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ABSTRACT

We analyze the distribution of coherent terahertz radiation from a regular hexagonal microstrip

antenna (MSA) made from the high-Tc superconductor Bi2Sr2CaCu2O8+δ (BSCCO). We discuss

the C6v symmetry of the solutions of the wave equation on a hexagonal domain and distinguish

between the closed-form and non-closed-form solutions. The closed-form wavefunctions of the

transverse magnetic (TM) electromagnetic cavity modes are presented and formulas for the radi-

ated power arising from the uniform part of the AC Josephson current and from the resonant cavity

modes are derived. The wavefunctions and angular distribution of radiation from both sources are

plotted for sixteen of the lowest-energy modes. Finally, we comment on the relevance of these

power distributions to hexagonal arrays of equilateral triangular MSAs and propose a strategy for

studying the non-closed-form modes.
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CHAPTER 1: INTRODUCTION

Several candidates have been proposed as possible sources of coherent electromagnetic radiation

in the terahertz (THz) frequency range (between 0.3 and 3 THz) [1]. Improvements in resonant

tunneling diodes [2] and quantum cascade lasers [3] have partially filled this gap, but solid-state

technologies capable of producing coherent, continuous radiation at sufficiently high powers for

applications with the frequency range known as the terahertz gap (0.5 to 1.3 Thz) have continued

to elude researchers. Such sources of THz radiation would have applications in any field that em-

ploys spectroscopy, such as medicine, biology, security, and communications [4]. One promising

category of candidates for filling the terahertz gap is superconductor-based devices.

The physical mechanism by which these superconducting sources of radiation operate is the Joseph-

son effect, a quantum mechanical phenomenon attributable to the coherence of the superconducting

state [5]. The effect occurs within a Josephson junction, i.e., a pair of weakly coupled supercon-

ducting electrodes, and involves the conversion of a DC bias voltage to a high-frequency supercon-

ducting AC current across the junction. A useful consequence of the Josephson effect is that the

frequency of the emitted radiation should be tunable, since it can be controlled by manipulating the

DC bias voltage across the junction. The frequency of the AC supercurrent is directly proportional

to the applied DC voltage VDC and is given by the Josephson relation for a single junction

f =
2π

Φ0

VDC (1.1)

where Φ0 = h/(2e) is the magnetic flux quantum (2.07× 19−15 Wb).

Josephson junctions may be created artificially or they may be intrinsic to the crystal structure

of a superconductor. The high-Tc layered superconductor Bi2Sr2CaCu2O8+δ (BSCCO) consists
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of alternating insulating layers of Bi–Sr–O and superconducting layers of CuO2 [6]. The copper

oxide layers are weakly coupled and therefore the crystal behaves as a densely packed stack of

intrinsic Josephson junctions (IJJs). Another well-known high-Tc layered superconductor, famous

for being the first superconductor discovered with a critical temperature exceeding the boiling point

of nitrogen, is YBa2Cu3O7 (YBCO), but YBCO is not a suitable candidate for terahertz devices

because the superconducting layers are too strongly coupled and the Josephson effect fails to occur

[1].

Various devices have been fabricated that exploit the intrinsic Josephson junctions within a BSCCO

mesa. Typically, a groove is inscribed (e.g., by focused ion beam milling or Ar ion milling) in a

crystal of BSCCO, producing a mesa about 1 µm thick of any desired geometry attached to the

superconducting substrate [7]. The mesas essentially function as microstrip antennas (MSAs) and

can be analyzed with standard antenna theory. These earlier terahertz oscillators suffered from

Joule self-heating effects, which led to the formation of local hot spots where the sample ceased

to superconduct, limiting the efficiency of the devices. The mesas have been further improved by

cleaving them from the substrate to produce stand-alone mesas, which are more easily thermally

managed [8].
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CHAPTER 2: LITERATURE REVIEW

Previous experiments have studied BSCCO mesas of various geometries, both stand-alone and

attached to the superconducting substrate. In an early experiment [9], Ar ion milling was used to

carve rectangular mesas from single crystals of BSCCO. Each mesa was approximately 1 µm thick

(in the direction of the c-axis of the crystal), 300 µm long, and 60 µm wide, containing on the order

of N 103 IJJs. The surface of the mesa was plated with Au and electrical leads were attached to

the surface of the mesa and to the superconducting substrate. A DC voltage was applied across the

mesa, triggering the emission of Josephson radiation with frequency given by the formula

ωJ =
2e

h̄

VDC
N

(2.1)

.

When the DC voltage is varied, the frequency of the emitted radiation varies accordingly, but is

greatly amplified at some frequencies. This can be explained [10] by modeling the mesa as a cavity

in which electromagnetic waves propagate. These electromagnetic cavity modes are determined

by the geometry of the cavity; in the rectangular case [7], their wavevectors are

kmp = π

[(m
w

)2
+
(p
`

)2]1/2
(2.2)

wherew and ` are the width and length of the cavity andm and p are integers. When the DC voltage

is applied to the mesa, the resulting AC Josephson frequency or its higher harmonics (nνJ , where n

is an integer, and νJ = ωJ/2π) can lock onto these cavity modes and resonate. The radiation from

these excited electromagnetic cavity modes is comparable in power to that produced by the AC
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Josephson current (which is overlooked in the cavity model), amplifying the intensity of radiation

at these frequencies [11].

The uniform part of the AC Josephson current through the mesa, combined with Ampère’s Law,

implies a nonzeroH(x′, t) in the mesa. Since the AC Josephson current is not negligible compared

to the cavity modes, it must be taken into consideration in the Ampère boundary condition. One

way to treat the boundary condition is to employ Love’s equivalence principles [12], which replace

the electric field within the mesa by an equivalent surface magnetic current density source and

the magnetic field by an equivalent surface current density source. This technique is applicable

to mesas of any geometry and can be used to derive formulae for the angular dependence of the

emitted radiation.

In addition to rectangular mesas, other geometries have also been studied experimentally [13] and

theoretically [7], including cylindrical [16], equilateral triangular, acute isoceles triangular, right

triangular, and square mesas, and the power distributions have been found analytically for the

cylinder, square, and equilateral triangle geometries.
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CHAPTER 3: MAIN FINDINGS

Solutions of the wave equation on a hexagonal domain

We begin by imposing a coordinate system on a hexagon of side length a, centering it at the

origin, and labeling the vertices A through F . The hexagon lies in the xy-plane, and the Josephson

current is therefore in the z-direction, perpendicular to the layers of BSCCO. The coordinate axes

are oriented such that a pair of opposite sides (AB and DE in Fig. 2.1) of the hexagon are parallel

to the y-axis.

Figure 3.1: Hexagon of side length a centered at the origin with vertices labeled.
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The wavefunction must satisfy the Helmholtz equation∇2Ψ + k2Ψ = 0 in addition to the relevant

boundary conditions. In contrast to the case of the square, the rectangle, the equilateral triangle,

etc., not all of the solutions of the wave equation on the hexagonal domain can be expressed in

closed form; about half of them [17] can be written only as infinite series. Only the closed-form

solutions are considered in this paper. Like the equilateral triangle, the solution of which was

discovered by Lamé [18], the hexagon is an interesting case in which there exist closed-form

solutions to the wave equation which cannot be found by ordinary separation of variables; rather,

the full solution is the sum of three terms, each of which is a product of trigonometric functions

exhibiting separation of variables. The forms of the closed-form solutions on the hexagon fall into

two categories: the even forms Ψe
`mn(x, y) and the odd forms Ψo

`mn(x, y). They are given by

Ψe
`mn = cos

[
2π`

a
√

3
x

]
cos

[
2π(m− n)

3a
y

]
+ cos

[
2πm

a
√

3
x

]
cos

[
2π(n− `)

3a
y

]
+ cos

[
2πn

a
√

3
x

]
cos

[
2π(`−m)

3a
y

] (3.1)

Ψo
`mn = cos

[
2π`

a
√

3
x

]
sin

[
2π(m− n)

3a
y

]
+ cos

[
2πm

a
√

3
x

]
sin

[
2π(n− `)

3a
y

]
+ cos

[
2πn

a
√

3
x

]
sin

[
2π(`−m)

3a
y

] (3.2)

For the even forms, Ψe
`mn(x,−y) = Ψe

`mn(x, y); that is, they are even under reflection over the

x-axis (a consequence of the fact that cosine is an even function). Likewise, the odd forms satisfy
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Ψo
`mn(x,−y) = −Ψo

`mn(x, y), and they are odd under reflection over the y-axis (because sine is an

odd function). These solutions satisfy both the wave equation and the requisite Neumann bound-

ary condition—the tranverse magnetic boundary conditions demand that the normal derivative of

the wavefunction vanish everywhere along the boundary of the hexagon. Note that if the Dirichlet

boundary conditions were desired, so that the value of the wavefunction (not its derivative) van-

ished on the boundary, the cosine functions involving x could simply be replaced by sine functions,

but these boundary conditions are not germane to our situation.

Although all three terms are required to satisfy the boundary conditions of the hexagon, each term

individually constitutes a solution to the wave equation with the same wavevector k. Substituting

each of these into the wave equation, we obtain three equations for k2 in terms of the indices of the

wavefunctions:

k2 =



4π2

9a2
[
3`2 + (m− n)2

]
4π2

9a2
[
3m2 + (n− `)2

]
4π2

9a2
[
3n2 + (`−m)2

] (3.3)

Equating the last two of these expressions (in fact any pair will lead to the same result) gives the

condition (` + m + n)(m − n) = 0. Either m = n or ` = −m − n, but the former case leads to

` = m = n, which is redundant and yields no new eigenmodes, so we eliminate ` in favor of m

and n and conclude that

k2 =
4π2

9a2
[
3 (m+ n)2 + (m− n)2

]
=⇒ kmn =

4π

3nra

√
m2 +mn+ n2 (3.4)

where the index of refraction nr has been inserted in the denominator to account for the properties
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of the material (for BSCCO, nr ≈
√

18 ≈ 4.2 in the pertinent frequency range). The even and odd

wavefunctions now depend only on two indices, and they become

Ψe
mn = Aemn cos

[
2π(m+ n)

a
√

3
x

]
cos

[
2π(m− n)

3a
y

]
+ cos

[
2πm

a
√

3
x

]
cos

[
2π(m+ 2n)

3a
y

]
+ cos

[
2πn

a
√

3
x

]
cos

[
2π(2m+ n)

3a
y

] (3.5)

Ψo
mn = Aomn cos

[
2π(m+ n)

a
√

3
x

]
sin

[
2π(m− n)

3a
y

]
+ cos

[
2πm

a
√

3
x

]
sin

[
2π(m+ 2n)

3a
y

]
− cos

[
2πn

a
√

3
x

]
sin

[
2π(2m+ n)

3a
y

] (3.6)

where Aemn and Aomn are normalization constants chosen so that the integral of the square of the

wavefunction over the entire hexagon equals unity. It can be shown that the values of these con-

stants are

|Aemn|2 =



2

27
√

3 a2
, m = n = 0;

4

9
√

3 a2
, m > n = 0, n > m = 0, or m = n;

8

9
√

3 a2
, m, n > 0 and m 6= n.

(3.7)
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and

|Aomn|2 =


4

9
√

3 a2
, m > n = 0 or n > m = 0;

8

9
√

3 a2
, m, n > 0 and m 6= n.

(3.8)

.

Observe, however, that the even (0, 0)-mode is constant everywhere and has wavevector k00 = 0,

corresponding to a wave with no energy, so this solution is not of any interest. Also, the odd modes

for which m = n are identically zero and therefore are not normalizable and do not radiate.

Symmetries of the wavefunctions

Table 3.1: C6v Character Table

C6v E 2C6 2C3 C2 3σv 3σd
A1 +1 +1 +1 +1 +1 +1
A2 +1 +1 +1 +1 -1 -1
B1 +1 -1 +1 -1 +1 -1
B2 +1 -1 +1 -1 -1 +1
E1 +2 +1 -1 -2 0 0
E2 +2 -1 -1 +2 0 0

Illustrations of several of these wavefunctions can be found in Appendix A. Evidently they all

exhibit sixfold symmetry; that is, they correspond to certain representations of the C6v point group,

the character table of which is given by Table 3.1 [19]. In the table, E is the identity operation,

2C6 are the clockwise and counterclockwise rotations about the origin by 60o, 2C3 are rotations

by 120o, C2 is rotation by 180o, 3σv are reflections over the three lines connecting the midpoints

of opposite edges, and 3σd are reflections over the three lines connecting opposite vertices. It can

9



be seen from the wavefunction plots (or shown analytically by a coordinate transformation) that

the even modes correspond to the A1 representation and the odd modes to the B2 representation.

Immediately we can see that these modes must not constitute a complete set of solutions, because

none of these corresponds to the other one- and two-dimensional representations. Observe that

both the even and odd modes have even symmetry about the lines connecting opposite vertices, yet

it is not difficult to envision solutions with odd symmetry about these lines. Similarly, one would

expect solutions corresponding to the two-dimensional representations (E1 and E2) as well, which

do not have sixfold symmetry alone but can be made into linear combinations which do.

The reason that only the A1 and B2 representations can be expressed in closed form is related to

the problem of tiling the plane. Both the even and odd closed-form solutions can tile the plane

without any discontinuities, because the value of the wavefunction matches at all points on the

boundary between two adjacent hexagons as a result of the even symmetry under σd, and the normal

derivative is continuous as well by the boundary conditions. On the other hand, a wavefunction

corresponding to the A2 or B1 representations would have odd symmetry under σd, and the values

of the functions would be opposite in sign at the boundary.

In addition, the hexagonal domain can be divided into six equilateral triangles. For theA1- andB2-

type hexagon wavefunctions, the Neumann boundary conditions are satisfied on all sides of each of

the equilateral triangles (this follows from the even symmetry under σd—the normal derivative on

the lines connecting opposite vertices, i.e. the boundaries of the subtriangles, must vanish). Since

the wave equation is solvable in closed form for an equilateral triangle with Neumann boundary

conditions on all three sides, the hexagon wavefunction can in principle be derived from these

triangle wavefunctions. However, for the A2- and B1-type wavefunctions, the wavefunction itself

rather than its derivative would have to be zero at the boundary of the subtriangles. This implies a

mixed boundary condition where one side requires the Neumann boundary condition and the other

two sides require the Dirichlet boundary condition. This is much more difficult to solve for the

10



equilateral triangle.

Radiation due to the uniform AC Josephson current

Because the alternating superconducting-insulating layers of the MSA behave as a stack of IJJs,

when a voltage is applied across the MSA, an AC current appears normal to the layers in accor-

dance with the Josephson effect. This uniform AC current is the primary source of radiation from

the MSA. Because the thermally-managed MSAs are plated with gold on the top and the bottom

in order to transfer heat away from the BSCCO, it can be assumed that the radiation is emitted

entirely from the edges of the MSA. To obtain the power distribution due to the primary radiation

source, we begin by computing the magnetic vector potential

Az(r, t) =
µ0

4π

ei(kmnr−ωmnt)

r

∫
S

dx dy e−ikmn·rJJ (3.9)

which has only a z-component, where JJ is the uniform Josephson current, kmn and ωmn are the

wavevector and frequency respectively of the (m,n)-mode, and the integration is over the surface

of the hexagon. From this point onward we shall suppress the subscripts on k and ω for clarity, but

their values depend on the mode in question. With the assumption that only the boundary of the

hexagonal region contributes anything to the integral, the surface integral reduces essentially to a

line integral around the perimeter. We break the integration path into six paths, each corresponding
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to an edge of the hexagon:

AB : ŷ δ

(
x− a

√
3

2

)
BC :

(
−
√

3

2
x̂+

1

2
ŷ

)
δ

(
y +

1√
3
x− a

)
CD :

(
−
√

3

2
x̂− 1

2
ŷ

)
δ

(
y − 1√

3
x− a

)
DE : −ŷ δ

(
x+

a
√

3

2

)
EF :

(√
3

2
x̂− 1

2
ŷ

)
δ

(
y +

1√
3
x+ a

)
FA :

(√
3

2
x̂+

1

2
ŷ

)
δ

(
y − 1√

3
x+ a

)

(3.10)

The integrals are much simpler for paths AB and DE because the paths are parallel to one of the

coordinate axes (and thus the value of the other coordinate is constant). This motivates us to define

a new set of coordinates

x± =

√
3

2
x± 1

2
y (3.11)

y± = ∓1

2
x+

√
3

2
y (3.12)

where x+ and y+ correspond to a rotation of the hexagon about the origin by 30◦ clockwise and

x− and y− to a rotation by 30◦ counterclockwise.

The inverses of these transformations are
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Figure 3.2: Hexagon rotated 30◦ clockwise.

Figure 3.3: Hexagon rotated 30◦ counterclockwise.
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x =

√
3

2
x± ∓

1

2
y± (3.13)

y = ±1

2
x± +

√
3

2
y±, (3.14)

and with these new coordinates the six paths can be reformulated as

AB : ŷ δ

(
x− a

√
3

2

)
B−C− : −x̂− δ

(
y− −

a
√

3

2

)
C+D+ : −x̂+ δ

(
y+ −

a
√

3

2

)
DE : −ŷ δ

(
x+

a
√

3

2

)
E−F− : x̂− δ

(
y− +

a
√

3

2

)
F+A+ : x̂+ δ

(
y+ +

a
√

3

2

)

(3.15)

In computing the necessary integrals it will be helpful to define the new variables

X± =
π
√
m2 + n2 +mn

3nr
sin θ

(
±cosϕ√

3
+ sinϕ

)
=
ka

4
sin θ

(
±cosϕ√

3
+ sinϕ

) (3.16)
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Y± =
π
√
m2 + n2 +mn

3nr
sin θ

(√
3 cosϕ± sinϕ

)
=
ka

4
sin θ

(√
3 cosϕ± sinϕ

) (3.17)

We first integrate along the path AB, using the unmodified coordinates. Expressing the compo-

nents of the wavevector as kx = k sin θ cosϕ and ky = k sin θ sinϕ, we obtain

∫∫ B

A

dx dy δ

(
x− a

√
3

2

)
e−i(kxx+kyy)

=

∫
dx δ

(
x− a

√
3

2

)
e−ik sin θ cosϕx

∫ a/2

−a/2
dy e−ik sin θ sinϕy

= e−ika
√
3 sin θ cosϕ/2

∫ a/2

−a/2
dy e−i

2
a
(Y+−Y−)y

= e−3i(X+−X−) −a
2i(Y+ − Y−)

[
e−i(Y+−Y−) − ei(Y+−Y−)

]
= ae−3i(X+−X−) sin(Y+ − Y−)

(Y+ − Y−)

(3.18)

The integral along DE can be evaluated similarly; it equals the complex conjugate of that along

AB, so the sum of their contributions is a single term involving a cosine rather than exponentials

(this occurs for all three pairs of opposite sides). The integral along BC can be evaluated using the
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transformed coordinates, remembering to transform k−,x and k−,y according to equation 3.11:

∫∫ C−

B−

(−dx−) dy− δ

(
y− −

a
√

3

2

)
e−i[(

√
3

2
kx− 1

2
ky)x−+( 1

2
kx+

√
3

2
ky)y−]

=

∫
dy− δ

(
y− −

a
√

3

2

)
e−ik sin θ(cosϕ+

√
3 sinϕ)y−/2

∫ −a/2
a/2

(−dx−) e−ik sin θ(
√
3 cosϕ−sinϕ)x−/2

= e−ika sin θ(
√
3 cosϕ+3 sinϕ)/4

∫ a/2

−a/2
dx− e

−i 2
a
Y−x− = e−3iX+

−a
2iY−

[
e−iY− − eiY−

]
= ae−3iX+

sin(Y−)

Y−

(3.19)

The rest of the integrals can be computed similarly, and we find that

A(r, t) ∝ (θ̂ sin θ)
ei(kr−ωt)

r

[
cos[3(X+ −X−)]

sin(Y+ − Y−)

Y+ − Y−

+ cos(3X+)
sin(Y−)

Y−
+ cos(3X−)

sin(Y+)

Y+

]
(3.20)

where we have used ẑ = −θ̂ sin θ and absorbed constants into the proportionality sign. The

electric field and the magnetic field (assuming the latter to have only a ϕ-component) are

E = −∂A
∂t

= iωA (3.21)

H =
1

µ0

∇×A ∝ 1

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
ϕ̂ = ik|A|ϕ̂ (3.22)
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and finally we can obtain the power distribution for the radiation from the uniform AC Josephson

current source:

P (θ, ϕ) = |r2r̂ ·E ×H∗|

∝ sin2 θ

∣∣∣∣cos[3(X+ −X−)]
sin(Y+ − Y−)

Y+ − Y−
+ cos(3X+)

sin(Y−)

Y−
+ cos(3X−)

sin(Y+)

Y+

∣∣∣∣2 (3.23)

Several plots of these distributions can be found in Appendix B. The sixfold symmetry is readily

apparent.

Radiation due to electromagnetic cavity mode excitation

The secondary source of radiation is due to the excitation of one of the modes of the electromag-

netic cavity. If the characteristic frequency of one of the cavity modes equals an integer multiple

of the AC Josephson frequency, radiation is emitted. Applying Love’s equivalence principle for

electric conductors, the electric field can be replaced by a magnetic surface current density. For a

given cavity mode, current density is the path around the edge of the mesa (equations 3.10 or 3.15)

weighted by the wavefunction (equations 3.5 and 3.6), that is,

M (r, t) = Ψe,o
mn(x, y)×

(
AB +BC + · · ·+ FA

)
, (3.24)
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and from this the electric vector potential can be obtained by

F (r, t) =
ε0
4π

ei(kr−ωt)

r

∫
S

dx dyM(x, y)e−ik·r. (3.25)

Again the integral over the surface reduces to a line integral along the boundary, which is seg-

mented into six paths. Once the electric vector potential is calculated, the electric and magnetic

fields, and thus the power, follow. For brevity, we shall not show the computation of the integrals,

but the results can be found in Appendix A, and several plots, which reflect the sixfold symmetry,

can be found in Appendix B.
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CHAPTER 4: DISCUSSION

We began by presenting the closed-form solutions of the wave equation on a regular hexagonal do-

main and derived formulas for the radiated power arising from two different mechanisms: the uni-

form part of the AC Josephson current and the excited electromagnetic cavity modes. As expected,

the resulting angular distributions of radiation possess the C6v point group symmetry of the hexag-

onal MSA. However, these closed-form wavefunctions correspond only to the one-dimensional A1

and B2 representations of the group, and the remaining solutions must be expressed as infinite se-

ries. Unfortunately these non-closed-form solutions cannot be neglected, since they are still valid

solutions to the wave equation and the Neumann boundary conditions, and there is no reason to

assume that they are not interspersed among the closed-form solutions in terms of energy. There-

fore the next logical step in the theory of the hexagonal MSA is to find expressions for these more

troublesome solutions and to compute the radiated power from them. One potential strategy for

doing so is to divide the hexagon into its six constituent equilateral subtriangles and solve the wave

equation on this equilateral triangular domain with a mixed boundary condition—Neumann on one

side, Dirichlet on the other two. By reassembling these solutions, more hexagon solutions can be

obtained corresponding to other representations of C6v.

Conveniently, there is one physical reason that the closed-form solutions are of particular inter-

est. If another boundary condition is imposed, namely that the normal derivative vanish on the

three lines connecting opposite vertices of the hexagon, then these closed-form solutions are the

only solutions. Hexagonal arrays of MSAs composed of six equilateral triangular patches have

been studied experimentally [20], and if we suppose that the gap between adjacent triangles is

significant, then the Neumann boundary condition ought to be satisfied at these gaps.
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APPENDIX A: CAVITY MODE SOURCE POWER CALCULATION
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APPENDIX A: CAVITY MODE SOURCE POWER CALCULATION

For both the even and the odd modes, the electric potential is

F e,o(r, t) ∝ ei(kr−ωt)

r

[
ŷAe,o −

(√
3x̂− ŷ

)
Be,o −

(√
3x̂+ ŷ

)
Ce,o

−ŷDe,o +
(√

3x̂− ŷ
)
Ee,o +

(√
3x̂+ ŷ

)
F e,o

]
(A.1)

where we have defined six functions for each of the even and odd modes—Ae(θ, ϕ) through

F e(θ, ϕ) and Ao(θ, ϕ) through F o(θ, ϕ)—which result from the integration:

Ae = 4e−3i(X+−X−)
∑
σ=±

[
(−1)m+n sin(Y+,σ(m−n) − Y−,−σ(m−n))

Y+,σ(m−n) − Y−,−σ(m−n)

+(−1)m
sin(Y+,σ(m+2n) − Y−,−σ(m+2n))

Y+,σ(m+2n) − Y−,−σ(m+2n)

+ (−1)n
sin(Y+,σ(2m+n) − Y−,−σ(2m+n))

Y+,σ(2m+n) − Y−,−σ(2m+n)

]
(A.2)

Be = e−3iX+

∑
σ,σ′=±

[
eiπ[(m+n)σ+(m−n)σ′]/2 sin(Y−,3(m+n)σ−(m−n)σ′)

Y−,3(m+n)σ−(m−n)σ′

+eiπ[mσ+(m+2n)σ′]/2 sin(Y−,3mσ−(m+2n)σ′)

Y−,3mσ−(m+2n)σ′
+ eiπ[nσ+(2m+n)σ′]/2 sin(Y−,3nσ−(2m+n)σ′)

Y−,3nσ−(2m+n)σ′

]
(A.3)
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Ce = e−3iX−
∑
σ,σ′=±

[
eiπ[−(m+n)σ+(m−n)σ′]/2 sin(Y+,3(m+n)σ+(m−n)σ′)

Y+,3(m+n)σ+(m−n)σ′

+eiπ[−mσ+(m+2n)σ′]/2 sin(Y+,3mσ+(m+2n)σ′)

Y+,3mσ+(m+2n)σ′
+ eiπ[−nσ+(2m+n)σ′]/2 sin(Y+,3nσ+(2m+n)σ′)

Y+,3nσ+(2m+n)σ′

]
(A.4)

De = 4e3i(X+−X−)
∑
σ=±

[
(−1)m+n sin(Y+,σ(m−n) − Y−,−σ(m−n))

Y+,σ(m−n) − Y−,−σ(m−n)

+(−1)m
sin(Y+,σ(m+2n) − Y−,−σ(m+2n))

Y+,σ(m+2n) − Y−,−σ(m+2n)

+ (−1)n
sin(Y+,σ(2m+n) − Y−,−σ(2m+n))

Y+,σ(2m+n) − Y−,−σ(2m+n)

]
(A.5)

Ee = e3iX+

∑
σ,σ′=±

[
eiπ[−(m+n)σ+(m−n)σ′]/2 sin(Y−,3(m+n)σ+(m−n)σ′)

Y−,3(m+n)σ+(m−n)σ′

+eiπ[−mσ+(m+2n)σ′]/2 sin(Y−,3mσ+(m+2n)σ′)

Y−,3mσ+(m+2n)σ′
+ eiπ[−nσ+(2m+n)σ′]/2 sin(Y−,3nσ+(2m+n)σ′)

Y−,3nσ+(2m+n)σ′

]
(A.6)

F e = e3iX−
∑
σ,σ′=±

[
eiπ[(m+n)σ−(m−n)σ′]/2 sin(Y+,3(m+n)σ+(m−n)σ′)

Y+,3(m+n)σ+(m−n)σ′

+eiπ[mσ−(m+2n)σ′]/2 sin(Y+,3mσ+(m+2n)σ′)

Y+,3mσ+(m+2n)σ′
+ eiπ[nσ−(2m+n)σ′]/2 sin(Y+,3nσ+(2m+n)σ′)

Y+,3nσ+(2m+n)σ′

]
(A.7)
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Ao =
4

i
e−3i(X+−X−)

∑
σ=±

σ

[
(−1)m+n sin(Y+,σ(m−n) − Y−,−σ(m−n))

Y+,σ(m−n) − Y−,−σ(m−n)

+(−1)m
sin(Y+,σ(m+2n) − Y−,−σ(m+2n))

Y+,σ(m+2n) − Y−,−σ(m+2n)

− (−1)n
sin(Y+,σ(2m+n) − Y−,−σ(2m+n))

Y+,σ(2m+n) − Y−,−σ(2m+n)

]
(A.8)

Bo = −1

i
e−3iX+

∑
σ,σ′=±

σ′
[
eiπ[(m+n)σ+(m−n)σ′]/2 sin(Y−,3(m+n)σ−(m−n)σ′)

Y−,3(m+n)σ−(m−n)σ′

+eiπ[mσ+(m+2n)σ′]/2 sin(Y−,3mσ−(m+2n)σ′)

Y−,3mσ−(m+2n)σ′
− eiπ[nσ+(2m+n)σ′]/2 sin(Y−,3nσ−(2m+n)σ′)

Y−,3nσ−(2m+n)σ′

]
(A.9)

Co =
1

i
e−3iX−

∑
σ,σ′=±

σ′
[
eiπ[−(m+n)σ+(m−n)σ′]/2 sin(Y+,3(m+n)σ+(m−n)σ′)

Y+,3(m+n)σ+(m−n)σ′

+eiπ[−mσ+(m+2n)σ′]/2 sin(Y+,3mσ+(m+2n)σ′)

Y+,3mσ+(m+2n)σ′
− eiπ[−nσ+(2m+n)σ′]/2 sin(Y+,3nσ+(2m+n)σ′)

Y+,3nσ+(2m+n)σ′

]
(A.10)

Do = −4

i
e3i(X+−X−)

∑
σ=±

σ

[
(−1)m+n sin(Y+,σ(m−n) − Y−,−σ(m−n))

Y+,σ(m−n) − Y−,−σ(m−n)

+(−1)m
sin(Y+,σ(m+2n) − Y−,−σ(m+2n))

Y+,σ(m+2n) − Y−,−σ(m+2n)

− (−1)n
sin(Y+,σ(2m+n) − Y−,−σ(2m+n))

Y+,σ(2m+n) − Y−,−σ(2m+n)

]
(A.11)

23



Eo = −1

i
e3iX+

∑
σ,σ′=±

σ′
[
eiπ[−(m+n)σ+(m−n)σ′]/2 sin(Y−,3(m+n)σ+(m−n)σ′)

Y−,3(m+n)σ+(m−n)σ′

+eiπ[−mσ+(m+2n)σ′]/2 sin(Y−,3mσ+(m+2n)σ′)

Y−,3mσ+(m+2n)σ′
− eiπ[−nσ+(2m+n)σ′]/2 sin(Y−,3nσ+(2m+n)σ′)

Y−,3nσ+(2m+n)σ′

]
(A.12)

F o = −1

i
e3iX−

∑
σ,σ′=±

σ′
[
eiπ[(m+n)σ−(m−n)σ′]/2 sin(Y+,3(m+n)σ+(m−n)σ′)

Y+,3(m+n)σ+(m−n)σ′

+eiπ[mσ−(m+2n)σ′]/2 sin(Y+,3mσ+(m+2n)σ′)

Y+,3mσ+(m+2n)σ′
− eiπ[nσ−(2m+n)σ′]/2 sin(Y+,3nσ+(2m+n)σ′)

Y+,3nσ+(2m+n)σ′

]
(A.13)

We express x̂ and ŷ in spherical coordinates, neglecting the r-components of both these unit vec-

tors because of the approximation r � a. When computing the curl in spherical coordinates, four

of the six terms go like 1/r, including both of the terms involving derivatives of Fr. In other words,

with the far-field approximation,∇× F ≈ −1
r
∂
∂r

(rFϕ)θ̂ + 1
r
∂
∂r

(rFθ)ϕ̂. Hence we obtain

F e,o(r, t) ∝ ei(kr−ωt)

r

{
(cos θ sinϕ θ̂ + cosϕ ϕ̂)Ae,o

−
[√

3(cos θ cosϕ θ̂ − sinϕ ϕ̂)− (cos θ sinϕ θ̂ + cosϕ ϕ̂)
]
Be,o

−
[√

3(cos θ cosϕ θ̂ − sinϕ ϕ̂) + (cos θ sinϕ θ̂ + cosϕ ϕ̂)
]
Ce,o

− (cos θ sinϕ θ̂ + cosϕ ϕ̂)De,o

+
[√

3(cos θ cosϕ θ̂ − sinϕ ϕ̂)− (cos θ sinϕ θ̂ + cosϕ ϕ̂)
]
Ee,o

+
[√

3(cos θ cosϕ θ̂ − sinϕ ϕ̂) + (cos θ sinϕ θ̂ + cosϕ ϕ̂)
]
F e,o

}
(A.14)
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If we gather together the θ- and ϕ-components and define two new expressions

Θe,o(θ, ϕ) = cos θ sinϕAe,o −
√

3 cos θ cosϕBe,o + cos θ sinϕBe,o

−
√

3 cos θ cosϕCe,o − cos θ sinϕCe,o − cos θ sinϕDe,o

+
√

3 cos θ cosϕEe,o − cos θ sinϕEe,o +
√

3 cos θ cosϕF e,o + cos θ sinϕF e,o (A.15)

Φe,o(ϕ) = cosϕAe,o +
√

3 sinϕBe,o + cosϕBe,o +
√

3 sinϕCe,o − cosϕCe,o

− cosϕDe,o −
√

3 sinϕEe,o − cosϕEe,o −
√

3 sinϕF e,o + cosϕF e,o (A.16)

then we can write this concisely as

F e,o(r, t) ∝ ei(kr−ωt)

r

[
Θe,o(θ, ϕ)θ̂ + Φe,o(ϕ)ϕ̂

]
(A.17)

The electric field can be obtained from E = − 1
ε0
∇× F ; the magnetic field can be obtained from

Faraday’s Law, i.e. −∂H
∂t

= ∇×E:

E(r, t) ∝ i
ei(kr−ωt)

r

[
Φe,o(ϕ) θ̂ −Θe,o(θ, ϕ) ϕ̂

]
(A.18)

H(r, t) ∝ i
ei(kr−ωt)

r

[
Θe,o(θ, ϕ) θ̂ + Φe,o(ϕ) ϕ̂

]
(A.19)
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Finally, the power is

P e,o(θ, ϕ) ∝ |Φe,o(ϕ)|2 + |Θe,o(θ, ϕ)|2 (A.20)
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APPENDIX B: PLOTS OF WAVEFUNCTIONS AND POWER

DISTRIBUTIONS
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APPENDIX B: PLOTS OF WAVEFUNCTIONS AND POWER

DISTRIBUTIONS

Here we provide illustrations of the wavefunctions and the resulting power distributions due to

both sources for the sixteen lowest-energy modes. In the case of modes with m = n, the odd

wavefunction vanishes, so neither it nor the cavity mode power is plotted. The wavefunction plots

are contour plots in which the red regions represent positive values, the blue regions represent

negative values, and any contours separating red and blue regions are nodal curves. Note that we

only plot modes with m ≥ n, since it is clear from equations 3.5 and 3.6 that the TM(m,n) mode’s

wavefunction is the same as that of the TM(n,m) mode (or its negative, for odd modes) and the

energy is the same. No accidental degeneracies occur among these first sixteen modes, but they do

occur for some higher modes—the first few are the TM(7,0) and TM(5,3) modes (k ∝
√

49/a), the

TM(9,1) and TM(6,5) modes (k ∝
√

91/a), and the TM(11,1) and TM(9,4) modes (k ∝
√

133/a).
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Figure B.1: Contour plots of the wavefunctions for the (a) even and (b) odd TM(1,0) modes (k10 ∝
√
1/a); (c) radiated

power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the cavity
mode source for the (d) even and (e) odd modes.
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Figure B.2: (a) Contour plot of the wavefunction for the even TM(1,1) mode (k11 ∝
√
3/a); (b) radiated power due to

the uniform Josephson current; and (c) radiated power due to the cavity mode source for the even mode.

Figure B.3: Contour plots of the wavefunctions for the (a) even and (b) odd TM(2,0) modes (k20 ∝
√
4/a); (c) radiated

power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the cavity
mode source for the (d) even and (e) odd modes.

30



Figure B.4: Contour plots of the wavefunctions for the (a) even and (b) odd TM(2,1) modes (k21 ∝
√
7/a); (c) radiated

power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the cavity
mode source for the (d) even and (e) odd modes.
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Figure B.5: Contour plots of the wavefunctions for the (a) even and (b) odd TM(3,0) modes (k30 ∝
√
9/a); (c) radiated

power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the cavity
mode source for the (d) even and (e) odd modes.

Figure B.6: (a) Contour plot of the wavefunction for the even TM(2,2) mode (k22 ∝
√
12/a); (b) radiated power due

to the uniform Josephson current; and (c) radiated power due to the cavity mode source for the even mode.
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Figure B.7: Contour plots of the wavefunctions for the (a) even and (b) odd TM(3,1) modes (k31 ∝
√
13/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.
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Figure B.8: Contour plots of the wavefunctions for the (a) even and (b) odd TM(4,0) modes (k40 ∝
√
16/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.
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Figure B.9: Contour plots of the wavefunctions for the (a) even and (b) odd TM(3,2) modes (k32 ∝
√
19/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.
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Figure B.10: Contour plots of the wavefunctions for the (a) even and (b) odd TM(4,1) modes (k41 ∝
√
21/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.
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Figure B.11: Contour plots of the wavefunctions for the (a) even and (b) odd TM(5,0) modes (k50 ∝
√
25/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.

Figure B.12: (a) Contour plot of the wavefunction for the even TM(3,3) mode (k33 ∝
√
27/a); (b) radiated power due

to the uniform Josephson current; and (c) radiated power due to the cavity mode source for the even mode.
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Figure B.13: Contour plots of the wavefunctions for the (a) even and (b) odd TM(4,2) modes (k42 ∝
√
28/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.

38



Figure B.14: Contour plots of the wavefunctions for the (a) even and (b) odd TM(5,1) modes (k51 ∝
√
31/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.

39



Figure B.15: Contour plots of the wavefunctions for the (a) even and (b) odd TM(6,0) modes (k60 ∝
√
36/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.
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Figure B.16: Contour plots of the wavefunctions for the (a) even and (b) odd TM(4,3) modes (k43 ∝
√
37/a); (c)

radiated power due to the uniform Josephson current for both the even and odd modes; and radiated power due to the
cavity mode source for the (d) even and (e) odd modes.
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