1-1-1991

Third Harmonic Generation Measurement Of Nonlinearities In SiO2-TiO2 Sol-Gel Films

W. E. Torruellas
L. A. Weller-Brophy
R. Zanoni
G. I. Stegeman
University of Central Florida

Z. Osborne

See next page for additional authors

Find similar works at: https://stars.library.ucf.edu/facultybib1990
University of Central Florida Libraries http://library.ucf.edu

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 1990s by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation
https://stars.library.ucf.edu/facultybib1990/354
Authors

This article is available at STARS: https://stars.library.ucf.edu/facultybib1990/354
Third-harmonic generation measurement of nonlinearities in SiO$_2$-TiO$_2$ sol-gel films

Cite as: Appl. Phys. Lett. 58, 1128 (1991); https://doi.org/10.1063/1.104392
Submitted: 20 September 1990. Accepted: 13 December 1990. Published Online: 04 June 1998

ARTICLES YOU MAY BE INTERESTED IN

Third-order nonlinearities in silicon at telecom wavelengths
Applied Physics Letters 82, 2954 (2003); https://doi.org/10.1063/1.1571665
Third-harmonic generation measurement of nonlinearities in SiO$_2$-TiO$_2$ sol-gel films

Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

Z. Osborne and B. J. J. Zelinski
Materials Sciences and Engineering Department, Arizona Materials Laboratory, University of Arizona, Tucson, Arizona 85721

(Received 20 September 1990; accepted for publication 13 December 1990)

Third-harmonic generation has been used to measure the magnitude and phase of the nonlinear susceptibility $\chi^{(3)}(3\omega)$ of SiO$_2$-TiO$_2$ sol-gel thin films as a function of TiO$_2$ concentration. Nonlinearities 20 times larger than those of fused silica were found, making such films useful for nonlinear optics in glass waveguides.

Glasses in the form of waveguides, both fiber and planar, have recently been used to study various nonlinear optical phenomena such as all-optical switching1,4 and spatial solitons.5 In particular, Aitchison and co-workers have studied spatial soliton propagation and interactions in planar waveguides fabricated by ion exchange using glasses with nonlinearities as large as 20 times that of fused silica.5 Although ion exchange has the advantage that waveguides can be buried reducing damage at surface imperfections, the limited index difference which can be achieved does not allow tight optical confinement.6 Waveguides formed by spin coating sol-gels4,8 are a possible alternative for forming highly nonlinear glass waveguides with strong confinement. They have been reported to form low-loss (<1 db/cm) waveguides whose properties can be tailored,7 which can be patterned by embossing8 and which are capable of withstanding optical power densities if excess of 10 GW/cm2 in nanosecond pulses.7 Because of their simple preparation techniques, sol-gel methods are also an easy way to prepare high index glass films in order to investigate their nonlinear properties. They can be helpful in the identification of the components which originate the nonlinearity. High concentration of heavy ions can be obtained for binary sol-gel films. This is rarely the case for bulk glasses, rendering this type of investigation very difficult.9 In this letter we report third-harmonic generation (THG) measurements of the electronic nonlinearities of sol-gel waveguide films as a function of TiO$_2$ concentration.

The sol-gel films were prepared as follows. Tetra-ethylortho-silicate (TEOS) is typically mixed with isopropyl alcohol for 4 min, followed by hydrolysis in 0.5 mol% HCl for an additional 15 min. Titanium butoxide and 2,4-pentabedionate are mixed for 20 min and added to the TEOS solution and the combination is mixed for four days. The SiO$_2$-TiO$_2$ sol-gel is then spin coated at approximately 800 rpm onto a fused silica substrate. The coated substrate is then placed in a preheated furnace at 400 °C for 30 min. SiO$_2$-TiO$_2$ thin films with different stoichiometries, approximately 500 nm thick, have been prepared for the THG measurement performed here. Such thicknesses had to be reached in order to be able to observe a change in the Maker fringes when the film was deposited. The optical quality of the films is greatly improved by using more dilute solutions deposited at higher speeds than those used in our experiments. Thinner single-mode waveguides using a similar process have been deposited at the University of Arizona showing waveguide losses less than 1.5 dB/cm at 0.5145 μm for 50% TiO$_2$ content. However, the waveguide loss dependence on TiO$_2$ concentration has not been investigated. We also investigated films made from a commercial Emulsitone solution believed to be 50:50 mole% from refractive index measurements. The refractive index measurements also indicate that the deposited sol-gel films are fully dense, as shown in Table I.10

THG is an ideal technique for the measurements of relatively small values of $\chi^{(3)}$. The samples considered here consist of a thin film deposited on a much thicker substrate, with a nonlinearity of only up to 20 times that of the substrate. The expected film signal is too small to be measured by techniques such as degenerate four wave mixing, or Kerr rotation for directions normal to the film surface. Waveguide versions of these techniques are too tedious for characterizing many samples. To optimally use THG it is desirable to have the product of the film thickness and nonlinearity be comparable to the product of the THG coherence length of the substrate and the substrate nonlinearity. Since the THG coherence length of fused silica at 1.579 μm is approximately 15 μm, the third-harmonic electric fields from the film and the substrate are comparable for 1-μm-thick films. Therefore both the magnitude and the phase of $\chi^{(3)}$ can be measured from the shift and offset of the THG Maker fringes, an example of which is shown in Fig. 1.

THG Maker fringes were obtained by focusing approximately 100 μJ of infrared radiation with a 20 cm f/2 length lens onto a sample placed in a 200 mTorr vacuum chamber. The sample was rotated by a computer-controlled stepper motor. The THG signal generated was...
TABLE I. We report both the calculated refractive indices and measured ones for some of the samples investigated. The calculated refractive indices were obtained following the formalism of Morey, see Ref. 14. We measured the refractive indices and sample thickness by ellipsometry at 6328 Å.

<table>
<thead>
<tr>
<th>% TiO₂</th>
<th>Calculated refractive index at 5893 Å</th>
<th>Measured refractive index at 6328 Å (film thickness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.6237</td>
<td>1.624 ± 0.001 [610 nm]</td>
</tr>
<tr>
<td>50</td>
<td>1.7186</td>
<td>1.734 ± 0.005 [285 nm]</td>
</tr>
<tr>
<td>70</td>
<td>1.8157</td>
<td>1.846 ± 0.02 [440 nm]</td>
</tr>
</tbody>
</table>

filtered with a spectrometer and appropriate color filters, and then detected with a photomultiplier. The 1.064, 0.953, and 1.579 μm excitation wavelengths were obtained respectively from an injection-seeded GCR-4 (Quanta Ray) Nd:YAG laser with 8 ns pulses, and the second and third Stokes lines generated by focussing 150 mJ of the second harmonic of the 1.064 μm Nd:YAG line into a hydrogen Raman shifter. Prior to the measurements, a circle of approximately 2 mm in diameter was scribed with a diamond pen onto one of the substrate surfaces. Maker fringes were then taken at this same location for both the bare and coated substrate. This allowed us to obtain both the magnitude and phase of the film’s χ(3) at 3ω relative to that of each fused silica substrate. The Maker fringe THG technique used here has been described elsewhere.11 Multiple reflections as well as the absorption at 3ω were taken into account in the analysis.

In Fig. 2 we show the wavelength dispersion of χ(3) at 3ω obtained from our SiO₂:TiO₂ thin-film samples. A resonant enhancement occurs when the third-harmonic frequency approaches in wavelength of the absorption band due to the Ti—O bond. In addition, the phase of χ(3) varies from 0° to 180°. This phase change, we postulate, is due to the presence of the resonance at 3ω, and not due to any neighboring two-photon resonance. The rapid change in the phase of χ(3) from 90° to 180° between 1.064 and 0.953 μm was observed in all samples. It can be modeled by a homogeneously broadened single oscillator model with a very narrow linewidth for the single-photon transition. This model is only realistic in the nonresonant regime and has been used successfully in interpreting the nonlinearity of glasses and transparent crystals.12,13 The error bar for the phase of χ(3) at 1.579 μm is due to the limited number of fringes recorded at the wavelength as shown in Fig. 1. In order to obtain a good estimate of the phase, two identical samples were measured and both sides of the Maker fringes were fitted. A phase close to 0° is expected because of the lack of any resonance.

In Fig. 3 we show the variation in |χ(3)/χ(3)SiO₂| as a function of the mole% of TiO₂. In that figure we have plotted the calculated χ(3) relative to fused silica using the empirical formula derived by Boling et al.12

\[
\frac{\chi^{(3)}}{\chi^{(3)}_{\text{SiO}_2}} = K \times 10^{-13} \frac{n_d(n_d-1)(n^2_d+2)}{12\pi\nu_d[1.52 + (n^2_d+2)(n_d+1)(\nu_d/6n_d)]^{1/2}},
\]

where \(n_d\) is the linear refractive index at 587 nm and \(\nu_d\) is the Abbe number. It is assumed in Boling’s formula that the second-order hyperpolarizability is proportional to the square of the linear polarizability. The resulting propor-
fring's fringe technique is ideal for measuring the nonlinear susceptibility of sol-gel glass-like thin films which can be used as nonlinear waveguides. In particular, we have found nonlinearities in SiO$_2$-TiO$_2$ films up to 20 times that of fused silica, one of the largest values measured to date in thin-film glass waveguides.15

The authors would like to thank Dr. K. DeLong for suggesting this research. We would also like to acknowledge interesting discussions with Professor J. Simmons and Dr. V. Mizrahi. W. E. Torruellas's research has been supported by a grant from Eastman-Kodak. This research was supported by NSF (EET-8814663).

14G. W. Morey, Properties of glass 2nd ed. (Reinhold, New York, 1954), Chap. 10.