %d\n",

// p, currentType, nextType);

// printf("New prediction p=%d being read... X= ", p);

// printvec(X, K);

forward();

/* printf("Y2 = ");

printvec(Y2, I);

printf("D = ");

printvec(D, I);

*/

#ifdef sigmoid

predictedType = 0;

for (i=I; i>=1; i--) predictedType = predictedType*2 +

(int)trunc(Y2[i]+0.5);

ok = 1;

for (i=1; i<=I && ok == 1; i++)

252

if ((D[i]-0.5)*(Y2[i]-0.5)<=0.) ok = 0;

if (ok==1) nok1++;

else nbad1++;

if (((nextType!=currentType) && (predictedType!=currentType)) ||

(nextType==currentType) && (predictedType == currentType))

nok2++;

else nbad2++;

if (nextType == predictedType) nok3++;

else nbad3++;

// nok1 = number of correcttly predicted PDUs

// nok2 = number of correct decisions based on predictions

// nok3 = number of correcttly predicted PDUs = nok1

if (predictedType == currentType) decisionWait2++;

else decisionSend2++;

if (nextType == currentType) decisionWait3++;

else decisionSend3++;

//printf("current=%d, next=%d, predict=%d, nok1=%d, nbad1=%d,nok2=%d,

// nbad2=%d, nok3=%d, nbad3=%d, W2=%d, S2=%d, W3=%d, S3=%d\n",

// currentType, nextType, predictedType, nok1, nbad1, nok2,

// nbad2, nok3, nbad3, decisionWait2, decisionSend2,

// decisionWait3, decisionSend3);

#endif

#ifdef tanh

ok = 1;

for (i=1; i<=I && ok == 1; i++)

if (D[i]*Y2[i]<=0.) ok = 0;

if (ok==1) nok1++;

else nbad1++;

#endif

} //EOF on predictions file "predict.pdu"

printf("Predictions correct=%d, bad=%d total=%d\n", nok1, nbad1, p);

printf("Predictions2 correct=%d, bad=%d\n", nok2, nbad2);

printf("Predictions3 correct=%d, bad=%d\n", nok3, nbad3);

printf("Predictions2 Wait=%d, Send=%d\n",

decisionWait2, decisionSend2);

printf("Predictions3 Wait=%d, Send=%d\n",

decisionWait3, decisionSend3);

fclose(fdpa);

253

fclose(fdtr);

fclose(fdpr);

return 0;

}

// --

void clearmat (double W[Dim][Dim], int N, int M){

int i, j;

for (i=0; i<=N; i++)

for (j=0; j<=M; j++)

W[i][j] = 0.0;

}

// --

void iniweights (double W[Dim][Dim], int N, int M) {

int i, j;

for (j=0; j<=M; j++) {

W[0][j] = 0.0; // These entries are not really used

for (i=1; i<=N; i++) {

W[i][j] = (double)rand()/(double)RAND_MAX - 0.5;

}

}

}

// --

void readweights (FILE *fdw, double W[Dim][Dim], int N, int M) {

int i, j, Nw, Mw;

fscanf(fdw, ": %d %d\n", &Nw, &Mw);

assert(Nw==N && Mw==M);

for (i=0; i<=N; i++) {

for (j=0; j<=M; j++) fscanf(fdw, "%lE ", &W[i][j]);

fscanf(fdw, "\n");

}

}

// --

void writeweights (FILE *fdw, double W[Dim][Dim], int N, int M) {

int i, j;

fprintf(fdw, ": %d %d\n", N, M);

for (i=0; i<=N; i++) {

for (j=0; j<=M; j++) fprintf(fdw, "%25.15lE ", W[i][j]);

fprintf(fdw, "\n");

254

}

}

// --

void updateweights(void) {

int i, j, k;

if (J==0) {

for (i=1; i<=I; i++)

for (k=0; k<=K; k++)

W3[i][k] += DeltaW3[i][k]; //Adaline weights

clearmat(DeltaW3, I, K);

}

else {

for (i=1; i<=I; i++)

for (j=0; j<=J; j++)

W2[i][j] += DeltaW2[i][j];

for (j=1; j<=J; j++)

for (k=0; k<=K; k++)

W1[j][k] += DeltaW1[j][k];

clearmat(DeltaW1, J, K);

clearmat(DeltaW2, I, J);

}

}

// --

#ifdef sigmoid

double g(double x) { //sigmoid activation function

double r;

if (x > 50.0) r = 1.0;

else if (x < -50.0) r = 0.0;

else {

r = 1.0 /(1.0 + exp(-x));

}

// if(r==1.0 || r==0.0) printf("Warning in sigmoid activation

// function: x=%lf\n", x);

return r;

}

// --

double gp(double x) {

double r;

r = g(x);

255

return r*(1.0 - r);

}

#endif

// --

#ifdef tanh

double g(double x) { //hyperbolic tangent activation function

double r;

if (x > 50.0) r = 1.0;

else if (x < -50.0) r = -1.0;

else {

r = exp(-2.0*x);

r = (1.0 - r)/(1.0 + r);

}

if(r==1.0 || r==0.0)

printf("Warning in tanh activation function: x=%lf\n", x);

return r;

}

// --

double gp(double x) {

double tmp;

tmp = g(x);

return 1.0 - tmp*tmp;

}

#endif

// --

void printmat (double W[Dim][Dim], int N, int M) {

int i, j;

for (i=1; i<=N; i++) {

printf("[%d,*]: ", i);

for (j=0; j<=M; j++)

printf ("%7.3lf ", W[i][j]);

printf("\n");

}

}

// --

void printvec (double V[Dim], int N) {

int i;

256

for (i=1; i<=N; i++) printf("%7.3lf ", V[i]);

printf("\n");

}

// --

void printdata (void) {

printf("Printdata: X : "); printvec(X, K);

if (J==0) {

printf("Printdata: W3:\n"); printmat(W3, I, K);

printf("Printdata: DeltaW3:\n"); printmat(DeltaW3, I, K);

}

else {

printf("Printdata: W1:\n"); printmat(W1, J, K);

printf("Printdata: DeltaW1:\n"); printmat(DeltaW1, J, K);

printf("Printdata: Net1 : "); printvec(Net1, J);

printf("Printdata: Y1 : "); printvec(Y1, J);

printf("Printdata: Delta1: "); printvec(Delta1, J);

printf("Printdata: W2\n"); printmat(W2, I, J);

printf("Printdata: DeltaW2:\n"); printmat(DeltaW2, I, J);

}

printf("Printdata: Net2 : "); printvec(Net2, I);

printf("Printdata: Y2 : "); printvec(Y2, I);

printf("Printdata: Delta2: "); printvec(Delta2, I);

printf("Printdata: D : "); printvec(D, I);

printf("\n");

}

// --

int readpat (FILE *fdtrpr, double X[Dim], int K, double D[Dim],

int I, double origX[Dim]) {

int i, k, eof;

X[0] = 1.0; origX[0] = 1.0;

for (k=1; k<=K; k++) {

// reading from "training.pdu" or "predict.pdu" file

fscanf(fdtrpr, "%lf", &X[k]);

origX[k] = X[k]; // saves a non-normalized copy of X.

}

normalize(X, K);

D[0] = 0.0;

for (i=1; i<=I; i++) eof = fscanf(fdtr, "%lf", &D[i]);

return eof;

}

257

// --

void normalize(double V[Dim], int N) {

int i;

double norm = 0.0;

for (i=0; i<=N; i++)

norm += fabs(V[i]);

if (norm>0)

for (i=0; i<=N; i++)

V[i] /= norm;

return;

}

// --

void multAX (double A[Dim][Dim], double X[Dim], double B[Dim],

int N, int M)

{

int i, j;

B[0] = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.0;

for (j=0; j<=M; j++)

B[i] += A[i][j] * X[j];

}

}

// --

void forward(){

int i,j;

if (J==0) {

multAX (W3, X, Net2, I, K);

Y2[0] = 0.0; //this output is not used

for (i=1; i<=I; i++)

Y2[i] = Net2[i]; //g(Net2[i]) = Net2[i]

}

else {

multAX (W1, X, Net1, J, K);

Y1[0] = 1.0; //bias node

for (j=1; j<=J; j++)

Y1[j] = g(Net1[j]);

multAX (W2, Y1, Net2, I, J);

258

Y2[0] = 0.0; //this output is not used

for (i=1; i<=I; i++)

Y2[i] = g(Net2[i]);

}

}

// --

double sqerror (FILE *fdtr, int *nok, int *nbad) {

int i, pt, ok;

double err, tmp;

err = 0.0;

pt = 0;

rewind (fdtr);

(*nok) = (*nbad) = 0;

while (readpat(fdtr, X, K, D, I, origX) != EOF) {

pt++;

forward();

ok = 1;

for (i=1; i<=I; i++) {

tmp = fabs(D[i] - Y2[i]);

err += tmp*tmp;

#ifdef sigmoid

if ((D[i]-0.5)*(Y2[i]-0.5)<=0.) ok = 0;

#endif

#ifdef tanh

if (D[i]*Y2[i]<=0.) ok = 0;

#endif

}

if (ok==1) (*nok)++;

else (*nbad)++;

}

err /= (2.0 * pt);

return err;

}

// --

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <assert.h>

259

#define Dim 100

#define sigmoid

#define true 1

#define false 0

// BACK-PROPAGATION WITH MOMENTUM

// ---------------------global data structures ---------------------

// I is number of output nodes

// J is number of hidden nodes

// K is number of input nodes

// L is number of patterns processed for a weight update

// (periodic updates)

// L = 1 is continuous update, L = -1 is batch update.

int I, J, K, L;

double Alpha;

double X[Dim];

double D[Dim];

double W1[Dim][Dim];

double Net1[Dim];

double Y1[Dim];

double Delta1[Dim];

double DeltaW1[Dim][Dim];

double W2[Dim][Dim];

double Net2[Dim];

double Y2[Dim];

double Delta2[Dim];

double DeltaW2[Dim][Dim];

double W3[Dim][Dim]; //weights for Adaline network (J=0)

double DeltaW3[Dim][Dim];

// ----------------------function prototypes-----------------------

double g (double x);

double gp(double x);

void clearmat (double W[Dim][Dim], int N, int M);

void iniweights (double W[Dim][Dim], int N, int M);

void readweights (FILE *fdw, double W[Dim][Dim], int N, int M);

void writeweights (FILE *fdw, double W[Dim][Dim], int N, int M);

void printmat (double W[Dim][Dim], int N, int M);

260

void printvec (double V[Dim], int N);

void printdata (void);

int readpat (FILE *fdtr, double X[Dim], int K, double D[Dim],

int I);

void multAX (double A[Dim][Dim], double X[Dim], double B[Dim],

int N, int M);

double sqerror(FILE *fdtr, int *nok, int *nbad);

void forward(void);

void updateweights(void);

void normalize(double V[Dim], int N);

// ======================MAIN PROGRAM============================

int main(void) {

int i, j, k, p, ok, nok, nbad;

int epochs;

double sum, eta, epsilon, sq, sqOld;

int stop2;

double epsilon2; // A second criterion to stop iterations.

// T=training and prediction, P=skip training, only prediction

char justPrediction;

FILE *fdtr, *fdpr, *fdpa, *fdw;

// ------------------ execution starts here ---------------

// srand(time(NULL));

srand(1); // we want a fixed sequence of random weights

sqOld = 0;

stop2 = false;

fdpa = fopen("params.pdu", "r");

fdtr = fopen("training.pdu", "r");

fdpr = fopen("predict.pdu", "r");

fdw = fopen("weights.pdu", "r");

fscanf(fdpa, "%*[^:]: %d %d %d %lf %lf %lf %d %lf %c",

&K, &J, &I, &eta, &epsilon, &Alpha, &L,

&epsilon2, &justPrediction);

assert(K>=1 && K<Dim);

assert(J>=0 && J<Dim);

assert(I>=1 && I<Dim);

printf("Network parameters:\n");

printf(" K=%d input nodes (including bias)\n", K+1);

if (J==0) printf("No hidden nodes. Adaline network assumed.\n");

else printf(" J=%d hidden nodes (including bias)\n", J+1);

261

printf(" I=%d output nodes\n", I);

printf("Learning rate eta=%lf, stop criterion epsilon=%lf,"

"alpha=%lf\n", eta, epsilon, Alpha);

printf("Weight update every L=%d patterns\n", L);

printf("Second stop criterion epsilon2=%lf\n", epsilon2);

if (fdw == NULL) printf("No weights.pdw file exists\n");

else printf ("Weights.pdw file opened\n");

getchar();

epochs = 0;

// Step 1: initialize the weights.

printf("Initializing weights ...\n");

if (J==0) {

if (fdw == NULL) iniweights(W3, I, K);

else readweights(fdw, W3, I, K);

clearmat(DeltaW3, I, K);

}

else {

if (fdw == NULL) { iniweights(W1, J, K);

iniweights(W2, I, J);

}

else { printf("About to read weights\n");

readweights(fdw, W1, J, K);

readweights(fdw, W2, I, J);

printf("Weights read\n");

}

clearmat(DeltaW1, J, K);

clearmat(DeltaW2, I, J);

}

if (fdw != NULL) { fclose(fdw); printf("Weights file closed\n");}

printf("Weights are ready!\n");

// Step 2: present an input pattern from the training collection

step2:

rewind(fdtr);

p = 0;

while (readpat(fdtr, X, K, D, I) != EOF) {

p++;

// Step 3: calculate outputs of nodes (hidden and output layer)

forward();

262

// Step 4: check to see whether Y2[i] = D[i]

// This step is not implemented because it is unnecessary.

// Step 5: calculate the error terms in output and hidden layers

if (J==0) {

for (i=1; i<=I; i++)

Delta2[i] = D[i]-Y2[i]; //Delta for Adaline network

}

else {

for (i=1; i<=I; i++)

Delta2[i] = gp(Net2[i]) * (D[i]-Y2[i]);

for (j=1; j<=J; j++) {

sum = 0.0;

for (i=1; i<=I; i++)

sum += W2[i][j] * Delta2[i];

Delta1[j] = gp(Net1[j]) * sum;

}

}

// Step 5bis: accumulate errors for periodic update

if (J==0) {

for (i=1; i<=I; i++)

for (k=0; k<=K; k++)

DeltaW3[i][k] += eta * Delta2[i] * X[k]; //Adaline weights

}

else {

for (i=1; i<=I; i++)

for (j=0; j<=J; j++)

DeltaW2[i][j] += eta * Delta2[i] * Y1[j];

for (j=1; j<=J; j++)

for (k=0; k<=K; k++)

DeltaW1[j][k] += eta * Delta1[j] * X[k];

}

//if (epochs==0) printdata();

// Step 6: change the weights if periodic update applies

if ((L>0) && (p%L == 0)) // Periodic updates apply?

updateweights();

263

// Step 7: Are there more patterns,

// is the convergence criterion satisfied?

step7:

} /*end of step2: while there are more patterns*/

// Last weight update for this epoch if applies

if ((L<=0) || (p%L != 0)) // Last update apply?

updateweights();

epochs++;

sq = sqerror(fdtr, &nok, &nbad);

if (epochs%10 == 0) {

printf("Epochs = %d, sqerror = %lf, nok=%d, nbad=%d\n",

epochs, sq, nok, nbad);

if (epochs%1000 == 0)

if (fabs(sqOld-sq) < epsilon2) stop2 = true;

else sqOld = sq;

}

if (sq > epsilon && !stop2) goto step2;

printf("Training complete!\n");

// printdata();

fdw = fopen("weights.pdu", "w");

if (J==0) writeweights(fdw, W3, I, K);

else { writeweights(fdw, W1, J, K);

writeweights(fdw, W2, I, J);

}

fclose(fdw);

// Now predictions will be tested for data in the predict.dat file

p = nok = nbad = 0;

while (readpat(fdpr, X, K, D, I) != EOF) {

p++;

// printf("New prediction p=%d being read... X= ", p);

// printvec(X, K);

forward();

/* printf("Y2 = ");

printvec(Y2, I);

printf("D = ");

printvec(D, I);

*/

#ifdef sigmoid

ok = 1;

264

for (i=1; i<=I && ok == 1; i++)

if ((D[i]-0.5)*(Y2[i]-0.5)<=0.) ok = 0;

if (ok==1) nok++;

else nbad++;

#endif

#ifdef tanh

ok = 1;

for (i=1; i<=I && ok == 1; i++)

if (D[i]*Y2[i]<=0.) ok = 0;

if (ok==1) nok++;

else nbad++;

#endif

}

printf("Predictions correct=%d, bad=%d total=%d\n", nok, nbad, p);

fclose(fdpa);

fclose(fdtr);

fclose(fdpr);

return 0;

}

// --

void clearmat (double W[Dim][Dim], int N, int M){

int i, j;

for (i=0; i<=N; i++)

for (j=0; j<=M; j++)

W[i][j] = 0.0;

}

// --

void iniweights (double W[Dim][Dim], int N, int M) {

int i, j;

double scale = 1.000; // To control size of random values.

for (j=0; j<=M; j++) {

W[0][j] = 0.0; // These entries are not really used

for (i=1; i<=N; i++) {

W[i][j] = ((double)rand()/(double)RAND_MAX - 0.5)*scale;

}

}

}

265

// --

void readweights (FILE *fdw, double W[Dim][Dim], int N, int M) {

int i, j, Nw, Mw;

fscanf(fdw, ": %d %d\n", &Nw, &Mw);

assert(Nw==N && Mw==M);

for (i=0; i<=N; i++) {

for (j=0; j<=M; j++) fscanf(fdw, "%lE ", &W[i][j]);

fscanf(fdw, "\n");

}

}

// --

void writeweights (FILE *fdw, double W[Dim][Dim], int N, int M) {

int i, j;

fprintf(fdw, ": %d %d\n", N, M);

for (i=0; i<=N; i++) {

for (j=0; j<=M; j++) fprintf(fdw, "%25.15lE ", W[i][j]);

fprintf(fdw, "\n");

}

}

// --

void updateweights(void) {

int i, j, k;

if (J==0) {

for (i=1; i<=I; i++)

for (k=0; k<=K; k++) {

W3[i][k] += DeltaW3[i][k]; //Adaline weights

DeltaW3[i][k] *= Alpha;

}

}

else {

for (i=1; i<=I; i++)

for (j=0; j<=J; j++) {

W2[i][j] += DeltaW2[i][j];

DeltaW2[i][j] *= Alpha;

}

for (j=1; j<=J; j++)

for (k=0; k<=K; k++) {

W1[j][k] += DeltaW1[j][k];

DeltaW1[j][k] *= Alpha;

266

}

}

}

// --

#ifdef sigmoid

double g(double x) { //sigmoid activation function

double r;

if (x > 50.0) r = 1.0;

else if (x < -50.0) r = 0.0;

else {

r = 1.0 /(1.0 + exp(-x));

}

// if(r==1.0 || r==0.0)

// printf("Warning in sigmoid activation function: x=%lf\n", x);

return r;

}

double gp(double x) {

double r;

r = g(x);

return r*(1.0 - r);

}

#endif

// --

#ifdef tanh

double g(double x) { //hyperbolic tangent activation function

double r;

if (x > 50.0) r = 1.0;

else if (x < -50.0) r = -1.0;

else {

r = exp(-2.0*x);

r = (1.0 - r)/(1.0 + r);

}

if(r==1.0 || r==0.0)

printf("Warning in tanh activation function: x=%lf\n", x);

return r;

}

double gp(double x) {

double tmp;

tmp = g(x);

267

return 1.0 - tmp*tmp;

}

#endif

// --

void printmat (double W[Dim][Dim], int N, int M) {

int i, j;

for (i=1; i<=N; i++) {

printf("[%d,*]: ", i);

for (j=0; j<=M; j++)

printf ("%7.3lf ", W[i][j]);

printf("\n");

}

}

// --

void printvec (double V[Dim], int N) {

int i;

for (i=1; i<=N; i++) printf("%7.3lf ", V[i]);

printf("\n");

}

// --

void printdata (void) {

printf("Printdata: X : "); printvec(X, K);

if (J==0) {

printf("Printdata: W3:\n"); printmat(W3, I, K);

printf("Printdata: DeltaW3:\n"); printmat(DeltaW3, I, K);

}

else {

printf("Printdata: W1:\n"); printmat(W1, J, K);

printf("Printdata: DeltaW1:\n"); printmat(DeltaW1, J, K);

printf("Printdata: Net1 : "); printvec(Net1, J);

printf("Printdata: Y1 : "); printvec(Y1, J);

printf("Printdata: Delta1: "); printvec(Delta1, J);

printf("Printdata: W2\n"); printmat(W2, I, J);

printf("Printdata: DeltaW2:\n"); printmat(DeltaW2, I, J);

}

printf("Printdata: Net2 : "); printvec(Net2, I);

printf("Printdata: Y2 : "); printvec(Y2, I);

printf("Printdata: Delta2: "); printvec(Delta2, I);

268

printf("Printdata: D : "); printvec(D, I);

printf("\n");

}

// --

int readpat (FILE *fdtr, double X[Dim], int K, double D[Dim], int I)

{

int i, k, eof;

X[0] = 1.0;

for (k=1; k<=K; k++) fscanf(fdtr, "%lf", &X[k]);

normalize(X, K);

D[0] = 0.0;

for (i=1; i<=I; i++) eof = fscanf(fdtr, "%lf", &D[i]);

return eof;

}

// --

void normalize(double V[Dim], int N) {

int i;

double norm = 0.0;

for (i=0; i<=N; i++)

norm += fabs(V[i]);

if (norm>0)

for (i=0; i<=N; i++)

V[i] /= norm;

return;

}

// --

void multAX (double A[Dim][Dim], double X[Dim], double B[Dim],

int N, int M)

{

int i, j;

B[0] = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.0;

for (j=0; j<=M; j++)

B[i] += A[i][j] * X[j];

}

}

// --

269

void forward(){

int i,j;

if (J==0) { //Adaline network

multAX (W3, X, Net2, I, K);

Y2[0] = 0.0; //this output is not used

for (i=1; i<=I; i++)

Y2[i] = Net2[i]; //g(Net2[i]) = Net2[i]

}

else {

multAX (W1, X, Net1, J, K);

Y1[0] = 1.0; //bias node

for (j=1; j<=J; j++)

Y1[j] = g(Net1[j]);

multAX (W2, Y1, Net2, I, J);

Y2[0] = 0.0; //this output is not used

for (i=1; i<=I; i++)

Y2[i] = g(Net2[i]);

}

}

// --

double sqerror (FILE *fdtr, int *nok, int *nbad) {

int i, pt, ok;

double err, tmp;

err = 0.0;

pt = 0;

rewind (fdtr);

(*nok) = (*nbad) = 0;

while (readpat(fdtr, X, K, D, I) != EOF) {

pt++;

forward();

ok = 1;

for (i=1; i<=I; i++) {

tmp = fabs(D[i] - Y2[i]);

err += tmp*tmp;

#ifdef sigmoid

if ((D[i]-0.5)*(Y2[i]-0.5)<=0.) ok = 0;

#endif

#ifdef tanh

if (D[i]*Y2[i]<=0.) ok = 0;

270

#endif

}

if (ok==1) (*nok)++;

else (*nbad)++;

}

err /= (2.0 * pt);

return err;

}

// --

// This program reads a data.pdu file containing sequences of

// consecutive numeric PDUs and the corresponding next binary

// PDU predicted.

// The program creates two random partitions out of the file,

// intended for training and testing a Neural Network.

#include <stdio.h>

#include <stdlib.h>

#define LN 1000

FILE * fdIn, * fdOut1, * fdOut2;

int i, j, numLines, lineSize, fileSize, halfLines;

int * record, recordLimit;

char line[LN];

int main() {

// srand (time (0)); rand();

fdIn = fopen ("data0N45.pdu", "r");

fdOut1 = fopen ("training.pdu", "w");

fdOut2 = fopen ("predict.pdu", "w");

fgets(line, LN, fdIn);

lineSize = strlen(line)+1;

fseek(fdIn, 0, SEEK_END);

fileSize = ftell(fdIn);

numLines = fileSize / lineSize;

halfLines = numLines/2;

record = (int *) malloc(sizeof(int) * numLines);

for (i=0; i<numLines; i++) record[i] = i;

recordLimit = numLines-1;

for (i=0; i<halfLines; i++) {

j = rand()*recordLimit / RAND_MAX;

271

fseek(fdIn, record[j]*lineSize, SEEK_SET);

fgets(line, LN, fdIn);

fputs(line, fdOut1);

// printf("fdOut1: iteration=%d, random j = %d, index=%d, line=%s",

// i, j, record[j], line);

// getchar();

record[j] = record[recordLimit];

recordLimit--;

}

while (recordLimit >= 0) {

j = rand()*recordLimit / RAND_MAX;

fseek(fdIn, record[j]*lineSize, SEEK_SET);

fgets(line, LN, fdIn);

fputs(line, fdOut2);

// printf("fdOut2: iteration=%d, random j = %d, index=%d, line=%s",

// i, j, record[j], line);

// getchar();

record[j] = record[recordLimit];

recordLimit--;

}

fclose (fdIn);

fclose (fdOut1);

fclose (fdOut2);

}

// This program reads in dataNN.txt containing the summary PDUs and

// creates a new summary file called dataNewNN.txt containing the

// prediction ’W’ (wait) or ’S’ (send) + the old data

// The program reads in the weights calculated by gd.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <assert.h>

#define Dim 100

#define sigmoid

#define true 1

#define false 0

// ---------------------global data structures ---------------------

// I is number of output nodes

272

// J is number of hidden nodes

// K is number of input nodes

int I, J, K, L, sizePDUtable;

unsigned int prevTimePDU, prevLengthPDU, currTimePDU, currLengthPDU;

double D[Dim], Delta1[Dim], Delta2[Dim], DeltaW1[Dim][Dim],

DeltaW2[Dim][Dim], DeltaW3[Dim][Dim], Net1[Dim], Net2[Dim],

origX[Dim], W1[Dim][Dim], W2[Dim][Dim], X[Dim],

Y1[Dim], Y2[Dim];

double W3[Dim][Dim]; //weights for Adaline network (J=0)

char buf[100], typePDU[100],

*PDUtable[]= { // table to store all PDU types

"", // 0 not used

"laser", // 1

"start_resume", // 2

"stop_freeze", // 3

"po_task_authorization", // 4

"po_minefield", // 5

"fire", // 6

"detonation", // 7

"acknowledge", // 8

"po_delete_objects", // 9

"minefield", // 10

"po_message", // 11

"signal", // 12

"aggregate_state", // 13

"po_simulator_present", // 14

"po_task_frame", // 15

"mines", // 16

"po_point", // 17

"po_objects_present", // 18

"po_fire_parameters", // 19

"iff", // 20

"po_line", // 21

"po_parametric_input", // 22

"po_unit", // 23

"po_task", // 24

"transmitter", // 25

"po_task_state", // 26

"entity_state", // 27

"" } // 28 not used

273

;

FILE *fdpa, *fdw, *fdpr, *fdnew;

// ----------------------function prototypes-----------------------

double g (double x);

void clearmat (double W[Dim][Dim], int N, int M);

void readweights (FILE *fdw, double W[Dim][Dim], int N, int M);

void printdata (void);

int readpat (double X[Dim], int K, double D[Dim], int I,

double origX[Dim]);

void multAX (double A[Dim][Dim], double X[Dim], double B[Dim],

int N, int M);

void forward(void);

void normalize(double V[Dim], int N);

// ======================MAIN PROGRAM============================

int main(int argc, char *argv[]) {

int i, p;

int decisionWait, decisionSend;

int predictedType, currentType;

char predict[20], dataNew[20];

// ------------------ execution starts here ---------------

if (argc < 2)

{

printf("Usage: %s <dataNN.txt>\n", argv[0]);

return 1;

}

sizePDUtable = sizeof(PDUtable)/sizeof(char *);

for (I=0; I<Dim; I++) {

D[I]=Delta1[I]=Delta2[I]=Net1[I]=Net2[I]=origX[I]=0.;

X[I]=Y1[I]=Y2[I]=0.;

}

strcpy(predict, argv[1]);

//e.g. predict = "data3.pdu"

strncpy(dataNew, predict, 4); dataNew[4]=’\0’;

//e.g. dataNew = "data"

strcat(dataNew, "New"); strcat(dataNew, &predict[4]);

//dataNew = "dataNew3.pdu"

fdpa = fopen("C:\\PhD\\NNPDUPred\\params.pdu", "r");

274

// params are K,J,I. The rest (eta,epsilon,

//Alpha,L,epsilon2,justPrediction) is ignored

fdw = fopen("C:\\PhD\\NNPDUPred\\weights.pdu", "r");

// weights calculated by gd.c

fdpr = fopen(predict, "r");

// opens "data3.pdu" for reading. Sample data is:

//0x55f17462 32 | :20:08.575 1 <dis204 acknowledge PDU>: 18

//0x5602dbaa 32 | :20:09.531 2 <dis204 acknowledge PDU>: 72

//0x5614fd5c 32 | :20:10.527 3 <dis204 acknowledge PDU>: 106

fdnew = fopen(dataNew, "w"); // opens "dataNew3.pdu" for writing

fscanf(fdpa, "%*[^:]: %d %d %d", &K, &J, &I); // fdpa = "params.pdu"

assert(K>=1 && K<Dim);

assert(J>=0 && J<Dim);

assert(I>=1 && I<Dim);

assert (fdw != NULL);

printf("Network parameters:\n");

printf(" K=%d input nodes (including bias)\n", K+1);

if (J==0) printf("No hidden nodes. Adaline network assumed.\n");

else printf(" J=%d hidden nodes (including bias)\n", J+1);

printf(" I=%d output nodes\n", I);

printf ("params.pdw file opened\n");

printf ("Weights.pdw file opened\n");

printf ("%s file opened\n", predict);

printf ("%s file opened for output\n", dataNew);

if (J==0) {

readweights(fdw, W3, I, K);

clearmat(DeltaW3, I, K);

}

else {

// printf("About to read weights\n");

readweights(fdw, W1, J, K);

readweights(fdw, W2, I, J);

clearmat(DeltaW1, J, K);

clearmat(DeltaW2, I, J);

}

fclose(fdw); printf("Weights were read and file closed\n");

// Prediction phase starts here

275

printf("Starting Prediction Phase\n");

p = decisionWait = decisionSend = 0; // counters

prevTimePDU = prevLengthPDU = currTimePDU = currLengthPDU = 0;

while (readpat(X, K, D, I, origX) != EOF)

//reads next pattern (PDU) from "dataNN.txt into buf"

{

p++;

currentType = origX[K];

if (p>1) {

// perfect predictions are written for the PREVIOUS PDU

if (currentType == origX[K-1])

// current PDU type = previous type

fprintf(fdnew," W");

// strategy for previous PDU is Wait

else fprintf(fdnew," S"); // strategy is Send

if (currentType == origX[K-1] &&

currLengthPDU == prevLengthPDU)

// type, time and length are similar

fprintf(fdnew," W"); // strategy for previous PDU is Wait

else fprintf(fdnew," S"); // strategy is Send

if (currentType == origX[K-1] &&

currTimePDU == prevTimePDU &&

currLengthPDU == prevLengthPDU)

// type, time and length are similar

fprintf(fdnew," W\n"); // strategy for previous PDU is Wait

else fprintf(fdnew," S\n"); // strategy is Send

}

fprintf(fdnew, "%s\t", buf); // current PDU summary is written.

prevTimePDU = currTimePDU;

prevLengthPDU = currLengthPDU;

forward();

predictedType = 0;

for (i=I; i>=1; i--)

predictedType = predictedType*2 + (int)trunc(Y2[i]+0.5);

if (currentType == predictedType) { //prediction using NN

decisionWait++;

fprintf(fdnew," w"); // here prediction is wait

276

}

else {

decisionSend++;

fprintf(fdnew," s"); // here prediction is send

}

} //EOF on predictions file "predict.pdu"

fprintf(fdnew," N N\n");

printf("Predictions Wait=%d, Send=%d, total=%d\n",

decisionWait, decisionSend, p);

fclose(fdpa);

fclose(fdpr);

fclose(fdnew);

return 0;

}

// --

void clearmat (double W[Dim][Dim], int N, int M){

int i, j;

for (i=0; i<=N; i++)

for (j=0; j<=M; j++)

W[i][j] = 0.0;

}

// --

void readweights (FILE *fdw, double W[Dim][Dim], int N, int M) {

int i, j, Nw, Mw;

fscanf(fdw, ": %d %d\n", &Nw, &Mw);

assert(Nw==N && Mw==M);

for (i=0; i<=N; i++) {

for (j=0; j<=M; j++) fscanf(fdw, "%lE ", &W[i][j]);

fscanf(fdw, "\n");

}

}

// --

double g(double x) { //sigmoid activation function

double r;

if (x > 50.0) r = 1.0;

else if (x < -50.0) r = 0.0;

else {

r = 1.0 /(1.0 + exp(-x));

277

}

// if(r==1.0 || r==0.0)

// printf("Warning in sigmoid activation function: x=%lf\n", x);

return r;

}

// --

int readpat (double X[Dim], int K, double D[Dim], int I,

double origX[Dim]) {

int i, k;

char *eof;

origX[0] = 1.0; // bias. origX keeps the current pattern

for (k=1; k<K; k++) {

origX[k] = origX[k+1];

// shift left in array origX, keeping origX[0]

} // to make room for next element in time series

eof=fgets(buf, sizeof(buf), fdpr); buf[strlen(buf)-1]=’\0’;

if (eof == NULL) return EOF;

sscanf(buf,"%x%d | %*s%*s%*s%s",

&currTimePDU, &currLengthPDU, typePDU);

for (k=0; k<sizePDUtable; k++)

if (strcmp(typePDU, PDUtable[k]) == 0) break;

// searching PDU type

if (k < 1 || k > sizePDUtable-2)

printf("ERROR: k=%d out of range. PDU type %s unknown.\n",

k, typePDU);

origX[K] = k; // puts current PDU type at end of array origX

for (k=0; k<=K; k++) {

X[k] = origX[k];

}

normalize(X, K);

return 1;

}

// --

void normalize(double V[Dim], int N) {

int i;

double norm = 0.0;

for (i=0; i<=N; i++)

norm += fabs(V[i]);

if (norm>0)

278

for (i=0; i<=N; i++)

V[i] /= norm;

return;

}

// --

void multAX (double A[Dim][Dim], double X[Dim], double B[Dim],

int N, int M) {

int i, j;

B[0] = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.0;

for (j=0; j<=M; j++)

B[i] += A[i][j] * X[j];

}

}

// --

void forward(){

int i,j;

if (J==0) {

multAX (W3, X, Net2, I, K);

Y2[0] = 0.0; //this output is not used

for (i=1; i<=I; i++)

Y2[i] = Net2[i]; //g(Net2[i]) = Net2[i]

}

else {

multAX (W1, X, Net1, J, K);

Y1[0] = 1.0; //bias node

for (j=1; j<=J; j++)

Y1[j] = g(Net1[j]);

multAX (W2, Y1, Net2, I, J);

Y2[0] = 0.0; //this output is not used

for (i=1; i<=I; i++)

Y2[i] = g(Net2[i]);

}

}

// --

279

List of References

[AGS01] Christoph Ambühl, Bernd Gärtner, and Bernhard von Stengel. “A New
Lower Bound for the List Update Problem in the Partial Cost Model.”
Theoretical Computer Science, 268(1):3–16, 2001.

[APR03] Adnan Aziz, Amit Prakash, and Vijaya Ramachandran. “A Near Op-
timal Scheduler for Switch-Memory-Switch Routers.” Technical Report
TR-03-32, The University of Texas at Austin, Department of Computer
Sciences, July 2003.

[BAC97] H. A. Bahr, C. W. Abate, and J. R. Collins. “Embedded Simulation for
Army Ground Combat Vehicles.” Technical report, STRICOM Internal
Report, July 1997.

[Bah04] H. A. Bahr. PhD dissertation: Data Bandwidth Reduction for Embedded
Simulation using Concurrent Models. PhD thesis, Department of Electri-
cal and Computer Engineering, University of Central Florida, Orlando,
FL, U.S.A., December 2004.

[BCL97] M. Bassiouni, M. Chiu, M. Loper, M. Garnsey, and J. Williams. “Per-
formance and Reliability Analysis of Relevance Filtering for Scalable
Distributed Interactive Simulation.” In ACM Transactions on Model-
ing and Computer Simulation (TOMACS), volume 7, pp. 293–331, July
1997.

[BD96] H. A. Bahr and R. F. DeMara. “A Concurrent Model Approach to
Reduced Communication in Distributed Simulation.” In Proceedings of
15th Annual Workshop on Distributed Interactive Simulation, Orlando,
FL, U.S.A., September 1996.

[Ber02] Michael Berger. “Multipath Packet Switch Using Packet Bundling.” In
Workshop on High Performance Switching and Routing, Merging Optical
and IP Technologies, pp. 244–248, May 26-29, 2002.

[BM88] A. M. Baum and D. J. McMillan. “Message Passing in Parallel Real
Time Continuous Systems Simulations.” In Proceedings of the 3rd Con-
ference on Hypercube Concurrent Computers and Applications, pp. 540–
549, Pasadena, CA, U.S.A., 1988.

280

[CD96] David P. Cebula and Paul N. DiCaprio. “Tradeoffs Involved With Sep-
arating Aggregated Data Packets Into Attribute Cluster Packets.” In
Proceedings of the 14th Workshop on Standards for the Interoperability
of Distributed Simulations, Orlando, FL, U.S.A., March 11-15, 1996.

[COM96] David B. Cavitt, C. Michael Overstreet, and Kurt J. Maly. “A Perfor-
mance Analysis Model for Distributed Simulations.” In Proceedings of
the 28th conference on Winter simulation, pp. 629–636, Coronado, CA,
U.S.A., December 8-11, 1996.

[Cor98] Lockheed Martin Corporation. “Advanced Distributed Simulation Tech-
nology II (ADST II) ONESAF Testbed Baseline Assessment (DO #0069)
CDRL AB02 Final Report.” In Proceedings of NAECON 88, Dayton,
Ohio, May 1998.

[CST95] James O. Calvin, Joshua Seeger, Gregory D. Troxel, and Daniel J.
Van Hook. “STOW Realtime Information Transfer And Networking Sys-
tem Architecture.” In Proceedings of the 12th Workshop on Standards
for the Interoperability of Distributed Simulations, Orlando, FL, U.S.A.,
March 13-17, 1995. IST.

[CTH02] Andy Ceranowicz, Mark Torpey, Bill Helfinstine, John Evans, and Jack
Hines. “Reflections on Building the Joint Experimental Federation.” In
Proceedings of the 2002 I/ITSEC, Orlando, FL, U.S.A., December 2002.

[DCV94] Paul N. DiCaprio, Carol J. Chiang, and Daniel J. Van Hook. “PICA
Performance in a Lossy Communications Environment.” In 11th Work-
shop on Standards for the Interoperability of Distributed Simulations,
volume 2, pp. 363–366, September 26-30, 1994.

[Def94] U.S. Department of Defense. “DoD Modeling and Simulation (M&S)
Management.” Department of Defense Directive 5000.59, January 4
1994.

[Deo03] Sebastian Deorowicz. PhD Dissertation: Universal lossless Data Com-
pression Algorithms. PhD thesis, Silesian University of Technology, Fac-
ulty of Automatic Control, Electronics and Computer Science, Gliwice,
Poland, 2003.

[DGR01] Vincent Dumas, Fabrice Guillemin, and Philippe Robert. “Effective
Bandwidths in a Multiclass Priority Queueing System.” Technical Re-
port Work package 2, ALCOMFT-TR-01-178, INRIA, France, October
2001.

[DNP99] M. Degermark, B. Nordgren, and S. Pink. “IP Header Compression.”,
February 1999. Internet Draft RFC 2507.

281

[DQ00] Sean Dorward and Sean Quinlan. “Robust Data Compression of Network
Packets.”, 2000.

[FL02] Jens S. Frederiksen and Kim S. Larsen. “Packet Bundling.” In Martti
Penttonen and Erik Meineche Schmidt, editors, Proceedings of the Algo-
rithm Theory - SWAT 2002: 8th Scandinavian Workshop on Algorithm
Theory, volume 2368 of Lecture Notes in Computer Science, pp. 328–337,
Turku, Finland, July 3-5, 2002. Springer-Verlag Heidelberg.

[FLN03] Jens S. Frederiksen, Kim S. Larsen, John Noga, and Patchrawat Uthai-
sombut. “Dynamic TCP acknowledgment in the LogP model.” Journal
of Algorithms, 48(2):407–428, 2003.

[For02] The U.S. Army Objective Force. “The United States Army Objective
Force Operational and Organizational Plan for Maneuver Unit of Ac-
tion.” Pamphlet 525-3-90/ o&o, U.S. Army Training and Doctrine Com-
mand, July 22, 2002.

[Fro02] Frontlines. “JBC Initiative Delivers High-Bandwidth Col-
laboration Tools to Austere Locations.” Technical report,
http://www.microsoft.com/usa/government/MSFrontlines summer.pdf,
Summer 2002.

[Fuj95] Richard M. Fujimoto. “Parallel And Distributed Simulation.” In Pro-
ceedings of the 27th Winter Simulation Conference, pp. 118–125, Arling-
ton, Virginia, U.S.A., 1995. ACM Press.

[Ful96] D. Fullford. “Distributed Interactive Simulation: It’s Past, Present,
and Future.” In Proceedings of the 1996 Winter Simulation Conference,
Coronado, CA, U.S.A., December 8-11, 1996.

[FY94] J. Fowler and R. Yagel. “Lossless Compression of Volume Data.” In
Proceedings of the 1994 Symposium on Volume Visualization, pp. 43–50,
Washington, DC, U.S.A., October 17-18, 1994.

[FZ02] Chuan Heng Foh and Moshe Zukerman. “Performance Analysis of the
IEEE 802.11 MAC Protocol.” In European Wireless 2002 Conference,
Florence, Italy, February 25-28, 2002.

[GDD02] Gary Green, Michael Dolezal, Ronald F. DeMara, Avelino J. Gonza-
lez, Michael Georgiopoulos, and Guy Schiavone. “Embedded Simulation
Research.” Technical report, University of Central Florida, Electrical
and Computer Engineering Department, Orlando, FL, U.S.A., March
27, 2002.

282

[GHP03] Ashish Goel, Monika R. Henzinger, Serge Plotkin, and Eva Tardos.
“Scheduling Data Transfers in a Network and The Set Scheduling Prob-
lem.” Journal of Algorithms, 48(2):314–332, 2003.

[GIS03] Rajesh K. Gupta, Sandy Irani, and Sandeep Kumar Shukla. “Formal
methods for Dynamic Power Management.” In International Conference
on Computer Aided Design ICCAD-2003, pp. 874–881, San Diego, La
Jolla, CA, U.S.A., November 9-13, 2003.

[GM04] Fabrice Guillemin and Ravi Mazumdar. “Rate Conservation Laws for
Multidimensional Processes of Bounded Variation with Applications to
Priority Queueing Systems.” Methodology and Computing in Applied
Probability, 6:136–159, 2004.

[Hew95] Hewlett-Packard Company. WAN Link Compression on HP Routers,
May 1995. http://www.hp.com/rnd/support/manuals/pdf/comp.pdf.

[HGG00] A. E. Henninger, A. J. Gonzalez, M. Georgiopoulos, and R. F. DeMara.
“Modeling Semi-Automated Forces with Neural Networks: Performance
Improvement Through a Modular Approach.” In Proceedings of the 9th
Conference on Computer Generated Forces and Behavioral Representa-
tion, Orlando, FL, U.S.A., May 16-18, 2000.

[HGG01] A. E. Henninger, A. J. Gonzalez, M. Georgiopoulos, and R. F. De-
Mara. “Human Performance Models for Embedded Training: A Novel
Approach to Entity State Synchronization.” In Proceedings of the ’01
Advanced Simulation Technology Conference–Military, Government, and
Aerospace Conference (ASTC-MGA), Seattle, WA, U.S.A., April 22-26,
2001.

[HIL98] Sue Hoxie, Gil Irizarry, Ben Lubetsky, and Darren Wetzel. “Develop-
ments in Standards for Networked Virtual Reality.” IEEE Comput.
Graph. Appl., 18(2):6–9, 1998.

[HSC95] Hugh W. Holbrook, Sandeep K. Singhal, and David R. Cheriton. “Log-
Based Receiver-Reliable Multicast for Distributed Interactive Simula-
tion.” SIGCOMM, pp. 328–341, 1995.

[Huf52] D. A. Huffman. “A Method for the Construction of Minimum-
Redundancy Codes.” In Proceedings of the IRE, volume 40, pp. 1082–
1101, 1952.

[IEE85] IEEE Computer Society Press. IEEE/ANSI Standard 8802/3. Car-
rier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specification, 1985.

283

[IEE93] IEEE Computer Society Press. IEEE Std 1278-1993, IEEE Standard
for Information Technology - Protocols for Distributed Interactive Simu-
lations Applications. Entity Information and Interaction, 1993.

[IEE95a] IEEE Computer Society Press. IEEE Std 1278.1-1995 IEEE Standard
for Distributed Interactive Simulation - Application Protocols, 1995.

[IEE95b] IEEE Computer Society Press. IEEE Std 1278.2-1995 IEEE Standard
for Distributed Interactive Simulation - Communication Services and
Profiles, 1995.

[IEE96] IEEE Computer Society Press. IEEE Std 1278.3-1996 IEEE Recom-
mended Practice for Distributed Interactive Simulation - Exercise Man-
agement and Feedback, 1996.

[IEE97] IEEE Computer Society Press. IEEE Std 802.11-1997 Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications, 1997.

[IEE98] IEEE Computer Society Press. IEEE Std 1278.1a-1998 IEEE Standard
for Distributed Interactive Simulation - Application Protocols, 1998.

[IEE99] IEEE Computer Society Press. IEEE/ANSI STANDARD 8802-11.
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, 1999.

[Ish01] Joseph A. Ishac. “Survey of Header Compression Techniques.” Technical
Report TM2001-211154, NASA Glenn Research Center, Cleveland, Ohio,
U.S.A., September 2001.

[Kar92] Richard M. Karp. “On-Line Algorithms Versus Off-Line Algorithms:
How Much is it Worth to Know the Future?” In Proceedings of the IFIP
12th World Computer Congress on Algorithms, Software, Architecture
- Information Processing ’92, volume 1, pp. 416–429, Madrid, Spain,
September 7-11, 1992. North-Holland.

[Kir95] Samuel A. Kirby. “NPSNET: Software Requirements for Implementation
of a Sand Table in The Virtual Environment.”. Master’s thesis, Naval
Postgraduate School, United States Navy, Monterey, CA 93943-5000,
U.S.A., September 1995.

[KLJ00] J. Kaiser, M.A. Livani, and W. Jia. “Predictability of Message Transfer
in CSMA-Networks.” In 4th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP2000), Hong Kong, China,
December 2000.

284

[LCL99] L.A.H. Liang, Wentong Cai, Bu-Sung Lee, and S.J. Turner. “Perfor-
mance Analysis of Packet Bundling Techniques in DIS.” In Proceedings
of the 3rd IEEE International Workshop on Distributed Interactive Sim-
ulation and Real-Time Applications, pp. 75–82, Greenbelt, MD, U.S.A.,
1999.

[Liu02] Enjie Liu. A Hybrid Queueing Model for Fast Broadband Networking
Simulation. PhD thesis, Queen Mary, University of London, March 2002.
Dissertation Submitted for the Degree of Doctor of Philosophy, Depart-
ment of Electronic Engineering.

[LS93] Randall Landry and Ioannis Stavrakakis. “A Three-Priority Queueing
Policy with Application to DQDB Modeling.” In INFOCOM 1993, vol-
ume 3, pp. 1067–1074, San Francisco, CA, U.S.A., 1993.

[Mac95] Michael R. Macedonia. A Network Software Architecture for Large Scale
Virtual Environments. PhD thesis, Naval Postgraduate School, Mon-
terey, CA, U.S.A., June 1995. PhD Thesis.

[MB98a] L. B. McDonald and H. A. Bahr. “Research on the Cost Effectiveness of
Embedded Simulation and Embedded Training.” In Proceedings of the
98 Spring Simulation Interoperability Workshop, Orlando, FL, U.S.A.,
March 1998.

[MB98b] L. B. McDonald and H. A. Bahr. “Research on the Cost Effectiveness of
Embedded Simulation and Embedded Training - An Update.” In Pro-
ceedings of the 98 Fall Simulation Interoperability Workshop, Orlando,
FL, U.S.A., March 1998.

[McD88] L. B. McDonald. “Potential Benefits of Embedded Training.” In Pro-
ceedings of NAECON 88, Dayton, Ohio, U.S.A., May 1988.

[MDF97] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. “Potential
benefits of Delta-encoding and Data Compression for HTTP.” In ACM
SIGCOMM’97 Conference, pp. 181–194, September 1997.

[MDF02] Jeffrey Mogul, Fred Douglis, Anja Feldmann, Balachander Krishna-
murthy, Yaron Goland, Arthur van Hoff, and D. Hellerstein. “Delta
encoding in HTTP.”, January 2002. IETF Internet Draft.

[Mol94] M. Molle. “A new binary logarithmic arbitration method for Ethernet.”,
1994.

[MR90] L. B. McDonald and J. C. Rullo. “Recommended Procedures for Imple-
menting Cost-Effective Embedded Training in Operational Equipment.”

285

In Proceedings of the 12th Interservice/Industry Training Systems Con-
ference, Orlando, FL, U.S.A., November 1990.

[MWH01] B. McDonald, J. Weeks, and J. Hughes. “Development Of Computer
Generated Forces For Air Force Security Forces Distributed Mission
Training.” In Proceedings of the 2001 I/ITSEC, Orlando, FL, U.S.A.,
November 26-29, 2001.

[MZP94] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz.
“NPSNET: A Network Software Architecture for Large-Scale Virtual En-
vironments.” Presence, 3(4):265–287, 1994.

[Pop02] Cheryl Lynn Pope. PhD dissertation: Scheduling and Management
of Real-Time Communication in Point-To-Point Wide Area Networks.
PhD thesis, University of Adelaide, Department of Computer Science,
Australia, 2002.

[PW98] Stephen G. Purdy and Roger D. Wuerfel. “A Comparison of HLA and
DIS Real-Time Performance.” In Abstracts, Papers, & Presentations for
1998 Spring Simulation Interoperability Workshop, Orlando, FL, U.S.A.,
March 9-13, 1998.

[PW99] Steven Phillips and Jeffrey Westbrook. “On-Line Algorithms: Compet-
itive Analysis and Beyond.” In Algorithms and Theory of Computation
Handbook,. CRC Press, 1999.

[PW03] Erica L. Plambeck and Amy R. Ward. “Optimal Control of Assemble-
to-Order Systems with Delay Guarantees.” Research paper no. 1777,
Stanford University, Dept. of Management Science and Engineering, Palo
Alto, CA, U.S.A., March 2003.

[SH96] Joshua E. Smith and Daniel J. Van Hook. “Comparison of Consistency
Protocol vs. DIS-Lite.” In Proceedings of the 14th Workshop on Stan-
dards for the Interoperability of Distributed Simulations, pp. 875–884,
Orlando, FL, U.S.A., March 1996. Institute for Simulation and Training.

[Sha48] C. E. Shannon. “A mathematical Theory of Communication.” In ed.
D. Slepian, editor, Key Papers in the Development of Information The-
ory, pp. 5–18, New York, 1948. IEEE Press.

[Sri96] S. Srinivasan. “Efficient Data Consistency in HLA/DIS++.” In Proceed-
ings of the 1996 Winter Simulation Conference, pp. 946–951, Coronado,
CA, U.S.A., December 8-11, 1996.

286

[SZB96] Steve Stone, Mike Zyda, Don Brutzman, and John Falby. “Mobile
Agents and Smart Networks for Distributed Simulation.” In Proceedings
of the 14th Workshop on Standards for the Interoperability of Distributed
Simulations, Orlando, FL, U.S.A., March 1996.

[Tay95] Darrin Taylor. “DIS-Lite & Query Protocol.” In Proceedings of the
13th DIS Workshop on Standards for the Interoperability of Distributed
Simulations, Orlando, FL, U.S.A., September 1995.

[Tay96a] Darrin Taylor. “DIS-Lite & Query Protocol: Message Structures.” In
Proceedings of the 14th DIS Workshop on Standards for the Interoper-
ability of Distributed Simulations, Orlando, FL, U.S.A., March 11-15,
1996.

[Tay96b] Darrin Taylor. “The VR-Protocol.” In In Proceedings of the 14th DIS
Workshop on Standards for the Interoperability of Distributed Simula-
tions, Orlando, FL, U.S.A., March 11-15, 1996.

[Tec95] Office of Technology Assessment. “Distributed Interactive Simulation of
Combat.” Technical Report OTA-BP-ISS-151, U.S. Congress, Washing-
ton, DC, U.S.A., September 1995. U.S. Government Printing Office.

[TS02] A. Turpin and W. F. Smyth. “An approach to phrase selection for offline
data compression.” In Proceedings of the 25th Australasian conference
on Computer science, pp. 267–273, Melbourne, Victoria, Australia, 2002.
Australian Computer Society, Inc.

[US95a] Office of Technology Assessment U.S. Congress. “Distributed Interactive
Simulation of Combat.” Technical report, U.S. Government Printing
Office OTA-BP-ISS-151, Washington, DC, U.S.A., September 1995.

[US95b] U.S. Department of Defense, Under Secretary of Defense for Acquisition
and Technology. “DoD Modeling and Simulation (M&S) Master Plan.”
Technical Report Directive 5000.59-P, Department of Defense, October
1995.

[US98] U.S. Department of Defense, Under Secretary of Defense for Acquisi-
tion and Technology. “DoD Modeling and Simulation (M&S) Glossary.”
Technical Report Directive 5000.59-M, Department of Defense, January
1998.

[Var03] András Varga. “OMNeT++ Discrete Event Simulation System, Version
2.3, User Manual.”, June 15 2003.

287

[VCM94] Daniel J. Van Hook, James O. Calvin, and Duncan C. Miller. “A Pro-
tocol Independent Compression Algorithm (PICA).” Technical report,
MIT Lincoln Laboratory, April 2 1994. Project Memorandum No. 20PM-
ADS-0005.

[VCN94] Daniel J. Van Hook, James O. Calvin, M. Newton, and D. Fusco. “An
Approach to DIS Scalability.” In 11th Workshop on Standards for the In-
teroperability of Distributed Simulations, volume 2, pp. 347–356, Septem-
ber 26-30, 1994.

[VCR96] Daniel J. Van Hook, David P. Cebula, Steven J. Rak, Carol J. Chiang,
Paul N. DiCaprio, and James O. Calvin. “Performance of STOW RITN
Application Control Techniques.” In Proceedings of the 14th DIS Work-
shop on Standards for the Interoperability of Distributed Simulations,
Orlando, FL, U.S.A., March 1996.

[VDG04a] Juan J. Vargas, Ronald DeMara, Avelino Gonzalez, and Michael Geor-
giopoulos. “Bandwidth Analysis of a Simulated Computer Network Run-
ning OTB.” In Proceedings of the Second Swedish-American Workshop
on Modeling and Simulation (SAWMAS 2004), Cocoa Beach, FL, U.S.A.,
February 2004.

[VDG04b] Juan J. Vargas, Ronald F. DeMara, Michael Georgiopoulos, Avelino J.
Gonzalez, and Henry Marshall. “PDU Bundling and Replication for Re-
duction of Distributed Simulation Communication Traffic.” JDMS: The
Journal of Defense Modeling and Simulation: Applications, Methodol-
ogy, Technology, 2004. Submitted for publication in July 2004, currently
under review.

[VGD03] Juan J. Vargas, Frank Goergen, Ronald DeMara, Avelino Gonzalez, and
Michael Georgiopoulos. “Interim Report: Bandwidth and Latency Impli-
cations of Integrated Tactical and Training Communication Networks.”
Technical report, University of Central Florida, Department of Electrical
and Computer Engineering, Orlando, FL, U.S.A., July 6, 2003.

[WAS96] Stephen Williams, Marc Abrams, Charles R. Standridge, Ghaleb Ab-
dulla, and Edward A. Fox. “Removal Policies in Network Caches for
World-Wide Web Documents.” In Procedings of the ACM SIGCOMM
’96 Conference, pp. 293–305, Stanford University, CA, U.S.A., August
1996.

[WH00] B. Wang and J. Hou. “Multicast Routing and Its QoS Extension: Prob-
lems, Algorithms, and Protocols.” IEEE Network, 14, January 2000.

288

[WJ98] Roger D. Wuerfel and Ronny Johnston. “Real-Time Performance of RTI
Version 1.3.” In Proceedings of the 1998 Fall Simulation Interoperability
Workshop, September 14-18, 1998.

[WMS01] C. Wills, M. Mikhailov, and H. Shang. “N for the Price of 1: Bundling
Web Objects for More Efficient Content Delivery.” In Proceedings of the
10th International Conference on World Wide Web, ISBN 1-58113-348-
0, pp. 257–265, Hong Kong, 2001.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequen-
tial Data Compression.” IEEE Transactions on Information Theory,
23(3):337–343, 1977.

289

