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ABSTRACT 

The United States Army has moved into the 21st century with the intent of redesigning not only 

the force structure but also the methods by which we will fight and win our nation’s wars. 

Fundamental in this restructuring is the development of the Future Combat Systems (FCS). In an 

effort to minimize exposure of front line soldiers the future Army will utilize unmanned assets 

for both information gathering and when necessary engagements. Yet this must be done 

judiciously, as the bandwidth for net-centric warfare is limited. The implication is that the FCS 

must be designed to leverage bandwidth in a manner that does not overtax computational 

resources. In this study alternatives for improving human performance during operation of 

teleoperated and semi-autonomous robots were examined. It was predicted that when operating 

both types of robots, frame delay of the semi-autonomous robot would improve performance 

because it would allow operators to concentrate on the constant workload imposed by the 

teleoperated while only allocating resources to the semi-autonomous during critical tasks. An 

additional prediction was that operators with high spatial ability would perform better than those 

with low spatial ability, especially when operating an aerial vehicle. The results can not confirm 

that frame delay has a positive effect on operator performance, though power may have been an 

issue, but clearly show that spatial ability is a strong predictor of performance on robotic asset 

control, particularly with aerial vehicles. In operating the UAV, the high spatial group was, on 

average, 30% faster, lazed 12% more targets, and made 43% more location reports than the low 

spatial group. The implications of this study indicate that system design should judiciously 

manage workload and capitalize on individual ability to improve performance and are relevant to 

system designers, especially in the military community.  
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CHAPTER ONE 
INTRODUCTION 

The rapid growth in computing and robotic abilities has lead to a proliferation of 

autonomous or semi-autonomous vehicles, yet the concept of human-robot interaction (HRI) is 

relatively young (Scholtz, 2003).  In general terms, engineers and designers have moved forward 

very rapidly in the development of sophisticated and complex systems while underestimating the 

need for research concerning the human-machine interface (Woods, Tittle, Feil & Roesler, 

2004).  As machines become more complex there is an increased need for a thorough 

understanding of the limits of the man-machine team.  With the demise of the Soviet Union and 

the end of the cold war the United States remains the world’s only superpower.  With this 

hegemony comes responsibility. The United States Army has moved into the 21st century with 

the intent of completely redesigning not only the force structure but also the basic methods by 

which we will fight and win our nation’s wars (Shinseki, 1999).  Fundamental in this 

restructuring is the development of the Future Combat Systems (FCS).  The FCS is an integral 

part of the net-centric, asymmetric battlefield of tomorrow and within the FCS the efficient and 

effective deployment of autonomous and semi-autonomous platforms is prolific.  In an effort to 

minimize the exposure of front line soldiers while simultaneously fighting an enemy that is often 

embedded within an indigenous population the future Army will utilize unmanned assets for both 

passive and active information gathering and when necessary direct or indirect engagement.  Yet 

this must be done judiciously, as the computational bandwidth for net-centric warfare is limited.  

The implication is that the FCS must be designed to leverage bandwidth in a strategic manner, 

one that does not overtax computational resources. 
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 Additionally the Army is interested in reducing the total number of soldiers on the 

battlefield.  To this end it is likely that military robotic operators will be required to operate more 

than one asset at a time.  The control of multiple assets is rarely studied and in need of detailed 

attention.  The ability of a single operator to control multiple differing assets will depend upon 

the careful integration of the assets and thorough examination of workload implications.  This 

study will review different types of robots (teleoperated vs. semi-autonomous), discuss the 

human performance implications of operating multiples, and offer alternatives for improving 

operator performance. 
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CHAPTER TWO 
LITERATURE REVIEW 

Robot Type 

 In the discussion of HRI it is important to first differentiate between different types of 

robots and different modes of operation.  Recognizing these differences is key to understanding 

the complexity of multi-robot control.  The first distinction is between autonomous and 

teleoperated vehicles.  Autonomous vehicles are given a set of orders or commands then can be 

left alone to operate those commands.  The systems used to operate these machines are 

analogous to the auto-pilot controls on modern airplanes.  Baring serious changes in mission 

parameters or malfunctions, such vehicles are expected to proceed without much human 

intervention.  Teleoperation requires direct operation at a distance with the operator responsible 

for all cognitive processes (Malcom & Lim, 2003).  This mode is exemplified by underwater 

robots used for deep water research.  Teleoperation augments a human operator’s strength and 

range, while simultaneously insulating him from immediate harm (Lapointe, Robert & 

Boulanger, 2001); while autonomous vehicles attempt to augment human cognition and aid 

decision making.  The Army’s intent is to couple both types of robots under one operator. 

Teleoperation 

 A teleoperated vehicle uses onboard sensors and communication links to allow a human 

operator to control the vehicle from a distance.  Teleoperated vehicles range from common four 

degree of freedom (DOF) manipulated construction vehicles (backhoe, excavator, forestry 
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harvester, and mining drillers) to complex systems that operate at great distances from the 

operator (deep sea remote vehicles, mars rover).  Remote perception and remote manipulation 

are the two primary human performance issues relating to teleoperated vehicles.   

 

Remote perception 

“Perception is the process of making inferences about distal stimuli (objects in the 

environment) based on proximal stimuli (energy detected by sensors)” (Fong et al., 2004, p3).  

Remote perception involves making such inferences when the stimuli are out of range of the 

human senses.  Remote perception requires that a human leverage electronic sensor data to 

interpret and make sense of perceived stimuli.  It can be subdivided into two areas, passive and 

active perception. 

Passive Perception is the interpretation of sensor data and involves identification (the 

detection and recognition of mission related objects), judgment of extent (absolute and relative 

judgments of distance, size, or length), and judgment of motion (estimates of the velocity of 

egomotion or movement of other objects). 

Active Perception, on the other hand, is the deliberate action involving sensor 

manipulation to gain information about the environment and involves active identification 

(recognition tasks that involve mobility and/or manipulation of the camera), stationary search 

(search tasks that do not involve mobility but usually involve camera control or data fusion from 

sensors), and active search (search tasks that involve mobility and usually involve camera 

control or data fusion from sensors).  Operators of teleoperated vehicles must be capable of both 
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passive and active perception, however, these perceptual activities can be challenging.  For 

example: because a robot separates the operator from the environment, there is often a 

disconnect between an operator’s remote perception of the environment and reality (Wood et al., 

2004).  This separation leads to among other things, problems with scale ambiguity, rate of 

motion, and tunnel vision.  These generally occur because the operator is removed from the 

dynamic environment and thus fails to grasp the natural relationships afforded by true immersion 

in an environment.  Specifically, robotic cameras offer a limited visual field and completely 

remove an operator from the physical cues (i.e. proprioceptive and vestibular cues) normally 

afforded by an environment.  These issues often result in inaccurate mental models of the 

environment, missed events and poor spatial awareness (Darken & Peterson, 2002).  

Additionally degradation in depth perception caused by the monocular cues associated with 

robotic cameras affect an operator’s ability for accurate distance estimation and depth 

perception.  Employing multiple camera angles can offer both ego- and exocentric views but the 

additional cognitive recourses needed to interpret such differing views can often confound their 

benefits (Olsen & Goodrich, 2003). Additionally, it is suggested that switching between different 

camera viewpoints may induce motion sickness (Van Erp & Padmos, 2003).  Further, the time 

and effort needed to switch between views; coupled with the need to remember the environment 

associated with each view can be a drain on human performance (Casper & Murphy, 2003).  

Taken together, these studies suggest that remote perception via teleoperated robots is a 

challenge with current technology (see Table 1). 
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Table 1 
Issues with Robots by Type 

Robot Types Issues 
Continuous workload 
Scale ambiguity 
Rate of motion  
Tunnel vision 
Loss of physical cues  
Issues with distance estimation and depth perception 
Limited field of view 
Frame rate 

Teleoperated 

Operator platform movement 
Intermittent workload 
Situational awareness 
Complacency 

Semiautonomous 

Skill degradation 
 

Remote Manipulation 

 Remote manipulation involves: navigation (i.e. manipulating an asset along a specified 

route) and manipulation tasks (i.e. maneuvering a remote arm or sensor for detailed, discrete 

actions) (Fong et al. 2004).  These activities also impose human performance issues during 

teleoperation.  Specifically, a limited field of view can compromise driving performance as 

demonstrated by studies that examine peripheral vision and lane deviations (Van Erp & Padmos, 

2003).  Frame rate can also be an issue.  The degradation of a video image below 8 frames per 

second (2 or 4 fps) has been shown to increase navigation times, but not navigation errors, target 

identification or situational awareness (French, Ghirardelli, & Swoboda, 2003).  However, it has 

been demonstrated that frame rates above 8 fps do little to enhance driving performance 

(McGovern, 1991 as cited in Van Erp & Padmos, 2003).  Motion of an operator’s platform while 

manipulating a remote asset has been shown to make tasks harder and some tasks, specifically 

6 



target acquisition, nearly impossible (Kamsickas, 2003).  These issues of manipulation add to the 

complexity of teleoperated assets (see Table 1). 

Semi-autonomous 

 Semi-autonomous robots execute simple commands from an operator without constant 

interaction.  Generally these commands are navigational in nature (i.e. fly from point A to point 

B).  The primary human performance issues with automation in general, and semi-autonomous 

vehicles in particular, are mental workload, situational awareness, complacency, and skill 

degradation (Parasuraman, Sheridan & Wickens, 2000).   

Mental Workload 

 Well designed automation can reduce an operator’s workload.  Examples of this are often 

found in the aviation community. Air traffic controllers now receive graphical information about 

pertinent airplanes vs. textual data that requires more mental processing (Vicente & Rasmussen, 

1992).  However, automation that does not properly match an operator’s mental model or is 

difficult to initiate or engage can increase cognitive workload.  In particular, semi-autonomous 

vehicle control is likely to cause intermittent periods of higher workload (Kirlik, 1993).  The 

intermittent higher workload is associated with target identification and location reporting tasks, 

which involve moments of acute focus.  These tasks are the primary responsibilities of robot 

assets.  During target acquisition the semiautonomous robot highlights possible targets but it 

takes active steps by the operator to identify and take appropriate action (destroy or bypass).  To 

maintain positive control over battlespace current locations of all friendly assets is essential.  The 
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semiautonomous robot can maneuver to a designated position but the operator must confirm and 

then report those locations.  Outside of these activities, however, there is little demand on the 

operator.  In terms of semi-autonomous robot control the implications is that if an intermittent 

workload placed on operator is judiciously managed the workload is acceptable, however is the 

coordination of this workload conflicts with other requirements the operator may be 

overwhelmed. 

Situational Awareness 

 As automation increases it can have negative effects on an operator’s situational 

awareness.  “Humans tend to be less aware of changes in environmental or system changes when 

those changes are under the control of another agent” (Parasuraman et al. 2000, p.291).  Endsley 

(1995) found that when an operator is a passive observer, as is the case with semi-autonomous 

vehicle control, it becomes challenging to understand, learn, and remember consequences of 

different actions; thus this can hinder the development of an accurate mental model.  The 

implications of this are that in a tactical environment where situational awareness is paramount, 

the introduction of automated decision making, may do more to hinder the overall mission 

success by removing an operator from the decision making loop.  If the automated asset executes 

actions without human input the human may not realize that actions were taken or develop an 

understanding of the consequences of those actions. 
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Complacency 

If a system is reliable but not perfect errors can occur from an operator’s over trust 

(Parasuraman, Molloy & Singh, 1993).  Due to such complacency, automation can cause 

vigilance decrements (i.e., decreasing ability to maintain attention during monitoring).  

Specifically, if automation is generally reliable and predictable, then operators tend to monitor 

the automation with less vigilance (Dzindolet, Pierce, Beck, & Dawe, 1999), which can lead to 

error.  These complacency errors can result in missed information i.e. the system fails to alert on 

a possible target, or incorrect information i.e. the system alerts on an object that is not a target.  

In either case if an operator has become accustomed to the system doing the job and does not 

verify the presented information, errors may occur. 

Skill Degradation 

There is extensive research documenting that without maintenance skills degrade (Rose, 

1989; Parasurman et al., 2000).  This is applicable to semi-autonomous robots because as robots 

assume a greater portion of mission tasks, as needed to allow an operator to simultaneously 

control multiple assets, that operator’s skills on individual tasks may decrease.  The implications 

being if an operator is required to perform a task that has been handled by automation errors may 

occur. 

Human Performance Implications of Operating Multiple Robot Assets 

 The issues associated with teleoperated vs. semi-autonomous robots appear very different 

(see Table 1).  Specifically, teleoperated robots require constant control for sensor manipulation 
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and navigation.  This yields a consistent workload demand with issues of rate of motion, scale 

ambiguity and field of view.  On the other hand, the nature of operating a semi-autonomous 

robot is intermittent workload with issues in situational awareness, complacency, and skill 

degradation.  The only apparent common concern is workload and even here, it appears that the 

continuous workload of the teleoperated robot might plausibly be coupled with the intermittent 

workload associated with semi-autonomous vehicles.  However, to gain a more complete 

understanding of the implications on operator performance, these issues must be analyzed from a 

human performance perspective. 

 An examination of the human performance issues associated with controlling multiple 

robotic assets can be conducted under the framework of Human Information Processing (HIP) 

(Wickens & Hollands, 2000).  This model has two primary properties, first is that processing 

occurs in stages and second, that constant feedback suggests that the there is no clear starting 

point in the HIP loop.  This model aids in understanding the psychological processes involved 

during interaction with a system.  Miller (1956) demonstrated that short term memory was 

limited in both size and duration; Baddeley (1986) modified the concept of short term memory 

into the now common two component model of working memory (i.e., verbal [phonological 

loop] and spatial [visual-spatial sketchpad]) and discussed how each modality-specific subsystem 

can act as an HIP bottleneck due to its limited capacity. 

 Knowing that working memory can limit an operator’s performance during complex 

tasks, robotic systems should be designed with an understanding of these limitations.  The above 

discussion of issues relating to robotic control (see Table 1) would suggest that an operator can 

manipulate different types of assets (teleoperated and semiautonomous) without a conflict as 

long as workload is judiciously allocated.  The issue becomes how to manage this workload.  

10 



The first step in managing workload is to understand the kind of load being imposed via the 

control of each robot asset.  The mode for presenting information during control of either type of 

robot is primarily restricted to the visual-spatial channel.  Specifically, the primary source of 

information used in control of both types of robots is that obtained via video screens.  A 

teleoperated robot uses screens to display information about a vehicle’s current status along with 

screens to display the robot’s environment.  Likewise, semi-autonomous robots utilize video 

screens to display both status and environment.  Much of the information flow is thus visual-

spatial in nature, which can pose a daunting load on spatial working memory.  To manage the 

workload associated with multiple robot asset control, means of reducing this visual-spatial load 

through systematic system design are needed.  However, one must also consider the abilities of 

the operator in order to achieve an optimal coupling of human and system. 

 One individual factor that is particularly relevant to human performance with multiple 

robotic assets is spatial ability.  Spatial ability is the ability to navigate or manipulate objects in a 

three-dimensional (3-D) space (Eliot, 1984).  Existing research generally divide spatial ability 

into two categories, visualization and orientation (Salzman, Dede & Loftin, 1999; Lathan & 

Tracey, 2002 and Hegarty & Waller, 2004).  Although spatial ability is often divided the two 

categories are highly correlated (Hegarty &Waller, 2004).  There is, however, a division of 

visualization that may be particularly relevant to robotic control, that of egocentric vs. exocentric 

visualization (Salzman et al. 1999).  Egocentric is a self-centered view and most individuals, 

whether with high or low spatial abilities, are comfortable viewing the world from this familiar 

position.  However, an exocentric or outside view is generally easier for high spatial to acquire 

than low spatial individuals (Salzman et al. 1999).  These differing views, and the ability to 

interpret data from them, have specific implications for operating robotic assets. 
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 The differences here have less to do with the robots operating mode (teleoperated or 

semi-autonomous) but more to do with the perspective (ground or aerial).  An aerial vehicle will 

provide an exocentric view in 3-D space and the ground based operator must translate this view 

into an egocentric view in order to direct its operation.  This ability to visualize a ground battle 

environment from an aerial perspective will likely be more difficult for low spatial ability 

individuals.  However, spatial ability may also affect ground-based vehicles, but likely to a lesser 

extend as such vehicles only have to be manipulated in two-dimensions.  For example, Lathan 

(2002) demonstrated that individuals with high spatial abilities performed better in control of 

teleoperated ground-based robots. 

Alternatives for Improving Human Performance 

 The current problem associated with multiple robotic asset control is suggested to be an 

overload on visual-spatial processing.  Both types of assets (teleoperated and semi-autonomous) 

are primarily controlled through video screens.  Two approaches to reducing this current 

bottleneck are proposed: multiple channels and synchronizing the load. 

Multiple Resource Theory (MRT) (Wickens, 1991) offers options for enhancing human 

performance during multitasking activities, such as the simultaneous operation of multiple 

robotic assets.  According to MRT, by presenting information in different modes (i.e. spatial vs. 

verbal) an operator can draw from separate HIP resource pools, thereby providing a greater 

overall capacity to process and respond.   

 Knowing that human performance is likely to be degraded when operating multiple 

robots because of a strain on visual-spatial resources; the opportunity exists to offload some of 
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the encoding and processing through the use of multiple channels.  Specifically, MRT suggests a 

potential method for improving performance by utilizing additional modalities (Wickens, 1991).  

It may be possible to move some information presentation from the visual-spatial video screens 

to audio-verbal or even haptic channels.  The result may be improved human performance 

because of a distribution of workload across multiple working memory subsystems.  However, 

this alternative may be too costly in terms of bandwidth in an already crowded net-centric 

battlefield.  Attempts to augment data transmission through alternative modality-based channels 

may result in delays in the network or possibly dropped data.  Current data transmission 

technology may not allow for this alternative.  Thus, in the bandwidth restricted, net-centric 

battlefield, increasing the channels of information that can be conveyed to an operator may not 

be feasible.  Therefore other alternatives should first be explored. 

 By capitalizing on the inherent nature of the two different types of robotic assets, it may 

be possible to improve performance by synchronizing the workload imposed by each while 

minimizing bandwidth demands on the net-centric battlefield.  As previously discussed, 

teleoperated vehicles pose a constant workload, while semi-autonomous vehicles pose an 

intermittent workload.  It may be possible to leverage this difference by degrading the visual-

spatial information flow associated with the semi-autonomous vehicle, thereby reducing visual-

spatial workload, and only draw attention to that asset at critical times (target identification and 

location reporting).  Attention could be drawn by adding an auditory alert (based on MRT) and 

then enhancing the visuals for the semi-autonomous vehicle during these critical tasks.  There is 

no need to focus attention on the semi-autonomous vehicle accept during critical task periods.  

The degraded visuals should draw attention away from the screens associated with the semi-

autonomous vehicle, thus facilitating multitasking with the teleoperated vehicle.  Although the 
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auditory alert would be an ideal cue, for this study the semiautonomous robot will use a 

highlighted graphic cue to draw attention when needed.  This is similar to graphical level-of-

detail manipulations, which provide greater graphical detail only when needed (Park & Kenyon, 

1999).  The objective is to reduce visual-spatial workload during multitasking of teleoperated 

and semi-autonomous vehicles by degrading visuals for a semi-autonomous vehicle (an existing 

side effect of limited bandwidth) during non-critical operating periods and drawing attention to 

the semi-autonomous vehicle via a visual alert only during critical task periods. 

Hypothesis 

First 

Multitasking of teleoperated and semi-autonomous vehicles will be enhanced by degrading 

visuals for a semi-autonomous vehicle during non-critical operating periods and drawing 

attention to the semi-autonomous vehicle via a visual alert only during critical task periods. 

Second 

Operators with high spatial ability will perform better at robotic tasks; especially in the UAV 

scenario because of the 3-D exocentric nature of the asset. 
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CHAPTER THREE 
METHODOLOGY 

Participants 

Thirty participants (11 females, mean age 21, standard deviation 4.07, range 15 [18-33]; 

19 males, mean age19, standard deviation 1.9, range 6 [18-24]) were recruited from the 

University of Central Florida.  25 of the 30 participants self reported being at least good with 

computers, 4 reported as excellent and 1 expert.  27 of 30 reported playing at least some video 

games.  27 participants are undergraduate students; the remaining 3 are graduate students.  

Participants received either class credit or $50 for participating in the experiment. 

Apparatus 

All training and testing was conducted on the Embedded Combined Arms Team Training 

and Mission Rehearsal Simulator at the Simulation and Training Technology Center, Orlando.  

This test bed simulator is a one person crew station from which a human operator can simulate 

the control of one teleoperated vehicle and several semi-autonomous vehicles.  The teleoperated 

vehicle is similar to a small tank that is remotely operated through a yoke control and two pedals.  

Information is relayed about this vehicle through the use of three touch sensitive screens.  The 

semi-autonomous vehicles are either ground or air and are given executable commands through a 

touch sensitive screen.  The Operator Control Unit (OCU) consists of six, touch sensitive display 

screens (see figure 1), a control yoke, foot pedals, and trackball.  It was developed and built 

under a joint program between the Institution for Simulation and Training (IST) at the University 
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of Central Florida, and the Army Research Lab (ARL). 

 

Friendly asset camera 
Tele-op Vehicle View Tele-op Turret View 

Figure 1: User interface of ECATT-MR C2V testbed 

Questionnaires 

The Cube comparison test (Educational Testing Service, 1976; Ekstrom, French, & 

Harman, 1976) was administered to participants prior to executing the scenarios.  This test 

assesses an individual’s spatial ability by requiring them to compare 21 pairs of six-sided cubes 

and determine if the rotated cubes are the same or different.  Participants are given three minutes 

to perform this task.  Scores are derived by subtracting the number wrong from the number 

correct.  Blank questions are ignored.  The results are used to designate a participant as having 

either good or poor spatial ability. 

A test for perceived workload (NASA TLX) was administered at the end of each scenario 

(four times) throughout the experiment.  This questionnaire is a self-reported questionnaire of 

perceived demands in ten areas: mental, physical, temporal, effort (mental & physical), 
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frustration, performance, visual, cognitive, and psychomotor.  Each demand component is scaled 

from 1-10. 

A simulator sickness questionnaire (SSQ) was administered at the end of each scenario 

(four times) throughout the experiment.  This test is used to assess the participants overall 

discomfort level and is comprised of a checklist of 26 symptoms.  Each symptom is related in 

terms of degrees of severity (none, slight, moderate, severe).  The SSQ provides a Total Severity 

score obtained by a weighted scoring procedure (Lane & Kennedy, 1988). 

Tasks 

Participants were required to conduct a route reconnaissance on four separate routes with 

differing robotic assets.  Prior to the experiment each participant received three hours of training 

one week before and a one hour refresher immediately before the experiment.  All participants 

were tested on their level of ability as part of a separate learning experiment prior to the start this 

experiment.  Each mission lasted no more than 30 minutes.  The primary tasks were 

maneuvering the robot(s) from an Assembly Area (AA), along a designated route, to a Release 

Point (RP); finding, lazing, and reporting any enemy forces encountered along the route; and 

providing location reports upon arriving and departing each checkpoint.  The first three missions 

were conducted with a single differing robotic asset and the fourth mission combined the use of 

all three types of robots (teleoperated, semi-autonomous ground, and semiautonomous air).  Each 

of the four routes (i.e., scenarios) were designed the same, accounting for length, terrain, number 

of enemy, and number of checkpoints. 
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Asset Conditions 

In this experiment each of the four scenarios required the use of different robotic assets. 

Scenario A: One Semiautonomous Arial Vehicle (UAV) 

Scenario B: One Semiautonomous Ground Vehicle (UGV) 

Scenario C: One Tele-operated Ground Vehicle (Tele-op) 

Scenario D: One of each of the above vehicles 

Display Conditions 

In addition to the different asset conditions, display conditions were manipulated across 

groups. For one group (Latency), there was a latency imposed between control inputs and 

observable responses of the teleoperated vehicle.  To simulate degraded visuals (i.e., reduced 

bandwidth) a fixed latency of 250 ms was employed based on findings from the literature that 

latencies between 225-300 ms would degrade human performance in tasks such as teleoperation, 

tracking, and target acquisition (MacKenzie & Ware, 1993; Held, 1966, cited in Lane et al., 

2002; Warrick, 1969, cited in Lane et al., 2002). 

For the second group (Frame Rate), the frame rate of the sensor feed video sent to the 

OCU from the robotic platform was manipulated. In a real situation, available bandwidth would 

be expected to impact frame rate.  Thus an algorithm was employed that decreased frame rate as 

a function of the distance between the robotic platform and the OCU, to examine the effect of 

decreasing frame rate on performance. In other words, at the beginning of each scenario, the 

frame rate would be normal and it would degrade over time (typically about 5 fps at the end of 

the scenario). 
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Procedure 

Fifteen participants were randomly assigned to either the Latency or Frame Rate group. 

The order of presentation of the single-robot conditions was counterbalanced, while the 3-robot 

condition was always the last.  The experiment was conducted in two days one week apart.  Prior 

to the start of training on the first day, each participant read and signed an informed consent form 

and filled out a demographic survey.  Then each participant was given briefings on the trainer 

and route reconnaissance.  Following the orientation each participant conducted three thirty 

minute training trials with discussions between each trial.  This concluded the first session.  

Seven days later participants returned and conducted one additional mission to test their level of 

training, if the performance level was not adequate they were given re-training.  During either 

the first day or at the start of the second each participant was administered the cube rotation test.  

Prior to the start of experimentation each participant was read directions from a script, explaining 

the mission and assets to be used for the particular scenario.  The participant was told to begin 

and given thirty minutes to complete the mission.  At thirty minutes or when the participant 

announced that they were finished, whichever was sooner, the clock was stopped and the 

participant was administered workload and simulator sickness questionnaires.  The next scenario 

was loaded and the process was repeated until the participant completed four scenarios. 

Experimental Design 

The experimental design was a randomized block design comparing 2 factors (Latency 

and Frame Rate) across 4(routes) X 4 (asset mixes).  A one–way ANOVA of three dependent 

performance measures was conducted to compare these factors. 
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Dependent Measures 

The four dependent performance measures were time to complete the given mission, 

number of distinct targets lazed, and number of appropriate reports (contact and location) sent.  

The timed measure contained not only the total time but also intermediate times to complete 

subordinate tasks.  Similarly error rates were not confined to target identification but also 

completion of additional tasks and attention to mandatory signals.  Specific dependent measures 

included the following: 

Time to complete mission:  A real number in seconds that states the total time to complete the 

mission. 

Number of Targets Lazed: A percent value that represents the number of distinct enemy targets 

the participant lazed out of the total possible enemy targets (12). 

Time to Correct Commo Fault: A real number in seconds that represents amount of time 

participants took to recognize and correct a system fault. 

Number of Contact Reports: A percent value that represents the number of contact reports the 

participant made; should equal the number of enemy targets lazed. 

Number of Location Reports: An integer number that represents the number of location reports 

made during the scenario. 

Workload Questionnaire:  Integer numbers that represent the self-reported scores in ten areas. 
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CHAPTER FOUR 
RESULTS 

Spatial Ability 

The mean for the cube rotation test was 10.17 (S.D.= 4.47), with a median of 11.  For any 

analysis using spatial ability the participants were split about the median, with those scoring 11 

or better designated as “high spatial” and those scoring below 11 as “low spatial”. 

Workload 

Participants’ self-assessment of workload was significantly affected by Asset condition, F 

(3, 54) = 6.437, p < .005.  The perceived workload was higher in the Mixed condition (M = 72.3, 

S.D. = 14.99) compared to the single asset conditions (M = 60.9 [S.D. = 16.64], M = 61.0 [S.D. 

= 15.04], M = 64.6 [S.D. = 13.27] for Teleop, UAV, and UGV conditions, respectively). 

Simulator Sickness 

The Total Severity Score of the SSQ was computed for each participant.  Participants 

rated their simulator sickness as the most severe in the Mixed condition and the least severe in 

the UAV condition.  None of the main effects were significant. 

21 



Completion 

 The following figures display the number of participants that completed the scenarios 

within the 30 minute time limit. 
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Figure 2 
Completed scenarios by robotic asset condition and spatial ability (high vs. low) 
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Figure 3 
Scenarios by robotic asset condition and video condition (latency vs. frame) 
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Condition Statistics (Latency vs. Frame) 

The following two tables (2 and 3) display results for the scenario in which the 

participants operated all three assets simultaneously.  For the analysis, participants that did not 

complete the scenario in the 30 minute time limit are excluded. 

 

Table 2 
Descriptive Statistics for Mixed Asset Scenario vs. Video Condition 

Measure Condition N Mean Std Dev 

Frame 6 1540.542 229.239 Total Time 
Latency 7 1510.881 223.182 
Frame 6 5.261 6.101 Commo Fault 

Latency 7 10.467 13.185 
Frame 6 9.83 1.472 Total Targets Latency 7 8.43 2.992 

Frame 6 11.17 1.472 Contact Reports Latency 7 11.00 4.830 

Frame 6 21.83 8.183 Location Reports 
Latency 7 17.86 3.805 
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Table 3 
ANOVA for Mixed Asset Scenario vs. Video Condition 

Asset Measure Sum of Squares df Mean Square F Sig. 

Between groups 2842.204 1 2842.204 .056 .818

Within Groups 561616.284 11 51056.026  Total Time 

Total 564458.488 12  

Between groups 87.597 1 87.597 .784 .395

Within Groups 1229.339 11 111.758  Commo Fault 

Total 1316.936 12  

Between groups 6.375 1 6.375 1.086 .320

Within Groups 64.548 11 5.868  Total Targets 

Total 70.923 12  

Between groups .090 1 .090 .007 .937

Within Groups 150.833 11 13.712   Contact Reports 

Total 150.923 12  

Between groups 51.079 1 51.079 1.332 .273

Within Groups 421.690 11 38.335  Location Reports 

Total 472.769 12  
 

Spatial Ability Statistics 

The following tables (4-11) display the descriptive statistics and ANOVA results for the 

individual dependent variables vs. spatial ability.  In all of the analysis the participants that did 

not complete the given scenario within the 30 minute time limit are excluded. 

Table 4 displays the descriptive statistics for total mission time vs. spatial ability (high or 

low). 

24 



 

Table 4 
Descriptive Statistics: Total Time vs. Spatial Ability 

Asset Spatial Ability N Mean Std Dev 

Low 13 1601.739 244.577 UAV 
High 14 1232.421 261.648 
Low 12 1553.070 255.092 UGV 
High 15 1401.330 316.703 
Low 13 1292.044 293.304 Teleop 
High 16 998.133 283.154 
Low 3 1581.253 251.138 All 
High 10 1507.566 217.507 

 

Table 5 displays the results for the one-way ANOVA for total mission time vs. spatial 

ability (high or low). 

 

Table 5 
ANOVA for Total Time vs. Spatial Ability 

Asset Measure Sum of Squares df Mean Square F Sig. 

Between groups 919409.775 1 919409.775 14.296 .001

Within Groups 1607793.774 25 64311.751  UAV 

Total 2517203.548 26    

Between groups 153500.521 1 153500.521 1.810 .191

Within Groups 2120012.407 25 84800.496  UGV 

Total 2273512.929 26  

Between groups 619581.090 1 619581.090 7.485 .011

Within Groups 2234980.390 27 82777.051  Teleop 

Total 2854561.480 28  

Between groups 12530.361 1 12530.361 .250 .627

Within Groups 551928.127 11 50175.284  ALL 

Total 564458.488 12  
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Table 6 displays the descriptive statistics for total number or targets lazed vs. spatial 

ability (high or low). 

 

Table 6 
Descriptive Statistics Total Targets Lazed vs. Spatial Ability 

Asset Spatial Ability N Mean Std Dev 
Low 13 9.69 2.496 UAV 
High 14 10.86 1.351 
Low 12 9.17 1.115 UGV 
High 15 9.80 1.146 
Low 13 5.38 2.142 Teleop 
High 16 4.63 1.996 
Low 3 8.0 5.196 All 
High 10 9.4 1.174 

 

Table 7 displays the results for the one-way ANOVA for total number of targets lazed vs. 

spatial ability (high or low).  

 

Table 7 
ANOVA for Total Targets Lazed vs. Spatial Ability 

Asset Measure Sum of Squares df Mean Square F Sig. 

Between groups 15.238 1 15.238 4.125 .052

Within Groups 103.429 28 3.694  UAV 

Total 118.667 29  

Between groups 2.674 1 2.674 2.085 .161

Within Groups 32.067 25 1.283  UGV 

Total 34.741 26  

Between groups 4.139 1 4.139 .973 .333

Within Groups 114.827 27 4.253  Teleop 

Total 118.966 28  

Between groups 4.523 1 4.523 .749 .405

Within Groups 66.400 11 6.036  ALL 

Total 70.923 12  
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 Table 8 displays the descriptive statistics for the total number of contact reports vs. 

spatial ability (high or low). 

 

Table 8 
Descriptive Statistics Contact Reports vs. Spatial Ability 

Asset Spatial Ability N Mean Std Dev 

Low 13 11.31 3.250 UAV 
High 14 11.36 2.134 
Low 12 9.67 1.303 UGV 
High 15 10.07 2.434 
Low 13 8.62 2.755 Teleop 
High 16 8.31 4.571 
Low 3 8.67 5.859 All 
High 10 11.80 2.573 

 

Table 9 displays the results for the one-way ANOVA for total number of contact reports 

vs. spatial ability (high or low). 

Table 9 
ANOVA for Contact Reports vs. Spatial Ability 

Asset Measure Sum of Squares df Mean Square F Sig. 

Between groups .016 1 .016 .002 .963

Within Groups 185.984 25 7.439  UAV 

Total 186.000 26  

Between groups 1.067 1 1.067 .262 .613

Within Groups 101.600 25 4.064   UGV 

Total 102.667 26  

Between groups .658 1 .658 .044 .836

Within Groups 404.514 27 14.982  Teleop 

Total 405.172 28  

Between groups 22.656 1 22.656 1.943 .191

Within Groups 128.267 11 11.661  ALL 

Total 150.923 12  
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Table 10 displays the descriptive statistics for the total number of location reports vs. 

spatial ability (high or low). 

Table 10 
Descriptive Statistics Location Reports vs. Spatial Ability 

Asset Spatial Ability N Mean Std Dev 

Low 13 6.46 2.222 UAV 
High 14 9.21 3.577 
Low 12 7.67 3.143 UGV 
High 15 9.67 4.100 
Low 13 7.54 2.025 Teleop 
High 16 10.06 3.750 
Low 3 14.33 6.658 All 
High 10 21.30 5.498 

 

Table 11 displays the results for the one-way ANOVA for total number of location 

reports vs. spatial ability (high or low). 

Table 11 
ANOVA for Location Reports vs. Spatial Ability 

Asset Measure Sum of Squares df Mean Square F Sig. 

Between groups 51.079 1 51.079 5.661 .025 

Within Groups 225.588 25 9.024   UAV 

Total 276.667 26    

Between groups 26.667 1 26.667 1.938 .176 

Within Groups 344.00 25 13.760   UGV 

Total 370.667 26    

Between groups 45.694 1 45.694 4.742 .038 

Within Groups 260.168 27 9.636   Teleop 

Total 305.862 28    

Between groups 112.003 1 112.003 3.415 .092 

Within Groups 360.767 11 32.797   ALL 

Total 472.769 12    
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CHAPTER FIVE 
DISCUSSION 

Overview 

The objective of this study was to offer alternatives for improving human performance in 

the operation of multiple robotic assets within the current battlefield limitations.  Proposed 

possibilities include managing an operator’s workload within the confines of current limited 

bandwidth and screening possible operator’s for inherent spatial ability.  The results indicate that 

judicious allocation of workload, capitalizing on the inherent differences in robot types appears 

to have potential for improving performance.  They also indicate that spatial ability is a strong 

predictor for operator performance and screening potential operators for high spatial ability 

should yield improved results.  Although few of the statistics are significant the trends suggest 

that a refined study may prove more telling. 

Of the four scenarios, the one in which the participants had to operate all three robots was 

the hardest.  This is confirmed in the workload questionnaire F (3, 54) = 6.437, p < .005, and the 

percent of participants that completed the scenarios; 43% for the mixed scenario and above 90% 

for the other three.  These results support what is known about HIP and performance; there are 

bottlenecks in the way humans process information and these bottlenecks can lead to limitations 

in performance (Wickens & Hollands, 2000).  This supports the belief that in terms of system 

design, the focus of this study should be on the multitasking scenario because this is where the 

performance degradation will likely manifest if a system is not systematically designed to 

manage workload. 
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First Hypothesis 

 Although there was no statistically significant findings when analyzing the mixed asset 

scenario by condition (p values all greater than .2), four of the five variables (i.e., number of 

commo faults detected, total targets lazed, contact reports made, and location reports made) 

suggest that performance during a frame delayed condition may have some advantages (see 

Figure 4).  Total time was the only performance outcome that was not in the expected direction.  

A power analysis revealed that for three of the variables, increasing the sample size to as few as 

33 participants may potentially yield significant results (see Table 12).  These results suggest that 

there may be some benefit to degrading the visual-spatial information flow associated with semi-

autonomous vehicles, thereby reducing visual-spatial workload, and only drawing attention to 

such assets at critical times.  (Note: While this study used a visual cue to draw attention to the 

semi-autonomous vehicle, future research should consider drawing attention via an auditory 

alert, as this would likely glean working memory benefits based on Wickens’ (1991) MRT).  

Beyond its potential human performance benefits, this solution supports the computational 

bandwidth limitations of net-centric warfare.  This benefit is not to be overlooked, as the 

management of bandwidth has two important military implications.  First, less data transmission 

reduces the opportunity for enemy interception.  Second, managing the bandwidth may prevent 

loss transmissions that could result in misunderstood commands and other battlefield awareness 

concerns.  
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Figure 4 
Mean results Mixed Asset vs. Video Condition 

 

Table 12 
Sample size after power analysis 

 Commo Fault Total Targets Location Reports 
Original Sig. .395 .320 .273 

Sample 33 25 21 

Second Hypothesis 

 As predicted, individuals with high spatial ability had better total times, especially in the 

UAV scenario, F (1, 25) = 14.296, p = .001.  The high spatial group was 30% faster, on average, 

than the low spatial group in operating the UAV.  The total time performance for the UGV and 

Teleoperated scenarios were both better for high spatial individuals, the Teleop was significantly 

better, F (1, 27) = 7.485, p < .05, while the UGV approached significance , F (1, 27) = 1.810, p = 

.19.  The high spatial group was 24% faster, on average, than the low spatial group in operating 

the Telop and 11% faster, on average, operating the UGV.  These results support current research 
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that suggests teleoperating a vehicle is difficult and that high spatial individuals will perform 

these tasks better (Lathan & Tracey, 2002).  They also suggest that UAV may pose a greater 

challenge to low spatial individuals than other forms of robotic assets, which may be due to its 

operation in a 3-D space as opposed to the two-dimensional space traversed by ground vehicles.  

The time results for the mixed asset scenario were not significant, but with 10 of the 13 

participants that completed this scenario being high spatial, there is a trend in favor of the high 

spatial group that should be further investigated. 

 In the UAV only scenario three of the four dependent variables were significantly better 

for high spatial individuals (highlighted in Table 13). 

 

Table 13 
UAV scenario vs. Spatial Ability 

Variable F Sig. 

Total Time 14.296 .001 

Total Targets 4.125 .05 

Contact Reports .002 .96 

Location Reports 5.661 .025 

 

 

The results for the remaining scenarios (i.e., UGV and teleoperated) are similar and demonstrate 

that operators with higher spatial ability will likely perform better than lower spatial ability 

operators and confirms the importance of spatial ability in selecting operators.  In terms of 

performance, the high spatial group, on average, lazed 12% more targets than the low spatial 
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group when operating the UAV.  The high spatial group also made, on average, 43% more 

location reports than the low spatial group when operating the UAV and 33% more, on average, 

when operating the teleoperated robot.  These results further support the position that spatial 

ability has significant performance implications when operating robotic assets, particularly 

UAVs.  It is recommended that spatial ability be used as a screener for selection of military 

robotic operators, particularly if they are to operate UAVs. 
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CHAPTER SIX 
CONCLUSION 

The United States Army is intent on developing and fielding an array of robotic assets.  

The wide spread fielding of these assets coupled with the reduction in manning will result in a 

single operator managing several robotic assets.  This study has shown that multitasking in its 

current form is very difficult and will generally yield reduced performance.  The military must 

manage workload, not tax an already crowded bandwidth and capitalize on individual abilities to 

be successful. 

Critical thought must be applied to managing operator workload so as to not overload the 

operator during multitasking.  Leveraging multiple HIP processing resources or systematically 

limiting data input are possible alternatives.  This study provides data that suggest there may be 

some benefit to the latter approach.  Specifically, by degrading the visual-spatial information 

flow associated with semi-autonomous vehicles, which do not require constant monitoring, the 

overall visual-spatial workload during multitasking of multiple robotic assets may be reduced.  

Attention could then be drawn to such assets only at critical times (e.g., target identification, 

location reporting) via an alert or other mechanism.  Beyond its potential human performance 

benefits, this solution supports the computational bandwidth limitations of net-centric warfare.  

Operational security and a higher probability of consistent complete data transmission are two 

additional byproducts of a judiciously managed bandwidth. 

In selecting personnel the results of this study indicate that the military should leverage 

individual abilities to target recruiting of potential operators that have critical skills for managing 

robotic assets.  This study supports the current research in clearly identifying an individual’s 
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spatial ability as a key indicator of improved performance, particularly when operating aerial 

vehicles.  The innate spatial ability to translate information from multiple assets, offering 

different views of the battlefield, has the potential to greatly enhance an operator’s performance.  

Screening for this ability is thus strongly recommended. 
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CHAPTER SEVEN 
FUTURE RESEARCH 

To move the research in this area forward two immediate areas of future research are 

recommended.  First, the positive trend seen in the effects of video frame delay should be 

investigated further.  A robust design that focuses on the effects of frame delay on multitasking 

scenarios utilizing a larger sample may yield more significant results.  The overall objective 

should be to examine the effects of existing battlefield conditions (e.g., limited bandwidth), as 

well as task requirements, in an effort to design systems that overcome negative effects (e.g., of 

limited bandwidth) by judiciously managing information flow and associated operator workload. 

Second, an alternative study could look at the use of multi-modal information flow 

(MRT) to manage operator workload during multitasking.  Although currently bandwidth 

limited, the eventual possibility for improved data transmission may make possible the use of 

audio and haptic channels on the battlefield.  Current research is clear on the positive 

implications of leveraging additional HIP resources and future research should investigate the 

implementation of these resources to multitasking on the battlefield. 

Future military systems will likely increase in complexity so any research that 

investigates the human implications of this complexity should yield positive results. 
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