
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2005

Developing An Object-oriented Approach For Operations Developing An Object-oriented Approach For Operations

Simulation In Speedes Simulation In Speedes

Amit Wasadikar
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Wasadikar, Amit, "Developing An Object-oriented Approach For Operations Simulation In Speedes" (2005).
Electronic Theses and Dissertations. 414.
https://stars.library.ucf.edu/etd/414

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/414?utm_source=stars.library.ucf.edu%2Fetd%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages

DEVELOPING AN OBJECT-ORIENTED APPROACH FOR

OPERATIONS SIMULATION IN SPEEDES

by

AMIT S. WASADIKAR
B.S. Dr. B.A.M University, July 2000

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Industrial Engineering and Management Systems
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2005

ABSTRACT

Using simulation techniques, performance of any proposed system can be tested for

different scenarios with a generated model. However, it is difficult to rapidly create

simulation models that will accurately represent the complexity of the system. In recent

years, Object-Oriented Discrete-Event Simulation has emerged as the potential

technology to implement rapid simulation schemes. A number of software based on

programming languages like C++ and Java are available for carrying out Object Oriented

Discrete-Event Simulation. These software packages establish a general framework for

simulation in computer programs, but need to be further customized for desired end-use

applications. In this thesis, a generic simulation library is created for the distributed

Synchronous Parallel Environment for Emulation and Discrete-Event Simulation

(SPEEDES).

This library offers classes to model the functionality of servers, processes, resources,

transporters, and decisions. The library is expected to produce efficient simulation

models in less time and with a lesser amount of coding. The class hierarchy is modeled

using the Unified Modeling Language (UML). To test the library, the existing SPEEDES

Space Shuttle Model is enhanced and recreated. This enhanced model is successfully

validated against the original Arena model.

ii

ACKNOWLEDGMENTS

I offer my sincere and deepest thanks to my advisor Dr. Luis Rabelo for his continuous

motivation and inspiration throughout this work. Dr. Luis Rabelo not only helped me as

thesis advisor but also guided me to take important decisions in the academics. I take this

opportunity to thank Dr. Jose A. Sepulveda for all the coaching I received from him

during the coursework. I also thank Dr. Christopher D. Geiger for agreeing to be on my

thesis committee.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES.. x

LIST OF ACRONYMS ... xi

CHAPTER 1: INTRODUCTION... 1

1.1 Preface... 1

1.2 Object-Oriented Simulation .. 1

1.2.1 Encapsulation and Inheritance ... 2

1.3 Distributed Discrete-Event Simulation ... 3

1.4 Problem Statement and Importance of Work.. 3

1.5 Synopsis .. 4

CHAPTER 2: LITERATURE REVIEW OF DES LIBRARY AND SPEEDES 6

2.1 Preface... 6

2.2 Discrete-Event Simulation .. 6

2.2.1 Entity and Event... 7

2.2.2 Simulation Clock and Event List ... 8

2.2.3 Random Numbers .. 9

2.3 Generic Libraries for Discrete-Event Simulation ... 9

2.3.1 Arena Simulation Library .. 10

2.3.2 Flexsim Simulation Library ... 11

iv

2.3.3 Simkit Simulation Library ... 11

2.3.4 Silk Simulation Library.. 12

2.3.5 Agent Based Simulation – E-commerce using Silk... 13

2.3.6 SimBeans – Library for component based DES using JavaBeans................... 14

2.3.7 JavaDemos – Library for DES using Java ... 15

2.3.8 Mobile Agents – Reusable Building Blocks using JavaDemos....................... 17

2.3.9 JAS – Java Agent Based Simulation Library... 18

2.3.10 FDK – Federated Simulation Development Kit... 19

2.4 Distributed Discrete-Event Simulation ... 19

2.4.1 Past Implementations of Distributed Simulation ... 21

2.4.2 Yaddes Simulation System .. 21

2.4.3 Remote OMNeT++ Distributed DES Environment... 22

2.5 SPEEDES.. 24

2.5.1 SPEEDES Simulation Object .. 25

2.5.2 Point-to-Point Events ... 27

2.5.3 Event Handlers... 28

2.5.4 Process Model.. 29

2.5.5 Dynamic Objects.. 30

CHAPTER 3: LIBRARY STRUCTRURE WITH UML DIAGRAMS........................... 31

3.1 Preface... 31

3.2 UML Diagrams ... 31

3.2.1 Interaction Diagrams.. 32

v

3.2.2 State diagrams.. 33

3.2.3 Class Diagrams .. 34

3.3 Server Class .. 35

3.3.1 Discussion of Server Class Code ... 37

3.3.2 Queue ... 38

3.3.3 Resource... 39

3.3.4 Server Arguments class.. 39

3.4 Decision Class... 40

3.4.1 Decision Argument Class .. 42

3.4.2 Discussion of Decision Class Code ... 42

3.5 Transporter Class .. 44

3.5.1 Transporter Argument Class .. 45

3.5.2 Discussion of Transporter Class Code... 46

3.6 Entity Class ... 48

3.7 Synopsis .. 49

CHAPTER 4: IMPLEMENTATION AND VALIDATION OF THE SHUTTLE MODEL

... 50

4.1 Preface... 50

4.2 Testing the Library.. 50

4.3 Implementation of the Shuttle Model ... 51

4.3.1 Class Hierarchy.. 52

4.3.2 Comparison of Existing and Replaced Code ... 54

vi

4.3.3 Flowcharts of the Implementation ... 57

4.3.4 Dynamic Creation of Objects... 61

4.3.5 Publishing and Subscribing the Events.. 61

4.3.6 Use of External Distance Set ... 62

4.4 Validation of Shuttle Model.. 63

4.5 Synopsis .. 65

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH 66

5.1 Conclusion .. 66

5.2 Contributions... 67

5.3 Future Work .. 67

LIST OF REFERENCES.. 69

vii

LIST OF FIGURES

Figure 1: Steps in Discrete-Event Simulation... 7

Figure 2: Components of Discrete-Event Simulation... 9

Figure 3: Example of Event Graphs in Simkit.. 12

Figure 4: Class hierarchy for elementary model bean .. 15

Figure 5: Screen capture of JavaDemos Model .. 16

Figure 6: New classes for mobile agent simulation .. 18

Figure 7: The components of Remote OMNeT++.. 23

Figure 8: High Level Architecture.. 25

Figure 9: Example of Interaction Diagram ... 32

Figure 10: Example of State Diagram .. 33

Figure 11: Example of Class Diagram.. 34

Figure 12: Server Class Diagram.. 36

Figure 13: Server Sequence Diagram ... 36

Figure 14: Server Class code .. 37

Figure 15: Server Argument Class Diagram... 40

Figure 16: Decision Class Diagram .. 41

Figure 17: Decision Class Sequence Diagram.. 41

Figure 18: Decision Argument Class Diagram... 42

Figure 19: Decision Class code... 43

viii

Figure 20: Transporter Class Diagram.. 44

Figure 21: Transporter Class Sequence Diagram ... 45

Figure 22: Transporter Argument Class Diagram .. 46

Figure 23: Transporter Class Code ... 47

Figure 24: Entity Class.. 48

Figure 25: Class hierarchy in existing SPEEDES Shuttle Model..................................... 52

Figure 26: Class hierarchy in recreated SPEEDES Shuttle Model -1. 53

Figure 27: Class hierarchy in recreated SPEEDES Shuttle Model -2. 53

Figure 28: Sample Server Code Comparison in SPEEDES Shuttle Model...................... 54

Figure 29: Sample Decision Code Comparison in SPEEDES Shuttle Model 55

Figure 30: Sample Transporter Code Comparison in SPEEDES Shuttle Model.............. 56

Figure 31: Server Implementation/Activity Diagram... 58

Figure 32: Decision class Implementation/Activity Diagram .. 59

Figure 33: Transporter class Implementation/Activity diagram....................................... 60

Figure 34: Implementation of Distance sets for use in Transporter.................................. 63

Figure 35: Chart of Comparison ... 64

ix

LIST OF TABLES

Table 1: Example of IDs of Simulation object (S: Shuttle, T: Transporter)..................... 27

Table 2: Comparing the results from Arena and SPEEDES... 64

x

LIST OF ACRONYMS

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DES Discrete-Event Simulation

FDK Federated Simulation Development Kit

FIFO First In First Out

JAS Java Agent Based Simulation

KSC Kennedy Space Center

OMNet Objective Modular Network

OOP Object-Oriented Programming

OOS Object-Oriented Simulation

PADS Parallel and Distributed Simulation

RTI Run Time Infrastructure

SPEEDES Synchronous Parallel Environment for Emulation and Discrete-Event

Simulation

UCF University of Central Florida

UML Unified Modeling Language

VTB Virtual Test Bed

XML Extensible Markup Language

xi

CHAPTER 1: INTRODUCTION

1.1 Preface

In any simulation environment, a predefined set of frequently used classes is required. In

this study, a generic library has been developed for the Synchronous Parallel

Environment for Emulation and Discrete-Event Simulation (SPEEDES). SPEEDES is a

Linux based C++ Discrete-Event simulation environment. The classes in this library can

be used in any SPEEDES simulation to generate quick and efficient models. This chapter

will familiarize the reader with the concepts of Object-Oriented Simulation, Distributed

Simulation, and will explain the background of this study.

1.2 Object-Oriented Simulation

An Object-Oriented Simulation consists of a set of objects that interact with each other

over time [1]. The strength of Object-Oriented Simulation lies in producing independent,

component based code that can be changed, enhanced, and reused easily. In Object-

Oriented Simulation (OOS), the complex logic of the model can be embedded into

implementation classes, and a real-world entity can be represented using simulation

objects. Features of Object-Oriented Programming like Encapsulation, Data Hiding,

Inheritance, and Reusability are significant in such simulation techniques [2]. Object-

1

Oriented Simulation is capable of creating generic base classes and inheriting them to

create specialized classes. The classes contain the attributes and procedures used in the

model where the attributes are used as state variables, and the procedures are mapped as

simulation events by the mechanism provided in the simulation framework.

The common languages used for Object-Oriented Simulation are Java, C++,

Simula, and Smalltalk, whereas environments such as SPEEDES, Simkit, Silk, and PSimJ

provide the simulation framework.

1.2.1 Encapsulation and Inheritance

By definition, hiding details and providing a common interface to access the data, is

called Encapsulation. Encapsulation ensures that one object cannot change the state of

another object in unexpected way and can only pass the messages using the internal

methods. Encapsulation also helps reduce the dependency of client code on internal

manipulation code in the classes of the library. This way, sensitive simulation data can be

hidden from public view.

The property of reusing the attributes and behavior from base class to child class

is called Inheritance. This property is one of the strongest features of Object-Oriented

Simulation techniques. Use of Inheritance in simulation allows a user to create models

with the help of a pre-built library. Inheritance brings reusability to the code, so that the

enhancements can be done without repeating the previous work.

2

1.3 Distributed Discrete-Event Simulation

In a distributed Discrete-Event simulation, execution load can be divided on multiple

processors to help speed up the run. Distributed simulation is especially useful for

running a large simulation model on computers at different physical locations via the

Internet. It also helps to run the simulation with smaller capacity resources, such as low

processor speed or less available memory [3]. In an Object-Oriented distributed

simulation environment, simulation objects are distributed among the processors which

can schedule local or global events on other objects. To coordinate the simulation among

all processors, the distributed environment must provide a good communication

infrastructure. Many communication algorithms have been developed to support

distributed simulation. Due to each processor maintaining a separate event list and a

separate simulation clock, fast processors may run ahead in time compared to the slower

processors. If an event is scheduled by a slow processor in the past simulation time, the

events on the fast processor need to be reverted back. There are very few environments

which support distributed simulation, and SPEEDES is one of them. SPEEDES provides

rollback features to reestablish the object state if an event in the past is received by the

processor.

1.4 Problem Statement and Importance of Work

The need for this study is established from the Virtual Test Bed Project being executed in

the department of Industrial Engineering and Management Systems at the University of

3

Central Florida. Virtual Test Bed (VTB) is a NASA-sponsored simulation project to

establish a common platform to study and integrate heterogeneous simulation models. In

the first phase of this project, an existing ARENA Space Shuttle Simulation model is

converted into SPEEDES. The ARENA model is built to simulate the detailed hardware

flow of the NASA Space Shuttle operations [4].

In translating the model from Arena to SPEEDES, there was a need for predefined

classes for rapid development. In any Discrete-Event simulation some basic modules like

Server, Resource, Queue, and Transporter are frequently used. Due to unavailability of

these classes, the SPEEDES Space Shuttle model repeats the code at every instance.

Because of more code, more memory, more debugging time and more maintenance of the

model are required. Hence, to create truly Object-Oriented simulation models, it is

necessary to develop a library of frequently used classes. This is the objective of this

thesis work.

1.5 Synopsis

This study demonstrates the implementation of predefined classes to enhance the

SPEEDES. The developed classes are of the plug-and-play type. In any simulation

model, the user needs to include these classes and create the objects whenever required in

the logic. This library will speed up the model building process in the SPEEDES. The

code for any simulation model will be structured, maintainable and easy to understand,

than what it would be without this library. The uniqueness of this library is the only

4

available generic library for DES in Linux environment.

To test the library the SPEEDES space shuttle model is recreated using these

classes. At every opportunity, objects from these classes are used to replace the repeated

code. Other enhancements in this model included using dynamic creation of simulation

objects, and providing an interface to change the random number distributions outside the

model.

 The result of these enhancements is an approximate 40% reduction in code,

thereby creating a more maintainable, reusable, easily understandable, and truly Object-

Oriented space shuttle model. This study delivers the library of these generic classes in

SPEEDES, with an implemented example of the SPEEDES space shuttle model. The

targeted areas of application for this library are industrial simulation, war-gaming

simulation, transportation simulation, etc.

This work serves as the reference for the developed simulation library. Chapter 2

reviews the concepts of Discrete-Event Simulation and discusses the past

implementations of this kind of library in other simulation environments. The chapter

also discusses distributed simulation in detail, previous implementations and distinct

features of the distributed simulation environment SPEEDES. Chapter 3 explains the

structure of this library in detail with UML diagrams. Chapter 4 discusses the

implementation of this library to recreate the SPEEDES space shuttle model. This chapter

also lists the benefits gained in this model because of the use of this library. Chapter 5

concludes this discussion by specifying future use of this library and potential areas of

application.

5

CHAPTER 2: LITERATURE REVIEW OF DES LIBRARY AND
SPEEDES

2.1 Preface

This chapter first introduces the basic concepts of Discrete-Event Simulation. Then, a

survey of reusable libraries for fast creation of models using different DES environments

is presented. The library survey is followed by the section of Distributed Simulation

Concept, with examples of an application. Finally, in the last section, the distinct features

of SPEEDES used in this library are discussed.

2.2 Discrete-Event Simulation

Discrete-Event simulation is the systematic approach of modeling the system as it

advances through distinct time steps each of which changes the state of the system [5].

The simulation study starts with collecting data from the system which can be either past

data or data from experimentation. This data is then modeled into mathematical

distribution to produce a random number with similar behavior as of real system. The

next step is to build the logic of the system. The logic can be built using modern

programming languages or specialized Discrete-Event simulation software. At the end of

modeling, process verification and validation of the model are performed. In the

6

verification model logic is checked and in the validation, the model is checked

statistically [5].

Data Collection Model Building Verif ication and
Validation

Experimentation Result Analysis

Figure 1: Steps in Discrete-Event Simulation

When it is evident that the model is representing the actual system under study,

experiments can be performed on the model. Different scenarios to test the changes in the

existing system can be run. The performance can be measured in several ways, such as by

changing the number of resources, run time, or run period. The results from these

experiments are analyzed to check the feasibility of the new system.

2.2.1 Entity and Event

An Entity is any physical, tangible element of the simulation system. It possesses a

logical relationship with other entities and defines the behavior of the overall model.

Generally, an entity passes between the events in the simulation.

7

An Event is a process which occurs on a particular timestamp. Normally, events

are matched to the procedures in the programming language. The Event changes the state

of the system by changing the attributes of the entity. One event can trigger another event

to populate the event list. Events are executed at fixed times, i.e. the time at which they

are scheduled.

2.2.2 Simulation Clock and Event List

Every Discrete-Event Simulation maintains an event list. This event list contains the

events to be executed and the time at which they are to be executed. Events are sorted by

the order in the event list. The primary order of events in the event list is the timestamp of

the events. If two events have same the timestamp, then they are prioritized by some

other criterion such as type of object. To execute events on their respective timestamps a

simulation clock is maintained by the simulation engine. In Discrete-Event Simulation,

the clock jumps from event to event creating increments in the time steps which allows

optimization in the execution of the model. The simulation clock and the event list are

maintained by the simulation engine, which establishes the required framework for

simulation.

8

Simulation
Engine

Entity/Object

Event List

Random Number
Generators

Simulation Clock

Figure 2: Components of Discrete-Event Simulation

2.2.3 Random Numbers

Random numbers are the base of any simulation model as they capture the stochastic

nature in the simulation runs. Random numbers are generated by an algorithm which

generally starts with a pseudo-number between 0 and 1. To change the range of random

numbers between runs, a different seed is provided. The seed is any integer used to

generate different series of random numbers in the simulation [26]. Simulation models

typically employ random number distribution to specify service times, inter-arrival times,

and routing times.

2.3 Generic Libraries for Discrete-Event Simulation

Discrete-Event Simulation benefits greatly from predefined libraries. Predefined libraries

9

provide generic functionality to create basic components, including servers, resources,

and transporters, all of which ease the model creation. Using these libraries, model

development time can be saved, and component based code can be created for easy

maintenance. Most of the commercial simulation software employs these types of

libraries with their applications. The simulation environments offered in C++ or Java

gives a basic framework to create and execute DES, however, these packages do not

fulfill the requirements for every domain. Users must create the predefined libraries to

fulfill the specific requirement. Here, we review some examples of these libraries,

provided in different simulation environments.

2.3.1 Arena Simulation Library

The Arena Simulation Software offers a rich set of simulation libraries. These libraries

are divided into different panels: The Basic Process Panel provides the modules like

Create, Process, and Decide, to produce a fast and simple simulation model. The

Advanced Process panel provides complicated functionalities such as Hold-Signal,

ReadWrite, and Search. The Advanced Transfer panel provides functionality for

transferring entities using different means. In a similar fashion, the modules of Elements,

Packaging, Blocks, and Script are used for specialized areas of application. When users

create models using these libraries, Arena creates modular code in SIMAN [6]. Pre-

defined object libraries make model creation in Arena very easy.

10

2.3.2 Flexsim Simulation Library

One of the examples of Object-Oriented Simulation libraries is Flexsim. Flexsim is the

C++ simulation software offering a generic library to create custom simulations. The

library includes modules such as Source, Queue, Processor, Conveyor, and Transporter

[7]. Flexsim uses classes that represent process activities and queuing. It also offers the

functionality to change the existing library to fit simulation needs by having the library

create specific-use classes or by creating totally new libraries using the Microsoft Visual

C++ compiler. C++ controls the behavior of the created classes. As Flexsim objects are

open to the modeler, the customized classes can be exchanged between users and can be

used as simple drag and drop in the application. Flexsim also provides the 3D visual

representation of the objects to create state-of-the-art animation.

2.3.3 Simkit Simulation Library

Simkit is a Java-.based simulation environment for DES. It supports model building

through the Event Graph approach. Event graphs are a way of representing the future

event list, respective object and state transition in the simulation. Event graphs also

demonstrate the associated Boolean condition and time delay in between the events. The

Events graph is a simple method of event modeling and hence accelerates understanding

and creation of DES models [8].

11

Start_
Service

_OPF

End_
Service
OPF PAD

Arrival

Start_
Service
_PAD

End_
Service
_PAD

End_
Orbit

Start_
Orbit

Launch

End
Landing

End_
Service_

PALM

Start_
Service
_PALM

Palm_
Arrival

Start OPF_
Arrival

OPF_Q++
OPF_Q_
_
OPF_ _

OPF++

If PA D> 0

PAD_Q_ _
PAD_ _

PAD++

FLIG HT+ +
Runways+ +

IF FLIGHT%8 >1

PALM_Q++

PALM_Q_ _
PALM_ _

PALM++

If PA LM_Q >0

t=0.0 t=0.0

t

t

t

t

t

t

Landing
Arrival

Start
Landing

Launch_Q++Orbit_Cap_ _
Launch_Q_ _

if
Launch_Q >0

Landing_Q++

t

Runways_ _
Landing_Q_ _

t

Figure 3: Example of Event Graphs in Simkit

To help build a quick simulation model in Simkit, a library of generic classes is

developed at the University of Central Florida (UCF, 2003). These classes are built to

bring in the functionality similar to that of the basic process panel in Arena. Different

classes such as server, decision, resource, and queue, are created to support DES in

Simkit. This library is based on Object-Oriented concepts, and is further inherited into

specialized classes like OPF and KSC to develop NASA simulation models.

2.3.4 Silk Simulation Library

Silk is Java-based DES environment, supporting animation through the Java language.

Silk explicitly uses the multi-threading capability of Java to implement process-based

simulation. By executing the simulation in the Java environment, users can have access to

12

distinct features of Java, such as browser-based simulation, platform independent

simulation, standard communication protocols, database connectivity, applets, and

graphical user interface creation.

Silk offers a distinct feature called JavaBeans Component Modeling for animation

purposes, which works similar to any generic simulation library. The advantage of this

feature is that a simulation model can be built faster using predefined Silk components

rather than starting from scratch. Silk can also write Individual, self-content simulation

modeling components, which are automatically made functional and interoperable when

incorporated into the JavaBeans environment. A user can assemble the components into

the model by placing them in the workspace and editing their properties to produce the

desired behavior [9].

2.3.5 Agent Based Simulation – E-commerce using Silk

This library is developed by at the Delft University of Technology, The Netherlands [10].

A number of predefined components containing mechanism and behavior to represent

various roles relevant for the domain of electronic commerce are developed. Predefined

components were defined in the java based simulation environment Silk. Agents are

autonomous, goal driven entities that are able to communicate with other agents [10].

Their behavior is a consequence of their observation, their knowledge, and their

interaction with the other agents [10].

Based on functional requirements, a generic agent model is derived consisting of

13

three layers (Control layer, Visualization layer and Process layer). Many domain-specific

agents are built to support each layer. An essential feature of this approach is that several

components are identified and constructed to represent behavior of independent

organizations in e-commerce. These components can be further customized for specific

use.

2.3.6 SimBeans – Library for component based DES using JavaBeans

SimBeans is a project conducted at Johannes Kepler University, Austria [11]. The

JavaBean is a reusable software component that can be modified and composed

interactively with other components. In this project, a powerful DES framework and a set

of flexible java bin components are developed. The SimBeans system is developed in

multiple layers. The lowest layer is Java programming language and the JavaBeans

component model. The next layer is the Simulation Kernel providing infrastructure and

implantation for simulation. The top layer consists of elementary and application specific

simulation components. These simulation components are built as stand alone programs.

The library of elementary simulation components for discrete process simulation has

been designed to facilitate utmost reusability and extensibility [11].

14

Receiver

Basic Receiver

Sink

Basic Receiver/Provider
Provider

Basic Provider

Generator

Basic DEVS Model

Server

Single Server

Delay

Queue

Place

Basic Storage

Basic Model

Storage

Figure 4: Class hierarchy for elementary model bean

The set of building blocks in the library include Generator, Sink, Processor, Queue,

Place, and Delay. A separate set of components for visualization and animation is also

provided. This component based library serves as an example of how predefined

structures in Discrete-Event simulation can help to build the model rapidly.

2.3.7 JavaDemos – Library for DES using Java

JavaDemos is a Java library for DES, written by Olaf Matthes in his thesis at the

University of Essen, Germany in 1999. This work is inspired by the Demos system

written in Simula language. JavaDemos serves as a simulation environment as well as

15

providing classes for rapid creation of simulation models. These classes include Report,

Random Number Generators, Entity, Queue, Resource and Bin. To use the Demos

library, the user simply needs to include the Demos package in the simulation program

written in Java. JavaDemos also provides graphical front end feature for visualization and

interaction of the simulation run [12].

Figure 5: Screen capture of JavaDemos Model

As the JavaDemos example in figure shows, the current objects in the event list,

statistical results of the usage of a resource object and the simulation trace can be seen

while the simulation is running.

16

2.3.8 Mobile Agents – Reusable Building Blocks using JavaDemos

 Mobile Agents is the simulation library for distributed information technology developed

at the University of Jena, Germany. This library is developed using JavaDemos. Mobile

Agents are autonomous, intelligent programs that move through a network, searching for

and interacting with services on the user's behalf. These systems use specialized servers

to interpret the agent's behavior and communicate with other servers.

This library is developed to analyze the performance of a Mobile Agent system

during the development of an agent code. Modeling and simulating the Mobile Agent

system using JavaDemos required plenty of simulation code. Therefore, to ensure faster

development of the model reusable building blocks which fulfill the basic functionality of

Mobile Agent system are developed. The simulation tool JavaDemos was extended to

include new classes in order to enable performance analysis of a mobile agent system

such as agent round trip time or the utilization of the agent server.

Basic goal of the library is to simulate the Mobile Agent system as a real agent

system to test the performance. There are three top level classes; first is the Agent Server

class containing objects for CPU, Resource, Agent Communication, Agent Wait Queue,

and Message Queue. The second class is the Network Link class, containing attributes

like Bandwidth, Medium Length, Active Stations, and Packet Size. Third class is the

Router class, which stores the router table. This library serves as an example of how

reusable classes can help to efficiently build simulation models in the specific domain

[13].

17

Figure 6: New classes for mobile agent simulation

2.3.9 JAS – Java Agent Based Simulation Library

JAS is developed at University of Torino, Italy [14]. JAS is a rich and open collection

library, developed using Java and XML. It is designed for agent-based modeling to help

create models and share them easily. JAS provides a collection of ready to use widgets

and a set of thumb rules to build the simulation model using these widgets. Most of the

libraries contained in JAS are reliable, well-tested third party libraries. Different

packages in the JAS library are Discrete-Event Time Engine, Statistical Probes, Neural

Networks/Genetic Algorithms, and Graph support for social network analysis. JAS is an

example of interoperability and code reutilization enabled by open source licenses.

The special features of JAS include XML data input/output operations and a

genetic algorithm library. JAS also supports Sim2Web architecture (for web publishing

of simulations and remote user interaction) and automatic collection of statistical data

18

into a database [14].

2.3.10 FDK – Federated Simulation Development Kit

Federated Simulation Develop Kit (FDK) is the library of software modules developed at

Georgia Institute of Technology, by Parallel and Distributed Simulation (PADS) research

group. This library offers the modules for building run-time infrastructure (RTI). RTI is

the software which provides a set of services used by federates to coordinate their

operations and data exchange during a runtime execution [22]. RTI developers can

choose from the set of provided FDK modules for developing RTI implementation. RTI

developers can benefit from incorporating these ready-made modules, instead of

developing on their own [15]. FDK is another example of how predefined simulation

modules can help developer to build the model.

These different examples demonstrate how reusable domain specific classes are

required in any simulation environment. Some of the simulation environments come with

a reusable library and for some of the environments such a library needs to be built.

2.4 Distributed Discrete-Event Simulation

When a simulation grows large and has lots of events to be processed simultaneously, it

is helpful to distribute those simulation event executions on multiple computer

processors. This assists in sharing the load on multiple processors, reduces the simulation

run time, and gets more address space [16]. Each processor is made responsible to

19

process certain kinds of events and each processor maintains its own event list and

simulation clock. The main concern in distributed simulation is what happens when one

processor schedules an event on another processor in the past. To implement parallel

simulation, synchronization and communication between different nodes is very

important. To achieve effective synchronization, two approaches, i.e., Conservative

approach and Optimistic approach are generally used.

In the conservative approach, a check is performed so that no simulation object

processes an event when it is possible to receive an event from other simulation objects at

an earlier time stamp. By this approach, simulation objects will not be allowed to

schedule an event on another simulation object on a different node for less than the look-

ahead time gap. Hence, no event is scheduled out of order. This increases the interaction

between simulation objects. If a node knows that the current simulation time of another

node is greater than or equal to its current simulation time, only then the first node can

continue processing events, otherwise it has to wait. To implement this approach, more

communication between nodes is required.

In an optimistic approach, it is assumed that this kind of problem will not occur,

and if it occurs, then the simulation is “rolled-back” to an earlier point. The simulation

engine needs to have the capability of undoing the changes made to state variables and

must also be able to keep track of already scheduled events. This kind of approach

requires advanced simulation engine like SPEEDES. SPEEDES automatically retracts

locally generated events through pointers and uses anti-messages to cancel events

generated for simulation objects on another node [16]. This approach requires less

20

communication and it is also flexible, but roll-backing of the events is an overhead on the

node.

2.4.1 Past Implementations of Distributed Simulation

Many researchers and scientists have performed different experiments to study speedup,

computational load, and the number of processors required in distributed simulation.

Distributed simulation performance is evaluated against sequential simulation. The

following sections summarize some of those implantations and their conclusions.

2.4.2 Yaddes Simulation System

This is a study presented at the University of Waterloo, Canada [17]. It compares the

distributed simulation with the sequential simulation of the same system. The

performance is tested against four different performance measures: speedup, number of

processors, lookahead time, and computation load. The Yaddes system is a tool for

constructing a DES model. It compiles the instructions to produce C language code and

links this code with a library to create an executable model. The Yaddes system supports

sequential simulation as well as three distributed synchronization methods such as

distributed simulation using multiple lists, conservative, and optimistic approaches.

Different experiments are conducted changing the initial load of the system. Out

of 480 different simulation results, 432 are distributed simulations and 48 are sequential

simulations. Each benchmark is run on one processor using traditional sequential

21

algorithms and on multiprocessors with two, four and eight processors using three

different distributed synchronization methods. The result observed is that, a distributed

simulation with multiple lists does not show speedup for the listed benchmarks, while the

other two synchronization methods give good speedup.

The conservative approach shows the best speedup especially under heavy load

situations whereas the optimization approach shows good speedup for all cases with a

number of processors equal to or greater than four [17].

2.4.3 Remote OMNeT++ Distributed DES Environment

OMNeT++ (Objective Modular Network Tested in C++) is a remote simulation

environment developed at the Budapest University of Technology and Economics,

Hungary. In the referred paper OMNeT++ is presented to demonstrate its remote

simulation capabilities i.e., simulation is not performed on the user’s computer, but it is

performed at a dedicated server. Users can access the simulation through a computer

network. This resource concentration is mainly used for the reasons of hardware costs,

data consistency, software upgrades, and maintenance.

22

Figure 7: The components of Remote OMNeT++

The architecture for this simulation system is constructed with three components: Client,

Processing Host and Data Warehouse. Processing host is mapped as the Manager, which

is responsible for running the uploaded model. Data Warehouse can be a file, relational

database or complete Object-Oriented database management system. Finally, the Client

component is responsible for providing an easy to use interface to users through a GUI,

while using minimum resources. The model in the system can be run with three basic

configurations as follows: In Development Configuration, developers can create and test

the models on same machine as simulation run time during development is small. In

Laboratory Configuration, the model is uploaded on the server for testing or education

purposes; hence no data warehousing is required. In Corporate Configuration, where

heavy duty simulations are performed, a dedicated server and one or more data storage

severs are required.

23

The features of OMNeT++ include a “Specialized Security system” with a variety

of access rights, as required for distributed simulation. It also provides the feature of “off-

line Monitoring”, using which allows the user to safely disconnect from the processing

host and reconnect later to check the progress. OMNet++ supports Common Object

Request Broker Architecture (CORBA) using the simulation manager which can be

implemented in Java or C++ making it truly open architecture. The “Web based

monitoring” can be enabled using Applets to monitor the simulation from any

geographical location. OMNeT++ supports “Batch execution” to automatically distribute

the simulation on different processing hosts. OMNeT++ also provides the feature of

“Test case generation”, using which simulation can be run with changing parameter over

a given range. Hence, OMNeT++ provides a solution for large simulations, high

hardware costs and can be used as a platform independent environment [18].

2.5 SPEEDES

SPEEDES is the Linux based C++ Discrete-Event simulation environment used to

simulate a wide range of models. SPEEDES has been used for military simulations, navy

simulations, Space shuttle simulations, etc. The special feature of SPEEDES which

makes it suitable for large simulations is simulation in parallel/distributed simulation.

SPEEDES can distribute different objects on multiple processors. For implementing

parallel processing, SPEEDES possesses the capability of rolling back the event.

Sometimes when one processor is faster than another, the faster processor may need to

24

rollback if the slower processor schedules an event in the past. For rollback purposes,

specialized data types in SPEEDES are provided, which can be used in the same way as

the data types in C++ [16].

SPEEDES also posses the functionality of providing interface for external

modules and federations. This interface can be used to develop an intricate

communication and graphical user interfaces. This is also called high level architecture

(HLA). High level architecture is widely used in military simulations, games, etc.

Interface
Federation Management Infrastructure

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive ViewerSimulations Data Collector/

Passive Viewer
Data Collector/
Passive Viewer
Simulation
Surrogates

Interface
Federation Management Infrastructure

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer

Data Collector/
Passive ViewerSimulationsData Collector/

Passive Viewer
Data Collector/
Passive ViewerSimulations Data Collector/

Passive Viewer
Data Collector/
Passive Viewer
Simulation
Surrogates

Data Collector/
Passive Viewer

Data Collector/
Passive Viewer
Simulation
Surrogates

Figure 8: High Level Architecture

2.5.1 SPEEDES Simulation Object

SPEEDES provides a set of C++ classes and an Application Program Interface (API) as

the framework. As the part of framework SPEEDES provides a base class “SpSimObj”.

Any class which needs to schedule an event or needs to change state must inherit this

class. This class provides the functionality of roll back.

To declare any object as a simulation object “DEFINE_SIMOBJ” needs to be

25

included in the class definition. Also, this object has to be plugged in the framework by

calling the macro “PLUG_IN _SIMOBJ” in the main function. To initialize any object

SPEEDES provides an Init method. This method is called at the start of the simulation.

Similarly, to clean up the memory space before deleting the object SPEEDES provides

the Terminate function.

The objects of each simulation class are managed by the simulation object

manager. On each node, one simulation object manager is created per class. The

simulation manager is used to manage initialization and termination of objects, creating

dynamic objects, managing external module subscription, etc.

Each simulation object is identified by three IDs (i.e., Kind ID, Local ID, and

Global ID). These IDs are useful in retrieving the simulation object. Kind ID is the ID

assigned independently to each type of simulation object. For example, if we have four

shuttles and seven transporters then shuttles will be assigned Kind ID (0-3) and

transporters will be assigned Kind ID (0-6). Another type of ID is Local ID. It is the

sequential number of the object on each CPU. It will count how many objects are on

each node regardless of the type of the object. Finally, Global ID is the unique ID

throughout all the nodes. In the above example, shuttle and transporter will have global

ID’s (0-10).

26

Table 1: Example of IDs of Simulation object (S: Shuttle, T: Transporter)

 Node 1 Node 2

Object S1 S2 T1 T2 T3 S3 S4 T4 T5 T6 T7

Kind ID 0 1 0 1 2 2 3 3 4 5 6

Local ID 0 1 2 3 4 0 1 2 3 4 5

Global ID 0 1 2 3 4 5 6 7 8 9 10

Simulation objects can be assigned to different nodes using three decomposition

algorithms. In Block algorithm, objects are assigned to each node in a chunk, in the

Scatter algorithm, objects are distributed to each node like playing cards and in a File

based decomposition the simulation object and desired node can be specified [16].

2.5.2 Point-to-Point Events

These are the most primitive types of event in SPEEDES. In this type of event one

simulation object schedules an event on another simulation object at a point in simulated

time. It is a one way type of communication. To define any point to point event first a

method on the simulation object needs to be defined. Then that method needs to be

mapped to the event by the macro “DEFINE_SIMOBJ_EVENT”, and then need to plug-

in this method into the framework by the macro “PLUG_IN_EVENT”. Finally, a call is

sent to the SCHEDULE_ macro to schedule this event [16].

27

There are three types of simulation macro available for point to point events:

simulation object events, local events, and autonomous events. These events differ from

each other by where the event method resides. In the simulation object, the event method

the event resides on the class inherited from “SpSimObj” or one of its descendents. In

local event, the method resides on the nested sub-object of the scheduling simulation

object. In both these types the events method resides on the simulation object. But in an

autonomous event, the method is separated from the simulation object.

2.5.3 Event Handlers

Event handlers are the substitute for point to point event. Additionally, event handlers can

schedule one or more events and the event handler can be configured at execution time.

That means the method attached to an event can be changed during the simulation, giving

the flexibility of choosing implementation to the user. Another advantage of an event

handler is that it can schedule an undirected event, which means they can trigger events

on all simulation objects who have subscribed by broadcasting the message. There are

three kinds of event handlers: Standard event handlers, Interaction event handlers, and

Interface event handlers.

Generally standard handlers are used when no data needs to be sent to the event.

This is the easiest form of handlers. When data needs to be sent in standard handlers, it

has to be sent by variable buffer length. On the other hand, interaction handlers are used

to send variable length of data to the event. It uses the class “SpParamSet” to define the

28

set of parameters. This set can be changed each time the handler is scheduled. The last

type of handler is the interface handler. The Interface handler allows for multiple

arguments in the handler method.

2.5.4 Process Model

This is a very specialized feature which sets apart SPEEDES from other simulation

environments. This allows a method to execute in a time period rather than instantly at

the same simulation time. Process is basically a point to point event, which uses some

macro to have the capability of exiting at any point and reentering at some later point in

time.

Event-based models execute the events instantaneously, where as process based

models run over the period of time. Process based models can be mapped into treads to

work in parallel. A Process based paradigm is also easy to implement.

A Process model uses macros for initializing the model, wait reentry point,

semaphore reentry point and ask reentry point. Initializing macros mark up the start of the

process model code and declare local state variables, i.e., variables which retain value in

between the reentry. Wait macros used in wait reentry point can hold the process for a

fixed time period. Semaphore reentry can hold the process until a resource semaphore or

variable semaphore is available for further execution. Using these macros, the process

model can be set on hold for a fixed time, waiting for a resource or for a variable. In this

study, a process model is being used to implement the server class, where the server is on

29

hold until the required process time has passed.

2.5.5 Dynamic Objects

Traditionally, the user needed to specify the number of the objects required for a class at

compile time. This method restricted the user from creating objects dynamically. Hence

one has to count all the objects required for each class before the simulation starts.

Dynamic object creation is an improved approach used to create objects in this study.

As a first step, it is necessary to declare dynamic initialization method. This

method needs to be mapped into event using macro DEFINE_CREATE_EVENT. The

byproduct of this macro call will be a schedule method identical to a standard schedule

function. Then the dynamic objects can be created any time by calling macro

SCHEDULE_, which returns the handle of newly created and initialized objects.

30

CHAPTER 3: LIBRARY STRUCTRURE WITH UML DIAGRAMS

3.1 Preface

This chapter describes the structure of the classes, technical aspects of the classes and the

method of using these classes in any simulation model. The library contains the following

classes: Server, Decision, Transporter, Entity, and the Data Interaction classes used for

communication. Resource and Queue functionality is embedded in the Server class.

Supporting UML diagrams are provided to give a better insight into the library.

This chapter initially describes the importance of UML diagrams in simulation

and the significance of each diagram. Each class is explained in detail with UML

diagrams and class code discussion follows in the next section. As mentioned before, the

need of these classes is realized from the Virtual Test Bed Project. The basic aim of this

library is to produce a modular code based on Object-Oriented principles.

3.2 UML Diagrams

Designing a complex simulation model is always associated with software engineering.

Software engineering involves the utilization of the Unified Modeling Language (UML).

Hence, UML forms a solid base for developing complex simulation models [19].

UML supports an iterative and incremental development process, promoting component

31

based architecture and the use of graphics and diagrams. All essentials of structures and

dynamics of a simulation model can be easily described and the requirements of a

simulation model can be easily formulated using UML. UML allows identification of

reusable component in a simulation model. In simulation study interaction diagrams, state

diagrams and class diagrams all are very useful. Each diagram will now be examined

from a simulation aspect.

3.2.1 Interaction Diagrams

Interaction diagram depicts the interaction between objects/classes over time. There are

two types of interaction diagrams: sequence and collaboration. Both diagrams are

especially helpful in simulation study, because events can be mapped as messages

(interaction) between the objects. Events can be plotted with respective objects in timely

order [20], as shown in figure 9.

Figure 9: Example of Interaction Diagram

32

An interaction diagram describes the dynamic behavior of the simulation model. In this

study, interaction diagrams were extensively used for explaining message passing

between created library and external simulation classes. Interaction diagrams also help to

understand the expected way of scheduling the events and using the objects from this

library.

3.2.2 State diagrams

In Discrete-Event Simulation, simulation objects change their state over the period of

time. It is very important to understand the different states a simulation object can

possess. A state represents a stage in the behavior pattern of the simulation object. State

diagrams depict the various states that an object may be in and the transitions between

those states [27].

Figure 10: Example of State Diagram

33

As shown in the figure, a state has a distinct name and sequence of activities involved to

achieve the state. States are represented by the values of the attributes of the simulation

object and state transition is the result of the invocation of a method that causes an

important change in the state. In this thesis, state diagrams are used to study different

states the objects from this library can possess, and the events causing the state transition.

3.2.3 Class Diagrams

The purpose of a class diagram is to depict the classes used within a model. Classes have

attributes, procedures and relationship with other classes. A class diagram can show the

attribute visibility, association, multiplicity, constraints, inheritance, aggregation, and

dependency in between other classes [21]. Static relationships between classes are shown

in figure 11 using the class diagrams.

Figure 11: Example of Class Diagram

34

As shown in the diagram, a class diagram contains the methods in the simulation class,

which are typically mapped as events. Attributes are shown with their data types. In this

study class diagrams are used to describe internal structure of the classes in the created

library and each type of the UML diagram shows a different view of the library. UML

diagrams can be used as specification and documentation of the classes for this study.

The following is the study of each class with details of its implementation.

3.3 Server Class

The Server is used to model the processing of entities using resources for a definite

amount of time. The Server class in this library contains queue, and resource as built-in

functionality. When an entity needs to be processed by the server, it is added to the server

queue. After a required number of resources are available, the entity is removed from the

queue and gets processed for a given amount of time. As soon as this processing finishes,

the resource is released and the entity moves to the next module.

35

S_Server

queue : SpCounterSem
resource : SpCounterSem
distribution : RB_SpRandom
serverTime : RB_double
Tree : RB_SpBinaryTree

S_Server()
ServerObjectInit()
<<virtual>> ~S_Server()
<<virtual>> Init()
<<virtual>> Terminate()
addQueue()
serverStart()
serverEnd()
ReleaseResource()

(from C++ Reverse Engineered)

Figure 12: Server Class Diagram

: S_OPF: S_OPFSimulation
Engine

Simulation
Engine

 : S_OPF : S_OPF : S_Server : S_Server

1: Init()

2: serverStart()

3: addQueue()
countinous
Process

4: serverEnd()

5: nextEvent

Figure 13: Server Sequence Diagram

36

3.3.1 Discussion of Server Class Code

The Server class uses the functionality of an Event based model as well as a Process

based model. Functioning of the server starts from the ‘Init’ method as any other

simulation class. The ‘Init’ method, triggered by the simulation engine at the start of

simulation triggers the process model. The Process model runs continuously in

‘serverStart’ method and keeps checking the queue of the server. If any entity is present

in the queue, and resource is also available for processing, this entity is taken out of the

queue and scheduled for given processing time.

Figure 14: Server Class code

37

To schedule processing of any entity by the Server, the entity is first added to the queue

of the server by scheduling the event ‘addQueue’. The Process model running in the

‘serverStart’ event schedules a ‘serverEnd’ event with this entity after the given

processing time has elapsed. The ‘serverEnd’ event scheduled at the end of processing

time releases the resource and also schedules the next event on an entity outside the

server. The information of the next event is found in the data interaction object, which is

sent as an argument when scheduling the server event. The ‘serverObjectInit’ method is

used for dynamic creation of a server, so that library files need not be modified to specify

the number of the servers required in any simulation model.

As recommended by SPEEDES, we do not use constructors and destructors in any

class. Rather we use ‘Init’ method to initialize the object and ‘Terminate’ to perform

clean up operations after deletion of an object.

3.3.2 Queue

The ‘RB_SpBinary Tree’ data structure available in SPEEDES is used to implement the

queue. The Queue is implemented on a First in First out (FIFO) principle by prioritizing

all events on an entry time basis. The Init method sets up the tree object to implement as

a queue. When any class sends an entity to the Server, it schedules an ‘addQueue’ event

to add the entity in queue, and the server takes care of the further processing. In the

‘startServer’ process model, the execution of an event is halted until there is an entity in

the queue. As soon as an entity is added to the queue, the queue count is incremented and

38

the process model sets off for the next halt, waiting for the required resource. When the

resource is available, the process model takes the entity out of the queue, the queue count

is decremented and the entity is scheduled for the ‘serverEnd’ event.

3.3.3 Resource

Resource is the basic functionality required for implementation of the server. Resource

capacity can be set by an outer class using the ‘setResource’ method. In the process

model ‘serverStart’, event execution halts until enough resources become available. As

soon as the resources become available, the model proceeds by taking an entity out of the

queue and sending it to the ‘’serverEnd’ event. In ‘serverEnd’, the resource is released

and the count of a resource object is incremented. The flexible structure of this library

allows resources to be released from outer class using the event ‘ReleaseResource’.

Since, the queue count and resource are both declared as semaphore types, they can be

used in process model to halt the execution.

3.3.4 Server Arguments class

The Server Arguments class is a data interaction class used to send the required data to

the Server class in a specialized way. As server arguments are not basic data type, they

need to be wrapped in an object before sending them to the server.

39

ServerArguments

Processing_Time : double
releaseResource : int
trigger : RB_SpString

(from C++ Reverse Engineered)

Figure 15: Server Argument Class Diagram

The Server Argument class shown in figure 15 contains the attribute ‘Processing_Time’,

used to send the processing time in seconds generated by the external class. In this

library, random number generation has been performed in the external class to reduce the

complexity of the Server class. If in the future an advanced random number generation

library is created for SPEEDES, then this generic library need not be modified to

accommodate new random numbers. The external class will store the information of

random number distribution, generate a random number and will send the number to the

server through this wrapper class. The ‘releaseResource’ attribute stores the information

of releasing the resource. The attribute ‘trigger’ is used to send the information about the

next event to be scheduled following the server process, i.e., the ‘serverEnd’ event.

3.4 Decision Class

During a simulation, many times the next execution path is decided by probability. The

Decision class shown in figure 16 can be used to model such probabilistic decision

making processes in the SPEEDES simulation model. Currently, this class supports up to

40

four way decisions, but it is easy to enhance the class for more branches (see figure 17).

The specialty of the decision class is; only one instance of the class is required for a

complete simulation model, to make all kinds of probabilistic decisions.

S_Decision

handle : SpObjHandle

S_Decision()
Init()
DynamicObjectInit()
PrintName()
Decision_Two()
Decision_Three()
Decision_Four()

(from C++ Reverse Engineered)

Figure 16: Decision Class Diagram

Simulation
Engine

Simulation
Engine

 : S_OPF : S_OPF : S_Decision : S_Decision :NextClass:NextClass

1: dynamicObjectInit

2: DecisionTwo

3: DecisionThree

4: DecisionFour

5: NextEvent

Figure 17: Decision Class Sequence Diagram

41

3.4.1 Decision Argument Class

The Decision Argument class shown in figure 18 is used as a wrapper class for sending

arguments. Since, arguments of the decision class are not standard data types; they need

to be wrapped in an object. The Decision Argument class contains a trigger for the first

event of the branch and the probability of occurrence. One object of the Decision

Argument class is required per decision branch in the Decision class. Hence, for a four-

way decision, four objects of the Decision Argument class are sent to the Decision class.

S_Decision_Arguments

trigger : RB_SpString
probability : double

(from C++ Reverse Engineered)

Figure 18: Decision Argument Class Diagram

3.4.2 Discussion of Decision Class Code

An object of the Decision class is created dynamically by scheduling the event

‘DynamicObjectInit’ on the Decision class. The Decision class has three methods to

support multi-way decisions: Decision_Two, Decision_Three, and Decision_Four. These

methods are mapped as events which can be scheduled by external class to implement the

decision. These events require triggers, and the probability of each branch, wrapped in a

Decision Argument class object. All probabilities need to be in the form of percentage

42

and must sum to 100.

Figure 19: Decision Class code

Whenever any decision event on a decision object is triggered, a uniform integer between

1 and 1000 is generated by the function ‘GenerateInt’ from the ‘SpRandom’ object. Each

probability is multiplied by 10 and the generated integer is compared to the ranges

formed by the probabilities between 1 and 1000. Whenever a matching range is found,

the trigger associated with that range is scheduled to follow that path. The trigger of the

43

next event is scheduled by the macro ‘SCHEDULE_INTERACTION’. As mentioned

earlier, only one decision instance can serve the objective of probabilistic decision in any

model.

3.5 Transporter Class

Transporter is one of the most frequently used modules in Discrete-Event Simulation.

The Transporter class in this library, shown in figures 20, works similar to Transporter

module in Arena. When an entity needs to be transported, it adds itself to the transporter

queue. When the transporter is available, the entity seizes the transporter and gets

transported. After reaching its destination, the entity frees the transporter and transporter

either attends other calls or goes back to the home station.

S_Transport

Previous_Destination : char*
Current_Destination : char
Delay : RB_double
Time_Delay_Home : RB_double
distanceSet : RB_double
Set : char*
Home : char*
Transport : RB_SpBinaryTree

<<virtual>> Init()
Transport_Decision()
Transport_Home()
Transport_Status()
Transport_Queue()
TransportObjectInit()
GetDistanceSet()

(from C++ Reverse Engineered)

Figure 20: Transporter Class Diagram

44

Simulation
Engine

Simulation
Engine

:Origin:Origin :Transporter:Transporter :Destination:Destination

1: TransportObjectInit

2: Transport_Queue

3: Transport_Decision

4: GetDistanceSet

5: DestinationStation

6: Transport_Status

7: Transport_Home

Figure 21: Transporter Class Sequence Diagram

3.5.1 Transporter Argument Class

The Transporter Argument class is used to supply the arguments to the transporter into

wrapped format. Whenever an entity wants to be transported it supplies information of

origin and destination to the transporter by creating the instance of the Transporter

45

Argument class and sending this instance as an argument to the transporter.

TransportHandles

origin : char*
destination : char*

(from C++ Reverse Engineered)

Figure 22: Transporter Argument Class Diagram

3.5.2 Discussion of Transporter Class Code

As shown in the UML diagram, the Transporter class is initialized dynamically at the

start of the simulation by the event ‘TransportObjectInit’. This event also assigns a

distance set and a home station to the transporter. Whenever any entity wants to use the

transporter it needs to schedule the ‘Transport_Queue’ event on that transporter. This

event will add the entity in the transporter queue and check the availability of the

transporter. If the transporter is available, a ‘Transport_Decision’ event will be scheduled

on the transporter. ‘Transport_Decision’ is a process model, which continuously checks

the queue of the transporter and removes the entity for transportation if the transporter is

free. This function retrieves the origin and destination information from the entity by un-

wrapping the Transporter Argument object. After getting origin and destination

information, the ‘GetDistanceSet’ event is scheduled to get the transportation time in

between stations from the Distance Set parser file. The Distance set parser file holds the

information of transportation time in between the all possible pairs of stations for each

46

transporter. The transporter status is changed to busy and the entity is scheduled for the

destination event after transportation time delay.

Figure 23: Transporter Class Code

When the entity reaches the destination event, the destination class will release the

transporter by scheduling a ‘Transport_Status’ event, which changes the status of

transporter. This event also checks the transporter queue. If any entity is waiting in the

queue, transporter is assigned to that entity, otherwise scheduled for home station.

47

3.6 Entity Class

An Entity class is required to generalize the simulation entity definition in the library.

This library works with the entity class; hence if any simulation entity, like a shuttle, is

required to be sent to the object of this library, its information needs to be copied to an

Entity class object.

EntityHandle

nodeId : int
mgrId : int
localId : int

intialize()
EntityHandle()
EntityHandle()

(from C++ Reverse Engineered)

Figure 24: Entity Class

As shown in the figure, an entity class contains nodeID, managerID, and localID. In most

of the classes in this library, events need to be subscribed and published, for calling by

the other objects. SPEEDES does not allow the direct object handles as arguments for

subscribing and publishing the events. Hence, information in the handle needs to be

copied to entity object before publishing the trigger.

48

3.7 Synopsis

This chapter explains the technical details of the classes in the library. The task of

creating these classes is challenging as Linux is a very restricted language and we were

trying to create a library for general use. This is the first attempt to create such a generic

library under Linux. This Library has most of the frequently used modules in any

Discrete-Event Simulation. In the next section, we report the implementation results of

this library in SPEEDES Space shuttle model.

49

CHAPTER 4: IMPLEMENTATION AND VALIDATION OF THE
SHUTTLE MODEL

4.1 Preface

The classes in the generated library are tested and used to recreate the SPEEDES Space

Shuttle Model. This chapter discusses the testing of the classes, implementation of the

library and validation of the recreated SPEEDES Shuttle Model against the model in

Arena.

4.2 Testing the Library

We have the Arena Basic Process Panel as an example of a predefined library.

Requirements are formulated by keeping the functionality of Arena in mind. After

completing the coding, each class is checked against these requirements. Though

SPEEDES is not as flexible as the SIMAN language used for Arena, we try to match the

requirements as closely as possible. During the testing some dummy scenarios are created

to test the functionality. A dummy OPF (Orbiter Processing Facility) class to create the

objects and a Main class to run the simulation model are used. The testing code is set up

by including several output statements.

When coding of Server class is finished, 3-4 server objects are created in the

50

dummy OPF class and an entity is passed through each of the servers one after another.

This Server class was tested for single resource capacity as well as multiple resource

capacity. Late release of resources in server is also tested by releasing the resources in a

class outside the server. To test the decision class two way, three way and four way

decisions are implemented in dummy OPF class. Different events representing different

paths are created in OPF class. The Decision class is tested to make sure that it is making

the decisions and scheduling events according to the given probability. Testing the

transporter is one of the challenging tasks as the transporter is more like a complex

version of the Server class. It is tested to deliver the entity in the same class and in a

different class. The library is tested to a satisfactory level and is expected to work

according to the set requirements.

4.3 Implementation of the Shuttle Model

As the part of implementation, the SPEEDES Space Shuttle Model is recreated using the

classes in this library. Each already existing class in SPEEDES shuttle model is closely

examined for the purpose of finding the opportunities of using the objects from this

library. To use the library, many changes are made to the Shuttle model. Following

diagrams show the hierarchy of the classes formulated in this implementation. The library

classes are extended from SPEEDES base class ‘SpSimObj’.

51

4.3.1 Class Hierarchy

As shown in figure 25, the existing shuttle model does not have any hierarchy. All the

classes are made for a specific purpose and the model does not use any predefined

components. For similar functionalities, the same code is reproduced which results in a

large amount of coding and more development time.

In the recreated shuttle model, the classes from the generated library are in the

middle level of the hierarchy, as shown in figure 26 and 27. For similar functionalities,

the code from the library classes is reused. Due to use of the objects from these classes,

the development time in the recreated Shuttle Model is reduced to a great extent.

Error!

SPEEDES Framework

(SpSimObj class)

Base class

52

S_Shuttle S_OnOrbitS_Launch S_KSC

Routing
time

S_OPF

Mate de-
mate logic

S_MDM

ProcessScrub
logic

S_Palmdale S_Route S_Global

Landing
& process

Resources &
variables

S_DFRC

Entity

 Example classes in existing SPEEDES Shuttle Model

Figure 25: Class hierarchy in existing SPEEDES Shuttle Model

SPEEDES Framework
(SpSimObj class)

Server Decision Transporter Entity

S_OPF S_KSCS_Launch

ResourceQueue

extends

Example classes in re-created shuttle model

Library classes

includes includes includes includes

extends

Server
Arguments

Decision
Arguments

Transporter
Arguments

includes includes includes

includes includes

Figure 26: Class hierarchy in recreated SPEEDES Shuttle Model -1.

SPEEDES Framework
(SpSimObj class)

Server Decision Transporter Entity

S_Palmdale S_DFRCS_OnOrbit

ResourceQueue

extends

Example classes in re-created shuttle model

Library classes

includes includes includes includes

extends

Server
Arguments

Decision
Arguments

Transporter
Arguments

includes includes includes

includes includes

Figure 27: Class hierarchy in recreated SPEEDES Shuttle Model -2.

53

The objects from this library are included in the class definition of the recreated Shuttle

Model. The reason behind including the objects of the library in class definition are of the

Shuttle Model is any number of objects could be added in the same class. For example,

the Palmdale class has two server processes. To model this logic, the Palmdale class

includes two instances of the Server class.

4.3.2 Comparison of Existing and Replaced Code

In this section, we compare the length of the code for different modules in the existing

SPEEDES Shuttle Model and the recreated SPEEDES Shuttle Model.

Existing Server Code Replaced Server Code

Figure 28: Sample Server Code Comparison in SPEEDES Shuttle Model

54

As seen in the chart above, the server code was significantly reduced due to use of the

Server class from the library (see figure 29 and 30). In the existing SPEEDES Shuttle

Model, a separate code is required for the Server, Queue and Resource functionality,

increasing the complexity of the model. Since, in the new Shuttle Model the Queue and

Resource are embedded in the Server class definition, the implementation is much

simpler.

Existing Decision Code Replaced Decision Code

Figure 29: Sample Decision Code Comparison in SPEEDES Shuttle Model

55

Existing Transporter Code Replaced Transporter Code

Figure 30: Sample Transporter Code Comparison in SPEEDES Shuttle Model

56

As seen in the figure 29 and 30, a large amount of transporter code is replaced with the

generated library. In the existing SPEEDES Shuttle Model, each transporter had separate

.CPP and .H files. But in the recreated Shuttle Model, a generic transporter class replaced

all these files. Finally, in this implementation, we incorporate about 15 Server objects, 15

Queue objects, 15 Resource objects, 5 Transporter objects and 4 Decisions objects from

the generated library.

4.3.3 Flowcharts of the Implementation

Objects from this library are used in recreating the SPEEDES Shuttle Model. This

discussion is followed by the flowcharts of the Server, Decision, and Transporter

functionality in the recreated model using the generated library. Many opportunities are

identified for use of the Server class objects. The Server functionality is much more

straightforward and easy to replace. Since, the Resource and Queue objects are embedded

in the server class; the amount of code required is significantly reduced. Similarly, most

of the probabilistic decisions are replaced by the object from the Decision class. The key

advantage of using the Decision class is that only one global decision object is required

for the complete simulation model, as any decision process does not cause a delay.

Most of the transporter functionality is also replaced with the objects from the

transporter class. Since, the transport functionality is not very well-defined in the

existing SPEEDES Shuttle Model; code had is changed to use the transporter class. The

figures 31 through 33 show all the events and state changes in the implementation of the

57

SPEEDES shuttle model.

Intialization

Intialize the Server From External Class

Check the
Capacity

Arrival of Entity

Process the
Entity

1)set the Capacity ,capacity
variable is resource
2)set the name of the server

If the Capacity >0 && Entities >0

Wait for
Resource

If Capacity ==0 and Entities >1

Release the
Capacity

If Flag_To_Release ==true

Don't Release
The Capacity

If Flag_To_Release == False

Check the Release
Capacity Flag

Trigger the
Next event

Release Capacity
From External Class

Variable :
resource ++

Variable :
resource --

Event is fired with entity
handle and Server
Handle

Figure 31: Server Implementation/Activity Diagram

58

Generate a
Random number

Event Fired with Percentages,Destination and Entity

Convert the Random
Number to percnetage

A random
number...

Compare the
percentages

A comparsion is done
against the
percentage associated
with each destination

Every Destination is
assciated with a
percentage

Send the Entity by triggering the right event

Figure 32: Decision class Implementation/Activity Diagram

59

Figure 33: Transporter class Implementation/Activity diagram

60

4.3.4 Dynamic Creation of Objects

In the old shuttle model the numbers of entities required for each class are defined at

compile time. This result in excessive memory usage and extra burden to precisely

estimate the number of the objects required for the Shuttle Model. During development of

the shuttle model, many duplicate entities are created to implement the complex logic.

Hence, the developers have to keep track of all duplicates and make sure that existing

duplicates are used before declaring a new one.

While implementing the shuttle model using this library, the advanced feature of

Dynamic Object Creation is used. Whenever any entity, server, decision, or transporter

object is required, it is created dynamically, resulting in the easy implementation of the

model. Dynamic Object Creation results in improved performance such as increased

execution speed, low memory usage, and high scalability of the model [16]. The

Dynamic Object Creation feature can be used in all future SPEEDES simulation models.

4.3.5 Publishing and Subscribing the Events

This is one of the major changes in the SPEEDES Shuttle Model. The existing model

used simple Point-to-Point method for event scheduling. In Point-to-Point method, the

scheduler needs to have complete information of the event to be scheduled, which results

in a hard-coded, tightly coupled static model. For a simple change such as event name, a

lot of the code has to be revisited to check the integrity of the program.

Since, we use a generic library in the recreated shuttle model the events have to be

61

made flexible. The objects from the created library would not have any information about

next event to be scheduled, as that event would be outside the library. Hence, instead of

Point-to-Point events, event handlers are used. Event Handlers works on the principle of

late binding of the events. To explain this feature let us take the example of the Server

class from the library. In the recreated shuttle model, the external class can send the

entity to the server by scheduling the regular Point-to-Point event, without any change.

While scheduling server event, a trigger (string) of the event following the server is also

sent. The next event (event following the server) needs to subscribe itself as the listener

to the sent trigger. After the server finishing the processing of the entity, it publishes that

trigger using special macros, resulting in scheduling of the subscribed event outside the

server. This mechanism is successfully implemented all over the recreated shuttle model

to include the objects of newly created classes from the library.

4.3.6 Use of External Distance Set

In implementation of the SPEEDES shuttle model, all the distance sets were defined in

XML style, in the SPEEDES parameter file. The advantage of this scheme was

distance/time between stations could be changed without recompiling the shuttle model.

This is helpful in creating different scenario by changing the distance set values outside

the classes (see figure 34). Each transporter is linked to a fixed distance set, resulting in

an Arena-like implementation of the model.

62

Figure 34: Implementation of Distance sets for use in Transporter

4.4 Validation of Shuttle Model

The recreated shuttle model is validated against original Arena model. The criterion used

for validation is the Number of Flights completed in the given years. Both models are

run for 10 years and 50 replications. A Confidence interval around the mean of Number

of Flights in the Arena model is calculated. The Mean of Number of Flights from

recreated SPEEDES shuttle model is fitted into that interval.

As the following Table 2 shows, the mean of recreated SPEEDES Shuttle Model

fits within the lower and upper confidence limits of the Arena Shuttle model. Hence, we

63

can validate that the SPEEDES shuttle model closely resembles the Arena model. The

means of each data set also match closely; though do not match exactly due to different

random numbers streams used.

Table 2: Comparing the results from Arena and SPEEDES

 Run Time No. of

replications

Mean Std. Dev. 95 % Conf.

Interval

Low High

Original

Arena Model
10 years 50 69.2 1.45 66.34 72.05

Recreated

SPEEDES

Model

10 years 50 70.2 2.05

60
62
64
66
68
70
72
74
76

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Replication Number

No
. o

f F
lig

ht
s

Co
m

pl
et

ed

Arena
SPEEDES

Figure 35: Chart of Comparison

64

The above chart of comparison shows that value of validation parameter from recreated

SPEEDES Shuttle Model closely follows the Arena Shuttle Model, supporting our

conclusion.

4.5 Synopsis

In this chapter we discuss the testing of the generated library with implementation and

validation of the shuttle model. New features of SPEEDES are researched and used in

this implementation for better performance. The implemented shuttle model serves as an

example of using this library for simulations using SPEEDES. Users of this library can

refer to the implemented shuttle model as a reference example.

65

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH

This chapter provides conclusions of the results obtained from the use of the created

Discrete-Event Simulation library. Further, this chapter also discusses the future scope of

enhancements in the library.

5.1 Conclusion

The reusable Discrete-Event Simulation library for SPEEDES is developed following an

Object-Oriented approach. The details of the class structure are illustrated with UML

diagrams. The classes in the library are tested and validated against the formulated

requirements. The classes are used to recreate the SPEEDES NASA Space Shuttle Model

and this model is validated against the original Arena NASA Shuttle Model. The results

of the validation are shown in the previous chapter. The advantages gained with use of

the library are explained as follows:

• Modular, easy to maintain, and truly Object-Oriented code;

• Rapid creation of the model due to use of predefined components;

• Less amount of work required to create the same model;

• Allows ease and flexibility in modifying the model; and

• Permits runtime changes in input parameters;

66

5.2 Contributions

This simulation library is based upon its requirements from the Virtual Test Bed (VTB)

project. There are contributions to the VTB in creating the structure of the library. The

library contributes to the rapid development of simulation models using SPEEDES. The

users of SPEEDES will greatly benefit with use of this library as it will also help

standardize the implementation of operations simulation using SPEEDES.

5.3 Future Work

Employing the reusable simulation library is a significant improvement in the model

creation process in SPEEDES. This library is created for the operations simulation

domain. Hence, it has frequently used modules for operations simulation such as server,

and transporter. However, other domains like transportation simulation and electric

simulation have their own sets of frequently used modules. Enhancements in this library

can be done by adding the classes used for other domains. This will extend the area of

application of SPEEDES.

Another considerable improvement can be, providing a graphical interface to this

library. Due to the lack of a graphical interface, the model creation process in SPEEDES

is somewhat complicated. Therefore, in future, if this library is provided with an Arena

like drag and drop interface, where the user can select the right class for implementation,

the areas of application of SPEEDES will be broadened.

Automated generation of code using extensible modeling language is also one of

67

the potential areas of research in SPEEDES. With this new approach, users will specify

the parameters of the simulation model and create an XML schema. The code generator

of the extensible modeling language will use the set of XML schemas as input and will

produce the C++ implementations for each attribute defined in the XML schema [23].

XML’s meta-language aspect and extensive tool support makes it a potential

technology to build such modularly extensible modeling languages. Using XML

document transformation technology, it has become easier to develop custom code

generators. The code generator will work like a parser which will parse the XML schema

and generate the code for simulation models. XML has a fixed grammar, which has

enabled the development of excellent parsers for code generation [24]. The benefits of

this approach in the SPEEDES will be model driven programming, automatic update

propagation and a higher degree of consistency enforced by a generative approach.

68

LIST OF REFERENCES

1. Joines J.A, Roberts S.D. (1998) “Fundamentals of Object-Oriented Simulation”,

Proceedings of the 1998 Winter Simulation Conference D.J. Medeiros, E.F. Watson, J.S.

Carson and M.S. Manivannan.

http://www.informs-cs.org/wsc98papers/018.PDF

2. Stroustrup B. (1991) “What is Object-Oriented Programming?” AT&T Bell Laboratories

Murray Hill, NJ 07974

http://www.research.att.com/~bs/whatis.pdf

3. Marzolla M. “Distributed Simulation of Large Computer Systems”

INFN Padova and Dept. of Computer Science, Univ. of Venice, Italy

http://www.ihep.ac.cn/~chep01/paper/8-010.pdf

4. Paruchuri A., Wasadikar A., Marin F., Sepulveda J.A., Rabelo L. (2004) “Parallel

Discrete-Event Simulation of Space Shuttle Operations, Design, Development, and

Performance using SPEEDES.” Winter Simulation Conference 2004

5. Ball P. (1996) “Introduction to Discrete-Event Simulation” 2nd DYCOMANS workshop

on Management and Control: Tools in Action" in the Algarve, Portugal. May 15-17 1996,

pp. 367-376.

http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html

6. Kelton W., Sadowski P., Sadowski A., Sadowski P. (2002) “Simulation with Arena”,

McGraw-Hill New York, NY.

69

http://www.informs-cs.org/wsc98papers/018.PDF
http://www.research.att.com/~bs/whatis.pdf
http://www.ihep.ac.cn/~chep01/paper/8-010.pdf
http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html

7. Sodhi S. (2004) “Software Review – Flexsim”, OR/MS Today

http://www.lionhrtpub.com/orms/orms-8-04/swr.html

8. Buss A. (2001), “Technical Notes Basic Event Graph Modeling”,

Operations Research Department, Naval Postgraduate School Monterey, CA 93943-5000

U.S.A.

http://diana.gl.nps.navy.mil/~ahbuss/papers/BasicEventGraphModeling.pdf

9. Richard A. K. (2000), “Silk Java and Object-Oriented Simulation”, Proceedings of the

2000 Winter Simulation Conference

http://www.informs-cs.org/wsc00papers/037.PDF

10. Janssen M, Verbraeck A., and Henk G. S. “Agent-Based Simulation for Evaluating

intermediate roles in electronic commerce” School of technology, Policy and

Management, The Delft University of Technology, The Netherlands

http://www.betade.tudelft.nl/publications/JanssenVerbraeckSol_AGENT2000.pdf

11. Praehofer H., Sametinger J., Stritzinger A., “ Discrete-Event simulation Using the

JavaBeans Component Model” Johannes Kepler University, Austria

12. Flüs C., Mohamed H., Müller-Clostermann B. (2001), “JavaDEMOS: Java-based

Discrete-Event Simulation”

http://www.informatik.unibw-muenchen.de/mmb/mmb41/JavaDemosKurz.pdf

13. Flüs C., “Performance Engineering of Mobile Agents Using JavaDEMOS”, University of

Essen.

http://www.cs.uni-essen.de/SysMod/publikationen/PE2002_CFlues.pdf

14. Sonnessa M. (2004), “JAS library – User guide”

70

http://www.lionhrtpub.com/orms/orms-8-04/swr.html
http://diana.gl.nps.navy.mil/~ahbuss/papers/BasicEventGraphModeling.pdf
http://www.informs-cs.org/wsc00papers/037.PDF
http://www.betade.tudelft.nl/publications/JanssenVerbraeckSol_AGENT2000.pdf
http://www.informatik.unibw-muenchen.de/mmb/mmb41/JavaDemosKurz.pdf
http://www.cs.uni-essen.de/SysMod/publikationen/PE2002_CFlues.pdf

http://jaslibrary.sourceforge.net/files/UserGuide.pdf

15. Federated Simulation Development Kit homepage, retrieved on 12/03/04

http://www.cc.gatech.edu/computing/pads/fdk/

16. “SPEEDES User Guide” (2003) Metron Inc Prepared for The joint national integration

center 730 Irwin avenue Schriever AFB, CO 80912-7300

http://www.speedes.com/docs/SpUG.pdf

17. Preiss B.R. (1990) Performance of Discrete-Event Simulation on a Multiprocessor using

Optimistic and Conservative Synchronization Department of Electrical and Computer

Engineering University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, Copyright (c)

1990 by The Pennsylvania State University

http://www.brpreiss.com/papers/published/1990/icpp/paper.pdf

18. Erdei M., Sója K., Wagner A., “The remote OMNet++ distributed Discrete-Event

Simulation environment” Budapest University of Technology and Economics

19. Heemink A.W., Dekker L., De Swaan Arons H., Smit I., Van Stijn Th.L. (2001), “UML

based business systems Modeling and simulation” Proceedings of eurosim 2001 Shaping

future with simulation.

http://www.betade.tudelft.nl/publications/Shishkov_EUROSIM2001.pdf

20. Li X., Liu Z., and Jifeng H. (2004) “A Formal Semantics of UML Sequence Diagrams”

proceedings of ASWEC2004, 13-16 April, 2004, Melbourne, Australia

http://www.iist.unu.edu/newrh/III/1/docs/techreports/report292.pdf

21. Eichelberger H., “UML Class Diagrams - State of the Art in Layout Techniques”

W¨urzburg University , Germany

71

http://jaslibrary.sourceforge.net/files/UserGuide.pdf
http://www.cc.gatech.edu/computing/pads/fdk/
http://www.speedes.com/docs/SpUG.pdf
http://www.brpreiss.com/papers/published/1990/icpp/paper.pdf
http://www.betade.tudelft.nl/publications/Shishkov_EUROSIM2001.pdf
http://www.iist.unu.edu/newrh/III/1/docs/techreports/report292.pdf

http://www.cs.uvic.ca/~mstorey/vissoft2003/submissions/eichelberger_pospaper.pdf

22. Defense Modeling and Simulation Office website, retrieved on 12/03/04

https://www.dmso.mil/public/transition/hla/rti/

23. Dashofy E. M. (2001) “Issues in Generating Data Bindings for an XML Schema-Based

Language” Proceedings of the Workshop on XML Technologies and Software

Engineering (XSE2001), Toronto, ONT, Canada.

http://www.ics.uci.edu/~edashofy/papers/xse2001.pdf

24. Sarkar S., Cleaveland C. “Code Generation Using XML Based Document

Transformation, published on “TheServerSide Your J2EE Comminity”

http://www.theserverside.com/articles/content/XMLCodeGen/xmltransform.pdf

25. Rizzoli A. E., IDSIA (2004), A Collection of Modeling and Simulation Resources on the

Internet Galleria 2 CH - 6928 Manno Switzerland

http://www.idsia.ch/~andrea/simtools.html

26. Law A.M., Kelton, D.W. (2000) Simulation Modeling and Analysis, McGraw-Hill, Inc.

27. Object Oriented Analysis and Design Team website, Kennesaw State University

http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/state.htm

72

http://www.cs.uvic.ca/~mstorey/vissoft2003/submissions/eichelberger_pospaper.pdf
https://www.dmso.mil/public/transition/hla/rti/
http://www.ics.uci.edu/~edashofy/papers/xse2001.pdf
http://www.theserverside.com/articles/content/XMLCodeGen/xmltransform.pdf
http://www.idsia.ch/~andrea
http://www.idsia.ch/
http://www.idsia.ch/~andrea/simtools.html
http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/state.htm

	Developing An Object-oriented Approach For Operations Simulation In Speedes
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	CHAPTER 1: INTRODUCTION
	1.1 Preface
	1.2 Object-Oriented Simulation
	1.2.1 Encapsulation and Inheritance

	1.3 Distributed Discrete-Event Simulation
	1.4 Problem Statement and Importance of Work
	1.5 Synopsis

	CHAPTER 2: LITERATURE REVIEW OF DES LIBRARY AND SPEEDES
	2.1 Preface
	2.2 Discrete-Event Simulation
	2.2.1 Entity and Event
	2.2.2 Simulation Clock and Event List
	2.2.3 Random Numbers

	2.3 Generic Libraries for Discrete-Event Simulation
	2.3.1 Arena Simulation Library
	2.3.2 Flexsim Simulation Library
	2.3.3 Simkit Simulation Library
	2.3.4 Silk Simulation Library
	2.3.5 Agent Based Simulation – E-commerce using Silk
	2.3.6 SimBeans – Library for component based DES using JavaB
	2.3.7 JavaDemos – Library for DES using Java
	2.3.8 Mobile Agents – Reusable Building Blocks using JavaDem
	2.3.9 JAS – Java Agent Based Simulation Library
	2.3.10 FDK – Federated Simulation Development Kit

	2.4 Distributed Discrete-Event Simulation
	2.4.1 Past Implementations of Distributed Simulation
	2.4.2 Yaddes Simulation System
	2.4.3 Remote OMNeT++ Distributed DES Environment

	2.5 SPEEDES
	2.5.1 SPEEDES Simulation Object
	2.5.2 Point-to-Point Events
	2.5.3 Event Handlers
	2.5.4 Process Model
	2.5.5 Dynamic Objects

	CHAPTER 3: LIBRARY STRUCTRURE WITH UML DIAGRAMS
	3.1 Preface
	3.2 UML Diagrams
	3.2.1 Interaction Diagrams
	3.2.2 State diagrams
	3.2.3 Class Diagrams

	3.3 Server Class
	3.3.1 Discussion of Server Class Code
	3.3.2 Queue
	3.3.3 Resource
	3.3.4 Server Arguments class

	3.4 Decision Class
	3.4.1 Decision Argument Class
	3.4.2 Discussion of Decision Class Code

	3.5 Transporter Class
	3.5.1 Transporter Argument Class
	3.5.2 Discussion of Transporter Class Code

	3.6 Entity Class
	3.7 Synopsis

	CHAPTER 4: IMPLEMENTATION AND VALIDATION OF THE SHUTTLE MODE
	4.1 Preface
	4.2 Testing the Library
	4.3 Implementation of the Shuttle Model
	4.3.1 Class Hierarchy
	4.3.2 Comparison of Existing and Replaced Code
	4.3.3 Flowcharts of the Implementation
	4.3.4 Dynamic Creation of Objects
	4.3.5 Publishing and Subscribing the Events
	4.3.6 Use of External Distance Set

	4.4 Validation of Shuttle Model
	4.5 Synopsis

	CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH
	5.1 Conclusion
	5.2 Contributions
	5.3 Future Work

	LIST OF REFERENCES

