
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2020

Analyzing User Behavior in Collaborative Environments Analyzing User Behavior in Collaborative Environments

Samaneh Saadat
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Saadat, Samaneh, "Analyzing User Behavior in Collaborative Environments" (2020). Electronic Theses and
Dissertations, 2020-. 411.
https://stars.library.ucf.edu/etd2020/411

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd2020%2F411&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/411?utm_source=stars.library.ucf.edu%2Fetd2020%2F411&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYZING USER BEHAVIOR IN COLLABORATIVE ENVIRONMENTS

by

SAMANEH SAADAT
M.S. University of Tehran, 2014

B.S. Iran University of Science and Technology, 2011

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, FL

Fall Term
2020

Major Professor: Gita Sukthankar

© 2020 Samaneh Saadat

ii

ABSTRACT

Discrete sequences are the building blocks for many real-world problems in domains including

genomics, e-commerce, and social sciences. While there are machine learning methods to clas-

sify and cluster sequences, they fail to explain what makes groups of sequences distinguishable.

Although in some cases having a black box model is sufficient, there is a need for increased ex-

plainability in research areas focused on human behaviors. For example, psychologists are less

interested in having a model that predicts human behavior with high accuracy and more concerned

with identifying differences between actions that lead to divergent human behavior. This disserta-

tion presents techniques for understanding differences between classes of discrete sequences. We

leveraged our developed approaches to study two online collaborative environments: GitHub, a

software development platform, and Minecraft, a multiplayer online game.

The first approach measures the differences between groups of sequences by comparing k-gram

representations of sequences using the silhouette score and characterizing the differences by ana-

lyzing the distance matrix of subsequences. The second approach discovers subsequences that are

significantly more similar to one set of sequences vs. other sets. This approach, which is called

contrast motif discovery, first finds a set of motifs for each group of sequences and then refines

them to include the motifs that distinguish that group from other groups of sequences. Compared

to existing methods, our technique is scalable and capable of handling long event sequences.

Our first case study is GitHub. GitHub is a social coding platform that facilitates distributed,

asynchronous collaborations in open source software development. It has an open API to collect

metadata about users, repositories, and the activities of users on repositories. To study the dynamics

of teams on GitHub, we focused on discrete event sequences that are generated when GitHub users

perform actions on this platform. Specifically, we studied the differences that automated accounts

iii

(aka bots) make on software development processes and outcome. We trained black box supervised

learning methods to classify sequences of GitHub teams and then utilized our sequence analysis

techniques to measure and characterize differences between event sequences of teams with bots

and teams without bots. Teams with bots have relatively distinct event sequences from teams

without bots in terms of the existence and frequency of short subsequences. Moreover, teams with

bots have more novel and less repetitive sequences compared to teams with no bots. In addition,

we discovered contrast motifs for human-bot and human-only teams. Our analysis of contrast

motifs shows that in human-bot teams, discussions are scattered throughout other activities while

in human-only teams discussions tend to cluster together.

For our second case study, we applied our sequence mining approaches to analyze player behavior

in Minecraft, a multiplayer online game that supports many forms of player collaboration. As a

sandbox game, it provides players with a large amount of flexibility in deciding how to complete

tasks; this lack of goal-orientation makes the problem of analyzing Minecraft event sequences more

challenging than event sequences from more structured games. Using our approaches, we were

able to measure and characterize differences between low-level sequences of high-level actions and

despite variability in how different players accomplished the same tasks, we discovered contrast

motifs for many player actions. Finally, we explored how the level of player collaboration affects

the contrast motifs.

iv

To my amazing mom, Maryam,

and my lovely husband, Ramin.

v

ACKNOWLEDGMENTS

I would like to express my appreciation to everyone who supported me during my PhD, some of

whom are acknowledged below.

First and foremost, I am extremely grateful to my advisor, Dr. Gita Sukthankar, whose insight and

knowledge steered me through this research. She has been an amazing mentor and inspiring role

model to me. I have always benefited from her valuable advice. I deeply appreciate the freedom

she gave me to try my ideas, make mistakes and learn.

I would like to extend my sincere thanks to my dissertation committee members Dr. Steve Fiore

for his stimulating questions and for inspiring me to think outside of the box, Dr. Lotzi Bölöni for

his thoughtful feedback on my research, and Dr. Ivan Garibay for his consistent support.

I also had the great pleasure of working with two amazing research project teams at UCF: Social-

Sim and ASIST. I have learned a lot working alongside smart and accomplished researchers in

these teams. I would like to thank them all, in particular, Olivia Newton and Chathika Gunaratne,

whom I collaborated with on several research papers; and Brandon Barnes, whose help cannot be

overestimated.

I cannot begin to express my thanks to my mother, who is a strong woman and has raised me that

way. I feel so lucky to be her daughter. She has always believed in me and has made me to believe

in myself. My accomplishments would not have been possible without her support and sacrifices.

Last but not least, special thanks to my best friend and husband, Ramin, for his love, friendship,

and encouragement. He has always supported me even when he disagreed with my decisions. I

love you, Ramin.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES .xviii

CHAPTER 1: INTRODUCTION . 1

Sequence Mining . 2

Sequence Groups Comparison . 2

Contrast Motif Discovery . 3

Motif . 4

Contrast Mining . 4

GitHub . 5

GitHub Teams . 6

Software Bots . 7

GitHub Team Outcome and Processes . 8

Minecraft . 9

Minecraft Processes . 10

Publications . 12

vii

CHAPTER 2: RELATED WORK . 13

Sequence Mining . 13

Explainability . 13

Sequential Pattern Mining . 14

Motif Finding . 14

Matrix Profile . 15

Contrast Mining . 15

GitHub . 16

User Types . 16

Software Bots . 18

Team Sequences . 23

Minecraft . 25

Game Sequences . 25

CHAPTER 3: SEQUENCE MINING . 27

Sequence Group Comparison . 27

Sequence Distinction Measurement . 27

Sequence to Vector . 27

viii

Sequence Comparison . 29

Sequence Difference Detection . 30

Contrast Motif Discovery . 32

Motif Finding . 32

Motif Refinement . 35

Chapter Summary . 36

CHAPTER 4: GITHUB DEVELOPERS AND TEAMS 37

Discovering GitHub Developer Archetypes . 37

Cluster Stability . 39

Archetype Model . 41

GitHub Team Productivity . 45

Data Set . 45

Team Performance Evaluation . 46

Evaluation Period Team Sizes . 47

Work Centralization . 49

Work Style Clusters . 49

Work Style and Performance . 52

ix

Team Feature . 53

Types of Activity . 54

Burstiness . 55

Issue Labels . 55

Chapter Summery . 55

CHAPTER 5: GITHUB HUMAN-BOT TEAMS . 57

GitHub Human-Bot Teams Outcome . 57

Data Set . 57

Bot Identification . 58

Control for Developers Expertise . 58

Team Productivity . 59

Work Centralization . 61

Survival Analysis of Issue Closure . 64

Work Style Clusters . 66

Impact of Bots on the Outcome of Teams . 69

Sequence Group Comparison . 70

Dataset . 71

x

Classifying Team Type . 71

SVM . 72

LSTM . 73

CNN+LSTM . 73

Sequence Differences . 74

Matrix Profile Analysis . 76

Contrast Motif Discovery . 79

Dataset . 80

Bot Detection . 80

Labeling . 81

Features . 81

Bot Detection Classifier . 82

Event Dataset . 82

Team Sequences . 82

Team Sampling . 84

Contrast Motifs . 84

Chapter Summary . 86

xi

CHAPTER 6: MINECRAFT . 87

Dataset . 87

Minecraft Action Sequence Comparison . 88

Minecraft Action Classification . 88

Minecraft Actions Silhouette Score Analysis . 88

Minecraft Actions Matrix Profile Analysis . 89

Minecraft Action Contrast Motifs . 91

Contrast Motif Distances . 91

Minecraft Events of Contrast Motifs . 94

Players Contrast Motifs . 95

Chapter Summary . 96

CHAPTER 7: CONCLUSIONS . 97

LIST OF REFERENCES . 99

xii

LIST OF FIGURES

Figure 1.1: An example of a GitHub repository. 6

Figure 2.1: Travis CI pull requests report . 20

Figure 2.2: Codecov . 21

Figure 3.1: Matrix profile calculation example. From the event sequence, first the dis-

tance matrix is calculated. This is a 2-dimensional matrix representing the

distance between each pair of subsequences of length 3 (= window length).

The matrix profile is calculated by selecting the minimum value of each row

in the matrix which represents the distance to the closest subsequence. 33

Figure 4.1: Cluster centroids for users with more than 1000 and less than 10,000 average

monthly activity . 43

Figure 4.2: Error of Gini Coefficient for Users. Configuration 0 (without cluster infor-

mation) performs badly at predicting the dispersion of contributions across

users. Configuration 1 (most stable cluster) is the best performer yielding a

small improvement vs. using the second most stable cluster to initialize the

archetypes. 44

xiii

Figure 4.3: Error of Gini Coefficient for Repositories. Configurations 1 and 2 (cluster

based archetypes) yield slightly better performance. However, the ad hoc

heuristics used by the simulation for repository assignment do not perform as

well at allocating events across repos. 44

Figure 4.4: Distribution of work per person per month (A) and transformed distribution

of work per person per month (B). 46

Figure 4.5: Team sizes in the performance evaluation period. 47

Figure 4.6: Performance of teams by size (A) and high- and low-performing teams by

team size groups (B). 48

Figure 4.7: Distribution of Gini coefficients for all teams (A) and distribution of Gini

coefficients by team size and performance (B). 50

Figure 4.8: Proportions of events by work style cluster. 50

Figure 4.9: The performance of different work styles and team size groups. 52

Figure 4.10:Team formation phase features by team size and performance group. 56

Figure 5.1: Human-bot teams are more productive than human only ones, as measured

by generation of work events. 61

Figure 5.2: The average number of events performed by each bot, broken down by event

type. 62

Figure 5.3: Difference between events that teams with and without bots perform. 62

Figure 5.4: Work centralization of human-bot teams versus human teams 63

xiv

Figure 5.5: Issue closure of human-bot teams versus human teams 66

Figure 5.6: Clustering analysis of the relative event type distributions of toilers, commu-

nicators, and collaborators (A) and productivity of teams with and without

bots, separated by team type (B) . 68

Figure 5.7: Human-bot teams have longer sequences on average; however this is not a

strong predictor of team type. 71

Figure 5.8: Classification performance of the different models (logistic regression, SVM,

LSTM, CNN+LSTM) at recognizing human-bot versus human only team se-

quences . 74

Figure 5.9: Human vs. human-bot teams silhouette score considering different vector

lengths (line style) and different vectorization models (line color). The best

method for detecting differences at all window sizes is TF-ISF with a vector

length of 10. However even the binary vectorization model detects differ-

ences between the two groups of sequences. 75

Figure 5.10:Distance matrix of a randomly selected sequence for different values of win-

dow size. For every subsequence, the distance matrix shows the position of

all similar subsequences. Similarity is represented by redness; red blocks

demonstrate repeats of similar subsequences. For smaller window sizes, the

blocks are smaller but the similarity is higher. Note that heat maps are scaled

to lie between 0 to 100 to make comparison easier. 77

Figure 5.11:Matrix profile of the sequence in Figure 5.10. The trend of the matrix profile

is independent of the window size. Increasing the window sizes enlarges the

distance between the most similar subsequences. 78

xv

Figure 5.12:Aggregate matrix profile for human-bot teams vs. human only teams. The

human-bot teams have higher values compared to human teams, indicating

the higher novelty of sequences in human-bot teams. 80

Figure 5.13:Motif graph for human-only and human-bot teams. 85

Figure 6.1: Classification performance of the different models at recognizing Minecraft

action sequences. 89

Figure 6.2: Aggregate matrix profile for Minecraft actions 90

Figure 6.3: The average distance between motifs and sequences of actions. Rows rep-

resent motifs, and columns denote the action labels. For example, row f-1

and column fight shows the average distance between motif f-1 and fight se-

quences. Motif names are comprised of the action symbol (f, m, and b for

fight, mine and build, respectively) and an ordinal number. Darker colors on

the heatmap denote a lower distance between the motif and sequences of that

action. 92

Figure 6.4: Contrast motifs of different actions represented in directed graphs. Nodes

are events, and there is an edge between two events if they appeared consec-

utively in at least one motif. The thickness of edges represents the number of

times that relationship was observed in the motif set. 92

Figure 6.5: Collaboration graph between players. Nodes are players, edges show collab-

oration, and the thickness of the edge represents the duration of the collabo-

ration. 93

xvi

Figure 6.6: The highly collaborative players contrast motif. This motif is similar to the

fight motif showing that fighting is the action shared amongst highly collab-

orative players and fighting is what distinguishes these collaborative players

from less collaborative players. 93

xvii

LIST OF TABLES

Table 4.1: GitHub user partitions . 39

Table 4.2: Stability score for different partitions . 41

Table 4.3: Proportion of teams by team size. 48

Table 4.4: The mean and standard deviation of different work events for toilers, com-

municators, and collaborators. 51

Table 5.1: Number and percentage of human bot teams across team sizes 59

Table 5.2: Average number of issues and median of issue survival days for different

team types and team sizes . 67

Table 5.3: Number of bot-human teams in each work style. 68

Table 5.4: Human versus human-bot teams matrix profile summary. The human-bot and

human columns show the average values across all matrix profiles for each

team type. The last column shows the p-value of the Mann-Whitney U test

between team types. 79

Table 5.5: Proportion of various events in our dataset. 83

Table 5.6: Median value of event frequencies before and after sampling. 84

Table 6.1: Matrix profile statistics of Minecraft actions. 91

xviii

CHAPTER 1: INTRODUCTION

Sequences commonly occur in numerous applications of the physical, biological, and computer

sciences. Hence, myriad sequence mining methods have been developed to analyze various types

of sequences. For example, in molecular biology, the sequencing of nucleotides in a strand of DNA

provides a massive amount of sequence data that has motivated scientists to develop methods to

comprehend various aspects of the sequences including sequence assembly, motif finding, and

other applications [99, 75, 14]. With the growth of online platforms, discrete event sequences

have become even more abundant in the digital world: from user clicks in an online store to

actions of users on social media platforms. Developing novel sequence mining approaches that

help researchers comprehend the ever-growing body of digital data is imperative.

This dissertation introduces a set of techniques to detect differences between groups of long dis-

crete sequences efficiently. Then we demonstrate how these techniques can be used to analyze the

behaviors of users in online collaborative environments. We aim to answer the following research

questions:

• What is the difference between software engineering teams that use automated accounts (aka

bots) and teams that don’t?

• What differences in low-level event sequences create various high-level actions in the Minecraft

world?

• What is the difference between highly collaborative players and hardly collaborative players

in Minecraft?

In this chapter, first, we introduce sequence mining approaches we developed to analyze groups

1

of sequences. Then, we present two domains that we applied our sequence mining approaches to

analyze event sequences: GitHub and Minecraft.

Sequence Mining

There are many machine learning methods to classify and cluster sequences. However, in some

cases, it is hard to explain why those algorithms select a specific data partition—what are the

differences in groups of sequences that make them distinguishable? Although in some cases having

a black box model is sufficient, there is a need for increased explainability in various research

areas such as social sciences. For example, psychologists are less concerned with having a model

that accurately predicts human behavior and more eager to identify differences between actions

that lead to divergent human behavior. This dissertation presents techniques for understanding

differences between groups of discrete sequences. Approaches introduced in this dissertation can

be utilized to interpret black box machine learning models on sequences. In this section, we

introduce two sequence mining approaches we developed to improve our understanding of users

by studying their sequences.

Sequence Groups Comparison

Analyzing event distributions alone is insufficient to reveal the subtle differences in groups of

sequences. Our first sequence mining approach is a new analytic framework for characterizing

differences between groups of event sequences. Our aim is to be able to answer the following

questions:

• How distinct are the sequences of different groups?

2

• What are the differences between these sets of sequences?

To answer the questions discussed above, we introduce the following approach. First, we com-

pared groups of sequences by converting the sequences to k-gram representation vectors and mea-

suring the silhouette score of the groups. Second, to understand differences between sequences,

we created distance matrix between subsequences for all sequences and compared statistics and

aggregated matrix profiles of the groups.

As a case study, we trained black box supervised learning methods to classify sequences of GitHub

teams and then utilized our sequence analysis techniques to measure and characterize differences

between event sequences of teams with bots and teams without bots. In our second case study,

we classified Minecraft event sequences to infer their high-level actions and analyzed differences

between low-level event sequences of actions.

Although we applied our approach to analyze GitHub and Minecraft event sequences, this approach

can be applied to many other sequence mining tasks relevant to socio-technical systems:

• Do click sequences of users who purchase products in an online store differ from those who

leave without buying?

• How do event logs of authorized users differ from hackers launching cyberattacks?

• Do the event sequences of GitHub repositories managed by highly productive teams differ

from dysfunctional teams?

Contrast Motif Discovery

We introduce a method for analyzing event sequences by detecting contrasting motifs. Our ap-

proach is called contrast motif discovery. The aim is to discover subsequences that are significantly

3

more similar to one set of sequences vs. other sets. Compared to existing methods, our technique

is scalable and capable of handling long event sequences.

Motif

Motifs are fairly short subsequences shared between multiple sequences; unlike sequential pat-

terns, motifs are contiguous [14]. Motif is a term borrowed from biological sciences where mu-

tations might occur but in many cases, those mutations do not affect the functions of the genomic

sequence.

Contrast Mining

In classification, the goal is to guess the category of an object or data point based on its attribute,

as opposed to contrast mining which takes the category of data points and reverse engineers the

attributes that mark the data point as a member of a category. Contrast mining attempts to detect

meaningful differences between groups of objects. For example, given the attributes of categories

of online banking customers, contrast mining would identify dissimilar features between fraudulent

and normal users. Discovering contrasts between specific groups of interest is particularly valuable

in social science research [7].

Existing contrast mining approaches discover contrasting sequential patterns which are costly to

find for large datasets or long sequences. To the best of our knowledge, we are the first to propose

a method for discovering contrast motifs. Motifs are less general than the patterns extracted from

SPM and hence computationally faster to find. We exploit conceptual ideas from motif finding

techniques that were designed for time series data and apply them to sequence data.

Given multiple groups of sequences, our algorithm, first, finds a set of candidate motifs for each

4

group. Then, for each set of candidate motifs, the algorithm selects the subset of motifs that

are significantly closer to their own group compared to other groups. These refined motifs are

designated as the contrast motifs of the group.

We applied this algorithm to GitHub and Minecraft sequences to achieve a deeper understanding of

dynamics of user behaviors in these to environments. To promote shared progress, we have made

our code and data publicly available 1.

GitHub

GitHub2 is a social coding platform for distributed, asynchronous collaborations in open source

software (OSS) development. GitHub version control and issue tracking features make it attrac-

tive to developers. GitHub software repositories typically have several developers working on the

project as a virtual team. Developers make changes to the repository by pushing their content. To

be able to push to a repository, users should have push privileges. This push-based development

model is mainly used for smaller teams. Large open-source projects use a pull-based development

model in which any GitHub user can contribute to a repository by forking (i.e.copying) the repos-

itory, making modifications and submitting their contributions by sending a pull request to the

original repository. Repository maintainers review pull requests, discuss possible modifications in

the comments, and decide whether to accept or reject the requests. GitHub users can report bugs or

request new features in the issues section of repositories. Other users can comment on the issues

to discuss problem solving approaches or to coordinate on who will work on the issue and how.

Users can star a repository to bookmark it or to show their interest in a repository. GitHub also

allows users to follow repositories of their interest to get the latest update about them. Users can

1https://github.com/SamanehSaadat/ContrastMotifDiscovery
2https://github.com/

5

follow each other on GitHub and get informed about activities of developers they like. Figure 1.1

shows the main page of a repository called scikit-learn with its available functionalities.

Figure 1.1: An example of a GitHub repository.

GitHub Teams

GitHub is a platform that facilitates software development in virtual teams. In today’s connected

world virtual teams that collaborate on online platform are becoming more commonplace. Many

large technology companies such as Facebook and Google utilize the power of virtual teams and

develop open source products on GitHub. These companies are turning to crowdsourcing to solve

difficult problems as these online collaboration platforms help them to find the best subject matter

experts [66]. For example, Google open sourced Tensorflow3, a machine learning framework, in

2015 and has thousands of developers contributing to this project on GitHub working remotely as

3https://github.com/tensorflow/tensorflow

6

a virtual team. Hence, studying virtual teams and what affects their performance has an important

role in the future of work.

When tasks are too large or too complex for a single individual, teams are useful [18]. However,

teamwork is hard because it requires coordination among team members. Challenges of working

in teams inspired many organizational researchers to study teams. Studies show that increasing the

team size adds to the coordination overhead as larger teams have more possible links among team

members [18]. In addition, geographical dispersion of team members also increases coordination

complexity since it makes it more challenging for team members to become familiar with each

others’ skills and expertise and develop tasks [31]. Open source software development teams on

GitHub are faced with both of these types of coordination overhead as open projects are virtual

teams that are capable of benefiting from a large number of volatile developers with irregular and

short-lived participation in the project.

GitHub has been interesting to both social scientists and software engineering researchers since it

has an open API to collect metadata about users, repositories, and activities of users on repositories.

This API allows researchers to have access to a large dataset of software engineering activities and

communications.

Software Bots

Improving the productivity and workflow of software development teams is a key concern of tech

companies hence research in this area is gaining traction in recent years [54]. Providing better and

smarter tools to help developers simplify and automate tasks is one approach to satisfy that need.

As a consequence, software development bots are gaining traction among software engineering

teams. In their basic form, bots are interfaces that connect users and services [45] and, in their

more advanced form, bots may exploit data analysis or AI techniques. Bots support different soft-

7

ware development tasks including automating routine tasks (e.g. merging changes across different

branches), helping developers stay in the flow (e.g. deferring interuptions until an appropriate

time), perform redundant tasks (e.g. answering user questions), and improving decision making

(e.g. collecting, analyzing and sharing data relevant to decisions).

Bots are becoming more commonplace in modern teams but little is known about the impact they

have in terms of the benefits and disadvantages they bring to team. Our goal in this research is to

shed light on the impact of bots on software development processes and outcomes.

GitHub Team Outcome and Processes

First we studied the impact of GitHub bots on the outcome of teams. We investigated the dif-

ferences in productivity, issue support responsiveness and work centralization of teams with and

without bots. Result shows that teams with bots are more productive and the work in these teams

are more centralized. Additionally, human-bot teams on GitHub document and track more issues

which results in higher issue resolution times.

Second, to study team dynamics, we took a sequence mining approach because sequences contain

temporal information about actions taken. We created event sequences of GitHub teams with bots

(aka human-bot teams) and teams without bots (aka human-only teams).

We built classification models to predict whether a GitHub team using bots based on their se-

quences. All models, SVM, LSTM, and LSTM+CNN, were able to distinguish whether an event

sequence was generated by a human only or human-bot team, with the neural network models

achieving the best F1 score, 0.79, which was significantly better than the baseline. These results

validate our hypothesis that the event sequences can be leveraged to detect teamwork differences.

Comparing silhouette score k-gram representation of sequences of teams showed that sequences

8

of human teams are distinct from sequences of human-bot teams. Comparing aggregated matrix

profiles of teams indicated that human-bot teams have more novel event sequences. In contrast,

human teams have more repetitive sequences, especially at the early stages of their work.

Finally, we applied a contrast motif discovery method on this data to understand what are the sub-

sequences that happen in one type of team at a higher rate compared to the other type of team. This

experiment revealed that in human-bot teams, discussions are scattered throughout other works the

teams do while in human-only teams the discussions tend to cluster together.

Minecraft

Minecraft is a multiplayer online game where players can explore a 3D world, mine materials,

and craft tools and structures. It is a sandbox environment where players are afforded a great

deal of freedom in how they interact with the game world. Most Minecraft servers are maintained

by players rather than by private companies, making it an ideal laboratory for studying player

behaviors and social interactions. Minecraft offers many opportunities for collaboration, including

joint crafting and combat. Prior research indicates that players prefer to cooperate with players

who have similar action preferences in terms of building, mining, fighting and exploring [57].

Although Minecraft was not explicitly developed for research purposes, it has been used in many

learning studies and scientific experiments [60]. It is an ideal laboratory to study collaboration as

the game can be modified to become more collaborative, track player activities, and manipulate

team compositions [15, 57].

Intelligent agents can be developed in Minecraft which makes Minecraft an excellent platform for

studying human-agent teaming. For example, CraftAssist is an implementation of an interactive

bot assistant in Minecraft [25].

9

Game events form sequences that provide valuable information about the play style and high level

goals of the players. The observable events are low-level: move, place block, consume item, etc.

High-level actions in the game world, such as exploring, mining, fighting, or building, are ac-

complished by performing chains of low-level actions. Since events are logged multiple times per

second, the sequence of low-level game events may be long and filled with superfluous detail. Prior

research attempted to classify these low-level event sequences to high-level actions [58].

Our aim is to develop an unsupervised method for detecting common subsequences across different

instances of event sequences related to a group, allowing long sequences to be generalized into

a few short subsequences. To that end, we developed a contrast mining approach that discovers

subsequences that differentiate groups of sequences. We aim to not only discover motifs of a group

of sequences but also to refine the motifs to ensure that they represent the differences between

classes of sequences.

Minecraft Processes

Understanding event sequences is an important aspect of game analytics, since it is relevant to

many player modeling questions. Our second case study analyzes Minecraft action and player

sequences.

As a sandbox game, Minecraft provides players with a large amount of flexibility in deciding

how to complete tasks; this lack of goal-orientation makes the problem of analyzing Minecraft

event sequences more challenging than event sequences from more structured games. Using our

approach, we were able to discover contrast motifs for many player actions, despite variability in

how different players accomplished the same tasks. Furthermore, we explored how the level of

player collaboration affects the contrast motifs. Although this research focuses on applications

within Minecraft, our tool, which we have made publicly available along with our dataset, can be

10

used on any set of game event sequences.

We classified Minecraft event sequences to infer their high-level actions and analyzed differences

between low-level event sequences of actions.

Most prior studies in games use sequential pattern mining approaches, which are designed to find

frequent exact non-contiguous subsequences. The traditional algorithms for mining sequential pat-

terns [2, 61] are appropriate for short sequences such as supermarket transactions. Consequently,

traditional algorithms are ineffective for mining long sequences. Some of the traditional methods

are used to process long sequences, but they require extensive run time [49, 61].

In addition, in situations where there is no clear boundaries for sequences (such as the Minecraft

dataset used in this dissertation), sequential pattern mining approaches that allow gaps between

events might blend two or more actions to create a pattern. One of the advantages of using motifs

is that motifs form a continuous subsequence and hence blending is less likely.

This research describes the usage of our contrast motif discovery algorithm to analyze Minecraft

event sequences. We created event sequences for different Minecraft actions (fight, mine, explore,

and build) and extracted motifs that differentiate actions from each other. Certain actions, such as

fighting, yielded more contrast motifs, representing variations in player style. On the other hand,

the explore action did not have any motifs that were distinctive to that class.

Moreover, players can be categorized into different groups based on style and characteristics such

as collaborative vs. non-collaborative, expert vs. novice, and effective vs. ineffective. Our contrast

mining approach can help us achieve a better understanding of the differences between various

groups of players. We compared the behavior of highly collaborative and hardly collaborative

players by examining their event sequences. Our investigation revealed that fighting is a com-

mon behavior amongst highly collaborative players while there is no behavior shared between less

11

collaborative players.

Publications

This document is based on peer reviewed publications by the author of this dissertation in col-

laboration with other researchers. Chapter 3 discusses our sequence mining methods to compare

and contrast classes of discrete sequences, which are published in AIIDE’20 and WI-IAT’20 confer-

ences [72, 73]. In chapter 4, two of our papers that are published in SBP-BRiMS’18 and WI-IAT’20,

are presented which are focused on studying GitHub users and teams [70, 71]. Chapter 5 and 6

includes the applications of our sequence mining methods in GitHub and Minecraft [72, 73].

12

CHAPTER 2: RELATED WORK

In this chapter, first, we present existing research on mining discrete sequences and discuss their

shortcomings. Then we review prior research on GitHub and Minecraft, which are the application

domains for our proposed techniques.

Sequence Mining

A sequence is an ordered list of events, where events can be represented by symbols from a specific

alphabet. Pattern mining in sequences has countless applications in academia and industry includ-

ing biological, purchasing, and weblog pattern mining [48]. Because of this, numerous methods

have been designed to extract patterns in sequential data, including traditional sequential pattern

mining [2, 61], maximal sequential patterns [51], and closed sequential patterns [87].

Explainability

Many of the most accurate machine learning models are constructed as black boxes, meaning

that their internal logic is hidden from their users [27]. In the scientific community, there is an

increasing interest in explaining decisions made by black box models. For example, Guidotti

et al. [26] presented an approach for explaining black box decisions of an image classification

model. Despite the abundance of discrete sequences, explaining machine learning models built for

sequences has not been well-studied. In this dissertation, we developed glass-box approaches to

compare and contrast groups of sequences and explain differences in these groups.

13

Sequential Pattern Mining

One of the conventional approaches for finding key sequences is sequential pattern mining [23],

and researchers have proposed many specific techniques for discovering discriminative patterns

that occur at significantly different frequencies across two groups of sequences [30, 29, 16]. One

of the major drawbacks of sequential pattern mining approaches is that they either 1) find many

patterns if the minimum support threshold is low or 2) generate either none or very short patterns

if the minimum support threshold is set high. This makes large-scale sequence mining challeng-

ing for sequences for which we do not have prior knowledge. Moreover, interpreting discovered

patterns in sequential pattern mining requires subject-matter expertise. Our sequence groups com-

parison approach summarizes sequences and their differences into a few numbers, reducing the

need for domain knowledge to interpret the data. Yet another major drawback of sequential pattern

mining approaches is that they are designed for short sequences and are ineffective in processing

datasets containing long sequences.

Motif Finding

There are numerous motif discovery approaches that have been developed for time series or bio-

logical sequences [56, 5, 4]. Biological methods for finding motifs enforce constraints on the data

to ensure that the discovered motifs are scientifically plausible [14]. For example, methods for

finding transcription factor binding site motifs extract one and only one motif for each sequence

and use relatively short input sequences [98]. These approaches may not be well-suited for user

behavior sequences that are long, may contain multiple motifs, and are unconstrained.

14

Matrix Profile

Since discrete sequences are the categorical analog of time series data, motif discovery approaches

designed for time series can be applied to discrete sequences with minor modifications. The matrix

profile approach can be utilized to discover motifs of time series. The matrix profile is a vector cal-

culated between two time series (similarity join) or one time series and itself (similarity self-join);

for each subsequence of the first time series, the distance is stored to its closest subsequence in the

second time series. The distance between two subsequences is their Euclidean distance. Matrix

profiles have many applications in time series analysis including motif discovery, discord/anomaly

detection, and semantic segmentation [96, 97, 95, 81]. In our work, we created the matrix profile

for discrete sequences and use it to summarize differences between groups of sequences.

Yeh et al. [96] extracted matrix profiles for discrete sequences but they convert the sequences

to time series first using a method proposed by Rakthanmanon et al.[65]. This method converts

sequences to time series by assigning an ordinal number to each symbol in the sequence; then

Euclidean distance is used for measuring the distance between time series. This ordinal encoding

assumes an ordinal relationship between symbols which may not exist. We developed an approach

for extracting the matrix profile directly from discrete sequences. Instead of Euclidean distance,

Hamming and LCS distance are employed; these distance measures are designed for sequences

and do not require encoding of the input.

Contrast Mining

Understanding the differences between contrasting groups of sequences is an essential task in data

mining and has numerous applications including customer behavior analysis and medical diag-

nosis [6, 93]. Prior research on learning the contrast patterns across groups is primarily focused

15

on finding contrast sequential patterns. A contrast sequential pattern is a pattern that occurs fre-

quently in one sequence group but not in the others [93]. Contrast sequential pattern mining has

the same computational limitations as sequential pattern mining approaches discussed earlier in

this dissertation. To overcome this problem, we sought to unify the computational strengths of

motif discovery with statistical testing techniques to identify contrast motifs.

GitHub

User Types

Several studies of GitHub have attempted to identify types and roles of users. Badashian et al. [3]

detected influential GitHub users and manually identified the role of the top thirty influential users

by analyzing their profiles and personal webpages.

Wagstrom et al. [86] focused on a few successful communities for which they could obtain knowl-

edge about the underlying socio-technical practices. The authors manually defined user categories

and used a top-down approach based on some heuristics to detect user roles. They divided the user

roles in GitHub into two categories: Development Maturity roles and Specialized roles. Develop-

ment Maturity roles track the progress of an individual through their participation in a project as

they move from an interested lurker to a core project member. This role group includes six stages:

1. Lurker: individuals who only monitor activities or issues of a project.

2. Issue: individuals who have been active on the project issue tracker, either by filing new

issues or commenting on existing issues or pull requests.

3. Independent: individuals who have created a fork and have worked on it privately.

16

4. Aspiring: individuals who have submitted pull requests which have not been accepted yet.

5. External contributor: individuals who contribute to the project via pull requests.

6. Internal collaborator: individuals who are a part of the organization and have critical respon-

sibilities such as accepting pull requests.

Specialized roles include roles that a contributor can take depending on their commitment and

interest.

1. Prodder: individuals who identify and take on longstanding issues or issues that have idle.

2. Project Stewards: individuals who focus on managing the project. They merge pull requests

(from external contributors) into the project, comment on the pull requests, and close a pull

request once it has been merged.

3. Code Warriors: individuals who frequently and consistently commit code to a project.

4. Nomad Coders: individuals who have contributed only minor code changes and then move

to a new project or individuals who are participating in one project, but make minor contri-

butions to another project.

5. Project Rockstars: individuals who have a high visibility and are significant contributors to

a project.

Although the research has been conducted on a small set of projects, it shows the diverse roles of

developers on GitHub.

In other studies, Joblin and colleagues [37, 38] used a network-based approach to classify devel-

opers into core and peripheral developers. Their approach requires version control tracks in order

to reconstruct the developers’ network and detect their roles.

17

In our research, we developed a machine learning based method to discover GitHub users’ roles.

We have an automatic approach that does not require hand-labeling users or manual investigation

of available personal data. Our approach is bottom-up and roles are discovered organically from

clustering results. We studied a large data set which contains all GitHub repositories and users

that have been active in 32 months. Since our ultimate goal was to simulate the entire GitHub

ecosystem, we attempted to identify user roles in all repositories, which are not limited to software

development and can include other activities such as curating content, writing books, or doing

school projects. Finally, our approach is independent of the developed code and role detection is

not dependent on the version control information.

Software Bots

Improving the productivity of developers is a key concern for software engineers. It is expected

that providing developers with better tools that automate the software development process helps

them to to work more efficiently as a team and to solve larger and more complex problems.

Bots have been developed to support different software development activities including automa-

tion of repetitive tasks to reduce workload of software development tasks (e.g. code coverage bots

that automatically report what percentage of code is tested after adding new codes), and bridging

knowledge and communication gaps in software teams (e.g. mention bots that automatically find

the best developers to review a pull request based on working history of developers).

In an effort to support the study of software bots, researchers have identified different classes of

bots in software development [76]. There are bots that provide taskwork support for the teams by

completing chores that previously would have been completed by human developers. Code bots

support code-related activities to make them more efficient. Test bots allow developers to offload

the repetitive task of evaluating code. User support bots can communicate with users and provide

18

answers to frequently asked questions. A few examples of these bots are as follow:

• Hubot1 automatically updates task items on Trello when code is committed on GitHub to

offload the memory overhead of developers.

• BugBot is a Slack2 app for working with GitHub issues. It allows developers to add and

access GitHub issues with no context-switching between Slack and GitHub. This helps de-

velopers to track issues and gain awareness about existing issues without being interrupted

which improves their productivity by allowing them to stay in the flow. Researchers that sur-

veyed software engineers have found that staying in the flow without many context-switches

is one of the most important factors for developers to have a productive day [54].

• Travis CI3 is a Continuous Integration service that activates whenever new commits are

pushed to that repository or a pull request is submitted. Travis CI automatically builds the

software and run tests. When this process is completed, Travis notifies the developers. Fig-

ure 2.1 shows the pull requests report of Travis CI in a repository.

• CodeCov4 is a code coverage tool. Code coverage is a measurement used to express the

percentage of lines of code that were executed by an automated test suite. A program with

high test coverage has had more of its source code executed during testing and thus has a

lower chance of containing undetected software bugs compared to a program with low test

coverage. The CodeCov bot can improve code review workflow and quality. Figure 2.2

shows CodeCov.

1https://hubot.github.com/
2https://slack.com/
3https://github.com/marketplace/travis-ci
4https://codecov.io/

19

Figure 2.1: Travis CI pull requests report

Image credit https://github.com/marketplace/travis-ci

Hukal et al. [34] studied bots involved in coordinating work in one of the GitHub repositories

called Kubernetes5, which is a system for automating the deployment, scaling, and management

of containerized applications6. They identified four different classes of bots (listed from simplest

to more complex): broker, checker, gatekeeper, and manager bots. This categorization is based

on different characteristics of bots such as the level of autonomy, criticality of their task, and the

5https://kubernetes.io/
6Application containerization is an OS-level virtualization method used to deploy and run distributed applications

without launching an entire virtual machine (VM) for each app.

20

Figure 2.2: Codecov

Image credit https://docs.codecov.io/docs/pull-request-comments

impact of their task on the workflow. Brokers scan and repost information, following a simple

if-this-then-that procedure. They automate non-critical tasks that requires little or no human in-

volvement. Checkers evaluate the information and notify the most relevant human members to

take actions. Gatekeepers confirm that the submitted work satisfies the pre-defined requirements

and can proceed to the next step. For example, gatekeeper bots check if developers signed the Con-

tributor Licensing Agreement (CLA) and redirect them to the compliance page if not. Manager

21

bots perform interactive coordination and supervision. In general, this study illustrates the role of

bots in open source software development; bots facilitate maintenance and the reinforcement of

order in the project. They extend ability of developers to coordinate and take over mundane tasks

to free up human resources to perform more complex work. The importance of bots increases in

OSS projects as the project grows in size. The authors argued that bots help to enforce procedural

rules to implement predefined workflows and increase the reliability and stability of the project.

In addition to their role in improving individual productivity, bots are known for their support in

team cognition. For example, Situational awareness, which is known to help teams to be more

effective [63], can be enhanced by deployment of bots. Software bots enhance team communi-

cation as well by initiating necessary conversations or reducing the amount of communication by

automating tasks [77]. Although bots are created with the purpose of enhancing individual and

team productivity, they may have negative impact on user experiences [50]. Thus, it is indispens-

able to study the changes that bots create [89, 55]. In recent years, there has been a growing body

of research studying GitHub bots. While many studies focus on the outcome of the project when

studying GitHub bots [88, 89], others reviewed the experience of developers in such environments

[50]. While myriad of GitHub bots are adopted by Open Source Software (OSS) community,

relatively little has been done to study how they impact experience of human members. In this

research, we intend to shed light on the experience of team members in human-bot teams.

Many human-bot interaction studies mainly consider surveys as the source of their input [50, 88].

While surveys are valuable source of information to get us into the head of developers, it is chal-

lenging to survey thousands of developers. As a consequence, most of these research papers studied

a small fraction of active GitHub repositories. In this paper, with the use of archival data of GitHub

activities, we studied thousands of GitHub repositories with and without bots.

In our research, we aim to create new techniques that enable us to study the performance and

22

cognitive processes of GitHub teams from analyzing their event data.

A study on a sample of popular repositories before and after bot adoption found no significant

difference in various metrics such as time to pull request before and after bot adoption [88]. How-

ever, a more recent study found that adoption of code review bots increases the number of merged

pull request and decreases communication among developers [89]. In addition to effectiveness of

bots in improvement of the task work, prior studies examined the social interactions of bots with

humans. Liu et al. found that Stale bot, which helps maintainer to triage abandoned issues and

pull request by marking them based on the period of inactivity, can create negative experience for

contributors [90, 50]. While bots are developed with the purpose of improving the user experience,

looking at prior research demonstrate that how crucial it is to study impact of bots on individuals

as well as team processes.

There is a growing body of research studying human-bot interaction and providing suggestion on

the best practices for development of effective software bots [77, 11, 88]. The suggestions include

improved social interactions, better management of the workflow, and increase the awareness of

the developers regarding useful tools. Erlenhov et al. goes one step further and describe an idea

software bot as ”an artificial software developer which is autonomous, adaptive, and has technical

as well as social competence” [17].

Team Sequences

Team researchers have recognized the dynamic that teams and their tasks have. Analyzing temporal

sequences of teams can be used to provide novel insights about these patterns, and sequence mining

methods can be utilized to to study research questions concerning the dynamic nature of teamwork

and teams [32]. The advantage of sequence-based methods is that they do not isolate a single event,

but instead examine the events ”in their continuity’ [32].

23

In the field of organization science, [8] has exploited sequence mining methods to explain differ-

ences in performance of organizations by examining sequence patterns of the learning processes.

By analyzing sequential changes in work processes of an organization over a period of time, [62]

discovered that variability was negatively related to the performance.

A number theories on team development include sequence-based concepts, and sequence mining

methods can be developed to evaluate these hypotheses. For instance, there is a body of work on

group development that studies the progress of teams through stages; patterns of these sequences

are related to the future operation and performance of the team [82, 91].

Herndon et al. state that sequence mining approaches have myriad applications in team research

[32]. The authors argue that optimal matching approaches can be used to compare team process

sequences for the purpose of examining the impact of weak or strong ties on team processes. Op-

timal matching algorithms measure the distance between two sequences by calculating the cost of

transforming one sequence into the other. Although optimal matching techniques have widespread

use in sociology, their main drawback is that the cost function, which is defined by the researchers,

can influence the outcome [67].

There are studies that were not able to justify some observed behavior of the subjects based on

the mere condition of subjects. For instance, in [47], which studied the impact of Transactive

Memory System (TMS) on team performance, the authors hypothesize that enabled TMS in team

will translate into higher performance. Although they observed higher performance for teams with

TMS compared to teams without TMS, they could not justify the highest performance of teams

with TMS disabled first and then enabled. [32] argues that the difference in the performance

of these teams is probably caused by their team processes rather than their mere condition and

suggests that sequence methods can be used to further analyze the differences.

These studies manually coded states of teams and their activities in a pre-defined time interval (e.g.

24

1 minute). However, with GitHub, a large corpus of team activities is accessible to us effortlessly.

Minecraft

[58] collected Minecraft data and studied players’ actions using the frequencies of low-level

events. Additionally, they constructed a classifier that predicts the high-level action from the low-

level event log. To study collaboration in Minecraft, [57] defined various types of collaboration

graphs such as contact, chat, and build graphs. They introduced the collaboration index as a uni-

versal metric to assess and compare the collaborativeness of players. Their study also identified

predictors of collaboration in this game, including player familiarity and similarity. This research

leverages these collaboration metrics and data structures to conduct a study of how collaboration

affects contrast motifs.

Game Sequences

Analyzing player behaviors can be beneficial for myriad purposes including improving user expe-

rience, supporting administrative tasks, and assisting social science studies [58]. Sequence mining

techniques have many potential applications in game analytics as they allow researchers to inves-

tigate patterns of player behavior [52].

Event sequences are a valuable data type for game analytics as they provide not only the fre-

quency of events but also the temporal order in which those events occurred. The most pop-

ular unsupervised approach for analyzing player action sequences is Sequential Pattern Mining

(SPM) [52, 42, 46]. However, these techniques are memory- and time-consuming for large datasets

or long sequences [74].

25

A combination of frequent sequence mining and clustering can be used to visualize common

subsequences of player actions [42]. [40] created sequences of user keyboard input and mouse

movement and extracted the repetitive patterns within games using Lempel–Ziv–Welch (LZW)

compression-based algorithms. [46] applied sequential pattern mining in Starcraft: Brood War at

both the micro and macro level to discover short-term and long-term patterns of player behavior.

In this research, we present a more efficient approach for finding common subsequences of a

sequence group that can handle long sequences with minimal memory consumption and reasonable

execution time. This research demonstrates the usage of our technique to analyze Minecraft player

action sequences.

26

CHAPTER 3: SEQUENCE MINING

Sequence Group Comparison

This section describes our two part approach to analyzing event sequences: 1) distinction mea-

surement, and 2) difference detection. The code for our analytic pipeline is publicly available at

[79].

Sequence Distinction Measurement

Given two groups of sequences, our goal in this section is to measure distinction of these two

groups from each other (i.e. whether they belong to two different clusters) and understand why they

are distinct. Although we explain our analysis procedure for two groups, it is easily generalizable

to more than two groups of sequences.

Sequence to Vector

Our first step in making sequences comparable is converting them to equal length vectors. For

vectorization, we extract a k-gram representation of sequences by moving an overlapping win-

dow with fixed size of w along the sequence to generate n = l − w + 1 subsequences where l is

the length of the sequence. This transformation converts each sequence to a set of ordered sub-

sequences of length w. To be able to compare a k-gram representation of sequences with each

other, we convert them to vectors with equal lengths using the Term Frequency-Inverse Sequence

Frequency (TF-ISF) model. TF-ISF is analogous to the TF-IDF procedure that is used for vector-

izing textual documents (i.e. an ordered list of words) [53]. Term frequency (TF) measures the

27

frequency of every subsequence in a sequence. Higher frequency subsequences tend to contribute

noise to the similarity computation [1]. One way to avoid this noise is by lowering the weighting

subsequences with higher frequency using inverse sequence frequency (ISF). If there is a subse-

quence that is shared between most of the sequences, this subsequence may be less important in

understanding differences between groups of sequences. The inverse sequence frequency ISFi of

the i-th subsequence is calculated using Equation 3.1.

ISFi = log(N/Ni) (3.1)

where N is the total number of sequences and Ni is the number of sequences that contain the

i-th subsequence. Note that ISFi is a decreasing function of the number of sequences in which it

occurs.

To summarize, in order to create the vector of sequences using TF-ISF model, we first measure the

frequency of each subsequence i (TFi) and then multiply them by ISFi. A subsequence has a high

TF-ISF for a sequence if it appears many times in that sequence and does not appear in many other

sequences [64].

In addition to the TF-ISF model for vectorization, we have a simple binary vectorization method.

In this model, each vector has zero and one values where one indicates the existence of a subse-

quence in the sequence and zero otherwise (i.e. frequencies of subsequences are ignored). Compar-

ing this model with the TF-ISF model is helpful in understanding whether the difference between

two groups of sequences is solely due to difference in the frequencies or whether the subsequences

also differ.

28

Sequence Comparison

To compare two groups of sequences, we need a distance measure and also a metric that tells us the

amount of similarity (or dissimilarity) between two groups. We use cosine similarity and silhouette

score for these purposes, respectively.

Silhouette score is mainly used to measure how well a set of samples is clustered and to compare

the results of different clustering methods or configurations [69]. Silhouette score is used to mea-

sure the relative distinctiveness of two groups of sequence vectors. The silhouette score (Equation

3.4) is calculated using the mean intra-group distance (a(i) in Equation 3.2) and the mean nearest-

group distance (b(i) in Equation 3.3) for each sequence i. To find the distance between sequence

i and group j, the distances between i and all sequences in group j are found, and their average is

calculated.

a(i) =
1

|Gi| − 1

∑
j∈Gi,i 6=j

d(i, j) (3.2)

b(i) =
1

|Gi|
∑
j∈Gi

d(i, j) (3.3)

s(i) =
b(i)− a(i)

max {a(i), b(i)}
, if |Gi| > 1 (3.4)

and s(i) = 0, if |Gi| = 1.

The best value of silhouette score is 1 and the worst value is −1. A score of 1 indicates that two

groups are completely separate. Values near zero show that groups are overlapping. Negative

values generally indicate that sequences of one group will be incorrectly assigned to the other

group. If the silhouette score between the vectors of the two groups is higher, they are more

distinct from each other. We calculate silhouette score to measure the separation between groups

of event sequences.

29

Sequence Difference Detection

The vectorization method explained in Section 3 is good for large-scale comparison of sequences

and reveals the differences in short and exact subsequeneces. However, this vectorization method

is computationally expensive for comparing large subsequences. This section illustrates how we

use matrix profiles to summarize differences between two groups of sequences based on large

subsequences. The matrix profile, introduced by Yeh et al. [96], is used for time series analysis.

The matrix profile is a vector calculated between two time series (similarity join) or one time series

and itself (similarity self-join); for each subsequence of the first time series, the distance is stored

to its closest subsequence in the second time series. The distance between two subsequences is

their Euclidean distance. Matrix profiles have many applications in time series analysis including

motif discovery, discord/anomaly detection, and semantic segmentation [96]. In this study, we

created the matrix profile for discrete sequences.

Yeh et al. [96] applied the matrix profile to DNA sequences but they convert the sequences to time

series first using a method proposed by Rakthanmanon et al. [65]. We extract the matrix profile

directly from discrete sequences. The main difference between matrix profiles on sequences versus

time series is the distance calculation function. Euclidean distance is defined on real values and

thus cannot be applied to sequences. Therefore, we use distance functions designed for discrete

sequences: Hamming distance and Longest Common Subsequence (LCS).

Hamming distance is a simple distance function that calculates the number of mismatching posi-

tions between two sequences of equal length. The Hamming distance calculation is fast with a time

complexity of O(w) where w is the length of its input sequence. The distance matrix calculation

time complexity is O(n2w) if Hamming distance is used.

Longest Common Subsequence (LCS) is a classic dynamic programming algorithm that finds the

30

longest subsequence common between two sequences; w − len(LCS) is the LCS-based distance

metric between two subsequences of length w. LCS time complexity is O(w2) where w is the

length of LCS input sequences. Hence the distance matrix calculation time complexity isO(n2w2).

Using these distance measures, we create the matrix profile of a sequence and itself (similarity

self-join). The first step in the creation of the matrix profile is constructing the distance matrix D

which is a n× n matrix where D[i, j] represents the distance between i-th and j-th subsequences.

For efficiency reasons, Yeh et al. [96] skip calculating the 2-dimensional distance matrix. How-

ever in this study, our main purpose is providing tools that facilitate pattern discovery within and

across sequences, hence it is helpful to store and visualize the 2-dimensional distance matrix. Al-

gorithm 1 shows the distance matrix calculation procedure; distance(i, j) is the distance between

subsequence i and subsequence j which can be calculated using Hamming or LCS-based distance.

ALGORITHM 1: Distance matrix calculation
Input: s: input sequence and w: window size
Output: D: pairwise distance between subsequences

1: l = length(s)
2: n = l − w + 1
3: D = n× n matrix with default values of w
4: r = w/2
5: for i = 0 to n do
6: for j = i+ r to n do
7: d = distance(i, j)
8: D[i, j] = d
9: D[j, i] = d

10: end for
11: end for

The algorithm takes one sequence s and a window size w as input and generates a distance matrix

D. The matrix D is initialized with window size w because this is the maximum distance possi-

ble between two subsequences. To avoid trivial matches for each subsequence si, [96] suggests

excluding a region of length w centered on the starting position of si. Since the distance between

subsequence i and j (D[i, j]) is the same as the distance between subsequence j and i (D[j, i]), our

31

distance matrix is symmetric. For time efficiency, we only calculate D[i, j] and assign it to D[j, i].

After the calculation of distance matrixD, the matrix profile is generated by considering the lowest

value of each row as the matrix profile value of that row (Equation 3.5).

P [i] = min
∀j∈n

D[i, j] (3.5)

Figure 3.1 shows an example of the matrix profile calculation for a toy sequence. In this example,

the sequence length is 13, and the window length is 3. Therefore, distance matrix is an 11 × 11

matrix (n = l−w+1 = 13−3+1 = 11), summarizing the pairwise distance between subsequences.

The matrix profile is calculated by finding the minimum distance to other subsequences for all

subsequences.

We calculate the similarity self-join matrix profile for all sequences in the dataset. Characteristics

of these matrix profiles such as minimum, maximum, and variance reveal interesting properties of

the sequences including motif positions, discord positions, and sequence complexity [96].

Contrast Motif Discovery

This section introduces our approach for finding the top c most abundant motifs for the group of

sequences. Then, we discuss our procedure for refining motifs to discover the contrasting ones.

Motif Finding

In order to find the initial set of candidate motifs, we use a modified SnippetFinder algorithm,

which was designed to detect snippets in time series [35]. The SnippetFinder algorithm uses a

32

Figure 3.1: Matrix profile calculation example. From the event sequence, first the distance matrix
is calculated. This is a 2-dimensional matrix representing the distance between each pair of subse-
quences of length 3 (= window length). The matrix profile is calculated by selecting the minimum
value of each row in the matrix which represents the distance to the closest subsequence.

33

single time series, rather than a discrete event sequence. The main building block of this algorithm

is the matrix profile, a vector of real-valued numbers representing the pairwise distance between

subsequences of two sequences [96]. Since our goal is to extract common subsequences shared

across multiple discrete sequences, we made modifications to the SnippetFinder algorithm. Our

motif finding approach is presented in Algorithm 2. The set of subsequences that are produced by

the algorithm are used as the candidate motifs.

ALGORITHM 2: Candidate motif finding algorithm
Input: S: input sequences, c: number of candidate motifs and w: window size
Output: M : top c snippets of S

1: Remove short sequences from S
2: pm = list of all possible motifs of length w in S
3: P = collection of profiles between pm and S
4: m = size(pm) (i.e. number of possible motifs)
5: l = profile length
6: Q = array of length l initialized with inf
7: M = empty array to store candidate motifs
8: while size(M) < c do
9: min area,min idx,min motif = inf,−1, None

10: for i = 1 to m do
11: cur motif = pm[i]
12: e = element-wise min between P [i] and Q
13: cur area = sum(e)
14: if cur area < min area then
15: min area = cur area
16: min idx = i
17: min motif = cur motif
18: end if
19: end for
20: Q = element-wise min between P [min idx] and Q
21: Add min motif to M
22: end while

The algorithm takes the list of sequences (S), desired number of motifs (c) and window size (w) as

input and outputs a list (M) containing c candidate motifs. As a data preparation step, sequences

shorter than the window size are removed from the list, since it is impossible that they contain

motifs of length w. The list of all possible motifs (pm) is created by moving an overlapping

34

window of size w along all sequences. Then the matrix profile of every possible motif is created.

This matrix profile contains one value for every sequence which represents the distance between the

possible motif and the sequence. The matrix profile length (l) is the length of the profile for each

possible motif which is equal to the number of sequences. The distance between one sequence

and a possible motif is the minimum value of the sequence profile (i.e. the minimum distance

between the possible motif and subsequences of the sequence). In this study, LCS distance is used

to measure the distance between subsequences. LCS distance (LCS distance = window size −

LCS score) is based on the well-known Longest Common Subsequence (LCS) algorithm.

After creating the collection of profiles (P), the next step is to find the candidate motifs. The

algorithm iteratively finds candidate motifs and continues to look for new candidates until it reaches

the user-specified number of motifs. In Algorithm 2, Q is an array that stores the element-wise

minimum values of the profiles related to candidate motifs so far. This array is initialized with

inf values and is used in successive iterations to find candidate motifs in new sequences. In each

iteration, the algorithm loops over possible motifs to determine which of them has the minimum

area under the e curve. The e curve shows how close the possible motif is to the sequences for

which no motif has been discovered. The algorithm stores the candidate motifs in a list (M),

which is the output of the algorithm.

Running this algorithm requires O(w2n2) time; where n is the total length of input sequences.

Since w, which is the motif length, is a small constant number, it can be disregarded. Therefore,

the time complexity of this algorithm is O(n2).

Motif Refinement

Algorithm 2 generates a list of candidate motifs for a group of sequences. Since our goal is to dis-

cover contrasting motifs that are more similar to their group while being distant from other groups,

35

we need to filter candidate motifs of each group. This is a subgroup discovery task: identifying

interesting subgroups of objects with respect to a particular feature. A subgroup of objects is in-

teresting when the feature values within the subgroup differ in a statistically significant way from

the feature values of the other objects [44]. In this study, we constructed interesting subgroups of

motifs using a Mann–Whitney U test. Motifs are only selected 1) if the average distance to the

sequences in their group is lower than the distances to the sequences from other groups and 2) this

difference is statistically significant (i.e. the Mann–Whitney U test has a p-value lower than 0.05).

Our algorithm does not assume that motifs exist in all sequences of the group, but it detects the

motifs that are closest to all sequences of that group.

Chapter Summary

In this chapter, we introduced two novel sequence mining approaches that can be utilized to study

differences between groups of discrete sequences. The first approach is based on analyzing sil-

houette score and various statistics related to aggregated matrix profiles of sequences. The second

approach is capable of finding short subsequences that are significantly closer to one group of se-

quences compared to others. Comparing these short subsequences gives us a better understanding

of what distinguishes the groups of sequences. In Chapters 5 and 6 we discuss the applications of

these approaches in GitHub and Minecraft.

36

CHAPTER 4: GITHUB DEVELOPERS AND TEAMS

Discovering GitHub Developer Archetypes

GitHub repositories typically have several developers working on the project as a virtual team.

However open source projects hosted on GitHub can be downloaded and copied thousands of

times, spawning an ecosystem of related repositories. Agent-based models are a powerful tool for

predicting population level behaviors; however their performance can be sensitive to the initial sim-

ulation conditions. To create a versatile agent-based model for simulating large-scale usage trends

of the GitHub collaborative development tool we proposed a procedure for initializing agent-based

simulations in which the population is abstracted into a set of archetypes. Although it is possible

to predict usage trends on GitHub using purely machine learning approaches [10], we believe that

a hybrid approach of agent-based modeling and data mining is more promising, enabling us to

explore a richer range of community interactions.

One challenge of modeling developer behavior is that GitHub has become popular as a general pur-

pose hosting and communication tool for myriad types of efforts, ranging from personal software

archives to large open source projects with millions of users. Many repositories are not directly

related to software development but are instead used to curate document collections [94]. Pre-

vious studies of computer-supported cooperative software development have attempted to survey

the developers to understand the differences between individual contributors vs.rockstar program-

mers and popular curators [9]. There is a large amount of variability in the usage rates of GitHub,

with some developers submitting hundreds of changes in a month, but with most users remaining

completely dormant or passively observing.

Expressing the diversity of the user population within a single agent-based framework is demand-

37

ing. Rather than relying on existing taxonomies of user behavior created from survey data, we

extracted the archetypes from the user’s contribution history from the most stable clusters found

by k-means clustering. This approach also has the advantage of simultaneously producing the

relative distribution of each archetype across the developer population, along with the monthly

activity. Our results show that our archetype extraction and simulation initialization procedure

produces more accurate predictions of population behavior, as measured by the Gini coefficient of

contributor activities.

Our experiments examine three questions:

1. do stable clusters exist across consecutive months in the partitioned GitHub data?

2. does the ABM configured with the extracted archetypes outperform the simple mean model?

3. are archetypes extracted from more stable clusters better than those from less stable clusters?

Our dataset consists of all GitHub users and repositories created before March 2017 along with the

activity data from January 2015 to February 2017. We divided 26 months of data into 20 months

for training the clustering and 6 months for testing the simulation. There are approximately seven

million users with at least one activity during the training period, but we restrict our analysis to

the three million users with greater than ten total activities. The GitHub activity dataset consists of

14 event types: CommitComment, Create, Delete, Fork, Gollum, IssueComment, Issue, Member,

Public, Pullrequest, PullrequestReviewComment, Push, Release, and Watch.

We created activity profiles of GitHub users using the average monthly activity per event type

to be used as clustering features. Since GitHub users have a wide range of activity levels, first

we partitioned users based on their average monthly activity and then clustered each partition

separately. Table 4.1 shows the number of users in each partition.

38

Table 4.1: GitHub user partitions

Partition Average monthly activity Number of users
1 (0,10] 1.4M
2 (10, 100] 1.5M
3 (100, 1K] 44K
4 (1K, 10K] 741
5 (10K, inf] 69

Since the range of values for different event types varies widely, we normalized features by scaling

them to lie between zero to one. We clustered each partition separately using k-means but restricted

our analysis to partitions with greater than one hundred users.

Cluster Stability

One question is whether clustering the data from different time periods yields the same archetypes.

Are the data-driven archetypes more sensitive to monthly activity fluctuations than archetypes de-

scribed in survey studies? To examine this question, we performed a cluster stability analysis to

measure whether similar clusters are observed from month to month. Similarity is computed be-

tween clusterings of consecutive months, and the stability score is the average similarity score of

all consecutive months [85]. The Adjusted Rand Index (ARI) is used to measure similarity be-

tween clusterings. ARI is 1.0 when clusters are identical and close to 0.0 for random labeling [33].

The following procedure is used to calculate stability score for each k value:

39

Given a set M = m1,m2, ...,mn of monthly user activity profiles in the training months,

the k-means algorithm takes the number of clusters, k as input:

1. For k = 2, ..., kmax

(a) For i = 1, ..., n

Cluster data of mi into k clusters to obtain model CMi and clusters Ci

(b) For i = 2, ..., n

Cluster data of mi using CMi−1 to obtain clusters C ′i

(c) Compute stability as the mean similarity between clustering Ci and C ′i

Stability(k) =
1

(n− 1)2

n∑
i=2

Similarity(Ci, C
′
i) (4.1)

2. Choose the parameter k that gives the highest stability:

K = argmax
k
Stability(k) (4.2)

We examined the stability of the clustering across consecutive months. Table 4.2 shows the stability

score for k-means clustering with k = 3, ..., 9 in all 4 partitions. k values of 4, 3, 4, and 3 generate

the most stable clusters for partition 1, 2, 3, and 4 respectively. Partitions 1, 2, and 3 definitely

exhibit stable clusters as their best stability scores exceed 0.9.

Figure 4.1 illustrates cluster centroids for the partition of users that have between 1K and 10K aver-

age monthly activity. The cluster on the right contains users users who perform most of their tasks

individually as their dominant activity is push event. The middle cluster corresponds to the users

who not only perform individual work by submitting push event, but also participate in collabora-

tive activities such as commenting on issues and pull requests. The cluster on the left is related to

users who have managerial roles as they mostly engage in coordinating and administrative activi-

40

Table 4.2: Stability score for different partitions

Clusters 0-10 10-100 100-1K 1K-10K
3 0.931 0.996 0.920 0.685
4 0.949 0.988 0.928 0.671
5 0.912 0.919 0.841 0.557
6 0.825 0.989 0.867 0.604
7 0.795 0.934 0.751 0.594
8 0.791 0.974 0.796 0.577
9 0.769 0.973 0.617 0.571

ties such as reviewing pull requests, releasing the software, and creating development branches in

addition to discussing issues and pull requests.

Archetype Model

The clustering results were then used to initialize the archetypes included in our agent-based model

of GitHub repository contribution, developed on NetLogo 6.0.2 [92]. General User archetypes

were created using the best and second best clusters from partitions 1 to 4 in Table 4.1. Hyperactive

Users were defined by aggregating the event activity profiles of the 69 users in partition 5 into mean

frequency per event type. Accordingly, the cluster size for Hyperactive Users was set equal to the

count of users in partition 5.

Using the above archetypes, a scaled-down agent-based model was constructed. Two agent breeds

were modeled: 1) Users and 2) Repositories. Repositories were considered a non-active breed of

agents that kept track of contributions made by User agents. User agents were allowed to perform

one out of a set of actions, U , that reflected actual GitHub events plus the event Idle for the case that

a User did not perform an event during that time step. Since activity was partitioned on monthly

basis, the per minute frequency of a GitHub event (UGH
j : UGH = U − Idle) being triggered by a

41

General User (ai : i <= 16) was referred to as FUGH
j ,ai and calculated as:

FUGH
j ,ai =

AUGH
j ,ai

43200
(4.3)

For General Users, FUGH
j ,ai < 1 and was modeled as the probability that a user of archetype ai

would trigger a GitHub event UGH
j in a discrete simulation time step. Accordingly, each discrete

time step was used to represent a minute. Hyperactive Users were modeled as triggering FUGH
j ,a17

where FUGH
j ,a17 > 1 such that many events of type UGH

j were generated per simulation time step.

This difference in event triggering could have been accommodated by modeling simulation time

steps as milliseconds but was performed to reduce the runtime of the simulations to a computa-

tionally feasible limit. The model was scaled down by 1000th of the population size of GitHub in

the training data and cluster sizes.

In addition to the rate at which Users performed events of different types which was informed

by the clustering results, there was the question of modeling the target repository for each event.

To handle this, we obtained the mean number of repositories a user would interact with during

a month from the data (mean = 3.6, st.dev = 37.046). These values were used to calculate the

maximum number of repositories a user would work with in the simulated month, µ, through a

gamma distribution (α = 3.62

37.0462
, λ = 3.6

37.0462
).

Users maintained a list of familiar repositories. Each simulation time step, a user agent selected

a behavior to perform based on the event frequency defined by its archetype. If this event was a

contribution event, one of the repositories in its contribution list would be selected as the target of

this event. If, in a simulation time step, a user decided to perform a Watch or Fork event, the user

chose σ repositories at random from the repository population and selected the repository with the

highest sum of Forks and Watches from this subset as the target for this action. This repository

42

Figure 4.1: Cluster centroids for users with more than 1000 and less than 10,000 average monthly
activity

would then be added to its list of familiar repositories, displacing a repository already in this list at

random if the list was already at capacity µ.

Some key ABM parameters were directly inferred from statistics of the training data. New Users

were injected into the simulation at a probability of 0.008 per time step. Create events generated

new repositories at a probability of 0.481955 as actual create events can result in repositories,

branches and tags.

GitHub events can be grouped into three general categories: contributions, watches, and forks

(copies). To evaluate the simulation performance of our extracted archetypes, we ran several con-

figurations of the agent-based model. The baseline (Configuration 0) models the entire population

using the mean event frequencies. Configuration 1 uses the archetypes from the most stable clus-

tering result on each partition, yielding 15 archetypes (14 General Users and 1 Hyperactive User).

Configuration 2 used the second best clustering results yielding 17 archetypes. The simulations

were run for 43200 time steps, simulating a month of GitHub activity with σ ∈ 1, 2, 4, 8, 16, 32.

Each configuration was repeated ten times to obtain aggregate simulation results.

43

Figure 4.2: Error of Gini Coefficient for Users. Configuration 0 (without cluster information)
performs badly at predicting the dispersion of contributions across users. Configuration 1 (most
stable cluster) is the best performer yielding a small improvement vs. using the second most stable
cluster to initialize the archetypes.

Figure 4.3: Error of Gini Coefficient for Repositories. Configurations 1 and 2 (cluster based
archetypes) yield slightly better performance. However, the ad hoc heuristics used by the sim-
ulation for repository assignment do not perform as well at allocating events across repos.

44

Although our ABM is designed to answer questions about many types of GitHub trends, we are

particularly interested in accurately modeling the relative activity levels of users and repositories

since these are core aspects of the ABM that affect many population-level trends. Our experi-

ments measure the absolute error of different initial archetype populations at predicting the Gini

coefficient over one month of test data. Rather than looking at the errors of specific event types,

we group the events into meaningful action categories: 1) contributions, 2) watches, and 3) forks.

Figure 4.2 shows the performance of the cluster-based archetypes at predicting the Gini coefficient

over user contributions for one month of test data. We also study the performance of our repository

allocation heuristics at predicting the Gini coefficient over repository activity (Figure 4.3).

The stable cluster-based user archetypes outperform the baseline and the less stable clusters at

predicting the dispersion of activity across users. These archetypes offer slight improvements in

calculating the dispersion across repos, however the heuristics for repo assignment do not perform

as well.

GitHub Team Productivity

Data Set

The data set used in this study contains all GitHub events from January 2016 to June 2017. From

this data set, we selected software repositories created in January 2016 and included only those that

had more than 20 work events and at least two members in the team formation phase. We measured

size of the teams, once more, in the evaluation period and removed the repositories with less than

two members. Our final data set included 20,370 active repositories and the 59,178 unique GitHub

users contributing to those repositories in the evaluation period.

45

Figure 4.4: Distribution of work per person per month (A) and transformed distribution of work
per person per month (B).

Team Performance Evaluation

First, we examine the characteristics of the work event data during the performance evaluation

period. Performance is defined as the amount of the work teams completed per person in the

evaluation period. Figure 4.4A shows that the distribution of work per person is a heavy-tailed

distribution. A log transformation on work per person was applied to decrease the variability of

this measurement. The transformed distribution is a normal distribution with a mean and variance

of 2.05 and 0.37, respectively (Figure 4.4B). We considered the log transformed values of work

per person representative of team productivity. To categorize teams based on their productivity, we

used the median of team productivity (= 2.0) as our threshold and labeled teams as high-performing

if their productivity was greater than the threshold and low-performing otherwise.

Our unit of analysis is based, in part, on the size of the team during the performance evaluation pe-

riod. Figure 4.5 provides the histogram of team sizes in our data during the performance evaluation

period.

46

Figure 4.5: Team sizes in the performance evaluation period.

Evaluation Period Team Sizes

For additional analyses, we grouped teams based on their size: teams with three or fewer members

were considered small, teams with between four and six members were considered medium, and

teams with seven or more members were categorized large. Vasilescu et al. [83] used higher

thresholds to categorize teams in software repositories on GitHub. However, given the short life

span of the repositories we studied, we determined these thresholds were more appropriate to

capture differences in processes and outcomes across team sizes. The number and the proportion

of teams in each group is provided in Table 4.3. In the performance evaluation period, more than

half of the repositories in our data set were maintained by small teams and less than a quarter were

maintained by medium-sized teams. Large-team repositories made up less than five percent of the

data.

Figure 4.6A shows the performance of teams of different sizes; teams with two members have

47

Table 4.3: Proportion of teams by team size.

Group Size Proportion Frequency
Small [2, 3] 70% 14261

Medium [4, 6] 24% 4951
Large [7, inf) 6% 1157

Figure 4.6: Performance of teams by size (A) and high- and low-performing teams by team size
groups (B).

slightly higher performance compared to teams with three, four, or five members. Given that most

contributors do very little work in GitHub repositories [84], this finding is not particularly surpris-

ing. Figure 4.6B shows the number of high- and low-performing teams in each team size category.

Interestingly, there are more high performers than low performers in the large team size group.

This suggests that, in our data set, large teams are likely engaged in more frequent interactions and

potentially more effective collaborations leading to the production of more communications and

code artifacts (i.e., more work events per person).

48

Work Centralization

To examine the distribution of work underlying the performance differences observed across team

sizes, we calculated the amount of work centralization in teams using the Gini coefficient. The

Gini coefficient is a measure of inequality, where 0 represents perfect equality and 1 represents

maximum inequality. We use it to analyze the inequality of work events per person. More specif-

ically, a higher Gini coefficient suggests that a smaller set of team members do most of the work;

that is, work is centralized to a fewer number of members in the repository. Figure 4.7 provides

distributions for the Gini coefficient values of teams in the performance evaluation period. High-

performing teams have a higher Gini coefficient compared to low-performing teams, regardless

of team size. The difference between the Gini coefficient of low- and high-performing teams is

greater in large teams compared to small and medium teams. This finding provides support for the

importance of work centralization for performance in OSSD in GitHub [36]. Our results suggest

that work centralization is linked to increased overall productivity in software repositories and is

particularly important for collaborations in large teams.

Work Style Clusters

GitHub users and teams behave differently and clustering them can express their diversity [70]. To

find pattern of activities of teams and discover various work styles on GitHub, we clustered teams

using the k-means clustering algorithm applied to the proportion of different types of work events.

The number of teams in each of the three work style clusters is provided in Table 5.3 and the cluster

centroids are plotted in Figure 4.8. Based on the proportion of events in work style clusters, we

labeled them as: toilers, communicators, and collaborators.

Toilers produce a higher proportion of push events compared to communicators and collaborators

49

Figure 4.7: Distribution of Gini coefficients for all teams (A) and distribution of Gini coefficients
by team size and performance (B).

Figure 4.8: Proportions of events by work style cluster.

50

Table 4.4: The mean and standard deviation of different work events for toilers, communicators,
and collaborators.

Work style cluster Toilers Communicators Collaborators
Number of teams 15264 3219 1886

Push
mean 79.61 68.61 91.60
std 118.19 143.40 128.98

Merged PR
mean 0.55 14.93 23.12
std 4.53 47.79 45.15

Issue comment
mean 0.86 109.72 17.31
std 4.61 477.73 35.62

PR review comment
mean 0.09 41.12 5.65
std 1.51 142.60 19.54

but have limited, if any, communication taking place in GitHub. This may reflect a failure to engage

in explicit coordination but it is also possible that these teams use alternative communication chan-

nels, like Slack 1 and Discord 2, to coordinate their contributions, as past research has shown [78].

Although toilers focus on code contributions, they generally do not accept external contributions,

unlike the other two work style groups. Communicators produce a higher proportion of comment

events, and collaborators produce a higher proportion of pushes and merged pull requests.

For additional analysis, we calculated the average number of each event type for different work

styles (Table 5.3). Overall, collaborators have the highest level of productivity in terms of internal

and external code contributions (pushes and merged pull requests, respectively) whereas commu-

nicators have the highest level of productivity in terms of explicit coordination. Although toilers

devote the majority of their effort to code contributions, they still have, on average, a lower number

of pushes compared to collaborators.

1https://slack.com/
2https://discordapp.com/

51

Figure 4.9: The performance of different work styles and team size groups.

Work Style and Performance

Figure 4.9 shows the number of high- and low- performing teams in each work style cluster. Nearly

75% of the teams in our data are in the toilers cluster. Of this subset, the majority of them were

low-performing teams. This suggests that a lack of communication within GitHub is indicative of

poor performance. Although toilers could be communicating outside the GitHub ecosystem, the

fact that they did not perform relatively well suggests that direct communication within GitHub

(e.g., issue comments) may help overall team performance. This is illustrated when we look at the

communicators and collaborators clusters. For the communicators, we see a relatively more equal

distribution of comments proportional to the amount of work done. For the collaborators, there

is relatively more communication compared to the toilers. And, proportionate to the amount of

other activity, they also accept more pull requests than any of the other clusters. In the communi-

cators and collaborators clusters, the majority of teams are high performers. This effect is more

pronounced for large teams and, to a lesser extent, medium teams compared to small teams.

52

Team Feature

We extracted team features based on event data in the team formation phase.

• Relative frequency of work events is the ratio of the number of each work event to the total

number of work events. This feature allows us to evaluate the type(s) of work undertaken

during team formation.

• Work events per person is the number of each work event divided by the number of team

members. We used this feature to evaluate the amount of work, or productivity of contribu-

tors.

• Burstiness measures the temporal correlation of activities within a team and defined as equa-

tion 4.4; where µτ and στ are mean and standard deviation wait times P (τ).

Burstiness =
στ − µτ
στ + µτ

(4.4)

An analysis of burstiness reveals the presence of increased, synchronized activity in a team

and is linked to effective collaborations and improved team performance [66].

• Issue labeled proportion is the proportion of issues in the repository that are labeled. Be-

cause issue labels are one way that developers can organize their work and communication

on GitHub, we use this feature to evaluate the use and organization of cognitive artifacts by

the team.

• Team size is the number of team members in the repository during the team formation phase.

This feature was used to assess the importance of the team’s size early on in its development.

Our goal is to understand the impact of team formation phase on the evaluation period. Figure

53

4.10 illustrate the team formation phase features that are linked to performance of teams in the

evaluation period; that is, the features predictive of success. Across each of these, t-tests show that

the p-value is less than 10−10 in all features represented in figure 4.10. More specifically, these

features identified during the formation phase, and indicative of the type of work norms created

during formation, are significantly related to higher performance during the evaluation phase.

Types of Activity

Large-team repositories have a higher proportion of coordination events (i.e., issue comments in

figure 4.10B) and collaborative work events (merged pull requests in figure 4.10C). Conversely,

these repositories have a lower proportion of internal contribution events (pushes in figure 4.10A).

High-performing teams have a lower proportion of push events and a higher percentage of coordi-

nation events. In other words, high-performing teams exhibit higher levels of coordination. Issues

in GitHub repositories can be used to develop an understanding of the problem at hand and the

work needed to resolve the problem, and also offer a space for the discussion and evaluation of po-

tential solutions and strategies to address needs of users and the project. The larger proportion of

issue comments in high-performing teams shows that dissections of issues are helpful in improving

the productivity of the teams. In contrast, low-performing teams have a lower proportion of coor-

dination events and a higher proportion of contribution events. This suggests that these teams are

primarily focused on their work output and spend less time on coordination and communication.

Fitting with the team cognition literature [20], this may lead to a failure to evaluate alternatives and

the premature selection of solutions.

54

Burstiness

Overall, we observe a higher amount of burstiness in high-performing teams and a lower amount

of burstiness in low-performing teams. Interestingly, this difference in high- and low-performing

teams is consistent across team sizes. This suggests that high-performing teams, in general, interact

more frequently and their activities are highly-synchronized.

Issue Labels

Figure 4.10F shows that proportion of labeled issues is generally higher for high-performing teams

than it is for low-performing teams. This is particularly true for medium and large teams and less

noticeable in small teams. Again, this finding supports the claim that larger teams require more

coordination mechanisms to function effectively. This suggests that, as a classification system for

artifacts, the consistent use of issue labels may scaffold collaborative problem-solving processes

[21] and thus support the productivity of software development teams in GitHub. More specifi-

cally, in line with team cognition theory on complex problem solving [19], issue labels provide

support for information-gathering and knowledge-building activities of current and prospective

team members.

Chapter Summery

In this chapter, we conducted an in-depth analysis of GitHub users and teams. To enhance our

understanding of GitHub users, we aimed to discover user archetypes by finding stable clusters over

time. Additionally, we studied GitHub teams by analyzing various aspects of their performance

such as productivity and work centralization. We discovered GitHub team work styles based on

the proportion of their work activity.

55

Figure 4.10: Team formation phase features by team size and performance group.

56

CHAPTER 5: GITHUB HUMAN-BOT TEAMS

This chapter presents research examining the effects of bots on software development team pro-

cesses and outcomes through an analysis of the event distributions and sequences generated in

GitHub repositories. We studied human-bot and human-only teams on GitHub from different as-

pects including outcome of these two types of teams and their processes.

GitHub Human-Bot Teams Outcome

In this section, we explain our dataset of human-only and human-bot teams, and discuss the effect

of bots on the relative productivity level of teams, both in terms of work events completed and

speed of issue closure. In addition, we examined differences in work centralization and event

distributions between bot-human teams and human only teams. Finally, to investigate how the

presence of bots within the team affects the style of work completed by humans on the team we

clustered the teams based on their activities.

Data Set

Many studies of software development in GitHub focus on large, mature projects. We contribute

to this body of work by, instead, considering the effects of bots in projects with different sizes of

the same age. To do this, we selected software repositories created in January 2016 if they were

active (at least 20 work events) in the first six months after their creation and had more than two

human team members. To evaluate these teams, we examined 13 months of their work events after

creation. We considered a GitHub user a member of a team if they have completed at least one of

the following: one push event; five accepted pull requests; ten issue comments; or ten pull request

57

review comments. This dataset contained a total of 20,119 software development repositories.

Past research establishes the relationship between team size and performance differences in OSS

projects [68, 38]. Because of this, we grouped teams according to size prior to analysis. We

classified teams as small if they had two or three members, medium if they had between four and

six contributors, and large if they had seven or more members. In our sample, we identified 304

(1.5%) teams that had at least one bot. Of this subset, 280 teams had 1 bot, 21 teams had 2 bots,

and 3 teams had 4, 8, and 12 bots.

Bot Identification

It is not possible to detect all automated activity on GitHub (e.g., if they use regular user accounts

to perform actions) and it is beyond the scope of this research to perform an exhaustive search for

all automation in work events. In our data set, an account is considered a bot if its type is set to Bot,

its name ends with ’-bot’, and/or it has repeated identical comments. Some of these bots are those

that are provided for developers through the GitHub Marketplace1, the platform’s online store for

development tools. GitHub Apps, which are official GitHub bots, allow users to automate and

improve their workflow. Users can build, share, or sell their Apps on GitHub Marketplace. GitHub

Apps can be used for different phases of the development process, from continuous integration to

project management and code review.

Control for Developers Expertise

Since our research is focused on studying the impact of bots, we control for expertise to make sure

the obtained results are not due to team expertise. To control for the expertise level of the teams,

1https://github.com/marketplace

58

Table 5.1: Number and percentage of human bot teams across team sizes

Team Size # human teams # human-bot teams
Small 153 128
Medium 96 84
Large 55 92

we extracted an expertise vector for every team member comprised of 1) number of followers

2) number of following 3) number of public repositories owned by the developer 4) GH-impact

score (a measure of influence on GitHub). A developer has a GH-impact score of n if they have

n repositories with n stars. To compare teams, we summed the expertise vectors of team members

to measure total expertise of the team. To balance our dataset in a way that human only teams

have the same level of expertise as human-bot teams, for each human-bot team, we found the most

similar human only team with respect to their expertise vector and downsampled human teams to

304 teams corresponding to the 304 human-bot teams. To avoid dominance of variables with large

values to be determinant of similarity, we normalized expertise vectors to lie between zero and one

before similarity calculation.

Table 5.1 shows the number of teams for different team sizes in addition to the number and per-

centage of human-bot teams after downsampling human teams.

Team Productivity

Prior studies have measured the amount of work performed by GitHub teams by counting the

number of push events [59]. This approach works for repositories that have the shared repository

development model in which team members are granted push access. However, many large open-

source repositories have the fork and pull model in which all GitHub users are allowed to fork

the repository, make changes and send a pull request to submit their contributions. To account for

59

these repositories, in addition to push events, we included the number of accepted pull requests

in the work of the team. Moreover, we believe that the communications between team members

about code development are an important component of teamwork. Therefore, we included these

types of comments in the tally of work. Thus in order to measure the total work of a team, we

tabulated a subset of the GitHub events for the team repository: push, issue comment, pull request

review comment, and accepted pull request.

For each team, we then calculated work per human (i.e. total work divided by the team size) to

measure the productivity of the team. For this analysis, we removed the events associated with the

bot accounts. Teams were then grouped according to size. We considered teams as small if they

had two or three members, medium if they had between four and six contributors, and large if they

had seven or more members. Figure 5.1 illustrates differences between productivity of human-bot

teams versus human teams. Human-bot teams are more productive regardless of their team sizes. A

Mann-Whitney U test shows that the p-value is less than 10−2 for team productivity in Figure 5.1.

Therefore, as measured by the generation of GitHub events, the productivity of human-bot teams is

significantly higher than the productivity of human teams. This indicates that the bots are affecting

the work process by modifying the type of events executed by human team members rather than

reducing their overall quantity.

In order to understand the role of bots in teams we looked at the events they perform. Figure 5.2

shows that a high proportion of the bot generated events are issue comments. This indicates that

the bots serve the important purpose of documenting the activity of the human team members.

Figure 5.3 shows the event distribution of teams. Human-bot teams not only perform more push

events but also have more issue comments. Overall this suggests that the bots function as facili-

tators for the software release process (through push events) while documenting the code changes

through comment events.

60

Figure 5.1: Human-bot teams are more productive than human only ones, as measured by genera-
tion of work events.

Work Centralization

We aim to understand how distribution of work among team members is associated with team

productivity. To quantify work centralization among team members, we computed the Gini coef-

ficient. The Gini coefficient is one of the most commonly-used metrics to capture inequality of

income distribution in economics [13], but has been adapted to study inequalities more generally.

There are different ways to compute the Gini Coefficient. We computed the Gini coefficient using

equation 5.1, which is Relative Mean Absolute Difference; where xi is the work of person i, and

there are n persons.

61

Figure 5.2: The average number of events performed by each bot, broken down by event type.

Figure 5.3: Difference between events that teams with and without bots perform.

G =

∑n
i=1

∑n
j=1 |xi − xj|

2
∑n
i=1

∑n
j=1 xj

(5.1)

The Gini coefficient, represented in the range of [0, 1], is 0 if all team members perform an equal

amount of work and the coefficient increases with the increase of the skewness in the work distri-

62

Figure 5.4: Work centralization of human-bot teams versus human teams

bution among team members.

Figure 5.4 illustrates work centralization of teams. When examining the distribution of work across

human team members, we observe differences between human-bot teams and human teams, and

that difference is consistent for small and medium team sizes. That is, human-bot teams have a

higher Gini than human teams in small and medium team sizes. Mann-Whitney U test shows that

this difference is significant (p-value < 0.003) for small and medium teams. The presence of bots

is related to greater disparity in work distribution among contributors. This indicates that the bots

are not serving the function of spreading the work more evenly across the developers. However,

for large teams, there is no significant difference between work centralization of teams with or

without bots.

63

Survival Analysis of Issue Closure

GitHub repositories include an issue handling infrastructure. Within this, developers and end users

can report a bug, provide a feature request, etc. An issue is opened when further discussion is

needed. This includes requesting more information and responding to questions posed in the is-

sue. GitHub users engage in discussion around the issue by commenting on it (i.e., creating issue

comments linked to the issue in question). The issue is closed when the problem or request is

resolved or otherwise addressed. Issue closure rates thus reflect the speed with which teams re-

solve problems and can be used to assess issue support quality, an important indicator for process

performance [36]. We performed survival analysis on issues to evaluate the issue support quality

provided by teams in our sample of software repositories.

The repositories we studied were active at the time of data collection. As a result, it was likely that

they had issues that were open when the data was collected but these issues may have been closed

after our data collection. Therefore, these issues are considered to be censored. Survival analysis

is designed to make use of censored data to make inferences. Survival analysis is based on the

expected time duration until the event of interest happens.

Consider T to be a random variable that represents the time that it takes for an issue to be closed in a

specific repository. Probability density function (pdf) of f(t) and cumulative distribution function

(cdf) of F (t) can be used to characterize the distribution of random variable T ; where f(t) is the

number of issues closed at time t and F (t) is the number of issues closed until time t. The cdf

function can be defined as F (t) = P (T < t), which is the probability that the issue is closed in t

days. F (t) gives us the proportion of the issues that are closed in less than t days. Survival function

S(t) (equation 5.2) gives us the probability that the issue has not been closed until time t. In other

64

words, S(t) gives us the proportion of the issues that are closed after t days.

S(t) = 1− F (t) = P (T ≥ t) (5.2)

Survival function S can be inferred from function f but since f is not available, we have to estimate

S from data. We used a non-parametric method called the Kaplan-Meier to estimate the survival

curve [41]. Equation 5.3 is how survival function estimated in the Kaplan-Meier method.

Ŝ(t) =
∏
i:ti≤t

ni − di
ni

(5.3)

where di is the number of issues closed at time ti and ni is the number of issues still open just prior

to time ti.

Among the 238 teams that had at least five issues, 126 of them had bots and 112 of them did not

have bots. Figure 5.5 compares the issue closure response time in human-bot teams vs. human

teams. Human-bot teams have similar issue closure rate across different team sizes. In small and

medium size teams, human-bot teams are slower at closing their issues.

To further investigate the reason for slower issue support in human-bot teams, we looked at the

median number of issues. Our results show that human-bot teams have significantly higher number

of issues compared to human teams. Table 5.2 shows the average number of issues for each team

type across all team sizes. The reason for having higher response time to issues could be having

more issues to address.

65

Figure 5.5: Issue closure of human-bot teams versus human teams

Work Style Clusters

There is large variability in event distributions of different users and teams on GitHub [70]. To

summarize activity patterns of teams, we clustered them and discovered different work styles for

these teams. For each team i, we extracted four features, which are the proportion of each work

event performed by human members of the team, fij ,

fij =
wij
Ti

(5.4)

where j ∈ {Push, IssueComment, PRReviewComment,MergedPR}, wij is the number of

work event j in the team i, and Ti is the total amount of work in that team. Based on these features,

66

Table 5.2: Average number of issues and median of issue survival days for different team types
and team sizes

Team size Team type # of teams Avg. # of issues Median of issue survival days median
Small Human 39 42 3

Human-bot 65 48 8
Medium Human 43 53 5

Human-bot 55 103 11
Large Human 30 233 11

Human-bot 71 432 9

we clustered teams into 3 clusters using k-means algorithm. k-means is a representative-based

clustering algorithm that relies on distance to cluster data points.

Software development teams employ different work styles on GitHub. In order to discover various

work styles on GitHub, we clustered teams using the k-means clustering algorithm applied to the

proportion of different types of work events. The number of teams in each of the three work style

clusters is provided in Table 5.3 and the cluster centroids are plotted in Figure 5.6A.

Based on our clustering analyses, these GitHub teams could be characterized by the relative distri-

bution of events performed by the team and divided into three groups: toilers, communicators, and

collaborators. Toilers produce a higher proportion of push events compared to communicators and

collaborators but have limited communication taking place in GitHub. This may reflect a failure to

engage in explicit coordination but it is also possible that these teams use alternative communica-

tion channels. Although toilers focus on code contributions, they generally do not accept external

contributions, unlike the other two work style groups. Communicators produce a higher propor-

tion of comment events, and collaborators produce a higher proportion of pushes and merged pull

requests.

We studied the relative proportion of bot-human teams that fall into each of these work style cat-

67

Table 5.3: Number of bot-human teams in each work style.

Work style # teams # human-bot teams
Toilers 224 148 (40%)
Communicators 61 107 (64%)
Collaborators 19 49 (72%)

Figure 5.6: Clustering analysis of the relative event type distributions of toilers, communicators,
and collaborators (A) and productivity of teams with and without bots, separated by team type (B)

egories. Bot-human teams comprise a higher percentage of the collaborator and communicator

teams than toiler teams. This is unsurprising given that a key difference between the toilers vs.

the other team types is the relative proportion of issue comments. Across work styles, human-bot

teams exhibit higher levels of productivity relative to teams that do not make use of bots (Fig-

ure 5.6B).

68

Impact of Bots on the Outcome of Teams

The presence of bots within a team appears to change the nature of the work that the software

engineers perform in the following ways:

• According to our productivity measure (work-events per human), bot-human teams are more

productive than human only teams.

• Bots are generating a high number of issue comment events. Based on our topic analysis,

these comments can be divided in three categories: actuarial, greeting/guiding, and effi-

ciency.

• Bots are not serving the purpose of distributing the workload across the team, since the

bot-human teams have a high work centralization.

• The effect that the bots have on the issue closure process is complex; the presence of bots

does not yield a clear speedup in issue closure. More issues are documented in bot-human

teams as compared to human only teams.

• According to our team taxonomy, bot-human teams are more likely to be communicators

and collaborators rather than toilers.

Interestingly, bots appear to be serving as an aid to both taskwork (by performing build automa-

tion) and teamwork. Specifically, in addition to automating repetitive tasks, bots supported team

knowledge building and shared knowledge structures among human team members. Bots also in-

teracted directly with contributors to provide guidance for working on a project. These findings

support Fiore and Wiltshire theorizing about the need to disentangle teamwork from taskwork in

human-machine teams [22].

69

Although there are limitations in how much can be inferred from a statistical analysis of event data

without interviewing programmers or analyzing code, we believe that event analysis is an accurate

reflection of programmer interactions within social coding platforms.

Encouragingly, the programmers’ production of work-related events is higher in bot-human teams.

The presence of bots modifies how human team members report and handle problems. Teams with

bots are more diligent about documenting issues, leading to more issues in total being reported,

with bots generating a large numbers of issue comments.

Though many of the bots are relatively simple, there is evidence that bots aid both taskwork and

teamwork, removing the tedium of build management and documenting version changes. However,

it is possible that bots also contribute to information overload for the human users by generating

superfluous notifications of trivial code changes. This may reduce the quality of experience for

software engineers immersed in the coding process. We believe that in order to enjoy the pro-

ductivity benefits of bots, without being overloaded by messages, programmers must employ an

intelligent filtering strategy to eliminate unwanted notifications. A fertile area for future research

is to transition these systems from simple scripts to bots with artificial social intelligence who are

more capable at offering decision-making support.

Sequence Group Comparison

This section describes the results of our analysis procedure for studying the differences between

event sequences of human-bot versus human-only teams on GitHub.

70

Dataset

We used the same subset of GitHub data that explained in previous section for doing our sequence

analysis. We created the team event sequences using all events, sorted by time, performed within

a year of repository creation. Figure 5.7 shows the distribution of sequence lengths for human-

bot teams and the downsampled group of human teams. Human only teams have shorter average

sequence lengths; the variance of the sequence lengths is also smaller in human teams. As demon-

strated in Section 5, sequence length alone is not a predictor of the team type that generated that

sequence.

Figure 5.7: Human-bot teams have longer sequences on average; however this is not a strong
predictor of team type.

Classifying Team Type

In our research, we need to predict which group each sequence of repository events belongs to.

Creating a predictive model requires discriminative features. The approaches discussed in Section

3 and 3 reveal whether the two groups of sequences are different from each other. For a dataset, if

we infer, from the above methods, that two groups are distinct, a model can be trained to predict

the group from the sequences themselves.

71

One of the challenges of the sequence classification problem is that sequences can vary in length.

To use classic machine learning algorithms, we need equal length real-valued vectors. One way

to convert sequences to vectors is using the vectorization methods discussed in Section 3. We use

a k-gram representation for vectorizing the sequences in the dataset before employing a support

vector machine (SVM) model to construct a predictive model.

Our second approach for sequence classification is using deep neural network models. Deep learn-

ing models, unlike classic algorithms such as SVM, do not always require direct vectorization.

These models can have an embedding layer that converts the sequences to real-valued vectors.

We use a Long Short Term Memory (LSTM) model to learn and classify representations for se-

quences. LSTMs have achieved notable success in natural language processing tasks such as ma-

chine translation [80]. Additionally, we test 1-Dimensional Convolutional Neural Networks (1D

CNNs) which excel at learning the spatial structure in input data. CNNs are also used in many

sequence models such as sentence classification and language translation [43, 39].

Our baseline is a simple Logistic Regression model. This model considers the length of the input

sequence as the only feature for the classification task.

We trained and tested three different machine learning models for the team type prediction task.

SVM

We used the k-gram representation of sequences and vectorized them using TF-ISF model. Then,

we trained a SVM model using the implementation available in scikit-learn machine learning li-

brary.

72

LSTM

We used the LSTM recurrent neural network models implemented in Keras deep learning library

[12]. Each event was mapped onto a 32 length real-valued vector. Only the first 1000 events of

each team were considered; long sequences were truncated and short sequences were zero padded.

As discussed in Section 5, the majority of the teams generate less than 1000 events. The first layer

of our neural network is an embedded layer that uses length 32 vectors to represent each event.

The next layer is an LSTM layer with 100 neurons. Finally, we added a dense output layer with

a single neuron and a sigmoid activation function to make 0 or 1 predictions for the two classes:

human team or human-bot team. Because it is a binary classification problem, we used log loss as

the loss function. The efficient ADAM algorithm is used for optimization.

CNN+LSTM

Our CNN+LSTM model used the same architecture as our LSTM model, but with a 1-dimensional

CNN layer and a max pooling layer before the LSTM layer.

For the neural network models we hold out 20% of data for testing and trained the models on

rest of the data. 10% of the training data was used as validation set for tuning parameters. For

the SVM and Logistic Regression models we used 5-fold cross-validation. Figure 5.8 shows

the performance of the different classification models. Our neural network models achieved the

highest F1 scores of 0.79 (precision=0.77, recall=0.82) and 0.77 (precision=0.75, recall=0.80) for

CNN+LSTM and LSTM, respectively; while the SVM model achieved F1 score of 0.74 (preci-

sion=0.66, recall=0.82). Both models have significantly higher F1 score than our baseline model

with F1 score of 0.54 (precision=0.77, recall=0.42), showing that predicting the type of teams is a

non-trivial task and that the sequence of events is helpful in distinguishing team types.

73

Figure 5.8: Classification performance of the different models (logistic regression, SVM, LSTM,
CNN+LSTM) at recognizing human-bot versus human only team sequences

Sequence Differences

A k-gram representation of GitHub team event sequences was created using different window sizes

w ∈ {2, 3, 4, 5}. Then TF-ISF vectors were extracted for these sequences.

To compare the sequences of human teams with the sequences of human-bot teams, we calculated

the silhouette score between human-bot team vectors and the downsampled set of vectors of human

teams. Figure 5.9 illustrates the amount of distinction between human teams versus human-bot

team sequences for different window sizes. Positive values of the silhouette score show that these

two groups of sequences are relatively distinct, although they are not completely separate.

The distinction between human and human-bot teams decreases as w increases, where w is the

length of the window for constructing subsequences of each sequence. This occurs because

when subsequences become longer, the number of shared subsequences between the sequences

74

Figure 5.9: Human vs. human-bot teams silhouette score considering different vector lengths (line
style) and different vectorization models (line color). The best method for detecting differences
at all window sizes is TF-ISF with a vector length of 10. However even the binary vectorization
model detects differences between the two groups of sequences.

decreases.

In our TF-ISF model, which creates real-valued vectors from an ordered list of subsequences, the

size of the vectors is the number of unique subsequences in all sequences. Since there are many

subsequences that are rare, there is an option to limit the size of the vector to only consider most

frequent subsequences. We measured the silhouette score between human and human-bot teams

considering vector length to be 10, 100, and 1000. Vector length x denotes that a vocabulary

of subsequences is constructed that only considers the top x subsequences ordered by term fre-

quency across the sequences. Figure 5.9 illustrates the impact of vector length on measuring the

75

distinction. The distinction between two groups increases when a shorter vector length is used.

This means that the main difference between human only and human-bot sequences is in the most

frequent subsequences.

We also calculated silhouette scores for the binary vectorization model. This model ignores the

frequency of subsequences in order to understand if the distinction between human versus human-

bot team sequences occurs because of the difference in frequencies or whether the subsequences

themselves also differ. Green lines in Figure 5.9 correspond to the binary model. The results

show that although using the binary model makes the groups less separated, this model still reveals

the distinction between human only and human-bot teams. This indicates that it is not only the

frequency of the subsequences that differs between human only versus human-bot teams but also

that different subsequences exist in the these two groups.

To make sure that the observed differences are due to teamwork differences rather than the addi-

tional bot event activity, we also measured the silhouette score after removing bot activity from

human-bot team sequences. We still observed positive, although slightly lower, silhouette scores

between team sequences. This shows that using bots in GitHub teams not only affects the se-

quences of the teams but also changes the activities of the human members of the teams.

Matrix Profile Analysis

To understand what is different about human only team event sequences as compared to human-

bot teams, we constructed distance matrices and matrix profiles for all sequences. For the distance

calculation between two subsequences, we used Hamming distance due to its time efficiency.

Distance matrices for a randomly selected sequence are visualized in Figure 5.10 for different

values of window sizes. For every subsequence, the distance matrix shows the position of all

76

similar subsequences. In the heat-map plots of Figure 5.10 similarity is represented by redness.

So for every row of the distance matrix, red blocks demonstrate repeats of similar subsequences.

For smaller window sizes, blocks are smaller but the similarity is higher. For a window size of 20,

there are subsequences that perfectly match (zero distance).

Figure 5.10: Distance matrix of a randomly selected sequence for different values of window
size. For every subsequence, the distance matrix shows the position of all similar subsequences.
Similarity is represented by redness; red blocks demonstrate repeats of similar subsequences. For
smaller window sizes, the blocks are smaller but the similarity is higher. Note that heat maps are
scaled to lie between 0 to 100 to make comparison easier.

From distance matrices of sequences in our dataset, we created their matrix profiles. Figure 5.11

shows the corresponding matrix profile of the sequence in Figure 5.10 for different window sizes.

The trend of the matrix profile is independent of the window size, i.e. minimums and maximums

occur at the same positions for different window sizes. Minimums of the matrix profile represent

motifs of the sequence and maximums are related to discord or anomalies. Increasing the window

sizes enlarges the distance between the most similar subsequences (e.g. distance between most

similar subsequences is 40 for the window size of 100). For our remaining experiments, we choose

w = 20 as it finds more similar subsequences.

Table 5.4 shows the summary of statistics of matrix profiles of human versus human-bot teams.

The matrix profile consists of distances to the closest subsequence for every subsequence. The

77

Figure 5.11: Matrix profile of the sequence in Figure 5.10. The trend of the matrix profile is
independent of the window size. Increasing the window sizes enlarges the distance between the
most similar subsequences.

higher average for average of matrix profile values for human-bot teams shows that human-bot

teams subsequences are less similar to each other compared to human teams. That indicates that

human teams have more repetitive groups of actions. A Mann-Whitney U test shows that the

average matrix profile value is significantly different in human teams compared to human-bot

teams (p = 0.02). The Mann-Whitney U test was chosen to test the null hypothesize because the

data does not follow a normal distribution and a non-parametric statistical test is needed. Human-

bot teams may have less repetitive sequences of human actions if the bots perform repetitive tasks,

leaving fewer repetitive series of actions for humans to perform.

Yeh et al. [96] considered the variance of matrix profile to be representative of the complexity of

its underlying time series. Although human-bot teams have a higher matrix profile variance, the

Mann-Whitney U test shows that this difference is not significant. Therefore, we cannot conclude

that human-bot teams have more complex sequences.

The absolute minimum value in the matrix profile is related to the best motif of the sequence and

the maximum value shows the anomaly [96]. There is no significant difference between minimum

or maximum values of matrix profiles in human teams versus human-bot teams (p = 0.1).

78

Table 5.4: Human versus human-bot teams matrix profile summary. The human-bot and human
columns show the average values across all matrix profiles for each team type. The last column
shows the p-value of the Mann-Whitney U test between team types.

Metric Human-bot Human p-value
Variance 4.8 4.6 0.1
Average 6.9 6.1 0.02
Minimum 2.0 2.2 0.1
Maximum 11.8 11.0 0.1

Figure 5.12 shows the profiles of human and human-bot team sequences. We created matrix pro-

files for full length team sequences but for better visualization, we plotted only 1000 first positions

of matrix profiles in Figure 5.12. Since 97% of teams have sequences shorter than 1000, this vi-

sualization contains the full length matrix profile of the majority of the teams. The matrix profile

of human-bot teams clearly have higher values compared to human teams, indicating the higher

novelty of sequences in human-bot teams.

Figure 5.12 shows that although human teams have lower matrix profile values at the beginning

due to simpler, repetitive groups of actions, as the human team projects progress, the value and

fluctuation of their matrix profiles increases which indicates that they are becoming more com-

plex. However, human-bot teams seem to be complex from the beginning, and they maintain the

complexity of their sequences as the projects progress.

Contrast Motif Discovery

This section describes our work on discovering contrast motifs of human-bot and human-only

teams. For this section we introduce a new dataset that we collected which is larger and more

recent. In addition, a more advanced approach, which is based on machine learning techniques,

is exploited to detect bots in this dataset. First, we give a brief introduction about the dataset and

79

Figure 5.12: Aggregate matrix profile for human-bot teams vs. human only teams. The human-bot
teams have higher values compared to human teams, indicating the higher novelty of sequences in
human-bot teams.

then we present the results of applying the contrast discovery method on this dataset.

Dataset

We obtained the most recent data month available from the GHTorrent2 dataset (June 2019).

GHTorrent is an offline mirror of GitHub public event data.

Bot Detection

Existing research on software bots either manually detects bots in a small set of repositories or

investigates the role of several well-known bots. As the variety and use of bots increases, large-

2https://ghtorrent.org/

80

scale automatic bot detection becomes necessary. In a recent study, Golzadeh et al. used repetitive

comments to detect bots in one specific domain (e.g. pull request) [24]. However, there are many

bots that do not make comments. To address this issue, we implemented a more comprehensive

approach to automatically detect GitHub bots in a large scale. We exploited various aspects of an

account, in addition to the comment similarity, to identify whether they are bots. We manually

labeled hundreds of accounts and used it as training data for a classifier to detect bots.

Labeling

4815 accounts with ”bot” in their username were found. We investigated 612 randomly selected

accounts and labeled them with 1 if their GitHub profile or our web search indicated that they are

bots and 0 otherwise. In these 612 GitHub accounts, we discovered 424 bots which correspond to

about 70% of the accounts.

Features

The following features were used to identify bots:

• Comment similarity: Average cosine similarity of comments (Cosine similarity of −1 de-

notes no comments to compare).

• Organization owned: If the bot belonged to an organization at any moment (0 for no and 1

for yes)

• Unique event types: The number of types of events the bot account contributed to (Is-

sueCommentEvent, IssuesEvent, PullRequest, PullRequestReviewComment, CommitCom-

mentEvent, PushEvent).

81

• ”bot” placement: The placement of the string “bot” in the name (beginning, middle, or end).

Bot Detection Classifier

We trained and tested various classifiers on the labeled dataset including Logistic Regression, Ran-

dom Forest, and Gradient Descent Boosting. We evaluated the classifiers using cross validation to

ensure the model is not overfitted. Since the dataset is imbalanced, we used stratified k-fold cross

validator to preserve the percentage of samples for each class. k was set to 5 in our experiments.

Event Dataset

More than 46 million events were found during the month of June 2019. These events were exe-

cuted by more than 420,000 active users on over 285,000 repositories. We call a user or repository

active if they perform at least one push or pull request.

We considered a GitHub user a member of a team if they contributed at least one push or one

pull request event in the repository. In this dataset, we removed events related to bots and non-

members. Then, we extracted teams which are defined as repositories with two or more members.

There are two types of teams: (1) Human-bot teams: teams that are using automated accounts. (2)

Human-only teams: teams that are not using any automated services.

Team Sequences

We ordered the events corresponding to each team based on the time that event is performed and

created event sequences for each team.

Table 5.5 shows the percent of different event types in our dataset. Push and pull request are the

82

Table 5.5: Proportion of various events in our dataset.

Event Type Proportion
PushEvent 0.441458
PullRequestEvent 0.156276
CreateEvent 0.113361
IssueCommentEvent 0.091894
PullRequestReviewCommentEvent 0.056228
DeleteEvent 0.047691
IssuesEvent 0.040053
WatchEvent 0.024057
ForkEvent 0.013839
ReleaseEvent 0.005697
GollumEvent 0.003802
MemberEvent 0.003178
CommitCommentEvent 0.001672
PublicEvent 0.000796

most frequent events. These two events are used to submit changes made on a local repository to

the main repository.

Since events with low frequency will not be in final motifs, we removed the least frequent events to

make the algorithm run faster. Additionally, we combined issue event and issue comment as they

are referring to the same kind of activity. Our final list contained six event types including: push,

pull request, issue, pull request review comment, create, and delete.

After transforming sequences, we removed sequences shorter than five because the sequence length

should be longer than window length and we wanted to test window sizes longer than two. The

reason for using a higher minimum sequence length is that as the threshold goes higher, more and

more teams are omitted from the data set. We chose the threshold to be five as it removes very

short sequences without discarding a large number of teams.

83

Table 5.6: Median value of event frequencies before and after sampling.

Event Type H-B Original H-only Downsampled H-only
PushEvent 11.0 9.0 12.0
PullRequestEvent 9.0 4.0 9.0
IssuesEvent 1.0 0.0 1.0
IssueCommentEvent 6.0 0.0 5.0
CreateEvent 2.0 3.0 2.0
DeleteEvent 1.0 1.0 1.0

Team Sampling

Our dataset is imbalanced with 201,204 human-only teams and 4,205 human-bot teams. For each

team, we create a vector that contains the frequency of the different event types in that team. For

each human-bot team, we found the most similar human-only team with respect to their event

frequency vector and downsampled the human teams to 4,205 teams corresponding to the 4,205

human-bot teams.

Table 5.6 shows the median event frequencies. Before downsampling, the median event frequen-

cies are much lower for human-only teams. However, after downsampling human-only teams, their

medians move closer together.

Contrast Motifs

We ran the Contrast Motif Discovery tool on the sequences we created for GitHub teams. We

tested window sizes from 2 to 5. As the window size becomes larger, repetitive patterns emerge

within motifs. Window size 4 was the largest window size with the least repetition. Therefore, in

this dissertation, we present our results for a window size of 4.

Figure 5 shows the graph representation of the contrast motifs for each team type. We observe

84

Figure 5.13: Motif graph for human-only and human-bot teams.

a more complex graph structure for human-bot teams while human-only teams have a simpler

structure. This observation means that the repetitive patterns in human-bot teams are more complex

than human-only teams. Note that this does not indicate that these patterns do not occur in human-

only teams, it means that these patterns are significantly more frequent in human-bot teams.

Another observation about the graphs shown in Figure 5 is that in human-bot teams, issue com-

ments occur before and after each event type. This does not mean that human-bot teams make

more issue comments since we selected repositories in a way that have similar event frequencies.

We hypothesize that this pattern occurs because in human-bot teams issue comments are inter-

mixed with other events rather than being clustered together. To confirm this hypothesize, we

examined the length of consecutive issue comment events in human-only and human-bot teams.

First, we measured the average length of consecutive issue comment events in all sequences. Then,

we ran a Mann-Whitney U-test analysis to investigate whether there is a difference between two

types of teams. Our U-test indicates that the average length of consecutive issue comment events

in human-only teams is higher than this value in human-bot teams and the difference is statisti-

cally significant (p-value= 10−7). This finding means that bots force human members of the team

85

discuss issue between different stages of their work.

In summary, in human-bot teams, contrast motifs are more complex and issue comments are scat-

tered throughout the event sequences while in human-only teams there are more simple contrast

motifs and issue comments tend to be clustered together.

Chapter Summary

In this chapter, we studied human-bot teams on GitHub and compared them with human-only

teams. We aimed to enhance our understanding of the differences between two groups of teams by

comparing their performance, work distribution and issue support quality. Our analyses show that

human-bot teams are different from human-only teams in terms of work processes and outcome.

86

CHAPTER 6: MINECRAFT

In this chapter, we discuss Minecraft action sequences and the results of applying our sequence

mining approaches in this domain. We also find contrast motifs of Minecraft players in this chapter

to compare highly collaborative players with hardly collaborative ones.

Dataset

Our study uses a dataset collected by the Heapcraft project across multiple servers [58]. The

dataset contains two months of data from 45 players, forming 14 person-days worth of active game-

play. The benefit of this dataset is that it provides ground truth Minecraft actions for collections

of raw events. At random intervals, players were asked to specify the high-level actions they are

performing: explore, mine, build, and fight. The four action types used in their data collection were

inspired by player types in Bartle’s study: killers, explorers, achievers, and socializers [6]. For the

fight, explore, mine, and build actions there are 37, 124, 186, and 297 data points respectively

which creates a dataset of size 644.

Several of the events were excluded by [58] from the event log due to low frequency, correlation to

other events, and redundancy. Moreover, move, sprint and sneak events were transformed to their

corresponding distance or duration. We followed the event cleaning procedure presented by [58]

except move, sprint and sneak events were also removed as distance and duration cannot be easily

converted to symbols in sequences.

The original study considered the duration of each action to be two minutes centered around the

time of response received. These two-minute intervals (labeled with high level actions) were used

to construct our action sequence dataset. The sequence dataset of players was created by consid-

87

ering all the events performed by players during the data collection period. We created the event

sequences by assigning a symbol to each Minecraft event and creating an ordered list of sym-

bols for each data point. Since our method relies solely on the order of events rather than their

frequencies, consecutive repetitive events are replaced by one event. For example, aaabbcccd is

transformed to abcd.

Minecraft Action Sequence Comparison

In this section, we present the results of applying our sequence comparison approach to Minecraft

action sequences.

Minecraft Action Classification

Similar to GitHub sequence classification, we classified Minecraft actions using three different

classifiers (i.e. SVM, LSTM, CNN+LSTM) and a baseline (i.e. Logistic Regression based on se-

quence length). Figure 6.1 demonstrates the performance of the classifiers. On this dataset, SVM

performed better than other classifiers with an F1 score of 0.61 (precision=0.64, recall=0.60). The

SVM performance is slightly higher than CNN+LSTM with an F1 score of 0.60 (precision=0.71,

recall=0.52). Note that this is multi-class classification problem with four possible outputs. There-

fore, a classifier that randomly assigns label to sequences will achieve an accuracy of 0.25.

Minecraft Actions Silhouette Score Analysis

We vectorized Minecraft action sequences using TF-ISF approach as it is superior to the binary

vectorization in detecting differences. Silhouette scores for Minecraft action vectors were calcu-

88

Figure 6.1: Classification performance of the different models at recognizing Minecraft action
sequences.

lated using various vector sizes and window lengths. A window length of 2 and vector size of

50 delivered the highest silhouette score of 0.052. This silhouette score is less than silhouette

score of GitHub sequences (0.13). This indicates that the classification of Minecraft actions is

more challenging than identifying GitHub repositories with bots, hence the lower performance is

unsurprising.

Minecraft Actions Matrix Profile Analysis

We created matrix profiles for all sequences, using a window size of 5. Figure 6.2 illustrates aggre-

gate matrix profiles for each type of action. Since the matrix profiles of the build and mine actions

have larger values at the beginning, we can infer that these two actions start with a subsequence

that does not repeat later.

We calculated minimum, maximum, variance, and mean for matrix profiles of Minecraft action

89

Figure 6.2: Aggregate matrix profile for Minecraft actions

sequences. Table 6.1 shows the average of these statistics for different actions. The variance of

matrix profiles is similar across Minecraft actions. This means that sequences of different actions

have similar level of complexity. Minimum, maximum, and mean are different in build compared

to other three actions, and this difference is statistically significant (p-value < 0.05). The same

holds true for mine action. The higher matrix profile mean in build and mine indicates that these

two actions have less repetitive subsequences. According to Table 6.1, explore and fight have

the lowest average minimum, suggesting that these two actions have extremely strong motifs. The

highest average maximum in build action indicates that discords in build sequences are exceedingly

distinct from the rest of the sequence.

90

Table 6.1: Matrix profile statistics of Minecraft actions.

Metric Build Explore Fight Mine
Variance 0.5 0.6 0.6 0.5
Mean 2.6 0.9 0.9 2.1
Minimum 1.9 0.3 0.3 1.5
Maximum 3.5 2.6 2.7 3.2

Minecraft Action Contrast Motifs

This section describes the application of our proposed algorithm for analyzing Minecraft action

sequences. From the HeapCraft dataset, we extracted sequences labeled with the ground truth

action. Each action type is considered to be a group; sequences labeled as that action belong to

that group. Therefore, there are four groups of sequences for actions: fight (f), explore (e), mine

(m), and build (b).

Contrast Motif Distances

We ran our contrast motif finding algorithm for window sizes ranging from 3 to 9. The number of

sequences larger than the window size dramatically decreases by increasing the window size. In

order to avoid discarding short sequences, a window size of 5 was selected. Using this window

size, 567 sequences were considered (34, 102, 171, and 260 for fight, explore, mine, and build,

respectively).

The c parameter in Algorithm 2 is a user-specified input determining the desired number of motifs.

This parameter has been set experimentally in our analysis. We started from a low value for c

parameter and then we increased this parameter until the number of contrast motifs in each group

is less than the c parameter.

91

Figure 6.3: The average distance between motifs and sequences of actions. Rows represent motifs,
and columns denote the action labels. For example, row f-1 and column fight shows the average
distance between motif f-1 and fight sequences. Motif names are comprised of the action symbol
(f, m, and b for fight, mine and build, respectively) and an ordinal number. Darker colors on the
heatmap denote a lower distance between the motif and sequences of that action.

EntityDamageByPlayer PlayerExpChange FoodLevelChange

PlayerDamageByEntity PlayerVelocity

InventoryClose

PlayerItemConsume

PlayerRegainHealthPlayerRegainHealth

BlockBreak

Fight
BlockBreak BlockPlace

PlayerExpChange

InventoryClose FoodLevelChange

BlockPlace BlockBreak

Mine

Build

Figure 6.4: Contrast motifs of different actions represented in directed graphs. Nodes are events,
and there is an edge between two events if they appeared consecutively in at least one motif. The
thickness of edges represents the number of times that relationship was observed in the motif set.

Running the algorithm on the HeapCraft action sequence data with window size 5 results in 7, 2,

and 3 contrast motifs for fight, mine, and build actions, respectively. Figure 6.3 shows the average

92

Figure 6.5: Collaboration graph between players. Nodes are players, edges show collaboration,
and the thickness of the edge represents the duration of the collaboration.

PlayerDamage PlayerVelocity PlayerRegainHealth FoodLevelChange

Figure 6.6: The highly collaborative players contrast motif. This motif is similar to the fight motif
showing that fighting is the action shared amongst highly collaborative players and fighting is what
distinguishes these collaborative players from less collaborative players.

distance between motifs and sequences of different actions. This heatmap illustrates that motifs of

an action are similar to sequences of the same action class and distant from other action classes.

More contrast motifs were discovered in the fight action compared to mine and build. This may

occur because there is more variety in player fighting styles compared to other actions. Unfortu-

nately, no motif was found for the explore action. In the [58] study, which attempts to classify

actions, the majority of classifier errors involve the explore action. As mentioned by the authors,

93

this could be due to the nature of the game or could be a result of their data collection procedure.

In addition, Figure 6.3 shows that fight motifs are less likely to appear in other sequence actions.

This shows that fighting is a more distinctive behavior.

The mining action has the most conservative motifs. Motifs of mine, with an average distance of

1.1, are closest to mine sequences as compared to fight and build with average distances of 1.9 and

2, respectively.

Although m-1 is closer to build sequences than some of the build motifs and can be considered

a motif of build, it is not a contrast motif for the build action as it is closer in distance to mine

sequences than build sequences.

Minecraft Events of Contrast Motifs

To have a visual representation of the motif set for each action, we constructed a graph for each

action. Figure 6.4 illustrates the contrast motifs discovered for various actions in a graph format.

To ensure that our results are not entirely dependent on the window size parameter, we examined

the motifs generated by other window sizes. It appears that smaller or larger window sizes create

motifs that are subsequences or supersequences of the motifs identified for this window size.

Our approach provides detailed insight into player Minecraft actions. [58] conducted a frequency

based analysis of Minecraft actions and found that the build action is highly correlated with the

frequency of BlockPlace, but our approach reveals that other events such as InventoryClose and

BlockBreak also occur in the building process. Unlike prior work, our approach also extracts their

temporal ordering.

94

Players Contrast Motifs

There are various types of collaboration in Minecraft including building together, sharing build-

ing/farming infrastructure, mutual protection, and practice fights to hone skills [57]. Prior research

on Minecraft quantifies collaboration as the duration of the time players spend in contact with each

other; two active players are considered to be in contact if their distance is less than 15 blocks [57].

Figure 6.5 illustrates the collaboration graph of the players in the dataset.

In the collaboration graph, nodes represent players and edges indicate collaboration. There are 42

nodes, and 123 edges in this graph, demonstrating that 3 players have no collaboration at all and

there are many pairs of players who don’t collaborate with each other. The collaboration graph has

an average degree of 5.8, showing that each player collaborates with 6 other players on average.

To make the collaborativeness of players comparable, [57] normalizes the amount of collaboration

of players by the total active time of the player and calls it the collaboration index. We calculated

the collaboration index for players in the dataset. The collaboration index of players in this dataset

has a skewed distribution with minimum, median, and maximum of 0, 0.014, and 0.79, respectively.

We considered players to be highly collaborative if their collaboration index is higher than 90%

of players, and hardly collaborative if their collaboration index is in 10th percentile. Collabora-

tion index is between zero to one with a 10th percentile and 90th percentile of 0.002 and 0.19,

respectively.

To compare players who are more collaborative with less collaborative players, we applied our

algorithm to find contrast motifs of these two groups of players. The median length of player se-

quences was 2011 in our dataset. We removed players who barely played the game (with sequences

shorter than 10) and conducted the experiments with remaining 41 players. We tested window sizes

from 3 to 15 for the motif. A contrast motif was discovered for window size 8 for highly collabora-

95

tive players, but no contrast motif was found for players with lower collaboration index. Figure 6.6

shows the graph visualization of the contrast motif of highly collaborative players.

Comparing the motif illustrated in Figure 6.6 with the action motifs of Figure 6.4 shows that the

motif of highly collaborative players has the most intersection with the fighting behavior. In other

words, the behavior that is shared between highly collaborative players is fighting. This finding is

aligned with prior research that indicates a strong correlation between fighting and collaborative-

ness in Minecraft [57].

Additionally, we attempted to apply PrefixSpan algorithm [28], which is a classic sequential pattern

mining algorithm to find sequential patterns of these two groups of players. On a computer with

16GB RAM and a 4-core 1.9 GHz CPU, the PrefixSpan algorithm ran out of memory and failed

while our motif discovery approach successfully completed within two hours.

Chapter Summary

In this chapter, we studied various aspects of low-level event sequences of high-level Minecraft

actions: fight, build, mine, and explore. Additionally, we looked at two groups of players: highly

collaborative and hardly collaborative. We discovered that highly collaborative players have simi-

lar behaviors while no common behavior was found among hardly collaborative players.

96

CHAPTER 7: CONCLUSIONS

By making data collection inexpensive and convenient, games such as Minecraft and socio-technical

platforms such as GitHub advance our understanding of social science. Sequence mining can as-

sist in this endeavor by summarizing a large volume of user data into a more intuitive format. We

presented two sequence mining approach to facilitate the analysis of users’ event sequences in

Minecraft and GitHub.

We proposed an approach to explain classification results of groups of discrete sequences by quan-

tifying the differences between the groups. We presented case studies of how our approach can be

used to understand GitHub teams and Minecraft actions. We used our approach to study two differ-

ent GitHub repository groups: those who use automated accounts (bots) and those who don’t. Our

analytic approach reveals subtle differences in teamwork patterns that are difficult to distinguish

from event distributions. We believe that sequences of GitHub events can be mapped to team cog-

nitive processes such as knowledge-building, information sharing, and problem-solving; normally

in psychology experiments this mapping is accomplished by human observers but we aim to do it

with machine learning.

Our experiments reveal that human team event sequences are relatively distinct from human-bot

teams in terms of the existence and frequency of short subsequences. This shows that the cadence

of activity in human-bot teams is different than human only ones. The matrix profile analysis

shows that human-bot teams exhibit differences in both average and absolute maximum values.

By analyzing the matrix profile of teams, we see that human-bot teams are less likely to repeat

event subsequences than human only teams. Although it is unsurprising that human developers

avoid repetition, it is interesting that the usage of bots can be detected from the event sequences

alone, without using features from the comments, repository profiles, or code. Moreover, we found

97

that in human-bot teams, issue comments are scattered through out the event sequences while in

human-only teams issue comments are tend to cluster together.

We utilized our approach to study Minecraft action sequences. Our analysis shows that build

and mine actions have less repetitive subsequences compared to fight and explore. Sequences

of various actions have similar level of complexity. Our experiment reveals that improving the

performance of Minecraft action classification is challenging because these groups of actions are

extremely similar in terms of the existence and frequency of subsequences.

We applied our new contrast motif discovery technique to a Minecraft dataset. First, we analyzed

the low-level sequences of high-level actions by extracting contrast motifs that distinguish actions

from one another. The motifs of each action were visualized in a graph to facilitate the comparison

between motifs of different actions. Many of the events shown in the graphs are consistent with our

intuitions on how players would achieve the tasks. Some of them are aligned with prior research

while others were uncovered only through the use of our algorithm.

Finally, we employed our algorithm to compare highly collaborative Minecraft players with hardly

collaborative ones. We created a collaboration graph across players and calculated the collabora-

tion index of every player. Our method discovered a motif that is shared between more collabo-

rative players but that does not occur in the sequences of less collaborative users. Comparing the

graph of this motif with the action motif graphs shows that the behavior shared between highly

collaborative players is fighting. Our sequence mining approach can be used for the implementa-

tion of agents who possess theory of mind about their human teammates while also providing a

glass box for social scientists to enhance their interpretations of human behavior.

98

LIST OF REFERENCES

[1] C. C. Aggarwal. Data Mining: The Textbook. Springer, 2015.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the IEEE Interna-

tional Conference on Data Engineering, pages 3–14, 1995.

[3] A. S. Badashian and E. Stroulia. Measuring user influence in github: the million follower

fallacy. In Proceedings of the 3rd International Workshop on CrowdSourcing in Software

Engineering, pages 15–21. ACM, 2016.

[4] T. L. Bailey. Dreme: motif discovery in transcription factor chip-seq data. Bioinformatics,

27(12):1653–1659, 2011.

[5] T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, and

W. S. Noble. Meme suite: tools for motif discovery and searching. Nucleic Acids Research,

37(suppl 2):W202–W208, 2009.

[6] R. Bartle. Hearts, clubs, diamonds, spades: Players who suit MUDs. Journal of MUD

Research, 1(1):19, 1996.

[7] S. D. Bay and M. J. Pazzani. Detecting group differences: Mining contrast sets. Data Mining

and Knowledge Discovery, 5(3):213–246, 2001.

[8] C. B. Bingham and J. P. Davis. Learning sequences: Their existence, effect, and evolution.

Academy of Management Journal, 55(3):611–641, 2012.

[9] K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, and D. Damian. Understanding the popular

users: Following, affiliation influence and leadership on GitHub. Information and Software

Technology, 70:30–39, 2016.

99

[10] H. Borges, A. Hora, and M. T. Valente. Predicting the popularity of GitHub repositories.

In Proceedings of the International Conference on Predictive Models and Data Analytics in

Software Engineering, 2016.

[11] C. Brown and C. Parnin. Sorry to bother you: designing bots for effective recommendations.

In 2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE),

pages 54–58. IEEE, 2019.

[12] F. Chollet et al. Keras. https://keras.io, 2015.

[13] C. Dagum. The generation and distribution of income, the lorentz curve and the gini ratio.

Economie Appliquée, 33(2):327–367, 1980.

[14] M. K. Das and H.-K. Dai. A survey of DNA motif finding algorithms. In BMC Bioinformat-

ics, volume 8, page S21. Springer, 2007.

[15] D. Debkowski, A. Marrero, N. Yson, L. Yin, Y. Yue, S. Frey, and M. Kapadia. Contained:

Using multiplayer online games to quantify success of collaborative group behavior. In Arti-

ficial Intelligence and Interactive Digital Entertainment Conference, 2016.

[16] H. Du, Y. Su, and C. Li. Discriminative sequential pattern mining for software failure de-

tection. In Proceedings of the International Conference on Informatics and Systems, pages

153–158, 2016.

[17] L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato, and P. Leitner. Current and future bots in

software development. In 2019 IEEE/ACM 1st International Workshop on Bots in Software

Engineering (BotSE), pages 7–11. IEEE, 2019.

[18] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb. Familiarity, complexity,

and team performance in geographically distributed software development. Organization

Science, 18(4):613–630, 2007.

100

https://keras.io

[19] S. M. Fiore, M. A. Rosen, K. A. Smith-Jentsch, E. Salas, M. Letsky, and N. Warner. Toward

an understanding of macrocognition in teams: predicting processes in complex collaborative

contexts. Human Factors, 52(2):203–224, Apr 2010.

[20] S. M. Fiore, K. A. Smith-Jentsch, E. Salas, N. Warner, and M. Letsky. Towards an understand-

ing of macrocognition in teams: developing and defining complex collaborative processes and

products. Theoretical Issues in Ergonomics Science, 11(4):250–271, July 2010.

[21] S. M. Fiore and T. J. Wiltshire. Technology as teammate: Examining the role of external

cognition in support of team cognitive processes. Frontiers in Psychology, 7:1531, 2016.

[22] S. M. Fiore and T. J. Wiltshire. Technology as teammate: Examining the role of external

cognition in support of team cognitive processes. Frontiers in psychology, 7:1531, 2016.

[23] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas. A survey of sequential

pattern mining. Data Science and Pattern Recognition, 1(1):54–77, 2017.

[24] M. Golzadeh, D. Legay, A. Decan, and T. Mens. Bot or not? detecting bots in github pull

request activity based on comment similarity.

[25] J. Gray, K. Srinet, Y. Jernite, H. Yu, Z. Chen, D. Guo, S. Goyal, C. L. Zitnick, and

A. Szlam. CraftAssist: A framework for dialogue-enabled interactive agents. arXiv preprint

arXiv:1907.08584, 2019.

[26] R. Guidotti, A. Monreale, S. Matwin, and D. Pedreschi. Black box explanation by learning

image exemplars in the latent feature space. CoRR, abs/2002.03746, 2020.

[27] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A survey

of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5):1–42,

2018.

101

[28] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Prefixspan:

Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of

the International Conference on Data Engineering, pages 215–224, 2001.

[29] Z. He, S. Zhang, F. Gu, and J. Wu. Mining conditional discriminative sequential patterns.

Information Sciences, 478:524–539, 2019.

[30] Z. He, S. Zhang, and J. Wu. Significance-based discriminative sequential pattern mining.

Expert Systems with Applications, 122:54–64, 2019.

[31] J. D. Herbsleb and R. E. Grinter. Architectures, coordination, and distance: Conway’s law

and beyond. IEEE software, 16(5):63–70, 1999.

[32] B. Herndon and K. Lewis. Applying sequence methods to the study of team temporal dy-

namics. Organizational Psychology Review, 5(4):318–332, 2015.

[33] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,

1985.

[34] P. Hukal, N. Berente, M. Germonprez, and A. Schecter. Bots coordinating work in open

source software projects. Computer, 52(9):52–60, 2019.

[35] S. Imani, F. Madrid, W. Ding, S. Crouter, and E. Keogh. Matrix profile XIII: Time series

snippets: A new primitive for time series data mining. In IEEE International Conference on

Big Knowledge (ICBK), pages 382–389, 2018.

[36] O. Jarczyk, S. Jaroszewicz, A. Wierzbicki, K. Pawlak, and M. Jankowski-Lorek. Surgical

teams on github: Modeling performance of github project development processes. Informa-

tion and Software Technology, 100:32 – 46, 2018.

102

[37] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer. Classifying developers into core and periph-

eral: An empirical study on count and network metrics. In 2017 IEEE/ACM 39th Interna-

tional Conference on Software Engineering (ICSE), pages 164–174. IEEE, May 2017.

[38] M. Joblin, S. Apel, and W. Mauerer. Evolutionary trends of developer coordination: a net-

work approach. Empirical Software Engineering, 22(4):2050–2094, August 2017.

[39] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In Proceedings

of the Conference on Empirical Methods in Natural Language Processing, pages 1700–1709,

2013.

[40] S. J. Kang, Y. B. Kim, and S. K. Kim. Analyzing repetitive action in game based on sequence

pattern matching. Journal of Real-time Image Processing, 9(3):523–530, 2014.

[41] E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal

of the American statistical association, 53(282):457–481, 1958.

[42] E. E. Kastbjerg. Combining sequence mining and heatmaps to visualize game event flows.

Master’s thesis, IT University of Copenhagen, 2011.

[43] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.

[44] L. Langohr, V. Podpečan, M. Petek, I. Mozetič, and K. Gruden. Contrast mining from inter-

esting subgroups. In Bisociative Knowledge Discovery, pages 390–406. Springer, 2012.

[45] C. R. Lebeuf. A taxonomy of software bots: towards a deeper understanding of software bot

characteristics. PhD thesis, 2018.

[46] M. A. Leece and A. Jhala. Sequential pattern mining in Starcraft: Brood War for short and

long-term goals. In Artificial Intelligence and Interactive Digital Entertainment Conference,

2014.

103

[47] K. Lewis, D. Lange, and L. Gillis. Transactive memory systems, learning, and learning

transfer. Organization Science, 16(6):581–598, 2005.

[48] V. C.-C. Liao and M.-S. Chen. Efficient mining gapped sequential patterns for motifs in

biological sequences. BMC Systems Biology, 7(S4):S7, 2013.

[49] T. Y. Lin. Granular computing. In International Workshop on Rough Sets, Fuzzy Sets, Data

Mining, and Granular-Soft Computing, pages 16–24. Springer, 2003.

[50] D. Liu, M. J. Smith, and K. Veeramachaneni. Understanding user-bot interactions for small-

scale automation in open-source development. In Extended Abstracts of the 2020 CHI Con-

ference on Human Factors in Computing Systems, pages 1–8, 2020.

[51] C. Luo and S. M. Chung. Efficient mining of maximal sequential patterns using multiple

samples. In Proceedings of the SIAM International Conference on Data Mining, pages 415–

426, 2005.

[52] S. Makarovych, A. Canossa, J. Togelius, and A. Drachen. Like a DNA string: Sequence-

based player profiling in Tom Clancy’s The Division. In Artificial Intelligence and Interactive

Digital Entertainment Conference. York, 2018.

[53] C. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. Natural

Language Engineering, 16(1):100–103, 2010.

[54] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann. Software developers’ perceptions

of productivity. In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 19–29. ACM, 2014.

[55] S. Mirhosseini and C. Parnin. Can automated pull requests encourage software developers to

upgrade out-of-date dependencies? In 2017 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 84–94. IEEE, 2017.

104

[56] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover. Exact discovery of time series motifs.

In Proceedings of the SIAM International Conference on Data Mining, pages 473–484, 2009.

[57] S. Müller, S. Frey, M. Kapadia, S. Klingler, R. P. Mann, B. Solenthaler, R. W. Sumner, and

M. Gross. Heapcraft: Quantifying and predicting collaboration in Minecraft. In Artificial

Intelligence and Interactive Digital Entertainment Conference, 2015.

[58] S. Müller, M. Kapadia, S. Frey, S. Klinger, R. P. Mann, B. Solenthaler, R. W. Sumner, and

M. Gross. Statistical analysis of player behavior in Minecraft. In Proceedings of the Interna-

tional Conference on the Foundations of Digital Games, 2015.

[59] G. Murić, A. Abeliuk, K. Lerman, and E. Ferrara. Collaboration drives individual productiv-

ity. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW):1–24, 2019.

[60] S. Nebel, S. Schneider, and G. D. Rey. Mining learning and crafting scientific experiments:

A literature review on the use of Minecraft in education and research. Journal of Educational

Technology & Society, 19(2):355–366, 2016.

[61] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu.

Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions

on Knowledge and Data Engineering, 16(11):1424–1440, 2004.

[62] B. T. Pentland. Sequential variety in work processes. Organization Science, 14(5):528–540,

2003.

[63] M. Poppendieck and T. Poppendieck. Lean software development: an agile toolkit. Addison-

Wesley, 2003.

[64] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets. Cambridge University Press,

2011.

105

[65] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria,

and E. Keogh. Searching and mining trillions of time series subsequences under dynamic

time warping. In Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 262–270, 2012.

[66] C. Riedl and A. W. Woolley. Teams vs. crowds: A field test of the relative contribution

of incentives, member ability, and emergent collaboration to crowd-based problem solving

performance. Academy of Management Discoveries, 3(4):382–403, 2017.

[67] N. Robette and X. Bry. Harpoon or bait? a comparison of various metrics in fishing for

sequence patterns. Bulletin of Sociological Methodology/Bulletin de méthodologie soci-

ologique, 116(1):5–24, 2012.

[68] D. M. Romero, D. Huttenlocher, and J. M. Kleinberg. Coordination and efficiency in decen-

tralized collaboration. In Proceedings of the 9th International AAAI Conference on Web and

Social Media, pages 367–376. AAAI Press, 2015.

[69] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

[70] S. Saadat, C. Gunaratne, N. Baral, G. Sukthankar, and I. Garibay. Initializing agent-

based models with clustering archetypes. In International Conference on Social Computing,

Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and

Simulation, pages 233–239. Springer, 2018.

[71] S. Saadat, O. B. Newton, G. Sukthankar, and S. M. Fiore. Analyzing the productivity of

github teams based on formation phase activity. arXiv preprint arXiv:2011.03423, 2020.

106

[72] S. Saadat and G. Sukthankar. Contrast motif discovery in minecraft. In Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 16,

pages 266–272, 2020.

[73] S. Saadat and G. Sukthankar. Explaining differences in classes of discrete sequences. arXiv

preprint arXiv:2011.03371, 2020.

[74] P. Saraf. Improved prefixspan algorithm for efficient processing of large data. 2015.

[75] M. H. Schulz, D. R. Zerbino, M. Vingron, and E. Birney. Oases: robust de novo rna-seq

assembly across the dynamic range of expression levels. Bioinformatics, 28(8):1086–1092,

2012.

[76] M.-A. Storey and A. Zagalsky. Disrupting developer productivity one bot at a time. In

Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software

Engineering - FSE 2016, pages 928–931, 2016.

[77] M.-A. Storey and A. Zagalsky. Disrupting developer productivity one bot at a time. In

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pages 928–931, 2016.

[78] M.-A. Storey, A. Zagalsky, F. F. Filho, L. Singer, and D. M. German. How social and com-

munication channels shape and challenge a participatory culture in software development.

IEEE Transactions on Software Engineering, 43(2):185–204, February 2017.

[79] Supplementary materials. https://bit.ly/30xrLV5.

[80] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.

In Advances in neural information processing systems, pages 3104–3112, 2014.

[81] S. Torkamani and V. Lohweg. Survey on time series motif discovery. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 7(2):e1199, 2017.

107

https://bit.ly/30xrLV5

[82] B. W. Tuckman. Developmental sequence in small groups. Psychological bulletin, 63(6):384,

1965.

[83] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik, P. Devanbu, and

V. Filkov. Gender and tenure diversity in github teams. In Proceedings of the 33rd Annual

ACM Conference on Human Factors in Computing Systems, pages 3789–3798. ACM, 2015.

[84] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On the variation and speciali-

sation of workload–a case study of the gnome ecosystem community. Empirical Software

Engineering, 19(4):955–1008, Aug. 2014.

[85] U. Von Luxburg et al. Clustering stability: An overview. Foundations and Trends in Machine

Learning, 2(3):235–274, 2010.

[86] P. Wagstrom, C. Jergensen, and A. Sarma. Roles in a networked software development

ecosystem: A case study in github. 2012.

[87] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Proceedings.

International Conference on Data Engineering, pages 79–90. IEEE, 2004.

[88] M. Wessel, B. M. De Souza, I. Steinmacher, I. S. Wiese, I. Polato, A. P. Chaves, and M. A.

Gerosa. The power of bots: Characterizing and understanding bots in oss projects. Proceed-

ings of the ACM on Human-Computer Interaction, 2(CSCW):1–19, 2018.

[89] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and M. A. Gerosa. Effects of adopting

code review bots on pull requests to oss projects. In IEEE International Conference on

Software Maintenance and Evolution. IEEE Computer Society, 2020.

[90] M. Wessel, I. Steinmacher, I. Wiese, and M. A. Gerosa. Should i stale or should i close?

an analysis of a bot that closes abandoned issues and pull requests. In 2019 IEEE/ACM 1st

International Workshop on Bots in Software Engineering (BotSE), pages 38–42. IEEE, 2019.

108

[91] S. A. Wheelan. Group processes: A developmental perspective. Allyn & Bacon, 1994.

[92] U. Wilensky. Netlogo. Technical report, Center for Connected Learning and Computer-based

Modeling, Northwestern University, Evanston, IL, 1999.

[93] R. Wu, Q. Li, and X. Chen. Mining contrast sequential pattern based on subsequence time

distribution variation with discreteness constraints. Applied Intelligence, 49(12):4348–4360,

2019.

[94] Y. Wu, J. Kropcznyski, R. Prates, and J. M. Carroll. Rise of curation in GithHub. In AAAI

Conference on Human Computation and Crowdsourcing, 2015.

[95] C.-C. M. Yeh, N. Kavantzas, and E. Keogh. Matrix profile iv: using weakly labeled time

series to predict outcomes. Proceedings of the VLDB Endowment, 10(12):1802–1812, 2017.

[96] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen,

and E. Keogh. Matrix profile i: all pairs similarity joins for time series: a unifying view that

includes motifs, discords and shapelets. In IEEE International Conference on Data Mining

(ICDM), pages 1317–1322, 2016.

[97] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, Z. Zimmerman, D. F.

Silva, A. Mueen, and E. Keogh. Time series joins, motifs, discords and shapelets: a unifying

view that exploits the matrix profile. Data Mining and Knowledge Discovery, 32(1):83–123,

2018.

[98] F. Zambelli, G. Pesole, and G. Pavesi. Motif discovery and transcription factor binding sites

before and after the next-generation sequencing era. Briefings in Bioinformatics, 14(2):225–

237, 2013.

[99] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly using de

bruijn graphs. Genome research, 18(5):821–829, 2008.

109

	Analyzing User Behavior in Collaborative Environments
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Sequence Mining
	Sequence Groups Comparison
	Contrast Motif Discovery
	Motif
	Contrast Mining

	GitHub
	GitHub Teams
	Software Bots
	GitHub Team Outcome and Processes

	Minecraft
	Minecraft Processes

	Publications

	CHAPTER 2: RELATED WORK
	Sequence Mining
	Explainability
	Sequential Pattern Mining
	Motif Finding
	Matrix Profile
	Contrast Mining

	GitHub
	User Types
	Software Bots
	Team Sequences

	Minecraft
	Game Sequences

	CHAPTER 3: SEQUENCE MINING
	Sequence Group Comparison
	Sequence Distinction Measurement
	Sequence to Vector
	Sequence Comparison

	Sequence Difference Detection

	Contrast Motif Discovery
	Motif Finding
	Motif Refinement

	Chapter Summary

	CHAPTER 4: GITHUB DEVELOPERS AND TEAMS
	Discovering GitHub Developer Archetypes
	Cluster Stability
	Archetype Model

	GitHub Team Productivity
	Data Set
	Team Performance Evaluation
	Evaluation Period Team Sizes

	Work Centralization
	Work Style Clusters
	Work Style and Performance

	Team Feature
	Types of Activity
	Burstiness
	Issue Labels

	Chapter Summery

	CHAPTER 5: GITHUB HUMAN-BOT TEAMS
	GitHub Human-Bot Teams Outcome
	Data Set
	Bot Identification
	Control for Developers Expertise

	Team Productivity
	Work Centralization
	Survival Analysis of Issue Closure
	Work Style Clusters
	Impact of Bots on the Outcome of Teams

	Sequence Group Comparison
	Dataset
	Classifying Team Type
	SVM
	LSTM
	CNN+LSTM

	Sequence Differences
	Matrix Profile Analysis

	Contrast Motif Discovery
	Dataset
	Bot Detection
	Labeling
	Features
	Bot Detection Classifier

	Event Dataset
	Team Sequences
	Team Sampling
	Contrast Motifs

	Chapter Summary

	CHAPTER 6: MINECRAFT
	Dataset
	Minecraft Action Sequence Comparison
	Minecraft Action Classification
	Minecraft Actions Silhouette Score Analysis
	Minecraft Actions Matrix Profile Analysis

	Minecraft Action Contrast Motifs
	Contrast Motif Distances
	Minecraft Events of Contrast Motifs

	Players Contrast Motifs
	Chapter Summary

	CHAPTER 7: CONCLUSIONS
	LIST OF REFERENCES

