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ABSTRACT

A cyber-physical control system (CPS) typically consists of a set of physical subsystems, their re-

mote terminal units, a central control center (if applicable), and local communication networks that

interconnect all the components to achieve a common goal. Applications include energy systems,

autonomous vehicles, and collaborative robots. Ensuring stability, performance, and resilience in

CPS requires thorough analysis and control design, utilizing robust algorithms to handle delays,

communication failures, and potential cyber-attacks.

Time delays are a challenge in CPS, particularly in teleoperation systems, where human opera-

tors remotely control robotic systems. These delays cause chattering, oscillations, and instability,

making it difficult to achieve smooth and stable remote robot control. Applications like remote

surgery, space exploration, and hazardous environment operations are highly susceptible to these

disruptions. To address this issue, a novel passivity-shortage framework is proposed, that enables

systems to maintain stability and transparency despite time-varying communication delays and

environmental disturbances.

CPS are prone to attacks, particularly Denial-of-Service (DoS) attacks, which disrupt the normal

functioning of a network by overwhelming it with excessive internet traffic, rendering the com-

munication channels unavailable to legitimate users. These attacks threaten the stability and func-

tionality of CPS. To enhance resilience in multi-agent systems, novel distributed algorithms are

proposed. These graph theory-based algorithms mitigate network vulnerabilities by incorporating

strategically placed additional communication channels, thereby increasing tolerance to attacks in

large, dynamic networks.

The effectiveness of these proposed approaches is validated through simulations, experiments,

and numerical examples. The passivity-shortage teleoperation strategies are tested using Phantom
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Omni devices and they show reduced chattering and better steady-state error convergence. A case

study demonstrates how the proposed distributed algorithms effectively achieve consensus, even

when some agents are disconnected from the network due to DoS attacks.
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To my little Krish.

It is because of you, I’ve become resilient too.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

Overview of Cyber-Physical Systems

A cyber-physical control system (CPS) typically consists of a set of physical subsystems, their

remote terminal units, a central control center (if applicable), and local communication networks

that interconnect all the components to achieve a common goal. These systems find applications in

diverse fields, including energy systems, autonomous vehicles, and collaborative robots. Ensuring

stability, performance, and resilience in CPS requires comprehensive analysis and sophisticated

control design. This involves developing robust algorithms capable of handling delays, communi-

cation failures, and potential cyber-attacks. By integrating advanced computational and communi-

cation technologies with physical processes, CPS can monitor, control, and optimize operations in

real-time. This seamless integration enables enhanced efficiency, reliability, and adaptability, mak-

ing CPS essential in modern technological applications. Effective CPS design not only improves

operational performance but also ensures the system’s ability to withstand and recover from ad-

verse conditions, thereby maintaining continuous and reliable operation.

Teleoperation systems are an application of cyber-physical systems that rely heavily on communi-

cation capabilities. They feature a master robot, operated by a human, that sends real-time com-

mands to a slave robot at a remote location. The slave robot replicates the actions of the master

robot, allowing precise control over long distances. Some examples of teleoperation systems in-

clude robotic-assisted surgical systems, remotely operated underwater vehicles (ROVs) for deep-

sea exploration, and robotic manipulators used in handling hazardous materials in nuclear power

plants.

Very long delays can cause communication channels to be disconnected, and similarly, DoS attacks
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can disrupt these channels. Addressing these issues is crucial in multi-agent systems, which rely

on networked systems to enable multiple autonomous agents to communicate, share information,

and coordinate their actions to achieve common goals. This coordination is essential for the ef-

fective functioning of autonomous vehicle fleets, robotic swarms, and distributed sensor networks,

smart grid systems. By facilitating effective communication and collaboration, networked systems

ensure that these specialized systems can perform complex, coordinated operations efficiently. The

following subsections delve into the specifics of teleoperation and consensus in multi-agent sys-

tems, illustrating the critical roles networked systems play in these advanced applications.

Introduction to Teleoperation Systems

Teleoperation is a research area within the field of robotics and control systems that focuses on

the remote control and manipulation of robotic systems by human operators. Typically, the system

has two main components: the master and the slave. The master side is controlled by a human

operator and includes a controller and an interface. The interface can be a joystick, a haptic device,

an exoskeleton, or any other advanced human-machine interface that makes control intuitive and

precise. On the slave side, a remote robotic system receives the control signals from the master

side and carries out the desired actions. The system also relays sensory feedback to the operator,

obtained through sensors and actuators, allowing the operator to perceive the remote environment

and adjust their control inputs accordingly. A bidirectional or two-way communication channel

between the human operator and the robotic system facilitates the interaction between the master

and the slave side [2] in bilateral teleoperation.

The primary objectives of teleoperation are to achieve real-time interaction, transparent haptic

feedback, and dexterity in a remote environment. The effective realization of bilateral teleoperation

requires addressing some critical aspects such as control algorithms and communication protocols.
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Control algorithms play an important role in synchronizing the outputs or actions of the master

and slave systems, ensuring stability, responsiveness, and accurate replication of the commands.

On the other hand, communication protocols are essential for facilitating delay-free and reliable

transmission of control signals and sensory feedback between the operator and the remote robotic

system.

Multilateral teleoperation is an extension of bilateral teleoperation where multiple operators are

involved in controlling a remote system. In multilateral teleoperation, multiple operators collabo-

ratively control different aspects or components of the remote system. It involves multi-directional

communication and coordination among the operators to achieve a shared objective. It enables a

group of operators to collaboratively control a remote system in a coordinated manner, sharing in-

formation and coordinating their actions to achieve a common objective, leveraging their collective

knowledge and skills. This collaborative approach allows for improved task allocation, workload

distribution, fault tolerance, and adaptability, making multilateral teleoperation a valuable frame-

work for various applications, such as telemedicine, robotic surgery, disaster response, and space

exploration [3].

Introduction to Consensus in Multi-Agent Systems

Multi-agent systems (MAS) is an area of research within the field of autonomous systems that fo-

cuses on the study of systems composed of multiple autonomous entities, known as agents. These

agents can be software-based, physical robots, or a combination of both and are capable of perceiv-

ing their environment, making decisions, and interacting with each other to achieve individual and

collective goals. Each agent acts distributedly using its local knowledge and capabilities, and they

communicate and exchange information through a communication network or environment [4].

In multi-agent systems, the main obstacles are to coordinate and cooperate with all the agents
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locally to work together towards their common objectives, despite having conflicting individual

goals. Additionally, agents may face challenges due to incomplete information in their dynamic

environment, while communication channels may be impacted by delays, bandwidth constraints,

and noise. Ensuring secure communication channels, authentication mechanisms, and privacy-

preserving techniques to protect the confidentiality and integrity of agent interactions is also a

significant challenge in multi-agent systems.

Research Problems and Related Works

In this dissertation, two distinct research problems associated with the communication channels

within the networked systems are addressed. In this section, the research problems are introduced

and an overview of relevant existing works in the literature is presented.

Stability in Teleoperation with Time-Varying Delays

The first issue addresses the delays in the communication channel between the master and the slave

side in a teleoperation setup. The goal of the teleoperation system considered is to achieve stability

and a synchronized output between the operator and robots while achieving optimal transparency

of the haptic feedback. Introducing time-varying delays in the communication channels causes the

system to have instability and affects the performance of the overall system.

In literature, the issue of transmission time delay in remote manipulative control systems was

first discussed in [5], where they highlight that longer delays can lead to decreased performance,

reduced precision, and even instability in remote manipulative control systems. The solutions

provided in this paper are to anticipate the negative effects of time delay and compensate for it to

improve stability and performance. Following that, the effects of time delay on bilateral control
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are investigated in [6], where the authors analyze the use of different control architectures such as

position-position, force-position, and force-force architectures, to transmit and process information

between the operator and the remote system. The paper investigates the effect of time delay on

system stability and performance and presents passivity-based control as a potential approach to

mitigate the effects of delays.

In [7] the authors use a simple passivity-based proportional-derivative control with explicit position

feedback through delayed proportional action, enabling effective coordination between the master

and slave positions. The term passivity refers to a property of a system that characterizes its ability

to absorb, store, and release energy without inducing instability. A passive system dissipates or

absorbs energy over time, maintaining the stability and boundedness of its states. Later chapters in

this dissertation will provide detailed discussions on the concept of passivity and the properties of

passive systems.

The paper [8] uses the concept of passivity to model the behavior of the teleoperation system with

a time delay to establish passivity conditions. The concept of scattering transformation is used to

achieve the desired passivity conditions in the delayed channel. Scattering transformation decom-

poses the teleoperation system into separate transmission and scattering sub-systems to represent

the master and slave sides. The signal flow is between the two sub-systems represented using wave

variables defined at the interfaces between the master and slave devices, and they characterize the

components of position, force, and velocity. This enables the overall system to satisfy the passivity

requirements [9–13].

The wave variable method from which the scattering transformation is derived was first introduced

in [14], where efforts and flow variables of the classical passivity-based network design are re-

placed by velocity and force variables. However, the conventional wave variable transformation

has limitations, such as instability under time-varying delays, tracking errors due to biased terms,
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position drift without direct position tracking, and signal variations caused by wave reflections [15].

Most of these approaches only consider the maximum delay or a time-varying gain and design the

system for the worst-case scenario [16, 17]. Several approaches have been proposed to overcome

these limitations, including wave integrals, wave predictions, biased term compensation channels,

and modified wave variable transformations. Despite these advancements, the wave-based systems

have not fully addressed all the challenges, particularly in dealing with time-varying delay issues

while maintaining stability and transparency without any trade-off.

Some of the examples of improvements of the wave-variable approach are as follows: In [18] a

passivity-based time delay compensator that simplifies the communication channel to reduce wave

reflection and distortion with local force feedback is employed to enhance stability and trans-

parency. In [19], a force-reflecting control scheme is introduced, where an extended-state observer

(ESO) with a dynamic gain to estimate force information, and a corrective wave variable method

similar to scattering transformation is employed to design the force-reflecting control strategy.

The paper [20] proposes a two-layer architecture for direct force reflection, where the master and

slave controllers duplicate the energy transferred between the operator and environment to adapt

damping gains based on energy flows to ensure stability and reduce operator effort.

To address the issue of time-varying delays, some of the other approaches in the literature used

several other control schemes on top of wave-variable or passivity-based control including neu-

ral network-based control, adaptive control, and passivity-based control approaches such as the

time-domain passivity approach (TDPA). For instance, the paper [21] proposes an adaptive fuzzy

control strategy that combines nominal dynamics, partial feedback linearization, and approxima-

tion properties of fuzzy logic systems. This approach was tested in a trilateral teleoperation setup

with stochastic delays and unmodeled dynamics with uncertainties. In [22], the time-varying delay

is compensated for using a disturbance estimation path via a virtual block, along with an adaptive

controller. The time-domain passivity approach is utilized in [23] to handle varying time delays
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using a Passivity Observer (PO) that monitors energy in real-time and a Passivity Controller (PC)

that dissipates the required amount of energy based on the observations of the PO. Similarly, [24]

introduces a wave-based TDPA that monitors power flows under arbitrary time delays and employs

neural networks to estimate and eliminate dynamic uncertainties.

On the other side, some approaches have eliminated the use of wave variables and scattering trans-

formations by using optimization-based control methods such as model predictive control (MPC),

and integral quadratic constraint (IQC), µ synthesis, H∞ and so on. For example, in [25] a mod-

ified MPC approach that includes both current measurement information and a correction signal

that reflects the difference between measured information and its prediction is proposed. In [26] an

adaptive Smith predictor based on Padé approximation and active observer is developed to model

and estimate the time delay, and a sliding mode control is incorporated on the master side to cancel

out the effects of time delay on the system.

The existing methods developed for passive systems have demonstrated stability and satisfactory

tracking performance. However, their applicability is limited, as they are not designed to support

a broader class of systems that may not necessarily exhibit passivity. The concept of dissipativity,

which forms the basis of these methods, relies on an energy-based input-output relationship. Pas-

sive systems enforce an upper bound on the change in energy by the injected input-output power.

On the other hand, passivity-short systems allow their energy changes to be upper bounded by the

weighted sum of the injected power, input energy, and output energy.

Passive systems are typically constrained to minimum phase systems with relative degrees of 1 or

0. In contrast, passivity-short systems include a wider range of systems, including non-minimum

phase systems and those with higher relative degrees. In practical applications, the majority of

systems fall into the passivity-short category.

The first problem statement in this dissertation addresses the control challenges associated with
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coordinating master and slave robots in teleoperation scenarios. Specifically, the goal is to design

a control system that achieves precise coordination between the master and slave robot while en-

suring stability for both passive and passivity-short systems. The existing methods designed for

passive systems lack comprehensive support for a broader class of systems that are not necessarily

passive. Moreover, the available methods lose stability when applied to passivity-short master and

slave systems.

To overcome these challenges, a negative feedback interconnection with an individual compensa-

tion system for teleoperation is proposed. By incorporating this approach, stability for passivity-

short systems is expected to be achieved, while also outperforming existing methods designed for

passive systems. The proposed control system will be thoroughly evaluated, and its effectiveness

will be assessed based on the ability of the slave robot to accurately follow the master robot with

significantly reduced error and lag compared to the scattering transformation.

The issue of instability and performance caused by time delays is addressed by designing an appro-

priate controller. Over the past decade, several controls were reported for systems with either small

or large delays. In the case of large delays, the so-called virtual environment-based approach, such

as [27–30], was used to generate new models for teleoperation scenarios, but no stability proof was

reported. The stability proof is generally based on the passivity properties of robot dynamics (from

torque input to velocity output). A detailed survey of the existing passivity-based approaches is

provided in [9]. The classical approaches include two-port formulation such as scattering trans-

formation (linear transformation of input-output signals to wave variables) approaches [6, 14],

force reflecting algorithm using wave variable based four-channel approach discussed in [11, 18],

time-domain passivity approach (TDPA) discussed in [23,31], all of which address stability issues

related to delays by passifying the communication channel, under the de-facto assumption that the

robot dynamics are passive.
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It is interesting to note that most systems in real life are not passive since passivity is very re-

strictive. It requires the system to be of minimum phase with a relative degree equal to zero or

one. Specifically, the robot dynamics is not passive in the position-force domain for all frequency

ranges [32–34]. Even when the system is not linear and not passive, many methods aim to correct

the uncertainties to make the master and slave systems passive. These methods include integral

quadratic constraints (IQC) [1, 35, 36], that compensate for the delay in the communication chan-

nel, saturation and monotone nonlinearity of the environment by considering them as a separate

block connected in negative feedback with the linear passive system by using appropriate multi-

pliers to make the overall system passive and compensate for the lack of passivity, by introducing

an excess of passivity, and [24] where a neural network is proposed to eliminate the dynamic un-

certainties of the systems, and [19] eliminates the constraints on the varying delay using adaptive

laws, [37] proposes a switching control to guarantee the passivity of teleoperation, with position

feedback to improve their tracking performance. Stability proof of all these approaches requires

the overall system to be passive.

In addition, there exist studies in the position-force domain that does not make any passivity as-

sumptions. The authors of [38] consider the telerobotics systems as a functional differential equa-

tion, and use adaptive control to design stable bilateral teleoperation. A high-gain velocity observer

is used in [39], to show the convergence of position error, in the presence of time delays. PD-like

controllers are used in [40], where the solutions of linear matrix inequalities are used to analyze

the stability, [41] uses the same approach with the terminal sliding mode controller to estimate

its velocity. For multi-lateral teleoperation research has proposed various control methods, in-

cluding model-based controllers [42, 43], and dissipativity-based controllers like the time-domain

passivity approach [44] and wave-variable and scattering transformation approach [45]. However,

traditional passivity is restrictive. In these existing approaches, knowledge of the dynamics of the

system is required to design the controller.
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Denial-of-Service Attacks on Multi-Agent Systems

In the past 20 years, the study of multi-agent systems has focused on cooperative behaviors inspired

by nature. Consensus and flocking have proven to be effective in achieving collective objectives.

One key approach for this is distributed control, where agents work together towards a common

goal by using local information and making decentralized decisions. Distributed control has been

applied in domains such as smart grid control, transportation systems, multi-robot systems, cyber-

physical systems, and medical robotics [46].

When multiple autonomous agents with their own local information interact and exchange data to

reach a common decision on a particular quantity of interest, it is known as consensus in a multi-

agent system. The primary objective of consensus is to achieve a collective state or value that

satisfies all agents in the system, despite communication constraints, uncertainties, and differences

in agent dynamics.

Practical constraints in real-world multi-agent systems pose additional challenges to achieving con-

sensus. Communication delays, packet loss, intermittent connectivity, and link failures are among

the common constraints encountered in communication channels [33,47,48]. These constraints can

significantly impact system performance and stability, making it crucial to address communication

issues in multi-agent systems. Researchers have explored techniques such as adaptive consensus

algorithms that incorporate adaptive mechanisms to handle uncertainties, parameter variations, and

changes in the environment [49, 50].

In the context of multi-agent systems (MASs), cyber-attacks can pose significant threats to their

security and operation. The two most common types of cyber-attacks on MASs are the DoS attack

and the Deception attack.

A DoS attack targets the communication channels or resources of MASs to disrupt their regular
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operation. The attacker sends a high volume of malicious traffic or consumes system resources,

resulting in an overwhelmed and unresponsive network or system. This can cause service inter-

ruptions, performance degradation, or system failure, ultimately impacting the safety, efficiency,

and reliability of MASs. On the other hand, a deception attack aims to manipulate the informa-

tion exchanged within MASs to deceive the agents. The attacker injects false data or misleading

messages into the communication channels, altering the integrity and authenticity of the transmit-

ted information. This can mislead the decision-making processes, leading to incorrect actions or

compromised system behavior. As a result, deception attacks can cause the misalignment of agent

behaviors, reduced system performance, and compromised security [51].

Both of these attacks have a significant impact on the consensus and pose risks to the security

and operation of MASs. To maintain the reliability, safety, and integrity of distributed cooperative

control in MASs, it is crucial to detect and mitigate these cyber threats.

To achieve secure and resilient consensus among agents and to mitigate risks, several approaches

have been discussed in the literature. The most common approach is using event-based control,

addressing several types of DoS attacks such as single channel vs multiple channels, synchronous

vs asynchronous DoS attacks, and periodic vs aperiodic DoS attacks. For example, [52] introduces

a distributed event-based secure controller for achieving secure consensus in linear multi-agent

systems under DoS attacks, addressing the challenge of positive inter-execution time intervals.

It contributes to resilient coordination by enabling secure average consensus and avoiding Zeno

behavior. [53] proposes an event-triggered resilient control mechanism for multi-agent systems

under asynchronous DoS attacks, allowing consensus achievement with reduced communication

burden. In [54], the authors propose a secure consensus control scheme in the presence of aperi-

odic DoS attacks based on an event-triggered mechanism, ensuring stability and reduced commu-

nication resources. Current methods for mitigating DoS attacks in multi-agent systems primarily

involve event-triggered control, which reduces network traffic by making system updates or send-
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ing information only when a certain condition or event is met, rather than at regular intervals.

Some existing approaches include [55], which employs event-triggered control to optimize trans-

mission times, [56], which introduces event-triggered consensus for multi-agent systems with a

focus on episodic network disruptions due to intermittent random DoS attacks. [57] explores a

switching-like event-triggered control approach to enhance communication efficiency and main-

tain control performance in networked control systems (NCSs) under intermittent DoS attacks.

Another work, [58], explores an event-triggered mechanism combined with observer-based con-

trol to mitigate the effects of DoS attacks in stochastic NCSs. These approaches are vulnerable to

stealthy attacks that can manipulate the event-triggering conditions, causing either an overload or

a silence of critical communications.

In addition, model-based approaches have been discussed in the literature. In [59], a secure

consensus in MIMO (Multiple-Input Multiple-Output) linear MASs (multi-agent systems) under

malicious attacks, specifically DoS attacks, is developed based solely on the relative outputs of

the agents using the concept of a UIO (Unknown Input Observer) design. [60] addresses fault-

tolerant control in nonlinear multi-agent systems under DoS attacks and actuator faults, proposing

a distributed control strategy with adaptive schemes, state-feedback control gains, and a switching

mechanism to ensure mean square consensus. The paper [61] presents an observer-based event-

triggered control protocol for achieving secure consensus in linear multi-agent systems under DoS

attacks and unmeasurable states.

Predictor-based and observer-based controls utilize predictive models or state-estimators to com-

pensate for missing or delayed data due to network disruptions caused by DoS attacks such as [62]

and [63]. Techniques range from transforming systems affected by DoS attacks into auxiliary sys-

tems for stability analysis [64], utilizing interval partition techniques and linear matrix inequalities

to counteract DoS attacks in cyber-physical systems [65]. [60] employs adaptive fault-tolerant con-

trol (FTC) for nonlinear multi-agent systems in the presence of DoS attacks and actuator faults,
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utilizing adaptive schemes and state-feedback control gains. These strategies heavily rely on ac-

curate models or parameter estimation to forecast future states. If the model does not accurately

reflect the system’s dynamics, the predictions and subsequent control actions may be ineffective or

even detrimental.

As DoS attack models evolve to target users with persistent and continually adapting attacks, adap-

tive control strategies that modify control tactics based on ongoing assessments of system perfor-

mance and external conditions have emerged. For instance, [66] employs a Distributed Model-

Free Adaptive Control (DMFAC) algorithm and an Extended Discrete State Observer (EDSO) to

address DoS attacks in multi-agent systems to ensure consensus control. Similarly, [67] introduces

an improved dynamic linearization method to develop an equivalent linear data model and an attack

compensation mechanism designed to mitigate the impacts of DoS attacks. These approaches have

limitations in managing the algorithm without knowledge of the global communication topology

and require the DoS attacks to be somewhat predictable.

Graph-based defense mechanisms that utilize either the introduction of additional communication

layers or adaptation of existing communication layers work well for persistent, evolving DoS at-

tacks. Some research focuses on network topology optimization algorithms against DoS attacks,

which rearrange network connections during attacks such as [68, 69]. However, the assumption

that the network configuration is known and unchanging cannot hold true for many cases.

Key Contributions

This dissertation addresses critical challenges in networked control systems, with a focus on tele-

operation and multi-agent systems. The key contributions are summarized as follows:

• Developed novel control algorithms to manage communication delays wireless networks,
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ensuring stable and real-time interaction for teleoperated systems.

• Extended bilateral teleoperation concepts to multilateral teleoperation, enabling collabora-

tive control by multiple operators.

• Demonstrated improved stability and performance through simulations in Matlab/Simulink

and experiments using Phantom Omni haptic devices.

• Created distributed algorithms to identify and eliminate critical edges in networks, enhancing

connectivity and robustness.

• Proposed a systematic approach to maintain network connectivity and mitigate the effects of

DoS attacks.

• Introduced algorithms for simplifying large networks using strongly connected components,

facilitating efficient analysis and improvement of network robustness.

These contributions offer practical solutions to improve the stability, performance, and resilience

of networked control systems, addressing key challenges in teleoperation and multi-agent systems.

Organization of Dissertation

This dissertation is organized into six chapters, each contributing to the overarching theme of

resilient cooperative control in networked systems. The structure is designed to guide the reader

through the fundamental concepts, problem statements, proposed solutions, and validation of these

solutions in a coherent manner.

Chapter 1 presents the Introduction and Literature Review, setting the stage for the dissertation

by discussing the importance of networked systems, particularly in teleoperation and multi-agent
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contexts. It provides a comprehensive review of existing literature, highlighting the gaps and

challenges that this research aims to address.

Chapter 2 delves into the Background, offering essential definitions and properties of passivity-

short systems, which are central to the control strategies proposed in this dissertation. It also

introduces fundamental concepts from graph theory that are pertinent to the analysis and design of

resilient networked systems.

Chapter 3 focuses on Stability and Performance in Bilateral and Multilateral Teleoperation

with Time-Varying Delays. This chapter provides a detailed analysis of passivity-short systems,

proposes novel control frameworks, and presents simulation and experimental results to validate

the effectiveness of these frameworks in maintaining stability and performance.

Chapter 4 addresses the resilience of Multi-Agent Systems Against DoS Attacks. It introduces

distributed algorithms for ensuring connectivity and critical edge elimination, enhancing the ro-

bustness of multi-agent systems. The chapter also extends the discussion to directed graphs and

evaluates the proposed strategies through simulations.

Chapter 5 presents Advanced Approaches, that focuses on identifying critical edges in large

graphs by reducing them into smaller, manageable components to enhance network robustness and

resilience. It also presents a case study on a smart grid as a cyber-physical system, demonstrating

the significance of consensus algorithms for efficient and stable system operations.

Finally, Chapter 6 provides the Conclusion and Future Work, summarizing the key findings and

contributions of the dissertation. It also outlines potential directions for future research, aiming to

inspire further advancements in the field of resilient cooperative control of networked systems.

The chapters are interconnected through the theme of enhancing robustness and performance in

networked systems against various challenges, particularly focusing on time delays in teleopera-
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tion and DoS attacks in multi-agent systems. Each chapter builds upon the previous one, creating

a cohesive narrative that guides the reader through the theoretical foundations, problem identifica-

tion, proposed solutions, and practical validations.

16



CHAPTER 2: BACKGROUND

Introduction

This chapter provides the foundational background necessary to understand the advanced concepts

and methodologies discussed in subsequent chapters. The fundamental theories and principles that

underpin this research are explored, with a particular focus on passivity-short systems and their

relevance in control theory and multi-agent systems.

The concept of dissipativity, introduced by Willems in 1972, forms the bedrock of the discus-

sion. Dissipativity characterizes the relationship between a system’s input and output, encapsulated

through a supply rate and a storage function. This concept leads to various subclasses, including

passivity, where the system’s energy consumption is bounded by the energy supplied. Passivity is

crucial for ensuring the stability of dynamic systems, particularly those involving feedback loops.

However, traditional passivity can be restrictive, as it requires systems to have a relative degree

of zero or one. To address this limitation, the notion of passivity-shortage extends the frame-

work of dissipativity, allowing for a broader range of dynamical behaviors while preserving sta-

bility. Passivity-short systems introduce flexibility by incorporating weights that balance the input

and output energies, thus accommodating systems with higher relative degrees and non-minimum

phase behaviors.

In addition to passivity and passivity-shortage, the properties and stability conditions of these sys-

tems are examined. Passivity-short systems retain finite-gain L2 stability, and their interconnec-

tion properties, including feedback and series configurations, are explored. The preservation of

passivity-short properties in interconnected systems is vital for maintaining overall system stabil-

ity, especially in complex multi-agent networks.
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Furthermore, the application of passivity theory to robotic systems is explored, providing an ex-

ample with n-link robots. This example illustrates the practical implications of passivity-shortage

in ensuring the stability and performance of robotic control systems.

The chapter also extends its focus to the principles of graph theory, which are essential for analyz-

ing connectivity and cooperative control in multi-agent systems. Graph theory provides a powerful

framework for modeling and understanding the interactions among agents in a network. Critical

concepts such as edge connectivity, critical edges, and strongly connected components are dis-

cussed, which are fundamental for ensuring the robustness and resilience of networked systems.

Distributed algorithms for identifying network connectivity and neighbor structures are introduced,

which are crucial for maintaining communication and coordination in multi-agent systems. These

algorithms enable the detection of network disconnections and the implementation of cooperative

control strategies that enhance system resilience against disruptions such as DoSattacks.

Overall, this background chapter sets the stage for the detailed exploration of resilient multi-agent

systems and their control strategies. By grounding the discussion in the theoretical underpinnings

of passivity, passivity-shortage, and graph theory, the reader is equipped with a solid understanding

of the essential concepts that drive this research on enhancing the robustness and resilience of

networked systems.

Passivity-Short Systems

The concept of dissipativity, initially introduced in [70], revolves around the relationship between

the input and output of a dynamical system. It is characterized by an inequality that involves a

supply rate, which is a scalar function relating to the input and output of the system, and a storage

function, which is a bounded function capturing the system’s energy or another form of resources.
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The central idea of dissipativity is that the increase in storage over time must be bounded by the

supply rate.

Dissipativity encompasses different subclasses depending on the specific form of the supply rate

function. One prominent subclass is passivity, where the supply rate is determined by the energy

supplied to the system. In a passive system, the increase in energy cannot surpass the energy

introduced to the system. Essentially, a passive system dissipates or absorbs energy in a controlled

manner, ensuring stability and the absence of uncontrollable energy growth.

Consider the following general class of dynamic systems:

ẋ = f(x, u), x(0) = x0, y = h(x, u), (2.1)

where u ∈ ℜm, x ∈ ℜn, and y ∈ ℜp. Dynamic mapping P of system (2.1) denotes the input-output

mapping from input u to output y.

Definition 1. Dynamic mapping P in (2.1) is passive if there exists a positive semi-definite storage

function V (x), such that,

V (x(t))− V (x(0)) ≤
∫ t

0

yT (τ)u(τ)dτ. (2.2)

Should storage function V (x) be continuously differentiable,

V̇ =
dV (x)

dt
=

(
∂V

∂x

)T

f(x, u), (2.3)

the passivity condition in (2.2) can be alternatively expressed as,

V̇ ≤ yTu (2.4)
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It is important to note that the storage functions are not limited to physical energies. Any non-

negative Lyapunov function can act as a virtual energy function of the system and can be a potential

storage function.

In a free system without external input, passivity corresponds to stability. From Equation (2.4), it is

apparent that the zero dynamics of a passive system are stable. Additionally, passivity exhibits an

influential property known as the interconnection property, which states that the negative feedback

interconnection of passive systems remains passive. However, it is worth noting that the class of

passive systems is somewhat restrictive since the relative degree of passive systems must be either

0 or 1.

To overcome the limitations of the passive systems class and offer more flexibility, a broader and

less restrictive subclass of dissipativity, known as passivity-shortage, was introduced in [71]. The

passivity-shortage subclass offers a broader framework that accommodates systems with higher

relative degrees and extends the understanding of the relationship between input, output, and stor-

age functions in dynamic systems.

Definition 2. Dynamic mapping P of system (2.1) is said to be input passivity-short or simply

passivity-short if there exists a positive definite and continuously differentiable storage function

V (x) and non-negative weights {ϵ, ϱ} such that

V̇ =

(
∂V

∂x

)T

f(x, u) ≤ uTy +
ϵ

2
∥u∥2 − ϱ

2
∥y∥2. (2.5)

This definition presents a fundamental property of the system where the rate of change of the

storage function V̇ is bounded by a combination of the input-output relationship and the energy

terms involving weights ϵ and ϱ. In simpler terms, the passivity-short property implies that the

system’s energy changes are limited by a weighted sum of the power injected through the input
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signal u, the input energy, and the output energy. The inequality (2.5) ensures that the increase

in the storage function V is upper bounded by the power injected through u and the difference

between the input and output energies, weighed by ϵ and ϱ, respectively.

Expanding on the sub-classes of dissipativity derived from the passivity-short inequality (2.5),

several additional categories outlined in [72] can be obtained. These subclasses provide further

insights into the system’s energy behavior and stability properties.

If ϵ ≤ 0, the system is referred to as output strictly passive. In this case, the inequality V̇ ≤

uTy − ϱ
2
|y|2 holds, which means that the rate of change of the storage function V̇ is bounded by

the power injected through u and a term related to the squared norm of the output y. The negative

term −ϱ
2
|y|2 in the inequality indicates energy dissipation due to the output, contributing to system

stability.

Similarly, if the condition ϵ′ = −ϵ is satisfied, the system is classified as input strictly passive. This

implies that V̇ ≤ uTy − ϵ′

2
|u|2, where the rate of change of the storage function V̇ is bounded by

the power injected through u and a term related to the squared norm of the input u. The negative

term − ϵ′

2
|u|2 in the inequality represents energy dissipation due to the input, contributing to system

stability.

Furthermore, when both ϵ and ϱ are equal to zero, the system is classified as lossless passive.

This aligns with the condition mentioned earlier in (2.4), where the rate of change of the storage

function V̇ is solely determined by the power injected through u, without any energy dissipation

terms.

It is worth noting that most linear systems with Lyapunov stability can be made passivity-short

or inherently possess passivity-short properties through the use of appropriate output feedback

control [73]. Passivity-short systems offer a broad framework for analyzing and designing stable

21



systems, encompassing a wide range of linear dynamics.

It is also interesting to note that passivity-short systems can achieve the same properties as passive

systems, but they also encompass a broader range of dynamics and stability characteristics.

In particular, passivity-short systems have the ability to include non-minimum phase systems,

which are systems where the output responds before the input is applied. Non-minimum phase sys-

tems pose challenges in achieving stability and robustness, but the passivity-short property allows

for the analysis and design of such systems, enabling the consideration of their unique dynamics.

Furthermore, passivity-short systems can handle systems with relative stability greater than 1. Rel-

ative stability refers to the stability properties of the system’s poles in the complex plane. Systems

with relative stability greater than 1 exhibit oscillatory behavior and can be more challenging to

analyze and control. However, passivity-shortage provides a useful framework for studying and

designing systems with these characteristics, contributing to the understanding of their stability

and energy behavior.

Properties of Passivity-Short Systems

Passivity-short and passive systems have unique characteristics that affect their stability and inter-

connection outcomes. This section explores some of the unique characteristics of passivity-short

systems and how they differ from passive systems.

Stability Properties

Finite-gain L2 stability, also referred to as L2 stability, is a concept used to assess the input-output

stability of a system when its dynamics are not known or available. This concept evaluates the
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connection between the input and output signals of the system based on their energy properties.

Refer to [74] for proof.

Definition 3. The system (2.1) is L2 stable if

∥y∥L2 ≤ κ∥u∥L2 + ρ (2.6)

where κ is a non-negative constant referred to as the L2 gain, ρ is also a non-negative constant

called the bias term, and ∥.∥ denotes the functional 2-norm.

The system (2.1) is said to be L2 stable if the 2-norm of the output signal (y) remains bounded by a

weighted sum of the 2-norm of the input signal (u) and a bias term (ρ). The L2 stability condition

ensures that for any bounded input signal with finite energy, the resulting output signal also has

finite energy and remains bounded. It provides a quantitative measure of how the energy of the

input signal propagates to the energy of the output signal.

Property 1. System (2.1) is passivity-short in the form of (2.5), and it is L2 stable if the storage

function V (x) is positive definite and the weight ϱ is positive definite.

When the weight ϱ in equation (2.5) is set to zero, system (2.1) loses its L2 stability property.

However, it is possible to restore L2 stability to the system by implementing a negative feedback

control law.

Property 2. System (2.1) is passivity-short in the form of (2.5), and when ϱ = 0, system (2.1) can

recover its L2 stability using a negative feedback control u(t) = v − y(t)
ϵ

for the input-output pair,

{v, y}
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Proof: Consider the control u(t) = v − ky(t) in (2.5),

V̇ ≤ (v − ky)Ty +
ϵ

2
∥v − ky∥2 − ϱ

2
∥y∥2

≤ vTy − k∥y∥2 + ϵ

2
∥v∥2 + ϵ

2
k2∥y∥2 − ϵkvTy − ϱ

2
∥y∥2

When ϱ = 0, and k = 1
ϵ

then V̇ ≤ − 1
2ϵ
∥y∥2 + ϵ

2
∥v∥2, thus by property 1, the system is L2 stable.

That is, by choosing the control input u(t) as v(t)− ky(t), where v(t) is the desired input and y(t)

is the system’s output, the system can regain its L2 stability. This negative feedback control law

introduces a corrective term that depends on the output y(t) and is proportional to the system gains

k = 1
ϵ
. The negative feedback control effectively adjusts the input v(t) based on the discrepancy

between the desired output and the actual output.

By employing this negative feedback control, the system compensates for any deviations between

the desired input and the system’s output, ensuring that the energy of the output signal remains

bounded. This restores the L2 stability property to system (2.1), even in the absence of a positive

definite weight term ϱ.

Property 3. System (2.1) is passivity-short in the form of (2.5),and if the autonomous system

ż = F (z,−ky) and y = h(z) is zero-state observable, it is asymptotically stable under the output

feedback control u = −ky with 0 < k < 2
ϵ
.

Proof: Consider the control u(t) = v − ky(t) in (2.5),

V̇ ≤ (−ky)Ty +
ϵ

2
∥ − ky∥2 − ϱ

2
∥y∥2

≤ (−k + k2ϵ− ϱ

2
)∥y∥2 (2.7)

Thus, by applying the output feedback control law with an appropriate gain parameter, the system
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will converge to a stable equilibrium point over time, limt→∞ y = 0. It is important to note that

the condition of zero-state observability ensures that the system’s internal state can be accurately

estimated from the output measurements, which is crucial for stability analysis and control design,

under which the system can achieve asymptotic stability.

Property 4. Nyquist plot of a passive system lies completely on the left half of the s-plane, but an

L2 stable passivity-short system is not limited to the left half of the s-plane. It can lie slightly on

the right half plane.

The Nyquist plot is a graphical representation of the frequency response of a system. For a system

that satisfies the property of passivity, the Nyquist plot lies entirely in the left half of the s-plane. On

the other hand, an L2 stable passivity-short system, which satisfies the passivity-short inequality,

is not limited to the left half of the s-plane [74].

Connectivity Properties

The passivity-short property can be preserved in certain interconnections of passivity-short sys-

tems. This section lays out the summary of an important existing result of feedback interconnection

of passivity short systems.

The following lemma provides conditions for the passivity-short property of the overall system in

a negative feedback interconnection of passivity-short systems:

Lemma 1. Consider two systems, Pi and Pj , connected in a negative feedback configuration as

shown in Figure 2.1. Suppose that Pi and Pj are passivity-short with parameters ϵi, ϵj > 0 as

defined in (2.5), while ϱi, ϱj = 0. If the gain ki is chosen such that ki ∈
(
0,max

(
1
ϵi
, 1
ϵj

))
,

then the overall system is passivity-short with respect to the input-output pairs v = [vi, vj] and

y = [yi, yj].
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Figure 2.1: Interconnection of passivity-short systems

This lemma highlights the conditions under which the passivity-short property is preserved in a

negative feedback interconnection. By appropriately choosing the gain ki within the specified

range, the passivity-shortness of the individual systems extends to the overall interconnected sys-

tem. Lemma 1 does not include time delays. The following lemma extends lemma 1 by taking into

consideration, the effect of time delay.

Figure 2.2: Passivity-short system with feedback delay
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Lemma 2. Suppose that the system Pi in Figure 2.2 is passivity-short with parameters ϵi, ϱi > 0

as defined earlier in (2.5). The overall system is passivity-short and L2 stable, independent on the

time delay Ti, and with respect to its input-output pair vi and yi, if the following two conditions

are satisfied:

ϱi > 1/ϵi,

ki ∈
(
0,

−1 +
√
2ϵiϱi + 1

2ϵi

)
. (2.8)

Proof : The input to the system Pi is given by, ui(t) = ki(vi(t)− zi(t)), where zi(t) = yi(t− Ti).

Let us consider the storage function V as,

V (t) =
1

ki
(Vi(t) + Vdi(t, Ti)) , (2.9)

where ki > 0, Vi is the storage function of Pi and Vdi(t, Ti) is the storage function of the delay

channel given by,

Vdi(t, Ti) =

(
1

2
+ ϵiki

)∫ t

t−Ti

∥yi(τ)∥2dτ.

Differentiating (2.9) and substituting V̇i(t) given by definition of passivity-short systems as pre-

sented in (2.5) yield,

V̇ ≤vi(t)
Tyi(t) + yTi (t− Ti)yi(t)

+
ϵi
2
ki ∥vi(t)− yi(t− Ti)∥2 −

ϱi
2
∥yi(t)∥2 + V̇di(t, Ti)

≤vi(t)
Tyi(t) + ϵiki∥vi(t)∥2 −

( ϱi
2ki

− (ϵiki + 1)
)
∥yi(t)∥2,

which is passivity-short and L2 stable from input vi to output yi according to (2.8). ■

The property described in Lemma 2 can be extended to positive feedback interconnections and
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series interconnections, resulting in passivity-short and L2 stable overall systems.

In the case of positive feedback interconnection, where the output of one passivity-short system

is fed back to another, the overall system remains passivity-short and L2 stable if ϱi > 0 for each

subsystem and the feedback gain ki is sufficiently small. The specific condition on ki ensures that

the feedback does not introduce instability or violate the passivity-short property.

In the case of series interconnection, where the delay and the passivity-short system are connected

in an open loop, the overall system can also maintain the passivity-short property and L2 stability.

This means that the stability and input-output behavior of the passivity-short system are preserved

even in the presence of a time delay.

Example: Robot Dynamics

In this section, a well-known example of passivity theory, which is the property of robot dynamics,

is discussed.

Consider the dynamics of an n-link robot:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (2.10)

where q, q̇, q̈ are joint displacement, velocity and acceleration, respectively; M(q) is the inertia

matrix, C(q, q̇) ≤ ξc(q)∥q̇∥ is the Coriolis matrix, ξc(q) is either a known constant if the arm is

all-revolute-joint or a known function if the arm has prismatic joint(s), g(q) is the gravity vector,

and τ is the torque control input.
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Lemma 3. Consider an n-link robot (2.10), equipped with the control given by,

τ = v + g(q)− kpq − kv q̇, (2.11)

which is a simple PD feedback control, with gravity compensation, and v is the overall system

input (for force or torque). If the gains are chosen according to the following1:

kp >0,

kv ≥λmax(M(q)) + ∥q∥ξc(q) +
1

2ϵq
, (2.12)

where λmax(M(q)) is the maximum eigen value of the inertia matrix M(q), then the corresponding

robotic system has the following properties :

• passive from input v to velocity q̇,

• passivity-short from input v to position q, but not passive.

Proof: Let us recall the following properties of robotic manipulators [75]:

(i) Inertia matrix is symmetric, positive definite and bounded such that, mI < M(q) < m̄I ,

where I is an identity matrix and m and m̄ are known positive constants.

(ii) The Coriolis term C(q, q̇) is bounded by q̇ such that C(q, q̇)q̇ ≤ ξc(q)∥q̇∥2 where ξc(q) is a

defined function for a prismatic joints or ξc(q) = ξc is a known constant for revolute joints.

(iii) The matrix [Ṁ(q)− 2C(q, q̇)] is skew-symmetric and ∥Ṁ(q)∥ ≤ ξc∥q̇∥.

1Under the assumption that the configuration space of the rigid body dynamics is finite, inequality (2.12) can
always be satisfied.
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Consider a storage function V1(q) as,

V1(q) =
1

2
q̇TM(q)q̇ +

1

2
(kr)∥q∥2. (2.13)

Taking derivative, substituting the control law in (2.11), and applying property (iii) yield,

V̇1(q) = q̇TM(q)q̈ +
1

2
q̇TṀ(q)q̇ + krq

T q̇ = q̇Tv − kv∥q̇∥2,

which shows passivity from input v to velocity q̇.

Now, let us consider a storage function V (q) = V1(q) + V2(q), where V1 is given by (2.13) and V2

is given by,

V2(q) = qTM(q)q̇ +
1

2
kv∥q∥2. (2.14)

Differentiating (2.14), applying the control law (2.11) and properties (i)-(iii) yield,

V̇ (q) = V̇1 + qTM(q)q̈ + q̇TM(q)q̇ + qTṀ(q)q̇ + kvx
T q̇

≤ q̇Tv − kv∥q̇∥2 + qTv − kr∥q∥2 + λmax(M(q))∥q̇∥2 + ∥q∥ξc(q)∥q̇∥2,

≤ q̇Tv + qTv − kr∥q∥2 − ϱx∥q̇∥2 −
1

2ϵx
∥q̇∥2.

Since q̇Tv ≤ 1

2ϵx
∥q̇∥2 + ϵx

2
∥v∥2,we can re-write V̇ (q) as,

V̇ (q) ≤ qTv − kr∥q∥2 +
ϵx
2
∥v∥2, (2.15)

where ϱx = kv − λmax(M(q)) − ∥q∥ξc(q) + 1
2ϵx

is positive according to (2.12). Hence, passivity

shortage from input v to position q is shown.

To show that the dynamics from v to q is not passive, note that the closed-loop system is given by,

Mq̈ + C(q, q̇)q̇ + krq + kv q̇ = v. (2.16)
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which is non-linear and of relative degree 2 [72]. It is well known that passive systems should have

a relative degree 1. Hence the dynamics (2.10) is not passive from input v to position q. ■

Alternatively, the following Lyapunov function can also be used to prove the Lemma 3.

V =

[
qT q̇T

] αI σM

σM M


q
q̇


= αqT q + q̇TM(q)q̇ + 2σq̇TM(q)q, (2.17)

where α > 0 is a constant, σ is a non-negative constant satisfying σ2 ≤ αλmin(M)/λ2
max(M).

It is straightforward to verify that, under the choices of α and σ, the Lyapunov function (2.17) is

positive definite. Based on standard properties of robotic dynamics summarized in [75], it is shown

in [33] that the robot dynamics in (2.10) is passivity-short and L2 stable from input vi to position

output xi, with passivity-short indices [ϱi, ϵi] = [kpi , 1/(2αi − λmax(Mi))] in (2.5).

In summary, the example and the lemma therein discuss a control scheme for an n-link robot

using a proportional-derivative (PD) feedback control with gravity compensation. The analysis

reveals that by choosing suitable control gains, the robotic system exhibits different properties.

Specifically, it is shown to be passive from the input to the velocity, indicating energy dissipation

and stability. However, it is only passivity-short from the input to the position, where the increase

in energy is bounded.

Effects of Varying Time Delay

In this section, time-varying delayed interconnections of passivity-short systems are investigated

in serial and feedback configurations. It is shown that passivity-short systems arise naturally from

these configurations. The conditions for parameter selection are presented, which would eliminate
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the potentially destabilizing effect of varying time delays and preserve passivity-shortness and in

turn stability of the overall system.

Serial Connection

Consider a serial interconnection of dynamic mapping P of input-output pair {u, y} and a time-

varying delay channel whose output is z(t) = y(t− T (t)), as shown in Figure 2.3a.

In what follows, an assumption regarding the bounds on the rate of change of delay is discussed.

In general, bounds can be set on either the delay itself or on the rate of change of delay, which is

less restrictive than the former.

Assumption 1. The maximum rate of change of delay is lesser than 1, Ṫmax < 1.

Note that for a causal continuous system, Ṫ ≤ 1 is naturally guaranteed [15]. For different values

of Ṫ , the following outcomes are observed on the sample time ts = (t − T (t)) and the delayed

signal:

• If the delay increases with Ṫ < 1, the sample time increases slowly, and the delayed signal

is stretched.

• If the delay increases as fast as the time itself with Ṫ = 1, the delayed signal becomes a

constant.

• If the delay increases faster with Ṫ > 1, then the sample time goes backward, making the

system non-causal.

To preserve all the data, and the order in which the data is transmitted, the rate of change of

delay should be less than 1. In the case of discretized systems, the rate of change of delay can
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be higher than one. Then, a discretized counterpart of the preliminary results in this paper can

be derived using the conditions in [73]. This paper only considers continuous-time systems, and

hence Assumption 1 is held throughout the paper.

The following lemma summarizes the stability properties, and its proof is included in the appendix.

(a) Serial configuration (b) Feedback configuration

Figure 2.3: Interconnection of a passivity-short system and a time-varying delay

Lemma 4. Consider passivity-short mapping P as defined in (2.5) and with weights {ϵ, ϱ}. Sup-

pose that there exist positive constants c1, c2 and ϱ′ such that

ϱ ≥ c1 +
1

c2
, (2.18)

0 ≤ inf
t

[
c1
2

(
1− Ṫ

)
− 1

2c2

]
△
= ϱ′. (2.19)

Then, the dynamic mapping P ′ from u to z is also passivity-short with weights {ϵ′, ϱ′}, where

ϵ′ = ϵ+ 2c2 and ϱ′ is defined by (2.19).

Proof: It follows from Figure 2.3a that z(t) = y(t − T (t)). Choose the storage function of the

overall system as

L = V + Vd, (2.20)
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where V is the storage function of mapping P and Vd is the storage function associated with delay

for positive constant c1 is

Vd(t, T (t)) =
c1
2

∫ t

t−T (t)

∥y(τ)∥2dτ. (2.21)

Then, it follows from (3) that

L̇ ≤ uT (t)y(t) +
ϵ

2
∥u(t)∥2 − ϱ

2
∥y(t)∥2 + V̇d

≤ uT (t)y(t) +
ϵ

2
∥u(t)∥2 − ϱ

2
∥y(t)∥2 + c1

2
∥y(t)∥2 − c1

2

(
1− dT

dt

)
∥z(t)∥2

≤ uT (t)z(t) +
[ ϵ
2
+ c2

]
∥u(t)∥2 −

[
ϱ

2
− c1

2
− 1

2c2

]
∥y(t)∥2 −

[
c1
2

(
1− dT

dt

)
− 1

2c2

]
∥z(t)∥2

≤ uT (t)z(t) +
ϵ′

2
∥u(t)∥2 − ϱ′

2
∥z(t)∥2, (2.22)

where c2 is any positive constant. This together with (6) completes the proof.

The Assumption 1 ensures inequality (2.19) and in turn existence of ϱ′ > 0 since inequalities

(2.18) and (2.19) can be satisfied by choosing small c1 and large c2. Thus, L2 stability of the serial

connection in Figure 2.3a is assured.

The expression ϵ′ = ϵ+ 2c2 has two important implications. First, it demonstrates the property of

passivity-shortage being invariant under time delay. This means that the passivity-short property

of a system remains unchanged even in the presence of time delays. Second, it highlights the fact

that a pure time delay itself is not passive (as indicated by its Nyquist plot being a unit circle), but

when combined with a passive system, it results in a passivity-short system. This implies that a

time delay or a delayed dynamic system inherently possesses passivity-shortness. These reasons

motivate the adoption of the passivity-short framework in this paper to investigate the stability of

teleoperation systems.

It is worth noting that when ϱ = 0, the mapping P is passivity-short but not L2-stable. In this
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case, inequality (2.18) cannot be satisfied, leading to an additional positive term and the loss of

L2 stability. However, according to property P2, the L2 stability can be restored by introducing

a feedback control law u(t) = v − bz(t) with the modified input-output pair v, z. This feedback

control enables the system to achieve L2 stability despite the absence of passivity in the original

passivity-short mapping.

Feedback Configurations

Passivity is known to be preserved in a delayed negative feedback interconnection. This subsection

extends this property to passivity-short systems, showing that the passivity-short property is also

preserved in a delayed negative feedback interconnection. Additionally, it is demonstrated that a

positive feedback interconnection with varying time delays of any system is passivity-short. In

both cases, L2 stability can be achieved through a simple feedback interconnection. The stability

results are summarized in the following lemma. Due to space limitations, the proof of this lemma

is omitted but can be obtained by following a similar approach to that of Lemma 4.

Lemma 5. Consider passivity-short mapping P as defined in (2.5) with input-output pair {uf , y}

and weights {ϵ, ϱ}. Suppose that Assumption 1 is satisfied and there exist positive constants c1, c2,

k, and b such that

0 ≤ inf
t

[
ϱ+ 2b

2k
− c2

2
− bϵf + c1

2k

]
△
= ϱf , (2.23)

0 < ϵf <

[
c1
2k

(
1− Ṫ

)
− 1

2c2

]
, (2.24)

where ϵf = ϵ

(
k +

b

2

)
. (2.25)

Then, the dynamic mapping Pf from v to y is also passivity-short with weights {ϵf , ϱf} defined by

(2.25) and (2.23) respectively.
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The above lemma introduces two conditions. Firstly, condition (2.23) ensures the existence of a

positive value ϱf , guaranteeing L2 stability of the overall system depicted in Figure 2.3b. Secondly,

the value of ϵf is directly obtained from equation (2.25). The condition (2.24) for ϵf implies that

the resulting system can be passivity-short but not necessarily passive.

The gains are chosen as follows: given the weights ϵ, ϱ, a small positive value for c1 is selected to

satisfy the quadratic inequality ϵb2

2
−2b < ϱ− c1

2
for a positive value of b. By substituting the chosen

values of c1 and b into ϱ ≥ c2k+c1, and considering k ∈
[
0, 1

c2+ϵb

{
ϱ+ 2b− ϵb2

2
− c1

2

}]
, two linear

inequalities with two unknown variables c2 and k are obtained. Solving these inequalities yields

a large positive value for c2 and a small positive value for k. With small c1, large c2, and small k,

condition (2.24) is satisfied as long as Assumption 1 is valid. Notably, the left-hand side of (2.24)

is satisfied since k > 0 in (2.25), resulting in ϵf > 0.

Lemma 5 can also be applied to a passivity-short mapping P without L2 stability (ϱ = 0). In

this case, the L2 stability of the negative feedback is achieved by selecting a local gain b > 0.

Conversely, if the mapping P is passive (ϵ = 0), then the overall negative feedback system is

passive.

From Lemma 5, it is evident that if the system P in Figure 2.3b is passivity-short, then the overall

system is also passivity-short, and L2 stability can always be achieved for this interconnection. If P

is passive, then the overall system is passive. This property can be utilized to design a teleoperation

controller that includes either passive or passivity-short master and slave systems.

Connectivity Analysis of Multi-Agent Systems

Consider a graph G = (N , E), where N = {1, 2, . . . , n} represents the set of agents and E ⊂

N × N denotes the set of edges. In directed graphs, an edge (i, j) ∈ E signifies direct influence
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or communication from agent j to agent i. Conversely, in undirected graphs, an edge (i, j) implies

bidirectional communication between agents i and j. The adjacency matrix A = [ai,j] is defined

where ai,j > 0 if (i, j) ∈ E ; otherwise, ai,j = 0. The in-degree di and out-degree doi are determined

by di =
∑

j ai,j and doi =
∑

j aji, respectively, in directed graphs. For undirected graphs, the

degree of agent i, denoted as di, is
∑

j ai,j . The graph’s Laplacian matrix L = D − A includes D,

a diagonal matrix with diagonal elements di.

In a directed graph, the network is termed strongly connected if there exists a directed path from

any node to every other node within the graph. Conversely, a directed graph is considered weakly

connected if replacing all its directed edges with undirected edges results in an undirected graph

that is connected, meaning there is a path between any pair of nodes, regardless of the direction

of the edges, in the underlying undirected graph. In contrast, an undirected graph is connected if

there is a path between any pair of nodes.

The pth neighbor of a node i, denoted as j ∈ N (p)
i , is identified by the shortest path comprising p

edges between nodes i and j, where p represents the distance between these nodes.

Cycles in both undirected and directed graphs are closed paths where a sequence of distinct edges

or directed edges leads back to the starting node without retracing any edges. A critical edge in an

undirected graph is an edge whose removal disconnects the network, often referred to as a bridge.

In directed graphs, a critical edge, upon removal, disrupts the strong connectivity, turning the graph

into a weakly connected or disconnected one.

Edge connectivity quantifies the minimum number of edges that must be removed to disconnect the

network or make it not strongly connected in the case of directed graphs. This metric reflects the

network’s robustness against edge failures. Networks with an edge connectivity of 1 have at least

one critical edge, indicating a vulnerability where its removal can split the network. Conversely, a

higher edge connectivity, such as 2 or more, implies a robust structure with redundant paths that
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maintain connectivity even when one or more edges fail.

Strongly connected components (SCCs) in directed graphs are maximal subsets of nodes where

each node within the subset is reachable from every other node via directed paths. In undirected

graphs, these components are simply called connected components. If G = (N , E) is not strongly

connected as a whole, it can be decomposed into several SCCs. This decomposition is evident

from the diagonal blocks of the network’s adjacency matrix when reordered into its lower trian-

gular canonical form, highlighting core connectivity clusters and the hierarchical structure of the

network.

Each SCC in a directed graph can be classified as either a source or a sink. Source SCCs have

no incoming edges from nodes outside the component, while sink SCCs have no outgoing edges.

This classification impacts the overall connectivity and potential information flow across the graph,

making it crucial for designing resilient systems capable of maintaining connectivity despite dis-

ruptions or failures.

The analysis of network structures is enriched by matrix properties. A matrix E with positive or

nonnegative entries is considered positive (denoted E > 0) or nonnegative (E ≥ 0) respectively. A

nonnegative matrix E ∈ ℜn×n is irreducible if no permutation matrix can transform it into a lower

triangular form. This irreducibility is critical for ensuring that the network does not decompose

into isolated subcomponents, which is expressed as:

P TEP =



E ′
11 0 · · · 0

E ′
21 E ′

22 · · · 0

...
... . . . ...

E ′
p1 E ′

p2 · · · E ′
pp


= E ′

△,

where each E ′
ii is either an irreducible submatrix or a scalar. These blocks delineate the SCCs
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of the graph, highlighting the underlying connectivity structure essential for robust consensus and

control in multi-agent systems.

Distributed Identification of Node’s Neighbor Structure

In this section, a novel algorithm is presented to verify network connectivity and identify the in-

neighbors along with the shortest in-neighbor distances for every node. This algorithm effectively

maps out the in-neighbor structure of the entire graph. It is applicable to both directed and undi-

rected networks and serves as the foundational step for both Approach 1 and Approach 2, which

are discussed in the following sections.

To facilitate its development, the following assumption is made.

Assumption 2. Every node in G is uniquely indexed from 1 to n. Every node knows the indices

of its neighbors and the total number of nodes n. Furthermore, when necessary, any node can

establish a new edge with another node.

For each node i ∈ N , consider the following two states:

ξi(k) = [ξi,1(k) · · · ξi,n(k)]T ∈ Rn

denoting the node i’s estimate of its in-neighbors, and

ωi(k) = [ωi,1(k) · · · ωi,n(k)]
T ∈ Rn

denoting node i’s estimate of its in-neighbor structure.

The distributed maximum and minimum protocols operate over n consecutive iterations, defined

39



as follows for each iteration:

ξi,j(k + 1) = max
l∈Ni∪i

ξl,j(k), j ∈ N , k = 0, · · · , (n− 1) (2.26)

ωi,j(k + 1) =


ωi,j(k) if ξi,j(k + 1) = ξi,j(k),

minl∈Ni
(ωl,j(k) + 1) if ξi,j(k + 1) > ξi,j(k)

k = 0, · · · , (n− 1) (2.27)

ρi(k + 1) = max
j∈Ni∪{i}

ρj(k), k = n · · · , 2n (2.28)

where Ni is the in-neighbor set of the node i and the initial conditions are given as

ξi,j(0) =


1, if j = i

0, otherwise

ωi,j(0) =


0, if j = i

∞, otherwise

ρi(n) =


0 if ξi(n) = 1n

1, if ξi(n) ̸= 1n.

(2.29)

Theorem 1. Consider a network G in which each node i executes two concurrent distributed n-step

algorithms: (2.26), (2.27) and the next n step algorithm (2.28). Then, the following conclusions

can be drawn:

1. Node j is one of the pth in-neighbors of node i: that is, {j} ∈ N (p)
i if ωi,j(n) = p > 0.

2. Node i has the information of every other node in the graph G, if and only if all of ξi,j(n)
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elements are non zero: that is,

ξi,j(n) ̸= 0, ∀j ∈ N . (2.30)

3. Each node i knows that the graph G is strongly connected, if and only if ρi(2n) = 0.

Proof: At k = 0, ξi,j(0) is set to 1 if j = i and 0 otherwise, indicating each node is initially only

aware of itself. Correspondingly, ωi,j(0) is initialized to 0 for itself and to ∞ for all other nodes,

indicating that the distance to itself is known to be zero, and the distance to any other nodes are

unknown.

For each iteration (k + 1), it follows ξi,j(k + 1) updates to 1 if j is reachable from i within k + 1

steps, determined by neighbor l of i having ξl,j(k) = 1. If ξi,j(k + 1) increases (indicates new

reachability), ωi,j(k + 1) updates to capture the shortest path distance from i to j, that is the

minimum of ωl,j(k) + 1 across all neighbors l of i that can reach j, thereby indicating the path

length.

It can be seen that ξi,j(k) is binary and non-decreasing. Note that ωi,j(k) will remain zero or ∞

until ξi,j(k) changes from 0 to 1. In addition, it is known by induction that, if {j} ∈ N (p)
i , ξi,j(k)

switches from 0 to 1 precisely at step k = p. Afterwards, ξi,j(k + 1) − ξi,j(k) ≡ 0, and invariant,

and so is ωi,j . Accordingly, the conclusion is drawn.

Algorithm 1 operates over n steps (k = 1, · · · , n), by each node i to identify its neighbor structure

in terms of its pth neighbor set N (p)
i by executing update laws (2.26) and (2.27).

The following observations are worth noting. First, network G is connected if ωi,j(n) > 0 for all

i ∈ N and for all j ̸= i. Second, if there are alternate paths between nodes i and j, the result

ωi,j(n) from algorithm (2.27) corresponds to the shortest path.
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Numerical Example

(a) Undirected Network Gexu

(b) Directed Network Gexd

Figure 2.4: Example networks

To illustrate the algorithm, consider the undirected graph in Figure 2.4(a).

Example 1. Let us apply the algorithm to identify the in-neighbor structure and shortest in-

neighbor distances for each node.

Initial Setup

For each node i ∈ N , initialize the following states:

ξi(0) = [ξi,1(0) · · · ξi,n(0)]T ∈ Rn

ωi(0) = [ωi,1(0) · · · ωi,n(0)]
T ∈ Rn
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where ξi,j(0) = 1 if j = i, otherwise ξi,j(0) = 0, and ωi,j(0) = 0 if j = i, otherwise ωi,j(0) = ∞.

Given graph:

• Nodes: {1, 2, 3, 4, 5, 6, 7, 8}

• Edges: {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4), (4, 5), (5, 6), (5, 7), (6, 8)}

Iterative Steps

The algorithm proceeds with n iterations, updating ξi,j(k + 1) and ωi,j(k + 1) at each step.

Let us demonstrate the first two iterations for node 4 to illustrate the process.

ξi,j(1) = max
l∈Ni∪{i}

ξl,j(0)

ωi,j(1) =


ωi,j(0) if ξi,j(1) = ξi,j(0),

minl∈Ni
(ωl,j(0) + 1) if ξi,j(1) > ξi,j(0)

For node 4:

• Neighbors are nodes 1, 2, 3, and 5.

Initial State:

• ξ4(0) = [0, 0, 0, 1, 0, 0, 0, 0]

• ω4(0) = [∞,∞,∞, 0,∞,∞,∞,∞]
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After 1st Iteration:

ξ4(1) = [max(0, 1),max(0, 1),max(0, 1), 1,max(0, 1), 0, 0, 0]

ξ4(1) = [1, 1, 1, 1, 1, 0, 0, 0]

ω4(1) = [1, 1, 1, 0, 1,∞,∞,∞]

State after 2nd Iteration:

ξ4(2) = [max(1,max(1, 0)), · · · , · · · , 1, · · · ,max(1, 0),max(1, 0), 0]

ξ4(2) = [1, 1, 1, 1, 1, 1, 1, 0]

ω4(2) = [1, 1, 1, 0, 1, 2, 2,∞]

Continuing this process for n iterations for each node, the final states will provide the in-neighbor

structure and shortest in-neighbor distances.

Final State for All Nodes

• Node 1:

– ξ1(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω1(8) = [0, 1, 2, 1, 2, 3, 3, 4]

• Node 2:

– ξ2(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω2(8) = [1, 0, 1, 1, 2, 3, 3, 4]

• Node 3:
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– ξ3(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω3(8) = [2, 1, 0, 1, 2, 3, 3, 4]

• Node 4:

– ξ4(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω4(8) = [1, 1, 1, 0, 1, 2, 2, 3]

• Node 5:

– ξ5(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω5(8) = [2, 2, 2, 1, 0, 1, 1, 2]

• Node 6:

– ξ6(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω6(8) = [3, 3, 3, 2, 1, 0, 1, 1]

• Node 7:

– ξ7(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω7(8) = [3, 3, 3, 2, 1, 1, 0, 2]

• Node 8:

– ξ8(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω8(8) = [4, 4, 4, 3, 2, 1, 2, 0]

By following this process, each node in the network has identified its in-neighbors and the shortest

path to them, ensuring robust and efficient communication within the network.
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Example 2. The algorithm works similarly for a directed graph, for example, consider the directed

graph in Figure 2.4(b).

For node 4:

• In-neighbors are nodes 2, 3, and 5.

Initial State:

• ξ4(0) = [0, 0, 0, 1, 0, 0, 0, 0]

• ω4(0) = [∞,∞,∞, 0,∞,∞,∞,∞]

After 1st Iteration:

ξ4(1) = [0,max(0, 1),max(0, 1), 1,max(0, 1), 0, 0, 0]

ξ4(1) = [0, 1, 1, 1, 1, 0, 0, 0]

ω4(1) = [∞, 1, 1, 0, 1,∞,∞,∞]

State after 2nd Iteration:

ξ4(2) = [max(1, 0), · · · , · · · , 1, · · · ,max(1, 0),max(1, 0), 0]

ξ4(2) = [1, 1, 1, 1, 1, 1, 1, 0]

ω4(2) = [2, 1, 1, 0, 1, 2, 2,∞]

Continuing this process for n iterations for each node, the final states will provide the in-neighbor

structure and shortest in-neighbor distances.
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Final State for All Nodes

• Node 1:

– ξ1(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω1(8) = [0, 2, 1, 1, 2, 3, 3, 4]

• Node 2:

– ξ2(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω2(8) = [1, 0, 2, 1, 2, 3, 3, 4]

• Node 3:

– ξ3(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω3(8) = [2, 1, 0, 1, 2, 3, 3, 4]

• Node 4:

– ξ4(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω4(8) = [2, 1, 1, 0, 1, 2, 2, 3]

• Node 5:

– ξ5(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω5(8) = [3, 2, 2, 1, 0, 1, 1, 2]

• Node 6:

– ξ6(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω6(8) = [4, 3, 3, 2, 1, 0, 2, 1]
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• Node 7:

– ξ7(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω7(8) = [5, 4, 4, 3, 2, 1, 0, 2]

• Node 8:

– ξ8(8) = [1, 1, 1, 1, 1, 1, 1, 1]

– ω8(8) = [5, 4, 4, 3, 2, 3, 1, 0]

Instantaneous Detection Algorithm

The above algorithm can also operate in continuous time, where each agent continuously updates

its estimate of in-neighbors in the current network’s layers based on the maximum protocol. The

estimates are initialized such that an agent is connected only to itself. Agents then update their

estimates at any time t by considering information from their neighbors in the current network

represented by Laplacian L(k)(t). By observing whether any estimate ξ
(k)
i,j (t) becomes zero for

some pair (i, j) after a certain duration, agents can detect network disconnection. This continuous-

time formulation captures the evolving network connectivity dynamics.

For agent i ∈ N , consider the state ξ
(k)
i (t) = [ξ

(k)
i,1 (t) · · · ξ

(k)
i,n (t)]

T ∈ Rn denoting the agent i’s

estimate of its in-neighbors in the kth layer of the network whose Laplacian is L(k)(t). Apply the

following instantaneous detection algorithm in terms of the standard maximum protocol: for any

δt > 0,

ξ
(k)
i,j (t+ δt) = max

l∈N (k)
i (t)∪{i}

ξ
(k)
l,j (t), j ∈ N , (2.31)

where N (k)
i denotes the neighbor set of agent i in the original/hidden network represented by
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Laplacian L(k)(t), and the initial condition is given by

ξ
(k)
i,j (t) =


1, if j = i

0, otherwise
. (2.32)

Using (2.31) and (2.32), value ξ(k)i,j (t+ nδt) (after iterating n-steps) enables ith agent to determine

whether it is connected to the jth agent. That is, if ξ(k)i,j (t + nδt) = 0 for any pair (i, j), agents i

and j as well as all other agents know that Laplacian L(k)(t) becomes disconnected.

Recalling that L(k)(0) = L(0) is connected and also taking the limit of δt → 0 in the expression

of ξ(k)i,j (t+ nδt) yield the following result.

Theorem 2. Consider the following distributed, instantaneous protocol over the time-varying net-

work of Laplacian L(k)(t):

ξ
(k)
i,j (t) = max

l∈N (k)
i (t)∪{i}

ξ
(k)
l,j (t), i, j ∈ N , (2.33)

where ξ
(k)
i,i (t) = 1. Given that L(k)(0) = L(0) is connected, the graph of Laplacian L(k)(t)

becomes disconnected at time t > 0 if and only if ξ(k)i,j (t) = 0 for some pair (i, j) at time t.

No matter where, how many, and when DoS attacks are launched on the graph of Laplacian L(k)(t),

algorithm (2.33) provides an instantaneous detection of L(k)(t) becoming disconnected. Hence, it

can be assumed without loss of any generality that t(k)d be the time instant when loss of connectivity

is detected for Laplacian L(k)(t).
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Problem Statement

Delays in Teleoperation System

Figure 2.5: Architecture of bilateral teleoperation

Teleoperation is a negative feedback configuration of robotic systems with delayed communication

channels as shown in Figure 2.5. In a force-position-based teleoperation cycle, the following steps

take place: the master system receives an operator force Fh; the slave system receives a delayed

version of the transmitted signal from the master (torque τm); the slave system which is subjected

to an environmental force (Fe), sends its feedback (xs) back to the master. Since passivity is a

special case of passivity-short systems, the master/slave systems can be passive (if the output/input

is velocity) or passivity-short. The master robot sends its state as well as the received slave state

back to the operator. The communication channels back and forth may have different delays, which

may vary with respect to time, which is the main issue that the proposed feedback control design

should tackle.
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Resilience against DoS attacks

Consider a multi-agent system Σs composed of n agents, each governed by the individual dynam-

ics:

ẋi = ui, i = {1, . . . , n}, (2.34)

where xi ∈ R represents the state of agent i, and ui is the control input. The agents communicate

through a network of graph G, with the goal of achieving consensus as: for some c ̸= 0,

xi → c, ∀i. (2.35)

The standard consensus algorithm employed by each agent is:

ui =
∑
j∈Ni

aij(xj − xi), aij ≥ 0, (2.36)

which results in the overall system dynamics:

ẋ = −Lx, (2.37)

where A = [aij] is the adjacency matrix of graph G, 1 is the vector of 1s, D = A1, and L = D−A

is the Laplacian matrix. If G is connected, the states of all agents will converge to the average of

their initial conditions as

x →=

(
1

n

n∑
i=1

xi(0)

)
1n. (2.38)

DoS attacks pose a significant threat to the functionality and reliability of multi-agent systems by

targeting agents’ communication network. When launching a DoS attack, malicious actors flood

certain communication channels with overwhelming traffic, rendering them inoperable. These
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communication disruptions captured by a time-varying Laplacian matrix L(t) make the consensus

algorithm less effective due to compromised communication links. Should DoS attacks become

persistently intensified, they progressively degrade connectivity and eventually lead to disintegra-

tion of graph G. This loss of connectivity transforms Laplacian matrix L into a reducible matrix

and results in multiple, local consensus values, despite that the standard consensus algorithm (2.37)

aims to connect all the agents and achieve a common consensus.

The problems that needs to be addressed revolve around enhancing the robustness and resilience of

networked systems, particularly in the face of vulnerabilities and cyber threats. Both directed and

undirected networks contain critical edges, or bridges, whose removal results in network discon-

nection, thus exposing significant points of vulnerability. Efficient identification of these critical

edges is paramount for maintaining network robustness and ensuring uninterrupted connectivity.

However, existing methodologies for identifying and reinforcing these critical edges are predomi-

nantly centralized. This centralization poses scalability issues and creates single points of failure,

particularly problematic in large, dynamic networks. Consequently, there is a pressing need for

scalable, distributed algorithms capable of functioning effectively across extensive networks with-

out reliance on a central authority.

In addition to structural vulnerabilities, multi-agent systems, which are widely utilized in applica-

tions such as robotics, smart grids, and communication networks, are highly susceptible to DoS

attacks. These attacks disrupt critical communication channels by overwhelming them with traffic

or blocking them entirely, leading to significant connectivity losses and impaired system perfor-

mance. Thus, developing resilient control strategies and algorithms that can detect and mitigate

the effects of DoS attacks in real-time is crucial for maintaining the operational integrity and per-

formance of these multi-agent systems.

The task of identifying and reinforcing critical edges in large-scale networks is computationally
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demanding. To address this challenge, it is necessary to simplify and reduce large graphs into

smaller, more manageable subgraphs while preserving their essential connectivity properties. This

reduction facilitates more efficient analysis and enhancement of network robustness, enabling the

deployment of distributed algorithms that can operate autonomously across the network. By ad-

dressing these interconnected problems, the goal is to develop a comprehensive approach that

enhances the resilience and robustness of networked systems against structural vulnerabilities and

cyber threats.

Objectives of the Dissertation

In summary, the problems addressed in this dissertation are as follows:

In a teleoperation system with master and slave robots

1. The first objective is to ensure that the overall teleoperation system remains input-to-state

stable with respect to the operator’s input force. This stability must be maintained despite

the presence of finite time-varying delays in the communication channels. Input-to-state

stability is crucial for ensuring that the behavior of the overall system remains bounded and

well-behaved. This includes scenarios involving multiple masters and slaves, where each

component’s stability contributes to the system’s overall robustness.

2. The second objective is to design controllers that can maintain system stability even if the

communication channels are interrupted. Communication interruptions can occur due to var-

ious factors, such as network failures, signal losses, or intentional interference. It is crucial to

ensure that the teleoperation system remains stable and does not exhibit undesirable behav-

ior when communication channels are temporarily disrupted. This requires the development

of robust control strategies that can adapt to varying levels of communication quality.
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3. Since the operator directly controls the master device and aims to control the slave system

through delayed channels, it is important to minimize the lag and errors between the outputs

of the master and slave systems. The proposed control strategies should aim to reduce any

discrepancies between the desired and actual positions or forces experienced by the slave

system. Minimizing these discrepancies allows for more accurate and responsive teleopera-

tion, enhancing the operator’s ability to perform precise tasks.

4. The fourth objective is to maintain L2 stability of the overall system, even when the en-

vironment in which the slave system operates is unstable. L2 stability guarantees that the

system’s energy remains bounded, which is essential for the safe and reliable operation of

the teleoperation system. Despite any disturbances or uncertainties in the environment, the

control design should ensure that the overall system remains stable and does not exhibit un-

controlled or excessive behavior. This requires robust control mechanisms that can handle

environmental variability.

In a multi-agent system with possible DoSattacks

1. There is a pressing need for scalable, distributed algorithms capable of functioning effec-

tively across extensive networks without reliance on a central authority. These algorithms

must autonomously identify and reinforce critical edges to enhance network robustness and

eliminate single points of failure. The ability to scale and operate in a decentralized manner

is crucial for large, dynamic networks where central control is impractical or undesirable. Ef-

fective decentralized algorithms can enhance network resilience by ensuring that individual

nodes can make informed decisions independently.

2. Multi-agent systems, widely used in applications such as robotics, smart grids, and commu-

nication networks, are highly susceptible to DoS attacks. These attacks can disrupt critical
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communication channels by overwhelming them with traffic or blocking them entirely, lead-

ing to significant connectivity losses and impaired system performance. Developing real-

time control strategies and algorithms that detect and mitigate the effects of DoS attacks is

crucial for maintaining the operational integrity and performance of these systems. This in-

cludes creating detection mechanisms that can identify the onset of an attack and response

strategies that can reconfigure the network to maintain functionality.

3. Identifying and reinforcing critical edges in large-scale networks is computationally de-

manding. To address this challenge, it is necessary to simplify and reduce large graphs

into smaller, more manageable subgraphs while preserving their essential connectivity prop-

erties. This reduction facilitates more efficient analysis and enhancement of network robust-

ness. By breaking down large networks into simpler components, it becomes easier to deploy

distributed algorithms that can operate autonomously across the network. This process in-

volves techniques for graph partitioning and reduction that maintain the network’s structural

integrity while enabling more efficient processing and analysis.
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CHAPTER 3: STABILITY AND PERFORMANCE IN BILATERAL AND

MULTILATERAL TELEOPERATION WITH TIME-VARYING DELAYS

Introduction

Teleoperation systems, which enable human operators to control remote robotic systems, play a

crucial role in various applications such as surgery, space exploration, and hazardous environment

operations. These systems can be categorized into bilateral teleoperation, where a single master

controls a single slave, and multilateral teleoperation, involving multiple masters and slaves. A

fundamental challenge in teleoperation systems is the presence of time-varying delays in commu-

nication channels, which can significantly affect system stability and performance.

In bilateral teleoperation, the master and slave systems exchange position and force information

through communication channels. The inherent delays in these channels can lead to instability,

oscillations, and degraded performance, making it critical to design control strategies that miti-

gate these effects. Multilateral teleoperation extends this complexity by involving multiple agents,

requiring robust control mechanisms to ensure coordinated and stable operation despite communi-

cation delays.

This chapter addresses the challenges associated with time-varying delays in teleoperation systems,

focusing on both stability and performance aspects. The concept of passivity-short systems is

explored as a framework for analyzing and designing control strategies that ensure stability under

varying delay conditions. Passivity-short systems, a generalization of passive systems, provide a

less restrictive yet powerful approach to maintaining system stability and performance.

Our main objective in this chapter is to develop a teleoperation framework that ensures both sta-
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bility and high-performance position tracking, going beyond the limitations of passivity-based

approaches. This work builds upon the findings of our previous conference version [33], but now

takes into account the impact of time-varying communication delays and robot-environment inter-

actions. The key highlights of the results presented in this chapter are as follows:

1. Analyzes stability conditions for teleoperation systems with time-varying delays, showing

that passivity-short control ensures L2 stability and robust performance. The framework in-

cludes PD control, gravity compensation, and specific gain adjustments to maintain stability

and minimize phase lag between master and slave robots [33, 76].

2. Extends passivity-short control to multilateral teleoperation with multiple master and slave

agents. It introduces a scalable control design using leader-follower consensus protocols and

statistical feature control to achieve input-to-state stability despite delays, enhancing system

flexibility and resilience in real-world applications [77].

3. Experimental validation using Phantom Omni devices supports the effectiveness of our pro-

posed approach. The results indicate that our framework exhibits reduced chattering and

improved convergence of steady-state errors compared to existing approaches.

The control design problem is to synthesize both master and slave controllers to meet the following

objectives:

• Ensure input-to-state stability of the overall system with respect to the operator input, even

in the presence of finite time-varying delays in the communication channels.

• Maintain system stability even in cases where the communication channels are interrupted.

• Minimize the lag and errors between the outputs of the master and slave systems, taking into
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account the direct control of the master device by the operator and the delayed control of the

slave system.

• Maintain L2 stability of the overall system, even when the environment is not stable.

In the subsequent section, the aforementioned negative feedback configuration is extended to a

multi-loop feedback configuration for bilateral teleoperation, as depicted in Figure 2.5.

Stability Analysis and Performance Conditions for Teleoperation Systems

In this section, stability analysis and performance conditions are discussed for a teleoperation

configuration. The master and slave robots are considered to be passivity-short, with individual

PD control and gravity compensation and the communication channel is assumed to have a time-

varying delay. The slave robot is subjected to an environmental force, and the environment is

considered to be passivity-short. It is shown that the overall system is passivity-short and L2

stability is achieved under certain conditions.

Consider passivity-short mappings Pm with input vm and output xm, and Ps with input vs and

output xs to represent the master and slave systems, with the rigid body dynamics (2.10), and

for positive definite storage function (2.17), they are L2 stable with parameters [ϱm, ϵm], [ϱs, ϵs]

respectively.

The bilateral teleoperation configuration can be represented by a master and slave negative feed-

back design. Figure 3.1 shows the negative feedback representation of teleoperation with additional

simple individual position-only negative feedback for the master and slave systems to improve the

performance of the overall system and to handle the potential instability issues already discussed

in previous sections.
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Figure 3.1: Proposed passivity-shortage based framework

The control inputs vm and vs can be written as:

vm(t) = k1 (kfFh(t)− kszs(t)− bmxm(t)) , (3.1a)

vs(t) = k2 (kmzm(t)− bsxs(t))− Fe(t), (3.1b)

where bm and bs are individual feedback gain for the master and slave systems respectively; km and

ks are communication channel gains; and k1 and k2 are additional gains introduced to improve the

performance characteristics, and kf is the input scaling factor. The variables zm(t) = xm(t−Tm(t))

and zs(t) = xs(t− Ts(t)) denote the varying-time delayed outputs.

The following theorem outlines the stability results of this system based on the passivity-short

properties (which include passive systems as a special case).

Theorem 3. Consider passivity-short mappings Pm, Ps. The overall system in Figure 3.1 with

control input (3.1a) and (3.1b), is passivity-short and L2 stable, from input [Fh, Fe], to output
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[xm, xs], and new weights {ϵ′, ϱ′}, if Assumption 1 holds, and if there exists positive gains and

arbitrary constants c1, c2 and c3, such that:

0 ≤ inf
t

[
ϱm
2

+ k1bm − 3b2mϵmk
2
1

2
− c1

2
− cm

]
△
= ϱ′m,

0 ≤ inf
t

[
ϱs
2

+ k2bs −
3b2sϵsk

2
2

2
− c2 −

cs
2

]
△
= ϱ′s,

ϵ′m =

[
3

2
ϵmk1kf

]
, ϵ′s =

[
3

2
ϵsk

2
2

]
. (3.2)

The weights cm, cs associated with the delay channel are chosen as:

cm ≥ 1

(1− Ṫ1,max)

(
3ϵsk

2
2k

2
m +

k2
2k

2
m

c2

)
,

cs ≥
1

(1− Ṫ2,max)

(
3ϵmk

2
1k

2
s +

k2
1k

2
s

c1

)
. (3.3)

To achieve the above condition, and in-turn L2 stability of the overall system, gains km, ks, bm, bs,

k1, k2, kf need to be picked, such that (3.2) and (3.3) are satisfied.

Proof: Consider the following storage function Lt:

Lt =
1

k1kf
Vm(t) + Vs(t) + Vdm(t, T1) + Vds(t, T2),

where Vm(t) and Vs(t) are the storage functions in the form of (2.17) (i.e., by replacing subscript i

by m or s), and Vdm(t, T1) and Vds(t, T2) are delay channel storage functions in the form of (2.21),
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with associated positive constants cm and cs. Then, the time derivative of Lt becomes

L̇t ≤
1

k1kf

[
vTm(t)xm(t) +

ϵm
2
∥vm(t)∥2 −

ϱm
2
∥xm(t)∥2

]
+ vTs (t)xs(t) +

ϵs
2
∥vs(t)∥2 −

ϱs
2
∥xs(t)∥2

+
cm
2

[
∥xm(t)∥2 − ∥zm(t)∥2(1− Ṫ1)

]
+

cs
2

[
∥xs(t)∥2 − ∥zs(t)∥2(1− Ṫ2)

]
.

Substituting the proposed controllers in (3.1a) and (3.1b) into the above yields

L̇t ≤ F T
h xm + F T

e xs +
3ϵmk1kf

2
∥Fh∥2 +

3ϵsk
2
2

2
∥Fe∥2

−
[
ϱm
2

+ k1bm − 3b2mϵmk
2
1

2
− c1 − cs

]
∥xm∥2

kfk1

−
[
ϱs − ϱe

2
+ k2bs −

3b2sϵsk
2
2

2
− c2 − cm

]
∥xs∥2

−
[
cm
2
(1− Ṫ1,max)−

k2
2k

2
m

c2
+

3

2
ϵsk

2
2k

2
m

]
∥zm∥2

−
[

cs
2kfk1

(1− Ṫ2,max)−
3

2kf
ϵmk1k

2
s +

k1k
2
s

c1kf

]
∥zs∥2.

It follows from passivity-shortage parameters ϵm, ϵs and ϱm, ϱs in (3.2) and from delay channel

parameters in (3.3) that passivity-shortage is established as

L̇t ≤ uTy +
ϵ′

2
∥u∥2 − ϱ′

2
∥y∥2,

where u = [Fh, Fe] and y = [xm, xs]. Positive values of the parameters ϵ′ = [ϵ′m, ϵ
′
s], ϱ

′ = [ϱ′m, ϱ
′
s]

are ensured by (3.2). Thus, passivity-shortage and L2 stability of the overall system is proved.

However, in addition to achieving stability, teleoperation needs improved performance such as

minimum error between the output of the master and slave systems, and minimum phase lag. Such
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performance improvements are model-specific. This is achieved by ensuring a unity DC gain in

the closed-loop transfer function between the master and slave subsystems, as discussed in [33].

The gains can be chosen using a simple iterative search under the above conditions.

It is also interesting to note, Theorem 3 implies that the overall system is passivity-short, but not

passive because the gains k1 and kf are positive, hence ϵ′m and ϵ′s are positive.

Application to Multilateral Teleoperation

Passivity-shortage framework can be extended to delayed multilateral teleoperation with distributed

multi-agent systems. The goal is to achieve consensus or dispersion among slave agents based on

operator commands, using features of their output probability distribution rather than direct posi-

tion or velocity control.

Figure 3.2 shows the architecture of the multilateral teleoperation setup, with master and slave

systems, communication channels, and human operator commands. Slave agents communicate

through an undirected graph G = (V , E). Master agents send commands to and receive feedback

from slave agents over delayed communication channels.

The objective is to design a controller that ensures input-to-state stability despite delays and dis-

turbances, for various configurations of master commands and slave agents. Instead of controlling

individual agents directly, the focus is on controlling statistical features of the output distribution.

This approach allows for scalability and flexibility in the number of slave agents.

The control design involves propagating desired features to all agents using a leader-follower con-

sensus protocol [78]. Stability and convergence are analyzed using the properties of passivity-

shortage [73, 74]. The master controllers are designed to ensure L2 stability and independence
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from communication delays. By controlling the statistical features of the slave agents’ output dis-

tribution, the proposed method removes the limitation on the number of slave agents and achieves

scalable and flexible control.

Figure 3.2: Architecture of multilateral teleoperation

Control Design

Figure 3.3 illustrates the control design of the overall system. The operator input is denoted as

rm, and the controller ym = [ymq , ymσ , ymmin , ymmax ] in the master side is designed using passivity-

shortage properties. The individual components Pmk, k ∈ 1, 2...m of the master controller are

both passivity-short and L2 stable. The master feedback loop includes gain matrices

gm = [gm1, gm2 ..., gmm ]
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and

km = [km1 , km2 ..., kmm ],

respectively.

The communication channel introduces delays, which are represented by the s-domain function

e−sTk with delays Tk from the master side to the slave side, and Ti in the opposite direction.

Rather than controlling the output of the robot agents, this paper proposes an approach to control

specific features of the robots, represented as cooperative states xs. This removes the limitation on

the maximum number of robots on the slave side.

Each individual agent Psi, i ∈ 1, 2...n on the slave side is considered passivity-short. The con-

troller for the slave robot consists of negative feedback loops with gains gs = [gs1 , gs2 ...gsn ] and

ks = [ks1 , ks2 ...ksn ]. The delayed output from the slave robot zs is fed back to the master robot.

Additional gains kp and kd ensure appropriate damping and unity DC gain. Assuming that the

environmental force is zero, the input and output can be expressed as v = [rm, 0] and y = [ym, ys].

The following theorem establishes the passivity and passivity-short properties of this system, along

with the convergence of the error e = ys − rm.

Theorem 4. Consider the figure 3.2, with m master side controllers and n slave side agents,

and input-output pairs [um, ym], [us, ys] respectively, that are passivity-short with master/slave

parameters (ϵmi
, ϱmi

> 0), (ϵsi , ϱsi > 0): i = 1, 2..m. Then,

• The overall system is passivity-short and L2 stable, from the input rm to the output ys, if

there exists positive values for the gains for every agent i and controller k, such as:

(i) kpk , kdi > 0
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Figure 3.3: Controller design for multilateral teleoperation

(ii) kmk
, ksk > 0 and

kmk
∈

(
0,

2gmi
− 1

kpi

(
1 + 2k2

si
ϵsi
)

3b2mi
ϵmk

)
,

ksi ∈

0,
gsi −

k2di
2
(3ϵmk

kmk
+ 1)

g2siϵsi

 ,

gmk
>

1

kpk

(
1

2
+ k2

si
ϵsi

)
, (3.4)

then the overall system is L2 stable and independent of the time delays T1 and T2.

• Additionally, if the overall system is incrementally passivity-short, then the error e asymp-

totically converges to zero, such that, limt→∞ ∥e∥ = 0
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Proof: The input umk
to the master controller i and the input usi to the slave feature i are given by,

umk
= kmk

(kpkrmk
− gmk

ymk
− zsi) ,

usi = ksi (zmi
− gsizsi) .

where zsi = (fn
ki=1

(kdiysi(t − Ti)) and zmk
= ymk

(t − Tk) are the delayed outputs of the master

controller k and slave agent i. Consider a storage function V given by,

V (t) = k̄p

[
m∑
k=1

Vmk
(t)

kmk

+
n∑

i=1

Vsi(t)

ksi
+ Vd(t, T )

]
,

where k̄p = [ 1
kp1

, 1
kp2

, ... 1
kpm

] is the element-wise inverse of the matrix kp, Vmk
(t), Vsi(t) are the

storage function of master controller k and slave agent i respectively, and Vd(t, T ) is the total

storage function of the delay channel, and it is given by,

Vd(t, T ) =
m∑
k=1

n∑
i=1

[
kpkbik

(
ϵsiksi +

1

ϵ′′

)
∥ymk

(τ)∥2dτ + k2
di

(
1

ϵ′
+

3ϵmk

2
kmk

)
∥ζ(ysi)(τ)∥2dτ

]

Since the master controller is designed to be passivity-short, the time derivative of Vmk
(t) along the

system trajectories is the equivalent of (2.5). From Lemma 3, the slave agents follow the relation,
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(2.5). Therefore,

V̇ ≤V̇d +
m∑
k=1

rmk
ymk

+
m∑
k=1

3ϵmk

2
rTmk

[
k̄mk

k̄pk

]
rmk

−
m∑
k=1

yTmk
k̄pk

[
gmk

− ϵ′ − 3ϵmk

2
kmk

g2mk
+ k̄mk

ϱmk

2

]
ymk

+
m∑
k=1

ζk(zs(T ))
T k̄pk [

1

ϵ′
+

3ϵmk

2
kmk

]
ζk(zs(T ))

−
m∑
k=1

k̄pk

n∑
i=1

yTsi

[
gsi +

ϱsi
2
k̄si − ϵ′′ − ϵsiksig

2
si

]
ysi

+
n∑

i=1

m∑
k=1

bik

(
zmk

(T )T k̄pk

[
ϵsiksi +

1

ϵ′′

]
zmk

(T )

)
,

≤rTmym + rTm
ϵ

2
rm − yTm

βm

2
ym − ζ(ys)

T βs

2
ζ(ys). (3.5)

where βm = [βmk
], k ∈ [1, 2...m], βs = [βsi ], i ∈ [1, 2...n] and ϵ = [ϵk] and

βmk
= k̄pk

[
gmk

− ϵ′ − 3ϵmk

2
kmk

g2mk
+ k̄mk

ϱmk

2

n∑
i=1

bik

(
ϵsiksi +

1

ϵ′′

)]
,

βs = k̄pk

[
n∑

i=1

(
gsi +

ϱsi
2
k̄si − ϵ′′ − ϵsiksig

2
si

)
+

1

ϵ′
+

3ϵmk

2
kmk

]
,

ϵk =
3ϵmkpkm

2
.

If the gains are chosen according to (3.4), then the overall system is passivity-short and L2 stable

from input rm to output ys. All parameters of the above system are time-varying, but the stability

is independent of the value of delays T1 and T2.

An application with an illustrative example is presented in the paper [77]. Readers are encouraged

to refer to this paper for a comprehensive understanding.
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Performance Evaluation from Numerical Simulations

This section provides a numerical assessment for the constant delay case, where there is no rate of

change of delay.

To evaluate the performance of the proposed model, it is compared to one of the existing bilateral

teleoperation methods called the scattering/wave-variable transformation. In scattering transfor-

mation, the input (ui, uj) and output signals (yi, yj) are converted into wave signals based on the

following linear transformation:

um =
1√
2b

[ui + byi]; vm =
1√
2b

[ui − byi];

us =
1√
2b

[uj + byj]; vs =
1√
2b

[uj − byj];

These transformed wave signals are sent through the communication channels. Application of

scattering transformation in bilateral teleoperation is studied in [13, 79, 80].

First, the proposed model is shown to be stable for passivity-short systems. Then, the performance

characteristics with passive systems are compared for both the proposed model and the scattering

transformation. It is shown that the proposed model has better results in terms of phase-lag and

overshoot.

Robotic systems with dynamics (2.10) can be approximated to a linear system with a transfer

function of relative degree two, with respect to the joint displacement q, and of relative degree one,

with respect to joint velocity q̇ [72]. The slave robot is a duplicate of the master robot.

In Figure 3.1, the closed-loop transfer function Ḡm between the output of the master robot (ym)

and the reference input (v) and the closed-loop transfer function Ḡs between the output of the slave
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robot (ys) and the reference input (v) are as follows:

Ḡm(s) =
kmPm(1 + ksbsPs)

1 +G+ kd
kp
kmksPmPse−sT1e−sT2

, (3.6)

Ḡs(s) =
kmksPmPse

−sT1

1 +G+ kd
kp
kmksPmPse−sT1e−sT2

, (3.7)

where G = kmbmPm + ksbsPs + kmksbmbsPmPs.

For the scattering transformation, the closed-loop transfer function H̄m between the master output

(ym) and the reference input (v) and the closed-loop transfer function H̄s between the slave output

(ys) and the reference input (v) are as follows:

H̄m(s) =
Pm

[
(1 + Ps

b
) + e−sT1e−sT2(1− Ps

b
)
]

P1 + e−sT1e−sT2P2

, (3.8)

H̄s(s) =
2PmPse

−sT1

P1 + e−sT1e−sT2P2

, (3.9)

where P1 = (1 + Ps

b
)(1 + Pmb) and P2 = (1− Ps

b
)(1− Pmb).

Stability and Performance Evaluation for Passivity-Short Systems

This section analyzes the step response of the proposed model with passivity-short master and

slave robots, followed by the scattering transformation with the same type of robots. To ensure a

fair comparison between the proposed negative feedback and scattering transformation, identical

master and slave systems (Pm and Ps) are used. Both systems utilize a linear passivity-short

transfer function given by:
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Pm = Ps =
1

(s+ 1)2

(a) Negative Feedback (b) Scattering Transformation

Figure 3.4: Comparison of step responses for passivity-short systems

Negative Feedback Results: Based on the data illustrated in Figure 3.4a, it is apparent that the

transient response of the negative feedback system is stable. This stability is demonstrated by the

closed-loop transfer function in (3.7). To further improve the performance of the system, the gains

kp and kd can be adjusted to counteract overshoot caused by additional zeros. Additionally, by

adjusting the gains bi and bj , the poles can be shifted to the left, effectively reducing the settling

time. This, in turn, minimizes the phase lag and leads to an overall improved system response.

Scattering Transformation Results: Figure 3.4b illustrates the transient response of the scattering

transformation. It should be noted that the closed-loop transfer function of this transformation, as
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Table 3.1: Simulation results: settling time and % overshoot for master and slave outputs

Method/Delay
Settling Time (s) % Overshoot

100ms 500ms 1000ms 100ms 500ms 1000ms
Master Robot (Ym)

Negative Feedback 1.3176 1.1795 3.2720 0.3248 1.8309 3.6393
Scattering Transformation 4.9212 11.6016 21.9442 35.6547 58.8277 69.6672

Slave Robot (Ys)
Negative Feedback 2.9691 3.0857 3.3931 0.0000 0.1180 1.6185
Scattering Transformation 5.8584 10.3346 20.9085 3.0325 0.1896 0.1129

specified in (3.9), is not stable. It is worth mentioning that the value of the scattering wave variable

b does not have any impact on the stability of the scattering transformation. This implies that poor

damping is not the reason behind the instability. Furthermore, the pole-zero map of the open loop

poles of the scattering transformation, as seen in Figure 3.5, clearly shows that there is always at

least one pole present in the right half plane, which ultimately makes the scattering transformation

unstable.

(a) Master Output (b) Slave Output

Figure 3.5: Pole-zero map of passivity-short systems under scattering transformation
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Table 3.2: Simulation results: % amplitude error and phase lag for master and slave outputs with
sinusoidal input

Method/Delay
% Amplitude Error Phase Lag (rad)

100ms 500ms 1000ms 100ms 500ms 1000ms
Master Robot (Ym)

Negative Feedback 1.62 0.02 1.39 -0.38 -0.37 -0.39
Scattering Transformation 46.37 47.31 43.94 -0.61 -0.73 -0.78

Slave Robot (Ys)
Negative Feedback 9.4 17.45 18.15 -1.02 -1.38 -1.92
Scattering Transformation 30.83 73.97 83.57 -1.54 -2.16 -2.29

Performance Evaluation for Passive Systems

The proposed model is already known to be superior to existing models due to its stability for

passivity-short systems. Additionally, the step response characteristics of both the proposed model

and the scattering transformation are studied for passive systems to compare their performance

characteristics.

(a) Negative Feedback (b) Scattering Transformation

Figure 3.6: Master output vs delay for passive systems

The master and slave systems (Pm and Ps) are considered as linear passivity transfer functions,
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(a) Negative Feedback (b) Scattering Transformation

Figure 3.7: Slave output vs delay for passive systems

(a) Master Step Response (b) Slave Step Response

Figure 3.8: Comparison of step responses for passive systems

given by:

Pm = Ps =
1

s+ 1
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Negative Feedback Results: The transient response of Ḡm and Ḡs in (3.7) with passive master and

slave robot for different delays is shown in Figure 3.6a and Figure 3.7a, respectively. Overshoot in

the master output caused by the additional zeros is compensated by adjusting the gains kp and kd.

Scattering Transformation Results: The response of H̄m, given in (3.9), for the passive master

and slave robots with different delays is shown in Figure 3.6b. The overshoot in the master response

is not compensated and increases as the delay increases. It is noted that the damping for this

system cannot be adjusted without affecting the performance of the slave output. The transient

response of the slave output (H̄s), given in (3.9), is shown in Figure 3.7b. The slave output exhibits

a lesser overshoot, but the settling time is high. As the delay increases, the response becomes

oscillatory due to the presence of frequency components. Comparison: The master and slave step

response of the proposed method and scattering transformation is shown together in Figure 3.8.

It can be seen that the proposed method has lesser overshoot and settling time than the scattering

transformation. Table 3.1, generated based on the experimentally tuned gain values km = 0.35,

ks = 0.6, kp = 0.625, kd = 0.025, bm = 4, bs = 1 and different delays, compares the master and

slave step response characteristics of the negative feedback and the scattering transformation for

different delays, numerically. The first half of the table shows the settling time, and the second half

shows the % overshoot, for different values of delays. Table 3.2, generated based on the same gain

values, compares the master and slave sinusoidal response characteristics of the negative feedback

and the scattering transformation for different delays, for the same system. The first half of the

table shows the % error, and the second half shows the phase lag for different values of delays.

The above evaluations yield the following conclusions:

• The response of Ḡm (proposed model) has less % overshoot than the response of H̄m (scat-

tering transformation). This means the proposed model has less error between the sinusoidal

master output and the sinusoidal reference input, as seen from Table 3.2.
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• The proposed model has a quicker settling time by moving the poles to the desired location.

This reduces the phase lag between the sinusoidal master/slave output and the reference

input, as seen from Table 3.2.

• Based on the analysis, the suggested model performs effectively for both lower and higher

delays. However, upon examining the scattering transformation’s master output, it was ob-

served that there was a rising overshoot as the delay increased. Additionally, the slave output

of the scattering transformation showed a prolonged settling time and fluctuating response

with an increase in delay.

Experimental Results

In this section, the experimental setup is outlined and the comparative results are provided. The

setup consists of two Geomagic Touch (previously Phantom Omni) haptic devices as shown in

Figure 3.9. They have 3 DOF-actuated joints and a 3 DOF stylus pen. In this experiment, only the

first 3 joints are considered and the stylus pen is immobilized. The two devices are connected to

the same computer, and master/slave controllers are implemented in MATLAB/Simulink, using the

Simulink library PhanSim [81]. Two sets of experiments are conducted: one in the environment

where a rigid object in the form of a red box (as shown in Figure 3.9) constrains the slave’s first

joint, and another in the free space (without any constraint).

The input from the human operator aims to move all the joints to their full ranges of motion.

The communication channel is simulated with a variable-time delay, randomly generated under a

normal distribution. Unless stated otherwise, the randomly varying time delay is generated with

mean 0.6s and the maximum rate of change of delay, Ṫmax = 0.1. Since the master and the slave

devices have the same structure, their PD parameters set as kpi = 0.6, kvi = 0.2, for i = m, s. The

maximum eigenvalue of the inertia matrix used in the experiment is λmax(Mi) = 3.19∗10−4 (same
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Figure 3.9: Experimental setup

for both master and slave), obtained by a simple system identification of the haptic devices used.

Hence, following (3.2), the control gains are chosen as kf = 1.6, km = 0.5, ks = 0.55, k1 = 1,

k2 = 1, bm = 1.05, bs = 0.5.

Free-Space Motion

The results of the free-space experiments are shown in Figure 3.10 in terms of joint position out-

puts of the master and slave systems, their joint torques, and the instantaneous position errors over

time. It can be seen that the position and torque trajectories of the master and slave converge

to each other, and hence stability is demonstrated. The position errors are due to the phase lag

caused by the delay, which is inevitable; but at the steady state, the position errors become con-

vergent. Their torque response shows that the proposed method has a good force reflection. Their

corresponding cartesian trajectories are shown in Figure 3.11. It can be seen that in addition to
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Figure 3.10: Joint position (top), torque (mid) and position error (bottom) of the proposed approach
in free space
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Figure 3.11: Cartesian trajectories under the proposed approach in free space

velocity synchronization (which is used in all passivity-based teleoperation approaches in the liter-

ature and [1]), our proposed approach also ensures that position synchronization in the joint space

renders position synchronization in the task space.

In addition to stability, there exists a measure of performance known as transparency, generally dis-

cussed in the force control literature [82]. In ideally transparent teleoperation, where the master and

slave systems are defined by the same dynamics and Denavit-Hartenberg (DH) parameters, with

delay-free communication, there exists a kinematic correspondence between the resulting master

and slave position and force responses, throughout the teleoperation cycle. During such a corre-

spondence, the impedance perceived by the human operator matches the environment impedance.

Transparency of teleoperation can also be measured by the transparency index (µ), which is the ra-

tio of percentage amplitude error (PAE) between the master and slave position responses, and PAE

between their torque responses. Such an index of an ideal transparent system would be µideal = 1.

Given the objective of this research on robust stability and convergence, and with the master and

slave systems defined by the same dynamics and DH parameters, the measures of phase lag and

PAE are used as performance indices in this paper. The PAE and phase lag between the master
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Figure 3.12: Joint position and torque for the proposed approach in free space with large slow-
varying delays

and slave position response for the three joints are [0.65425,−0.0053], [2.55, 0], and [0.99, 0], and

between their torque responses are [0.7921,−0.0620], [3.110, 0], and [3.78, 0], respectively. The

average transparency index of this teleoperation cycle is µavg = 0.6323 and a phase lag closer to

zero indicates that the slave responds very fast to the master system.

The proposed approach is also applied to teleoperation with larger communication delays. Since

the performances on different joints are similar, only the results of the first joints of the master and

slave are presented here in this paragraph. Performance of the proposed approach in the presence

of higher varying-delays (of a mean 5s and maximum rate of change Ṫmax = 0.1) is shown in

Figure 3.12, where the position and torque trajectories of the slave track those of the master, with

the same amplitudes but with a higher phase lag. The PAE and phase lag of this position and torque

responses are [2.432,−0.1850], [4.0392,−0.1581], µavg = 0.6021. Higher phase lag is expected

due to a larger delay, but it is evident that the transparency is not affected due to the large delay.
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Figure 3.13: Joint position and torque output of the proposed approach in a “rigid” environemnt

Motion in Constrained Environment

The experiment is also conducted in a “rigid” environment where a hard constraint is placed on

the first joint (by the red box in Figure 3.9). The position and torque output are shown in Figure

3.13. It can be seen that the environment constrains the movement of the slave system (position

trajectory) from 50s to 65s and, during that period, the torque is increased on the slave side. This

contact torque is also felt on the master side, even though the operator tries to keep moving along

the desired trajectory, and this force feedback increasingly forces the master position back to that

corresponding to the slave position.

Comparative Study

To further demonstrate the effectiveness of the proposed approach, a comparative study against [1]

is presented. The technique proposed in [1] is an integral quadratic constraint (IQC) framework that

uses a Zames-Falb multiplier to model delays and the environment of two-channel teleoperation.

The overall system is transformed into a negative feedback interconnection of two blocks: a linear
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system block and the uncertainties block. Then, a multiplier is searched such that the uncertainties

satisfy the IQC. Even though this approach allows the uncertainties block to accommodate the loss

of passivity in master or slave systems, the formulated constraints require strict passivity. As a

result, the overall system is subjected to passivity conditions. The result of this approach is shown

in comparison to the proposed in Figure3.14, which compares the master and slave joint position

errors and torque errors. As used in [1], the gains are chosen as µ = 0.8, and Kf = 0.6. The

proposed method is far more effective than IQC, in the sense of smaller errors. Besides, it can be

seen that the position error during contact with the rigid body (between 50s and 65s) is lesser for

the proposed approach, and it is also more responsive to environmental disturbances.

Figure 3.14: Comparision between the proposed approach and [1]

Summary

In this chapter, a comprehensive stability analysis and performance evaluation for teleoperation

systems under time-varying delays using the passivity-short framework was conducted. The pro-

posed negative feedback control design was demonstrated to achieve L2 stability for passivity-short

systems, and the necessary conditions for the system parameters to ensure stability and perfor-
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mance were derived.

Through numerical simulations, the performance of the proposed model was compared with the

existing scattering transformation method. The results showed that the proposed negative feedback

approach outperforms the scattering transformation in terms of phase lag and overshoot, demon-

strating its superior stability and responsiveness for both passivity-short and passive systems. The

experimental results, conducted using Geomagic Touch haptic devices, validated the theoretical

claims, showing stable and responsive teleoperation under free-space motion and constrained en-

vironments. Comparative studies with existing methods highlighted the superior performance of

the proposed approach in terms of lower position and torque errors, even in the presence of time-

varying delays.

Overall, the chapter provides a solid foundation for understanding and implementing effective

control strategies for teleoperation systems, ensuring stability and high performance in practical

applications.
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CHAPTER 4: RESILIENT MULTI-AGENT SYSTEMS AGAINST

DENIAL OF SERVICE ATTACKS

Introduction

As we transition from the exploration of teleoperation systems and their stability under varying

conditions, we now delve into the critical issue of network resilience in multi-agent systems, par-

ticularly focusing on their vulnerability to DoS attacks. In both directed and undirected networks, a

critical edge—also known as a bridge in undirected networks or a cut arc in directed networks—is

an edge whose removal leads to the network becoming disconnected. This identifies it as a signifi-

cant point of vulnerability within the network’s structure. In undirected networks, the critical edge

is crucial for linking two components; without it, these components become isolated. In directed

networks, a critical edge is essential for maintaining strong connectivity, which is necessary for

any node to communicate with any other node. Removing the critical edge disrupts this essential

connectivity, preventing the directional flow of information from reaching all parts of the network.

This loss of reachability highlights the edge as a critical link whose integrity is vital for sustaining

the overall connectivity and operational capacity of the network. [83].

Edge connectivity, on the other hand, is a fundamental metric of network robustness, quantifying

the minimum number of edges that must be removed to render the network disconnected. The pres-

ence of critical edges directly impacts a network’s edge connectivity; specifically, a network with

even a single critical edge has an edge connectivity of 1. A network with high edge connectivity

is more robust, and capable of withstanding multiple edge failures without losing overall connec-

tivity, whereas networks with critical edges are vulnerable, as the failure of just one such edge can

compromise network integrity [84]. Therefore, identifying and reinforcing critical edges not only
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enhances a network’s robustness but also ensures its resilience to disruptions such as failures or

targeted attacks.

This chapter presents a comprehensive framework for enhancing the connectivity and robustness

of multi-agent systems through distributed algorithms. Ensuring reliable communication and op-

eration within these systems is paramount, especially in the face of potential failures and attacks.

The proposed methods focus on two key aspects: maintaining network connectivity and identifying

and eliminating critical edges.

To achieve these objectives, four concurrent algorithms are introduced to operate within the net-

work. Initially, the standard maximum/minimum consensus algorithm is adeptly utilized not only

to ascertain network connectivity but also to comprehensively map out each node’s neighbors and

their minimum distances throughout the network. Subsequently, if the network is originally discon-

nected, the second algorithm methodically adds edges to enhance connectivity. The third algorithm

is a novel distributed method designed to determine whether a specific edge is part of a cycle, aiding

in the identification of all critical edges within the network. The final step in this approach involves

strategically adding edges to eliminate all critical edges, thereby enhancing network robustness.

The final section extends these algorithms to directed graphs, addressing the unique challenges

posed by directed networks and illustrating the scalability of our approach through network reduc-

tion techniques. This comprehensive treatment aims to provide a robust framework for improving

the resilience and reliability of multi-agent systems, ensuring their continued operation even in

adverse conditions. This work is published partially in [85].

Distributed Algorithms for Critical Edge Elimination in Multi-Agent Systems

This approach requires the following 4 algorithms to be performed concurrently.
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1. An n-step algorithm to determine the neighbor structure, including the distance from one

node to every other node in the network. This has been previously discussed in section 2.

2. An n-step algorithm to ensure the connectivity of the network by adding edges in an ordered

fashion.

3. A 2-step algorithm to determine the existence of critical edges/nodes by identifying the ab-

sence of cycle(s) containing the specific edge or alternate paths between any pair of two

neighboring nodes.

4. If critical edge(s) is(are) identified, an n-step distributed algorithm to add a minimum number

of new edges to eliminate critical edges and increase edge connectivity to 2.

Distributed Algorithm to Ensure Connectivity

Consider a modified version of update law (2.27)) for steps k = n, · · · , (2n− 1):

ωi,j(k + 1) =



ωi,j(k) if ξi,j(k + 1)

= ξi,j(k),

ωi,i∗(k) + ωj∗,j(k) if ξi,j(k + 1)

> ξi,j(k).

(4.1)

where ξi,j(k) is obtained using update law (2.26).

If the original network is not connected, every node in the network becomes aware of this fact at

k = n. Specifically, if node i does not have node j in its neighboring structure (in the sense that

ξi,j(n) = 0), node i knows that the network is not connected. Then, the node i∗ with the highest
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index within the connected neighbors is identified, that is

i∗ = max{j | ξi,j(n) = 1}.

Then, i∗ identifies its pair j∗, that is not within its connected neighbors as,

j∗ = max{j | ξi,j(n) = 0}.

A new edge from i∗ to j∗ is added, which upgrades the network towards being connected. The

pseudo-code for this is given in Algorithm A for easy reference.

In the worst case that there is no edge in the original network, Algorithm A can take n− 1 steps to

ensure connectivity. For this reason, even when starting with a connected network, (4.1) and (2.26)

need to run until k = 2n so that there is no need for central coordination.

To summarize, Algorithm 2 comprises of update laws (4.1) and (2.26) running for n steps, and

for the first nc − 1 steps, where nc is the number of disjoint connected components, the network

is upgraded by Algorithm A. The upgraded network at k = n + nc − 1 becomes connected. By

k = 2n, every node sees this conclusion in its neighboring structure.

Algorithm 1 Distributed Connection of Non-Connected Network

Require: ξi,j(k) at k = n
1: while ξi,j(k) = 0 for any j do
2: identify node i∗ = max(j) with the highest index where ξi,j(k) = 1.
3: if i is i∗ then
4: find node j∗ = max(j) with the highest index where ξi,j(k) = 0.
5: establish a link with node j∗.
6: end if
7: k = k + 1
8: end while

Ensure: The network connectivity is established.
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(a)

(b)

Figure 4.1: Network repair and reconfiguration: a) Highest Index Identification; b) Random Index
Identification for J∗. The newly added edges are in dashed lines and the red markers show discon-
nection from attacks

Effects on Centrality Measures

Centrality measures are metrics used in network theory to identify the most important or influential

nodes within a network. There are several types of centrality, including:

• Degree Centrality: This measure counts the number of direct connections a node has.

Nodes with higher degree centrality are often considered more influential because they can

directly connect with many other nodes.

• Betweenness Centrality: This measure indicates the number of times a node acts as a bridge

along the shortest path between two other nodes. Nodes with high betweenness centrality

can control information flow within the network.

• Closeness Centrality: This measure assesses how close a node is to all other nodes in

the network. Nodes with high closeness centrality can spread information more efficiently
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through the network.

The network repair mechanisms utilized following disruptions are illustrated in Figure 4.1, show-

casing multiple strategies for identifying the node j∗ for new connections. Two distinct approaches,

Highest Index Identification and Random Index Identification, are depicted with dashed lines to

emphasize the adaptive modifications restoring connectivity, while red markers indicate the loca-

tions of the attacks.

The Highest Index Identification strategy in Figure 4.1(a) selects the node with the highest index

that lacks connectivity, providing a systematic and hierarchical approach to network repair. This

method tends to enhance the degree centrality of specific high-index nodes.

Conversely, the Random Index Identification strategy shown in Figure 4.1(b) selects a random node

that lacks connectivity, introducing an element of unpredictability and variability in the repair pro-

cess. This approach results in a more distributed increase in degree centrality across the network,

as the repaired connections are spread more evenly among the nodes.

Different strategies impact the centrality measures differently. The Highest Index Identification

approach may lead to higher centralization, with certain nodes becoming more central than oth-

ers. In contrast, the Random Index Identification approach promotes a more balanced network,

potentially reducing the overall centralization and making the network more robust to subsequent

attacks by avoiding over-reliance on a few key nodes.

Distributed Determination of Critical Edges

In this section, a distributed 2-step algorithm (a total of (2n + 2) steps when combined with the

previous algorithms) is presented for the ith node to determine whether its associated edge eil to its
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first neighbor node l is a critical edge. To facilitate this, a measure, ∆(il)
i , is employed, calculated

at the n + 1th iteration, to evaluate the presence of alternative pathways between any two directly

connected nodes, i, and a neighbor l ∈ N (1)
i . This measure is defined as follows:

∆
(il)
i = [∆

(il)
i,1 · · · ∆(il)

i,n ]
T , ∆

(il)
i,j = ωi,j(n)− ωl,j(n), (4.2)

where ωi,j(n) and ωl,j(n) represent the computed shortest distances from node j to nodes i and l,

respectively, obtained after n iterations of (2.27).

In an undirected and connected network, the value of ∆(il)
i,j for each pair of neighboring nodes i

and l, with respect to any other node j, can only be −1, 0, or 1. A value of −1 indicates that node

j is relatively closer to node i than to node l, and conversely, a value of 1 suggests node j is nearer

to node l. A zero value implies that node j is equidistant from both nodes i and l. Through the

analysis of these distance increments, a lemma and a theorem are proposed, providing criteria for

distributively identifying alternate paths and critical edges within the network, thereby enhancing

the understanding of the network’s robustness to potential disruptions.

Lemma 6. Given an undirected and connected network G, consider an edge eil connecting nodes

i and l. A node, denoted as k, possesses alternate paths to both i and l, bypassing eil, if and only

if at least one node j (potentially including k itself and residing within the relevant cycle) satisfies

one of the two conditions below:

1. Node j is equidistant to i and l

∆
(il)
i,j = 0, (4.3)

2. There exist nodes i′ ∈ Ni and l′ ∈ Nl such that

∆
(il)
i,j ̸= 0, =⇒ ∆

(ii′)
i,j = ∆

(ll′)
l,j = 1. (4.4)
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indicating j is on a path that connects i and l through nodes i′ and l′, thus forming a cycle

that includes eil.

Proof: The proof is organized into two main parts: sufficiency and necessity.

Sufficiency: If there exists a node k with alternate paths to i and l that do not pass through eil, then

at least one cycle involving eil and other edges is present in the network. This cycle can be detected

by examining distances from nodes in the network to i and l:

1. If ∆
(il)
i,j = 0 for some node j, it indicates that j is equidistant from both i and l. This

condition signifies the presence of a cycle that j is a part of, where j is on an alternate path

that circumvents eil, showing the cycle’s existence without directly counting nodes.

2. Let’s consider nodes i′ and l′, where i′ ∈ Ni and l′ ∈ Nl belong to the cycle. There exists

a node j that has an equal distance to the cluster consisting of nodes i and l. This implies

that departing from either node i or l toward node j results in the distance of the neighbor

structure decreasing in both directions, as illustrated in Figure 4.2(a). Consequently, both

∆
(ii′)
i,j and ∆

(ll′)
l,j are equal to 1, irrespective of the sign of ∆(il)

i,j . This condition confirms that

j lies on a cycle that includes both i and l, as well as their neighbors, indicating the existence

of alternate paths.

Necessity: Assume no alternate paths exist between i and l except through eil. Removing eil

disconnects i and l, showing eil is a critical edge. In such a scenario, for any node j not equal

to i or l, it’s impossible to have ∆
(il)
i,j = 0 because j cannot be equidistant to i and l without eil.

Additionally, you cannot find nodes i′ ∈ Ni and l′ ∈ Nl satisfying ∆
(ii′)
i,j = ∆

(ll′)
l,j = 1 for any

j, as there are no cycles including eil and other edges that could provide such alternate paths.

Furthermore, we will have ∆
(ii′)
i,j ∗∆(ll′)

l,j = −1 (i.e., they must have different signs), since leaving
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the cluster of nodes i and l has opposite effects: closer to node j in one direction, and farther in the

other, as shown in Figure 4.2(b).

(a) Edge eil is a part of the cycle formed by alternate
paths

(b) Edge eil is not a part of any cycle

Figure 4.2: Illustration of cycle

Theorem 5. Given an undirected and connected network G, suppose each node implements a

single-step computation (4.2), in conjunction with the n-step protocols (2.26) and (2.27). An edge

eil is a critical edge within this framework if and only if, for every node j ∈ N and for all adjacent

nodes i′ ∈ Ni and l′ ∈ Nl, the following condition is met:

∆
(il)
i,j ̸= 0, and {∆(ii′)

i,j , ∆
(ll′)
l,j } ≠ {1, 1}. (4.5)

Proof: Condition (4.5) explicitly negates the scenarios described in (4.3) and (4.4) from Lemma 1,

indicating eil lacks alternative paths, thus establishing its criticality. Sufficiency arises directly from

Lemma 1: if no conditions for non-criticality are met, eil is critical as it is the sole link between

i and l. Necessity is self-evident; without eil, connectivity between i and l breaks, signifying its

critical.
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This proof conclusively establishes the criteria for determining the critical nature of an edge within

the network by linking the absence of alternate paths to the specified unique conditions. □

Algorithm 3 runs for 2 steps where each node can identify the set of all its associated critical edges

from (4.5), denoted by N c
i ⊂ Ni for the ith node in connected graphs.

(a) Undirected network Gex1 with critical edges (red
dotted lines)

(b) Network Gex2 without critical edge by adding an
edge (green dot-dashed line)

Figure 4.3: Iluustration of critical edges

Example 3. For Gex1 in Figure 4.3(ab), it follows that, at k = 9, ∆(il)
i,j is as follows

For edge e4−5:

∆
(45)
4 = [ω4,1(n)− ω5,1(n), ω4,2(n)− ω5,2(n), ω4,3(n)− ω5,3(n),

ω4,4(n)− ω5,4(n), ω4,5(n)− ω5,5(n), ω4,6(n)− ω5,6(n),

ω4,7(n)− ω5,7(n), ω4,8(n)− ω5,8(n)]
T

∆
(45)
4 = [−1,−1,−1,−1, 1, 1, 1, 1]T ,
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For edge e4−1:

∆
(41)
4 = [ω4,1(n)− ω1,1(n), ω4,2(n)− ω1,2(n), ω4,3(n)− ω1,3(n),

ω4,4(n)− ω1,4(n), ω4,5(n)− ω1,5(n), ω4,6(n)− ω1,6(n),

ω4,7(n)− ω1,7(n), ω4,8(n)− ω1,8(n)]
T

∆
(41)
4 = [1, 0,−1,−1,−1,−1,−1,−1]T ,

For edge e5−6:

∆
(56)
5 = [ω5,1(n)− ω6,1(n), ω5,2(n)− ω6,2(n), ω5,3(n)− ω6,3(n),

ω5,4(n)− ω6,4(n), ω5,5(n)− ω6,5(n), ω5,6(n)− ω6,6(n),

ω5,7(n)− ω6,7(n), ω5,8(n)− ω6,8(n)]
T

∆
(56)
5 = [−1,−1,−1,−1,−1, 1, 1, 1]T .

It is straightforward that (4.5) is satisfied for all i′ and l′ (e.g., ∆(57)
5 ) not explicitly shown, thus

indicating that edge e45 is critical.

Distributed Edge Addition

This section introduces an algorithm to enhance network robustness by strategically adding new

edges to eliminate critical ones, thereby reducing vulnerability to link failures. Our approach fo-

cuses on connecting distant nodes within acyclic parts of the network—specifically, those separated

by critical edges—to both preserve network connectivity under attack and minimize the additional

connections required. By identifying the most remote pairs of nodes adjacent to each critical edge,

called augmentation nodes, the algorithm ensures these nodes establish new links. Through local
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propagation, the augmentation nodes receive the information and complete the planned edge addi-

tion, which has a maximum of n + 1 steps (and, when combined with the previous components,

have a total of 3n+ 3 steps).

The first step of the n-step edge addition algorithm, that is Algorithm 4 is executed only by in-

dividually each pair of nodes associated with a critical edge, say {i, l} with i ∈ N c
l and l ∈ N c

i .

The goal of this step is to identify the corresponding augmentation nodes, {i′, l′} ∈ N r
i . These

augmentation nodes are strategically chosen as the ones farthest (with respect to the neighbor struc-

ture) from the critical edge eil. If there exist multiple nodes at the same distance, the ones with the

smallest index are chosen, and it reduces the number of edges added.

{i′, l′} ∈ N r
i if (4.7) or (4.8) or (4.9) is true, (4.6)

where

 µi = |Ni| > 1

µl = |Nl| > 1
and



i ∈ N c
l , l ∈ N c

i ,

∆
(il)
i,i′ = ∆

(li)
l,l′ = −1

ωi,i′ = maxk ωi,k,

ωl,l′ = maxk ωl,k,

, (4.7)

 µi = |Ni| = 1

µl = |Nl| > 1
and



i ∈ N c
l , l ∈ N c

i ,

∆
(li)
l,l′ = −1

i′ = i,

ωl,l′ = maxk ωl,k,

, (4.8)

 µi = |Ni| > 1

µl = |Nl| = 1
and



i ∈ N c
l , l ∈ N c

i ,

∆
(il)
i,i′ = −1

ωi,i′ = maxk ωi,k,

l′ = l,

, (4.9)
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and N r = ∪i∈NN r
i is the augmentation action set to be found distributively. Note that µi = |Ni| =

µl = |Nl| = 1 is the trivial case of a two-node network and hence is excluded from consideration.

The next (n−1) steps of the Algorithm 4 is to propagate N r
i to all the nodes so they all have access

to N r as follows:

N r
i (k + 1) = ∪l∈Ni∪{i}N r

l (k), (4.10)

where k = (2n+ 2), · · · , (3n+ 1), ∪ is the union operation of sets containing non-ordering pairs

(that is, if {i, j} ⊂ N r
l (k), then {j, i} ⊂ N r

l (k)), and N r
i (3n+ 2) = N r

i is given by (4.6).

And, as the final step, edge addition is accomplished by the pairs of nodes identified in N r to

complete their connection.

Theorem 6. Consider connected network G in which each node executes distributed n-step algo-

rithm represented by equations (4.6) and (4.10), following the distributed 2n+ 2-step algorithms,

1,2 and 3. Then, the resulting network has no critical edge or nodes.

Proof: The algorithm of (4.6) and (4.10) ensures that there is no critical edge. Hence, the resulting

network has no vulnerability under one link failure anywhere in the network.

Example 4. Consider the graph in Figure 4.3(a).

1. Identify Critical Edges

First, the critical edges are identified using the previously defined algorithm. For this graph,

the critical edges are e4−5 and e6−8.

2. Determine Augmentation Nodes

Next, the augmentation nodes for each critical edge are determined. The augmentation

nodes are chosen as the ones farthest from the critical edge.
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• For the critical edge e4−5:

∆
(45)
4 = [−1,−1,−1,−1, 1, 1, 1, 1]T

This indicates that nodes 1, 2, and 3 are closer to node 4, while nodes 6, 7, and 8 are

closer to node 5. The farthest nodes from the critical edge are nodes 1 and 8. Thus,

i′ = 1 and l′ = 8.

• For the critical edge e6−8:

∆
(68)
6 = [−1,−1,−1,−1,−1,−1,−1, 1]T

This indicates that all other nodes 1-7 are closer to node 6. The farthest nodes from

the critical edge are nodes 1 and 8. Thus, i′ = 1 and l′ = 8.

3. Propagate Augmentation Nodes Information

The augmentation nodes N r are propagated to all nodes in the network.

• For node 4:

N r
4 = {(1, 8)}

• For node 6 (also for 5 and 8):

N r
6 = {(1, 8)}

4. Add New Edges

Finally, new edges are added between the augmentation nodes to enhance the network’s

robustness.

• Add edge (1, 8)
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Resulting Network

By strategically adding the edge (1, 8) as shown in Figure. 4.3(b) enhances the network’s robust-

ness, reducing vulnerability to link failures and ensuring better connectivity.

To facilitate understanding, Gex2 is represented as a simplified graph in Figure 4.4 with a group of

nodes. As illustrated in the graph, the objective of the proposed approach is to ensure that every

node is part of a cycle. The presence of a cycle indicates the absence of a critical edge, ensuring a

minimum edge connectivity of 2.

Figure 4.4: Simplified representation of graph Gex2 where each node is a collection of nodes that
are originally connected

The pseudo-code of the proposed approach is included below for easy reference in Algorithm B.

The algorithm can be implemented as fast as needed to improve network robustness and achieve

resilience against link failures.

Complexity and Robustness

All four algorithms are of finite steps proportional to n. For example, Algorithm B operates over

3n + 3 steps. Hence, the time complexity of the proposed method is O(n). In addition, each

node processes information distributively, their computations involve linear update laws in terms

of n-dimensional vectors corresponding to the previous and current time step, and hence memory

complexity of the proposed approach is also O(n).
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Algorithm 2 Distributed Edge Addition
Require: Node with unique index i: network size n and neighbor set Ni.

1: Run Algorithm 1 and 2 to ensure connectivity ▷ For node i, ωi(2n) provides its neighbor
structure.

2: For each of its neighbors (i.e., l ∈ Ni), calculate ∆
(il)
i,j using (4.2) and locally identify critical

edges using (4.5). ▷ At the (2n+ 2)nd step local determination of critical edges/nodes.
3: If i is a critical node, use (4.6) to determine the augmentation nodes for each pair of its critical

node neighbors. ▷ At the (2n+ 3)th step, all the augmentation nodes are locally identified as
N r

i .
4: Use max-consensus protocol (4.10) to distributively determine set N r. ▷ At the (3n+ 2)nd

step, every pair of augmentation nodes knows the need to add an edge between each other.
5: If i is in N r, reach out to its pair l to make an edge. ▷ At the (3n+ 3)rd step, edge addition is

complete.
Ensure: Loop the above steps and the resulting network is connected and has no critical node/edge

to improve robustness.

The system’s robustness can be measured in terms of algebraic connectivity, which is the sec-

ond lowest eigenvalue (λ2) of the graph Laplacian matrix. This measure offers insights into the

network’s connectivity, a higher λ2 indicates better connectivity, and consequently a more robust

network Additionally, edge connectivity provides another critical measure of the system’s robust-

ness. This measure denoted as κ′(G) for a network G, represents the minimum number of edges

that must be removed to disconnect the network.

Example 5. For Gex1 in Figure 4.3 (a) with critical edges, the λ2 = 0.5083 and for Gex2 in Figure

4.3 (b) without critical edges λ2 = 0.7933. Similarly κ′(G1) is 1, while κ′(G2) is 2.

Application to Directed Graphs

This section explains the methods used to identify and strengthen critical edges within a directed

network to improve its connectivity and robustness. Critical edges are defined by the connectivity

of their destination nodes. For example, an edge ej,i becomes critical if a node k relies solely on j

to reach i. This identification process requires each agent to trace all potential paths through which

98



it is connected to other nodes, helping pinpoint any vulnerabilities in the network’s structure.

This section details an algorithm that allows each agent to enumerate all distinct paths leading to

it from other nodes, aiding in the detection of critical edges. Additionally, the algorithm suggests

ways to add new edges to eliminate any critical dependencies, enhancing the network’s stability.

However, as the size of the network increases, so does the complexity of this task.

Critical Edge Detection and Reinforcement

This subsection has 3 parts:

1. Introduces a distributed algorithm that systematically records all possible paths between

nodes, and based on the number of paths node i determines if the edge ek,i from node k

is critical.

2. If deemed critical, the strategy to fortify network resilience involves adding new connections,

guided by systematic steps

Network Path Detection Algorithm

This subsection introduces a distributed algorithm designed to identify all possible paths between

agents in a multi-agent system. The algorithm systematically records the paths by which infor-

mation or signals travel from one node to another within the network. This is crucial for analyz-

ing network robustness and designing control strategies that can accommodate dynamic network

changes.

Algorithm Overview: The algorithm utilizes a data structure x̄i for each agent i, which contains

n sets corresponding to each node in the network. Each set, x̄i,j(k), represents the collection of
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paths from node j to node i that can be traversed in k steps. The paths are sequences of nodes that

detail the exact route taken from j to i. The cardinality, n̄i,j(n) = |x̄i,j(n)|, quantifies the number

of distinct paths from j to i after n steps.

The primary goal of this algorithm is to enumerate the paths from any node j to node i:

• Single Path: If n̄i,j = 1, there exists exactly one path from j to i through a specific in-

neighbor, signifying a unique communication route.

• Multiple Paths: If n̄i,j > 1, it indicates that node i can receive information from node j

through multiple in-neighbors, enhancing the redundancy and resilience of the network.

This iterative mapping of network connectivity helps in understanding the network’s communica-

tion dynamics and potential points of failure or congestion.

Algorithm Description: The algorithm progresses through a series of iterations for each agent i,

from k = 0 to n− 1:

x̄i,j(k + 1) =


x̄i,j(k) ∪ {p ∪ [i]}, if ∃p ∈ x̄l,j(k) and l ∈ Ni such that i /∈ p

x̄i,j(k), otherwise
(4.11)

with initial conditions defined as:

x̄i,j(0) =


{[i]}, if j = i

{}, otherwise
(4.12)

where Ni denotes the set of in-neighbors of node i, and p is a path from j to an in-neighbor l

identified in the previous iteration.
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A path p from node j to node i in a graph is an ordered sequence of nodes represented as:

p = (v0, v1, v2, . . . , vk)

where:

• v0 = j (the starting node)

• vk = i (the destination node)

• vm → vm+1 is an edge in the graph G for all 0 ≤ m < k

The update rule for the path detection algorithm specifies that for each in-neighbor l of a node i,

if there exists a path p from node j to l that does not already pass through i, then this path p is

extended to include i by appending l to the set of known paths x̄i,j(k+1). This operation effectively

broadens the scope of known connectivity paths by incorporating new information about direct

connections as they are discovered. Conversely, if no such paths satisfy the condition—meaning

all known paths from j to l pass through i or no paths exist at all—then the set of paths x̄i,j(k+ 1)

remains unchanged from x̄i,j(k). This ensures that each iteration of the algorithm contributes to

a progressively more detailed and accurate mapping of the network’s pathways, maintaining the

integrity and directionality of the discovered paths.

Lemma 7. Consider a strongly connected digraph G. If every node i runs the update law (4.11)

for n iterations, each node i can identify all the paths that any node j in the network takes to reach

i. Furthermore, it is also guaranteed that no cyclic paths are included in x̄i,k(n), ensuring that all

paths identified by i are direct and acyclic.
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Proof: Consider a strongly connected digraph G. If each node i in the network executes the update

rule defined in (4.11) for n iterations, the algorithm is designed to map all feasible paths from any

node j to i without forming cycles. This ensures that the set x̄i,j(n) only contains acyclic and

direct paths. The absence of cyclic paths is enforced by the algorithm’s condition that only extends

paths to include node i from its in-neighbors l if such extension does not already pass through

i. As such, the paths accumulated in x̄i,j(n) provide a comprehensive yet cycle-free depiction

of connectivity from j to i, thereby affirming that all paths recognized are direct and acyclic, as

stipulated in Lemma 5. ■

The complexity analysis and properties of the network path detection algorithm, captured in Lemma

5, are crucial for understanding the computational burden and the efficiency of the algorithm. Ini-

tially, the complexity of setting up the system is O(1), given that the initialization of path sets for

each agent is straightforward. During each iteration k = 1, · · · , n, the complexity depends on mul-

tiple factors: the average degree d, representing the number of in-neighbors; the average number

of paths per node pair p; and the average path length l. These elements determine the operational

complexity at each step, calculated as O(d · p · l). Considering n iterative steps are performed,

and assuming an update occurs at each step, the total complexity for a single agent across all steps

equates to O(n), leading to an overall complexity of O(d · p · l · n) for the entire process.

Remark: In a fully connected graph scenario—considered as the worst-case scenario for complex-

ity—the average degree d reaches n−1, as each node connects to every other node. The algorithm

strictly avoids duplicate edges or revisits, hence the number of distinct paths p equals the sum of

direct paths and all possible node permutations, i.e., p = 1+(n−1)!, and the maximum path length

l is n− 1. This worst-case analysis highlights the potential exponential growth in complexity due

to the factorial increase in path permutations as network size increases.

Example 6. Consider a graph Gex3 as shown in Figure 4.5(a). The path detection algorithm is

102



(a) Directed network Gex3 with critical edges (red
dotted lines)

(b) Network Gex4 without critical edge by adding
edges (green dot-dashed line)

Figure 4.5: Illustration of critical edge in directed network

illustrated for node 4.

Initialization Initially, each node only knows the path to itself:

x̄4(0) = [{0}, {0}, {0}, {[4]}, {0}, {0}, {0}, {0}]

First Iteration (k = 1) Nodes exchange path information with their direct neighbors. After the

first iteration, the paths are updated as follows:

x̄4,2(1) = {[2, 4]},

x̄4,3(1) = {[3, 4]},

x̄4,5(1) = {[5, 4]}
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Second Iteration (k = 2) Nodes continue to exchange and update paths. After the second iteration,

the paths for node 4 are updated to:

x̄4,1(2) = {[1, 2, 4]},

x̄4,2(2) = {[2, 4], [2, 3, 4]},

x̄4,3(2) = {[3, 4]},

x̄4,4(2) = {[4]},

x̄4,5(2) = {[5, 4]},

x̄4,6(2) = {[6, 5, 4]},

x̄4,7(2) = {[7, 5, 4]}

Final Iteration (k = 9) In the final iteration, the paths are updated one last time to cover all

reachable nodes:

x̄4,1(9) = {[1, 2, 4], [1, 2, 3, 4]},

x̄4,2(9) = {[2, 4], [2, 3, 4]},

x̄4,3(9) = {[3, 4], [3, 1, 2, 4]},

x̄4,4(9) = {[4]},

x̄4,5(9) = {[5, 4]},

x̄4,6(9) = {[6, 5, 4], [6, 7, 5, 4]},

x̄4,7(9) = {[7, 5, 4]},

x̄4,8(9) = {[8, 6, 5, 4], [8, 6, 7, 5, 4]},

x̄4,9(9) = {[9, 8, 6, 5, 4], [9, 8, 6, 7, 5, 4]}
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Result At the end of the algorithm, node 4 has a comprehensive list of paths from itself to all other

reachable nodes without cycles. This ensures that the path detection is accurate and the network

connectivity is fully mapped.

Identification of Critical Edges in Strongly Connected Digraphs

Lemma 6 utilizes the update law described in (4.11) to enable each node i to determine critical

edges within n iterations.

Lemma 8. In a strongly connected directed graph G = (N , E), after executing the update law for

n iterations: 1. An edge ek,i from node k to node i is critical if n̄i,k(n) = 1, indicating it is the sole

path between k and i. 2. An edge ej,k is critical if all path sequences in x̄i,j consistently show j

directly preceding k, confirming j to k as an essential link in the paths to i.

Proof: 1. For edge ek,i, its criticality is confirmed if it is the only path from k to i, demonstrated by

n̄i,k(n) = 1. This uniqueness marks it as critical since its removal would disconnect k from i. 2.

For edge ej,k, if every path from j to i must pass through k, indicated by all paths in x̄i,j showing j

followed by k, then removing ej,k disrupts the connectivity from j to i, establishing its criticality.

The verification process is computationally efficient for determining if n̄i,k(n) = 1, a simple

lookup operation with a complexity of O(1) per in-neighbor, summed over d, the number of in-

neighbors, resulting in a total complexity of O(d). The check for criticality in the second case

involves iterating through path sequences, scaling the complexity to O(p · l · n), where p denotes

the number of paths, l the path length, and n the number of iterations, reflecting a thorough yet

efficient examination of network paths and their critical components.
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Eliminating Critical Edges

Each node i identifies the subset of agents N̄ k
i that rely exclusively on node k to connect to i. This

subset comprises nodes j for which every path in x̄i,j includes the sequence [k, i]. Based on the

size of this subset, n̄k
i , the approach to establishing new connections varies:

If n̄k
i = 0, implying no direct dependency on k by any nodes to reach i, node i instructs the farthest

in-neighbor in the network, denoted as j′ (which does not belong to N̄ k
i ), to establish a direct

connection to k, thus forming the edge ej′,k. Conversely, if n̄k
i = n − 2, indicating that nearly

all nodes depend on the critical edge ek,i, then i requests its farthest in-neighbor, denoted as j′′

(which is part of N̄ k
i ), to send information directly to i, leading to the creation of the edge ei,j′′ .

For intermediate cases where 1 < n̄k
i < n − 2, node i seeks to enhance connectivity by having

the farthest in-neighbor within N̄ k
i , named j′′, connect to the farthest in-neighbor not within N̄ k

i ,

named j′. This action results in the establishment of the edge ej′,j′′ .

This strategic modification of network connections not only mitigates the risk posed by critical

edges but also bolsters the overall robustness of the communication framework within G.

Example 7. Graph Gex3 in Figure 4.5(a) shows all the identified critical edges in red and the graph

Gex4 in Figure 4.5(b) shows the addition of edges to remove the criticality in the edges.

To facilitate understanding, Gex4 is represented as a simplified graph in Figure 4.6 where each node

represents a group of nodes that were originally strongly connected in the original graph. In this

simplified representation, the structure of the graph is easier to analyze.

Initially, without the additional edges, the simplified graph Gex4 does not contain any cycles. This

means that removing a single edge could disrupt the connectivity between these groups.

However, once the additional edges are introduced, the structure of the graph changes significantly.
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Figure 4.6: Simplified representation of graph Gex4 where each node is a collection of nodes that
are originally connected

These added edges create cycles in the graph, ensuring that every node (or group of nodes) is part

of at least one cycle. This transformation increases the robustness of the graph by ensuring that

there are multiple paths between any two groups of nodes.

By ensuring that every node becomes part of a cycle, a minimum edge connectivity of 2 is achieved.

This means that at least two edges need to be removed to disconnect any part of the graph. As a

result, the criticality of individual edges between the groups of nodes is greatly reduced. The graph

becomes more resilient to edge failures because the presence of cycles provides alternative paths

for communication or flow between the nodes.

Illustrative Example

The following section presents an example and simulation-based demonstration of the proposed

algorithms. Consider a network with 15 nodes, connected in a graph, say Ge as shown in 4.7, with

a total of 20 edges.

The Algorithm 1 executes for 15 steps. By the 15th step, each node i determines its neighbor
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Figure 4.7: A random network Ge, of 15 nodes and 20 edges

structure of the network Ge through equation (2.27). It also identified that Ge is not connected.

Then within the next 15 steps Algorithm 2 adds a new edge to establish connectivity, as shown in

Figure 4.8(a).

In the next 2 steps, each node i identifies the critical edges connected to i. The critical edges

identified by each node i are as follows:

N c
1 = {(1, 4)} N c

3 = {(3, 7)} N c
4 = {(4, 1)}

N c
7 = {(7, 3)} N c

7 = {(7, 14)} N c
9 = {(9, 15)}

N c
14 = {(14, 7)} N c

15 = {(15, 19)}

and for the rest of the nodes N c
i = {}

The next 1 step (33rd step) is to identify the corresponding augmentation nodes, which is performed

only by the nodes associated with the critical edges. That is, nodes {1, 3, 4, 7, 9, 14, 15} and it
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(a) From Algorithm 2

(b) From Algorithm 4

Figure 4.8: Augmented network G ′
e

follows:

N r
1 = {(1, 3)} N r

3 = {(3, 12)} N r
4 = {(3, 1)}

N r
7 = {(3, 12) N r

9 = {(9, 1)} N r
14 = {(12, 3)}

(12, 3)} N r
15 = {(1, 9)}

In the following 14 steps, the information is propagated to all the other nodes, and the augmentation

node set for each node is N r
i = {(1, 3), (3, 12), (3, 1), (12, 3), (9, 1), (1, 9)}.

In the final 48th step, every node present in N r reaches out to its pair and forms the edge. The

augmented network is shown in Figure 4.8.
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Eigenvalue Analysis

For a multi-agent system represented by a graph G with Laplacian matrix L, the eigenvalues λi of

L provide crucial insights into the network’s properties. The second smallest eigenvalue λ2, known

as the algebraic connectivity, is particularly important.

λ2 = min
v⊥1

vTLv

vTv
(4.13)

A higher λ2 indicates a more robust and connected network. The distributed algorithms aim to

maximize λ2 by eliminating critical edges and adding redundant paths, enhancing network re-

silience.

Summary

In this chapter, the identification and reinforcement of critical edges in both directed and undirected

networks were explored to enhance their resilience against disruptions. Two distinct approaches

were introduced: one tailored for undirected networks and the other for directed networks. The

first approach involved a series of distributed algorithms to ensure connectivity, identify critical

edges, and augment the network to eliminate these critical vulnerabilities. The second approach

extended these principles to directed networks, focusing on maintaining strong connectivity and

robustness.

The proposed solutions were validated through numerical examples and simulations, highlighting

their effectiveness in maintaining network connectivity and robustness. In summary, this chapter

provides a comprehensive framework for enhancing network resilience through distributed algo-
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rithms, offering robust solutions to maintain connectivity and consensus in the face of adversarial

attacks and dynamic network conditions.
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CHAPTER 5: ADVANCED APPROACHES FOR LARGE-SCALE

NETWORKS IN PRACTICAL APPLICATIONS

Introduction

This chapter explores advanced methods for improving the robustness and efficiency of large-scale

networked systems using graph theory-based connectivity analysis and cooperative control. The

focus is on simplifying large graphs into smaller, manageable components to identify critical edges

and reduce computational complexity. This is crucial for enhancing the resilience of cyber-physical

systems (CPS) in applications like communication networks, power grids, and transportation sys-

tems.

The chapter includes a case study that uses directed graphs (digraphs) to model interactions within

a CPS. By decomposing a large, strongly connected digraph into multiple strongly connected com-

ponents (SCCs), critical edges that affect network connectivity can be efficiently identified and

analyzed. This method is applicable to various domains, including:

• Smart Grids: Achieving consensus among distributed energy resources for stable power

distribution.

• Multi-Robot Systems: Coordinating movements and tasks to meet collective goals [86].

• Financial Networks: Ensuring secure and validated transactions [87].

• Autonomous Vehicle Networks: Preventing collisions and optimizing routes [88].

The process of breaking down large graphs into SCCs, identifying in-neighbors, calculating infor-

mation numbers, and mapping connectivity is detailed. These methods enhance network robustness
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and provide practical insights for real-world applications.

By linking theory to practice, this chapter shows how advanced control strategies and graph theory-

based methods can improve the performance and resilience of teleoperation and multi-agent sys-

tems in various scenarios.

Reducing Large Graphs

Identifying critical edges through the algorithm can become computationally intensive when man-

aging large graphs due to increased time and operational complexities. It is often advantageous

to simplify the large graph into a smaller, equivalent representation to enhance efficiency. This

approach reduces the computational load while preserving the essential properties of the original

network, thereby enabling more effective and faster analysis of critical edges.

The process of converting a strongly connected graph into multiple SCCs involves four key steps.

Initially, a node j is selected to stop sending information, causing the graph to break into multiple

SCCs. This initial step simplifies the graph, which typically reduces to a minimal form consisting

of a single node without edges. Next, the in-neighbors of each node are identified through an n-step

algorithm, previously detailed, that determines each node’s awareness of its network connections.

Following this, each node calculates its information numbers to identify its respective SCC and

elect virtual leaders, simplifying the network architecture into fewer, distinctive SCCs. Finally,

the connectivity within and between SCCs is mapped and analyzed using an iterative update pro-

tocol that determines direct connections and the relative structure between SCCs, enhancing the

understanding of the network’s overall structural dynamics and interactions.
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Figure 5.1: Example of a digraph representation (Gcps)

Algorithm to Identify the SCCs

In this subsection, an algorithm designed to calculate the information numbers for agents within a

network is introduced, enabling each agent to identify its associated SCC. The state of each agent

i is represented as a vector ηi, which evolves over discrete time steps k ranging from n to 2n− 1:

ηi(k + 1) =

[
ηi,1(k + 1) · · · ηi,n(k + 1)

]
.

The distributed protocol for updating these information numbers is defined as follows:

ηi,j(k + 1) = max
l∈N c

i ∪{i}
ηl,j(k), (5.1)

where N c
i represents the in-neighbor set of node i, including node i itself. The initial condition for
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this recursive update is:

ηi,j(n) =


1T
nξi(n), if j = i

0, otherwise
,

which allows every node to determine its own SCC as given by the matrix SCC =

[
SCC1 · · · SCCn

]
.

Each SCC is composed of nodes j such that:

SCCl = {j ∈ N : ζl,j(n) = 1 and ηl,j(2n) = ηl,l(2n)}. (5.2)

and are identified by a virtual leader, defined as the node with the maximum index of all nodes

in that SCC, V ∗
i = maxj{j : ∀j ∈ SCCi}. This virtual leadership structure evolves iteratively,

building a unique set of leaders V ∗ = V ∗(n) of elements V ∗
i∗

△
= V ∗(SCCi), where V ∗(i + 1)

includes a new leader V ∗
i+1 only if it is not already present in V ∗(i). That is,

V ∗(i+ 1) =

 V ∗(i) ∪ V ∗
i+1 if V ∗

i+1 ̸∈ V ∗(i)

V ∗(i) else
, i = 1, · · · , n.

The process starts from an empty set V ∗(0) = ∅ and progresses similarly for the set of distinctive

SCCs, SCC∗ △
= SCC∗(n), with SCC∗(i + 1) including a new SCC only if it’s not already present

in SCC∗(i), that is SCC∗(0) = ∅. Then,

SCC∗(i+ 1) =

 SCC∗(i) ∪ SCCi+1 if SCCi+1 ̸∈ SCC∗(i)

SCC∗(i) else
, i = 1, · · · , n.

Generally, the overall composition of SCC∗ or V ∗ may not be fully known to individual SCCs or

their constituent nodes. In many cases, the cardinality of these sets, |SCC∗| or |V ∗|, is significantly

smaller than n, indicating a more compact network structure than originally perceived. This model
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enables agents to gain insights into not only their immediate network environment but also how

they integrate into the broader network topology through their identified SCCs.

By recognizing and understanding the hierarchical structure and interconnections of SCCs, agents

can better navigate and optimize the network’s overall functionality. This compact representation

of the network reduces complexity and enhances the ability to manage and analyze the network

efficiently.

Example 8. Consider the graph Gcps in Figure 5.1.

1. Identify in-neighbors (18 steps) The process of identifying all in-neighbors ξi takes n steps.

In this example, it requires 18 steps.

For Node 1:

First in-neighbors are [14, 16] and final state

ξ1(18) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0]

For Node 6:

First in-neighbors are [1, 7, 8, 9] and final state

ξ6(18) = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

2. Finding number of connected nodes Initialization (k = 18) At the 18th step, the state ηi is

initialized as follows for example nodes 1 and 6:

η1(18) = [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

η6(18) = [0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
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After 1 iteration (k = 19) Nodes 1 and 18 receive corresponding values from their in-

neighbors and update the states as follows:

η1(19) = [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0]

η6(19) = [5, 0, 0, 0, 0, 17, 17, 17, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Final state, after n iterations (k = 36) After completing n iterations, nodes 4 and 5 receive

values from all their in-neighbors and update their states as follows:

η1(36) = [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0]

η6(36) = [5, 9, 9, 9, 9, 17, 17, 17, 17, 9, 9, 9, 9, 2, 2, 2, 2, 5]

The states for the rest of the nodes are updated similarly:

3. SCC grouping

The SCCs are then identified by each node as

SCC1 = [1]

SCC2,SCC3,SCC4,SCC5 = [2, 3, 4, 5]

SCC6,SCC7,SCC8,SCC9 = [6, 7, 8, 9]

SCC10,SCC11,SCC12,SCC13 = [10, 11, 12, 13]

SCC14,SCC15 = [14, 15]

SCC16,SCC17 = [16, 17]

SCC18 = [18]

4. Assigning virtual leaders
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The virtual leaders are nodes with the maximum index in each SCC as follows:

V ∗ = {1, 5, 9, 13, 15, 17, 18}

5. Identifying SCCs

The SCCs are identified as

SCC∗ = {[1], [2, 3, 4, 5], [6, 7, 8, 9], [10, 11, 12, 13], [14, 15], [16, 17], [18]}

Finding SCC structure

Next, an algorithm that employs state representations θi, θ∗i , and ν∗
i to systematically identify and

analyze the in-neighbor structure of SCC within a network is described. This algorithm enhances

the understanding of SCC interactions and the broader network topology by iteratively calculating

connectivity metrics.

State Representation: Each agent i in the network maintains the following state vectors, where

k = 2n, · · · , 3n− 1

θi(k + 1) =

[
θi,1(k + 1) · · · θi,n(k + 1)

]
,

θ∗i (k + 1) = a row vector of size equal to # of SCCs,

ν∗
i (k + 1) = a row vector of size equal to # of SCCs.

to map the connectivity to other SCCs, with θ∗i focusing specifically on interactions between SCCs.
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To analyze inter-SCC connectivity, θi and θ∗i are updated using:

θi,j(k + 1) = max
l∈N c

i ∪{i}
θl,j(k), θi,j(2n) =


1, if j ∈ SCCi

0, otherwise
, (5.3)

and

θ∗V ∗
i ,V ∗

j
(k + 1) = max

l ∈ [(N c
i∗ ∪ {i∗}) ∩ (N − SCC∗

i∗)]

m ∈ [(N c
j∗ ∪ {j∗}) ∩ (N − SCC∗

j∗)]

θl,m(k) (5.4)

to establish whether virtual leaders of different SCCs can reach each other through their respective

members.

Depth Determination between SCCs: Finally, ν∗
V ∗
i ,V ∗

j
(k + 1) calculates the ’depth’ or minimum

number of connections between different SCCs, modifying based on direct and discovered paths:

ν∗
V ∗
i ,V ∗

j
(k + 1) =



ν∗
V ∗
p ,V ∗

j
(k) + 1, if θ∗V ∗

i ,V ∗
p
= 1 for some p∗ ̸= i∗ and

θl,m(k + 1)− θq,m(k) = 1

for some l ∈ SCC∗
V ∗
i
, q ∈ SCC∗

V ∗
p
, and

m ∈ SCC∗
V ∗
j
,

ν∗
V ∗
i ,V ∗

j
(k), otherwise

(5.5)

Example 9. Consider the graph Gcps in Figure 5.1.
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For each virtual leader, the states θ∗ and ν∗ after 18 iterations are as follows:

θ∗4 = [1, 0] ν∗
4 = [0, 0]

θ∗8 = [1, 1] ν∗
8 = [1, 0]

Figure 5.2: Reduced graph representation of the cyber-physical system Gcps

The overall graph Gex5 is now reduced to the graph in Figure 5.2.

Enabling multiple SCCs

The connectivity of a digraph G can be determined by its structure of the SCCs. A digraph G is

strongly connected if it comprises only one SCC. If G is not strongly connected, its general neigh-

boring structure and the relationships between its SCCs can be described using specific metrics.

For a given station i in a digraph G, the results SCCi and νi(3n) from (5.1) and (5.5) enable station

i to identify all other stations within its SCC, its in-neighboring SCCs, and the depth(s) to its

source SCC(s). If station i is part of block E ′
ll in a canonical block decomposition, it can access

all matrices on the j-th block row and those diagonal blocks E ′
mm that correspond to nonzero E ′

ml

entries.

120



Lemma 9. Assume G = (N , E) is a strongly connected directed graph. Consider a scenario where

Gj = (N , Ej) represents a virtual copy of G in which an agent, say j, does not transmit information

to other agents. The reduced-order graph generated using the algorithm outlined in (2.26)-(2.28)

and (5.1)-(5.5) namely G∗
j = (N ∗, E∗

j ) exhibits the following properties:

• G∗
j contains more than one SCC, demonstrating a lack of strong connectivity.

• The virtual leader of the SCC to which j belongs, denoted SCC∗
V ∗
j

, acts as a sink node.

Proof: Given that node j refrains from sending information, Gj loses its strong connectivity and

naturally divides into multiple SCCs. Despite the original graph G being strongly connected, the

specific SCC containing node j cannot exist in isolation due to the interconnected nature of the

graph. Thus, it must at least act as a sink within the reduced graph G∗
j .

Properties of Reduced Graphs

The properties of the reduced graph are as follows:

• The algorithm transforms any graph G into a reduced graph G∗ = (N ∗, E∗), which includes

fewer nodes and edges, specifically n∗ ≤ n nodes and m∗ ≤ m edges. This simplification

maintains essential connectivity properties while reducing complexity.

• Each node in G∗ acts as a virtual leader for one of the SCCs in G. These virtual leaders,

represented as SCC∗
V ∗
i

, encompass all nodes from a specific SCC, where V ∗
i is the highest

index within that SCC.

• Nodes in G∗ may not adhere to numerical order due to their organization based on SCCs,

reflecting the hierarchical structure rather than numerical sequencing.
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• Edges in G∗, denoted as e∗(SCC∗
V ∗
i
,SCC∗

V ∗
k
), establish communication links between the SCCs,

indicating the directional flow of information or influence between components.

• If G is strongly connected, the reduction results in a simplified representation with a single

node SCC∗
V ∗
i

and no edges, showcasing the graph’s strong connectivity in a unified form.

While it seems like the overall process takes multiple discreet time steps, it can be completed

instantaneously in continuous time domain

Case Study

This dissertation represents a cyber-physical system (CPS) using a directed graph to model the

interactions and dependencies between various components. Each node in the digraph represents

a physical or computational entity, such as sensors, actuators, or processing units, while directed

edges illustrate the communication pathways and control flows between these entities. This di-

graph representation is versatile and can be applied to a range of real-life applications, such as

distributed energy management in smart grids, multi-robot systems for coordinated task execution,

financial network systems, autonomous vehicle coordination, sensor networks for environmental

monitoring, load balancing in distributed computing, and collaborative filtering in recommendation

systems. In each of these applications, consensus plays a crucial role by ensuring that all nodes in

the network agree on critical parameters, thereby enabling coordinated and efficient operation. For

instance, in a smart grid, consensus algorithms help distributed energy resources agree on power

generation levels to maintain grid stability. In multi-robot systems, consensus ensures coordinated

movements and task allocation to achieve mission objectives. Similarly, in financial networks,

consensus is used to validate transactions and update distributed ledgers, while in autonomous

vehicle networks, it prevents collisions by coordinating vehicle routes. In sensor networks, con-
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sensus ensures accurate environmental data by aggregating measurements from multiple sensors.

In distributed computing, it balances the load across servers to optimize performance, and in rec-

ommendation systems, it aggregates user preferences to provide personalized suggestions. Thus,

the digraph representation not only models the structural complexity of a CPS but also highlights

the importance of consensus in achieving reliable and efficient system operation.

Smart Grid

A smart grid is an electrical grid system that uses digital communication technology to monitor and

manage the generation, distribution, and consumption of electricity more efficiently and reliably. It

integrates various renewable energy sources, traditional power plants, and energy storage systems

with consumers and smart devices.

Representation as a Graph

• Nodes (Vertices): Each node in the graph represents a component of the smart grid. This

includes power plants, substations, transformers, smart meters, and consumer appliances.

• Edges (Links): The edges represent the communication and power lines connecting these

components. They can indicate the flow of electricity, data, or control signals between nodes.

Figure 5.3 illustrates a smart grid as an example of a cyber-physical system, highlighting the in-

tegration of various energy sources, communication links, and real-time management for efficient

electricity distribution.

Importance of Consensus

In the context of a smart grid, consensus is crucial for several reasons:
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Figure 5.3: A smart grid as an example of a cyber-physical system.

1. Load Balancing: To ensure the grid operates efficiently, it is essential to balance the load

across various power generation sources and consumers. Consensus algorithms help in co-

ordinating the distributed energy resources to match supply with demand dynamically.

2. Frequency Regulation: Maintaining the frequency of the power grid within a specific range

is vital for stability. Consensus mechanisms enable distributed components to agree on ad-

justments needed to keep the frequency stable.

3. Fault Tolerance and Recovery: In the event of faults or outages, consensus algorithms help in

reconfiguring the grid to isolate the affected areas and restore service without central control,

improving resilience.

4. Demand Response: Consensus is used to implement demand response strategies where con-

sumers adjust their energy usage in response to supply conditions, price signals, or incen-

tives. This requires agreement among distributed entities to reduce or shift consumption.
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Example Scenario Consider a scenario where several distributed energy resources (DERs), such

as solar panels and wind turbines, are connected to a smart grid. The output from these DERs

can fluctuate based on weather conditions. To maintain grid stability, the system needs to achieve

consensus on how to adjust the output of conventional power plants and how much energy to draw

from or store in batteries. This requires continuous communication and agreement among the

DERs, power plants, and control systems.

Now, imagine the system is under a DoS attack, which disrupts the communication channels be-

tween these components. Such an attack can cause delays or complete loss of communication,

leading to instability in the grid as the DERs, power plants, and control systems can no longer

coordinate effectively. This lack of coordination can result in power imbalances, overloading cer-

tain parts of the grid while underutilizing others, potentially leading to blackouts or damage to

infrastructure.

To mitigate the effects of DoS attacks, the proposed algorithms are designed to ensure resilience

and stability in the network. By implementing these algorithms, the smart grid can maintain stable

and efficient operation even under the stress of a DoS attack. The network identification algorithm

identifies disruptions, while the dynamic distributed consensus algorithm work together to reroute

communications and ensure all components remain synchronized. This resilience ensures the grid

can continue to balance load, regulate frequency, and respond to demand dynamically, maintaining

overall stability and efficiency.

Impact of Malicious Nodes on Neighbor Identification Algorithm

The distributed algorithms presented in this paper are designed to identify DoS attacks and provide

a resilient approach to handle such disruptions. However, if a malicious node is present, these

mechanisms might not be sufficient to ensure accurate network structure identification.

125



In general, the presence of malicious nodes can significantly impact the accuracy and reliability of

the network structure identification in the proposed distributed algorithms. A malicious node can

misreport its state values, potentially leading to incorrect estimation of in-neighbor structures and

shortest path distances. If a malicious node m ∈ N reports incorrect ξm,j(k) or ωm,j(k) values,

it can cause its neighboring nodes to propagate false information throughout the network. This

misinformation can result in:

• Incorrect identification of in-neighbor relationships, where legitimate nodes are falsely iden-

tified or omitted as in-neighbors.

• Incorrect calculation of shortest path distances, leading to suboptimal routing and commu-

nication delays.

• Potential network partitioning, where certain nodes may be isolated due to the propagation

of false connectivity information.

To mitigate the impact of malicious nodes, additional mechanisms such as redundant checks, trust-

based algorithms, or consensus protocols can be incorporated to validate the integrity of the re-

ported state values. These mechanisms can help ensure that the network’s connectivity and in-

neighbor structures are accurately identified, even in the presence of adversarial behavior.

For example, consider the neighbor identification algorithm from Example 1.

Numerical Example with Malicious Node

To illustrate the impact of a malicious node, let’s assume node 5 in the given network acts mali-

ciously by misreporting its state values.
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Initial Setup with Malicious Node

For each node i ∈ N , initialize the following states as before:

ξi(0) = [ξi,1(0) · · · ξi,n(0)]T ∈ Rn

ωi(0) = [ωi,1(0) · · · ωi,n(0)]
T ∈ Rn

However, node 5 will now report incorrect values during the iterations.

Iterative Steps with Malicious Node

During each iteration, node 5 will misreport its ξ5,j(k) and ω5,j(k) values to disrupt the algorithm.

For example, node 5 may report a higher or lower value than the actual distance.

Impact on Node 4

Initial State:

• ξ4(0) = [0, 0, 0, 1, 0, 0, 0, 0]

• ω4(0) = [∞,∞,∞, 0,∞,∞,∞,∞]

After 1st Iteration:

ξ4(1) = [max(0, 1),max(0, 1),max(0, 1), 1,max(0, 1), 0, 0, 0]

ξ4(1) = [1, 1, 1, 1, 1, 0, 0, 0]

ω4(1) = [1, 1, 1, 0, 1,∞,∞,∞]
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State after 2nd Iteration with Malicious Node 5:

ξ4(2) = [max(1,max(1, 0)), · · · , · · · , 1, · · · ,max(1, 0),max(1, 0), 0]

ξ4(2) = [1, 1, 1, 1, 1, 1, 1, 0]

ω4(2) = [1, 1, 1, 0, 2, 2, 2,∞] (Incorrect due to malicious node)

Due to the malicious behavior of node 5, the shortest path calculations for node 4 and potentially

other nodes are affected, leading to incorrect ωi,j(k) values. This demonstrates how a malicious

node can disrupt the network’s connectivity information.

To mitigate such issues, additional mechanisms such as redundant checks, trust-based algorithms,

or consensus protocols can be incorporated to validate the integrity of the reported state values.

These mechanisms can help ensure that the network’s connectivity and in-neighbor structures are

accurately identified, even in the presence of adversarial behavior.

Summary

This chapter has explored advanced methods for enhancing the robustness and efficiency of large-

scale networked systems through graph theory-based connectivity analysis and cooperative con-

trol. By simplifying large graphs into smaller, manageable components, the identification of crit-

ical edges and reduction of computational complexity were demonstrated, thereby improving the

resilience of CPS in various applications, such as smart grids, multi-robot systems, financial net-

works, and autonomous vehicle networks.

A detailed case study was provided, illustrating the decomposition of a large, strongly connected

digraph into multiple SCCs, and emphasizing the importance of consensus in maintaining coordi-
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nated and efficient operation. This approach is crucial in real-life scenarios where system stability

and reliability are paramount, especially under the threat of DoS attacks.

The proposed algorithms, including those for instantaneous detection and dynamic activation of

communication layers, ensure network resilience and stability, even under adverse conditions. By

applying these methods, systems can maintain critical functionalities and avoid catastrophic fail-

ures, ensuring continuous operation and optimal performance.

Overall, this chapter bridges the gap between theoretical advancements and practical implementa-

tions, showcasing how sophisticated control strategies and graph theory-based methods can signif-

icantly enhance the performance and resilience of teleoperation and multi-agent systems in various

real-world scenarios.
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CHAPTER 6: CONCLUSION

Summary of Contributions

This dissertation investigated robust and resilient control strategies for networked systems, focus-

ing on teleoperation and multi-agent systems affected by significant time delays and DoS attacks.

The primary objective was to develop methods ensuring stability and performance despite these

adversities, contributing novel frameworks and algorithms that enhance the robustness of these

systems.

A framework was introduced for designing control systems to maintain stability and transparency

despite time-varying communication delays and environmental disturbances. By developing a

novel passivity-shortage framework, the limitations of traditional passivity-based approaches were

addressed. The proposed strategies were evaluated through simulations, demonstrating their effec-

tiveness in achieving consensus while maintaining performance and stability.

Additionally, a suite of distributed algorithms aimed at ensuring network connectivity and elimi-

nating critical edges in multi-agent systems was introduced. These algorithms operate concurrently

to determine neighbor structures, add necessary edges, and identify and address critical nodes and

edges that could compromise network robustness. By implementing these methods, the overall

resilience of multi-agent systems can be enhanced, ensuring their reliable operation even in the

face of potential failures and attacks. The effectiveness of these algorithms was demonstrated

through illustrative examples and simulations, providing a solid foundation for further research

and application in various domains. The extension of these algorithms to directed graphs further

underscores their versatility and scalability, making them suitable for a wide range of networked

systems.
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Practical Applications and Effectiveness

The practical application and effectiveness of the methodologies developed in this dissertation

were demonstrated through experimental setups and detailed case studies. The bilateral teleop-

eration experiment using Phantom Omni haptic devices validated the stability and performance

improvements under variable-time delays, while the case study on cyber-physical systems show-

cased the robustness and resilience of multi-agent systems against DoS attacks. Additionally, the

reduction of large graphs into smaller, manageable components highlighted the efficiency of the

proposed algorithms in analyzing network robustness. These practical evaluations affirm the the-

oretical contributions of this work, offering robust solutions for enhancing the performance and

stability of teleoperation systems and networked multi-agent systems in real-world applications.

Relating Resilient Multi-Agent Systems to Teleoperation Systems

The strategies and algorithms for enhancing the resilience of multi-agent systems against DoS at-

tacks are closely related to passivity-shortage-based control used in teleoperation systems. Both

approaches focus on maintaining stability and robust performance despite disruptions. In teleoper-

ation systems, passivity-shortage-based control ensures stable interactions between a human oper-

ator and a remote environment, balancing input and output energies to manage disturbances. Simi-

larly, distributed algorithms in multi-agent systems identify and eliminate critical edges to maintain

network connectivity, allowing the system to reconfigure itself during attacks. Both methodologies

emphasize maintaining system integrity under adverse conditions, with stability in teleoperation

analyzed using passivity-shortage and eigenvalue stability, and robustness in multi-agent systems

analyzed using the network’s Laplacian matrix eigenvalues. Redundancy and adaptability are key

in both areas, achieved through multiple control paths in teleoperation and additional communi-
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cation links in multi-agent systems. This dissertation contributes to a broader framework for de-

signing resilient systems that can adapt to and recover from disruptions, bridging the gap between

control theory and network resilience.

Future Work

Future work should explore the simultaneous mitigation of False Data Injection (FDI) attacks and

DoS attacks, as these pose significant threats to the stability and security of networked control

systems. Investigating the interplay between FDI and DoS attacks and their combined impact on

multi-agent systems will be crucial for developing comprehensive defense mechanisms. Research

could focus on designing robust detection and mitigation algorithms that can identify and neu-

tralize both types of attacks in real-time, ensuring continuous operation and accurate consensus

among agents. Additionally, exploring advanced machine learning techniques to predict and adapt

to potential attack patterns can enhance the resilience of these systems. Integrating these strategies

into practical applications, such as smart grids and autonomous vehicle networks, will be essential

to validate their effectiveness and address real-world challenges. By tackling both FDI and DoS at-

tacks concurrently, future research can significantly advance the security and robustness of critical

networked control systems.

Conclusion

This dissertation addresses critical challenges in achieving stable and robust control of teleoper-

ation systems with time-varying delays and multi-agent systems under Denial of Service (DoS)

attacks. Through the development of novel control strategies and resilient algorithms, the research

successfully mitigates the destabilizing effects of communication delays and enhances system ro-
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bustness against cyber threats. By ensuring input-to-state stability, minimizing lag and errors, and

maintaining L2 stability, the proposed solutions significantly improve the performance and reliabil-

ity of teleoperation systems. Additionally, the implementation of scalable, distributed algorithms

enhances the resilience of multi-agent systems, safeguarding their functionality in the face of DoS

attacks. The findings contribute to advancing the field of networked control systems, providing a

comprehensive framework for addressing both structural vulnerabilities and cyber threats, thereby

ensuring continuous and reliable operation in dynamic environments.
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[35] İ . Polat and C. W. Scherer, “Stability analysis for bilateral teleoperation: An IQC formula-

tion,” IEEE Transactions on Robotics, vol. 28, pp. 1294–1308, Dec 2012.

[36] C. A. Lopez Martı́nez, R. van de Molengraft, S. Weiland, and M. Steinbuch, “Switching

robust control for bilateral teleoperation,” IEEE Transactions on Control Systems Technology,

vol. 24, pp. 172–188, Jan 2016.

[37] B. H. Jafari and M. W. Spong, “Passivity-based switching control in teleoperation systems

with time-varying communication delay,” in 2017 American Control Conference (ACC),

pp. 5469–5475, May 2017.

[38] I. G. Polushin, A. Tayebi, and H. J. Marquez, “Control schemes for stable teleoperation with

communication delay based on IOS small gain theorem,” Automatica, vol. 42, no. 6, pp. 905

– 915, 2006.

[39] C. Hua and X. P. Liu, “Teleoperation over the internet with/without velocity signal,” IEEE

Transactions on Instrumentation and Measurement, vol. 60, pp. 4–13, Jan 2011.

139



[40] D.-H. Zhai and Y. Xia, “Robust saturation-based control of bilateral teleoperation without

velocity measurements,” International Journal of Robust and Nonlinear Control, vol. 25,

no. 15, pp. 2582–2607, 2015.

[41] C. Hua, Y. Yang, and P. X. Liu, “Output-feedback adaptive control of networked teleop-

eration system with time-varying delay and bounded inputs,” IEEE/ASME Transactions on

Mechatronics, vol. 20, pp. 2009–2020, Oct 2015.

[42] C. Passenberg, A. Peer, and M. Buss, “Model-mediated teleoperation for multi-operator

multi-robot systems,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 4263–4268, Oct 2010.

[43] Z. Chen, Y.-J. Pan, and J. Gu, “Integrated adaptive robust control for multilateral teleoperation

systems under arbitrary time delays,” International Journal of Robust and Nonlinear Control,

vol. 26, no. 12, pp. 2708–2728, 2016.

[44] U. Ahmad and Y. Pan, “A time domain passivity approach for asymmetric multilateral tele-

operation system,” IEEE Access, vol. 6, pp. 519–531, 2018.

[45] Z. Chen, F. Huang, W. Song, and S. Zhu, “A novel wave-variable based time-delay compen-

sated four-channel control design for multilateral teleoperation system,” IEEE Access, vol. 6,

pp. 25506–25516, 2018.

[46] J. Qin, Q. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent systems:

A brief survey,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4972–4983,

2017.

[47] Y. Zhang and Y.-P. Tian, “Consensus of data-sampled multi-agent systems with random com-

munication delay and packet loss,” IEEE Transactions on Automatic Control, vol. 55, no. 4,

pp. 939–943, 2010.

140



[48] G. Wen, Z. Duan, W. Yu, and G. Chen, “Consensus in multi-agent systems with communi-

cation constraints,” International Journal of Robust and Nonlinear Control, vol. 22, no. 2,

pp. 170–182, 2012.

[49] C. L. P. Chen, G.-X. Wen, Y.-J. Liu, and F.-Y. Wang, “Adaptive consensus control for a class

of nonlinear multiagent time-delay systems using neural networks,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 25, no. 6, pp. 1217–1226, 2014.

[50] W. He, B. Xu, Q.-L. Han, and F. Qian, “Adaptive consensus control of linear multiagent

systems with dynamic event-triggered strategies,” IEEE Transactions on Cybernetics, vol. 50,

no. 7, pp. 2996–3008, 2020.

[51] D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of

multi-agent systems: A survey of recent advances,” IEEE/CAA Journal of Automatica Sinica,

vol. 8, no. 2, pp. 319–333, 2021.

[52] Z. Feng and G. Hu, “Distributed secure average consensus for linear multi-agent systems

under dos attacks,” in 2017 American Control Conference (ACC), pp. 2261–2266, 2017.

[53] B. Chang, X. Mu, Z. Yang, and J. Fang, “Event-based secure consensus of muti-agent sys-

tems under asynchronous dos attacks,” Applied Mathematics and Computation, vol. 401,

p. 126120, 2021.

[54] Y. Yang, Y. Li, and D. Yue, “Event-trigger-based consensus secure control of linear multi-

agent systems under dos attacks over multiple transmission channels,” Science China Infor-

mation Sciences, vol. 63, pp. 1–14, 2020.

[55] V. S. Dolk, P. Tesi, C. De Persis, and W. P. M. H. Heemels, “Event-triggered control systems

under denial-of-service attacks,” IEEE Transactions on Control of Network Systems, vol. 4,

no. 1, pp. 93–105, 2017.

141



[56] T.-Y. Zhang and D. Ye, “Distributed event-triggered control for multi-agent systems under

intermittently random denial-of-service attacks,” Information Sciences, vol. 542, pp. 380–

390, 2021.

[57] C. Peng and H. Sun, “Switching-like event-triggered control for networked control systems

under malicious denial of service attacks,” IEEE Transactions on Automatic Control, vol. 65,

no. 9, pp. 3943–3949, 2020.

[58] N. Zhao, P. Shi, W. Xing, and J. Chambers, “Observer-based event-triggered approach for

stochastic networked control systems under denial of service attacks,” IEEE Transactions on

Control of Network Systems, vol. 8, no. 1, pp. 158–167, 2021.

[59] G. Wen, P. Wang, Y. Lv, G. Chen, and J. Zhou, “Secure consensus of multi-agent systems

under denial-of-service attacks,” Asian Journal of Control, vol. 25, no. 2, pp. 695–709, 2023.

[60] L. Zhao and G.-H. Yang, “Adaptive fault-tolerant control for nonlinear multi-agent systems

with dos attacks,” Information Sciences, vol. 526, pp. 39–53, 2020.

[61] T. Wang, J. Feng, J.-A. Wang, J. Zhang, and X. Wen, “Observer-based distributed event-

triggered secure consensus of multi-agent system with dos attack,” IEEE Access, vol. 11,

pp. 34736–34745, 2023.

[62] Z. Zuo, X. Cao, Y. Wang, and W. Zhang, “Resilient consensus of multiagent systems against

denial-of-service attacks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 52, no. 4, pp. 2664–2675, 2022.

[63] A. Amini, A. Asif, and A. Mohammadi, “A unified optimization for resilient dynamic event-

triggering consensus under denial of service,” IEEE Transactions on Cybernetics, vol. 52,

no. 5, pp. 2872–2884, 2022.

142



[64] A.-Y. Lu and G.-H. Yang, “Stability analysis for cyber-physical systems under denial-of-

service attacks,” IEEE Transactions on Cybernetics, vol. 51, no. 11, pp. 5304–5313, 2021.

[65] C.-L. Zhang, G.-H. Yang, and A.-Y. Lu, “Resilient observer-based control for cyber-physical

systems under denial-of-service attacks,” Information Sciences, vol. 545, pp. 102–117, 2021.

[66] R.-Z. Chen, Y.-X. Li, and Z.-S. Hou, “Distributed model-free adaptive control for multi-agent

systems with external disturbances and dos attacks,” Information Sciences, vol. 613, pp. 309–

323, 2022.

[67] Y.-S. Ma, W.-W. Che, C. Deng, and Z.-G. Wu, “Distributed model-free adaptive control

for learning nonlinear mass under dos attacks,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 34, no. 3, pp. 1146–1155, 2023.

[68] Z. Liu and L. Wang, “Leveraging network topology optimization to strengthen power grid

resilience against cyber-physical attacks,” IEEE Transactions on Smart Grid, vol. 12, no. 2,

pp. 1552–1564, 2021.

[69] K. Jalilpoor, M. T. Ameli, S. Azad, and Z. Sayadi, “Resilient energy management incorpo-

rating energy storage system and network reconfiguration: A framework of cyber-physical

system,” IET Generation, Transmission & Distribution, vol. 17, no. 8, pp. 1734–1749, 2023.

[70] J. C. Willems, “Dissipative dynamical systems part i: General theory,” Archive for Rational

Mechanics and Analysis, vol. 45, pp. 321–351, Jan 1972.

[71] Z. Qu and M. A. Simaan, “Modularized design for cooperative control and plug-and-play

operation of networked heterogeneous systems,” Automatica, vol. 50, pp. 2405–2414, Sept.

2014.

[72] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice-Hall, third ed., 2002.

143



[73] Y. Joo, R. Harvey, and Z. Qu, “Cooperative control of heterogeneous multi-agent systems in

a sampled-data setting,” in 2016 IEEE 55th Conference on Decision and Control, pp. 2683–

2688, Dec 2016.

[74] R. Harvey and Z. Qu, “Cooperative control and networked operation of passivity-short sys-

tems,” in Control of Complex Systems (K. G. Vamvoudakis and S. Jagannathan, eds.), pp. 499

– 518, Butterworth-Heinemann, 2016.

[75] Z. Qu and D. M. Dawson, Robust Tracking Control of Robot Manipulators. Piscataway, NJ,

USA: IEEE Press, 1st ed., 1995.

[76] D. B. Venkateswaran and Z. Qu, “A passivity-shortage based control design for teleoperation

with time-varying delays,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4070–

4077, 2020.

[77] D. B. Venkateswaran and Z. Qu, “Distributed multilateral teleoperation framework using

passivity-shortage,” IFAC-PapersOnLine, vol. 52, no. 20, pp. 181–186, 2019. 8th IFAC Work-

shop on Distributed Estimation and Control in Networked Systems NECSYS 2019.

[78] W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and

switching topologies,” Systems and Control Letters, vol. 59, no. 3, pp. 209 – 217, 2010.

[79] E. Nuño, “Bilateral teleoperation experiments: Scattering transformation and passive output

synchronization re,” pp. 12697–12702, 07 2008.

[80] T. Hatanaka, N. Chopra, M. Fujita, and M. Spong, Passivity-Based Control and Estimation

in Networked Robotics. Springer Publishing Company, Incorporated, 2015.

[81] A. Mohammadi, M. Tavakoli, and A. Jazayeri, “Phansim: A simulink toolkit for the sensable

phantom haptic devices,” in Proceedings of the 23rd CANCAM, pp. 787–790, June 2011.

144



[82] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Transactions

on Robotics and Automation, vol. 9, pp. 624–637, Oct 1993.

[83] A. K. Wu, L. Tian, and Y.-Y. Liu, “Bridges in complex networks,” Phys. Rev. E, vol. 97,

p. 012307, Jan 2018.

[84] D. Naor, D. Gusfield, and C. Martel, “A fast algorithm for optimally increasing the edge-

connectivity,” in 31st Annual Symposium on Foundations of Computer Science, pp. 698–707

vol.2, 1990.

[85] A. Gusrialdi, D. B. Venkateswaran, and Z. Qu, “Enhancing resilience in cooperative systems

against cyber-attacks: A defense framework through adaptive network reconfiguration and

digital twin,” in Latest Adaptive Control Systems (D. P. Ioannou, ed.), ch. 0, Rijeka: Inte-

chOpen, 2024.

[86] E. Latif and R. Parasuraman, “Dgorl: Distributed graph optimization based relative local-

ization of multi-robot systems,” in Distributed Autonomous Robotic Systems (J. Bourgeois,

J. Paik, B. Piranda, J. Werfel, S. Hauert, A. Pierson, H. Hamann, T. L. Lam, F. Matsuno,

N. Mehr, and A. Makhoul, eds.), (Cham), pp. 243–256, Springer Nature Switzerland, 2024.

[87] S. Battiston, G. Caldarelli, R. M. May, T. Roukny, and J. E. Stiglitz, “The price of complexity

in financial networks,” Proceedings of the National Academy of Sciences, vol. 113, no. 36,

pp. 10031–10036, 2016.

[88] M. Maghenem, A. Lorı́a, E. Nuño, and E. Panteley, “Consensus-based formation control

of networked nonholonomic vehicles with delayed communications,” IEEE Transactions on

Automatic Control, vol. 66, no. 5, pp. 2242–2249, 2021.

[89] D. B. Venkateswaran and Z. Qu, “Resilient multi-agent systems against denial of service

attacks via adaptively activatable network layers.” Submitted in a Special Section: Resilient

145



and Safe Control in Multi-Agent Systems, in IEEE Open Journal of Control Systems (OJ-

CSYS), 2024.

[90] D. B. Venkateswaran, Z. Qu, and A. Gusrialdi, “A distributed method for detecting critical

edges and increasing edge connectivity in undirected networks.” Submitted to the 63rd IEEE

Conference on Decision and Control, 2024.

[91] D. B. Venkateswaran and Z. Qu, “Enhancing directed network robustness through critical

edge detection and graph simplification.” under preparation, 2024.

146


	Resilient Cooperative Control of Cyber-Physical Systems: Enhancing Robustness Against Significant Time Delays and Denial-of-Service Attacks
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW
	Overview of Cyber-Physical Systems
	Introduction to Teleoperation Systems
	Introduction to Consensus in Multi-Agent Systems

	Research Problems and Related Works
	Stability in Teleoperation with Time-Varying Delays
	Denial-of-Service Attacks on Multi-Agent Systems

	Key Contributions
	Organization of Dissertation

	CHAPTER 2: BACKGROUND
	Introduction
	Passivity-Short Systems
	Properties of Passivity-Short Systems
	Stability Properties
	Connectivity Properties
	Example: Robot Dynamics

	Effects of Varying Time Delay
	Serial Connection
	Feedback Configurations


	Connectivity Analysis of Multi-Agent Systems
	Distributed Identification of Node's Neighbor Structure
	Numerical Example
	Instantaneous Detection Algorithm

	Problem Statement
	Delays in Teleoperation System
	Resilience against DoS attacks
	Objectives of the Dissertation


	CHAPTER 3: STABILITY AND PERFORMANCE IN BILATERAL AND MULTILATERAL TELEOPERATION WITH TIME-VARYING DELAYS
	Introduction
	Stability Analysis and Performance Conditions for Teleoperation Systems
	Application to Multilateral Teleoperation
	Control Design

	Performance Evaluation from Numerical Simulations
	Stability and Performance Evaluation for Passivity-Short Systems
	Performance Evaluation for Passive Systems

	Experimental Results
	Free-Space Motion
	Motion in Constrained Environment
	Comparative Study

	Summary

	CHAPTER 4: RESILIENT MULTI-AGENT SYSTEMS AGAINST DENIAL OF SERVICE ATTACKS
	Introduction
	Distributed Algorithms for Critical Edge Elimination in Multi-Agent Systems
	Distributed Algorithm to Ensure Connectivity
	Effects on Centrality Measures

	Distributed Determination of Critical Edges
	Distributed Edge Addition
	Complexity and Robustness

	Application to Directed Graphs
	Critical Edge Detection and Reinforcement
	Network Path Detection Algorithm
	Identification of Critical Edges in Strongly Connected Digraphs
	Eliminating Critical Edges


	Illustrative Example
	Eigenvalue Analysis
	Summary

	CHAPTER 5: ADVANCED APPROACHES FOR LARGE-SCALE NETWORKS IN PRACTICAL APPLICATIONS
	Introduction
	Reducing Large Graphs
	Algorithm to Identify the SCCs
	Finding SCC structure
	Enabling multiple SCCs

	Properties of Reduced Graphs

	Case Study
	Smart Grid
	Impact of Malicious Nodes on Neighbor Identification Algorithm
	Numerical Example with Malicious Node


	Summary

	CHAPTER 6: CONCLUSION
	Summary of Contributions
	Practical Applications and Effectiveness
	Relating Resilient Multi-Agent Systems to Teleoperation Systems
	Future Work
	Conclusion

	LIST OF PUBLICATIONS
	LIST OF REFERENCES

