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ABSTRACT 

 
This thesis is divided into four distinct chapters all linked by the topic of spray 

cooling. Chapter one gives a detailed categorization of future and current spray cooling 

applications, and reviews the major advantages and disadvantages that spray cooling has 

over other high heat flux cooling techniques.  

Chapter two outlines the developmental goals of spray cooling, which are to 

increase the output of a current system and to enable new technologies to be technically 

feasible. Furthermore, this chapter outlines in detail the impact that land, air, sea, and 

space environments have on the cooling system and what technologies could be enabled 

in each environment with the aid of spray cooling. In particular, the heat exchanger, 

condenser and radiator are analyzed in their corresponding environments.  

Chapter three presents an experimental investigation of a fluid management 

system for a large area multiple nozzle spray cooler. A fluid management or suction 

system was used to control the liquid film layer thickness needed for effective heat 

transfer. An array of sixteen pressure atomized spray nozzles along with an imbedded 

fluid suction system was constructed. Two surfaces were spray tested one being a clear 

grooved Plexiglas plate used for visualization and the other being a bottom heated 

grooved 4.5 x 4.5 cm2 copper plate used to determine the heat flux. The suction system 

utilized an array of thin copper tubes to extract excess liquid from the cooled surface. 

Pure water was ejected from two spray nozzle configurations at flow rates of 0.7 L/min to 

1 L/min per nozzle. It was found that the fluid management system provided fluid 

removal efficiencies of 98% with a 4-nozzle array, and 90% with the full 16-nozzle array 

for the downward spraying orientation. The corresponding heat fluxes for the 16 nozzle 
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configuration were found with and without the aid of the fluid management system. It 

was found that the fluid management system increased heat fluxes on the average of 30 

W/cm2 at similar values of superheat. Unfortunately, the effectiveness of this array at 

removing heat at full levels of suction is approximately 50% & 40% of a single nozzle at 

respective 10°C & 15°C values of superheat. The heat transfer data more closely 

resembled convective pooling boiling. Thus, it was concluded that the poor heat transfer 

was due to flooding occurring which made the heat transfer mechanism mainly forced 

convective boiling and not spray cooling. 

Finally, Chapter four gives a detailed guide for the design and construction of a 

high heat flux heater for experimental uses where accurate measurements of surface 

temperatures and heat fluxes are extremely important. The heater designs presented allow 

for different testing applications; however, an emphasis is placed on heaters designed for 

use with spray cooling.  

 

 
 

 
 

iv



 
 
 
 
 
 
 
 
 
 
 
 
 
 

I dedicate my thesis to my mother and father, Linda and Andy whose patience, 

nurturing and regard for education held me on a steady course.  I want to thank my sister 

Stephanie whose antics always kept me thinking of ways to outsmart her.  I also want to 

thank my Grandmother Irene and Grandma Sally for their unconditional love and 

emotional support.  I want to acknowledge my Aunt Nancy for her wise encouragement 

and advice.  Finally, I want to remember my Poppa Frank whose love and enthusiasm for 

engineering was passed down to me with unending patience at his basement workbench. 

 

 
 

v



 

ACKNOWLEDGMENTS 

 
            I would first like to thank my advisor, Dr. Louis Chow, for his exceptional 

mentorship and his boundless dedication to his graduate students. Much of the research 

done in this thesis would not have occurred if it was not for the exposure he has given me 

in his field of expertise. Dr. Chow also inspired me to surpass the normal amount of work 

required for a master’s thesis. I hope that the extra material presented here would be 

beneficial to the future development of high heat flux cooling systems and their possible 

applications. 

           This research was sponsored by the Propulsion Directorate of the Air Force 

Research Laboratory (AFRL), Wright Patterson Air Force Base, Ohio.  I wish to thank 

Dr. Kirk Yerkes and Mr. Brian Donovan of AFRL, Huseyin Bostanci of RTI and my 

friend Rodolfo Hutchinson for their advice and help associated with this research.   

  

 

 

 
 

vi



TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................ x 

LIST OF TABLES............................................................................................................ xii 

LIST OF SYMBOLS AND NOMENCALTURE ........................................................... xiii 

1. CATERGORIZATION AND BENEFITS OF SPRAY COOLING .......................... 1 

1.1 Introduction to Chapter ............................................................................................. 1 

1.2 Categorization of Spray Cooling .............................................................................. 1 

1.3 Cooling Systems Quick Overview............................................................................ 3 

1.4 Advantages and Disadvantages of Spray Cooling .................................................... 6 

1.5 Odd Applications of Spray Cooling........................................................................ 10 

1.6 Conclusion to Chapter............................................................................................. 12 

2. MOBLIE LAND, SEA, AIR AND SPACE BASED HIGH HEAT FLUX 

COOLING APPLICATIONS ........................................................................................... 13 

2.1 Spray Cooling Developmental Goals...................................................................... 13 

2.1.1 Spray Cooling to Increase Output.................................................................... 13 

2.1.2 Spray Cooling to Enable New Technologies to be Feasible............................ 14 

2.2 Spray Cooling of High Energy Lasers .................................................................... 15 

2.3 Land, Air, Sea and Space Environments Impact on the Cooling System............... 17 

2.3.1 Mobile Land Based Cooling Applications and Open vs. Closed Loop ........... 18 

2.3.2 Mobile Sea Based Cooling Applications ......................................................... 21 

2.3.3 Air Based Cooling Applications ...................................................................... 22 

2.3.4 Space Based Cooling Systems ......................................................................... 25 

2.4 Conclusion to Chapter............................................................................................. 31 

 
 
vii



3. MULTIPLE NOZZLE SPRAY COOLER ............................................................... 34 

3.1 Introduction to Chapter and Literature Review .................................................. 34 

3.2 Design Problem................................................................................................... 35 

3.3 Design and Solution............................................................................................ 36 

3.4 Experimental Setup............................................................................................. 40 

3.5 Fluid Dynamic Analysis and Setup..................................................................... 45 

3.6 Suction Effectiveness Testing............................................................................. 50 

3.7 Thermal Design and FEM Analysis.................................................................... 52 

3.8 Thermal Testing Procedures ............................................................................... 55 

3.9 Thermal Calculations and Results ...................................................................... 57 

3.10 Thermal Results and Uncertainties ................................................................... 57 

3.11 Discussion ......................................................................................................... 60 

3.12 Conclusion to Chapter....................................................................................... 64 

4. HIGH HEAT FLUX HEATER DESIGN................................................................. 66 

4.1. Introduction to Chapter .......................................................................................... 66 

4.2. Heat Source Selection ............................................................................................ 66 

4.2.1 Cartridge Heaters ............................................................................................. 67 

4.2.2 Quarts Lamp..................................................................................................... 71 

4.2.3 Thick Film Resistors ........................................................................................ 72 

4.2.4 ITO Heaters and Thin Wires............................................................................ 77 

4.2.5 Future Heat Sources......................................................................................... 80 

4.3 Heater Design.......................................................................................................... 80 

4.3.1 Cartridge Heater Orientation and Placement ................................................... 81 

 
 
viii



4.3.2 Insulation.......................................................................................................... 83 

4.3.3 Neck Sealing .................................................................................................... 84 

4.4. Methodology for Design ........................................................................................ 85 

4.4.1 Step One: Surface Temperature, Material and Maximum Heat Flux .............. 86 

4.4.2 Step Two: Neck Length and Reduction of Uncertainties ................................ 88 

4.4.3 Step Three: FEM Analysis and Design Refinements ...................................... 90 

4.4.4 Step Four: Thermocouple Placement............................................................... 93 

4.4.5 Step Five: Housing Design .............................................................................. 95 

4.4.6 Short Summary of Steps................................................................................... 96 

4.5 Common Problems.................................................................................................. 96 

4.6 Conclusion to Chapter............................................................................................. 98 

APPENDIX A: CARTARTRIDGE HEATERS AND TFR SPECIFICATIONS ............ 99 

APPENDIX B: MANUFACTURING DRAWINGS FOR MULTIPLE NOZZLE SPRAY 

COOLER AND HEATER .............................................................................................. 107 

APPENDIX C: SUBCOOLED FLOW BOILING AND SPRAY COOLING 

CACLUATIONS ............................................................................................................ 118 

APPENDIX D: UNCERTAINTY CALCULATIONS FOR HEAT FLUX................... 122 

APPENDIX E: SAMPLE HEAT FLUX AND TEMPERATURE GRAPHS................ 124 

APPENDIX F: SBIR AND STTR SPRAY COOLING AWARDS............................... 127 

LIST OF REFERANCES ............................................................................................... 129 

BIO INFORMATION..................................................................................................... 136 

 

 
 

ix



LIST OF FIGURES 

Figure 2.1: Convergent Divergent Intake Nozzle ............................................................. 24 

Figure 3.1: Single Spray Cone .......................................................................................... 35 

Figure 3.2: Multiple Spray Cone Interaction .................................................................... 35 

Figure 3.3: Fluid Build Up Points..................................................................................... 36 

Figure 3.4: Fluid Flow Observed from the Side of the Spray Cooler with the Un-Modified 

Siphons...................................................................................................................... 37 

Figure 3.5: Spray Nozzle Configurations ......................................................................... 38 

Figure 3.6: Overall Siphon Placement .............................................................................. 38 

Figure 3.7: Overall Spray Cooler Design ......................................................................... 40 

Figure 3.8: Experimental Setup ........................................................................................ 41 

Figure 3.9: Experimental Setup for Multiple Nozzle Spray Cooler ................................. 42 

Figure 3.10: Vacuums Used in Series............................................................................... 43 

Figure 3.11: Custom Labview© Layout ............................................................................ 44 

Figure 3.12: Observer Flow from Bottom of Grooved Plate: Un-Modified Siphons....... 46 

Figure 3.13: Modified Siphon Designs............................................................................. 47 

Figure 3.14:  Fluid Dynamics Visualization around the Base of the Siphons .................. 48 

Figure 3.15: Siphons Placement and Siphon Type, ref to Fig 10 for Siphon Type .......... 49 

Figure 3.16: Suction Effectiveness for a 16 Nozzle Array-Without Heating ................... 51 

Figure 3.17: Sectional Temperature Profile of Heater...................................................... 52 

Figure 3.18: Heater Design with Thermocouple Locations.............................................. 55 

Figure 3.19: Q vs. Tw-Tsat for 20 Psi Head Pressure......................................................... 58 

Figure 3.20: Q vs. Tw-Tsat for 30 Psi Head Pressures ....................................................... 59 

 
 

x



Figure 3.21: Comparison of Heat flux vs. Superheat for Single Nozzle to Multiple Nozzle

................................................................................................................................... 61

Figure 4.1: Quarts Lamp Heater Design ........................................................................... 72 

Figure 4.2: Thick Film Resistors ...................................................................................... 73 

Figure 4.3: Thick Film Heater Using Estimated Heat Loss.............................................. 73 

Figure 4.4: Thick Film Heater Utilizing a 1D Conduction Block .................................... 75 

Figure 4.5: Heat Flux Sensor ............................................................................................ 76 

Figure 4.6: Ideal ITO Heater Setup................................................................................... 79 

Figure 4.7: Cartridge Heater Orientations ........................................................................ 81 

Figure 4.8: Cartridge Heater Placement............................................................................ 83 

Figure 4.9: Seal-less Heater .............................................................................................. 84 

Figure 4.10: Applying Heat Loads.................................................................................... 91 

Figure 4.11: Thermocouple Placement ............................................................................. 93 

Figure 4.12 Wire Feed Through Design ........................................................................... 97 

 

 

 
 

xi



LIST OF TABLES 

Table 1: Heat Flux Comparison for Cooling Technology as of 2003................................. 4 

Table 2: Cooling Techniques and Respective Heat Fluxes and Heat Transfer Coefficients

..................................................................................................................................... 5

Table 3 : Radiator Surface Temperature vs. Heat Flux .................................................... 27 

Table 4: Temperature Rise of Different Materials at Various Heat Fluxes...................... 87 

Table 5: Increase in Temperature Across Focus Block at Various Heat Fluxes .............. 90 

Table 6: Interpolating of Bottom Temperature................................................................. 92 

 

 
 
xii



LIST OF SYMBOLS AND NOMENCALTURE 

1D   One Dimensional 

AC   Alternating Current 

Aout   Outside Area of the Heater (cm2) 

Ah   Top Pedestal Heater Area (cm2) 

atm   Atmospheric Pressure (atm)  

D   Diameter of Heater Cartridge (in) 

Ein    Electrical Input (W) 

electricalinE _   Electrical Energy Input (W) 

Effsuc   Effectiveness of Suction System  

Ecooled   Energy Absorbed by Spray Cooling (W) 

Eloss    Energy Loss to the Shell of the Heater (W) 

k    Thermal Conductivity (W/m-K)  

kinter    Interpolated Value of Thermal Conductivity (W/cm-K)  

HEDS   Human Exploration & Development of Space Project 

HEL   High Energy Laser 

HVAC   Heating Ventilation & Air Conditioning  

I   Amperage 

ITO   Indium Tin Oxide Heater 

in-Hg   Pressure, Inches of Mercury, (0.491 Psi) 

L   Length of Heater Cartridge (in)  

min   Minutes  

PID   Proportional Integral Derivative Controller  

 
 
xiii



Psi   Pressure (lbs/in2) 

q ′′    Heat Flux (W/cm2) 

coolingQ&   Heat Flux due to Cooling (W/cm2) 

LossQ&    Heat flux due to Losses in the System (W/cm2) 

R   Electrical Resistance (Ohms) 

SCFB   Subcooled Flow Boiling 

SBL   Space Based Laser  

T*   Up Stream Temperature (°C) 

Ts   Radiator Surface Temperature (°C) 

Tw    Cooled Surface Temperature (°C) 

T.C.   Thermocouple  

Tb1-b3    T.C. Temperature Differences of Right Side 1-3 (°C) 

T1-3    T.C. Temperature Differences of Left Side 1-3 (°C) 

TES   Thermal Energy Storage 

TFR   Thick Film Resistors 

V   Voltage (V)  

W   Power (Watts) 

X   Distance (cm) 

X1-2   Distance Between T.C.1 and T.C. 2 (10.16mm)  

X1-3    Distance Between T.C.1 and T.C. 3 (17.78mm) 

X2-3    Distance Between T.C.2 and T.C. 3 (7.62 mm) 

X1-w   Distance T.C. is from the Cooled Surface (6.08 mm)  

 
 
xiv



edgesolumeV&   Volume Flow Rate Over the Edges of the Spray Cooler (L/min) 

Ω   Resistance, (Ohms) 

ρ   Density (kg/m3) 

ρ*   Up Stream Density (kg/m3) 

ε    Emissivity 

σ    Stefan-Boltzmann constant (5.67E-4 W/cm2-K4) 

∆T  Temp. Difference between Ambient Air and the Rejection   

Equipment

 
 
xv



 

 

 

1. CATERGORIZATION AND BENEFITS OF SPRAY COOLING 

1.1 Introduction to Chapter 

Chapter one of this masters’ thesis provides a categorization for all current and 

future spray cooling applications and additionally gives short examples from each 

category. It also gives a quick overview of other cooling technologies and then compares 

the advantages & disadvantages of spray cooling to other high heat flux cooling 

technologies, in particular subcooled flow boiling. Finally, this chapter closes by 

presenting some odd applications of spray cooling. 

1.2 Categorization of Spray Cooling 

Spray cooling is a term that is used very loosely and applies to many different 

types of applications ranging from the medical, industrial, agricultural, electronics and 

HVAC industries. In doing this categorization the author hopes to reduce the ambiguity 

about current applications for spray cooling by showing how they relate to one another. 

Spray cooling can be broken down into two very general categories; that of 

cooling a gas, to lower the temperature of that gas, or that of spray cooling an object to 

remove heat from it. The first involves spraying a mist of liquid, usually water, into a 

stream of gas, usually air. If the gas is of a sufficient temperature, the mist of liquid will 

then evaporate taking heat away from that gas; consequently dropping its temperature. 

This process is commonly used in HVAC systems as well as other industrial processes, 
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involving regulation of a gases temperature. Spray cooling of gasses is not the focus of 

this thesis, therefore will not be considered further. 

The second category of spray cooling is that of removing heat from an object or 

surface and can be further divided into two the subcategories: cooling applications with 

surface temperatures above Leidenfrost point of the coolant and ones with surface 

temperatures below the Leidenfrost point of the coolant.   

The Leidenfrost point is defined as the minimum temperature of a surface at 

which a respective liquid will fully form a vapor film, insulating that liquid from the 

surface. At one atmosphere the Leidenfrost point for water is 250°C [1]. This can simply 

be observed for water as the minimum temperature for a surface for which a droplet, if 

placed on the surface, will then bead up and dance around [1]. 

Applications for spray cooling surfaces above the coolant’s Leidenfrost point are 

mostly materials processing, more specifically metal quenching and material tempering 

[2]. Spray cooling in these applications is primarily comprised of open loop system.  

These spray cooling systems are applied to areas on the order of many square meters and 

main goal is to temper the metal being processed by cooling it at a specific rate. Specific 

spray nozzles have been designed for this purpose by companies such as Spray Systems 

Co. of Wheaton, Illinois. The main reason these applications are open loop is that large 

amounts of vapor are created.  Consequently, it is much more economical to allow those 

vapors to escape to the atmosphere than to operate a system to recondense these vapors 

back into liquid. Spray cooling above the coolants Leidenfrost point is not the focus of 

this thesis and will not be considered further.  
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Applications for spray cooling below the coolant’s Leidenfrost point are the main 

focus of the author’s research and application for this will be elaborated on in chapter 2. 

Note: Spray cooling would be called forced liquid convection if the cooled surface 

temperature was not above the boiling point of the sprayed liquid. Thus to take advantage 

of spray cooling the target application must have a surface temperatures above the boiling 

point of that fluid. Fortunately, the boiling point of the fluid can be adjusted by operating 

at different system pressures [3]. 

1.3 Cooling Systems Quick Overview   

Simply the definition of spray cooling can be defined as the follows: Spray 

cooling is a phase change method of cooling that utilizes a spray of liquid on the cooled 

surface to greatly increase effectiveness of heat transfer [4]. Spray cooling is not the only 

cooling technique but it is one well suited to cooling with extremely high heat fluxes. 

Heat flux is defined as: The amount of heat energy per unit time passing through a given 

area.  To give some perspective on heat flux table 1 was created. Disclaimer: The values 

in table 1 are to be taken as rough estimates. Furthermore, some of these values have no 

unrestricted publication to back them, however the author knows through his reading and 

interactions with military personnel that the given heat fluxes are possible.  
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Table 1: Heat Flux Comparison for Cooling Technology as of 2003 

Name Heat Flux (W/cm2) Name Heat Flux (W/cm2)

Sun Light on Earth 0.14 Cray Super Computer CPU 70 - 120
Light Bulb (40-100W) 1 Acetylene Torch 100
Burn a Person in one 
Second 5 Aircraft Electronics 150
Propane Torch 10 Slab Lasers >50
Nuclear Reactor 10 -70 High Power Laser Diodes <400
Car Engine 30-60 High Power Microwave <700

Intel Pentium 4 CPU 15 -30
Power Converters IGBT, 
MOSFETs <900

Shuttle Re-Entry <60 Surface of the Sun 6,500
 

 
There are many different types of cooling systems available in the market today. 

When selecting a cooling system factors such as: maximum heat flux, heat loads, 

temperature requirements, reliability, power consumption, complexity, maturity of the 

technology, operational environments, and cost must be full considered for each 

particular application.  This in itself may be a difficult task and depended upon the 

restriction set on the cooling system.  

Table 2 shows comparative cooling technology’s heat fluxes and heat transfer 

coefficients. The author would like to mention, that table 2 is meant as an rough 

reference for these cooling technologies and that there may be particular publications that 

list values outside of what are listed on the table.  
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Table 2: Cooling Techniques and Respective Heat Fluxes and Heat Transfer Coefficients 

Mechanism  
Name of Cooling 

Technology or Method 

Heater Transfer 
Coefficient 
(W/cm2 K) 

Highest 
Recorded 
Heat Flux 
(W/cm2) Reference 

       

Single Phase 
Free Air Convection 
Finned Heat sink 0.005 -0.05 15 [5] [1] 

Single Phase 
Forced Air Convection 
(Heat Sink with a Fan) 0.001 - 0.01 40 [5] [1] 

Single Phase 
Natural Convection       
with FC’s (single phase) 0.05-0.08 >80 [5] [1] 

Single Phase 
Natural Convection with 
water (single phase) 0.08-0.1  5-90 [1] 

Two Phase Heat Pipes     
Single Phase Microchannel   1000   
Electrical Peliter Coolers -NA- 70  
Electrical Quantum Tunnel Cooling  -NA- 200  
Two Phase Subcooled Flow 2 120  
Two / One 
Phase  Subcooled Flow Boiling         
Two Phase Microchannel Boiling 10-20    
Two Phase Spray Cooling  20-40 1200 [6] 

Two Phase 
Two Phase 
Jet Impingement 20 1000   

 
 

From table 2 one can see that spray cooling has a very high associated heat 

transfer coefficient and heat flux. This put spray cooling in the category of a “high heat 

flux cooling systems.” As for low heat flux applications, it mostly does not make sense to 

select a spray cooling system. This mainly is due to the myriad of cheaper, more 

established, less complex, and more reliable lower heat flux cooling systems already on 

the market [7]. None the less, spray cooling must compete with other high heat flux 

cooling technologies. Subcooled flow boiling (SCFB) on table 2 is listed as both a two 

and one phase cooling technique. To clarify, SCFB utilizes boiling to generate vapor 
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which greatly increase transfer heat but then the vapor quickly condense in the subcooled 

bulk coolant. Thus the heat rejection equipment is a single phase heat exchanger.  

1.4 Advantages and Disadvantages of Spray Cooling  

From tables 2 one can see that spray cooling has very high heat fluxes when 

compared to other cooling technologies. Only jet impingement, microchannel cooling and 

subcooled flow boiling (SCFB) can achieve similar heat fluxes. Nevertheless, spray 

cooling has a few major advantages over many of the other high heat flux cooling 

techniques. The first major advantage that spray cooling will allow for is a uniform 

temperature across the cooled surface, i.e. isothermal. Isothermal surfaces enable many 

cooling application to operate very effectively, for example this was demonstrated for a 

laser diodes array by M.R. Pais in 1994 [8] [9]. To date, large area isothermal spray 

cooling has not been proven in a spray cooling publication for square surface areas larger 

than 5cm by 5cm. Despite the lack of publications, the author knows of companies such 

as Rini Technologies of Orlando Florida which have currently proven the isothermal 

operation of spray cooling on large areas.   

The second advantage spray cooling has over other high heat flux cooling 

techniques is that of its lower associated flow rates. Flow rates have a direct impact on 

closed loop system components, mainly on the sizes of the pumps and the associated 

tubing. In small scale cooling application, ones with low heat loads, the differences in 

pump size between SCFB, microchannel cooling and spray cooling can be ignored. Take 

for example a cooling system with a heat load of 250W; SCFB in this case would require 

a flow rate of 0.048 gallons/min with a 20°C coolant temperature rise; whereas, spray 

cooling, would require 0.008 gallons/min. The difference in pump size between the two 
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flowrates is neglectable, thus flowrates only make a minor impact on systems size at low 

heat loads.  

Conversely at high heat loads, such as 2.5MW, SCFB operating with a rejection 

difference of ∆T of 20°C would require 475 gallons/min; whereas, spray cooling would 

require 80 gallons/min. Here, the differences in pump sizes at such a high flowrates make 

an immense impact on overall cooling system size, weight, and power requirements. 

Note: Appendix C shows the supporting calculation for both the low and high heat load 

examples. 

The final large advantage spray cooling has over other high heat flux cooling 

techniques is that of a higher heat rejection temperature. Closed loop spray cooling 

systems’ utilize a condenser to reject heat; whereas, single phase jet impingement, single 

phase microchannel and SCFB utilizes a heat exchanger. The normal advantages of using 

a condenser in cooling system instead of an exchangers, is that of the condenser having a 

smaller associated size due to its higher heat rejection temperatures.  

Take for example two cooling systems, one being a SCFB system operating with 

a coolant temperature rise of 40°C (∆T), and the other being a spray cooling system. Both 

systems are required to maintain an array of laser diodes at 60°C.  Say the SCFB system 

is required to maintain at least a 10°C subcooled temperature to meet the required heat 

fluxes across the laser diode array. The fluid exiting the SCFB would then have a 

temperature of 50°C, and the fluid entering the SCFB would be at 10°C, again that is 

assuming a 40°C rise in coolant temperature is achieved. The heat exchanger would then 

have to take the coolant at 50°C and cool it sensibly down to 10°C.  
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Now, the spray cooling system can utilize saturated liquid coolant at 50°C and 

produces vapor at 55°C, this assumes that at 5°C superheat between the coolant and the 

surface of the diodes are required to achieve the needed heat fluxes. The condenser would 

then take that 55°C vapor and condenses it back at a constant temperature process to 

50°C saturated liquid. The difference seen between the heat exchanger of the SCFB 

system and the condenser of the spray cooled system would be the lower rejection 

temperature of the heat exchanger in relation to the higher isothermal temperature of the 

condenser. The lower rejection temperature directly means that the size of the heat 

exchanger in a SCFB would be greater than that of the corresponding condenser in a 

spray cooled system. Consequently, two phase cooling systems such as, two phase jet 

impingement, two phase microchannel cooling & spray cooling have smaller heat 

rejection equipment, namely condensers, when compared to the heat rejection equipment 

of a single phase or SCFB cooling systems.  

Another minor advantage of a spray cooling systems would be the ability to turn 

the spray on and off. This ability was shown by the Intel group with their inkjet assisted 

spray cooler, which only applied coolant when needed to a microprocessor [10]. Spray 

cooling can also feasible be operate in an open loop mode, this is elaborated on in section 

2.3.1 Open vs. Closed Loop. Finally, spray cooling systems operate well with a wide 

range of coolants, such as dielectric, which can be sprayed directly onto the electronic 

item being cooled [11] [4].   

There are also some disadvantages to spray cooling systems; many of these 

disadvantages are being worked out by the two leading companies involved in spray 

cooling of electronics which are,  Isothermal Systems Research Inc. of Clarkston 
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Washington and Rini Technologies, of Orlando Florida. Spray cooling directly on 

delicate electronic equipment is difficult due to the very small erosion effects of an 

impinging spray over time. Over time a coolant containing small bits of foreign material 

sprayed onto a surface will slowly erode that surface. These bits of foreign material can 

be the result of many of things inside of the systems, such as oxidation from the tubing; 

small bits of metal ground off a gear pump and so on...  Step can be taken to reduce the 

corrosion effect such as using, high efficiency filters, and metal traps with inlayed natural 

magnets.   

Another disadvantage as of now is with pressure atomized spray nozzles which 

require high machining tolerances and can be difficult to manufacture. Companies such 

as: Delavan of the U.K., Spray System Co. of Wheaton IL, and Hago of Mountainside 

NJ, produce high quality spray nozzles, however they all charge around $10-$20 per 

nozzles, which is only a disadvantage if extremely large quantities of spray nozzles are 

required. Moreover, pressure atomized nozzles are very sensitive to large amounts of 

coolant debris, which must be filtered out to prevent the spray nozzles from clogging. 

Vapor atomized spray nozzles are also produced by the same companies; however, they 

do not require such high machining tolerances and are less susceptible to clogging due to 

their larger diameters nozzle orifices.   

Yet another disadvantage of spray cooling systems, especially large areas spray 

cooling and vapor atomized systems, are their system complexity, see chapter 3 for 

system details on the author’s large area spray cooling system.  The complexity of the 

spray cooling system may be its biggest disadvantage. 
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The finally disadvantage spray cooling has is the lack of understanding about its 

operational characteristics in variable and microgravity environments. Up to this date 

only Baysinger & Yerkes have presented a paper on the effects microgravity has on the 

heat transfer characteristics of spray cooling [12]. To date there has only been one 

publication on the effects that extreme variable gravity has on a spray cooling systems. 

Rini concluded that a 5 G environment did not affect the heat transfer for a single nozzle 

spray cooler. However, a similar experiment must be conducted on a large area spray 

cooling system. This must be fully explored before a spray cooling systems can be placed 

on a variable or microgravity platform and can be considered a disadvantage till it is well 

understood, sections 2.3.3 “Air Based Cooling Applications” & 2.3.4 “Space Based 

Cooling Application” elaborate on this particular disadvantage [13].  

1.5 Odd Applications of Spray Cooling 

The author feels that it is important to note these unusual applications for two 

reasons: they are in commercial uses today, and that only new advances in spray cooling 

may better aid an unusual application. The author has mention in chapter 1 that it only 

makes sense to use spray cooling in application where high heat fluxes are needed; 

however these are the few exceptions, hence the title Odd Applications.  

Another notable application of spray cooling with surface temperatures above the 

Leidenfrost point of the coolant is in the field of dermatology. Lasers have become an 

important tool in the field of dermatology and are used for a variety of reasons. One 

problem with the dermatologist’s use of lasers was that of epidermal or skin damage 

cause by the excess heat created during the lasers uses. Using a cryogenic spray cooling 

system to intermittently cool the skin between light pulses dramatically reduced the 
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damage to the skin and allowed the dermatologist to increase the power per pulse. 

Moreover, spray cooling was used over cryogenic boiling because its high associated heat 

fluxes provided the fastest cooling time between laser pulses. In this particular 

application, spray cooling directly reduced skin damage & decrease treatment times for 

the patients [14] [15] 

The oddest application of spray cooling the author has seen is that of cool off 

livestock, in particular pigs. Spray cooling is being used this case because it is the most 

monetarily economical way of cooling pigs in small enclosures. The human sweat glands 

are magnificent thermal cooling devices.  On a hot day they allow us to shed excess heat, 

by releasing sweat on to the skin. That sweat then vaporizes into the atmosphere, and 

takes with it excess heat. Vaporization occurs even though the surface of the skin in this 

case is not at the boiling point of the water. This is due to the low vapor pressure 

associated with a dry atmosphere. In other words, vaporization will occur if the relative 

humidity of the air is below 100% and the temperature of the pigs’ skin is above the dew 

point.  The only catch is that the rate of vaporation or heat removal is dependent upon, 

the relative humidity and ambient temperatures. Unfortunately, pigs do not have sweet 

glands, so spraying them with a water mist cools them in the most economical way, aside 

from the old fashion mud puddle. So, simply put, spraying pigs in small enclosures with a 

fine mist of water is an easy way to keep them cool using the minimal amount of water.  
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1.6 Conclusion to Chapter 

In conclusion, this chapter determined that spray cooling should be categorized 

into two main categories the spray cooling of a gas or the spray cooling of an object or 

surface. The second category of spray cooling, should then be subcategories into cooling 

applications with surface temperatures above Leidenfrost point of the coolant and ones 

with surface temperatures below the Leidenfrost point of the coolant.   

This chapter also concluded that spray cooling is best used as a high heat flux 

cooling system. This was due the large number of cheaper, more established, less 

complex, and more reliable lower heat flux cooling systems already on the market. 

Spray cooling has major advantages over other high heat flux cooling systems 

such as SCFB. These advantages are isothermal surface temperatures, lower flow rates at 

respectable heat loads, and higher rejection temperatures. High rejection temperatures 

allows for smaller condenser when compared to the heat exchanger of a single phase 

cooling system such as SCFB.  

Spray cooling’s current disadvantages are the high machining tolerance required 

by pressure atomized spray nozzles which are also susceptible to clogging if the coolant 

is not filtered of debris. However, this is not so important in a vapor atomized spray 

nozzle system. Another disadvantage is the system complexities associated with large 

area spray cooling. And the final disadvantage is the lack of understanding about how 

spray cooling behaves in a microgravity and variable gravity environment.  
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2. MOBLIE LAND, SEA, AIR AND SPACE BASED HIGH HEAT 

FLUX COOLING APPLICATIONS 

2.1 Spray Cooling Developmental Goals 

There is a multitude of applications for spray cooling and each one of them 

presents a unique set of requirements that the spray cooling system must meet. The bulk 

of these applications are simply tied to the removal of heat from electronic devices. All of 

the spray cooling applications in this section are categorized as one with surface 

temperatures being below the Leidenfrost point of the coolant. 

There are two distinct funding parties interested in the development of the spray 

cooling for electronic systems: the military, and the commercial company. Each has a 

specific set of requirements that must be met in order for this cooling technology to enter 

practical uses. Regardless both have the same goals for the development of spray cooling 

which is to increase the output of a current system, or to enable a new technology to be 

technically feasible. 

2.1.1 Spray Cooling to Increase Output 

Microprocessors and high power electronic devices such as MOSFETs (Metal 

Oxide Semiconductor Field Effect Transistors), IGBTs (Insulated Gate Bipolar 

Transistors) and  MCTs (MOS Controlled Thyristors) can create heat fluxes easily above  

100W/cm2 and probably beyond if the temperature is maintain within the operational 
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limits [16]. Increase in microprocessor’s power densities are starting to approach the 

limits of forces air cooling, new cooling techniques are being explored to spread the heat, 

hence lowering the heat flux, or remove the heat directly [17] [18]. Cooling techniques 

such as heat pipes and single phase liquid cooling systems are expected to be next in line 

for cooling of higher heat density microprocessors [17]. Microprocessors for super 

computers have already exceeded the limits of single phase liquid cooling. Cary Inc. 

maker of supercomputers was first in applying spray cooling in its SV2 marketed super 

computer system [19].  

Spray cooling in this case allows high heat density microprocessors to run at a 

higher clock speed than they would be otherwise able to do with conventional forced air 

cooling techniques [10]. An increase in clock speed directly increases the heat generation 

inside of the microchip. Increasing the clock speed requires that one maintain the 

microchip within operational temperatures (usually under 120°F). For this a higher heat 

flux cooling technique is required, such as spray cooling. Exactly the same is true for 

high power electronic devices, except instead of clock speed, power output increases, 

with the uses of higher heat flux cooling technologies.  In both microchip and power 

devices more effective cooling techniques, as the ones shown in table 2 will increase the 

output of the current device in use. Combine this with new microchip packaging 

techniques and the microprocessor will be able to continue to develop unimpeded by 

thermal issues [5] [17]. 

2.1.2 Spray Cooling to Enable New Technologies to be Feasible   

The second developmental goal of spray cooling is to enable new emerging 

technologies to become technically feasible. The main funding party behind this 
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developmental push is the military. Applications such as high energy lasers (HEL), high 

power radar systems and high power microwave systems are expected to be technically 

feasible for mobile platforms with the aid of spray cooling [12]. The cooling needs of 

most of these applications today can be accomplished by subcooled flow boiling. 

Unfortunately, the large system size and weight associated with subcooled flow boiling 

(SCFB) of large heat loads makes it extremely difficult to placed on any small land, air or 

space based platform. For terrestrial application SCFB can be directly applied but is 

strictly limited to fixed land or larger mobile land and sea platforms. Consequently spray 

cooling in particular spray cooling of large areas is being developed so that these 

advanced military systems can be placed on smaller and more mobile platforms. Up till 

now spray cooling has been awarded 4.1millon dollars in research money by SBIR & 

STTR, Appendix F shows the companies and topic numbers of each award.     

2.2 Spray Cooling of High Energy Lasers   

One such application for spray cooling in which it will serve as an enabling 

technology is that of high energy lasers systems (HEL) [6] [20]. The highest power lasers 

of the 1990’s where the chemical lasers [21], however a new alternative laser technology, 

solid state lasers, is being developed due to the benefits it has over its chemical based 

brother [22]. So if the major benefits associated with solid state lasers are that they have 

much higher lasing densities, can be run off of electricity as apposed to chemicals, 

smaller system size for a respective power output, and they have no caustic working 

fluids. Solid state lasers have many other benefits when compared to chemical based laser 

but there are some major hurtles to overcome before they can produce power outputs 

comparable to chemical based lasers [23]. The one main hurtle which the author is 
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concerned with is the thermal densities created inside of the lasing materials, and power 

electronics.  

High energy solid state laser can be broken up into its main heat generating 

components; the laser diodes, main laser gain material, and the power electronics [6] [8] 

[9]. Each component has a respective efficiency; which relates directly to the amount of 

waste heat generated from that component. Engineers are working to increase efficiencies 

and consequently reduce the waste heat generated by each component. Regardless there 

is going to be slight inefficiencies in even the best systems. Laser diodes are a vital 

component in a high energy solid state system [9]. 

 Currently laser diodes have been operated at up to 50% even 65% electrical 

efficiencies [24] [9]. For example, take a 50% efficient laser diode array producing a 

power output of 40KW. This laser diode array would produce 20KW of waste heat that 

must be disposed of. Spreading the heat out over a larger area would allow standard OEM 

single phase cooling systems to be used but this means that more lasers diodes must be 

uses to achieve the desired power output. Again take for example the same laser diode 

array producing 20KW of waste heat. A standard OEM single phase cooling system 

providing heat fluxes of 100W/cm2 would require 200cm2 of surface area to cool the 

array properly. 

However, for this component of the HEL system to fit on smaller more mobile 

platforms, the size of the laser diode array and its corresponding surface area must be 

reduced. This can be done by switching to cooling systems with higher achievable heat 

fluxes such as: spray cooling, SCFB, or microchannel cooling. Now, going back again to 

the laser diode array producing 20KW of waste heat, one can see that a cooling system 

 
 
16



capable of heat fluxes up to 400W/cm2 would reduce the required surface area to 50cm2 

[9]. Thus one can see that a large area spray cooling system would reduce the size and 

corresponding surface area of the laser diode array. For this reason effective high heat 

flux cooling systems are going to be needed to make small mobile HEL applications 

possible [6] [23] [12].  

To prove this point even further say the previously mentioned laser diode’s 

efficiency increases to 90%. That still means that a 40 KW laser diode array would 

produce 4KW of waste heat. However if the cooling system is still capable of cooling 

20KW of waste heat one can then increase the output power. In this example, that would 

allow the 90% efficient laser diode array now to operate at 200KW; of course, that is 

assuming that cooling and the laser diodes are the only limiting factors. 

2.3 Land, Air, Sea and Space Environments Impact on the Cooling System 

Military planners have been looking at the strategic advantages of having high 

energy lasers, high power radar and high power microwave systems on wide range of 

mobile platforms [25]. But from and engineering standpoint the difficulties in cooling a 

land, air, sea, or space based systems can vary widely.  

The author’s review of the literature has found a lack of attention paid to the 

cooling aspect of each of these environments. So the author has elected to elaborate on 

the difficulties associated with the design of a cooling system in each of these 

environments. In particular, author wishes to elaborate on the radiator, condenser, and 

heat exchanger, since they would in most case be the most limiting component in the 

cooling system’s design.  
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2.3.1 Mobile Land Based Cooling Applications and Open vs. Closed Loop  

Fixed land based applications were the first proof of high powered laser 

technologies effectiveness. The high energy laser system test facility in White Sands New 

Mexico used their high energy chemical based laser to shoot down a Katyusha rocket and 

artillery shells in flight [23] [26] [27]. These tests validated HEL as an effective anti-

missile defense system. Since then military planners quickly hoped to put HEL systems 

in multiple mobile land based platforms. Currently the HEL lasers are chemical based 

and take up a substantial amount of room, so they would be limited mainly to train and 

multiple semi-sized mobile size platforms. Consequently, the solid state laser has been 

identified as a key technology needed to move this defense system to smaller more 

mobile land based platforms such as tanks, and Humvees. The US Space and Missile 

Defense Command have already taken to this with their Humvees based ZEUS-HLONS 

systems [28], which explodes mines. Lawrence Livermore Labs have also shown interest 

in this move with their mockup HEL Humvee [29]. For HEL system make a seriously 

move to these smaller mobile land based platforms the cooling needs of the system must 

be fully assessed.  

The cooling systems of all mobile land based platforms will be extremely 

dependent upon ambient air conditions. The cooling systems of all mobile land based 

platforms fundamentally have to reject heat generated from the operation of the main 

system. In doing this they can either be an open loop system, rejecting their coolant 

directly into the atmosphere, or a close loop systems rejecting their heat into the 

surrounding air.  It is most impractical for a SCFB system to be open loop due to the 

extreme waste of coolant (Appendix C for proof calculations). This fact alone would 
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render all open loop single phase cooling systems uneconomical and infeasible for small 

mobile based platforms. Spray cooling can feasible be an open loop system because the 

latent heat of vaporation absorbs much more heat than a sensible temperature changes, 

thus the coolant flow rates are much lower.  The latent heat of water is hfg =2257 KJ/Liter 

where one kilogram equal one liter 

 

)( gf hhmQ += &&     (Eq 2.1) 

 
Assume at 1 MW heat load, mass flow rate can be found using Eq 2.1 to be 

0.443Liter/s for 1 MW of heat, which is respectively 0.12 gallons/ MW-sec. Converting 

this figure to minutes gives 7.2 Gallons/MW-min. Hence a formula can be written which 

would give the volume of the coolant vaporized for an open loop spray cooling system at 

a respective power level of cooling and firing time.  

 

( ) ( ) NeededGallonsMinsinTimeFiring
MWMin

GallonMWinPower =⎟
⎠
⎞

⎜
⎝
⎛

−
2.7        (Eq. 2.2)  

 
The weight of the water coolant then can be found by multiplying the resultant by 

10.142lbs/gallon. So for example, a light personal carrier retrofitted with a small HEL 

with a 0.4 MW cooling systems fired continuously or intermittently for a total time of 1 

hour, will require 175 gallons of water weight at a total weight of 1,752 lbs. This is 

manageable but not at all optimized; a closed loop system would be far more 

conservative in weight. However, in the event that the closed loop system is 

compromised, say the condenser is fatally broken; a spray cooling system can still 

operate in an open loop mode as long as there is an adequate coolant supply.   
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After evaluating the open loop cooling systems one can then shift their attention 

to close loop cooling systems. As mentioned earlier land based close loop cooling 

systems have to reject heat to the surrounding air, which can vary greatly in temperature 

from one place to the next, and from one day to another.  The effectiveness of a 

condenser, in a spray cooling system, or a heat exchanger in a SCBF system is directly 

affected by the ∆T or temperature difference between the heat rejection equipment and 

the ambient air. A larger ∆T would translate directly into a smaller condenser or heat 

exchanger. So a land based HEL cooling system operating in an 110°F (43°C) desert 

would have a much larger heat exchanger or condenser then a HEL cooling system 

operating in the cooler 50°F (10°C) mountainous region, assuming the air density was the 

same. Additionally air densities change with altitude; this will be mentioned in detail in 

the section air based cooling application. These variability means that a mobile cooling 

system like one being placed on the Humvee would have to be over designed to meet the 

needs of the more extreme environments. Again spray cooling advantage from section 1.4 

is that it has a higher rejection temperature than that of SCFB. Condensers and heat 

exchangers surface area (and size) has an inverse dependent upon temperature. So for 

example a condenser with ∆T twice that of a heat exchanger will have half the surface 

area of the heat exchanger. Include this result with the smaller pump size requirements 

associated with the lower flow rates and one could safely say that a spray cooling system 

would weight less than a SCFB system, for the same cooling load. Regardless of the 

system used, the ambient temperature & density will have the greatest effect on the 

cooling system.  
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2.3.2 Mobile Sea Based Cooling Applications 

Sea based applications for cooling of high power systems has a distinct advantage 

over that of land based system, which is the sea itself [30]. The sea, is a great heat sink, 

the surface temperature of the oceans on average very from 28.4°F (-2°C) to 91°F (33°C), 

from the polar to the equatorial regions respectively [31]. The temperature of the oceans 

also varies with depth; most importantly the density of water is 1000 times that of air, so 

the heat capacity of water per unit volume is tremendously greater then that of air. The 

amount of energy available in one cubic meter of water can be calculated by multiplying 

the density of the media by its constant pressure specific heat and one will get 1.174 

KJ/m3-K for air and 4180 KJ/m3-K for water [1]. So water roughly can provide 3,500 

times the cooling capacity as air per unit volume. So in comparison a sea based cooling 

applications will have much smaller heat exchanger or condenser then a similar capacity 

land based cooling system.  

Sea based cooling systems should be a closed loop system; because if they were 

open loop they would have to uses sea water as a coolant. Sea water has a corrosive 

nature which is unfriendly to most metals and electronic components. Additionally sea 

water has relatively high amount minerals and flotsam which must be filtered out.  

Consequently, a heat exchanger or condenser will be employ to remove heat from the 

closed loop coolant and release it into the sea. From a thermal engineering standpoint one 

could say that it would be much easier to place a high power system like the HEL on a 

small PT boat then a similarly sized Humvee. Even if both are done, the boat will most 

likely have the advantage of having a more environmentally reliable system due to the 

lower temperature variation of the ocean from place to place.  
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2.3.3 Air Based Cooling Applications 

Fifteen years ago the U.S. Airforce started developmental research into placing 

high power systems, like the HEL, on airplane platforms. Companies such as Boeing 

have used the tremendously large 747 jetliner as a flight platform to demonstrate the 

airborne use of the high energy chemical based laser system [32]. Current cooling 

challenges must be over come for solid state HEL, high powered radar and microwave 

systems to be placed on smaller more mobile air platforms. Recently the U.S. Airforce 

has been working with the Raytheon Company to produce a 100KW laser to be placed on 

an F-35 joint strike fighter jet platform [33] [34] [35]. Subcooled flow boiling is barely 

applicable on these smaller air platforms due mainly to the large size of the required 

exchangers [36]. Spray cooling with its high rejection temperature requires a condenser 

which is much smaller than that of SCFB system’s heat exchanger. Consequently, the 

cooling system selected will depending upon the flight platform chosen and may have to 

operate in a variable gravity environment, operating at different altitudes, and at different 

airspeeds. Regardless of the cooling system chosen the altitude and flight speed will have 

a direct effect on the size of the heat exchanger or condenser in use. 

The atmospheric temperatures of the earth vary greatly with altitude and location. 

The International Standard Atmosphere has created a general formula for average air 

temperature vs. altitude. A very rough rule of thumb is that the temperature of the 

atmosphere drops 10°C for every 1000 meters of altitude, and 5.5°F for every 1000 feet 

[31]. Additionally air density is dependent upon altitude (pressure) and local temperature. 

So the density of air on an average clear day over the equator at 5,000 ft is 1.054kg/m3; 

whereas, 30,000 feet is 0.458 kg/m3 [31] [37]. Fortunately, the variations of air densities 
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at higher altitudes are smaller than that of lower altitudes. Lower altitudes have 

temperature & pressure variation dependent upon their global locations and local weather 

conditions. At higher altitudes, such as 25,000 feet, the air temperature and densities vary 

slightly over the entire globe. Consequently, in designing a heat exchange or condenser to 

operate at these altitudes one must only consider variations in the air speed (which relates 

mass flow rate) of the aircraft. At lower altitudes design considerations for heat 

exchangers or condensers become much more complicated. At lower altitudes one must 

consider local air conditions (temperature, density) and variations in air speed (mass flow 

rate) of the aircraft, in the design process.  

Supersonic velocities add a new complication in the design of the heat exchange 

or condenser. It would be unreasonable to place a HEL system on a supersonic aircraft, 

for instance a F-35, and not have it operate at supersonic speeds. Hence the design of any 

sub/supersonic aircraft must also take into account cooling at supersonic velocities. 

Mostly all condensers or heat exchangers assume flow passing over their internal surfaces 

at velocities much lower than the speed of sound. If velocities exceeded the speed of 

sound, internal shockwaves would form in the condenser or heat exchanger. The effects 

of these shockwaves could be devastating to the fragile finned design of most condensers 

or heat exchanges. One could account for this in the initial design but it would add a huge 

level of complexity which is not needed. As a result, mostly all condenser & heat 

exchangers operate at subsonic internal velocities. Subsonic fluid flows can be achieved 

in a supersonic aircraft by using a convergent divergent diffuser or a body diffuser as 

stated by Preston [38].  Preston comments on these diffusers in relation to their uses with 

turbine engines by saying, “generally convergent divergent diffusers are only suitable for 
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short burst of supersonic flight, less than mach 3.” The other option is center body 

diffuser, which for which Preston states “this design is suited to sustained supersonic 

flight and therefore would be a better choice than the convergent divergent diffuser.” The 

downside to body diffuser is they utilize tracking center cone which adds more moving 

parts to the design. Both diffuser designs can uses to reduce supersonic flows to subsonic 

flows for uses in condensers or heat exchangers.  

Both the convergent divergent and body diffuser create normal or oblique shock 

waves which will directly increase the temperature of the incoming air. From 

compressible flow fluid dynamics the ratio of T/T∗ can be calculated based on the Mach 

number. For examples an aircraft utilizing a convergent divergent diffuser at flying 

16,000 feet and at a speed of M = 1.3, the corresponding ratio of T/T∗ & ρ/ρ∗ across a 

normal shock would be 1.19 & 1.515 respectively [37]. 

 

 

Figure 2.1: Convergent Divergent Intake Nozzle 
 

NOAA’s standard air temperature model would predict the air temperature and density at 

16,000 feet to be -17°C (256K) and at a density of 0.742 kg/m³. If this air were to pass 

through the normal shock it would then rise to a temperature of 32°C (305K) and to a 
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density of 1.124 kg/m³. Obviously much more consideration must taken when design a 

cooling system operation on a super-sonic aircraft.  

 Consequently, the final design of a high heat flux cooling system for a flight 

platform is most dependent upon the size and flight characteristics of the airplane chosen, 

it is feasible to uses a SCFB system on a Boeing 747 with a 100KW HEL, but not a F-35. 

An F-35 (Joint Strike Fighter) must have a cooling system that can operate at supersonic 

speed, and can handle variable gravity environment; whereas, a Boeing 747 or C-130 

does not have such requirement. Secondly, the design of the cooling system is depend 

upon the flight altitudes and global locations which relate directly differences in ambient 

air densities and temperatures. Finally in cooling applications where a full sizes heat 

exchanger or condenser can not be accommodated easily (F-35) a different cooling 

scenario or scheme can be chosen to reduce the heat rejection equipment’s size. Such 

cooling scenarios are depicted in detail in the next section “space based cooling systems”, 

since they lend themselves more to these types of environments.   

2.3.4 Space Based Cooling Systems 

Military planners have dreamed of utilizing a networks of space based high 

energy lasers as a defense net against inter-continental ballistic missiles (ICBM) attacks 

[25]. Space based laser (SBL) have advantages over air based laser platforms such as, 

larger coverage area due to their higher orbital altitudes, and much longer effective 

ranges due to the lack of atmospheric light losses and distortion [39] [21] [25]. For such a 

system to be implemented a myriad of problems must be overcome in present day, lasers, 

optics, power generation and cooling technologies [12]. Thus, high heat flux cooling 
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technologies has been identified as one of the enabling technological needs for future 

SBL & Human Exploration and Development of Space (HEDS) projects [40].  

Space based cooling systems have a numerous number of factors limiting all 

facets of their design. A few of the major and most notable factors are power 

requirements, weight and size limitation, and reliability. Consequently, designing any 

space based cooling system most likely is tremendously more difficult than designing any 

similar land or air based system. All spaced based cooling systems can only transfer heat 

away from the system by radiative heat transfer, due to the lack of atmosphere at or pass 

orbital attitudes. Hence this section will concentrate on possible space based high heat 

flux cooling technology and radiator size in relation to different types of cooling 

scenarios.   

Radiative heat transfer becomes effective at higher rejection temperatures because 

of the fourth order dependent upon the temperature term as seen below.   

 

( )44
spacesrad TTq −=′′ εσ     (Eq. 2.3)  

 

Where ε is the emissivity of the surface in the range of 0 < ε < 1, Ts is the surface 

temperature of the radiator, σ is the Stefan-Boltzmann constant being 5.67E-4 W/cm2-K4, 

Tspace is about 5K if the object is shield from the sun and absorbs only interplanetary 

radiation [41] [1] [42]. One has a few options in the overall cooling scenario in which the 

space based cooling system will operate.  

 The feasible cooling scenarios for space based cooling systems are, one that reject 

heat as quickly as possible back to space, one that store a lot of the heat then slowly 
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rejects the heat back to space, or ones that store the heat then utilizes it to generate 

electricity while slowly rejecting it back into space.  

 The first scenario of rejecting the heat as quickly as possible back into space, 

indicate that a very effective radiator will be require. Again the radiative heat transfer rate 

will be dependent upon Eq. 2.3. The following calculations will assume a radiator with 

solid walls, so that a two-phase flow can be keep within the radiator.  

 

Table 3 : Radiator Surface Temperature vs. Heat Flux 

Assuming a Perfect Radiating Body 

Heat Flux (KW/m2)
Surface 

Temp (◦C)
0.315 0
0.617 50
1.098 100
1.815 150
2.838 200
6.112 300

11.632 400
20.244 500
32.934 600
50.820 700
75.159 800  

 

Table 2 shows the respective heat flux for a perfect radiation body (ε = 1), 

shielded from the suns (Tspace = 5K) at various radiator surface temperatures. Using this 

table & Eq. 2.3 one can calculate the minimum surface area needed to continuously cool 

a 50KW heat source at a radiator surface temperature of 100°C to be 46m2. However, in 

reality the emissivity will be more around 0.9 so the area in this example is going to be 

51 m2. Increasing the radiator surface temperature to 200°C reduces the radiator’s surface 

area to 18m2. Consequently, one can see that size and weight restrictions on a cooling 

 
 
27



system continuously dissipating high heat loads will require it to have a radiator with 

high surface rejection temperatures [42]. Keep in mind that a thin walled radiator could 

radiate energy from both sides, so the actual size is depend upon chosen radiator 

configuration. Donabedian’s Spacecraft Thermal Control Handbook has a very good 

analysis of radiator for cryogenic spaced based cooling applications [42].   

 The second cooling scenario could be that of storing the heat and then slowly 

rejecting it into space.  Thermal energy storage can be achieved by storing heat in a 

sensible or a latent heat material. Latent heat storage utilize phase change materials 

(PCM) to absorbed heat (ex. from solid to liquid) and offers greater heat storage densities 

then that of sensible heat absorption. Conceivably, one could use thermal energy storage 

(TES) systems to store heat then release it slowly over a cool down period [43] [42]. This 

would lesson the heat dissipation requirement of the radiator which would allow it to be 

much smaller in surface area, and lower in rejection temperature. Take for example a 

cooling system dissipating a heat load of 50KW over 30 seconds, and then allowed 4 

minute of post cooling. The cooling rate of the radiator would be found to be  

 

( ) ( )
( ) )(

.)(sec.)(sec
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TimeOnTimeCooling
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  (Eq 2.4)  
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    (Eq 2.5) 

 

The required surface area of a radiator rejecting 5.6KW of heat at 100°C, assuming an 

emissivity of 0.9 would then be  
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Thus the radiator surface area can be greatly reduced by storing the heat created 

during the operation of the main system in a temporary thermal energy storage device. 

Unfortunately, research in to the thermal energy storage field for space based application 

is relatively new and requires much more research [40: pg 149]. Donabedian’s Spacecraft 

Thermal Control Handbook does a very good review of cryogenic thermal energy storage 

systems.   

In the third cooling scenario, one could utilize the heat rejected by the cooling 

system to generate electricity. This can be considered a way of increasing the overall 

electrical efficiency of the system being cooled. Often it is quoted that available power 

for space based system is large limitation it operations [40:  pg 21].  

Recently a deep space probe launched in 1997 named Cassini-Huygens visited 

Saturn with three radioisotope thermoelectric generators onboard [44]. These 

thermoelectric generators utilized pressed oxide plutonium-238 fuel to generate heat 

which was utilized by thermoelectric elements to produce a maximum of 870 watts of 

electricity energy. It is reasonable to assume that a solid state based HEL system would 

require short periods of very high power consumption. This could be conceivability 

supplied by battery packs constantly being charged by radioisotope thermoelectric 

generators, or some other power generation source [40: pg 21]. Reclaiming the heat 

created during operation could be a way of reducing the recharge time need for the 

battery packs. However, for a system like this to be implemented, the extra weight and 
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system complexity aided would have to be offset by a decrease in recharge time and or a 

weight savings by reducing the size of the battery pack.  

 

2.3.4.1 Conclusion to Space Radiators 

In conclusion, the radiator will have a largest impact on the size of the space 

based cooling systems, due to the large surface areas associated with rejecting huge 

amounts of heat into space. A two-phase radiator’s size will be most depended upon the 

type of cooling scenario chosen, and the radiators rejection temperature. HEDS 

summarizes two phase radiators as   “Radiators that take advantage of two-phase working 

fluids are more efficient and are relatively lightweight, but are subject to two-phase flow 

instabilities, freezing, structural damage, damage by meteorites and other phenomena 

[40:pg 29].” Consequently, much more research must be done to make 2 phase radiators 

feasible.  

Current single phase radiators are directly applicable however their large 

associated size and weight limit their applicability. Newly developed alternative single 

phase radiators present weight and sizes savings. Microgravity research for HEDS 

summarizes other radiative options as “Liquid-droplet radiators and liquid-sheet radiators 

are among the most promising technologies for achieving lightweight heat exchangers for 

space applications, and do not seem to be affected by microgravity.” Unfortunately, 

cooling systems that utilizing single phase radiators can not take advantage of the 

benefits that two phase cooling systems would have; such as, higher rejection 

temperatures, lower associated flowrates.    
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2.3.4.2 Conclusion to Space Cooling Systems  

Up till this point single phase (high Reynolds number) and solid state radiative 

cooling systems have only been used in space. The use of multiple phase cooling system 

has not been adopted due to the lack of understanding associated with two phase flows in 

a microgravity environment. NASA has recommended that one of the program objectives 

of the HEDS project will be to study multiphase flow systems in detail.  

In particular phase change systems are likely to be necessary for power 

production, propulsion, and life support. Unfortunately, relatively little is 

currently known about the effect of gravity on multiphase systems and processes. 

Multiphase flow and heat transfer technology is considered to be a critical 

technology for HEDS. Indeed it is expected to be mission-enabling, if properly 

developed and could lead to revolutionary changes in spacecraft hardware [40: Pg 

180]. 

Cooling systems like, pool boiling, two phase microchannels, heat pipes, subcooled flow 

boiling, and spray cooling are expected to be candidates as cooling technologies to 

benefit from microgravity multiphase research. Additional cooling technologies such as 

single phase microchannel and quantum tunneling cooling could provide cooling solution 

but more research is needed to prove these cooling technologies to NASA. 

2.4 Conclusion to Chapter 

So in conclusion, this chapter outlines the developmental goals of spray cooling 

which are to increase the output of a current system and to enable new technologies to be 

technically feasible. Electronic devices such as IGBT, MOSFETs, MCTs and most 

importantly microprocessors would be listed underneath systems which would increase 
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their output powers or clock cycles with the aid of spray cooling. System such as: high 

energy lasers, high powered microwaves, and high power radar systems would be 

technically feasible for smaller mobile platforms with the aid of large area spray cooling 

systems. Both military and commercial companies are pushing to develop large area 

spray cooling systems, for their respective applications.  

Furthermore this chapter outlines in detail the impact that land, air, sea, and space 

environments have on the cooling system, in particular on the heat exchanger, condenser 

and radiator.  

Land based applications for large area spray cooling would enable HEL and high 

power microwave systems to be placed on smaller more mobile platforms such as 

Humvees and lightly armored vehicles. This is due to a spray cooling system having a 

lower coolant flow rates, isothermal surface temperatures, and smaller respective 

condenser sizes then a competing single phase cooling systems such as, SCFB.    

Conversely, sea based applications for HEL, high power microwaves, and high 

power radar systems do not require spray cooling to be technically feasible, but would 

benefit from slightly smaller system sizes. All sea based cooling systems should not 

utilize sea water as an open loop fluid due to its corrosive nature. Finally heat exchangers 

or condensers for sea based systems would much smaller than a respective land or air 

based cooling system, due to the extremely high heat capacity of sea water.  

Spray cooling systems would enable HEL, high power microwaves, and high 

power radar systems to be placed on smaller air platforms, such as the F-35. 

Considerations such as: flight altitude, flight speed, and global location must be 

accounted for when designing a heat exchanger or condenser for a subsonic aircraft. 
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Furthermore, a cooling system operating on supersonic aircraft must utilize a convergent 

divergent or body shaped diffusers to slow the income fluid flow to subsonic velocities. 

Additionally, the Mach number must be considered for a supersonic aircraft since it 

directly impacts the temperature and density of the air flowing through the condenser or 

heat exchanger. Finally, for a spray cooling system to be placed on a highly 

maneuverable aircraft it must be able to endure a variable gravity environment for 

extended periods of time.  

Spray cooling is considered to be and enabling technology for future HEDS 

projects and for the HEL space based laser system. Much more research must be done to 

determine the effects microgravity has on multiple phase systems. Alternative cooling 

scenarios utilizing a thermal energy storage system would decrease the corresponding 

radiator surface area. Much more research is needed to determine the effects that space 

has on multiple phase radiators. Alternative lightweight single phase radiators for space 

present promise but must be research much more to validate their design.  
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3. MULTIPLE NOZZLE SPRAY COOLER 

3.1 Introduction to Chapter and Literature Review 

The advantages of two-phase cooling systems make them ideal for use in high 

heat flux cooling for aerospace and space based application [12]. The advantages like 

compactness, light overall system weights, and high heat flux dissipation lend themselves 

very well to cooling applications such as high energy lasers and high power electronics 

systems. Spray cooling and micro-channel cooling have presented themselves as the best 

solutions; however, spray cooling has advantages over micro-channels coolers such as 

isothermal surfaces temperatures, lower working fluid flow rates and smaller system size. 

It has been demonstrated that spray cooling can remove heat fluxes as high as 1000 

W/cm2 for single spray nozzle over an area of less than 2 cm2 [4]. However, many 

applications require cooled areas on the order of tens of square centimeters. Spray 

cooling over larger areas (20cm2) has been tested and it was found that flooding of the 

cooled surface occurs due to the lack of excess liquid drainage [45]. This flooding 

decreased the heat flux by 30% to 40%; therefore a fluid management system is needed 

to minimize the degradation in heat removal capabilities caused by flooding.  
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3.2 Design Problem 

 

Figure 3.1: Single Spray Cone 
 
 

 

Figure 3.2: Multiple Spray Cone Interaction 
 
 

The goal of this research is to design a scaleable pressure atomized spray cooler 

capable of cooling large areas, greater than 16.8 cm2. The inherent problem with spray 

cooling large areas is the flooding of the cooled surface and the creation of unwanted 

temperature gradients across the cooled surfaces.  

The main driving mechanism in spray cooling is the thin film, which is created 

just above the cooled surface [4] [45] [46]. In a single pressure atomized spray nozzle the 

liquid run off which is about 90% of the input is pushed away from the cooled surface via 

the momentum of the spray (Fig. 3.1), the other 10% is evaporated away [46] [47].

However, in large area spray cooling, multiple spray nozzles are used to cool the 

heated surface and their spray cones and run off liquid interact with each other [4]. If the 
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run off liquid is not removed from the cooled surface it will build up and flood the cooled 

surface; thereby destroying the thin film needed for effective spray cooling. Figure 3.2 

shows a build up of liquid between the two spray cones. This build up would move the 

liquid/vapor phase change to a pool-boiling regime, which is unwanted and has lower 

associated heat flux than with spray cooling. The design problem presented in this paper 

is that of how one can control the flooding effect of a Single Phase multiple head spray 

nozzles and maximize the overall heat flux.  

3.3 Design and Solution 

 

 

Figure 3.3: Fluid Build Up Points 

 
 
In view of our design goals the author decided to construct and test 4 by 4 array of 

spray nozzles and create a system that could manage the excess fluid trapped between the 

adjacent spray cones. This system which Dr. Chow called the fluid management system 

utilizes an array of siphons to remove the excess liquid.  

In a 2 by 2 array of spray nozzle it was observed that some of the excess fluid was 

being trapped between the spray cones, this can be seen in the top view of Fig. 3.3 and in 
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the side view in Fig. 3.2. Additionally, the spray cones interacted with each other; this 

can be seen in the darker areas of the spray cones in Fig. 3.3. The spray cone interaction 

forced the excess liquid to exit along the cooled surface in the direction as shown in Fig. 

3.3. 

In order to gain control over the build up of the excess fluid and its exit direction, 

two design features were implemented. First being the placement of siphon tubes at the 

flooding points and the second being an implementation of a grooved in the cooled 

copper plate. The grooves which are aligned in a grid pattern (Fig. 3.6) were used to 

directed excess liquid created by the spray cone interaction to the nearest suction point or 

siphon. Both of these design features can be seen in Fig. 3.4.  

The siphons have an inner diameter of 2.3 mm and outer diameter of 3.1 mm. The 

siphon size was chosen out of convenience of its design, a larger siphon diameter in 

theory would be able to pull more fluid away from the surface and thus improve drainage 

at the cooled surface.  

 

 
Figure 3.4: Fluid Flow Observed from the Side of the Spray Cooler 

with the Un-Modified Siphons 
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Figure 3.5: Spray Nozzle Configurations 

 
 

 

Figure 3.6: Overall Siphon Placement 

 
The groves in the copper plate were 0.5 mm deep and 2.8mm wide. The siphon 

tubes and the groves can be clearly seen in Fig. 3.6 along with the spray cones. The array 

of 25 & 37 siphons are in close contact with the cooled surface in design 1 (Fig. 3.7) & 

Design 2, respectively.  The full size of the spray cooler array is 4 by 4 for a total of 16 

nozzles and can be seen in figure 3.5. The sixteen spray nozzles were distributed evenly 
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so that their spray cones covered a square area of 16.8 cm2, this roughly give a cooled 

area of 1cm2 for a single nozzle. The selected spray nozzles were 1/8GG-FullJet 1 from 

Spray Systems co. and were selected based on their even spray distribution and higher 

droplet velocities [46] [47]. The spray cooler array was tested in two configurations being 

a 4 nozzle and 16 nozzle arrangements Fig. 3.5. The 4-nozzle arrangement was mainly 

used to visualize the fluid dynamics occurring at the cooled surface.  

The fluid management system and the spray coolers nozzles were designed to be 

compact and scalable to any surface area. The spray-cooling unit (Fig. 3.7) consists of 

two manifolds, one being the high-pressure water manifold, which feeds the spray 

nozzles, and the second manifold is the suction manifold, which pulls suction from all the 

siphons. The spray nozzles are isolated from the suction manifold via an array of 16 

copper tubes, which pass through the suction manifold.  

      The siphons in both designs are 1 mm above the grooved plate. This was done 

so that the thin film thickness may be controlled via the use of varying the suction 

through the siphons. The spray nozzles are positioned 13mm above the cooled surface, 

which was determined as the optimum distance.  The suction manifold is evacuated via 

eight holes around the side of the suction manifold. Detailed design drawings for all parts 

in this assembly are given in Appendix B. 
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Figure 3.7: Overall Spray Cooler Design 

 

3.4 Experimental Setup 

The spray cooler and the fluid management system were tested in an open loop 

setup with the spray cooler in the horizontal position as shown in Fig. 3.8. The loop starts 

at the main water reservoir then a gear pump capable of pumping 116 gallons/min at 90 

psi was used in conjunction with a bypass valve to provide water to the spray cooler at a 

range of 20 to 40 psi. The flow rates of the pump depend upon spray nozzle configuration 

shown in Fig. 3.5.  
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Figure 3.8: Experimental Setup 

 

The water is then passed through the spray cooler nozzle and atomized into a 

spray via the head pressure. Excess liquid that was not removed by the siphons was 

allowed to drain over the edge of the cooled plate back into the water reservoir. The 

vacuum reservoir was evacuated to 2 in-Hg via a single air drive vacuum (Level 1 

Suction) and to 4 in-Hg via two vacuums (Level 2 Suction). The liquid that accumulated 

in the vacuum reservoir was then pumped back into the main water reservoir with a 

diaphragm pump. Flow rates for all experiments were measured by capturing the excess 

liquid in a graduated cylinder for 30 seconds at the imaginary plane shown in Fig 3.8. 

This gave an error in the flow rates of +/- 0.2 liter/min. 
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Figure 3.9: Experimental Setup for Multiple Nozzle Spray Cooler 
 

The setup as seen in figure 3.9 is very large because of the increase in flow rates. 

The water heater is not shown in this picture but it is located directly underneath the 

table. The water heater is a 6 gallon standard water heat, the thermostat was bypass and 

the heater coil was connected directly to the wall so that a water temp of 90°C could be 

achieved. The pump and drainage lines were made of 5/8 in and ½ in copper tubing 

respectively. There are 4 vacuum lines that are 3/8 in vinyl tubing. All reservoirs were 

insulated and so to was the water heater. The vacuum reservoir has 6 in of home 

insulation around it and the drainage pot had bubble rap insulation around it. All of the 

copper tubing was cover by water heater insulation (1 inch thick). All of this insulation 

kept the heat loss to a minimum which helped maintain the working fluid’s temperature. 
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The experimental test setup was an open loop so the vapor created at the heated surface 

could escapes freely to the atmosphere. 

 

 

Figure 3.10: Vacuums Used in Series 

 
The vacuum chosen to proved suction for this experiment are simply two 2.5 hp 

RIDIGED brand shop vacs. These vacuums were attached in series proved two levels of 

suction for the experiment. The associated vacuum levels were 2in-hg and 4in-hg 

respectively. During the experiment it was noticed that the vacuums performance was 

diminishing. This was due to the filter inside becoming saturated with water vapor. 

Removing the filter inside of each vacuum solved this problem. The vacuums input line 

was connected to the vacuum reservoir chamber as shown in figures 3.8 & 3.9. These 

vacuums were selected because they were easily obtainable, that way testing could start 

as soon as possible.  

Finally, a custom LabView© interface was created for these tests. The National 

Instruments© PCI-4351 hooked up to a TBX-68 board and came with a custom LabView 

Data Logger that was modified to fit our needs. The original LabView application that 
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came with this DAQ card was the Data Logger, Graph, & Thermocouple Temperature 

readout.  

Figure 3.11 shows the many items that were then placed in the custom LabView 

panel such as: Two Heat Flux Calculate so heat flux could be calculated from the input 

voltage and the thermocouple readings, and an overheat alarm which gave an audible 

warning if the heater was approaching its upper limits.  

The data from the experiments was then logged to excel and then placed into a 

template file, which displayed graphs of Temp vs. Time and Heat Flux vs. Time.  

 

 

Figure 3.11: Custom Labview© Layout 
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Interfaces such as LabView or DasyLab© allow easy viewing of the data collected 

in real time. The thermocouple board used again was a TBX-68T from national 

instruments; this board utilized a built in cold junction and a differential reading mode. 

The differential reading mode allowed for higher thermocouple accuracy, this setup used 

T-type thermocouple and had a reading accuracy of 0.07°C; however, the thermocouple 

has an accuracy of 0.3°C. It is important that the thermocouple wires were kept away 

from any high power lines such as AC-power lines, because this increases the noise that 

the DAQ must filter out and thus reduces the accuracy. The sampling rate was adjusted in 

LabView from 60Hz to 1 Hz so that the data recorded to Excel could be more 

manageable.  

3.5 Fluid Dynamic Analysis and Setup 

A fluid dynamic analysis was conducted so that the removal of the excess liquid from 

the cooled surface may be maximized. All of the experiments concerning visualizing of 

the fluids were done in horizontal position and in the absence of heating. Suction 

effectiveness is defined by Eq. 3.1.  
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=    (Eq. 3.1) 

 

The spray cooler has one input and two exits, one being over the edges and the 

other being the siphons. The input volume flow rate was measured with the suction 
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system off. The volume flow rate over the side (Volumeedge) was then measured when the 

suction system was turned on.  

The main steps taken to improve the suction effectiveness were done by 

modifying the suction tube or siphons in the spray cooler. For visualization purposes a 

clear piece of grooved Plexiglas was used to replace the grooved copper plate (Fig. 3.6). 

All of the observed flows were transferred to AutoCAD drawings for easy visualization.   

 

 

Figure 3.12: Observer Flow from Bottom of Grooved Plate: Un-Modified Siphons 

 

Figure 3.4 shows the fluid flow observed from the side of the spray cooler in the 4 

nozzle spray nozzle arrangement. The full 16 nozzle fluid flow could not be observed 

from the side of the spray cooler due to a lack of visibility created from excess misting. 

Figure 3.4 shows clearly that the fluid has to pass underneath the siphons to be removed 
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from the cooled surface. Figure 3.4 also shows a small amount of flooding in between the 

four nozzles.   

Figure 3.12 is a bottom view of the grooved plate in the horizontal configuration, 

only the left portion of the plate is shown here since the flow pattern is symmetric. It 

should be noted that the fluid mainly exits via spray cone interaction lines as in Fig. 3.3. 

Additionally, it was noticed that the grooves in the Plexiglas helped channel the fluid 

away from the spray cones.  

 

 

Figure 3.13: Modified Siphon Designs 
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Figure 3.14:  Fluid Dynamics Visualization around the Base of the Siphons 
 

 
The siphons were placed at the intersection of the grooves on copper plate to 

catch the excess liquid, but due to the high fluid momentum a lot of the excess liquid 

flowed around the siphons then off the edge of the cooled plate (Fig. 3.12). The poor 

efficiency results (Effsuc< 50% for 4 nozzle array at 30 Psi head pressure) obtained from 

this initial siphon design led to the design and testing of five different siphon nozzles as 

seen in Fig. 3.13.  

The siphon designs are as follows: siphon B has two slits opposite to each other, 

siphon C has two slits at 60° to each other, siphon D is a 160° cut of the tube, and siphon 

E had three cuts each at 90° from each other, and siphon F has 4 equally spaced cuts. 

These siphons were then tested in several areas in the spray cooler and the flow around 

 
 
48



them was noted with the suction on and off. The results of these tests can be seen in Fig. 

3.14. The bulk of the liquid leaving the plate flowed down the grooves shown in figure 

3.14 from the right to the left and then around the modified siphons. The flow around the 

unmodified siphons (siphons A) can be compared to the flow of air over an infinitely 

long circular cylinder [48].  

Again, the effectiveness of siphon at removing excess liquid was determined by 

observing the flow through the clear grooved Plexiglas plate. Due to the space constraints 

the fluid velocity on the grooved plate could not be measured around or in front of the 

siphons. All of the siphon designs were tested at the edges of the spray interactions (Fig. 

3.12). Only Design F was tested between the spray cones at the fluid build up points 

shown in figures 3.12, 3.13. The results of these tests are shown in Fig 3.14.  

 

 

Figure 3.15: Siphons Placement and Siphon Type, ref to Fig 10 for Siphon Type 
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Siphon A.1 in Fig. 3.14 was the least effective in removing liquid from the cooled 

surface. This is due to the liquid flowing around the siphon with a very small amount 

fluid being removed by flowing under it. Siphon B.1 also showed a low effectiveness in 

removing the liquid. This can be accounted to the liquid flowing faster around the sides 

due to circular shape of the siphon. Siphon C.1 was based on the idea that behind the 

siphon a steady wake region was formed [48]. This region would have a reduced pressure 

so it should be a logical place to extract the excess liquid. Testing this design confirmed 

that it was better at liquid removal. This was taken one step further in siphon D.1 which 

when tested was an improvement over siphon C.1. Siphon D was tested in different 

orientation the most notable being siphon D.2 which was not as effective as siphon D.1. 

Siphon D.1 & E.1 was tested in the hope that the stagnation point in front of the siphon 

would force the liquid into it. But upon testing E.1 showed the same effectiveness as 

siphon D.2. Siphon F.1, surprisingly, allowed liquid to flow through the siphon. Only 

siphons F.2 & F.3 were tested between the spray cones at the fluid build up points, 

because they had the most even slit distributions. Testing proved that siphon F.3 was 

superior to siphon F.2.  These series of siphon tests lead to the final spray cooler design 

which is slightly different than the one shown in figure 3.7 for it had additional siphons 

on the outside of the spray area, this new layout labeled design 2 can easily be seen in 

Fig. 3.15. 

3.6 Suction Effectiveness Testing 

 The suction system was tested at two levels of suction, the first being only one 

suction pump that producing 2 in-Hg at the suction reservoir and 1 in-Hg in the suction 

manifold. For the second level of suction two suction pumps were used in series to 
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produce 4 in-Hg at the suction reservoir and 2 In-Hg at the suction manifold. The method 

of determining suction effectiveness is described at the beginning of the fluid dynamic 

analysis section.   

The suction system underwent one evolution from Design 1 to Design 2 before 

the actual thermal testing; details on design 2 can be seen in Appendix B.  Design 1 was 

the initial suction system design where only 25 siphon tubes were employed to regulate 

flooding on the cooled surfaces; whereas, design 2 utilized 37 siphon tubes to drain the 

cooled surface. All suction efficiency data is the average of four trials. 

 

 

 

Figure 3.16: Suction Effectiveness for a 16 Nozzle Array-Without Heating 

 

Figure 3.16 shows that the suction effectiveness was greatly improved by the 

addition of the 12 extra siphons outside the spray-cooled area. This led us to conclude 

that the bulk of the fluid is removed at the edges of the spray-cooled area not in the center 

as has hoped for. Without the suction it was observed that the edges of the spray cooler 
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(design 2) were completely flooded with liquid that flowed freely over the sides. With the 

suction on, regardless of the suction level, it was observed that the spray cones would 

become visible and liquid flowing over the sides would reduce to a trickle the results of 

the suction effectiveness testing can be seen in figure. 3.16. It should be noted that the 

suction effectiveness testing used the amount of fluid flowing over the edges of the spray 

cooler as an indication of how well the suction system was working. This testing could 

not determine how much liquid was being removed at the center of the array where 

flooding is the largest problem.  

3.7 Thermal Design and FEM Analysis 

 It was decided to heat only the areas of the 4 inner spray cones; the heated area 

can be seen in Fig 3.15. This was done for several reasons: the design of the heater was 

much more simple and compact; the heat flux would be more uniform over a smaller area 

(4.41cm2), and the electrical input power would be lower and more manageable. 

 

 

Figure 3.17: Sectional Temperature Profile of Heater 
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A pedestal heater was chosen for the heating, mainly due its accuracy in 

measuring heat flux via differential temperatures. Figure 3.17, 3.18 shows the detailed 

design of the pedestal heater where all the units are in mm. The pedestal was machined 

out of a solid piece of pure copper. Three 3/8 in diameter by 2 in length, 400 Watt 

cartridge heaters were inserted in the three holes at the base of the pedestal block and 

hooked up in parallel (total resistance of 13Ω) to provide even heating. The pedestal 

heater was insulated all around with DuraBlanket© insulation which has a thermal 

conductivity of k = 0.013 W/m-K [46]. The pedestal heater was soldered to the 1mm 

grooved copper plate with aluminum solder which has a melting point of 250°C. 

Assuming a perfectly insulated pedestal the theoretical maximum heat flux of  
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Six thermocouple holes were drilled around the neck of the heater; their spacing 

from the top of the heater is 5.08mm, 15.24mm and 22.86mm for thermocouples (T.C.) 

T1, T2, & T3. Thermocouple T1b through T3 b are a mirror image of T.C. T1 – T3. 

Additionally the distance T1 is from the cooled surface 5.08 mm plus the thickness of the 

grooved copper plate, which is 1mm. Now, the symbol X1-w will represent the distance 

T.C. 1 is from the cooled surface, which is 6.08mm. The distances between the T.C.s is 

needed to calculate the experimental heat fluxes and are as follows. The distance between 
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TC1 and TC2 will be denoted by the symbol X1-2 that is 10.16mm. Following this notation 

X2-3, and X1-3 are 7.62mm & 17.78mm respectively.  

A Finite Element analysis was conducted on the heater block with the use of 

Cosmos Design Star 3.0. The FEM analysis was conducted to find out the effects of heat 

spreading at the cooled surface and to see if 4.8mm depth of the T.C is enough to 

accurately measure the heat fluxes.  

The results of the FEM analysis were displayed in Fig. 3.17. Here the three 

heaters were supplied with 205W each for a total of 615 W, which translates to a 

theoretical heat flux of 140 W/cm2 over the top area of the pedestal, which is 4.41 cm2.  

In the FEM analysis the top of the pedestal was maintained at a temperature of 127°C and 

the outer surfaces of the DuraBlanket insulation was cooled at 5 W/cm2 and at a sink 

temperature of 50°C, to simulate water flowing over the sides of the heater as it occurred 

during experimentation. The thermal conductivity of the copper was taken as 393 W/m-K.  

The temperature distribution along the pedestal heater is a uniform gradient, thus 

implying that the flux inside of the pedestal is uniform too. The FEM model shows a heat 

flux of 135 +/- 2 W/cm2, inside the neck, whereas, the heat fluxes through the 

Durablanket insulation is less than 0.5 W/cm2 around the neck. From this one can 

conclude that the FEM models is predicting a loss of, 
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Solving for Eloss, the heat loss through the insulation is found to be 61.5 W at the 

outer heater shell is. Taken the outer surface area of the heater shell is to be 302cm2, 

gives a heat loss of 0.2 W/cm2 on the outer shell of the heater. The FEM model results 

were proven valid after comparing the predicted heat loss of the FEM analysis to the 

actual experimental heat loss.  

 

 

Figure 3.18: Heater Design with Thermocouple Locations 

3.8 Thermal Testing Procedures 

All thermal tests were conducted in the same manner. First the water in main 

water reservoir (Fig 3.8) was heated to 70°C, and then the spray coolers were turned on. 

Next the spray cooler were set to a flow rate of 9.8L/min, this setting was based upon the 
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head pressure of the spray coolers. The errors in the flow rates were estimated to be +/- 

0.2 L/min that is based on the previous suction effectiveness testing data. Next the heaters 

were set to the desired heat flux, via an AC variac which range from 0 to 120 volts. The 

input voltage was read from a voltmeter with an accuracy of +/-0.05 volts. Thus the 

theoretical input heat flux was calculated by  
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Equation 3.7 represents the maximum heat flux attainable, Note this agrees with Eq. 3.6.   

 

22

22

max, 270
1.4*13

120
* cm

W
cm

V
AR

VoltE
h

in =
Ω

==   (Eq. 3.7) 

 

Once the flux levels were set and a steady state temperature was achieved, the 

DAQ (National Instruments PCI-4351 hooked up to a TBX-68 board) would log all the 

channels at a rep rate of once a second.  Secondly the DAQ measured temperatures in a 

differential or floating mode and combined this with a cold junction ground temp. error is 

+/- 0.35°C.  The T.C data was collected for 1 min with the suction off, 1 min. with the 

suction at level 1, and 30 sec. with the suction at level 2. This was repeated for all 

successive heat fluxes up to a maximum input of 169 W/cm2. Once one round of testing 

was completed the flow rate was readjusted to 11.2 L/min and the experiment was 

repeated. Additionally, the heaters were tested only up to 150W/cm2 which is about 60% 

of their total power. This was done because the author could not afford to damage the 

heater.  
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3.9 Thermal Calculations and Results 

A set of experimental data graphs are provided in Appendix E  
 

The T.C.s temperatures were used to calculate the experimental heat flux via Eq. 3.8 
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Note: At 200°C, k for copper is 393 W/m-K and at 27°C; k is 401W/m-K.  

The cooled surface temperature Tw was calculated via T1 and the averaged heat flux.  
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3.10 Thermal Results and Uncertainties 

 This section presents the experimental heat transfer data from the spray cooler 

design 2 with 37 siphons in the form of two plots.  Both plots show average heat flux vs. 

Tw- Tsat and are for water sprayed at 70 +/- 1°C, only their input volume flow rates per 

nozzle differ from between the two plots labeled Fig. 3.19 to Fig. 3.20. 

Figure 3.19 shows the impact suction has on the heat flux at a input flow rate of 

9.8 Liter/min.  The flooded surface situation presented in Fig 3.19 by the trend line 

labeled “NO Suction”. From the “1 Vac” line (One Vacuum) one can see an average 

improvement from the pervious of 20W/cm2 at similar Tw-Tsat temperatures above 10°C. 

Secondly; the “2 Vacs” trend line shows even greater improvement over the flooded 
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situation. In Fig. 3.19 the “2 Vacs” trend line shows an average of 30W/cm2 for similar 

temperatures above 5°C for Tw-Tsat. 
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Figure 3.19: Q vs. Tw-Tsat for 20 Psi Head Pressure  

at Flow Rate of 0.6125 L/min per nozzle 
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Figure 3.20: Q vs. Tw-Tsat for 30 Psi Head Pressures  

at Flow Rate of 0.7 L/min per nozzle 

 
Figure 3.20 shows the heat flux vs. Tw-Tsat results for a higher input volume flow 

rate of 11.2L/min. The higher spray nozzle volume flow rate along with the increase in 

droplet velocity [49] due to higher head pressures helped the heat flux on the average 

10W/cm2 over the results shown in Fig. 3.19. Figure 3.20 also shows that the suction 

improves the heat flux at a similar Tw-Tsat temperature.  

From both plots one can see that the higher the suction the greater the heat flux 

achieved. Greater heat fluxes could have been achieved if the smooth grooved copper 

plate top surface was roughened by sand blasting. But this was not done because it was 

outside of the scope of this experiment.  
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Experimental results from the thermal testing show at an input power of 615W the 

heat loss was 96W, this translates to average heat loss of 0.3 W/cm2 through the shell of 

the heater. The similarity between the FEM heat loss result, which was 0.2W/cm2, and 

the experimental heat loss helps validate the FEM analysis.  

Uncertainties in this experiment were calculated in detail and can be seen in 

Appendix D. The thermocouples on both sides of the heater were systematically 0.4°C 

different from each other. This causes a slight difference in the heat fluxes calculated 

from T.C. 2b, it was also found that T.C. 2b was not in direct contact with the copper 

block as the other T.C.s were. This created a slight discrepancy in the data, and thus the 

heat fluxes calculated using T.C.2b were not used. The plotted averages of heat fluxes 

had an error of 2 to 3 W/cm2 at higher heat fluxes. The error in the calculated surface 

temperature is heat flux dependent and is mainly due to the error in the thermocouples 

(+/-0.35°C). At high heat fluxes the error in the surface temperatures were +/- 1.5°C. Also 

the calculated surface temperature could have a systematic error due to the solder contact 

between the copper heater and the copper grooved plate, this error was estimated to be +/-

1°C. 

3.11 Discussion  

Comparing the data collected from this experiment to that of a single nozzle’s 

data shows the effectiveness of the suction system at improving heat transfer.  Tilton’s 

dissertation provides spray cooling data for a single nozzle spray cooler using water at a 

25°C subcooled, which is very similar to the subcooled temperature of 30°C in this 

experiment [50]. The nozzles used by Tilton were T.G.3 of Spray Systems and had a flow 

rate of 0.26 liters per nozzle. Tilton found that increasing the flowrates increase heat 
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transfer in his single nozzle setup, the highest heat fluxes were recorded at the highest 

flowrates which was at 0.438 liters/min. Figure 3.21 compares heat flux vs. superheat 

between the single nozzle and multiple nozzle arrays.  
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Figure 3.21: Comparison of Heat flux vs. Superheat for 

Single Nozzle to Multiple Nozzle 

 
 The results of the multiple nozzle array are most unsatisfying when compared to 

that of the single nozzle spray cooler at a similar level of sub-cooling. Between 

superheats of 0-5°C the multiple nozzle arrays has 50%of the heat transfer of a single 

nozzle. At super heat above 5°C the single nozzle quickly departs from the multiple 

nozzle arrays’ trend line. At superheats of 10°C the heat transfer is 40% and at 15°C the 

heat transfer drops to 30% of a single nozzle (without suction). This effect was 
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mentioned by Lin [45]. The fluid management system did increase heat transfer but not to 

a great degree when compared with that of the single nozzle’s data. The fluid 

management system increased heat transfer from 40% to 50% for 10°C superheat and 

from 30% to 40% for 15°C. Ideally one would want the heat flux vs. superheat curve of a 

multiple nozzle system to be similar to that of a single nozzle system. This did not 

happen in this experiment.  

Although Tilton’s data indicated better heat transfer performance at higher 

flowrates his tests were done with a single nozzle in which excess fluid would run off and 

not lead to flooding. Unfortunately, the suction effectiveness testing could not determine 

how much liquid was being removed at the center of the array where flooding was 

unfavorable. Moreover, suction effectiveness testing did not give a measurement of the 

liquid film thickness in the inner four spray cones, where it was critical. The extremely 

poor heat transfer curves associated with the multiple nozzle array spray cooler did not 

correlate with any data from spray cooling with water [4]. The heat transfer curve for the 

multiple nozzle spray cooler in figures 3.19-3.21 more closely resembles that of forced 

convective boiling than spray cooling [1]. Assuming the droplet velocities of the single 

nozzle by Tilton and multiple nozzles GG-FullJet were the same, and that surface 

roughness only played a minor role in heat transfer the only explanation for the poor heat 

transfer of this array would be attributed to flooding still taking place, in which the excess 

fluid caused a thick film of liquid to form not a thin one as desired. The thick film caused 

the heat transfer mechanism to be mainly forced convective boiling not the desired spray 

cooling.  
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It was also observed that increasing the flow rates to the multiple nozzle spray 

cooler increased heat transfer. In single nozzle spray cooling increasing the flow rates 

increases heat transfer [4]. However, since it was concluded that the heat transfer 

mechanism was mainly forced convective boiling and not spray cooling, an increase in 

flow rate would increase the spray velocities. This would result in increased heat transfer 

for the multiple nozzles array due to the additional convection associated with the 

increase flow rate and additional agitation of the heat surface due to increase spray 

momentums. 

Now, why did heat transfer increase with suction? If one assumes that the heat 

transfer mechanism was forced convective boiling across a thick film, one can deduce 

that suction increases heat transfer by reducing the film thickness slightly and directly 

removing excess heat. If the suction reduced the thick film thickness slightly, the vapor 

created at the heated surface would have an easier time of being released to the 

atmosphere. Additionally, a reduced film thickness would allow the impinging spray to 

create more convection. This would be due to the reduced film thickness lessen the 

resistance to the momentum of the impinging spray, resulting in increased agitation at the 

heated surface. The other reason is that the suction system removed heat directly. The 

siphons would remove some of the heated liquid at the hot surface. Removing some of 

the heated liquid through the siphons would have created another exit path for the heated 

liquid to escape. The exact amount of liquid removed by the inner siphons was unknown 

so this explanation can not be taken any further. Unfortunately, the exact reason why the 

heat transfer increased with the aid suction systems is unknown.  
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3.12 Conclusion to Chapter 

The fluid management system or suction system which regulated flooding on this 

16 nozzle spray array improved heat transfer on the average of 30W/cm2 for similar 

values of superheat above 5°C. The heat transfer curves associated with the multiple 

nozzle spray cooler, even with the aid of the suction system, are well below any heat 

transfer data from a single nozzle spray cooler. Thus, it is concluded that the heat transfer 

mechanism taking place was mainly forced convective boiling and not spray cooling. 

This would be due again to the initial design problem being flooding of the sprayed 

surface due to excess fluid from the spray nozzles not being removed effectively.  The 

excess fluid leads to a film to thick for effective spray cooling. This pushed the heat 

transfer mechanism from a spray cooling regime into a less effective forced convective 

boiling regime. 

The suction system was optimized by a series of suction effectiveness tests. 

Modification such as adding extra siphons to the outside of the spray area and adding 

small slits to the sides of the siphons also increased the suction effectiveness. However, it 

is now realized that the suction effectiveness testing could not determine the amount of 

flooding in the inner four spray cones where it was critical. Thus, it is unknown if the 

modification to the suction system actually help drainage in the inner four spray nozzles. 

Heat transfer did increase by 30W/cm2 with the aid of the suction system. It was 

concluded that in a forced convective boiling regime the increase in heat transfer 

associated with the suction systems was due to the following. The suction systems could 

have slightly reduced the film thickness allowing for more convection to take place from 
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the impinging spray and the suction systems could have provided another exit path for the 

heated liquid to escape. 

It is recommended that lower flow rate nozzles (0.07 to 0.2 Liters/min) with 

comparable droplet velocities to that of the FullJet (+30 m/s) & GG-3 nozzles should be 

used for a retest of this design. It is believed that reducing the flowrates will alleviate the 

flooding problem. Furthermore, the diameter of the siphons should be increased so that 

they may remove more fluid.  Thus, this design shows promise but has not shown 

conclusively to solve the problem of surface flooding in a multiple pressure atomized 

spray nozzle array. 
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4. HIGH HEAT FLUX HEATER DESIGN  

4.1. Introduction to Chapter 

Through out the author’s studies, he has found a lack of detailed information on 

high heat flux heater designs. Eventually, the author collected enough information from 

various publications and other people’s theses to be well informed on the aspects of 

designing a high heat flux heater. Azar’s Thermal Measurements in Electronics Cooling 

in particular gives a good overview of heat flux measurement devices [7]. This research 

prepared the author for designing two of his own heaters, which were proven to be solid 

designs through repeated testing.  

This chapter outlines the process of designing and manufacturing a heater for high 

heat flux measurement. This will included in detail the following: type of heat source to 

select, methods of measuring heat flux, common problem associated with the high heaters 

and gives a step by step guide to designing a heater. 

4.2. Heat Source Selection 

Choosing the correct heat source is extremely important in a high heat flux heater 

design. Many heater options exist and the correct heater should be chosen based on the 

applications needs. The following questions should be answered to identify the needs of 

the application. 
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• What is the area or dimension of the area being heated?   

• What is the desired maximum heat flux?  

• What is the heat flux range in which the heater surface will be operating?  

Remark: For Spray cooling the bottom limit of this range is 

40W/cm2 and the upper can be 1000W/cm2, so it is pointless to 

designing a heater to measure average heat flux around 20 W/cm2. 

• Will the heater be enclosed in a small space, or open to the atmosphere? 

• What is the maximum temperature of the heated surface & the chances 

this temperature could go higher than you expect? 

• How much space is allowed for the heater? 

Answering these questions will help select the most appropriate heat source from the 

following list of possible heat sources: cartridge heaters, thick film resistors, ITO heaters, 

Quarts lamps, and thin wires.  

4.2.1 Cartridge Heaters 

Cartridge heaters are the author’s most preferable form of heating; this is mainly 

due to their reliability, how simple they can be integrated into the design, and the heat 

density which they can provide. Heater cartridges are usually, cylindrical and range in 

nominal diameters of 1/8", 1/4", 3/8", 1/2", 3/4", 1" & bigger. The smaller diameters like 

the 3/8" and the 1/2" have the highest heat densities. The larger diameter heaters present 

thermal resistance problems, the heat generated in the middle of the heater has to travel a 

larger distance and thus has a chance of burning out at a lower surface temperature. The 

author recommends staying with cartridge heaters with diameters between, 1/4" to 1/2". 

Furthermore, cartridge heaters range in length from 3/4 " to a foot or more. When 
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choosing the length of the heater remember a hole corresponding to the cartridge heaters 

length must be made in the conduction material, usually copper. The longer the hole (2" 

or more) the more chance that it will not be able to be machined or the machinist will 

drill it incorrectly and a poor heater fit will occur. Note: A poor heater fit means that 

conduction between some points on the heater and the conduction medium may be low 

and cause a premature burnout of the heater at those points. 

The number of cartridge heaters can range from 1 to 5 or more; it is mainly 

depended upon the heat flux requirements. So if you are heating an area of 1cm2 and 

want to provide a maximum of 1500W/cm2 then one can select four 400 Watt 3/8" 

diameter 2" long cartridge heaters to provide the needed heating. Remember heat loss at 

the higher heat fluxes may be as large as a 100W and mainly depends upon the design 

and placement of the insulation.  

The cartridge heaters as far as the author knows do not have a maximum heat flux 

only a maximum inner temperature of 1000°F to 1600°F. This slightly limits the design 

and placement of the heater which will be discussed in the next section. Cartridge heaters 

can be purchase from companies such as www.mcmaster.com or www.omega.com. 

Omega provides much more literature with their heaters; however on McMaster it is 

easier to quickly select a heater. A sample spec sheet on cartridge heaters is included in 

Appendix A.  

Cartridge heater heat densities are defined by equation 4.1. For example a high 

power 3/8" diameter cartridge heater has a maximum heat density of 100-110 W/cm3, 

regardless of the length; whereas, a 1/2" diameter heater has a density of 60-70 W/cm3, 
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regardless of the length. The cartridge heaters are listed according to their total wattage 

and their watts per surface area (W/cm2).  

 

Heat Density (W/cm3)  = 2**
*4

DL
wattage
π

   (Eq. 4.1) 

 

However, in high heat flux heater design only heat densities and heat per unit 

length actually are important. The higher the heat densities mean one can optimize the 

heat transfer of the heater by minimizing the heaters size and thermal resistance to the 

flow of heat.  So, heat per unit length can be found by  

 

Heat per length (W/cm) =
L

wattage    (Eq. 4.2) 

 

Average heat per lengths for a 3/8" diameter cartridge heat are around 58-78 

W/cm. It is important to look at this specification when selecting a cartridge heater, 

because this varies from model to model & length to length.  

Controlling a cartridge heater is relatively easy; most if not all cartridge heater 

can be operated on DC or AC current. This is because there design is that of a coiled wire 

placed inside a quarts impregnated shell with a thermally conductive compound. Current 

passed through the internal wires causes it to heat up. The cartridge heaters range in 

resistance and maximum voltage. They come in two types 120 Volt or 220 Volt; both 

provide the same amount of heat, and the author recommends 120 Volts. The author’s 2" 
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long heaters had an electrical resistance of 30Ω, and a max power rating of 400W. So 

using the following formula, one can find the power to be 

 

WV
R

VoltPin 480
30

)120( 22

max, =
Ω

==   (Eq. 4.3) 

 
 

One can see that the putting in the maximum wall outlet voltage will burn out the heater 

even with proper cooling. So this means if one is powering this single cartridge heater 

they must limit the voltage to 109V. When more then one cartridge is used they must be 

placed in parallel not series, if they are placed in series the first couple heaters will be 

heated more than the last. In parallel the heater resistance add together as,   

 

=
Ω∑ )/(1

1
Heaters

Heater Resistance   (Eq. 4.4) 

 

So three 35Ω heaters in parallel give 11.6Ω , and using Eq. 4.3 one finds that 400 Watts 

per heater (1200W total)  and again the voltage is limited to 118 V. Now the amps needed 

to power this can be found by V/R=I, to be 10.2 amps. So the heaters would be attached 

in parallel to the variac but the variac has to be able to supply 10 amps or the maximum 

voltage will not be achieved. For this example say the variac could only provide 5 amps 

using V =  I (5amps)*R (11.6Ω) gives 58 volts and using Eq 4.3 this only give 96 Watts 

per heater which is far below its capability of 400 Watts per heater. Thus one can see that 

it is extremely important that the variac has enough amperes to supply the cartridge 

heaters with the full voltage.  
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4.2.2 Quarts Lamp 

The next type of heater is a Quarts lamp heater; however the author has not had 

much direct experience with this heater type. It operates based on the conducting medium 

absorbing irradiated energy of the photons given off by the quarts lamp. The quarts lamp 

is quarts bulb usually filled with halogen or xenon and powered by a platinum or pure 

tungsten filament. Controlling or powering this lamp is extremely complicated because 

the output of the lamp degrades over time. That means a PID controller is needed to 

operate the lamp and control its output. The quarts lamp creates heat densities 

comparable to that of cartridge heaters. The only design of a high heat flux quarts lamp 

heater the author know of is by M.S. Sehmbey & L.C Chow at University of Kentucky 

[4]. This heater utilized two cylindrical quarts radiation lamps capable of providing 

1000W each. Sehmbey mentioned that the wires exiting the ends of the lamps would over 

heat and thus had to be cooled via force air convection. Another problem with the lamps 

is they can not be handled with bare hands because the oils from ones hands would 

fracture the lamp during operation. In the author’s opinion this type of heat source is 

difficult to work with because: of the method of controlling, the reliability due to 

degradation and the problems with the wire end connections and thus should be avoided.  
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Figure 4.1: Quarts Lamp Heater Design 

4.2.3 Thick Film Resistors 

Thick Film resistors (TFR) are extremely cheap when compared to cartridge 

heaters and quarts lamps. A 1cm2 thick film resistor can cost as low as $10 each. Thick 

film resistors vary in area from 1cm2 to 3 by 3 cm square and have various other shapes. 

So far there is no maximum heat flux associated with the resistors only a maximum 

operational temperature. The temperature distribution across the thick film resistor should 

be isothermal. The thick film resistors are extremely brittle and any large temperature 

gradients would cause a fracture of the main substrate.   

Thick film resistors come in a couple of types; but mainly display the same 

design. That is of a resistor film usually green, on top of a substrate sometime alumina 

(which is a ceramic) or glass; a sample spec sheet is attached in Appendix A and an 

example of a thick film resistor can be seen below.  
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Top Side 

 

Figure 4.2: Thick Film Resistors 
 
 

The heat generation surface of the thick film resistor is displayed as green in 

figure 4.2. In heater application the backside of the TFR are usually faced toward the 

cooling. The most common type of TFR has a metallic bottom seen in Fig. 4.2 because 

the back side of the heater can be soldered onto the cooling substrate. Figure 4.3 show the 

thick film resistor solder face down on to the cooling substrate, the solder insures that the 

heat flux through the contact will be even. The red arrow represents the direction of heat 

loss due to cooling and is represented by the symbol . The heat lost due to the air 

on the TFR is denoted by the small lined red arrows and is represented by the symbol 

.  

coolingQ&

lossQ&

 
Top Side 

Figure 4.3: Thick Film Heater Using Estimated Heat Loss 
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The bulk of the heat passed via  through the thin copper plate to the sink or 

in this case the spray cooler. A very small fraction of the heat is lost through the bottom 

to the air ( ); this even though it is small must be quantified.  

coolingQ&

LossQ&

 

losscoolingelectricalin QQE && +=     (Eq. 4.5)  

 

Assuming    the heat flux can be calculated as,  coolingloss QQ && <<

 

Area
EcmWQ electricalin

cooling =)/( 2&   (Eq. 4.6) 

 

The convection coefficient has a high degree of uncertainty, and thus so does the 

estimated heat loss. The author’s experience with this design, taught him several 

important things. Firstly, soldering the electrical leads onto the thick film resistor is hard 

because the TFR contact pads are fragile, and soldering an array of TFR is extremely 

difficult. Secondly, the thermocouple can not touch the green resistor film or they will 

become energized and burn out. Thirdly, the TFR’s have a small operational window, 

that is they can’t go above 150°C or 160°C or they will fracture.  In other words, the 

thermal resistance of the copper plate and the TFR’s substrate increase the backside 

temperature by 20°C to 30°C, so they easily can reach the operational maximum if one is 

not careful. Fourthly, they work well with coolants that have boiling points below 60°C 

and poorly for ones that have boiling points above 100°C like water. This is because the 

maximum operational temperatures are reached at low heat fluxes. Example, water 
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sprayed at 100°C and atmosphere pressure will only allow TFR to reach a maximum heat 

flux of 400W/cm2 before the maximum backside temperature of 160°C is reached. Where 

as, ammonia sprayed with a boiling point of 40°C at 1atm will allow the T.F.R. to reach 

600+W/cm2. Overall, the first TFR design shown in figure 4.3 is not very robust and is 

not recommend for repeated testing.  

The author’s solutions to the TFR overheating problem, is to spray the TFR 

directly, on its backside, this can be seen in figure 4.4. This reduced the thermal 

resistance of the TFR and increases the maximum achievable heat flux. In this design the 

sides of the TFR are seal with a machined Teflon block and the gaps filled in with high 

temperature epoxy.  

 

Figure 4.4: Thick Film Heater Utilizing a 1D Conduction Block 
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The  can be measured in three ways, the first being thermocouples on the 

surface, which are used to estimate the convection coefficient and find the lost heat flux, 

again the author considers this some what inaccurate. The second way is to utilize a heat 

flux measurement block, to measure the loss heat flux seen in figure 4.4. However, in this 

design the distance between thermocouples must be very large to measure the small heat 

fluxes.  

LossQ&

 

Figure 4.5: Heat Flux Sensor 
 

 
So, this may be as inaccurate or worst than a single thermocouple. The final way 

which just presented itself involves a heat flux sensor which was invented by Omega 

Corp. in 2001. The sensor shown in figure 4.5 utilizes an array of thermocouples which 

has three layer of T.C and utilizes the temperature differences between the T.C.s to 

calculate heat flux. Some of the downsides to this sensor are that the thermocouples 

average the temperatures between themselves so an uneven heat flux will not be shown. 

The sensor is large at a size of 3.5cm by 2.8cm so only can be applicable to large TFR 

applications. And finally, the sensor has a max operational temperature of 150°C.  
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 The concept of a heat flux sensor by omega can be extended to a customized one 

created for a specific application. A custom heat flux sensor could be manufacture 

utilizing thermocouples floating in air a fixed distance apart from each other. As long as 

the distance between the T.C.s is known accurately, and the spacing between them small, 

the sensor will measure heat flux accurately. The other alterative to having air between 

the T.C.s is placing at thermal barrier between of known thermal resistance. This will 

allow the heat flux sensor to measure larger heat fluxes.  

 The author’s conclusions on thick film resistors are that they are well suited to 

high heat flux heater design where the surface temperatures do not exceeded 80°C. In 

addition, their low maximum temperatures of 150°C limit the working fluids that can be 

spray on to them. Finally, the heat flux measurements depend upon knowing the heat loss 

from the bottom of the TFR. Even though the heat loss may be small this does introduce 

error into the final heat flux measurement. This makes thick film resistors ideal for heater 

applications where surface temperatures are low and highly accurate heat flux 

measurements are not required.  

4.2.4 ITO Heaters and Thin Wires 

ITO heaters are short for Indium Tin Oxide and are interesting because they are 

transparent. In the case of spray cooling they would allow someone to visualize the 

bubble generation while spray cooling is taking place. They theoretically have infinite 

heat fluxes but have a limit on there operational temperature which is specified by the 

substrate which they are deposited on. The most common substrate used with ITO heaters 

is Quarts. The author does not see why this will not allow the heater to operate up to 

temperatures of 150°C or more. ITO heaters are relatively expensive and the author has 
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heard of quoted prices of $1000 for 3cm2, but ITO is relatively easily created by any chip 

manufacturing lab and can be deposit on many substrates.  Many ITO heaters have been 

made many times here at the University of Central Florida for a minimal cost.  

The newest ITO heaters on the market are even being deposited on thin bendable 

plastic; however these substrates will never be applicable in high heat flux heaters due to 

their low thermal conductivity and low melting points. One utilizes an ITO heater exactly 

like the way a thick film resistor is used, except the heat is generated at the top surface 

and can be spray directly onto. This would allow the ITO heater to reach extremely high 

heat fluxes. Since the heat is generated at the top surface and cooled immediately the heat 

loss would be very small, and could be found by placing a thermocouple on the backside 

of the substrate. In other words one would assume 98% of the electrical energy is going 

into Qcooling and calculate the heat flux via Eq. 4.6. The measurement of the surface 

temperature is much more difficult since one can not place a thermocouple on top of the 

ITO surface. This is because direct electrical contact between the ITO film and the T.C. 

will energies the T.C and burn them out. If one would spray on the backside of the heater 

instead of directly on the ITO film one would then increase the thermal resistance greatly. 

However, spraying on the backside would allow one to measure the surface temperature 

with a thermocouple on the sprayed surface.  

Another design which was manufactured at Wright Paterson Airforce base what 

that of an ITO heater deposited on top of a polycarbonate pedestal [12]. They used simple 

1D heat conduction formula to calculate heat loss and surface temperature.  
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Figure 4.6: Ideal ITO Heater Setup 

 
Thin wires are also a possible heat sources. Platinum & Tungsten thin wires 

utilize electrical current to generate thermal resistances which can provide heat fluxes in 

excess of 1500W/cm2 at temperature of 1500K [51].  The problems with these wires are 

repeatability and the errors associated with heat flux and surface temperature 

measurements. The surface temperature of the wire is calculated based on the electrical 

resistance of the wire, thus a calibration curve is required to determine the surface 

temperature at a respective electrical resistances. The heat flux is only calculated by the 

amount of current going through the wire and the small diameters of the wires do not 

allow for redundant heat flux measurements. Unfortunately thermal cycling (going from 

low to very high temperatures) changes the electrical resistance of the wire slightly, this 

would change the calibration curve associated with the surface temperatures of the wire. 

Thus, a recalibration is needed after each high temperature test.  Additionally, the heat 

flux of the wires can be uneven over the length of the wire and over the surface of the 

wire. All of these downsides make wire heat sources only suitable for extremely high 

heat flux measurements with extremely high surface temperatures. 
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4.2.5 Future Heat Sources 

Heat sources such as cartridge heaters, thick film resistors, & ITO heaters are 

limited by their size, and operational limits. Future heat sources for high heat flux heaters 

should be able to attain extremely high temperatures and heat fluxes and offer distinct 

advantages over the current types of heat sources. Lasers, and microwave heat sources 

are presenting themselves as possible candidates. However, things like the uneven 

heating of laser and microwave beams present problems. Lasers as heat sources will not 

become possible until the high cost of high powered lasers come down to a reasonable 

level. But it is still possible to rent laser equipment for testing at a reasonable price. 

Microwaves as a heat source are becoming more probable because of the small size of 

their antennas. However, to utilize microwaves as a heat source one would have to deal 

with many problems like, how to provide even heating, how to trap all the microwaves 

with out burning out the antenna and how to power the antenna. Clearly future heat 

sources have a long way to progress before being utilized in high heat flux heaters. 

Luckily current heat sources like cartridge heaters and ITO heaters can provide high heat 

fluxes in very small packages which in the end might make them the most ideal 

technology for high heat flux heaters.  

4.3 Heater Design 

This section will concentrate on the design aspects associated with cartridge 

heaters as a heat source. This will include the orientation of the cartridge heater, the 

insulation used, and the methods of sealing around the heated surface.  

Cartridge heaters used in high heat flux heater designs are always placed in some 

type of heat focusing block. The focusing block utilizes a high thermal conductivity metal 
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(almost always pure copper) to transfer heat from the cartridges to the heated surface. 

The shape and mass of this block governs the maximum operation heat flux, temperature 

and response time of the heater. Additionally, the cartridge heater may have operational 

temperatures up to 1600°F, & copper has a melting point of 1900°F but it becomes 

extremely ductile around 1100°F, so for safety the bottom temperature of the focus block 

should not exceed 1292°F (700°C). Thus, a careful design of the heater is required to 

meet ones designs goals & to not exceed the heater block’s maximum temperature.  

4.3.1 Cartridge Heater Orientation and Placement

Cartridge heaters can be placed in two orientations either vertically or 

horizontally, each orientation has the benefit of smaller size in the aligned direction. 

However the horizontal orientation has a slightly lower operational temperature.  

 

     

Figure 4.7: Cartridge Heater Orientations  
 

The horizontal design heater in figure 4.7 shows the heater cartridge running 

horizontally inside of the focus block. In this case, the top of the cylindrical cartridge 

heater has a lower associated temperature than the bottom at corresponding heat fluxes. 
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This is because the heat generated at the bottom of the cartridge heater has to travel 

around the cartridge heater and then to the cooled surface. This increases the length of the 

conduction path for the bottom of the cartridge heater and consequently its associated 

temperatures.  

In the vertical cartridge heater arrangement the bottoms of the heater cartridges 

have a much higher associated temperature than the top. Now, if the heater being 

designed requires extremely high heat fluxes, 1000W/cm2, then cartridge heaters must be 

a minimum length of 2 inches. That translates too a conduction path between the top of 

the heater cartridge and the bottom being 2 inches. That will increase the bottom of the 

focus block’s temperature considerably! So the temperature at the bottom of the vertical 

cartridge heater design might reach the operational temperature of copper at a lower heat 

flux than one has designed for. Consequently, vertical heaters are very well suited for 

heat fluxes below 800W/cm2.  

Regardless of the heater chosen a preliminary Finite Element Analysis must be 

done to guarantee that the copper in the focus block will not reach its critical temperature 

in this case chosen to be 700°C.  

The length and placement of the holes is some what important in a horizontal 

design. The bottom of the heater block must have at least 0.8 cm of copper so that the 

heat can flow around the cartridge heaters. A thermocouple can be placed in a small hole 

drilled in the bottom of the heat block to insure the heater does not exceed the chosen 

safety temperature. Figure 4.8 shows two different placements of the cartridge heaters. In 

one placement the cartridge heaters are in line, thus the middle heater has a slightly lower 

temperature than the outer heaters. Whereas in the other placement, the heaters are 
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aligned along a central radius, which would insure they all have the same operating 

temperatures.  

 

 

Figure 4.8: Cartridge Heater Placement 

 

4.3.2 Insulation  

Insulating the focusing block is done very easily, with high temperature air filled 

insulation such as DuraBlanket © insulation which has a thermal conductivity of k = 

0.013 W/m-K. DuraBlanket basically has the thermal conductivity of air, but it stops 

convection currents from setting up. When using any insulation it is important to give 

some room, 3cm or more, between the heater block and the shell of the heater so the 

insulation can reduce the heat lost. A simple one dimensional thermal conductivity 

calculation would tell one what the heat loss is. DuraBlanket insulation has a max 

temperature of 2,200°F so the copper block will melt way before the insulation does. It is 

important when installing the insulation that one does not compresses or squeezes the 

insulation. Doing so would reduce the amount of trapped air inside of the insulation and 

increase the thermal conductivity of the insulation.  
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4.3.3 Neck Sealing

In many of the figures like figure 4.7, 4.8 one can see the neck of the copper focus 

block passing through a thin plate. The liquid in this case has the possibility of leaking 

through the cracks between the neck and the thin plate. The solution presented by Tilton 

was to minimize the gap size to 1mm and seal it with high temperature silicon sealant 

(red color sealant) [50]. The other solution for sealing comes into play for larger area 

heaters. The solution is to solder the neck of the heater on to a thin copper plate, as shown 

in figure 4.9. The surface temperature can be calculated based on the thermal resistance 

of the solder, and the gap size. To minimize the thermal resistance variation over the 

soldered surface, one should machine polish both surfaces to a mirror finish. This will 

insure a constant thin film over the contact area. One can then measure the solder 

thickness with a micrometer by placing the block and thin copper plate assembly on a 

machinist’s marble measuring table before and after the soldering. Knowing the typical 

solder thermal conductivity of 160 W/m-K, one can then estimate the temperature drop 

across the solder.   

 

 

Figure 4.9: Seal-less Heater 
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The only downside to using a solder neck heater is that the solder gap introduces 

error in surface temperature calculation. In the author’s experiments the error estimated 

due to soldering was found to be around 1 °C.   

4.4. Methodology for Design  

The methods of measuring heat flux differ based on the heat source chosen. The 

following section will concentrate on designing a heat flux measurement neck mainly for 

uses with cartridge heaters, although other heat sources can be used. The typical heat flux 

measurement design is that of a neck of a constant cross sectional area with 

thermocouples inserted into it. The thermocouples measure the temperature at different 

vertical locations along the neck. Utilizing the 1D conduction formulas one can then 

calculate the heat flux based on the temperature of the different thermocouples. Small 

variations in this design have been done such as integrating the thermocouples into the 

neck, or rapping them around the outside of the neck. Regardless of the design, this part 

of the heater should be given special attention so that uncertainties associated with the 

heat flux measurement can be minimized. The most important aspect of this design is the 

material selected for the neck and the placement of the thermocouples. The following 

section will go over step by step how to design a high heat flux heater using cartridge 

heaters as a heat source.  
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4.4.1 Step One: Surface Temperature, Material and Maximum Heat Flux  

The first step is to identify the maximum heat flux and surface temperature one 

expects from the heater. So if one expects 150°C to be the max surface temperature one 

should add on a safety margin of 10°C or 20°C and let the max surface temperature be 

around 160°C. The maximum heat flux is going to be the main limiting factor in the 

designing of the neck, which directly affects the accuracy of a heat flux measurement. A 

longer neck has more accuracy in the heat flux measurement, and a shorter neck has less 

accuracy. A heater with a maximum heat flux of 300W/cm2 will be able to have a longer 

neck and thus more measurement accuracy than a heater with a max heat flux of 

1000W/cm2. So, there is a small trade off between higher heat fluxes and measurement 

accuracies.   

Once the maximum heat flux and surface temperatures have been chosen one can 

pick a preliminary neck length for their design. This requires one to know the material 

that the heater is made out of. The material chosen mainly has to do with the maximum 

heat flux chosen; table 4 was generated to display this point. Table 4 used equation 4.8 to 

generate all of the temperature rises [1].  

 

k
XQT *&

=∆      (Eq. 4.8)  

 

From table 4, one can see that if the heat flux is above 500W/cm2 only copper 

should be selected as the material for the conduction block and the neck. The ability to 

pick other materials only comes into play below 300W/cm2. The benefits to picking a 
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material other than copper is that one would have a lower thermal conductivity and thus 

one can get a larger temperature gradient on the neck. 

 

Table 4: Temperature Rise of Different Materials at Various Heat Fluxes 

Heat Flux (W/cm2) Metal Melting Point (K) Melting Point (°C)
Conductivity 

(W/m-K)
Distance 

(cm) Temp Increase °C
Over 

Heated

100 Copper (Pure) 1358 1085 401 1 25
100 Aluminum (Pure) 933 660 237 1 42
100 Aluminum 1100 913 640 220 1 45
100 Red Brass 990 717 160 1 63
100 Plain Carbon Steel 1000-1500 700-1200 60 1 167
100 Stainless Steel 1670 1397 15 1 667 Yes

300 Copper (Pure) 1358 1085 401 1 75
300 Aluminum (Pure) 933 660 237 1 127
300 Aluminum 1100 913 640 220 1 136
300 Red Brass 990 717 160 1 188
300 Plain Carbon Steel 1000-1500 700-1200 60 1 500 Yes
300 Stainless Steel 1670 1397 15 1 2000 Yes

500 Aluminum 1100 913 640 220 1 227 Yes
500 Red Brass 990 717 160 1 313 Yes
500 Plain Carbon Steel 1000-1500 700-1200 60 1 833 Yes
500 Stainless Steel 1670 1397 15 1 3333 Yes

500 Copper (Pure) 1358 1085 401 1 125
500 Aluminum (Pure) 933 660 237 1 211

1000 Copper (Pure) 1358 1085 401 1 249
1000 Aluminum (Pure) 933 660 237 1 422 Yes
1000 Aluminum 1100 913 640 220 1 455 Yes
1000 Red Brass 990 717 160 1 625 Yes
1000 Plain Carbon Steel 1000-1500 700-1200 60 1 1667 Yes
1000 Stainless Steel 1670 1397 15 1 6667 Yes  

 
 
 

A larger temperature gradient means that one would have greater accuracy in the 

heat flux measurements. Say for example, one’s maximum heat flux was 200W/cm2 with 

a max surface temperature of 100°C. The ideal material would be red brass because the 

neck could be 3 cm long and have a temperature increase of 375°C across it. This is a 

reasonable temperature rise and will be discussed more in the following paragraph. Again 
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for heaters with heat fluxes above 300W/cm2 only copper can be used as the neck and 

focus block material!  

4.4.2 Step Two: Neck Length and Reduction of Uncertainties 

Now that the material has been selected, the second step is to pick a preliminary 

neck length based on the maximum heat flux. Maximizing the length of the neck is 

important in the uncertainty calculation. The errors that contribute to uncertainty in the 

heat flux calculation are as follows: errors associated with the thermocouple placement, 

error in the thermal conductivity constant, & the errors in temperature measurement. 

When holes are drilled in the neck there is a given tolerance in which they can drift from 

the desired position. This tolerance is the error in the T.C.s’ placement, and if the neck is 

small the uncertainty in the heat flux is extremely large. The author has seen a heater with 

a neck length of 1cm with three T.C.s drilled in it with tolerances of 0.01 inches or 

0.0254cm. Just this factor alone would give an uncertainty in heat flux as large as 15-20 

W/cm2. This clearly is unacceptable as demonstrated by Eq. 4.9 below.  
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The error in hole placement is the sum of the squares, so in this case, two holes 

drilled with an accuracy of 0.01” gives a 0.014” error (0.03556 cm error) in the hole’s 

placement. Just by changing the length to 3cm between the thermocouple the uncertainty 

is reduced by a factor of 3, as seen below in Eq. 4.10.  
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Now if one changes the machining tolerance from 0.01” to 0.005” and the neck 

length then the uncertainty is reduced by a factor of 5 which is demonstrated by Eq. 4.11.  

 

( ) ( )
22

22

2 5.3/
3

0179.0600
3

0127.00127.0
600

Cm
W

cm
cm

Cm
W

cm
cmcm

Cm
W

−+⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
  (Eq. 4.11) 

 

One can see, from these example calculations that the length of the neck and the 

holes’ tolerances will have the most impact on the uncertainty associated with the heat 

flux calculation. Hence, for a low heat flux heater design one should maximize the neck’s 

length by choosing a metal other than copper with a lower thermal conductivity, that way 

the error associated with the temperature measurement is minimized too.  

The longest neck length should be chosen so that the maximum operational 

temperature of the bottom of the heater is achieved. A simple formula can be used to 

estimate the bottom temperature based on the neck length chosen.   

 

)()()(
*max BottomTTblockFocusTSurface

k
XQ n =++

&    (Eq. 4.12) 

 

The temperature increase due to the focus block is found on table 5. Again T 

Bottom is the temperature of the bottom of the heater and for safety reasons should be set 

3/4th of the melting point of the metal used, so for copper, 700°C is the limit. 
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Table 5: Increase in Temperature Across Focus Block at Various Heat Fluxes 

 Heat Flux (W/cm2) Horizontal Heater Focus 
Block 

Temperature Increase (°C) 

Vertical Heater Focus Block 
Temperature Increase (°C) 

500 W/cm2 60-75 80-95 
800 W/cm2 120-130 130-150 
1000 W/cm2 110-120 160-190 

 

 

 

 

 
So, a horizontal heater configuration with a 1.75 cm neck made out of copper and a 

surface temperature of 120°C operating at a heat flux of 1000W/cm2 would have a bottom 

heater temperature of 698°C using Eq. 4.12. Most importantly, the neck length can also 

be solved for by setting the maximum bottom temperature then using Eq. 4.12. 

4.4.3 Step Three: FEM Analysis and Design Refinements 

Now that the material is chosen and the neck length is found one can move on to 

step three. Step three is the finite element analysis of the heater design. The heater would 

be designed in the CAD program then exported in a *.step or *.sat file format, which 

would then be opened in the FEM analysis software. The author designed his solid model 

in Inventor 7.0 by AutoDesk, and then exported it to Cosmos Design Star 4.0 for 

analysis. Remember the focus block should have sloped sides so the heat can have a 

simple conduction path to the top. This can be seen in figures 4.7 through 4.10. In 

Cosmos, the boundary conditions were set, which are the top surface was cooled at a 

infinite cooling rate but kept at a bulk temperature in the author’s case it was 100°C. The 

next condition was the heating rate; the surface area which the heater cartridge touches 
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had an applied heat load placed on it. The heat load could be chosen by wattage by which 

the program automatically applied the correct heat fluxes to the chosen surfaces.  

 

 

Figure 4.10: Applying Heat Loads 

 
 

So, for example say one was utilizing three heater cartridges to heat a 1cm2 

surface area with 1000W/cm2 of heat flux. One would then select the surface area which 

one of the heater touch as shown in figure 4.10 and apply a heat load of 333.3 W. This 

then would be repeated for the other two cylindrical surfaces. Note: When conducting a 

cartridge heater analysis one assumes the heat exits only through the sides of the cartridge 

heater not through the ends.  

In Cosmos, the cooling is provided by applying a film coefficient to the cooled 

surface, for a spray cooling this can range from 30W/cm2-K to 50W/cm2-K. Additionally 

the bulk temperature must be defined. In the author’s cases, he assumed saturated water 

at atmosphere pressure which has a bulk temperature of 100°C; remember one might 

have different working fluids with different bulk temperatures. Now that the heat loads, 

cooling loads and mesh are provided one can run then run the steady state thermal 

analysis. The first set of results obtained should be checked for two things, the bottom 

operational temperature, to see if it is within limits, and the heat flux through the neck. If 
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the neck is sufficiently long the heat flux should be evenly distributed, however if the 

neck is extremely short (1cm or less) the heat flux may be uneven. If the heat flux is 

uneven the meshing must first be changed and analysis reconducted. If the problem still 

persisted despite many changes to the analysis one must seriously consider redesigning 

the heater to even out the heat flux. Again the heat flux will be evenly distributed for flat 

top heaters with necks longer than 0.5cm; the author would not recommend designing a 

heater with necks smaller than 1cm due to the uncertainties associated with the heat flux 

measurements. So, if the bottom temperature of the neck is too high then the neck’s 

length should be shortened slightly. Using Eq. 4.8 one can determine how much to 

shorten the neck by, after that one should re-run the analysis’s to verify that the bottom 

temperature is achieved. 

  One can also predict the temperature of the bottom at any heat flux by doing the 

following.  Run two FEM analysis one at a low heat flux say for instance 300W/cm2 and 

one at a higher heat flux say 500 W/cm2. Now for each analysis record the maximum 

bottom temperature. Using these two analyses one can interpolate between the 

temperatures to see what the maximum heat flux would be as shown in table 6. This can 

be easily done in excel with the Forecast Formula. 

 

Table 6: Interpolating of Bottom Temperature 

Heat Flux (W/cm2) Bottom Temp (°C)
300 326
500 548
750 682 (found)  
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4.4.4 Step Four: Thermocouple Placement  

Now that the heater has been thoroughly designed the exact locations of the 

thermocouples can be determined. The previous section, explained why longer necks 

reduced the uncertainty associated with the heat flux measurement (Eq. 4.9).  The 

uncertainty can possibly be further reduced by using three or more thermocouples. 

 

 

Figure 4.11: Thermocouple Placement 

 
 

Figure 4.11 shows a zoomed in view of the neck of a focus block (remember the 

neck and the focus block should be made out of the same piece of metal, i.e. no 

soldering). The figure shows three T.C.s on each side, this can give 3 possible heat flux 

measurements (between T.C.s 1 & 2, 2 & 3, 1&3). At low heat fluxes the best 

measurement possible will be (between T.C 1&3) and at high heat fluxes comparison 

between all three heat fluxes measurements are useful. The three heat flux measurements 

can also be average, doing this will reduce the effects of thermocouple placement inside 

of the drilled holes; however uncertainty analysis must be conducted to see if this will 

reduce the overall uncertainty associated with the heat flux (see Appendix D).  
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Finally redundant pairs of thermocouples added together will reduce uncertainly. 

So taking the average of the heat fluxes measured by T.C.s 1&3 & 1b&3b would reduce 

the uncertainty. Also having a redundant or mirror pair of T.C.s provides a back up in 

case one of the primary T.C. fails.  

The holes drilled in the neck can disrupt the heat flow; as a result larger holes 

would possibly make the heat fluxes uneven in the neck. Smaller holes are ideal; the 

author recommends holes no bigger than 0.06 inches. The holes must be drill 

perpendicular to the direction of the heat flux, or they will possibly disrupt heat flow. The 

holes should be deep enough that they contact a plane of the neck with a constant 

temperature; this can be seen in figure 3.17 in chapter 3. The author recommends a depth 

of 0.1 inches or more. Thermocouples come in multiple wire sizes and some even come 

with pre-made heads, the smaller holes require smaller T.C. The author recommends 

choosing a T.C with a wire gauge which with one is comfortable handling; in the author’s 

case he prefers using a 30 gauge wire (Omega TT-T-30), that way one can prepare the 

thermocouple ends themselves.  

When drilling the T.C. holes the accuracy of the placement is important. The 

example associated with Eq. 4.9 shows that the uncertainty in the heat flux measurements 

is greatly linked to the accuracy or tolerance of the drill thermocouple holes. Reducing 

this tolerance greatly helps reduce the uncertainty that is why drilling the holes with a 

precision mill or even better a C&N machine is necessary. The depth and position of the 

T.C holes should have tolerances of 0.05 in or better! Now the first T.C holes (T.C 1) 

should be drill so that the T.C.s are just below the top plate as shown in figure 4.11. The 

bottom T.C holes (T.C 3) should be drill as close as possible (0.1 inches) to the base of 
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the focus block. It has been determined that the sectional neck temperature is mostly even 

at 0.2 inches above the focus block. Note: The number of T.C used will be limited by 

how many holes can be drill without disrupting the heat flow and the number of T.C 

available for the data acquisition system. A sample set of heat flux uncertainty 

calculations is located in Appendix D.  

4.4.5 Step Five: Housing Design

Finally the housing must be design for the heater block and top plate. Care must 

be taken to insure that the housing is water tight so that liquid does not enter. If liquid, 

such as water, enters the heater housing it will vaporize taking valuable heat along with 

it. This will totally throws off all the heat flux calculations. Additionally conductive 

liquids such as water can short out the cartridges heaters. Symptoms for this occurring are 

large differences between the calculated heat flux from the voltage, and the measured 

heat flux from the thermocouples.  

In designing the housing leave at least 2” of space between the focus block and 

the nearest housing wall. That will allow the insulation mention previously, to reduce the 

heat flux to a very low level. Rubber seals can be used inside of the housing as long as 

they are located a sufficient distance from the heating block. Securing the block in 

position is also needed. This can be done with a threaded rod, or ceramic block position 

underneath or to the sides of the heater focus block. Care must be taken in designing 

these components because they could potentially transferred valuable heat away from the 

focus block. High temperature machineable ceramics are available for these components. 

If the heater block is solder to a top plate as in figures 3.17 & 4.9 a bottom support such 

as a steel spring can be use to insure that the stress on the solder is minimized. Remember 
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when designing the housing to leave sufficient room for the cartridge heater cables and 

thermocouple wires to exit the housing without passing to close to the heater block.  

4.4.6 Short Summary of Steps  

1. Pick the maximum heat flux one wants to achieve, be realistic.  

2. Pick the maximum temperature that the cooled surface will experience and add a  

safety margin. 

3. Determine the orientation of and how many heater cartridges are required. 

4. Pick a conduction material, copper is only recommended for fluxes above 

300W/cm2.  

5. Pick a preliminary neck size using conduction Eq. 4.12. 

6. Design a heater & conduct a FEM analysis without thermocouple holes. 

7. Lengthen or shorten neck accordingly using Eq. 4.8.  

8. Conduct the FEM analysis again.  

9. Pick the locations for the thermocouples. 

10. Design the housing and the mechanism for securing the heater block in place. 

4.5 Common Problems 

The following paragraph describes some common problems and tips that should 

be considered when manufacturing the heater block. Insure there are no burs in the 

cartridge heater holes and that the holes are drilled extremely straight.  Use a conductive 

paste to help lubricate and insert the heater cartridges. Be sure that the T.C.s are in direct 

electrical contact with the focus block that way they read the most accurate temperatures. 

When securing the T.C.s in their holes use a heat resistance epoxy or high temperature 
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silicon sealant. Insure that the T.C.s’ wires are well way from the bottom of the focus 

block, that way the wires don’t melt. The focus block must be electrically grounded! This 

is imperative when using heater cartridges running off of AC current or even in some 

cases DC. Solder or anchor a grounded wire to the focus block. This is done to insure 

minimal noise in the T.C.s readings. Do not over compress the insulation; it requires air 

pockets to work properly.  Again, double check that the T.C.s are in electrical contact 

with the focus block and they are grounded. Use only heat resistant materials with low 

thermal conductivities to support the heater block (Alumina Silicate Ceramics work 

well). 

 

Figure 4.12 Wire Feed Through Design 

 

If the heater is enclosed one must proved an air and water tight seal around 

contact points including around the T.C wires and power wires. The T.C and power wires 

can be sealed using wire feed throughs sold by Omega or Conax out of Buffalo NY.  Or 

one could use the setup which the author developed, which utilizes a low cost pipe flange 

adapter (Fig.12). A through hole is drill in a pipe fitting, then a tube is pass through with 
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the T.C wire and sealed with a silicon sealant or preferably an epoxy. The author found 

this to works up to pressure of 150 Psi and more; the only downside is that the wires are 

permanently secured inside the tube.  

4.6 Conclusion to Chapter 

This chapter was written as a guide for the design and construction of a high heat 

flux heater for experimental uses where the measurement of surface temperatures and of 

heat fluxes are extremely important.  Firstly, this chapter outlines the heat sources 

available for high heat flux heaters, and the pros and cons of each. Secondly, the chapter 

outlines all components and design aspects of a high heat flux heater utilizing cartridge 

heaters. Thirdly, this chapter gives a step by step method for designing high heat flux 

heater utilizing cartridge heaters. Finally, a short summary of the design steps and 

common problems are given to conclude the chapter.  

 The authors review of high heat flux heater options, led him to prefer heater 

utilizing cartridge heaters due to there high reliability, large operational range, and 

extremely high heat generation densities. The author then reviewed methods of 

determining heat fluxes and surface temperatures, and determined that utilizing a 

conduction neck with several embedded thermocouples gave the smallest uncertainties 

associated with heat flux and surface temperature measurements. Additionally the author 

determine that the combination of cartridge heaters and a conduction neck would give the 

most reliable and robust design for his spray cooling applications. 
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APPENDIX A: CARTARTRIDGE HEATERS AND TFR 

SPECIFICATIONS 
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OMEGA’S Products 
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APPENDIX B: MANUFACTURING DRAWINGS FOR MULTIPLE 

NOZZLE SPRAY COOLER AND HEATER 
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APPENDIX C: SUBCOOLED FLOW BOILING AND SPRAY COOLING 

CACLUATIONS 
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Sub-Cooled Flow Boiling Utilizing Water 
 
Book Values  
 

Cp= 4.18 kJ/ kg-k 
 
Calculations  
 
Win = =  Solving for m one gets  )( hm ∆& )(* inoutp TTCm −& &
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Assume an input 20°C of and an outlet 30°C of which gives a ∆10°C then the flow rate can be 

calculated as follows:  Where  ∆T is the temperature difference between the inlet and outlet of 

the cooling jacket 

 For  ∆T = 10°C one gets 

)10(*/18.4
)1/1(*/500,2

CCkgkJ
kgliterskJV

o
& = = 59.8 L/s  60 L/s   ≈ 951 gallon/min 

For  ∆T = 20°C one gets    30 L/s   ≈ 475 gallon/min 

For  ∆T = 40°C one gets    14L/s   ≈ 221 gallons/min  

 

For open loop cooling of a 50KW heat source and a  ∆T of 40°C the flow rate would be 0.3 

Liters/s or 4.76 gallons/min. That means open loop subcooled flow boiling would have to 

reject 48.27 lbs/min of water. This makes an open loop SCFB system extremely unreasonable 

and thus not applicable to smaller mobile cooling systems.  
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Spray Cooling Utilizing Water 
 
Book Values for Water 

 
hfg = 2257.0 kJ/kg 

 
The amount of water need to dissipate the heat loading is found by the following formula for 

spray cooling sub-cooled fluids  

)( gf hhmQ += &&    Solving for m     &

)( fg

in

hu
Wm
+∆

=&  

)( gf hh
Qm
−

=
&

&   Substituting in the values for water at 25°C   & 100°C one gets  

kgkJ
skJm

/)87.10405.2676(
/500,2

−
=& =0.97kg/s  

=m& 0.97 kg/s    Convert with   (1 Liter = 1 kg)   

If this was and open loop system, this mass of water needed to operate at this heat load. 

Remember, excess liquid use during spray cooling can be recaptured and re-used 

sLiterV /97.0=&    Converting this to gallons/mi 

    Multiply by 10.142 lbs/gallon sgallonV /266.0=&

This is the amount liquid needed to vaporize to cool the required heat load, however spray 

cooling has vapor creation rate 20% to 40%.  So taking the worst case at 20% vapor creation 

the required flow rate to the pumps will be  
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2.0
/97.0 sLiterV =& =5 Liter/s   Converting this to gallons/min one gets 

min
80 GallonsV =&    This is the required flow rate supplied by the pumps  

vaporvapor vmV *&& =    Given the specific volume of steam is 1.673 m3/kg   

smV vapor /6228.1 3=&    This is the volume of vapor created per second 

In such case where the heat loads are 250W instead of 2.5MW, the flowrates would be scaled 

down by a factor 10E4.  

 
 
121



APPENDIX D: UNCERTAINTY CALCULATIONS FOR HEAT FLUX 

 
 
122



 

X
TkQ

∆
∆

=&  Partial differentiation and substitution gives  

( )Tk
X
X

X
kT

X
TkQ ∆

∆
∆∂

+⎟
⎠
⎞

⎜
⎝
⎛

∆
∆∂+⎟

⎠
⎞

⎜
⎝
⎛

∆
∆

∂=∂ *2
&  

Substituting in 
X
TkQ

∆
∆

=&  

⎟
⎠
⎞

⎜
⎝
⎛ ∂

+⎟
⎠
⎞

⎜
⎝
⎛

∆
∂

+⎟
⎠
⎞

⎜
⎝
⎛ ∂

=∂
X
XQ

T
TQ

k
kQQ *** &&&&  

For the temperature and the position the difference of squares is required 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∆
∂

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∆
∂

+⎟
⎠
⎞

⎜
⎝
⎛ ∂

=∂
X
X

T
T

k
kQQ

22 )(2)(2
*&&  

For example assume the following reasonable values  

Q& = 2500
Cm
W   k = 

Km
W
−

393  ∆T = 382°C  ∆X = 3cm   

    = k∂
Km

W
−

1   T∂  =   Co5.0 X∂  = 0.0127cm 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ∂
+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−=∂
cm

cm
Cm
W

C
C

Cm
W

Km
W
Km

W

Cm
WQ

3
)0127.0(2

500
382

)5.0(2
500

393

1
500

2

2

2

22
&  

 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++=∂ 222 313.1

Cm
W

Cm
W

Cm
WQ& = (Error due to k + Error due to T + Error due to X) 

 

The error in heat flux in this example is  23.5/
Cm
WQ −+=∂ &    
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APPENDIX E: SAMPLE HEAT FLUX AND TEMPERATURE GRAPHS



 

Temperature vs. Time Graph for Multiple Nozzle Experiment showing the effects one & two vacuums at 30 Psi Head Pressure 
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Heat Flux vs. Time Graph for Multiple Nozzle Experiment Showing the Effects One & Two Vacuums at Spray 30 Psi Head Pressure 
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APPENDIX F: SBIR AND STTR SPRAY COOLING AWARDS
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# PROGRAM AGENCY TOPIC NO & YEAR FIRM STATE PHASE AWARD AMT
1 SBIR AF AF 2003-175 CFD RESEARCH CORP. AL 1 $99,972
2 SBIR AF AF 1995-176 CUDO TECHNOLOGIES, LTD. KY 1 $54,887
3 SBIR BMDO BMDO1993-007 CUDO TECHNOLOGIES, LTD. KY 1 $58,367
4 SBIR BMDO BMDO1992-007 CUDO TECHNOLOGIES, LTD. KY 1 $57,332
5 SBIR NAVY NAVY1999-095 FERN ENGINEERING, INC. MA 1 $67,234
6 SBIR NAVY NAVY2003-055 INNOVATIVE FLUIDICS, INC. GA 1 $70,000
7 STTR NAVY NAVY2003-022 INNOVATIVE FLUIDICS, INC. GA 1 $70,000
8 SBIR AF AF 1988-121 ISOTHERMAL SYSTEMS RESEARCH KY 2 $399,884
9 SBIR AF AF 1988-121 ISOTHERMAL SYSTEMS RESEARCH KY 1 $49,321
10 SBIR OSD OSD 2002-P04 ISOTHERMAL SYSTEMS RESEARCH WA 1 $98,782
11 SBIR AF AF 2003-175 ISOTHERMAL SYSTEMS RESEARCH WA 1 $99,449
12 SBIR NAVY NAVY1992-136 ISOTHERMAL SYSTEMS RESEARCH, INC. WA 2 $790,121
13 SBIR AF AF 1995-179 ISOTHERMAL SYSTEMS RESEARCH, INC. WA 1 $76,022
14 SBIR MDA MDA 2002-007 MAINSTREAM ENGINEERING CORP. FL 1 $70,000
15 SBIR MDA MDA 2002-007 MAINSTREAM ENGINEERING CORP. FL 1 $69,998
16 SBIR BMDO BMDO2001-007 MAINSTREAM ENGINEERING CORP. FL 1 $64,999
17 SBIR BMDO BMDO2000-007 MAINSTREAM ENGINEERING CORP. FL 1 $64,664
18 SBIR MDA MDA 2002-007 MAINSTREAM ENGINEERING CORP. FL 2 $749,956
19 SBIR NAVY NAVY2003-055 OMEGA PIEZO TECHNOLOGIES PA 1 $69,798
20 STTR NAVY NAVY2003-022 RINI TECHNOLOGIES, INC. FL 1 $69,964
21 SBIR MDA MDA 2000-007 RINI TECHNOLOGIES, INC. FL 2 $974,097

$4,124,847Total Expenditures
 

Taken from - http://www.dodsbir.net/Awards/Default.asp

 

http://www.dodsbir.net/Awards/Default.asp
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