Methods and products for biasing cellular development

Kiminobu Sugaya
University of Central Florida

Angel Alvarez
University of Central Florida

Amelia Marutle
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation
Sugaya, Kiminobu; Alvarez, Angel; and Marutle, Amelia, "Methods and products for biasing cellular development" (2013). *UCF Patents*. 370.
https://stars.library.ucf.edu/patents/370
Methods are described that bias cells, such as potent and multipotent stem cells, by transfection with a nucleic acid sequence, to differentiate to a desired end-stage cell or a cell having characteristics of a desired end-stage cell. In particular embodiments, human neural stem cells are transfected with vectors comprising genes in the homeobox family of transcription factor developmental control genes, and this results in a greater percentage of resultant transformed cells, or their progeny, differentiating into a desired end-stage cell or a cell having characteristics of a desired end-stage cell.

9 Claims, 14 Drawing Sheets
FIG. 6
Cells were double-immunofluorescence stained with a)

[Image of cellular staining with annotations: a)

FIG. 12

\[\text{[Image of cellular staining]}\]

Cells were double-immunofluorescence stained with a) β-tubulin (red) and b) ChAT (green), markers for cholinergic neurons. c) co-localization of β-tubulin & ChAT.

Blue signal is a counter-staining for nuclei by DAPI.
Calls were double-immunofluorescence stained with a) βIII-tubulin (green) and b) ChAT (red), markers for cholinergic neurons. c) co-localization of βIII-tubulin & ChAT. (20x magnification) Blue signal is a counter staining for nuclei by DAPI. d) insert for non-specific staining for βIII-tubulin & ChAT, respectively.
a) βIII-tubulin (green) and b) CHAT (red), markers for cholinergic neurons. c) Co-localization of βIII-tubulin & CHAT. Blue signal is a counter staining for nuclei by DAPI. (40 x magnification)
Cells were double-immunofluorescence stained with

\[\text{tau-tubulin (green)} \]

and nuclei counter staining by DAPI (blue). No

\[\text{Chat-positive neurons} \]

were observed. (a) 10 x and (c) 20 x magnification, respectively.

FIG. 15
METHODS AND PRODUCTS FOR BLAISING CELLULAR DEVELOPMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Ser. No. 60/621, 483 filed Oct. 22, 2004; and is a divisional application of U.S. application Ser. No. 11/258,603, filed Oct. 24, 2005 now U.S. Pat. No. 8,080,420, which are hereby incorporated in their entirety.

FIELD OF INVENTION

The present invention is directed to methods and systems directed to altering the differentiation of a cell, more particularly to biasing a multipotent stem cell by transfecting the cell with a nucleic acid sequence comprising a desired gene, the gene being expressed so that the cell, or its progeny, differentiate to a desired end-stage cell.

BACKGROUND

Proper cellular function and differentiation depends on intrinsic signals and extracellular environmental cues. These signals vary over time and location in a developing organism (i.e., during embryogenesis), and remain important in developing and differentiating cells during post-natal growth and in a mature adult organism. Thus, in a general sense, the interplay of the dynamically changing set of intracellular dynamics (such as manifested by intrinsic chemical signaling and control of gene expression) and environmental influences (such as signals from adjacent cells) determine cellular activity. The cellular activity so determined is known to include cell migration, cell differentiation, and the manner a cell interacts with surrounding cells.

The use of stem cells and stem-cell-like cells of various types for cell replacement therapies, and for other cell-introduction-based therapies, is being actively pursued by a number of researchers. Embryonic stem cells from a blastocyst stage are frequently touted for their pluripotency—i.e., their ability to differentiate into all cell types of the developing organism. Later-stage embryonic stem cells, and certain cells from generative areas of an adult organism, are identified as more specialized, multipotent stem cells. These cells include cells that are able to give rise to a subset of a more limited set of mature end-stage differentiated cells of particular types or categories, such as hematopoietic, mesenchymal, or neuroectodermal end-stage differentiated cells. For example, a multipotent neural stem cell may give rise to one or more neuron cell types (i.e., cholinergic neuron, dopaminergic neuron, GABAergic neurons), which includes their specific cell classes (i.e., a basket cell or a chandelier cell for GABAergic neurons), and to non-neuron glial cells, such as astrocytes and dendrocytes.

Further along the path of differentiation are cells derived from multipotent stem cells. For example, derivatives of a localized, non-migrating neuroectodermal type stem cell may migrate but, compared to their multipotent parent, have more limited abilities to self-renew and to differentiate (See Stem Cell Biology, Marshak & Gottlieb, Cold Spring Harbor Laboratory Press, 2001, particularly Chapter 18, p. 407). Some of these cells are referred to as a neuron-restricted precursors (“NRPs”), based on their ability, under appropriate conditions, to differentiate into neurons. There is evidence that these NRPs have different subclasses, although this may reflect different characteristics of localized multipotent stem cells (Stem Cell Biology, Marshak et al., pp 418-419).

One advantage of use of multipotent and more committed cells further along in differentiation, compared to pluripotent embryonic stem cells, is the reduced possibility that some cells introduced into an organism from such source will form a tumor (Stem Cell Biology, Marshak et al., p. 407). However, a disadvantage of cells such as cell types developed from multipotent stem cells, for instance, embryonic progenitor cells, is that they are not amenable to ongoing cell culture. For instance, embryonic neural progenitor cells, which are able to differentiate into neurons and astrocytes, are reported to survive only one to two months in a cell culture.

Generally, it is known in the art that the lack of certain factors critical to differentiation will result in no or improper differentiation of a stem cell. Researchers also have demonstrated that certain factors may be added to a culture system comprising stem cells, such as embryonic stem cells, so that differentiation to a desired, stable end-stage differentiated cell proceeds. It also is known in the art to introduce and express a transcription factor gene, Nurrl, into embryonic stem cells, and then process the cells through a five-step differentiation method (Kim, Jong-Hoon et al., Dopamine Neurons Derived from Embryonic Stem Cells Function in an Animal Model of Parkinson’s Disease, Nature, 418:50-56 (2002)), resulting in differentiated cells having features of dopaminergic cells. However, the starting cell for this was an embryonic stem cell, and the differentiation process through to a cell having the features of a dopaminergic neuron, requires substantial effort that includes the addition and control of endogenous factors. In addition, because the starting cell is an early-stage embryonic stem cell having pluripotency, there is a relatively higher risk that some cells implanted from this source will become tumorigenic.

Also, without being bound to a particular theory, it is believed to the extent a particular method of differentiation results in a greater percentage of cells that are dedicated or predetermined to differentiate to a desired functional cell type (i.e., a cholinergic neuron), this reduces the chance of tumor formation after introduction of cells derived from such method. As disclosed herein, embodiments of the present method that utilize multipotent stem cells as the starting material provide an increased percentage of cells predisposed (i.e., biased) to or differentiated to a desired cell type. This is believed to provide for reduced risk of tumor formation equivalent to or superior to the use of more differentiated cells such as NRPs.

There are many possible applications for methods, compositions, and systems that provide for improved differentiation of stem cells to a desired functional, differentiated cell. For example, not to be limiting, millions of people suffer from deafness and balance defects caused by damage to inner ear hair cells (IEHCs), the primary sensory receptor cells for the auditory and vestibular system after exposure to loud noises, antibiotics, or antitumor drugs. Since IEHCs rarely regenerate in mammals, any damage to these organs is almost irreversible, precludes any recovery from hearing loss, and results in potentially devastating consequences. Current therapies utilizing artificial cochlear implants or hearing aids may partially improve but not sufficiently restore hearing. Therefore, cell therapy to replace the damaged IEHC may be one of the most promising venues today. In the past, IEHC production from progenitor cells from the vestibular sensory epithelium of the bullfrog [Cristobal, 1998 #28] and possible existence of IEHC progenitors in mammalian cochlea sensory epithelia [Kojima, 2004 #29] has been reported. However, limited quantity of IEHC progenitor prevents clinical...
application of this type of cell to treat deafness. Thus novel technology to produce IEHCs from other cell sources is needed.

While stem cells are known to be the building blocks responsible for producing all of a body’s cells, the specific differentiation process towards to IEHC lineage is not clear. Embryonic stem cells transplanted into the inner ear of adult mice or embryonic chickens did not differentiate into IEHCs [Sakamoto, 2004 #19]. Neural stem cells (NSCs) grafted into the modiolus of cisplatin-treated cochleae of mice only differentiated into glial or neuronal cells within the cochlea [Tamura, 2004 #18]. In order to produce IEHCs from these stem cells, modification or direction of the cell fate decision may be needed.

Another possible application for methods, compositions, and systems of the present invention is biasing Human Neural Stem Cells (“HNSCs”) to differentiate to cholinergic neurons, or to cells having characteristics of cholinergic neurons. Such biasing would provide for an improved percentage of such stem cells in a culture vessel to differentiate to this desired end-stage neural cell. Improvements to the percentage of cells that are known to be biased to differentiate to this end-stage neuron cell, or to cells having characteristics of a cholinergic neuron, may lead to improvements both in research and treatment technologies for diseases and conditions that involve degeneration or loss of function of cholinergic neurons. Alzheimer’s disease is one example of a malady known to be associated with degeneration of the long-projecting axons of cholinergic neurons.

Thus, there is a need in the art to improve the compositions, methods and systems that provide biased and/or differentiated cells from stem cells or stem-cell-like cells. More particularly, a need exists to obtain a higher percentage of desired cells from a pre-implantation cell culture, such as starting from multipotent stem cells and obtaining a higher percentage of cells committed to differentiate to a specified type of functional nerve cell, such as cholinergic neurons or inner ear hair cells. The present invention addresses these needs.

BRIEF DESCRIPTION OF THE FIGURES

FIGS. 1-16 are appended hereto, are part of the specification, and are described herein and/or on the figures themselves.

FIG. 3 Math 1 full length mRNA was amplified by RT-PCR and digested with ApaI, which cuts position 441 of Hath1ORF. Expecting fragment sizes are 441 bp and 624 bp. M: 100 bp marker; 5, 6, without transfection (control); 7, 8, transfected with mammalian expression vector containing Hath1.

FIG. 9: Phase contrast micrographs of LA-N-2 cells. FIG. 9a: LA-N2 cells grow in clusters as adherent fibroblasts-like cells, occasionally cells extend short processes and form neuron-like networks. FIG. 9b: LA-N2 cells treated with 10-6 µM retinoic acid.

FIG. 10: Lhx8 expression in the LA-N-2 and HNSCs cells. FIG. 10a: Shows gene expression with RT-PCR analysis of LA-N-2 cells treated with ten µM RA showed an increased expression of Lhx8 (394 bp) and ChAT (splice variants ~600 and 400 bp, respectively, compared with non-treated cells. FIG. 10b: represents RT-PCR analysis of Lhx8 expression in HNSCs 48 hours post-transfection.

FIG. 11: In vitro differentiation of Lhx8-transfected HNSCs. HNSCs transfected with Lhx8 (a) in co-culture with LA-N-2 cells and serum-free conditions differentiated mostly neurons with long extended processes after 10-14 days (b-f).

FIG. 12: Differentiated HNSCs/Lhx8 in co-culture with LA-N-2 cells. Cells were double-immunofluorescence stained with (a) βIII-tubulin (red) and (b) ChAT (green), markers for colinergic neurons (c) two localization of βIII-tubulin and ChAT. Blue signal is a counter staining for nuclei by DAPI.

FIG. 13: Differentiated HNSCs/Lhx8 in co-culture with LA-N-2 cells. Cells were double-immunofluorescence stained with (a) βIII-tubulin (green) and (b) ChAT (red), markers for colinergic neurons (c) co-localization of βIII-tubulin and ChAT. (20x magnification) Blue signal is a counter staining for nuclei by DAPI. (d) insert for non-specific staining for c βIII-tubulin and ChAT, respectively.

FIG. 14 Differentiated HNSCs/Lhx8 in co-culture with LA-N-2 cells. A) βIII-tubulin (green) and b) ChAT (red), markers for cholinergic neurons, c) co-localization of βIII-tubulin & ChAT. Blue signal is a counter staining for nuclei by DAPI (40x magnification).

FIG. 15 Differentiated non-transfected HNSCs in co-culture with LA-N-2 cells. Cells were double-immunofluorescence stained with βIII-tubulin (green) and nuclei counter staining by DAPI (Blue). No Chat-positive neurons were observed. (a-b) 10x and (c) 20x magnification, respectively.

FIG. 16 Differentiated non-transfected HNSCs in co-culture with LA-N-2 cells. Cells were double-immunofluorescence stained with (a-b) βIII-tubulin (green) and (c) GFAP (red) markers for neurons and astrocytes, respectively. Blue signal is a counter staining for nuclei by DAPI.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In reviewing the detailed disclosure which follows, and the specification more generally, it should be borne in mind that all patents, patent applications, patent publications, technical publications, scientific publications, and other references referenced herein are hereby incorporated by reference in this application in order to more fully describe the state of the art to which the present invention pertains.

Reference to particular buffers, media, reagents, cells, culture conditions and the like, or to some subclass of same, is not intended to be limiting, but should be read to include all such related materials that one of ordinary skill in the art would recognize as being of interest or value in the particular context in which that discussion is presented. For example, it is often possible to substitute one buffer system or culture medium for another, such that a different but known way is used to achieve the same goals as those to which the use of a suggested method, material or composition is directed.

It is important to an understanding of the present invention to note that all technical and scientific terms used herein, unless defined herein, are intended to have the same meaning as commonly understood by one of ordinary skill in the art. The techniques employed herein are also those that are known to one of ordinary skill in the art, unless stated otherwise. For purposes of more clearly facilitating an understanding the invention as disclosed and claimed herein, the following definitions are provided.

DEFINITIONS

Stem cells are undifferentiated cells that exist in many tissues of embryos and adult organisms. In embryos, blastocyst stem cells are the source of cells that differentiate to form the specialized tissues and organs of the developing fetus. In adults, specialized stem cells in individual tissues are the source of new cells, replacing cells lost through cell death due
stem cells. A population may consist of at least twenty cells, or thereto.

To natural attrition, disease, or injury. Stem cells may be used as substrates for producing healthy tissue where a disease, disorder, or abnormal physical state has destroyed or damaged normal tissue.

Five defining characteristics of stem cells have been advanced (from Weiss et al., 1996). That is, stems cells generally are recognized as having the ability to:

1. Proliferate: Stem cells are capable of dividing to produce daughter cells.

2. Exhibit self-maintenance or renewal over the lifetime of the organism: Stem cells are capable of reproducing by dividing symmetrically or asymmetrically to produce new stem cells. Symmetric division occurs when one stem cell divides into two daughter stem cells. Asymmetric division occurs when one stem cell forms one new stem cell and one progenitor cell. Symmetric division is a source of renewal of stem cells. This permits stem cells to maintain a consistent level of stem cells in an embryo or adult mammal.

3. Generate large number of progeny: Stem cells may produce a large number of progeny through the transient amplification of a population of progenitor cells.

4. Retain their multilineage potential over time: The various lines of stem cells collectively are the ultimate source of differentiated tissue cells, so they retain their ability to produce multiple types of progenitor cells, which in turn develop into specialized tissue cells.

5. Generate new cells in response to injury or disease: This is essential in tissues which have a high turnover rate or which are more likely to be subject to injury or disease, such as the epithelium or blood cells.

Thus, key features of stem cells include their capability of self-renewal, and their capability to differentiate into a range of end-stage differentiated tissue cells.

By “neural stem cell” (NSC) is meant a cell that (i) has the potential of differentiating into at least two cell types selected from a neuron, an astrocyte, and an oligodendrocyte, and (ii) exhibits self-renewal, meaning that at a cell division, at least one of the two daughter cells will also be a stem cell. Generally, the non-stem cell progeny of a single NSC are capable of differentiating into neurons, astrocytes, Schwann cells, and oligodendrocytes. Hence, a stem cell such as a neural stem cell is considered “multipotent” because its progeny have multiple differentiative pathways. Under certain conditions an NSC also may have the potential to differentiate as another non-neuronal cell type (e.g., a skin cell, a hematopoietic cell, a smooth muscle cell, a cardiac muscle cell, a skeletal muscle cell, a bone cell, a cartilage cell, a pancreatic cell or an adipocyte).

By “Human Neural Stem Cell” (“HNSC”) is meant a neural stem cell of human origin. A HNMSC may be of fetal origin, or adult origin from a neural source, or may be derived from other cell sources, such as by de-differentiating a cell of mesenchymal origin. As to the latter, for example see U.S. application serial number 2003/0219898, which is incorporated by reference, inter alia, specifically for this teaching.

HNSCs of the invention are distinguished from natural HNSCs by their adaptation for proliferation, migration and differentiation in mammalian host tissue when introduced thereto.

By a “population of cells” is meant a collection of at least ten cells. A population may consist of at least twenty cells, or of at least one hundred cells, or of at least one thousand or even one million cells. Because the NSCs of the present invention exhibit a capacity for self-renewal, they can be expanded in culture to produce a collection of large numbers of cells.

By “potent cell” is meant a stem cell that has the capability to differentiate into a number of different types of end-stage cell types, and to self-renew, and may include stem cells classified as pluripotent, multipotent, or cells more differentiated than multipotent (i.e., a dedicated progenitor) under different stem cell classification schemes.

By “a presumptive end-stage cell” is meant a cell that has acquired characteristics of a desired end-stage cell type, but which has not been conclusively identified as being the desired end-stage cell. A presumptive end-stage cell possesses at least two, and often more, morphological and/or molecular phenotypic properties of the desired end-stage cell.

The first two of these patent applications describe multiple uses of increased potency cells obtained from the taught methods, and in particular, the implantation of stem cells for different therapeutic treatments of neurological trauma and degenerative conditions. The third patent application is directed to the use of certain compounds to stimulate proliferation and migration of stem cells. Those skilled in the art will readily appreciate that the cells of the present invention could be obtained, or their effectiveness enhanced, by combining with the teachings of the aforementioned patent applications, without undue experimentation.

The present invention is directed to compositions, methods and systems that provide for increased percentage of neural stem cells and other multipotent or potent stem cells to become committed, or predisposed, to differentiate to a desired end-stage differentiated nerve cell. More particularly, the present invention utilizes the introduction into such a stem cell of a nucleic acid sequence comprising a developmental control gene. A developmental control gene as used in the present invention may encode a transcription factor, cell-surface molecule, or a secreted signal molecule (See Fundamental Neuroscience, Zigmond, Bloom, Lands, Roberts and Squire, Academic Press, 1999, Chapter 15). Examples below provide details of the introduction of three transcription factor type genes—Lhx8 and Gbx1 that improve differentiation of human neural stem cells (HNSCs) to cells having characteristics of cholinergic neurons, and Hthal that improves differ-
presentation of HNSCs to cells having characteristics of inner ear hair cells (IEHCs). The effectiveness of these single-gene introductions to such cells is unexpected and surprising in view of the subtlety and complexity of differentiation of multipotent stem cells to cells such as neural cells like cholinergic nerve cells and inner ear hair cells. Other development control genes having capability to achieve similar desired results are disclosed.

The present invention advances the art by demonstrating the utility, in multipotent stem cells, of introducing for expression a nucleic acid sequence that comprises a desired developmental control gene. One example of such introducing is transfection by a vector comprising the nucleic acid sequence. After such introducing, the introduced developmental control gene is expressed in the cell (or its progeny), at least transiently. By so altering a multipotent stem cell, the present invention provides for more consistent differentiation to a desired functional cell type, such as a cholinergic nerve cell. In doing so, this is believed to reduce known risks of this type of cell transplantation, such as the risk of tumor growth upon implantation of cells from pluripotent embryonic culture.

Thus, in some embodiments the present invention is directed to biasing a multipotent cell such that the cell becomes programmed, or biased, to differentiate into a desired cell type under appropriate external conditions. This is done in some embodiments so that in a pre-implantation cell culture a greater percentage of cells are either pre-disposed to differentiate to and/or do differentiate to a desired cell type. More particularly, in certain embodiments of this biasing, the cell is transformed so it expresses a certain factor that biases the same cells to differentiate to a desired cell type upon further implantation to a particular tissue in a living organism. In such embodiments, this improves a differentiation ratio so that a higher percentage of cells introduced into a particular cell medium, a tissue culture, or a living organism in a particular location differentiate into the end-stage differentiated cell type that is desired. Without being bound to a particular theory, this is believed to increase the probability of success and overall effectiveness, and to decrease the risks associated with implantation of cells obtained from embryonic stem cells or embryonic-cell-like cells.

While not meant to be limiting as to the type of nucleic acid sequence introduced, examples herein utilize introduction to a cell of a nucleic acid sequence comprising a homeobox gene. This is a gene group that includes a number of known developmental control genes. A homeobox gene is a gene containing an approximately 180-base-pair segment (the “homeobox”) that encodes a protein domain involved in binding to (and thus regulating the expression of) DNA. The homeobox segment is remarkably similar in many genes with different functions. However, specific homeobox genes are known to operate at different stages, and in different tissue environments, to yield very different specific results. For example, in relatively early embryological development in the vertebrate embryo, expression of genes of the Hox family of homeobox genes appears to affect development of the brain based on position along the anterior/posterior axis. This is believed to control identity and phenotypic specializations of individual rhombomeres. (Fundamental Neuroscience, Zigmond et al., p. 435). Later in development, LIM homeobox gene expression is associated with the projection pattern of developing primary motor neurons, and more generally, expression of a particular combination of LIM homeobox genes appears to be related to motor neuron subtype identity and to targeting specificity (Fundamental Neuroscience, Zigmond et al., p. 597). Also, some LIM homeobox genes appear to affect developmental progression, rather than fate, of motor neurons, which suggests a role of cell-to-cell signaling in the embryo to fully effectuate the differentiation in vivo (Fundamental Neuroscience, Zigmond et al., pp. 443-444).

These highly specialized and variable roles for homeobox genes in general, and for LIM family homeobox genes more particularly, demonstrate the subtle, specific, and highly variable effects that these genes may have on cell and tissue development and differentiation.

Further with regard to function of homeobox genes, these genes encode transcriptional regulators that play critical roles in a variety of developmental processes. Although the genetic and developmental mechanisms that control the formation of forebrain cholinergic neurons are just beginning to be elucidated, it is known that the vast majority of forebrain cholinergic neurons derive from a region of the subcortical telencephalon that expresses the Nkx2-1 homeobox gene.

It has recently been reported that Nkx2-1 appears to specify the development of the basal telencephalon by positively regulating transcription factors such as the LIM-homeobox genes Lhx8 (also known as L3 or Lhx7) and Gbx1, which are associated with the development of cholinergic neurons in the basal forebrain (Zhao et al., 2003; Asbreuk et al., 2002, Waters et al., 2003).

In the spinal cord, Isl1, Lhx1, Lhx3 and Lhx4 have been shown to be important for the development of spinal cord cholinergic neurons (Pfafl et al., 1996; Sharma et al., 1998; Kania et al., 2000). Given that the spinal cord cholinergic neurons are reported to require multiple LIM-homeobox genes for their development, it is expected that Lhx8 is not the only LIM-homeobox gene that is required in generating telencephalic cholinergic neurons. Other candidates are Lhx6 and Isl1, which are also expressed in the basal telencephalon (Marin et al., 2000). Also, it is suggested that Dlx1/2 and Mash, though not directly regulating Lhx8, participate in controlling the number of cholinergic neurons that are formed in the telencephalon (Marin et al., 2000).

Thus, at a minimum, developmental control genes that may be used in the present invention to bias cells to bias those cells (or their progeny) to differentiate to a desired end-stage cell type, here that cell type being cholinergic neurons, include, but are not limited to Lhx8, Gbx1, Lhx6, Isl1, Dlx1/2 and Mash.

The Human Neural Stem Cells (HNSCs), such as discussed in the examples below, are obtained from neural stem cells that were derived from clones obtained from human fetal brain tissue. One lineage was obtained by isolating individual cells from neurospheres of a fetal brain tissue sample obtained from Cambrex, and ultimately identifying one multipotent stem cell for clonal propagation. A second lineage was obtained by isolating individual cells from neurospheres of a fetal brain tissue sample obtained from Cambrex, and ultimately identifying one multipotent stem cell for clonal propagation. A second lineage was obtained by isolating individual cells from neurospheres of a fetal brain tissue sample obtained from Cambrex, and ultimately identifying one multipotent stem cell for clonal propagation. A second lineage was obtained by isolating individual cells from neurospheres of a fetal brain tissue sample obtained from Cambrex, and ultimately identifying one multipotent stem cell for clonal propagation. A second lineage was obtained by isolating individual cells from neurospheres of a fetal brain tissue sample obtained from Cambrex, and ultimately identifying one multipotent stem cell for clonal propagation.

The following examples are provided to further disclose the genesis, operation, scope and uses of embodiments of the present invention. These examples are meant to be instructive, and illustrative, and not to be limiting as to the scope of invention as claimed herein. These examples are to be considered with the referred drawings.

EXAMPLE 1

This example demonstrates that transfection of a human neural stem cell with Hth1 results in the transected cell (or
its progeny) differentiating into a cell having markers of an inner ear hair cell (IEHC). Hath1 (in humans) and Math1 (in mice) are basic helix-loop-helix transcription factors (and homologs of the *Drosophila* gene atonal) that are expressed in inner ear sensory epithelia. Since embryonic Math1-null mice failed to generate cochlear and vestibular hair cells, it appears to be required for the generation of inner ear hair cells (Herminghaus N A, Hassan B A, Price S D, Vollrath M A, Ben-Arie N, Eatock R A, Bellen H J, Lysakowski A, Zoghbi H Y. 1999. Math1: An essential gene for the generation of inner ear hair cells. Science 284 (June 11): 1837-1841). Fate determination of mammalian IEHC is generally completed by birth. However, overexpression of Math1 in postnatal rat cochlear explant cultures resulted in production of extra hair cells from columnar epithelial cells located outside the sensory epithelium, which normally give rise to inner sulcus cells. Math1 expression also facilitated conversion of postnatal utricular supporting cells into hair cells (Zheng G I, Gao Wq. 2000. Overexpression of Hath1 induces robust production of extra hair cells in postnatal rat inner ears. *Nat Neuroscience* June 3: 3(6):589-600). In vivo, Math1 overexpression leads to the appearance of immature hair cells in the organ of Corti and new hair cells adjacent to the organ of Corti in the interdental cell, inner sulcus, and Hensen cell regions, indicating nonsensory cells in the mature cochlea retain the competence to generate new hair cells after over expression of Math1 (Kawamoto K, Ishimoto S, Minoda R, Brough D E, Raphael Y. 2003. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. *J Neuroscience* June 1: 23(11):4395-400). Based on the above-summarized work, it was hypothesized that Hath1 may be necessary, and sufficient as a single introduced gene for expression in a multipotent neural stem cell, to positively affect differentiation to an IEHC, or to a cell having characteristics of an IEHC.

A Hath1 gene (SEQ ID NO:4) was amplified from the *Homo sapiens* BAC clone RP11-6801J7 by PCR and then cloned into a mammalian expression vector (700 ng DNA encoding TOPA TA (See FIG. 1; 6x His tag; disclosed as SEQ ID NO: 16). Upon the insertion of the Hath1 gene expressive sequence into the directional cloning vector, the expressive sequence was operatively linked to the CMV promoter, and was also positioned upstream (with regard to reading) of a polyadenylation transcription termination site. The clone was confirmed by sequencing of the insert.

An established non-serum HNSC culture system was utilized to investigate the differentiation of human neural stem cells (HNSCs) within a defined condition. (Christopher L. Brannen and Kiminobu Sugaya. *Regeneration and Transplantation*, 11:5, 1123-1128 (2000)). The serum-free supplemented growth medium consisted of HAMS-F12 (Gibco, BRL, Burlington, ON), antibiotic/antimycotic mixture (1:100, Gibco), B27 (1:50, Gibco), human recombinant FGF-2 and EGF (20 ng/ml each, R and D Systems, Minneapolis, Minn.), and heparin (5 µg/ml, Sigma, St. Louis, Mo.). Cells were maintained in 20 ml of this medium at 37° C. in a 5% CO2 humidified incubation chamber.

The mammalian expression vector containing Hath1 gene was transfected into HNSCs by using the Neuroporter Kit (Gene Therapy Systems, Inc. San Diego, Calif). Hath1 gene expression was confirmed by RT-PCR. These Hath1-transfected HNSCs were differentiated for 7 days by the depletion of mitotic factors (FGF-2, EGF) from the culture media. After the differentiation the cells were fixed for immunocytochemistry and Electron Microscopy.

The immunocytochemistry revealed the existence of cells expressing calretinin, a hair cell marker, which were immunoreactive in this culture. These calretinin immunopositive cells resembled morphology of IEHC. The calretinin expression in the culture was also confirmed by Western blot, which showed single band specific to calretinin molecular weight (29 KD). Further electron microscopy analysis of the cells also showed a typical IEHC morphology. These results indicate that HNSCs transfected with a vector comprising a Hath1 gene differentiate into IEHCs or into cells having characteristics of IEHCs. Comparisons with non-transfected controls using Western blot and room temperature PCR showed the presence of Hath1 and Hath1 mRNA in cells transfected with Hath1, but not in the controls.

Thus, embodiments of the present method provide for improved approaches to obtain IEHCs, or cell having characteristics of IEHCs, that are derived from HNSCs. Embodiments of the present invention provide a higher percentage of a population of cells biased, or disposed, to differentiate to IEHCs, or to cells having characteristics of IEHCs. The HNSCs utilized in this example are readily and continuously cultured in serum-free culture medium. Without being limited, in vitro and in vivo studies and trials using cells so obtained from HNSCs may include electrophysiological assessment of the cells and investigation of functional recovery after transplantation of the cells into the animal model of deafness. Positive findings in such pre-clinical studies may advance the art farther toward treatment of deafness via cell transplantation therapy using IEHCs produced from HNSCs.

Material and Methods

Hath1 Transfection

The human Hath1 gene (SEQ ID NO:1) is amplified from the *Homo sapiens* BAC clone RP11-6801J7 by PCR, using a forward primer (5'-TCCGATCTTGGCTCCAGCTCC-3', SEQ ID NO:14) and reverse primer (5'-GCTCTTGTCAC-CTTTCAATCTGCCC-3', SEQ ID NO:15). The PCR amplification is conducted in 20 µl volumes containing the BAC clone (100 ng), 1x amplification buffer, 1 µM of each primer, dNTP Mix (250 µM), and Taq DNA Polymerase (2.5 U). The PCR condition is 95° C. (30°), 59° C. (30°), 72° C. (60°) for 35 cycles, with an initial denaturation of 95° C. (5°) and final elongation of 72° C. (15°). The PCR amplified fragment is cloned into a directional pcDNAHsmax TOPA TA vector and the clone is confirmed by sequencing of the insert.

The gene expression of Hath1 is assessed by RT-PCR with the following condition: 95° C. (60°), 56° C. (60°), 72° C. (60°) for 35 cycles, with an initial denaturation of 95° C. (5°) and final elongation of 72° C. (15°). The Hath1 gene is transfected into Human Neural Stem Cells (HNSCs) using the Neuroporter Kit. The Neuroporter kit utilizes a lipid-based transfection system for the use with cultured primary neurons, neuronal cell lines, and glial cells. DNA and Neuroporter are used in a ratio of 10 µg DNA/75 µl Neuroporter, utilizing 37.5 µl per well in a 6-well plate and with total volumes of 1.5 ml growth media per well. 10 µg of DNA is added to DNA Diluent to make a total volume of 125 µl; this is incubated for 5° at room temperature. 75 µl of the Neuroporter Reagent is added to serum-free media to make a final volume of 125 µl. These solutions are incubated for 10 minutes to allow Neuroporter/DNA complexes to form, and then added directly to the HNSCs in a 6-well plate. One day later, the media is replaced with fresh growth media; one day later, this is replaced with differentiation media (Basal Medium Eagle) to induce spontaneous differentiation. The cells are cultured for 1-2 weeks in a basal differentiation medium containing Eagle’s salts and L-glutamine, which is not supplemented with FGF-2 or EGF, and is serum-free.

RT-PCR

TR1sol reagent is used to extract RNA for RT-PCR and protein for a Western Blot. 6 µl of the template RNA is added
to 1 × Reaction Mix, 1 µM of each Hathl-specific primer, and 1 µl of the RT-Platinum® Taq Mix. The total volume of the solution is 20 µl. The RT-PCR condition is 94°C (15°), 59°C (30°), 72°C (60°) for 40 cycles, with an initial denaturation of 55°C (30°) and 94°C (5°).

Immunocytochemistry

The cells are fixed with 4% paraformaldehyde for 30' at room temperature, washed in phosphate-buffered saline (PBS, pH 7.2), then blocked with 3% normal goat serum in PBS containing 0.05% Triton-X100 for 1 hour. The cells are incubated with primary antibody calretinin overnight at 4°C, with a dilution factor of (1:2000) in PBS containing 0.05% Triton-X100.

Following PBST washing, the cells are incubated with secondary antibody biotinylated anti-rabbit made in goat in PBS containing 0.05% Triton-X100 (PBST), with a dilution factor of 1:200. This incubation takes 1 hour. The cells are washed with PBST, and incubated with ABC reagent for 1 hour. Following a PBS wash and staining with DAB for 5–8', the cells are washed with PBS and distilled water, then stained with methyl green (5'). The cells are washed with water, ethanol, and xylene, coveredslipped with permount, and ready for viewing with microscopy.

Western Blot

A Western Blot is performed to assay protein expression. The protein is extracted with TRIzol reagent. 15 µl of the protein is loaded with the size marker on a PVDF membrane and run at 200 V and 110 mA/ gel for 50'. The transfer is run overnight at 15V, 170.0 mA at 4°C. The membrane is then washed with PBST 2×10' while rotating, and blocked with 3% milk for 60'. This is washed 2×10' with PBST and blocked with the primary antibody calretinin (1:500) overnight at 4°C. After washing 3×5' with PBST the membrane is incubated with the secondary antibody (1:2000) and shaken for 1 hour. For detection, 7.5 mL of ECL solution is warmed to room temperature and 187.5 µl of solution B is added to solution A. 7.5 ml is added to the membrane at RT for 5'. The membrane is then placed in an x-ray film cassette and exposed as needed for chemiluminescent detection.

Electron Microscopy

Cells were fixed with 3% glutaraldehyde with cacodylate buffer 0.1M, and dehydrated with a series of alcohols beginning with 50% up to 100% absolute ethanol followed by hexamethyldisilazane (HMDS). The cultured cells were allowed to air-dry at room temperature. The specimens were attached to aluminum stubs using double sided carbon coated tape, sputter-coated with Platinum and palladium using the Cressington 208 HR High Resolution Coater. Samples were viewed with a Jeol 6320F Field Emission Microscope (high resolution images) and recorded with a digital camera. Samples were also viewed with the Hitachi Variable pressure microscope in V-P mode (variable pressure mode) and digital were captured.

Results

A non-serum HNSC culture system was utilized (Christopher L. Brannen and Kiminobu Sugaya, Regeneration and Transplantation, 11:5, 1123-1128 (2000)). This culture system provides for the differentiation and expansion of HNSCs in vitro in the absence of serum. This system provides for the observation of differentiation of HNSCs within a defined condition. These HNSCs have been cultured in a medium consisting of DMEM/F12, antibiotic-antimycotic mixture (1:100), B-27 supplement (1:50), human recombinant FGF-2 and EGF (20 ng/ml each), and heparin (5 µg/ml). These cells have been maintained at 37°C in a 5% CO2 humidified incubation chamber for more than 3 years in the lab. These cells are CD133- (a stem cell marker, which is known to be expressed in stem cells) positive, and GFAP- and βIII-tubulin-negative before differentiation. Upon differentiation, various differentiated cells typically express glial fibrillary acidic protein (GFAP), or βIII-tubulin, which are glial and neuronal markers, respectively.

Preferential differentiation of HNSCs into IEHCs can be induced in vitro by the transfection of Hathl. The human Hathl gene was amplified from the Homo sapiens BAC clone RP11-6801J7 by PCR and cloned into a directional pcDNA-Hismax TOPO TA vector. This was confirmed by sequencing of the insert. After confirming expression of the gene by RT-PCR, the Neuroporter kit was utilized to transfect HNSCs. These HNSCs were known to be viable and capable of differentiation, aggregating in neurospheres when multipotent. Once they began the process of differentiation, they left their neurospheres. After allowing 7 days for differentiation, these cells were either stained for hair cell specific markers or assayed for protein expression. Via immunocytochemistry, the hair cell marker calretinin was identified on certain cells (FIG. 2). Via RT-PCR, the expression of this protein XX clarify which figure or protein? was also verified (FIG. 3).

The presence of the actual protein calretinin on the cell surface was determined via Western Blot. Seven days for differentiation was allowed before any analysis of the cells. Protein was isolated from the cells and calretinin was identified in the cell isolate (FIG. 4).

Using Transmission Electron Microscopy, cells transfected with Hathl1 and grown to allow for differentiation were visualized. A subset of the cells exhibited distinct hair-like projections. These were the actual hairs from the transfected HNSCs that differentiated into cells having this characteristic feature of IEHCs (FIGS. 5 and 6).

Discussion

In order to replace damaged IEHCs, a renewable source must be created. The HNSCs cultured in serum-free medium were shown to have the ability to become transfected by Hathl1 and then differentiate in vitro into IEHCs, or cells having characteristics of IEHCs. In the present example, transfection with and expression of Hathl1 appears to be an essential step in the genesis from HNSCs to IEHCs, or cells having characteristics of IEHCs.

Before transfection, HNSC do not express Hathl1. Following transfection with the Neuroporter Kit, they express this gene in their DNA as verified by RT-PCR. They also produce the hair cell specific marker calretinin as verified by immunocytochemistry and Western Blot. Furthermore, actual hairs from the transfected cells can be visualized through electron microscopy. Thus, characteristics of IEHCs are shown by these data, and it appears that these cells either are end-stage IEHCs or are presumptive IEHC cells in that they have at least two characteristics of IEHCs.

Cells expressing IEHC markers and differentiating into cells with hairlike extremities have been generated in this example. These methods, and the cells produced by the methods of the present invention, as shown in this example, advance the art of differentiating multipotent stem cells toward obtaining end-stage neuron-type cells.

EXAMPLE 1

A cholinergic deficit is one of the primary features of Alzheimer’s disease (AD), where there is a marked degeneration of long-projecting axons of cholinergic neurons in the basal forebrain and target areas in the hippocampus and cerebral cortex. Recent progress in stem cell technologies sug-
suggests the probability of using neuroreplacement strategies in AD therapy, although several hurdles are implicated: i) is it possible to generate large numbers of cholinergic neurons from stem cells; and ii) can long-projecting cholinergic neurons be replaced? Toward improving the ability to conduct research in the area of cell implantation and replacement therapies, and toward achieving desired results in later-developed therapies, embodiments of the present invention are directed to bias human neural stem cells (HNSCs) to differentiate to cells having characteristics of cholinergic neurons through genetic manipulation of endogenous neural precursors in situ.

The LIM-homeobox gene Lhx8 has been reported to be crucial for the proper development of basal forebrain cholinergic neurons in mouse (Zhao et al., 2003; Mori et al., 2004). Lhx8 is expressed in progenitor and postmitotic cells, suggesting that it may have an important role in specification of neural precursor cells and maintenance of phenotype in differentiating and mature neurons. Furthermore, previous studies using the human neuroblastoma cell line, LA-N-2, have demonstrated that treatment with retinoic acid (RA) further enhances cholinergic characteristics of these cells, thus providing a good in vitro model of cholinergic neurons (Crosland, 1996).

The present example utilizes an in vitro assay cell co-culture model with plated RA-differentiated LA-N-2 cells and membrane inserts containing Lhx8-transfected HNSCs, to assess whether the Lhx8-transfected HNSCs adopt a cholinergic neuronal fate. The rationale behind this co-culture model is that HNSCs are influenced by intrinsic as well as extracellular factors in the microenvironment and therefore, able to respond by differentiating into specific cell types according to the environmental cues to which they are exposed. Culture of RA-differentiated LA-N-2 in basal media under a serum-free condition, results in the release of factors to the Lhx8-transfected HNSCs in co-culture. It should be noted that there is no cell-to-cell contact in this co-culture system. Thus it is reasonable to assume that any modification of the cell fate of the genetically modified HNSCs by the cholinergic-differentiated LA-N-2 cells would come from membrane permeable endogenous factor(s) released from the cholinergic-differentiated LA-N-2 cells.

Materials & Method

HNSCs culture: Human NSC were originally purchased from BioWhittaker, Walkersville, Md. These cells have been expanded and passaged in a serum-free culture medium containing bFGF and EGF in our laboratory for over three years (Brannen & Sugrany, 2000). The HNSCs were cultured at a density of 50 spheres in 75 cm² culture flasks (Corning, Cambridge, Mass.) in 20 ml of a serum-free supplemented growth medium consisting of HAMS-F12 (Gibco, BRL, Burlington, ON), antibiotic-antimycotic mixture (1:100, Gibco), B27 (1:50, Gibco), human recombinant FGF-2 and EGF (20 ng/ml each, R&D Systems, Minneapolis, Minn.) and heparin (5 µg/ml, Sigma, St. Louis, Mo.) incubated at 37°C in a 5% CO2 humidified incubation chamber (Fisher, Pittsburgh, Pa.). To facilitate optimal growth conditions, HNSCs were sectioned into quarters every 2 weeks and kept by replacing 50% of the medium every 4-5 days.

LA-N-2 human neuroblastoma culture: LA-N-2 cells were obtained from Dr. Jan Blusztajn (Boston University, Mass.). The cells were cultured in Leibovitz L-15 medium (Gibco, BRL, Burlington, ON) containing 10% fetal calf serum and antibiotic-antimycotic mixture (Gibco) in a humidified incubator at 37°C without CO2. The medium was replaced every 3 days. For treatment with retinoic acid (RA), the cells were sub-plated at a density of 0.5-1x10⁶ cells/plate using 0.25% trypsin/1 mM EDTA (Gibco, BRL) and allowed to attach overnight. A fresh stock of 4 mM all-trans retinoic acid RA (Sigma, St. Louis, Mo.) was prepared in 100% ethanol under amber lighting. RA solution was diluted into culture media (final concentration: 10⁻⁶ M) and we replaced the media in the cells with the RA-containing media. The media was changed every 48 h during the differentiation of the cells, which was complete after 7-14 days.

Lhx8 subcloning: The mouse cDNA clone for Lhx8 (SEQ ID NO: 7, a kind gift from Dr Westphal, NIH, Bethesda, Md.) was inserted into the EcoR1 site of the pcDNA3.1/Neo mammalian expression vector (Invitrogen). Insertion was subsequently confirmed by restriction digestion and sequence analysis. This mouse Lhx8 (SEQ ID NO: 7) has high homology to the human sequence (70-80%).

Transfection: HNSCs were placed in 6-well poly-lysine coated plates and transfected with 4 µg pcDNA 3.1/Lhx8 plasmid using the Neuroporter transfection system (Gene Therapy Systems, see description in Example 1). Upon the insertion of the Lhx8 gene expressible sequence into the directional cloning vector, the expressible sequence was operatively linked to the CMV promoter, and was also positioned upstream (with regard to reading) of a polyadenylation transcription termination site. Lhx8 expression was confirmed after 48 hrs by RT-PCR using primers designed from the gene cDNA sequence: 5'TGCTGGCAGATCGGCTGTGCT 3 (SEQ ID NO: 12, upper primer) and 5'CTGCTTTGGATGTGACG3' (SEQ ID NO: 13, lower primer). To initiate differentiation, HNSCs were placed in serum-free basal medium, and allowed to differentiate for 10-15 days in culture.

Co-cultures of transfected HNSCs and RA-treated LA-N-2 cells: HNSCs (~5x10⁵) transfected with pcDNA 3.1/Lhx8 and non-transfected HNSCs (controls) were transfected into cell culture inserts with an appropriate pore size and suspended in basal media (in the absence of FGF-2 and EGF and without the addition of other extrinsic differentiation factors) over differentiated LA-N-2 cells plated in 6-well plates. For immunocytochemical analyses of HNSCs, the culture insert was removed after 10-20 days of co-culture and the HNSCs were fixed with 4% paraformaldehyde overnight at 4°C. Also, transfected HNSCs were cultured without the presence of differentiated LA-N-2 cells to assess the need for and effectiveness of the co-culturing.

Immunocytochemistry:

Following fixation, HNSCs were briefly washed 3x5 min in Phosphate buffered saline (PBS), then blocked with 3% normal donkey serum in PBS containing 0.05% Tween 20 (PBS-T) and incubated with goat IgG polyclonal anti-human ChAT (1:500, Chemicon), mouse IgG2b monoclonal anti-human βII-tubulin (1:1000, Sigma) or rabbit anti-human glial filament protein (GFAP) (1:1000, Sigma) overnight at 4°C. The corresponding secondary antibodies (donkey anti-goat, donkey anti-mouse, and donkey anti-rabbit, respectively) conjugated to rhodamine or FITC (Jackson IR Laboratories, Inc.) were added for a 2 hr incubation at RT in the dark. Cells were then washed with PBS (3x5 min) and mounted with Vectashield with DAPI (Vector Laboratories, Calif.) for fluorescent microscopic observation. LA-N-2 cells were similarly treated to prepare for microscopic observations.

Results

LA-N-2 cells treated with RA expressed Lhx8, βIII-tubulin, and ChAT. This is demonstrated in FIGS. 7A-D. FIG. 7A shows LA-N-2 cells stained red indicating the presence of βIII-tubulin. FIG. 7D shows LA-N-2 cells stained green indicating the presence of ChAT. FIG. 7C shows LA-N-2 cells stained green indicating the presence of NFG (blue stain.
In vitro, HNSCs expressing the LIM homeobox gene, Lhx8, differentiated into mainly βIII-tubulin and ChAT-positive cells, in co-culture with LA-N-2 cholinergic cells. For the transfected HNSCs cultured without the presence of differentiated LA-N-2 cells, there was no significant difference from the non-transfected HNSCs with regard to the number of cells differentiating to cells having characteristics of cholinergic cells. This demonstrated the need under these experimental conditions for the differentiated LA-N-2 cells (and the factors released by them).

Non-transfected HNSCs differentiated into mainly βIII-tubulin and GFAP positive cells in co-culture with LA-N-2 cholinergic cells.

With regard to percentage differences between non-transfected cells and transfected cells, in one trial less than two percent of non-transfected cells, and over 40 percent of transfected cells, were observed at the end of the trial to have characteristics of cholinergic neurons.

CONCLUSIONS AND COMMENTS

Expression of the LIM-homeobox gene Lhx8 triggers HNSCs to adopt a cholinergic neural lineage. Cells having the noted characteristics of cholinergic neurons either are cholinergic neurons or presumptive cholinergic neurons in that they have at least two characteristics of cholinergic neurons.

LA-N-2 cells in co-culture with HNSCs expressing Lhx8, suggest that the microenvironment is also important for the differentiation and survival of cholinergic neurons.

The present invention may provide utility by biasing human neural stem cells through genetic manipulation so that the cells so manipulated may be used in research, including as cells transplantable, such as in experiments, and therapies, including regarding replacing damaged cholinergic neurons.

As to the efficiency of biasing to a desired cell type, and to observing cells having characteristics of a desired end-stage cell type, without being bound to a particular theory, it is believed that the factors that increase the efficiency of biasing by transfection include: 1) inherent properties of the cell to be transfected; 2) inherent efficiency of the selected vector or method of transfection; 3) relative percentage of cells in which the introduced nucleic acid sequence enters the nucleus compared to remains in the cytoplasm; and 4) number of copies of the nucleic acid sequence that are available for expression in the cell. Methods of transfection are well-known in the art, and the use and modification of known approaches to transfection of a cell with a nucleic acid sequence to be expressed therein to improve the percentage of biasing are within the scope of the present invention.

Thus, it is appreciated that in some embodiments of the present invention, a multipotent stem cell is transfected with a desired developmental control gene, and the expression of the gene during in vitro culture biases the differentiation of that cell to a desired end-stage differentiated cell. In other embodiments, the multipotent stem cell may be transfected in vivo with a developmental control gene whose expression biases transfected cells to differentiate into a desired end-stage cell. In any of such embodiments, accessory cells may provide factors that are needed for, or that assist with, the differentiation of the transfected cell. These accessory cells, such as the co-cultured LA-N-2 cells in the above example, need not be in contact with the transfected cells, demonstrating here that the factors are membrane permeable. These factors may include the same factor that is expressed by the transfected gene, or may be other factors known in the art or later determined to be useful in achieving a desired differentiation.

Also, it is appreciated that multipotent stem cells may be cultured without an accessory cell, and may receive factors by direct addition of factors to the culture medium, or such factors may be released by cells at a site of implantation, or may be added to a site of implantation.

EXAMPLE 3

Using the same vector formation and transfection methods as in Example 2, the Human Lhx8 gene (SEQ ID NO: 6) is transfected into HNSCs. Transfected NHSCs are cultured in a first treatment that includes LA-N-2 cells that are treated with RA and that express both Lhx8 and ChAT. A co-culture control comprises NHSCs that are not transfected but that are in the same culture vessel as LA-N-2 that are treated with RA and that express both Lhx8 and ChAT. For the first treatment and the co-culture control, HNSC cells are placed in cell culture inserts with an appropriate pore size and suspended in basal media (in the absence of FGF-2 and EGF and without the addition of other extrinsic differentiation factors) over differentiated LA-N-2 cells plated in 6-well plates.

Immunohistochemistry follows the same procedure as in Example 2 above.

Results indicate that HNSCs transfected with the Human Lhx8 gene (SEQ ID NO: 6) also are predisposed, or biased, to differentiate into cells that have characteristics of cholinergic neurons. Observable results include cells that are positive for βIII-tubulin and ChAT.

EXAMPLE 4

An additional developmental control gene, Gbx1 sequence (SEQ ID NO: 9), is transfected into HNSCs and is evaluated as to its capacity to bias HNSCs to differentiate to cholinergic cells, or to cells having characteristics of cholinergic cells. The Gbx1 cDNA sequence (SEQ ID NO: 9) is inserted into the enhanced green fluorescent protein (EGFP) vector pEGFP-C1 (BD Biosciences Clontech) at the EcoR1 site within the vector's multiple cloning site, which is 3' of a CMV promoter and the EGFP gene (See FIG. 8; sequence disclosed as SEQ ID NO: 17). Further, in that a question remains as to whether the percentage of biasing is related directly to the percentage of transfection of cells in population of cells exposed to a transfecting vector, the human Lhx8 cDNA (SEQ ID NO:6) independently also is inserted into a second pEGFP-C1 vector. This allows for visualization of both vectors, each bearing an expressible sequence for a different developmental control gene, in cells in respective cell populations into which these vectors are transfected.

Culture methods of the HNSCs into which the Gbx1 and the Lhx8 genes are transfected are as described above in Example 2.

This experiment provides an estimate of the ratio of HNSCs that become cholinergic neurons based on percent transfected of the population. Compared to non-transfected control HNSCs, the transfected cells have characteristics of the desired end-stage differentiated cell type, that is, a cholinergic neuron.

This demonstrates that a number of development control genes, particularly transcription factor genes, may be introduced into a HNSC to bias that cell (or its progeny) to differentiate to a cell having the characteristics of a desired end-stage differentiated neural cell type.
EXAMPLE 5

Cell sorting technology is combined with the above-described embodiments of the present invention, particularly the vectors of Example 4, to improve the yield and selection of desired cells having the bias to differentiate to a desired end-stage cell (or having already so differentiated). For example, not to be limiting, the introduction of genetic marking such as described above, using EFGP, and the use of Fluorescent Activated Cell Sorter (FACS) techniques is utilized to sort and select cells that have been transfected with the desired developmental control gene (which is linked to a marker on the vector). The FACS technology is well known in the art (See, for example, U.S. patent application number 2002/0127715 A1.)

Using FACS, HNSCs that are transfected with a vector bearing both EFGP and either Gbx1 or Lhx8 are sorted and thereby concentrated. This adds to the utility and effectiveness of the biasing by reducing the number and percentage of cells that are not transfected.

The above examples utilize specific sequences of genes incorporated into respective vectors and introduced into HNSCs. However, the present invention is not meant to be limited to the specifics of these examples. First, in addition to Math1, Hath1, Lhx8 and Gbx1, other developmental control genes of interest include Lhx6, Isl1, Dlx1/2 and Mash. Examples of cDNA sequences, and corresponding translated polypeptide and protein sequences, of these and other developmental control genes are readily obtainable from the GenBank online database (See ncbi.nlm.nih.gov/entrez/query.fcgi.), and these are hereby incorporated by reference for that purpose.

Also, as to the nucleic acid sequences comprising the genes of interest, specific sequences of which are provided in the above examples and in the above paragraph, it is appreciated that substantial variation may exist in a nucleic acid sequence for a gene, yet a polypeptide or protein may nonetheless be produced in a cell from one of a number of such variant nucleic acid sequences, wherein such polypeptide or protein has a desired effect on the cell comparable to a polypeptide or protein produced from one of the nucleic acid sequences specified in the above examples. That is, variations may exist in a nucleic acid sequence for a gene yet the variations nonetheless function effectively when substituted for a nucleic acid sequence of a specified gene.

Accordingly, embodiments of the present invention also include and/or employ nucleic acid sequences that hybridize under stringent hybridization conditions (as defined herein) to all or a portion of a nucleic acid sequence represented by any of the SEQ ID Nos: 1-13, or their complements, or to sequences for Isl1, Dlx1/2, Mash, or their complements. The hybridizing portion of the hybridizing nucleic acid sequences is typically at least 15 (e.g., 20, 25, 30, or 50) nucleic acids in length. The hybridizing portion of the hybridizing nucleic acid sequence is at least 80%, e.g., at least 95%, or at least 98%, identical to the sequence of a portion or all of a nucleic acid sequence encoding one of genes identified by the noted Sequence ID numbers, or one of their complements. Hybridizing nucleic acids of the type described herein can be used, for example, as a cloning probe, a primer (e.g., a PCR primer), or a diagnostic probe, as well as for a gene transected into a cell as described in the examples above.

Hybridization of the oligonucleic acid probe to a nucleic acid sample typically is performed under stringent conditions. Nucleic acid duplex or hybrid stability is expressed as the melting temperature or Tm, which is the temperature at which a probe dissociates from a target DNA. This melting temperature is used to define the required stringency conditions. If sequences are to be identified that are related and substantially identical to the probe, rather than identical, then it is useful to first establish the lowest temperature at which only homologous hybridization occurs with a particular concentration of salt (e.g., 3xSSC or SSPE).

Then, assuming that 1% mismatching results in a 1°C decrease in the Tm, the temperature of the final wash in the hybridization reaction is reduced accordingly (for example, if sequences having >95% identity with the probe are sought, the final wash temperature is decreased by 5°C.). In practice, the change in Tm can be between 0.5°C and 1.5°C per 1% mismatch. Stringent conditions involve hybridizing at 68°C in 5xSSC/5xDenhardt’s solution/10% SDS, and washing in 0.2xSSC/0.1% SDS at room temperature. Moderately stringent conditions include washing in 3xSSC at 42°C. The parameters of salt concentration and temperature can be varied to achieve the optimal level of identity between the probe and the target nucleic acid. Additional guidance regarding such conditions is readily available in the art, for example, by Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, N.Y.; and Ausubel et al. (eds), 1995, Current Protocols in Molecular Biology, (John Wiley & Sons, N.Y.) at Unit 2.10.

The above-specified sequences are not meant to be limiting. For example, provided herein are additional identified sequences for Math1 (SEQ ID Nos: 2 and 3), and Hath1 (SEQ ID NO: 5). Numerous other similar sequences are known and searchable at GenBank. Also, the methods and compositions disclosed and claimed herein for other sequences may be practiced with Gbx1 (SEQ ID NO: 9) and sequences similar to it.

Further, the sequences for introduced genes and polypeptides or proteins expressed by them may also be defined in terms of homology to one of the sequences provided in the above examples and discussion. In the context of the present application, a nucleic acid sequence is “homologous” with the sequence according to the invention if at least 70%, preferably at least 80%, most preferably at least 90% of its base composition and base sequence corresponds to the sequence specified according to the invention.

According to the invention, a “homologous protein” is understood to comprise proteins which contain an amino acid sequence at least 70% of which, preferably at least 80% of which, most preferably at least 90% of which, corresponds to the amino acid sequence disclosed in (Grish and States, 1993); wherein corresponds is to be understood to mean that the corresponding amino acids are either identical or are mutually homologous amino acids. The expression “homologous amino acids” denotes those which have corresponding properties, particularly with regard to their charge, hydrophobic character, steric properties, etc. Thus, a protein may be from 70% up to less than 100% homologous to any one of the proteins expressed by one of the disclosed introduced genes.

Homology, sequence similarity or sequence identity of nucleic acid or amino acid sequences may be determined conventionally by using known software or computer programs such as the BestFit or Gap pairwise comparison programs (GCG Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wis. 53711). BestFit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2: 482-489 (1981), to find the best segment of identity or similarity between two sequences. Gap performs global alignments: all of one sequence with all of another similar sequence using the method of Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970). When using a sequence alignment program such as BestFit, to determine
the degree of sequence homology, similarity or identity, the default setting may be used, or an appropriate scoring matrix may be selected to optimize identity, similarity or homology scores. Similarly, when using a program such as BestFit to determine sequence identity, similarity or homology between two different amino acid sequences, the default settings may be used, or an appropriate scoring matrix, such as blosum45 or blosum80, may be selected to optimize identity, similarity or homology scores.

Alternatively, as used herein, “percent homology” of two amino acid sequences or of two nucleic acids is determined using the algorithm of Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87:2264-2268, 1990), modified as in Karlin and Altschul (Proc. Natl. Acad. Sci. USA 90:5873-5877, 1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al. (J. Mol. Biol. 215:403-410, 1990). BLAST nucleic acid searches are performed with the NBLAST program, score=100, wordlength=12, to obtain nucleic acid sequences homologous to a nucleic acid molecule of the invention. BLAST protein searches are performed with the XBLAST program, score=50, wordlength=3, to obtain amino acid sequences homologous to a reference polypeptide. To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Altschul et al. (Nucleic Acids Res. 25:3389-3402, 1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) are used. See ncbi.nlm.nih.gov.

Further, in addition to the homology, as indicated in certain claims (i.e., for some embodiments), is a requirement that the homologous or hybridizable nucleic acid sequence or polypeptide or protein functions analogously to the specified sequence of which it is homologous or with which it is hybridizable. That is, the homologous or hybridizable variant functions to achieve the same result, i.e., to increase the probability of a transfected cell, or the percentage of a number of cells, that are biased to differentiate to a cell, or cells, respectively, having characteristics of a desired end-stage differentiated cell.

While the transfection into HNCS in the above examples uses the Neuroporter approach (Gene Therapy Systems, Inc. San Diego, Calif.), it is appreciated that any known or later-developed method of introduction of a nucleic acid sequence may be employed in the methods and systems, and to produce the compositions, of the present invention. For example, and not to be limiting, introduction of a nucleic acid sequence may be effectuated by stable or transient transfection, lipofection by methods other than Neuroporter, calcium phosphate treatment, electroporation, infection with a recombinant viral vector, and the use of vectors comprising a plasmid construct. Generally and collectively, these methods are considered to be included in the term “means to transfect,” in the term “step for transfecting.” Also, the use of the particular promoter and polyadenylation transcription termination site are not to be limiting, as many promoter and transcription termination sites are known and used routinely in the art.

As to the use of different means to transfect, and in view of the above discussion of the relative percentage of cells biased to cells having characteristics of a desired end-stage cell type, it is appreciated that types of transfection, cells that are transfected, and other factors, including post transfection conditions, affect the percentage of cells ultimately biased. In view of these factors, and considering the importance of the specific developmental control genes that are introduced to a cell in certain embodiments of the present invention, in some embodiments the percentage of transfected cells biased exceeds 40 percent, in other embodiments the percentage of transfected cells biased exceeds 50 percent, in other embodiments the percentage of transfected cells biased exceeds 65 percent, and in other embodiments the percentage of transfected cells biased exceeds 70 percent. However, it also is appreciated that determination of the percentage of cells that are in fact transfected in a given container of cells may be difficult to assess, the performance of the present invention in certain embodiments may be expressed in an alternative manner. That is, in some embodiments of the present invention in which a number of cells has been exposed to a selected method or means of transfection for the purpose of introducing a desired developmental control gene (such as Lhx8), the percentage of total cells that are biased to a desired end-stage cell type, or to a cell having characteristics of a desired end-stage cell type, is at least 35 percent, in other embodiments such percentage of total cells exceeds 50 percent, and in other embodiments such percentage of total cells exceeds 70 percent.

Further, it is appreciated that embodiments of the present invention are described as follows:

1. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a desired neural cell type.

2. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a cell having characteristics of a cholinergic neuron.

3. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a cell having characteristics of an inner ear hair cell.

4. A neural stem cell, including a human neural stem cell, comprising an introduced nucleic acid sequence having an expressible developmental control gene, the expression of said gene being effective to increase the probability of differentiation of said cell to a cell having characteristics of a dopaminergic neuron.

The developmental control gene in the above first description of embodiments of the present invention may be selected from the group consisting of Math1, Hth1, Lhx8, Gbx1, Lhx6, IsL1, Dlx1/2, Mash and Nurr1. The developmental control gene in the above second description of embodiments of the present invention may be selected from the group consisting of Lhx8, Gbx1, Lhx6, IsL1, Dlx1/2, and Mash. The developmental control gene in the above third description of embodiments of the present invention may be selected from the group consisting of Math1 and Hth1. Finally, the developmental control gene in the above fourth description of embodiments of the present invention may be Nurr1, Pitx3 (SEQ ID NO: 13) or other later-identified specific genes.

Also, it is appreciated that the present invention, particularly for the genes Math1, Hth1, Lhx8, Gbx1, Lhx6, IsL1, Dlx1/2, and Mash, may be utilized in potent cells, that is, in cells that are considered to fall within the definitions of pluripotent, of multipotent, and of progenitor cells (i.e., more differentiated than multipotent yet capable of limited self-renewal).

Based on the above examples and disclosure, in view of the knowledge and skill in the art, it also is appreciated that
embodiments of the present invention also are used for any homeobox gene, so that a homeobox gene is transfected to a stem cell to effect a biasing of the stem cell to differentiate to a desired end-stage cell, or to a cell having characteristics of the end-stage cell. The stem cell may be a pluripotent or a multipotent stem cell; alternatively, invention embodiments transflecting homeobox genes may be practiced with progenitor cells as described herein. Cells so biased by these genes following the methods of the present invention also are considered to fall within the scope of embodiments of the present invention.

EXAMPLE 6

Nkx2-5 Biases the Differentiation Toward the Development of Cardiac Cells

According to another embodiment, transfection with Nkx2-5 (SEQ ID NO: 12) biases the differentiation toward the development of cardiac cells. See FIG. 17. Red–human specific Troponin I, Green–Human cells. Following transfection, multipotent stem cells were cocultured with rat cardiomyocytes that provide environmental signals to allow the transfected cells to develop properly.

Further, and more generally, embodiments of the present invention may be practiced by transfecting a stem or a progenitor cell with a nucleic acid sequence comprising a development control gene, so that the transfecting is effective to bias the cell to differentiate to a desired end-stage cell, or to a cell having characteristics of the end-stage cell.

Also, it is appreciated that the methods of the present invention may be applied to the daughter cells of multipotent cells, which may have begun some stages of differentiation but are still capable of being biased by transfection of appropriate developmental control genes as described herein, but by virtue of initiating differentiation (or being less self-renewing) may be some opinions therefore not be considered to be multipotent cells. For the purposes of this invention, such daughter cells, which may be found in culture with the multipotent stem cells from which they arose, are termed “biasable progeny cells.”

It is appreciated that embodiments of the present invention also may be defined and claimed with regard to the polypeptide or protein sequences expressed as a result of the transfections disclosed and discussed above. For example, not to be limiting, the peptide sequences, disclosed as the translation sequences in the attached Sequence Listing pages, and their expression in a transfected cell, are used to identify and/or characterize a characteristic and/or result of embodiments of the present invention. Translation sequences are obtainable from the respective GenBank database data entries for cDNAs as described herein, and those database entries are incorporated by reference for such information.

While a number of embodiments of the present invention have been shown and described herein in the present context, such embodiments are provided by way of example only, and not of limitation. Numerous variations, changes and substitutions will occur to those of skill in the art without materially departing from the invention herein. For example, the present invention need not be limited to best mode disclosed herein, since other applications can equally benefit from the teachings of the present invention. Also, in the claims, means-plus-function and step-plus-function clauses are intended to cover the structures and acts, respectively, described herein as performing the recited function and not only structural equivalents or act equivalents, but also equivalent structures or equivalent acts, respectively. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims, in accordance with relevant law as to their interpretation.

| Number of Seq ID Nos: 23
| SEQ ID NO 1
| Length: 2144
| TYPE: DNA
| ORGANISM: Mus musculus

SEQUENCE LISTING

<160>
<210> SEQ ID NO: 1
<211> LENGTH: 2144
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 1
tgaccacag ctggcgccca gogctccgaa tctccagagt agacggaag aggtcagagga 60
ggaaagaaaa aaaaaacaga ccttgccgaa gagacagga aggttttttg tcttggtgtt 120
cgaggtttat ccocctggct gaactggtgt gcacagcact cctctaaacc gcacaccccg 180
agccatgctca gtcgcagtc gcggctctgt cattgacgag agtgggtgtga gtaaaaagag 240
ttgggaacc actacagca gacccagcog ccacacggtc ogcgcgtgac gcacacccga 300
cctgtatcc gcaccgcgac agaaccctcc gcacccggag cagaactgct cctctggtat 360
agccacgacc cagccgctct gcgtacctcc accttgccgg gcctccggac ggccacgcgc 420
gcgcagcttc ctagctctcc gccgacagcg gcggctctcc aggcgcggcc gcgcgggggc 480
agagctcgca gcagccccgg gtctcttggg agaagcgccg gtgggggcct cgacagagac 540
cgcggggcc tcacagtacg gcacgctgct tgcacagctg aggggtgggt gttagtggac 600
gagcttggct gcagccgcga gcagctccct tccacgaaac aggtgaactg gttacagag 660
cagagaggg caacagcagaa ogcagggga ggcgcggagc tcacacgggt gaacacgcc 720
ttcgaccagc tgcgcaacgt tatcccgtcc ttcaacaacg acaagaagct gtccaaatat
gagaccctac agatggccca gatctacatc aacgctctgt cggagttgct gcagactccc
aatgtcggag agcaaccgcc gccgcccaca gcttcctgca aaaatgacca ccatcacctt
cgcaccgcct cctcctatga aggaggtgcg ggcgcctctg cggtagctgg ggctcagcca
gccccgggag ggggcccgag acctaccccg cccgggcctt gccggactcg cttctcaggc
ccagcttcct ctgggggtta ctcggtgcag ctggacgctt tgcacttccc agccttcgag
gacagggccc taagaggagc tgtgcacacg aagaagctgt cgctttcctg gccccgggpc
atctgcaagt ggttaaaccg aaaaacatac cccgatatca cacaaggtac 1200
yggagtctt cccccacact tcattacagt gcacattgat agggcagttta gaagccacac 1260
agctcctga aaactgagac aaccacagtc ccctctagag gcggcgggag cccctgaagc 1320
aatatectgg cacccatctaattagctgag atgtttgcttg ttcggggctt atccccttcg 1380
tggactgct toagtctttg ccctttcttg tttttttttttt tttttttttttttt 1440
atactgtaa attatagtga cttattaacc gtgctttcgt atgcaataacat 1500
gctgaacaaat tyttgacttt ctggcttttgc acctttttttttttttttttttttttt 1560
ttttcactt ccttttcgcc ctcttttctc gggccttcgc acggcacgcg ccgcccagta 1620
ttggaatagg gagaaggggg gttggtgtgg gcagctcttc caatcccctt cctcctacct 1680
tctcccgagc tgggtgcctc cgaggccgcg gcgccccggg acgaggctga cagccagggt 1740
tggagtctt cccccacact tcattacagt gcacattgat agggcagttta gaagccacac 1800
yggagtctt cccccacact tcattacagt gcacattgat agggcagttta gaagccacac 1860
aatatectgg cacccatctaattagctgag atgtttgcttg ttcggggctt atccccttcg 1920
atgcaaacat tyttttttttt tt
gttatccgct cctccacaa cgcacaagaag ctgctcaaat atgacaccct acagatggcc 780
cagatctata tcaacgctcc gttggaaggtg ctgcaagacttc caaatgctgc agagcaaccc 840
cgcggccgca cgccttcggc caaaatgac cacatcacc ttcgcagcgc ctcctctctat 900
gaatgaggtgc ggggccggc cttgcaggtgc cttgcaggtgc ctggccgagctctcagcagc 960
agaacctcgg ccggcgggcc ttggtagcag cttgctcagt ggccacaggt ggacctgttccagc 1020
tacggtgcag cgtgcagagc ttcgaccttc cagcggcagc catcaacagcgcaga 1080
atgatgacgcc aagacagcct gtggctctcgc gccgcgccgcttgcgcagcag catgtgcacc 1140
ggggcaaca gcaaaaaatc tccgagacct caacagagtt ggagagagtt tcctccccct 1200
tctcattata gttgactctg tggacagacag tagagagacat gcagaaaaact gaaactggag 1260
acacccaat ggccttccttt ggcgaagaaaa aaaaatcaga ccttgcagaa gagactagga aggtttttgt tgttgttgtt 1320
cggggcttat ccccttcgtt gaactgggtt gccagcacttc cctctaacac ggcacctccg 1380
agccattgca gtgcgatgtc ccgcctgctg catgcagaag agtgggctga ggtaaaagag 1440
tacctactctg cttgatgttc ctacccgctc tccttgtgtg catcggcggc gccgggctgt 1500
cctcctctct ggtctctcggt ttctctctct ctctctctct ctctctctct ctctctctctct 1560
gcctcaactc caaattgacag tagaagctcaa tcagcctgtc cccctcctct ctctctctctct 1620
gcatctgggtcc tttaaatcctg taaaatcctg taaaatcctg taaaatcctg taaaatcctg 1680
gtctgtctag tcctaggtca ccaagctgtc tcctaggtca ccaagctgtc tcctaggtca 1740
agccactctac tcactgggcgc ctgctcgcccg tcgagggggc gcctagggct gcctagggct 1800
acccctctct gcaggtcttc ctcctctctct ctctctctctct ctctctctctct ctctctctctct 1860
gcaatgagaga ataaatatctg gttgaggtct cctctctctct ctctctctctct ctctctctctct 1920
ttttgttcag ctcctctctct ctctctctctct ctctctctctct ctctctctctct ctctctctctct 1980
ccttttttttt attaataata cccctcctctct ctctctctctct ctctctctctct ctctctctctct 2040
attgtcttat gctgctatat ttttctcttc ggccagagtt ttaaaatcctg taaaatcctg 2100
aaaaaaa aaaaaaaa 2118
tgcctctgca cacaagaact tttctcgggg tgtaaaaact ctttgattgg ctgctcgcac 60
gcgcctgcc gcgctctca ttgctgaga agacacgcga ccggcgcgag gagggggttg 120
ttgcaaattgt ttgctctctctt ttttttttttc gtttctctctt ttgatgttac 180
ttgcaattt aatatttattttgt tattttgctt tgttaacatt agaaaagtta tttattattg cgtatttgga 240
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>agggcgagg agggaaaaaa aataagaagcctgcaagagagggaaagggccctttt</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>tttgccgag cctgctctcc aacgatcctga ggtgctgcag acctggagtc tttgccagt</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>caatggcccct tcgtgcctat gcacagaggt ggctgaagct ggaggtctgg ggcaggct</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>atogccgac ccagcgcagct ctactcagc aacgagcgcc ggcggcagc agaagctgca</td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>ctttgcagcc ggcagcagct cccgtctacc cgcctgagct gttctcctgg gacgagggag</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>acccaagcgcct gcgcggccct ttcagctgcgc cttgagtgct gatggcttctg gcggagggag</td>
</tr>
<tr>
<td>36</td>
<td>41</td>
<td>aggagtctgc cggccgtcct gccagctgg ctaccggctct gcggccttc gacgctctgg</td>
</tr>
<tr>
<td>42</td>
<td>47</td>
<td>ggcgggctgc aggactggga cggagcccat gcggcaccgg gcggaggtgt gcgggagctg</td>
</tr>
<tr>
<td>48</td>
<td>53</td>
<td>ggcggggcgg ccggcgggcc ccggggcggcc gggtctcgcc ccggaggtgg ggcggctggct</td>
</tr>
<tr>
<td>54</td>
<td>59</td>
<td>gcgcgggccg ccgcanctgc gcggctcggc gcggagggag ccgcgggagg cgaggggagcc</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>ctcgctgc cggactgcg cggggcgcgg gtcgccggcc gcgcggcgcgg gcggcggcggg</td>
</tr>
<tr>
<td>66</td>
<td>71</td>
<td>gcggggcggg gcggcggggc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg</td>
</tr>
<tr>
<td>72</td>
<td>77</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>78</td>
<td>83</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>84</td>
<td>89</td>
<td>gcgcgggctgc gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg</td>
</tr>
<tr>
<td>90</td>
<td>95</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>96</td>
<td>101</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>108</td>
<td>113</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>114</td>
<td>119</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>120</td>
<td>125</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>126</td>
<td>131</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>132</td>
<td>137</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>138</td>
<td>143</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>144</td>
<td>149</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>150</td>
<td>155</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>156</td>
<td>161</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>162</td>
<td>167</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>168</td>
<td>173</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>174</td>
<td>179</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>186</td>
<td>191</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>192</td>
<td>197</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>198</td>
<td>203</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>204</td>
<td>209</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>216</td>
<td>221</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>222</td>
<td>227</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>228</td>
<td>233</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>234</td>
<td>239</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>240</td>
<td>245</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>246</td>
<td>251</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>252</td>
<td>257</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>258</td>
<td>263</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>264</td>
<td>269</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>270</td>
<td>275</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>276</td>
<td>281</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>282</td>
<td>287</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>288</td>
<td>293</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>294</td>
<td>299</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
<tr>
<td>300</td>
<td>305</td>
<td>gcgcggggcc gcggcggggg gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg</td>
</tr>
</tbody>
</table>

SEQ ID NO: 5
LENGTH: 1065
TYPE: DNA
ORGANISM: Homo sapiens

SEQUENCE:

```
tagtcgaagg agggaaaaaa aataagccctgcaagagagggaaagggccctttt

atgtcccgcc tgctgcatgc agaagagtgg gctgaagtga aggagttggg agaccaccat

cgcagcgcagct gcgcggccct ttcagctgcgc cttgagtgct gatggcttctg gcggagggag

tggccgctgc gcgcggccct cggctgcgcgc cggcgggctgc gcgcgggctgc gcgcggggcc

tgcgcggggcc gcgggaggtt gcggggaggt gcgggctgggg gcgcgggctgg gcgcggggcc
```

US 8,513,017 B2

- continued
ggaggagcc agccgcgac cccgcgggg agttgccgga ctcgcttctc agccccagct
tctgcgggag ggtactcggt gcagctggac gctctgcact tctcgacttt cgaggacagc
gccctgacag cgatgatggc gcaaaagaat ttgtctcctt ctctccccgg gagcatcttg
cagccagtgc aggagaaaa cagcaaaact tcgcctcggt cccacagaag cgacggggaa
tttccccccc attccatatta cagtgacctg gatgagccaa gttag

<210> SEQ ID NO: 6
<211> LENGTH: 2393
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 6

agaggcaaga ggcgtagggc tgacaccaccttgctctggagt ggttaaagaac tatcatgaat
ccatttactg aaagtgtcca tttctgaact caccctaaag aggacaaaca ccgcaaagta
gtttaaagtc ggcgtagggc tgacaccaccttgctctggagt ggttaaagaac tatcatgaat
ccatttactg aaagtgtcca tttctgaact caccctaaag aggacaaaca ccgcaaagta

840
900
960
1020
1085
<210> SEQ ID NO 7
<211> LENGTH: 1500
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 7

gaattcggca cgagcttcag gaaaagactt ttccccccac tccccctcct ctctgcgagg ttccaccctc tggaaaacac aactttccct ctttttctgg agggacaggc cttagtgtgg ctgagagagg aagaacagtg ggtcagagag tggttacgtc actgtggcct ttttggaaca agacacactg gtggcatcgc tgtcctgcct gttagctttc cttggccttt gggggcggag gaggggacac tgcggacacc cacagcctct gaccctgctg gagctggtat gtgacgagca gccctcgggc catgtattgg aagagcgatc agatgtttgt gtgtaagctg gagggaaagg agatgccgga gctggcggtt ccccgcgaga tgtgccccgg gctcatgtcg gaggagtgcg ggccgcctgc agctggcgcc gggaggaccc gcaaaggctc tggggaagaa ggactggtga atcccgaggg agccggggac gaggactcct gctcctcctc gggcccgctt tccccgtcgct cctcgcccca gtccatggcc tcgggtccga tgtgcccgcc aggcaagtgt gtgtgcagca gctgcggcct ggagattgtg gacaaatacc tcctcaaggt gaatgactta tgctggcatg tccgctgtct ctcctgcagt gtctgcagaa cgtccctggg aaggcacacg agctgctaca ttaaggataa agatatatttc tgtaactcag aaggttaggg acccgtgttt cctggtgctg gctgtgcgctg gctgtgactg ctggacgagt gcgttctgct gcgcgccagt ctgctgcaat cgcctggcct gcgcctgtga gcgtctttgg gcgtcgcgtg gcgctgccct gcgtgccttt gcgtggtgct tcctgggctt gcgcgccctg gcgtggtgct gcgcctttgg gcgtcgcgct gcgtgtgact gcgcggtgcg gcgtgcgctg gcgcgccgtt gcgcgccgct gcgcggtgct gcgcggtgct gcgcgggttg gcgcggtgct gcgcggtgct gcgcggtgct gcgcggtgct gcgcggtgct gcgcggtgct gcgcggtgcg gcgtgcgctg gcgcgccgtt gcgcgccgct gcgcggtgct gcgcggtg
US 8,513,017 B2

-continued

<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 8

tgttttctag cttaaccaca actcttggaac ttcagccccct gttaccoccat ccaatgccccc 60
agctgccaat aagtcatacc taattccttc tttcagggat agaaatgatt gaggttataa 120
acttgtcatt tattatgtat aaaataccat tgagaagata taatgtttaa ttttttttttt 180
aaactccaa gtcttggaa cacctctccg atgccegcag atgccegcag atgccegcag 240
cagacacctt ttcatgacct ttcttttttttg tttttttttccc taacctttctg ctttttttt 300
agaaaacaca tccaacacc ACCCTTTTTTG atgtcttggg gtaagttgggc tggagttggt 360
gtcttttac ttaatttcttc ttttcatatatg ctttttcttc gaacattttg 420
gcaaactgtt ctaaacttttt tgttttctta atgtttttctc ttttttttttttt ttttttttttttt 480
attgttataa atattattt
aacagatgga gcgaaggagcc cgcccgctgct cgacgctccgg ggccggaggga tacacgtcacc 1320
tgcacgttgg gcgcggccag atcgacgctg tgcacgctgg ggtgaggggc ttggtgacc 1380
tgctccggga ggcggccagct tctccgctgg gcacagact atctggccct agactgtcct 1440
tagacccctcg gc 1452

<210> SEQ ID NO 10
<211> LENGTH: 1632
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 10

acacggtgcg cggcgccggc gcggcaccat gcagggaacgc tgccaggggc cgtgggcagc 60
gccgctctct gccgcccacc tggcgctgtg agactggcgc tgccaccatg ttccccagcc 120
cctctcctct gctcgtcttt tctctctctct gctcgtcttt tctctctctct gctcgtcttt 240
tgctccggga ggcggccagct tctccgctgg gcacagact atctggccct agactgtcct 360
tggctccggc cgccggccctc ccgggccaag tgtgcgtctg ccgtttcccagg 420
accctagagct ccggattggc ggctgttgcgt gtgcagcaag gcctggagcc gcctggagcc 480
cagggcggga caaggagcgg cgccgccggt gcgtggcgcc gcgcggcgcc gcgcggcgcc 540
tccgcagctc gcaggtctct tctctctctct tctctctctct tctctctctct tctctctctct 600
cgctacgctgc gccgcgcgagc cgggagggag gctgcgtggtgata gcacacacgc gcacacacgc 660
gcagcggggac gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 720
tgcgcggtgc gcggcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 780
gcggcggtgc gcggcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 840
tcaacccaca ccgccctcgc tctccctctct tctccctctct tctccctctct tctccctctct 900
gcgcggtgc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 960
tgcgcggtgc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 1020
gcgcggtgc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 1080
eggggagggac ccggcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 1140
cggggaggag agggtgctcc aaccagtcgg gcagtccctgg gactttgca ttcactcctg 1200
cgggcggtc gcacacttcttt ctgtctggct ccggttgtgct ccgtgctgcc gcagatggct 1260
tggcgcaggt gcctcgcttg gtatgtgttcc tccagctgca ggcggggtc 1320
tgcgcggtgc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 1380
tgcgcggtgc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 1440
tgcgcggtgc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 1500
tgcgcggtgc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc gcgcggcgcc 1560

<210> SEQ ID NO 11
<211> LENGTH: 1406
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 11
gagcgcgccga gogagagggc gcgcggagag caggggagcg gcccccactc cggccgggtg 60
cgcgcagttc gtcgcgcgtg ctcgtcctcg tcgtgcgttc cgcggagaca 120
tgcgcgccgc cagcgcgcgc gcgcggagga caggggagcg gcccccactc 180
ggcgccaggg gccgcgcggc tacgctgcgac ccgcggagac 240
ggcgcgcggc gcgcggagac caggggagcg gcccccactc 300
ggcgcgcggc gcgcggagac caggggagcg gcccccactc 360
ggcgcgcggc gcgcggagac caggggagcg gcccccactc 420
ggcgcgcggc gcgcggagac caggggagcg gcccccactc 480
ttcgcagcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 540
aaaggaggct ccggcgcggc gcgcggagac caggggagcg gcccccactc 600
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 660
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 720
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 780
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 840
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 900
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 960
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1020
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1080
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1140
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1200
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1260
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1320
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1380
ccggtctcgc gcgcgcggag gcgcggagac caggggagcg gcccccactc 1406

<210> SEQ ID NO 12
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer
<400> SEQUENCE: 12
tgctggcatg tccgctgtct

<210> SEQ ID NO 13
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer
<400> SEQUENCE: 13
tggcttggagt tgtggtgcatg

<210> SEQ ID NO 14
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer
<400> SEQUENCE: 14

tccgatctg agcgtccgag cctt

<210> SEQ ID NO 15
<211>LENGTH: 25
<212> TYPE: DNA
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer
<400> SEQUENCE: 15

gttctgctca cttctaca ctgccttgcc

<210> SEQ ID NO 16
<211>LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic 6xHis tag
<400> SEQUENCE: 16

His His His His His

<210> SEQ ID NO 17
<211>LENGTH: 94
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide
<400> SEQUENCE: 17
	tacaagtcgggactcagatc tcgttcctgta gttctgaatt ctgcagtcga cggtaccgcg 60

ggcccggtg ccaacggtg atgataactg atc

<210> SEQ ID NO 18
<211>LENGTH: 351
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 19

Met Ser Arg Leu Leu His Ala Glu Glu Trp Ala Glu Val Lys Glu Leu

1 5 10 15

Gly Asp His His Arg His Pro Gln Pro His His Val Pro Pro Leu Thr

20 25 30

Pro Gln Pro Pro Ala Thr Leu Gln Ala Arg Asp Leu Pro Val Tyr Pro

35 40 45

Ala Glu Leu Ser Leu Asp Ser Thr Asp Pro Arg Ala Trp Leu Thr

50 55 60

Pro Thr Leu Gln Gly Leu Cys Thr Ala Arg Ala Ala Gin Tyr Leu Leu

65 70 75 80

His Ser Pro Glu Leu Gly Ala Ser Glu Ala Ala Asp Glu

85 90 95

Ala Asp Ser Gln Gly Leu Val Arg Arg Ser Gly Cys Gly Gly Leu

100 105 110

Ser Lys Ser Pro Gly Pro Val Lys Val Arg Glu Gln Leu Cys Lys Leu
Lys Gly Gly Val Val Val Asp Glu Gly Cys Ser Arg Gln Arg Ala
115 120 125
Pro Ser Ser Lys Gin Val Asn Gly Val Gin Gin Gin Gin Gin Asp Gin Gin Gin Gin Gin Ser Gin Gin
Ala Asn Ala Arg Glu Arg Arg Arg Met His Gly Leu Asn His Ala Phe

Asp Gln Leu Arg Asn Val Ile Pro Ser Phe Asn Asn Asp Lys Lys Leu

Ser Lys Tyr Glu Thr Leu Gln Met Ala Gln Ile Tyr Ile Ann Ala Leu

Ser Glu Leu Leu Gln Thr Pro Asn Val Gly Glu Gln Pro Pro Pro Pro

Thr Ala Ser Cys Lys Asp His His His Leu Arg Thr Ala Ser Ser

Tyr Glu Gly Gly Ala Gly Ala Ser Ala Val Ala Gly Ala Gin Pro Ala

Pro Gly Gly Pro Arg Pro Thr Pro Pro Gly Pro Cys Arg Thr Arg

Phe Ser Gly Pro Ala Ser Ser Gly Gly Tyr Ser Val Gin Leu Asp Ala

Leu His Phe Pro Ala Phe Glu Asp Arg Ala Leu Thr Ala Met Met Ala

Gln Lys Asp Leu Ser Pro Ser Leu Pro Gly Ile Leu Gin Pro Val

Gln Glu Asp Asn Ser Lys Thr Ser Pro Arg Ser His Arg Ser Asp Gly

Glue Phe Ser Pro His Ser His Tyr Ser Asp Ser Asp Glu Ala Ser

<210> SEQ ID NO 20
<211> LENGTH: 354
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 20

Met Ser Arg Leu Leu His Ala Glu Glu Trp Ala Glu Val Lys Glu Leu

1 5 10 15

Gly Asp His His Arg Gln Pro Gin Pro His His Leu Pro Gin Pro Pro

20 25 30

Pro Pro Pro Gin Pro Pro Ala Thr Leu Gln Ala Arg Glu His Pro Val

35 40 45

Tyr Pro Pro Glu Leu Ser Leu Ala Asp Ser Thr Asp Pro Arg Ala Trp

50 55 60

Leu Ala Pro Thr Leu Gln Gly Ile Cys Thr Ala Arg Ala Ala Gin Tyr

65 70 75 80

Leu Leu His Ser Pro Glu Leu Gly Ala Ser Glu Ala Ala Ala Pro Arg

85 90 95

Asp Glu Val Asp Gly Arg Glu Leu Val Arg Arg Ser Ser Gly Gly

100 105 110

Ala Ser Ser Ser Lys Ser Pro Gly Pro Val Lys Val Arg Glu Gin Leu

115 120 125

Cys Lys Leu Lys Gly Gly Val Val Asp Glu Leu Gly Cys Ser Arg

130 135 140

Gln Arg Ala Pro Ser Ser Lys Gin Val Asn Gin Val Gin Lys Gin Arg

145 150 155 160

Arg Leu Ala Ala Asn Ala Arg Arg Arg Arg Met His Gly Leu Asn

165 170 175

His Ala Phe Asp Gin Leu Arg Asn Val Ile Pro Ser Phe Asn Asn Asp

<210> SEQ ID NO 20
<211> LENGTH: 354
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 20

Met Ser Arg Leu Leu His Ala Glu Glu Trp Ala Glu Val Lys Glu Leu

1 5 10 15

Gly Asp His His Arg Gln Pro Gin Pro His His Leu Pro Gin Pro Pro

20 25 30

Pro Pro Pro Gin Pro Pro Ala Thr Leu Gln Ala Arg Glu His Pro Val

35 40 45

Tyr Pro Pro Glu Leu Ser Leu Ala Asp Ser Thr Asp Pro Arg Ala Trp

50 55 60

Leu Ala Pro Thr Leu Gln Gly Ile Cys Thr Ala Arg Ala Ala Gin Tyr

65 70 75 80

Leu Leu His Ser Pro Glu Leu Gly Ala Ser Glu Ala Ala Ala Pro Arg

85 90 95

Asp Glu Val Asp Gly Arg Glu Leu Val Arg Arg Ser Ser Gly Gly

100 105 110

Ala Ser Ser Ser Lys Ser Pro Gly Pro Val Lys Val Arg Glu Gin Leu

115 120 125

Cys Lys Leu Lys Gly Gly Val Val Asp Glu Leu Gly Cys Ser Arg

130 135 140

Gln Arg Ala Pro Ser Ser Lys Gin Val Asn Gin Val Gin Lys Gin Arg

145 150 155 160

Arg Leu Ala Ala Asn Ala Arg Arg Arg Arg Met His Gly Leu Asn

165 170 175

His Ala Phe Asp Gin Leu Arg Asn Val Ile Pro Ser Phe Asn Asn Asp
Lys Lys Leu Ser Lys Tyr Glu Thr Leu Gln Met Ala Gln Ile Tyr Ile

Asn Ala Leu Ser Glu Leu Gln Thr Pro Ser Gly Gly Glu Gln Pro

Pro Pro Pro Pro Ala Ser Cys Lys Ser Asp His His His Leu Arg Thr

Ala Ala Ser Tyr Glu Gly Ala Gly Asn Ala Thr Ala Ala Gly Ala

Gln Gln Ala Ser Gly Gly Ser Gln Arg Pro Thr Pro Pro Gly Ser Cys

Arg Thr Arg Phe Ser Ala Pro Ala Ser Ala Gly Gly Tyr Ser Val Gln

Leu Asp Ala Leu His Phe Ser Thr Phe Glu Asp Ser Ala Leu Thr Ala

Met Met Ala Gln Lys Asn Leu Ser Pro Ser Leu Pro Gly Ser Ile Leu

Gln Pro Val Gln Glu Asn Ser Lys Thr Ser Pro Arg Ser His Arg

Ser Asp Gly Glu Phe Ser Pro His Ser His Tyr Ser Asp Ser Asp Glu

Ala Ser

<210> SEQ ID NO 21
<211> LENGTH: 354
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 21

Met Ser Arg Leu Leu His Ala Glu Glu Trp Ala Gln Gln Val Lys Glu Leu

Gly Asp His His Arg Gln Pro Gln Pro His Hist Pro Gln Pro Pro

Pro Pro Pro Pro Pro Leu Gln Ala Arg Glu His Pro Val

Tyr Pro Pro Glu Leu Ser Leu Arg Ser Thr Asp Thr Arg Ala Trp

Leu Ala Pro Thr Leu Gln Gly Ile Cys Thr Ala Arg Ala Ala Gly Tyr

Leu Leu His Ser Pro Glu Leu Gly Ala Ser Glu Ala Ala Ala Ala Pro Arg

Asp Glu Val Arg Gly Arg Glu Leu Val Arg Arg Ser Ser Gly Gly

Ala Ser Ser Ser Lys Ser Pro Gly Pro Val Lys Val Arg Glu Gln Leu

Cys Lys Leu Lys Gly Gly Val Val Asp Glu Leu Gly Cys Ser Arg

Gln Arg Ala Pro Ser Ser Lys Glu Val Val Asp Glu Gly Cys Ser Arg

Arg Leu Ala Ala Asn Ala Arg Arg Arg Met His Gly Leu Asn

His Ala Phe Asp Gln Leu Arg Asn Val Ile Pro Ser Phe Asn Asn Asp

Lys Lys Leu Ser Lys Tyr Glu Thr Leu Gln Met Ala Gln Ile Tyr Ile
Asn Ala Leu Ser Glu Leu Leu Gln Thr Pro Ser Gly Gly Glu Gln Pro
210 215 220
Pro Pro Pro Pro Ala Ser Cys Lys Ser Asp His His Leu Arg Thr
225 230 235 240
Ala Ala Ser Tyr Glu Gly Gly Ala Gly Asn Ala Thr Ala Ala Gly Ala
245 250 255
Gln Gln Ala Ser Gly Gly Ser Ser Arg Pro Thr Pro Pro Gly Ser Cys
260 265 270
Arg Thr Arg Phe Ser Ala Pro Ala Ser Ala Gly Gly Tyr Ser Val Gin
275 280 285
Leu Asp Ala Leu His Phe Ser Thr Phe Glu Asp Ser Ala Leu Thr Ala
290 295 300
Met Met Ala Gln Lys Asn Leu Ser Pro Ser Leu Pro Gly Ser Ile Leu
305 310 315 320
Gln Pro Val Gin Glu Glu Asn Ser Lys Thr Ser Pro Arg Ser His Arg
325 330 335
Ser Asp Gly Glu Phe Ser Pro His Ser His Tyr Ser Aep Ser Aep Glu
340 345 350
Ala Ser

<210> SEQ ID NO 22
<211> LENGTH: 356
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 22

Met Gln Ile Leu Ser Arg Cys Gln Gly Leu Met Ser Glu Glu Cys Gly
1 10 15
Arg Thr Thr Ala Leu Ala Ala Gly Arg Thr Arg Lys Gly Ala Gly Glu
20 25 30
Glu Gly Leu Val Ser Pro Glu Gly Ala Gly Asp Ser Cys Ser
35 40 45
Ser Ser Ala Pro Leu Ser Pro Ser Ser Ser Pro Arg Ser Met Ala Ser
50 55 60
Gly Ser Gly Cys Pro Pro Gly Lys Cys Val Cys Asn Ser Cys Gly Leu
65 70 75 80
Glu Ile Val Asp Lys Tyr Leu Leu Lys Val Asn Leu Cys Trp His
85 90 95
Val Arg Cys Leu Ser Cys Ser Val Cys Arg Thr Ser Leu Gly Arg His
100 105 110
Thr Ser Cys Tyr Ile Lys Arg Asp Ile Phe Cys Lys Leu Asp Tyr
115 120 125
Phe Arg Arg Tyr Gly Thr Arg Cys Ser Arg Cys Gly Arg His Ile His
130 135 140
Ser Thr Asp Trp Val Arg Arg Ala Lys Gly Asn Val Tyr His Leu Ala
145 150 155 160
Cys Phe Ala Cys Phe Ser Cys Lys Arg Gin Leu Ser Thr Gly Glu Glu
165 170 175
Phe Ala Leu Val Glu Lys Val Leu Cys Arg Val His Tyr Aep Cys
180 185 190
Met Leu Asp Asn Leu Lys Arg Glu Val Glu Aem Gly Aem Gly Ile Ser
195 200 205
Val Glu Gly Ala Leu Leu Thr Glu Gin Asp Val Aem His Pro Lys Pro
210 215 220
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala Lys Arg Ala Arg Thr Ser Phe Thr Ala Asp Gln Leu Gln Val Met 225</td>
<td>230 235 240</td>
</tr>
<tr>
<td>Gln Ala Gln Phe Ala Gln Asp Asn Pro Asp Ala Gln Thr Leu Gln 245</td>
<td>250 255</td>
</tr>
<tr>
<td>Lys Leu Ala Gln Arg Thr Gly Leu Ser Arg Arg Val Ile Gln Val Trp 260</td>
<td>265 270</td>
</tr>
<tr>
<td>Phe Gln Asn Cys Arg Ala Arg His Lys Lys His Val Ser Pro Asn His 275</td>
<td>280 285</td>
</tr>
<tr>
<td>Ser Ser Ser Thr Pro Val Thr Ala Val Pro Ser Arg Leu Ser Pro 290</td>
<td>295 300</td>
</tr>
<tr>
<td>Pro Met Leu Glu Glu Met Ala Tyr Ser Ala Tyr Val Pro Gln Asp Gly 305</td>
<td>310 315 320</td>
</tr>
<tr>
<td>Thr Met Leu Thr Ala Leu His Ser Tyr Met Asp Ala His Ser Pro Thr 325</td>
<td>330 335</td>
</tr>
<tr>
<td>Thr Leu Gly Leu Gln Pro Leu Leu Pro His Ser Met Thr Gln Leu Pro 340</td>
<td>345 350</td>
</tr>
<tr>
<td>Ile Ser His Thr 355</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 23
<211> LENGTH: 365
<212> TYPE: PRT
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 23

Met Tyr Trp Lys Ser Asp Gln Met Phe Val Cys Lys Leu Glu Gly Lys 1 5 10 15
Glu Met Pro Glu Leu Ala Val Pro Arg Glu Met Cys Pro Gly Leu Met 20 25 30
Ser Glu Glu Cys Gly Arg Pro Ala Ala Gly Ala Gly Arg Thr Arg Lys 35 40 45
Gly Ser Gly Glu Glu Gly Leu Val Asn Pro Glu Gly Ala Gly Asp Glu 50 55 60
Asp Ser Cys Ser Ser Ser Gly Pro Leu Ser Pro Ser Ser Ser Pro Gln 65 70 75 80
Ser Met Ala Ser Gly Pro Met Cys Pro Pro Gly Lys Cys Val Cys Ser 85 90 95
Ser Cys Gly Leu Gln Ile Val Asp Lys Tyr Leu Leu Lys Val Aen Asp 100 105 110
Leu Cys Trp His Val Arg Cys Leu Ser Cys Ser Val Cys Arg Thr Ser 115 120 125
Leu Gly Arg His Thr Ser Cys Tyr Ile Lys Asp Aen Ile Phe Cys 130 135 140
Lys Leu Asp Tyr Phe Arg Arg Tyr Gly Thr Arg Cys Ser Arg Cys Gly 145 150 155 160
Arg His Ile His Ser Thr Asp Trp Val Arg Arg Ala Lys Gly Aen Val 165 170 175
Tyr His Leu Ala Cys Phe Ala Cys Phe Ser Cys Lys Arg Gln Leu Ser 180 185 190
Thr Gly Glu Glu Phe Ala Leu Val Glu Lys Val Leu Cys Arg Val 195 200 205
His Phe Asp Cys Met Leu Aen Leu Lys Arg Glu Val Gln Aen Gly 210 215 220
Aen Gly Ile Ser Val Glu Gly Ala Leu Leu Thr Glu Gln Asp Val Aen 225 230 235 240
What is claimed is:

1. A method of biasing differentiation of a neural stem cell comprising introducing an expression construct comprising an Lhx8 and/or Gbx1 gene sequence into the neural stem cell, wherein expression of the Lhx8 and/or Gbx1 gene sequences are effective to bias the neural stem cell to a desired end-stage cell type, or to a presumptive end-stage cell having characteristics of the desired end-stage cell type, in vitro, wherein the desired end-stage cell type is a cholinergic neuron.

2. An isolated cell produced by the method of claim 1.

3. A method of biasing differentiation of a neural stem cell in vitro comprising:
 a. providing the neural stem cell;
 b. preparing a nucleic acid sequence comprising a promoter operatively linked to an expressible sequence that comprises an Lhx8 and/or Gbx1 gene sequence, the nucleic acid sequence comprising a transcription termination site; and
 c. transfecting said neural stem cell with said nucleic acid sequence, in vitro;
 wherein expression of the expressible sequence results in biasing the neural stem cell to a desired end-stage cell type, or to an presumptive end-stage cell having characteristics of the desired end-stage cell type, in vitro, wherein the desired end-stage cell type is cholinergic neuron.

4. An isolated cell produced by the method of claim 3.

5. A method of biasing differentiation of one or more cells in a population of cells comprising neural stem cells, comprising:
 a. providing the population of cells in a vessel;
 b. adding to the vessel one or more copies of a nucleic acid sequence comprising an Lhx8 and/or Gbx1 gene sequence under conditions to express said gene sequence;
 wherein expression of the gene sequence in one or more cells transfected, in vitro, with a copy of the nucleic acid sequence is effective to bias the one or more cells to a desired end-stage cell type, or to an presumptive end-stage cell having characteristics of the desired end-stage cell type, in vitro, wherein the desired end-stage cell type is a cholinergic neuron.

6. The method of claim 5, the population of cells additionally comprising one or more biasable progeny cells.

7. The method of claim 5, the neural stem cells comprising human neural stem cells.

8. An isolated cell produced by the method of claim 5.

9. A method of modifying a neural stem cell to bias differentiation of said neural stem cell toward a desired end-stage differentiated cell in vitro comprising the step of:
 introducing a nucleic acid sequence into said neural stem cell, in vitro, the nucleic acid sequence comprising a promoter operatively linked to a developmental control gene selected from the group consisting of an Lhx8 and Gbx1 gene sequence; wherein expression of the developmental biasing gene increases probability of said potent cell to differentiate into a desired end-stage differentiated cell, in vitro, wherein the desired end-stage cell type is cholinergic neuron.