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ABSTRACT 

 

Lasers and amplifiers of high-order spatial modes are useful for a number of applications, 

including communication, sensing, microscopy, and laser material processing. This dissertation 

presents the generation and amplification of high-order spatial modes in few-mode fibers (FMFs). 

In the area of amplification of high-order spatial modes, low-crosstalk amplification among 

spatial modes is realized in a retro-reflecting few-mode Er-doped fiber amplifier (EDFA) by 

exploiting the unitary property of the coupling matrix of a symmetric photonic lantern (PL). A 

small-signal gain larger than 25 dB and crosstalk below -10 dB was achieved over the C-band for 

a 3-mode EDFA. Such a few-mode EDFA can replace multiple parallel single-mode EDFAs in 

single-mode fiber transmission systems. In addition, we presented an EDFA for orbital angular 

momentum (OAM) modes using an annular-core PL. Both the first- and second-order OAM modes 

were amplified with nearly 20 dB of gain over the C-band. 

Placing a few-mode EDFA and a mode-selective PL inside a linear cavity, we 

demonstrated an intra-cavity transverse mode-switchable fiber laser for the generation of high-

order spatial modes. The six linearly-polarized (LP) modes can lase independently and are 

switchable by changing the input port of the PL. In addition, we generated donut-shaped beams 

using incoherent superposition and simultaneous lasing of the two degenerate modes in the same 

LP mode group. 

Additional techniques for the generation of high-order modes explored in this thesis utilize 

stimulated Brillouin scattering (SBS), one of the prominent nonlinear effects in optical fibers. 

Based on backward SBS in a passive FMF, we experimentally demonstrated a transverse mode-
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selective Brillouin fiber laser using mode-selective PLs. We generated three LP modes via both 

intra- and inter-modal SBS.  

Finally, we propose a fiber ring cavity that can simultaneously produce phonon lasing and 

photon lasing utilizing forward intermodal SBS. We experimentally demonstrated for the first time, 

to the best of our knowledge, such a two-domain ring laser using a 10-meter reduced-cladding 

two-optical mode fiber. By using an LP01 optical pump, both the LP11 Stokes lightwave and a low-

frequency flexural acoustic wave can be amplified by stimulated emission and oscillate inside the 

same fiber ring cavity. The measured photon laser beat linewidth and the phonon laser linewidth 

are on the order of a few kHz.  
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CHAPTER 1    INTRODUCTION 

1.1 High-Order Spatial Mode Lasers and Amplifiers 

Optical fibers with large mode areas can support high-order linearly-polarized (LP) modes 

with various spatial intensity distributions. High-order transverse mode lasers, together with their 

amplifiers, are beneficial for a number of applications. For example, high-order LP modes in 

optical fibers with larger effective areas have higher thresholds for detrimental nonlinear 

impairments compared to the fundamental mode [1]. It has also been shown that high-order modes 

can reduce sensitivity to mode profile distortion [2], as well as improve energy extraction in high-

power pulsed laser systems. There are other important applications that require high-order modes 

(HOMs). In mode-division multiplexed fiber communication systems, when each LP mode in the 

few-mode fiber (FMF) is used to transmit an individual data stream, the total transmission capacity 

can be significantly increased [3-6]. In fiber sensor systems, high-order LP modes in the FMF 

allow the measurement sensitivities of multiple sensing parameters, including bending curvature, 

temperature and strain, to be increased [7-10]. In material processing, lasers with specific beam 

profiles can be used to process surfaces as desired [11], as well as improve the processing speed 

[12] and get a higher cutting quality [13]. In addition, recent research has indicated that HOM 

lasers are advantageous for the detection of gravitational waves because they can reduce the 

thermal noise significantly [14, 15]. 
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1.2 Existing Approaches 

Due to their unique properties and advantages in many different kinds of applications, 

methods for generating and amplifying specific HOMs have attracted increased interest within the 

laser community in the past decade.  

Several techniques have been implemented successfully to generate lasing at specific 

HOMs. Using few-mode fiber Bragg grating (FBG) and a tunable filter, it is possible to select one 

of the two lowest LP modes [16-18]. Lasing at the two lowest LP modes can also be achieved by 

employing a polarization discriminating element [19]. Another approach involves achieving 

dynamic intra-cavity beam control with an electronically-addressable deformable mirror [20]. 

However, using each method above, it was not possible to produce lasing with modes beyond the 

first two LP fiber modes due to the limited resolution of the intra-cavity mode selective elements. 

In addition, a “digital laser” employing a software-defined spatial light modulator (SLM) has been 

demonstrated to generate desired laser mode patterns [21, 22], but the laser efficiency is fairly low 

owing to the high loss of the SLM. Another laser with high-order Hermite-Gaussian (HG) modes 

has been demonstrated, namely, a Yb: phosphate laser based on an off-axis pumping technique 

[23]. 

Lasers with donut-shaped intensity profiles can be considered as the superposition of two 

degenerate modes. Donut-shaped lasers carrying orbital angular momentum (OAM) associated 

with spiral phase profiles can be generated by tailoring the pump intensity distribution [24-26] or 

by placing a set of phase plates inside a folded cavity [27]. Recently, an intra-cavity donut mode 

laser was reported that was generated based on an incoherent superposition of two degenerate petal 

modes lasing together in the same cavity [28]. Donut-shaped profile lasers can also be generated 
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in an all-fiber laser structure by using intra-cavity mode-selective elements, such as mode-selective 

couplers [29, 30] or long-period two-mode FBG [31]. 

The fiber amplifiers for HOMs have also been investigated intensively in the past decade, 

especially the inline few-mode erbium-doped fiber amplifier (EDFA) [4] and Raman amplifier 

[32], which are essential for long-haul spatial-division multiplexed fiber communication systems. 

It is necessary to make sure that the gains of all spatial modes are nearly equal for a FMF amplifier. 

In the few-mode EDFA, this near-equality can be realized by controlling the pump mode profiles, 

tailoring the doping concentration profile, or using a cladding pumping scheme [33-37]. An EDFA 

capable of amplifying 21 spatial modes with over 15 dB of gain for the entire C-band and a 

differential modal gain of less than 3 dB has been demonstrated [38]. Apart from their application 

in communication systems, the fiber amplifiers for HOM lasers could also be used as power 

combiners in high-power laser systems [39].  

1.3 Dissertation Outline 

The outline of this dissertation is given below: 

In chapter 2, we propose a low-crosstalk few-mode EDFA by exploiting the unitary 

property of the coupling matrix of a symmetric photonic lantern (PL). This few-mode EDFA can 

replace multiple parallel single-mode EDFAs. We demonstrate a 3-channel few-mode EDFA using 

the retro-reflection of a 3-mode symmetric PL experimentally.  

In chapter 3, we present an EDFA for OAM modes using an annular-core PL. Both the 

first- and second-order OAM modes are amplified with a small-signal gain of around 20 dB. The 

mode profiles are maintained after amplification, and this scheme works for the entire C-band. 
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In chapter 4, we demonstrate an intra-cavity transverse mode-switchable fiber laser based 

on a mode-selective PL and a few-mode Er-doped fiber amplifier experimentally. The six lowest-

order LP modes can lase independently and can be switched by changing the input port of the PL. 

In addition, we demonstrate donut-shaped LP11 and LP21 modes using the incoherent superposition 

and simultaneous lasing of the two degenerate modes.  

In chapter 5, we demonstrate a transverse mode-selective few-mode Brillouin fiber laser 

utilizing mode-selective PLs experimentally. We generate the lowest three orders of the LP modes 

based on both intra- and inter-modal SBS effects in the passive FMF.  

In the last chapter, we propose a fiber ring cavity that can simultaneously produce phonon 

lasing and photon lasing utilizing forward intermodal SBS. We also demonstrate such a two-

domain ring laser using a 10-meter reduced-cladding two-optical-mode fiber experimentally. 

Using an LP01 optical pump, both the LP11 Stokes lightwave and a low-frequency flexural acoustic 

wave can be amplified via stimulated emission and oscillate inside the same fiber ring cavity.  
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CHAPTER 2   LOW-CROSSTALK FEW-MODE EDFA FOR SINGLE-

MODE FIBER NETWORKS 

2.1 Introduction 

Space-division multiplexing (SDM) technology has attracted serious attention in the past 

decade as a promising scheme to overcome the capacity crunch in single-mode fiber (SMF) 

communication systems [3, 40]. To date, several transmission experiments including using mode-

division multiplexing (MDM) in FMFs, or core multiplexing in multicore fibers (MCFs) have been 

reported [41-44]. EDFAs for SDM systems are highly desirable since they are essential for long-

haul transmissions. Alternatively, one SDM based EDFA can replace several parallel single-mode 

EDFAs, thus reducing the overall cost of SMF trunk transmission lines or networks. 

Multicore EDFA is one typical type of the SDM amplifiers that can be realized by using 

fan-in/fan-out devices as the signal combiner. With cladding pump configuration, it offers lower 

cost solution through components integration and the use of single high-power pump diode [45-

48]. However, the pump conversion efficiencies were usually very low for this type of EDFAs. 

Few-mode EDFA (FM-EDFA) is another option. It could be made by free space optics, to convert 

the signal into high-order modes by using phase plates, and combine them through beam splitters 

[4, 33, 37]. But the combining loss would be pretty large in this case. In the recent few years, all-

fiber photonic lantern (PL) based FM-EDFA has attracted more interests due to its low-loss feature. 

This type of amplifiers supporting 6-10 spatial channels have been experimentally demonstrated 

[35, 49]. However, the crosstalk between different channels is seems inevitable even with a mode-

selective photonic lantern (MSPL), this is because of the high crosstalk (around -3 dB) between 

degenerate modes. 
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In this section, we propose and experimentally demonstrated a low-crosstalk FM-EDFA 

exploiting the unitary property of the coupling matrix of the PL. We show theoretically that mode 

crosstalks can be suppressed in a retro-reflection configuration even if a non-mode-selective PLs 

are used for (de)multiplexing. Experimentally, we demonstrated a low-crosstalk 3-mode EDFA 

even though a high-crosstalk 3-port symmetric PL was used as the spatial (de)multiplexer. The 

small signal gain of all three channels are greater than 25 dB and the crosstalk of each channel is 

lower than -10 dB. 

2.2 Principle and Theoretical Analysis  

 

Figure 2-1: Schematic setup of the low-crosstalk FM-EDFA based on the retro-reflection of a symmetric PL. 

The schematic setup of the proposed FM-EDFA with low crosstalk is shown in Fig. 2-1. 

Each input signal is launched into one port of a symmetric PL through a circulator. At the output 

of the PL, the signal is amplified by the erbium-doped few-mode fiber (ED-FMF). The resulting 

signal is reflected back by a dichroic mirror (DM) and amplified by the ED-FMF again in the 

reverse direction before being coupled out through the PL and the circulator. The relationship 
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between the input signal amplitudes 𝑨𝑖𝑛 and output signal amplitudes 𝑨𝑜𝑢𝑡 can be expressed as 

following: 

𝑨𝑜𝑢𝑡 = 𝑴𝑀𝑈𝑋
𝑇 ∙ 𝑮𝑇 ∙ 𝑮 ∙ 𝑴𝑀𝑈𝑋 ∙ 𝑨𝑖𝑛                                       (2-1) 

where the matrix 𝑴𝑀𝑈𝑋 is the mode transfer matrix of the symmetric PL. For a lossless PL, 

it is real and unitary [50]. For example, the matrix for a 3-to-1 symmetric PL can be written as 

[51]: 

𝑴𝑀𝑈𝑋 = [

1/√3 1/√3 1/√3

√2/3 −1/√6 −1/√6

0 1/√2 −1/√2

]                                        (2-2) 

The matrix 𝑮 is the mode coupling matrix of the ED-FMF. The coupling length is usually 

on the order of tens of meters for degenerate modes [5] and on the order of kilometers for 

nondegenerate modes [52], after which the mode coupling could be observed. For a short length 

of fiber (a few meters), it can be assumed to be a diagonal matrix. In general, the gain value of 

each mode of a FM-EDFA are not equal. For the 3-LP mode ED-FMF, it can be expressed as: 

𝑮 = [
𝑔1𝑒𝑖𝛥𝜑 0 0

0 𝑔2 0
0 0 𝑔3

]                                                  (2-3) 

where Δ𝜑 is the propagation phase difference between the two mode groups: 

𝛥𝜑 = 𝛥𝑛𝑒𝑓𝑓
2𝜋

𝜆
𝐿                                                      (2-4) 

and 𝛥𝑛𝑒𝑓𝑓 is the effective index difference between the two mode groups, 𝜆 is the signal 

wavelength and 𝐿 is the total length of the ED-FMF. One can easily verify that when the gain of 

all spatial modes are equal to 𝑔0, and the phase difference 𝛥𝜑 is zero, the total transfer matrix of 
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the system will be a diagonal matrix 𝑔0
2 ∙ 𝑰  because of the unitary property of 𝑴𝑀𝑈𝑋. That means 

there will be no channel crosstalk.  

 

Figure 2-2: (a) Calculated channel crosstalk with the increase of DMG between the first two LP modes, (b) crosstalk 

vs. phase difference between the first two mode groups in the ED-FMF. 

However, because of differential modal gain (DMG) and modal dispersion, both amplitude 

and phase of the elements in matrix 𝑮 are not always equal. We simulated the effect of DMG on 

the crosstalk for a three channel system, and the result is shown in Fig. 2-2(a). We can see that the 

crosstalk increases as the DMG grows. In order to suppress the crosstalk to below -20 dB, the 

DMG needs to be less than 1 dB. We also investigated the effect of phase difference between the 

first two mode groups on the crosstalk, as shown in Fig. 2-2(b). It indicated that in order to suppress 

the crosstalk to below -20 dB, the phase difference Δ𝜑 should be within 𝑚𝜋 ± 𝜋/25.  

2.3 Proof-of-Concept Experiment 

The active fiber used in our proof-of-concept experiment was an ED-FMF fabricated in 

house. Figure 2-3(a) shows the measured refractive index profile of this fiber, and its cross-

sectional microscope image is shown in Fig. 2-3(b). It is a step-index fiber with a core and cladding 
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diameter of 10 μm and 125 μm, respectively. The numerical aperture (NA) of this ED-FMF was 

measured to be 0.24, ensuring it supports 3 linearly-polarized (LP) modes at the signal wavelength, 

and supports one more mode group at the pump wavelength. The core area was doped with pure 

erbium ions at a concentration of ~4.5×1025 m-3, that can provide a maximum gain of nearly 10 

dB/m for each spatial mode at 1550 nm. 

 

Figure 2-3: (a) Measured refractive index profile, and (b) cross-sectional microscope image of the 3-mode ED-FMF 

used in our low-crosstalk FM-EDFA experiment. 

The modal gain of a FM-EDFA is essentially determined by the degree of overlap between 

the doping profile, and the pump and signal mode intensity profiles [34, 53], which can be 

expressed as: 

𝜂𝑖,𝑗 = ∬ Γ𝑠,𝑖(𝑟, 𝜑) Γ𝑝,𝑗(𝑟, 𝜑)𝑁0(𝑟, 𝜑)𝑟𝑑𝑟𝑑𝜑                                 (2-5) 

where Γ𝑠,𝑖(𝑟, 𝜑) and Γ𝑝,𝑗(𝑟, 𝜑) are the normalized intensity distribution of i-th signal mode 

and j-th pump mode inside the ED-FMF and 𝑁0(𝑟, 𝜑) is the doping profile of the gain fiber, which 

is uniformly doped for our gain fiber. We further calculated the value of the overlap integrals for 
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different pump and signal mode pairs in our ED-FMF, and the results are shown in Table 2-1. We 

find that by using LP11 mode as the pump, the values for the two signal modes are almost the same, 

which means the DMG is minimized. It should be noted that by using LP11 mode as the pump, 

because of the intensity distribution is not uniform at the transverse plane, there will be slightly 

fiber refractive index perturbation. But this perturbation will not create any mode coupling. 

Table 2-1. Overlap integrals of the normalized intensity profile of the ED-FMF. 

𝜂𝑖,𝑗 LP01,s LP11,s 

LP01,p 2.01 × 1010 1.31 × 1010 

LP11,p 1.45 × 1010 1.51 × 1010 

LP21,p 1.13 × 1010 1.48 × 1010 

 

We use a 3-to-1 symmetric PL as the signal combiner. To fabricate a PL device, multiple 

SMFs were inserted into a fluorine-doped capillary tube whose refractive index is lower than that 

of the SMF cladding. The tube was adiabatically tapered down to create a FMF output at the taper 

waist, and the modes were guided inside the SMF cladding area [54]. The schematic cross-

sectional view of the input of a 3-to-1 symmetric PL is shown in Fig. 2-4(a). It contains three 

identical graded-index SMFs whose core and cladding diameter is 14/125 μm. After tapering, the 

resulting FMF has a core and cladding diameter of 18/90 μm. We measured the output mode 

profiles of each port of the symmetric PL at the signal wavelength by a CCD camera, the results 

are shown in Fig. 2-4(b). All of them are superpositions of the LP01 and LP11s modes. The insertion 

losses of three channels were measured to be -1.2 dB, -0.9 dB and -0.7 dB, respectively. The 

insertion losses of the PL mainly come from the imperfection of the tapering process. If the loss 

for each mode are equal, it will not affect the crosstalk performance. However, the mode-
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dependent loss is always inevitable. This will cause the mode coupling matrix slightly off from a 

unitary matrix, and further affect the crosstalk performance. 

 

Figure 2-4: (a) cross-sectional view of the input fiber distribution for the 3-to-1 symmetric PL, (b) output mode 

profiles of the 3-mode symmetric PL measured at 1550 nm, (c) cross-sectional view of the input fiber distribution 

for the 6-mode MSPL, (d) mode profiles of the 6-mode MSPL measured at 976 nm. 

We also fabricated a 6-mode MSPL for the spatial pump mode control. To achieve mode 

selective feature, we should use dissimilar SMFs at the input. Each input fundamental mode 

evolves into a particular LP mode at the output FMF based on the propagation constant matching 

condition [55-57]. The cross-sectional profile of a 6-mode MSPL is shown in Fig. 2-4(c). It 

contains 6 graded-index fibers with core diameters of 23, 18, 18, 15, 15, and 11μm, that map to 

the LP01, LP11a, LP11b, LP21a, LP21b, and LP02 mode, respectively. At the output side, the resulting 

FMF’s core diameter is 20 μm. We also measured the output mode profiles of the MSPL at the 

pump wavelength, as shown in Fig. 2-4(d). The mode patterns of the 6 lowest LP modes were 

clearly observed. 
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Figure 2-5: Experimental setup of the FM-EDFA with reduced channel crosstalk in a 3-mode symmetric PL. DM: 

dichroic mirror; TLS: tunable laser source; OSA: optical spectrum analyzer. 

The experimental setup of the low-crosstalk FM-EDFA is shown in Fig. 2-5. The signal 

emitted from the tunable laser source (TLS) was launched into the port 1 of the circulator, and 

further went into the 3-to-1 symmetric PL from port 2. The input signal power was set to be -20 

dBm at the wavelength of 1550 nm. The pump light from a 976 nm pump diode was launched in 

to a 6-mode MSPL for the pump mode control. Here we used LP11 mode as the pump for the gain 

equalization. The output of the two PLs were spliced with a 980/1550 nm FM-WDM coupler. The 

FM-WDM was made of 6-LP mode FMFs whose core and cladding diameter is 16/125 μm based 

on free space optics. It contains three fiber collimators that fixed at the FMF ends and a DM inside 

a 3-cm long tube. The output of the FM-WDM was further spliced to the ED-FMF. The length of 

the gain fiber is 2.5 meters, which was angle cleaved. We slightly stretched the ED-FMF to adjust 

the phase difference in order to suppress the channel crosstalk, as discussed above. The amplified 

signal at the output of the ED-FMF was reflected by another DM, and coupled back into the ED-

FMF and amplified again in the reverse direction. The resulting signal was coupled out from the 
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three single-mode ports of the symmetric PL. The port under test is detected through port 3 of the 

circulator. An optical spectrum analyzer (OSA) was used to measure the output optical powers and 

spectrums of all 3 ports of the PL. 

We characterized the net gain of each channel of the amplifier system. The results of all 

the three channels are shown in Fig. 2-6(a). We can see that the small signal gain of all the three 

channels are larger than 25 dB when the pump power of the LP11 mode is larger than 140 mW. At 

the absorbed pump power of 157 mW, the gain of the three channels are 26.6 dB, 26.1 dB and 26.9 

dB, respectively. The gain difference between the three channels are always less than 1 dB. When 

the pump power exceeds 170 mW, the system starts lasing because there is a cavity formed 

between the DM and the end of the FMF inside the FM-WDM. To suppress this effect, we can add 

an AR coating on the FMF end. 

 

Figure 2-6: Experimental results (a) small signal gain of each channel vs. pump power, (b) transfer matrix of the 

FM-EDFA with retro-reflection at a pump power of 157mW, (c) transfer matrix of a pair of 3-mode symmetric PL. 

We fixed the pump power at 157 mW, and measured the transfer matrix of the retro-

reflecting amplifier. To measure the crosstalk matrix, we launched the small signal into one 

channel, and use three power meters to measure the output power of three output ports 
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simultaneously. Then did the same measurement for the other two channels to create the transfer 

matrix. The result is shown in Fig. 2-6(b). As can be seen, the matrix is nearly diagonal, the 

crosstalks of all three spatial channels are between -10 dB to -15 dB. In comparison, we also 

measured the transfer matrix of a pair of 3-mode symmetric PL without retro-reflection. The result 

is shown in Fig. 2-6(c). There is no obvious one-to-one relationship observed, the selectivity are 

no more than 3 dB for all the channels. One of the reasons for the residual crosstalk in the retro-

reflecting FM-EDFA is the phase difference between the two mode groups is hard to be manually 

adjusted. The other reason comes from the mode mismatch between the passive and active FMF 

at the splice point, which will affect the total transfer matrix of the amplifier system. Both are not 

fundamental problems and can be improved in the future by using electronic feedback control of 

the stretcher and core size matched ED-FMFs. The mode-dependent loss of the PL is another 

reason for the crosstalks. The coupling loss of the reflected signal from DM into ED-FMF doesn’t 

affect the crosstalk matrix. This is equivalent to insert a diagonal matrix between 𝑮𝑇 and 𝑮 in Eq. 

(2-1). As long as the values of this diagonal matrix are nearly equal, it will not introduce additional 

crosstalk. 

We also swept the input signal wavelength across the C-band, and measured the gain and 

noise figure (NF) for the three channels. The pump power was fixed at 157 mW. The measured 

gain figure is shown in Fig. 2-7(a). We can see that the gain of all the three channels are greater 

than 25 dB for the signal wavelength ranges from 1530 nm to 1560 nm. The highest gain appears 

at 1530 nm, where the net gain for each channel are 30.3 dB, 29.6 dB, and 30.2 dB, respectively. 

Figure 2-7(b) shows the NF of the FM-EDFA. The NF looks flat across the C-band, ranging 

between 7 dB to 9.4 dB for all three channels. The coupling loss for the signal reflected from the 
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DM coupled into the ED-FMF before the second stage of amplification caused the NF to be slightly 

higher. In order to further improve the NF, we can either optimize the coupling of the reflected 

signal, or increase the pump power, to let the amplifier working at pump undepleted region. 

 

Figure 2-7: Measured (a) gain figure and (b) noise figure for each channel at different input signal wavelength 

across the C-band.  

2.4 Fiber Design with Larger Low-Crosstalk Bandwidth 

It is important to make sure the low-crosstalk feature can be achieved for a wide bandwidth, 

so that our amplifier system is compatible with wavelength-division multiplexing. In that case, the 

phase difference between LP modes inside the ED-FMF should keep constant at different input 

signal wavelengths. From Eq. (2-4) we can find that in order to satisfy this condition, the effective 

index difference Δ𝑛𝑒𝑓𝑓 must increases linearly with 𝜆. We designed an ED-FMF with graded-

index profile, as shown in Fig. 2-8(a), that can satisfy the above features [58]. It has a parabolic 

index profiles with a core radius of 14 μm, and the NA is 0.129, ensuring it supports two mode 

groups at entire C-band. We calculated the effective indexes of the first two LP modes of this fiber 

at each wavelength across the C-band, as shown in Fig. 2-8(b). We can see the effective indexes 
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of both LP modes are decreasing as the wavelength increasing, but the index difference is slightly 

increasing. We further calculated the phase difference between the two LP modes across the C-

band, the result is shown in Fig. 2-8(c). As we can see, the change of Δ𝜑 is very small and its value 

is confined within ±𝜋/10 for almost entire C-band, which corresponding to the channel crosstalk 

less than -10 dB. That means once the phase relationship is aligned well, one can change the input 

signal wavelength without any other adjustments. 

 

Figure 2-8: Designed refractive index profile of the graded-index ED-FMF with large low-crosstalk bandwidth, (b) 

calculated effective indexes of the two lowest LP modes, (c) phase difference between the first two mode groups 

across the C-band. 

To design such a fiber that supports 3 mode groups, the power-law refractive index profile 

can be optimized to make Δ𝑛𝑒𝑓𝑓 between successive mode groups the same. This design will scale 

the operation of the proposed amplifier to six channels (spatial modes) when using a 6-to-1 

symmetric PL. For fibers supporting more than three mode groups, special shapes of fiber 

refractive index profile are needed to minimize the phase differences between mode groups. 
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CHAPTER 3   EDFA FOR OAM MODES USING AN ANNULAR-CORE 

PHOTONIC LANTERN 

3.1 Introduction 

Vortex beams carrying OAM associated with helical phase fronts [59] have been 

investigated intensely in the past few decades. These special types of laser modes can be useful in 

various applications. In microscopy, a vortex beam can enhance the resolution of images by orders 

of magnitude for a variety of structures [60, 61]. They can also be used to optimize the size of dark 

focal spots in stimulated emission depletion (STED) microscopy [62]. In material processing, 

high-order OAM beams can achieve clearer and smoother processed surfaces on a submicron scale 

[11, 63]. In addition, OAM modes can be used for high-precision optical measurements, such as 

the detection of a spinning object [64]. Recently, amplifiers for OAM modes have received 

significant interest since they are essential for high-power laser-related situations. EDFA for OAM 

modes has been studied theoretically [65], and an EDFA for the OAM|L|=1 mode using phase plate 

based mode multiplexers has recently been validated experimentally [66]. However, phase plate 

based mode multiplexers are not ideal for this application, as they exhibit an appreciable coupling 

loss between free space and the amplifier fiber.  

In this work, we demonstrate an EDFA for OAM modes using an annular-core photonic 

lantern. Since the photonic lantern (PL) is a low-loss all-fiber device, it can reduce coupling losses 

effectively and allows scaling to a larger number of OAM modes. In our experiment, both the first- 

and second-order OAM modes were amplified with small-signal gains of up to 22.1dB and 16.7dB, 

respectively, and the amplified OAM mode intensity profiles were captured by a CCD camera. We 
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also swept the signal wavelength through the C-band, and the results indicated that our scheme 

works well for the entire C-band.  

3.2 Operational Principle 

 

Figure 3-1: (a) Schematic cross-sectional view of the annular-core PL; (b) cross-section microscopic image of the 

fabricated annular-core PL. 

In this experiment, we used an annular-core PL to generate the OAM modes efficiently in 

a low-loss fashion [67]. Fig. 3-1(a) shows the structure of the input cross-section of this PL. It 

contains five single-mode input fibers of dissimilar size inside a low refractive index capillary and 

a pure fluorine-doped central fiber. During adiabatic tapering, each input fundamental mode can 

evolve into a specific LP mode at the output. The input fiber cladding forms the core area at the 

output of the PL, which has an annular shape. The cross-sectional image at the output is shown in 

Fig. 3-1(b), which depicts a ring core with a thickness of 8μm and cladding with a diameter of 

115μm.  



19 
 

 

Figure 3-2: Measured mode intensity profile using an SLD with a center wavelength of 1550 nm (a) at the output of 

the ring-core PL, and (b) after splicing with a 1-meter 6-LP mode FMF.  

We employed a super luminescent diode (SLD) with a center wavelength of 1550 nm and 

launched it into each input SMF, then measured the mode intensity profiles at the output of the 

annular-core PL. The results are shown in Fig. 3-2(a). As can be seen, the first five LP modes were 

generated successfully. The LP01 mode has a donut-shaped beam profile but does not carry OAM. 

Next, we spliced the PL with a 1-meter length of 6-LP mode FMF, whose core and cladding 

diameters were16 and 125 μm, respectively. We also measured the output mode profiles from the 

passive FMF, which are shown in Fig. 3-2(b). Once transmitted into the FMF, the LP01 mode 

reverted back to its Gaussian-shaped mode profile, while the other LP modes’ beam profiles 

maintained their shapes well. 

The scalar OAM modes in the optical fiber can be expressed as superpositions of two 

degenerate LP modes with 90-degree phase differences. For example, the OAM|L|=1 with a donut-

shaped intensity distribution and a spiral phase profile could be created by launching two 

degenerate LP11 modes with a 90-degree phase difference simultaneously, as shown in Fig. 3-3(a). 

Similarly, the OAM|L|=2 mode could be generated by using two degenerate LP21 modes, as shown 



20 
 

in Fig. 3-3(b). Since our PL can multiplex both degenerate LP11 modes and LP21 modes, by 

adjusting the phase delay between the two input SMFs carefully, it should be possible to generate 

both OAM|L|=1 and OAM|L|=2 modes at its output. 

 

Figure 3-3: Demonstration of the generation of OAM modes in fiber via the superposition of two degenerate LP 

modes for (a) OAM|L|=1, and (b) OAM|L|=2.  

3.3 Experimental Setup 

 

Figure 3-4: Experimental setup of the OAM EDFA based on the annular-core PL. OC: optical coupler; PC: 

polarization controller; BS: beam splitter. 

The experimental setup of our OAM EDFA is shown in Fig. 3-4. The signal laser was 

launched from a tunable laser with an optical power of 0.2 mW at 1550 nm. After it was split into 
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two channels by a 3-dB optical coupler, each channel was combined with the 967 nm pump by a 

WDM coupler. The output of one of the two WDMs can be connected to either the LP11a,b or LP21a,b 

port of the ring-core PL to generate the OAM|L|=1 and OAM|L|=2 modes. Before the PL, a 

polarization controller (PC) was used to make sure the two degenerate modes were polarized in 

the same direction and that their phase difference was ±𝜋/2. The output of the PL was spliced 

with a 1-m-long intermediate 6-LP FMF and further spliced with a 5-m-long erbium-doped FMF 

(ED-FMF). The gain fiber had core and cladding diameters of 13 and 163μm, respective, possibly 

supporting over 6 LP modes at the signal wavelength. The amplified signal was focused by an 

objective lens, and a bandpass filter centered at 1550nm was employed to block the residual pump 

light. The amplified OAM signal power was detected by a power meter, and their mode profiles 

were captured by a CCD camera. 

3.4 Experimental Results and Discussion  

 

Figure 3-5: (a) Small signal gain of OAM|L|=1,2 vs. total pump power; mode intensity profiles of the  amplified (b) 

OAM|L|=1 and (c) OAM|L|=2 modes. 
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Fig. 3-5(a) shows the signal gain figure of OAM|L|=1,2 under different pump powers (LP11a+b 

or LP21a+b). When the total incident pump power at the input of the PL was 697 mW, the small 

signal gain for OAM|L|=1 and OAM|L|=2 were 22.1dB and 16.7dB, respectively. The differential 

modal gain (DMG) was 5.4 dB. The gain for OAM|L|=2 was smaller than that for OAM|L|=1 mainly 

due to the insertion loss of the PL for LP21 modes, which are larger than LP11 modes at both the 

pump and signal wavelengths. We used a CCD camera the capture the mode profiles of the two 

OAM modes after amplification, and the results are shown in fig. 3-5(b) and (c). We can see that 

both of them have doughnut-shaped intensity profiles, which indicates that they are vortex beams 

after amplification. However, the patterns seem to be less than perfectly symmetric, which is partly 

due to an imperfect gain equalization between two degenerate LP modes. The main reason for the 

lack of symmetry is that there is mode crosstalk in the gain fiber, meaning that the original LP 

modes will couple to higher-order modes supported by the gain fiber and undergo further 

amplification.  

 

Figure 3-6: Measured optical spectra for the amplified OAM signals: (a) OAM|L|=1 and (b) OAM|L|=2 modes. 
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We fixed the pump power as 592 mW and measured the optical spectra of the amplified 

signals; the results are shown in Fig. 3-6. After amplification, the resulting optical signal-to-noise 

ratio (OSNR) of the OAM|L|=1 mode was 30 dB, which is 11 dB lower than the input signal from 

the tunable laser. The OSNR of the OAM|L|=2 mode was 21 dB, which is 20 dB lower than the input 

signal. The lower OSNR of the amplified OAM|L|=2 signal was mainly caused by the higher mode-

dependent loss (MDL) of the PL for the LP21 modes. We also find that the ASE noise level of the 

OAM|L|=2 mode was higher than that of the OAM|L|=1 mode. 

 

Figure 3-7: Gains figures of the two orders of OAM modes at different signal wavelengths. 

Finally, we fixed the total pump power as 486 mW and swept the input signal laser 

wavelength from 1530 nm to 1560 nm; the results are shown in fig. 3-7. We found that the gain 

curves for both OAM|L|=1 and OAM|L|=2 were similar to the ASE spectrum for the gain media. The 

minimum DMG of just 2.7 dB was achieved at 1545 nm. 
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CHAPTER 4   TRANSVERSE MODE-SWITCHABLE ERBIUM- 

DOPED FIBER LASER 

4.1 Principle and Key Components 

In this work, we used mode-selective photonic lantern (MSPL) to realize the transverse 

mode conversion between the fundamental mode in the SMF and HOMs in the FMF. In general, 

MSPLs are passive all-fiber devices capable of efficiently multiplexing single-mode inputs and 

converting each input into a specific LP mode. Among other applications, the PL has great 

potential for SDM systems [68, 69], as well as spatial mode control for high power fiber amplifiers 

[39]. In general, a PL consist of a set of SMFs inserted into a capillary tube whose index of 

refraction is lower than the refractive index of the SMF cladding. The tube is adiabatically tapered 

down to create an FMF output at the taper waist [56], as shown in Fig. 4-1(a). The mode selectivity 

feature can be obtained if the input SMF core sizes are different. Each input fundamental mode 

evolves into a particular mode at the output FMF with a matched propagation constant [55, 70]. 

For a 6-mode MSPL, its input facet contains 6 graded-index fibers with core diameters of 23, 18, 

18, 15, 15, and 11μm, which map to the LP01, LP11a, LP11b, LP21a, LP21b, and LP02 mode, 

respectively [57]. After tapering, the resulting FMF’s cladding diameter is 110 μm while the core 

diameter is 20 μm. The microscope image of the cross section of the output FMF is shown in Fig. 

4-1(b). The refractive index contrast of the core and the fluorine-doped silica capillary is Δn = 

9.5×10-3. The output facet of the PL can be easily spliced with a 6-mode FMF, which has a core 

and cladding diameter of 16/125 μm. The mode profiles at the output of the spliced FMF were 

measured at 1550 nm and are shown in Fig. 4-1(c). We can clearly see that the six lowest order LP 

modes are well preserved after they propagate through the FMF. 
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Figure 4-1:  (a) Schematic of a 6-mode MSPL; (b) cross-sectional microscope image of the output of the MSPL; (c) 

mode profiles of the MSPL after splicing to a 6-mode FMF at 1550 nm. 

The fabricated MSPL has mode-dependent losses (MDL) as a consequence of 

imperfections in the PL taper. The total losses of the PL (including insertion loss and splice loss) 

for both pump and signal wavelength were measured, the results are shown in Table 4-1. We found 

the loss for the LP02 mode was larger than for other LP modes at both wavelengths. 

Table 4-1. Losses of the MSPL at both pump and signal wavelength (in dB) 

 LP01 LP11a LP11b LP21a LP21b LP02 

976 nm 0.88 1.66 0.55 0.98 0.96 2.97 

1550 nm 1.71 3.75 1.79 2.29 1.46 4.35 

The gain media used in this experiment was an ED-FMF which was fabricated in house 

[35]. Figure 4-2(a) shows the measured refractive index profile of this fiber, and Fig. 4-2(b) shows 

the microscope image of this ED-FMF cross section. The core and cladding diameters of the ED-

FMF are 13 μm and 163 μm, respectively, with a step-index profile. The estimated numerical 
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aperture (NA) was 0.249, ensuring that more than 6 LP modes were supported at λ = 1550 nm. 

The core area was uniformly doped with pure erbium ions at a dopant density of 4.5×1025 m-3, 

which supports a maximum gain of nearly 10 dB/m for each spatial mode at 1550 nm. We spliced 

the ED-FMF with the passive 6-mode FMF and measured the mode profile of each LP mode at 

the output, the results are shown in Fig. 4-2(c). We can see that the higher-order modes (LP21 and 

LP02) are slightly distorted due to the core size mismatch. 

 

Figure 4-2: (a) Measured refractive index of the ED-FMF; (b) cross-sectional image of the ED-FMF; (c) mode 

profiles from ED-FMF spliced with 6-mode FMF. 
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4.2 Experimental Setup and Results 

4.2.1 LP Modes Switchable Laser 

 

 

Figure 4-3: Experimental setup for the transverse mode-switchable fiber laser. PC: polarization controller; FBG: 

fiber Bragg grating. 

Figure 4-3 shows the experimental setup of the mode-switchable fiber laser. Light from the 

pump diode (pigtail fiber type: SM98-PS-U25A) with a central wavelength of 976 nm travels 

through a polarization controller (PC) to optimize the injected power. After the PC was a WDM 

coupler (fiber type: HI1060 FLEX). The other input port of the WDM was connected to a fiber 

Bragg grating (FBG) with a central wavelength of 1536.8 nm and a reflection bandwidth of 0.6 

nm. The FBG was made of standard SMF, the reflectivity of the FBG was measured as 60%. In 

order to generate the desired laser mode, the output of the WDM could be switched to any one of 

the six input SMFs of the PL. On the other side, the output of the PL was first spliced to a 1-meter 

passive 6-mode FMF, which was then spliced to a 5 m long ED-FMF. The intermediate passive 

FMF reduced the splicing loss that would occur between the PL and gain fiber due to the mismatch 

in their core sizes. The end of the ED-FMF was cleaved to be flat, yielding a 4% Fresnel reflection 
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coefficient. The laser cavity was formed between the FBG and the end of EDF. Within each round 

trip, only one specific LP mode can pass through the lantern and be amplified. Hence, it should be 

noted that our pump and signal are the same mode which is beneficial for maximizing the amplifier 

gain. The laser output was focused using a 20X objective lens, and a band-pass filter at 1540 nm 

with a full-width half-maximum bandwidth of 12 nm was placed right after the lens to block the 

residual pump light. We measured the laser output power using a power meter, and the laser mode 

profiles using a CCD camera. 

 

Figure 4-4: Output power vs. pump power for the six lasing modes. 

The measured output laser powers versus pump power for all 6 lasing modes are shown in 

Fig. 4-4. The horizontal axis shows the pump power measured at the passive FMF output. It should 

be noted that there are splicing losses between the passive FMF and the gain fiber, and the losses 

are different for each LP mode, so the absorbed pump powers are smaller than the values shown 

in Fig. 4-4 and are not the same for all the pump modes. From Fig. 4-4, we can see that all six LP 
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modes can lase when the pump power surpasses their threshold. The LP01 lasing mode has the 

highest output power at >90 mW, with a slope efficiency of 23.6%. The slope efficiencies for LP11a, 

LP11b, LP21a, LP21b and LP02 lasing modes are 12.8%, 18.7%, 16%, 19.2%, and 10.9%, respectively. 

The difference in slope efficiencies and threshold values are mainly due to the MDL of the PL at 

the signal wavelength and different overlap integrals between the pump and signal mode intensity 

profiles. In order to increase the slope efficiency, a FBG with higher reflectivity or a lower-loss 

MSPL, to reduce round trip loss, can be used. To decrease the threshold pump power, the EDF 

output can be angle cleaved and an output coupler with high reflectivity can be added to the end 

of the gain fiber to further reduce cavity loss. 

 

Figure 4-5: Intensity profiles of the six lasing LP modes. 

In order to the obtained mode profiles, we fixed the laser power of each lasing mode to be 

15 mW, and used a CCD camera (Xenics Xeva-1.7-320) to capture their mode intensity profiles. 

Two attenuators were used in front of the CCD camera to prevent saturation. The camera images 

of the mode intensity profiles are shown in Fig. 4-5. It is important to highlight that all six laser 

mode patterns do not suffer greater distortions during the lasing operation, compare to Fig. 4-2(c). 
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For the five lowest-order (LP01, LP11s and LP21s) lasing modes, their profiles are almost ideal, but 

slightly distorted. This was likely due to mode crosstalk of the PL, leading to some of the single-

mode input ports exciting multiple modes in the ED-FMF. Another reason could be residual mode 

coupling within the ED-FMF. For the LP02 mode, its mode profile does not look as well. This is 

mainly due to the core size mismatch at the splice between the passive FMF and ED-FMF. The 

mode profile will be distorted after propagating in the ED-FMF, as shown in Fig. 4-2(c). When 

propagated through the gain fiber, the mode profile will degrade compared to the result in the 

passive FMF. This problem can be fixed by using an ED-FMF whose core size better matches the 

6-mode FMF core size. The mode profiles of the six LP modes didn’t change as laser power 

increased, and were stable at room temperature. It is worth mentioning that even higher-order 

lasing modes could be generated if the 6-mode MSPL was replaced by a 10-mode or 15-mode 

MSPL [71]. 

 

Figure 4-6: Output optical spectra of the six lasing modes measured by an OSA with a resolution of 0.1 nm. 
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In the following, we measured the optical spectra of the output lasing modes using an OSA 

with a 50/125 μm graded-index optical fiber input port (Ando AQ-6315e), capable of accepting 

high-order modes. By inserting the end of ED-FMF into a bare fiber adapter and further connecting 

to the input port of the OSA, we can observe the optical spectrum of each laser mode, as shown in 

Fig. 4-6. The resolution of the OSA was set to be 0.1 nm. The pump power was fixed at 484 mW. 

According to Fig. 4-6, we find that all six modes have a central wavelength near 1537 nm and a 

bandwidth less than 1 nm. This matches well with the reflection spectrum of the FBG. It also 

indicates that the OSNR for all six lasing modes was above 35 dB, ranging from 35 dB to 42.7 dB. 

Note for some modes, there were multiple longitudinal modes are observed. There were several 

sidebands apart from the main peak. These sidebands are believed to be caused by the mode 

crosstalk of the MSPL. When the gain is high enough, the modes produced by crosstalk of the 

MSPL can also lase. Since different LP modes have different effective indices in the ED-FMF, 

they may lase at slightly different wavelengths within the reflection bandwidth of FBG, with a 

lower peak power compared to the selected LP mode. 
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4.2.2 Donut-Shaped Mode Lasers 

 

Figure 4-7: Schematic of a fiber laser for the generation of donut-shaped modes by the incoherent superposition of 

degenerate LP11s or LP21s modes. OC: optical coupler; VOA: variable optical attenuator. 

Now, we focus on obtaining a donut-shaped mode profile laser. Laser emission with a 

donut-shaped mode profile was generated by the incoherent superposition of two degenerate LP 

modes. The experimental setup used to obtain this type of fiber laser is shown in Fig. 4-7, only the 

SMF side was modified compared to the setup for generating LP modes. When the light was 

reflected back from the FBG, it was split into two arms by a 3-dB optical coupler (OC). The upper 

arm went through a variable optical attenuator (VOA) that then connected to the signal port of the 

WDM. The output of WDM was then connected to either the LP11b or LP21b input port of the PL, 

and the lower arm of the OC was connected to the corresponding LP11a or LP21a port of the PL. 

When the upper channel is pumped, both channels can lase together with the same gain media. 

Since the two lasing modes go through different cavities, the output laser could be an incoherent 

superposition of the two degenerate modes. We adjusted PC2 to ensure the orientation of the two 

degenerate modes are orthogonal with respect to each other. Thus the superposition of the two 

degenerate LP modes is a donut-shaped mode. Both donut LP11 and LP21 modes were generated 
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using our setup. It should be noticed that a VOA was employed to adjust the laser power between 

the two lasing modes. Otherwise, the laser power of the two modes could be different and would 

cause the output mode profile to be non-circularly symmetric. Using the same band pass filter to 

block the pump light, we measured both the laser power and the mode intensity profiles. 

 

Figure 4-8: Laser power vs pump power for each LP mode lasing separately and the donut mode as their incoherent 

superposition for the (a) LP11 modes and (b) LP21 modes. 

First, we measured the laser power of each degenerate LP mode separately. We 

disconnected the signal port of the WDM coupler to measure the laser power of LP11a mode. Then, 

we disconnected the LP11a port of the PL to measure the laser power of LP11b mode. We gradually 

increased the attenuation of the VOA to make sure the laser power of the two modes were almost 

the same. Finally, both channels were connected to measure the result of the donut LP11 mode. The 

same measurements were performed for the LP21 modes. The results are shown in Fig. 4-8. The 

slope efficiency for the two degenerate LP11 modes were 12.4% and 12.8% and the result of the 

donut LP11 mode was 18.9%. The laser output power of the donut-shaped mode was 89.5 mW at 

a pump power of 551 mW. The slope efficiency of single LP21a and LP21b laser modes were 8.8% 
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and 9.4% and the slope for the donut LP21 mode was 15.7%. The laser output power of the donut 

LP21 mode was measured to be 65 mW when the pump power was 496 mW. 

Compared to Fig. 4-4, we find that at the same pump power, the laser power of each LP 

mode lasing individually is smaller than the result in Fig. 4. This is due to the 3-dB coupler in the 

laser cavity, that for each round trip causes 6 dB of additional loss, which caused the decrease of 

the laser power. According to Fig. 4-8, the laser power of the donut mode was always smaller than 

the sum of two degenerate LP modes due to gain saturation. 

 

Figure 4-9: Measured mode profiles for each individual LP lasing mode and the donut LP mode comes from their 

incoherent superposition. 

Coming back to the obtained mode profiles for the donut-shaped lasers, the results are 

shown in Fig. 4-9. The upper row shows the mode profiles of each LP11 mode lasing individually 

and their incoherent superposition, which is the donut LP11 mode. The lower row shows the results 

for each LP21 modes lasing separately, as well as the donut LP21 mode. The results of the four 

degenerate LP11s and LP21s mode are similar to the single LP laser mode results shown in Fig. 4-5. 

And when two degenerate LP modes lase together, the donut shaped laser mode profiles are clearly 
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observed. Both donut LP11 and LP21 modes have a circular mode intensity profile, as shown in Fig. 

4-9. However, the donut modes are not perfectly symmetric. This is due to imperfections in the 

mode profiles of each degenerate LP mode. 

 

Figure 4-10: (a) Schematic setup of interference experiment to verify the incoherence of the donut mode laser; (b) 

position of the pinholes correspond to the lobes on the donut mode laser; and the interference patterns between 

points 1 and 2 (c) and points 1 and 3 (d). 

To verify the incoherence of the donut mode laser, we conducted an interference 

experiment. Its working principle was described in [28]. The donut LP11 mode was selected for 

demonstration purposes because it can be easily observed due to its larger pedal size. Figure 4-

10(a) shows a schematic of the setup for the interference experiment. We let the donut beam passed 
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through a double pinhole, and the resulted interference pattern was observed on the camera screen. 

The shape of the pinholes was square. The position of the pinholes corresponded to the lobes of 

the donut mode laser as depicted in Fig. 4-10(b). When points 1 and 2 are interfered, because they 

come from the same LP11 mode, strong fringes should be observed. However, when points 1 and 

3 are interfered, because they are generated by two incoherent source, we are supposed to see no 

interference fringes.  

The interference result of points 1 and 2 is shown in Fig. 4-10(c). Strong fringes can clearly 

be seen, as was expected. Conversely, no fringes can be seen when interfering points 1 and 3, as 

shown in Fig. 4-10(d). The fringes on the edge of the pattern in Fig. 4-10(d) are the diffraction 

pattern from the square shaped pinhole, which is a sinc function in two-dimensional, not from 

interference between two beams. 
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CHAPTER 5   MODE-SELECTIVE FEW-MODE BRILLOUIN 

FIBER LASERS 

5.1 Introduction 

Stimulated Brillouin scattering (SBS) is one of the prominent nonlinear effects in optical 

fibers. It can be described as a nonlinear interaction between the pump and Stokes wave mediated 

by the acoustic wave [72]. Brillouin fiber laser (BFL) could be realized in a fiber ring cavity by 

using SBS to provide gain for the signal travelling in the backward direction [73, 74].  There is a 

number of advantages of the BFLs. For example, the optical signal-to-noise ratio (OSNR) of a 

BFL is usually much higher than that of the pump laser due to the stronger damping of the acoustic 

field compared to the optical field [75, 76]. Also, BFLs has attracted interests due to their ultra-

narrow linewidth [77, 78]. A BFL with a linewidth of tens of Hz has been experimentally 

demonstrated [79], which can be, in turn, used for high quality microwave signal generation [80, 

81]. Based on cascaded SBS processes, multiple wavelengths laser sources could be generated in 

a single ring cavity [82, 83]. Recently, an LP01 and LP11 mode BFL based on only intra-modal 

SBS in the two-mode FMF has been reported [84]. However, intermodal SBS caused the 

degradation of laser mode purity. 

In this work, we demonstrate, for the first time, an intra-cavity transverse mode-selective 

BFL based on intermodal SBS effect with the fundamental mode as the pump. A pair of MSPLs 

were placed inside the ring cavity to act as spatial mode filters.  In this configuration, pump mode 

converters are not necessary. For comparison, we also generated the BFLs of the three lowest-

order LP modes based on intra-modal SBS effect. The laser slope efficiencies, mode intensity 

profiles, optical spectra, and linewidths were characterized for both cases. 
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5.2 Working Principle 

 

Figure 5-1: (a) Refractive index profile and (b) cross-sectional microscope image of the 4-LP mode FMF, (c) optical 

fields of the 6 LP modes, (d) field distributions of the 10 lowest order of guided acoustic modes. 

The FMF used in our experiment is the 4-LP mode FMF made by Prysmian Group. Its 

refractive index profile is shown in Fig. 5-1(a), and its cross-sectional microscope image is shown 

in Fig. 5-1(b). It is a step-index fiber with a core and cladding diameter of 15.2 μm and 125 μm, 

respectively. The numerical aperture (NA) was measured to be 0.17, ensuring it supports 6 LP 

modes at a wavelength of 1550 nm. We calculated the transverse field distributions of the 6 LP 

modes supported by this FMF at 1550 nm by COMSOL, the results are shown in Fig. 5-1(c). We 

also computed the guided acoustic modes of the fiber at a frequency of 10.6 GHz, which is the 
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Brillouin frequency shift for the backward SBS. Figure 5-1(d) shows the material density vibration 

fields of the 10 lowest order of longitudinal acoustic modes guided in the core area. It should be 

noted that the number of guided acoustic modes of the same fiber is much larger than that of the 

optical modes [85].  

Both intra-modal and intermodal SBS will occur in the FMF once the field distribution of 

the acoustic wave is matched with the pump and scattered Stokes waves. The Brillouin gain 

spectrum is essentially a combination of gain peaks generated by each guided acoustic modes [86]: 

𝑔(Ω) = ∑ 𝑔0𝑚𝑚

(
Γ𝐵
2

)2

(Ω−Ω𝑚)2+(
Γ𝐵
2

)2
                                            (5-1) 

where Ω𝑚 is the acoustic frequency of the m-th guided acoustic mode; Γ𝐵is the acoustic damping 

rate; 𝑔0𝑚 is the gain coefficient created by the m-th acoustic mode, which is proportional to the 

square of the field overlap integral between the two optic fields and one acoustic field. The overlap 

integral can be expressed as: 

𝜂𝑖𝑗𝑚 = ∬ 𝜑𝑖,𝑝𝜉𝑚𝜑𝑗,𝑠
∗ 𝑑𝑠                                                 (5-2) 

where 𝜑𝑖,𝑝 and 𝜑𝑗,𝑠 means the normalized field distribution of the i-th pump wave and j-th Stokes 

wave; and 𝜉𝑚 is the normalized field distribution of the m-th guided acoustic mode. We found that 

the Brillouin gain coefficients mediated by the higher-order acoustic modes would be much 

smaller, because their higher spatial frequencies decrease the field overlap with the optic modes. 

Table 5-1. Overlap integrals of normalized acoustic and optic fields that form the main 

 Brillouin gain peaks. 

 LP01,s LP11,s LP21,s 

LP01,p 9.15 × 104 7.76 × 104 6.56 × 104 

LP11,p -- 7.15 × 104 -- 

LP21,p -- -- 5.47 × 104 
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Here we calculated the value of 𝜂𝑖𝑗𝑚 for different pump and Stokes wave pairs associate 

with the acoustic mode that provides the highest Brillouin gain, as shown in table 5-1. We can find 

that for HOM signals, the overlap between the optical and acoustic fields for intermodal SBS 

(pump at LP01 mode) are better compared to the intra-modal SBS. 

 

Figure 5-2: Output mode intensity profiles of (a) MSPL1 and (b) MSPL2 measured at 1550 nm, (c) mode transfer 

matrix of the pair of MSPLs with 1 km of FMF. 

We used a pair of 6-to-1 MSPLs to realize the LP mode conversion between the SMF and 

the FMF. The tapered waist of the MSPL is essentially an FMF with a core and cladding diameter 

of 20 μm and 110 μm, respectively. The output facet of the MSPL can be easily spliced with a 4-

LP mode FMF. We fabricated two 6-mode MSPLs, denoted MSPL1 and MSPL2, and measured 

their output mode profiles using a laser with a wavelength of 1550 nm. Figure 5-2(a) and 5-2(b) 

show the output mode profiles of MSPL1 and MSPL2, respectively. The six lowest-order LP 

modes were clearly observed with a mode conversion efficiency of ~70%. We also measured the 

mode transfer matrix from MSPL1 to MSPL2 with 1 km of FMF between them, the result is shown 

in Fig. 5-2(c). The mode selectivity between different mode groups was around 7 dB. But the 
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selectivity within the same mode group was much lower due to the orientation of the degenerate 

modes rotating within the circular core of the FMF. The total link loss for the LP01, LP11, LP21 and 

LP02 modes were measured to be 3.2 dB, 4.3 dB, 6.7 dB and 9.5 dB, respectively. 

5.3 Experimental Setup 

 

Figure 5-3: Experimental setup for the mode-selective few-mode BFLs. 

The experimental setup for the transverse mode-selective BFLs is shown in Fig. 5-3. The 

pump was a tunable laser source (TLS) with a wavelength of 1550 nm, amplified by a commercial 

EDFA. For the intra-modal Brillouin lasing, the pump traveled through the circulator and was 

launched into MSPL2 to create the desired LP mode. The output of MSPL2 was spliced to 1 km 

of 4-LP mode FMF. The back scattered Stokes wave of the same mode went through the circulator 

from port 2 to port 3, and was injected into MSPL1 with the port mapping to the same LP mode. 



42 
 

The HOM signal from MSPL1 was collimated and coupled back into the 1km FMF with a pair of 

20X objective lenses, and circulated clockwise as shown by the red arrow. The fiber coupling 

losses were less than 1 dB for all LP modes, and each objective lens introduced an additional 1 dB 

loss.  

For the intermodal Brillouin lasing, the pump was directly launched into the LP01 port of 

MSPL2. The ports corresponding to the desired HOM for both MSPLs were connected to port 2 

and 3 of the circulator. Due to intermodal SBS effects, all LP modes were scattered backwards 

even with only the fundamental mode as the pump. However, only the selected HOM can pass 

through the MSPL and oscillate inside the ring cavity. The laser came out from a 3-dB beam splitter 

(BS). The laser power and mode profiles were measured by a power meter and a CCD camera. We 

also coupled the laser into a piece of multimode fiber, after which its optical spectra were observed 

using an optical spectrum analyzer (OSA). Two SMF polarization controller (PC) were used to 

optimize the polarization states of the pump and Stokes waves, in order to maximize the Brillouin 

gain. 

5.4 Results and Discussions 

We measured the laser power of the LP01 mode, LP11 and LP21 modes based on both intra- 

and inter-modal SBS, as shown in Fig. 5-4(a). The results indicate that for all cases, lasing started 

after the pump power exceeded their threshold values. Over 24 mW of laser power were observed 

for all the LP modes. The LP01 lasing mode had the highest laser power and lowest threshold pump 

value. Its threshold pump power was only 40 mW, and the slope efficiency was 11.6%. The low 

slope efficiency was partly due to polarization state misalignment between the pump and Stokes 
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wave. Another reason was the relatively large insertion losses of the MSPLs. The slope efficiencies 

for LP11 SBS lasing modes based on intra- and inter-modal SBS were 10.9% and 8.9%, 

respectively. The values for LP21 lasing modes based on intra- and inter-modal SBS were 10.5% 

and 8.6%, respectively. The lower laser power of the HOMs was mainly caused by a larger 

insertion loss of the photonic lantern pair compared to the LP01 mode, and also the smaller overlap 

integral between the optical and guided acoustic fields. From Fig. 5-4(a), the laser power of HOMs 

based on intermodal SBS was always smaller than that based on intra-modal SBS, although their 

Brillouin gain coefficient are larger according to Table 5-1. This was because the strong backward 

SBS of the fundamental mode consumed part of the pump power. The polarization misalignment 

was another reason.  

 

Figure 5-4: (a) Laser power vs. pump power for each LP lasing mode based on intra- and inter-modal SBS, mode 

intensity profiles of the few-mode BFLs based on (b) intra-modal SBS and (c) intermodal SBS. 
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The measured mode intensity profiles of BFLs of different LP modes based on intra-modal 

SBS and intermodal SBS configuration are shown in Fig. 5-4(b) and 5-4(c), respectively. We can 

see that their mode patterns are nearly ideal, the mode purities were over 90% for all cases thanks 

to the high mode selectivity of the MSPLs. 

 

Figure 5-5: Optical spectra of the LP01 SBS lasing modes. 

We measured the optical spectra of all the SBS lasing modes using an OSA (Ando AQ-

6315e). The resolution of the OSA was set to be 0.02 nm. The optical spectra of the LP01 mode 

BFL together with its pump are shown in Fig. 5-5. The frequency downshift between the pump 

and the laser was around 0.1 nm, corresponding to a Brillouin frequency down shift of 10.6 GHz. 

There is a small peak in the laser spectra came from the reflection of the residual pump at the end 

of the FMF. It can be suppressed by angle cleaving the FMF ends. The OSNR was measured to be 

68.6 dB, which is nearly 20 dB higher than that of the pump. 
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Figure 5-6: Optical spectra of LP11 modes based on (a) intra- and (b) inter-modal SBS, LP21 modes based on (c) 

intra- and (d) inter-modal SBS. 

Figure 5-6(a) and 5-6(b) indicate the results for LP11 lasing modes based on intra- and inter-

modal SBS, respectively. The shapes of their optical spectra looks similar, and the OSNRs were 

measured to be 66.3 dB and 63.7 dB. The results of LP21 lasing modes based on intra- and inter-

modal SBS are shown in Fig. 5-6(c) and 5-6(d), respectively, their OSNRs were measured to be 

66.5 dB and 63.2 dB.  
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Figure 5-7: Beat-note spectrum of self-heterodyne linewidth measurement for the LP01 laser mode. 

We also investigated the linewidth performance of each generated few-mode BFLs using 

self-heterodyne measurements, its working principle was described in [87]. We employed a 90:10 

fiber coupler to let a small part of the laser get out at the SMF side before it went through MSPL1. 

The laser was then separated into two arms using a 3-dB coupler. One arm travelled through 25-

km of SMF for the decorrelation, and the other arm was shifted by 100 MHz using an acousto-

optic modulator. The beat-note spectrum was recorded using an electrical spectrum analyzer (hp 

ESA-L1500A), the resolution of the ESA was fixed to be 1 kHz. Figure 5-7 shows the beat-note 

spectrum for the LP01 mode BFL. There are multiple longitudinal modes observed with a spacing 

of around 200 kHz, which agrees well with the theoretical value. The 10-dB linewidth of the beat-

note signal was 21.5 kHz, after fitting with the Lorentzian shape, corresponding to a 3-dB laser 

linewidth which was 3.6 kHz. The laser linewidth was narrowed by nearly two orders of magnitude 

compared to the pump which is ~200 kHz. 
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Figure 5-8: Beat-note electric spectrum for LP11 mode based on (a) intra- and (b) inter-modal SBS, LP21 mode based 

on (c) intra- and (d) inter-modal SBS. 

The measured beat-note spectrum of LP11 lasing modes based on intra- and inter-modal 

SBS are shown in Fig. 5-8(a) and 5-8(b), their 3-dB linewidth were 4.17 kHz and 4.9 kHz, 

respectively. The results of LP21 mode BFLs are shown in Fig. 5-8(c) and 5-8(d), their 3-dB 

linewidth were 4.25 kHz and 4.33 kHz, correspondingly. It should be noticed that the intrinsic 

linewidths for all the LP modes were calculated to be less than 100 Hz. Linewidth broadening was 

mainly caused by the inhomogeneous broadening and instability of the environment, such as 

temperature fluctuations and mechanical perturbations, which can be improved by better isolating 

the fiber loop from the environment. 
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CHAPTER 6   SIMULTANEOUS GENERATION OF PHOTON AND 

PHONON LASERS 

6.1 Introduction 

Highly coherent acoustic waves have become an attractive resource that is beneficial for a 

number of applications. They are widely used for the study of laser radiation cooling, where the 

mechanical vibration is red-detuned by optical scattering forces [88-90]. They also paved the way 

for new strategies in precision metrology [91]. Based on the mechanical oscillation of a 

microsphere trapped in vacuum, short-range force detection with yoctonewton sensitivity has been 

achieved [92]. For  gravitational wave detection, a mechanical wave can be used to decrease the 

quantum-mechanical noise based on the optical spring effect [93, 94]. Acoustic waves can also be 

used in optoelectronics for optical signal modulation.  

A phonon laser, also called a saser, is the mechanical analogue of an optical laser, in which 

acoustic radiation (a sound wave) can be generated via sound amplification based on the stimulated 

emission of phonons. Sound (a mechanical vibration) can be described by phonons just as light 

can be considered to be made up of photons. This type of device is capable of producing coherent 

sound oscillations with characteristics that are similar to those of optical lasers, such as threshold, 

linewidth narrowing, and gain saturation. The concept of the phonon laser was first proposed in 

[95]. In the past decade, several impressive experiments have been reported. The first phonon laser 

experiment was conducted by Dr. Kent’s group. In this experiment, a coherent oscillation of the 

phonon mode with a frequency of 441 GHz was generated when a bias voltage was applied to a 

semiconductor superlative [96].  
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Optomechanics is a powerful tool that creates the coupling between optical and mechanical 

waves [97]. In essence, it makes it possible to control acoustic phonons using light. For example, 

laser pumping an Mg+ ion causes the stimulated emission of center-of-mass phonons, producing 

saturable amplification of motion [98]. Recently, an optical tweezer phonon laser was 

demonstrated that, based on the oscillation of a silica nanosphere, levitated in an optical tweezer 

under vacuum [99]. SBS is known to be a strong nonlinear effect that can be described as an 

interaction between light and sound waves. A compound microcavity system was proposed that 

operates similarly to a two-level laser system; it is based on the Brillouin scattering between two 

supermodes in a coupled microtoriods [100]. Phonon laser action at a frequency of 23 MHz has 

been observed. In addition, another work reported the experimental excitation of whispering-

gallery typed mechanical resonances ranging from 49 to 1400 MHz via forward SBS between 

high-order transverse optical modes in a silica microsphere resonator [101]. A phonon laser with 

Hermite-Gaussian like acoustic modes was also generated in a TeO2 crystal at cryogenic 

temperatures [102]. 

In this work, we propose a system that, for the first time to the best of our knowledge, can 

generate both phonon and photon lasers simultaneously in a fiber ring cavity. The low-frequency 

acoustic flexural wave is generated via a forward SBS between the fundamental and high-order 

transverse optical modes in the two-mode FMF. Using the LP01 mode as the pump, both the 

generated Stokes wave in LP11 mode and a flexural acoustic wave can resonate inside the same 

ring cavity. The coherent oscillation of the optical wave enhances the gain of the acoustic phonons 

and vice versa. We also demonstrate this system experimentally using a 10-meter-long reduced 

cladding FMF. Both the optical laser power and phonon laser linewidth were characterized. 



50 
 

6.2 Theory and Simulation Results 

The SBS effects in the optical fiber can be classified into backward and forward SBS. For 

both processes, energy and momentum are conserved: 

𝜔𝑝 = 𝜔𝑠 + Ω𝑎                                                            (6-1) 

𝑘𝑝 = 𝑘𝑠 + 𝑘𝑎 ,                                                           (6-2) 

where 𝜔𝑝  and 𝜔𝑠  are the frequencies of the pump and Stokes waves, respectively; Ω𝑎  is the 

emitted acoustic phonon frequency; 𝑘𝑝  and 𝑘𝑠  are the propagation constants of the pump and 

Stokes waves, respectively; and 𝑘𝑎 is the wave vector of the acoustic phonon. Fig. 6-1 shows the 

comparison in terms of the conservation of energy and momentum between backward and forward 

SBS. The blue and red lines are the dispersion curves of the optical modes, and the green lines are 

the dispersion curves of the acoustic modes. For the backward SBS shown in Fig. 6-1(a), the 

scattered Stokes wave propagates in a backward direction, while the acoustic wave propagates in 

a forward direction. In this case, the generated acoustic modes are mainly longitudinal modes that 

are confined inside the fiber core area. The acoustic frequency is on the order of 10 GHz. In silica, 

acoustic waves at such high frequencies are highly damped and unable to create acoustic feedback. 

In strong contrast, for the forward SBS shown in Fig. 6-1(b), both the Stokes and acoustic waves 

propagate in the forward direction. The acoustic flexural modes are generated via the intermodal 

SBS between two different transverse optical modes. In this case, the generated phonon 

frequencies can drop to the MHz level. This low-frequency phonon propagation in silica fiber 

cladding has a relatively long lifetime, which makes it possible to generate a phonon laser. 
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Figure 6-1: Dispersion diagrams under energy and momentum conservation conditions for (a) backward SBS and (b) 

forward SBS. 

The fiber we used for our proposed system was a reduced cladding two-mode FMF (TMF) 

made of silica with GeO2-doped core. The core and cladding diameters were 6.8 um and 60 um, 

respectively. We choose 980 nm as the operation wavelength because it is easier to obtain a fiber 

coupled high-power pump diode at this wavelength. The measured fiber refractive index profile is 

shown in Fig. 6-2(a). It has a step-index-shaped profile with an NA of 0.13, which corresponds to 

fiber number V=2.83, ensuring that it supports two LP modes at the operation wavelength. We 

simulated the optical modes of this fiber at 980 nm, and their electric field distributions are shown 

in Fig. 6-2(b). We can see that both the LP01 and LP11 (even and odd) modes were guided in the 

core region. The propagation constant difference between the two modes was Δ𝑘 = 1.9417 ×

10−4. 
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Figure 6-2: (a) Measured refractive index profile of the reduced cladding FMF, (b) simulated electric fields of the 

guided optical modes at a wavelength of 980 nm. 

The flexural acoustic modes mediate the forward intermodal SBS. Unlike the optical modes 

that are guided in the core, the fields of flexural acoustic waves are distributed in the entire cladding 

area. The general solutions for the displacement field distributions in a silica cylinder can be 

expressed as [103]: 

𝑢𝑟(𝑟, 𝜑, 𝑧) = 𝑈(𝑟) {
sin (𝑛𝜑)
cos (𝑛𝜑)

} 𝑒𝑖(Ω𝑡−𝑘𝑎𝑧)                                      (6-3a) 

𝑢𝜑(𝑟, 𝜑, 𝑧) = 𝑉(𝑟) {
cos (𝑛𝜑)

−sin (𝑛𝜑)
} 𝑒𝑖(Ω𝑡−𝑘𝑎𝑧)                                   (6-3b) 

𝑢𝑧(𝑟, 𝜑, 𝑧) = 𝑊(𝑟) {
sin(𝑛𝜑)

cos(𝑛𝜑)
} 𝑒𝑖(Ω𝑡−𝑘𝑎𝑧),                                     (6-3c) 

where n is an integer describing the azimuthal order of the flexural mode. For the modes generated 

by the SBS between the LP01 and LP11 modes, n always equals 1. The radial variation is given by: 

𝑈(𝑟) = 𝐴𝑘𝑙𝐽𝑛
′ (𝑘𝑙𝑟) + 𝐵𝑘𝑎𝐽𝑛

′ (𝑘𝑡𝑟) + 𝐶
𝑛

𝑟
𝐽𝑛(𝑘𝑡𝑟)                            (6-4a) 

𝑉(𝑟) = 𝐴
𝑛

𝑟
𝐽𝑛(𝑘𝑙𝑟) + 𝐵

𝑘𝑎𝑛

𝑘𝑡𝑟
𝐽𝑛(𝑘𝑡𝑟) + 𝐶𝑘𝑡𝐽𝑛

′ (𝑘𝑡𝑟)                          (6-4b) 
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𝑊(𝑟) = −𝑖[𝐴𝑘𝑎𝐽𝑛(𝑘𝑙𝑟) − 𝐵𝑘𝑡𝐽𝑛(𝑘𝑡𝑟)],                                    (6-4c) 

where the parameters 𝑘𝑙 and 𝑘𝑡 are given by: 

𝑘𝑙
2 =

Ω2

𝑐𝑙
2 − 𝑘𝑎

2                                                          (6-5a) 

𝑘𝑡
2 =

Ω2

𝑐𝑡
2 − 𝑘𝑎

2  ,                                                              (6-5b) 

where 𝑐𝑙 and 𝑐𝑡 are the longitudinal and transverse acoustic velocities of bulk silica, respectively. 

According to the traction-free boundary condition, the three components of the stress tensor 

𝑇𝑟𝑟 , 𝑇𝑟𝑧, 𝑇𝑟𝜙 must equal zero at the boundary between silica and air, making it possible to find the 

dispersion relation and constants A, B, and C for each flexural mode. For our system, we used the 

lowest-order flexural mode with n=1 to build the phonon laser due to this mode having the lowest 

dissipation rate and no cut-off condition. 

Next, we calculated the lowest-order flexural acoustic mode taking part in the intermodal 

forward SBS in our reduced cladding FMF. Based on its dispersion relation, the frequency of the 

phonon mode that satisfied the momentum conservation was 5.11 MHz, which corresponds to a 

phase velocity of 𝑣𝐹 = 1654 𝑚/𝑠. The damping rate of the ultrasonic wave is proportional to the 

square of the phonon frequency in pure silica [104]. For the acoustic wave at such a low frequency, 

the damping rate is Γ𝐵 = 35.4 𝐻𝑧, and the resulting phonon loss is 𝛼𝐹 = Γ𝐵/𝑣𝐹 = 0.022/𝑚. We 

calculated the displacement field distributions in the radial direction for this acoustic mode, and 

the results are shown in Fig. 6-3. The field is distributed throughout the entire cladding area, and 

the particle displacements are mainly in the transversal direction. 
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Figure 6-3: Displacement field distributions in the radial direction for the lowest-order flexural mode with n=1 at a 

frequency of 5.11 MHz. 

The interactions between acoustic and optical waves are described by the three-wave 

coupled-wave equations. We define the normalized amplitude as |𝑎𝑚| = √𝑃𝑚/𝑃𝑡𝑜𝑡. Here, m could 

be p, s, or F to represent the pump, Stoke wave, and flexural acoustic wave, respectively. 𝑃𝑡𝑜𝑡 is 

the total incident power. The coupled amplitude equations can be expressed as follows [105]: 

𝜕𝑎𝑝

𝜕𝑧
+

𝛼

2
𝑎𝑝 = −𝑗𝜅𝑝𝑎𝐹𝑎𝑠                                                  (6-6a) 

𝜕𝑎𝑠

𝜕𝑧
+

𝛼

2
𝑎𝑠 = −𝑗𝜅𝑠𝑎𝐹

∗ 𝑎𝑝                                                  (6-6b) 

𝜕𝑎𝐹

𝜕𝑧
+

𝛼𝐹

2
𝑎𝐹 = −𝑗𝜅𝐹𝑎𝑝𝑎𝑠

∗ ,                                                (6-6c) 

where 𝛼 is the attenuation of the optical wave at 980 nm, which is nearly 0.001/m. The coupling 

coefficients are defined by: 

𝜅𝑚 = 𝜔𝑚/𝐶𝐹, m=p, s, F                                                   (6-7) 

The parameter 𝐶𝐹 is given by: 
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𝐶𝐹 =
𝑛𝑝𝑛𝑠

𝑄(𝜕𝜀𝑟/𝜕𝑠)
√

2𝜋𝑣𝑔𝑝𝑣𝑔𝑠𝑣𝑔𝐹𝐸𝑎2

𝑃𝑡𝑜𝑡
 ,                                             (6-8) 

where 𝑛𝑝 and 𝑛𝑠 are the effective indexes of the pump and Stokes modes, respectively; 𝑣𝑔𝑝 and 

𝑣𝑔𝑠 are the group velocities of the pump and Stokes waves, respectively; and 𝑣𝑔𝐹  is the group 

velocity of the flexural acoustic mode, which is defined as: 

𝑣𝑔𝐹 = 𝑣𝐹/(1 −
𝜔𝐹

𝑣𝐹

𝜕𝑣𝐹

𝜕𝜔𝐹
)                                                     (6-9) 

In Eq. (6-8), 𝜕𝜀𝑟/𝜕𝑠 is the electrostriction parameter. For fused silica, its value is 3.3. 𝐸 is 

Young’s modulus, which equals 73𝐺𝑁/𝑚2 for pure silica, and 𝑎 is the fiber cladding radius. The 

overlap integral Q is given by: 

𝑄 =
1

𝑎
∬ 𝑒01(𝑟, 𝜑)𝑒11(𝑟, 𝜑)𝑟2𝑐𝑜𝑠𝜑𝑑𝑟𝑑𝜑,                                   (6-10) 

where 𝑒01(𝑟, 𝜑) and 𝑒11(𝑟, 𝜑) are the normalized transverse electric field distributions for the LP01 

and LP11 optical modes, respectively. 

Next, we calculated the small signal gains for both the LP11 mode Stokes wave and the 

flexural acoustic wave in 10 meters of uncoated FMF. The incident pump power was fixed as 400 

mW, and its 3-dB linewidth was 1 MHz. The initial LP11 mode power at the beginning of the fiber 

caused by the spontaneous scattering from the pump can be estimated by [106]: 

𝑃𝑠(𝑧 = 0) =
𝜈𝑠Δ𝜈𝑝𝑘𝑇

𝑓𝐹
 ,                                                     (6-11) 

where k is Boltzmann’s constant, and Δ𝜈𝑝  is the pump linewidth. The spontaneous scattered 

optical power is 7.57 × 10−8𝑊 , which is accompanied by an initial acoustic power of 3.45 ×

10−14𝑊. These weak signals can be considered to be the seeds that trigger the photon and 
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phonon lasing. We solved the three wave coupled-wave equations numerically using a step 

size of 1mm, and the results are shown in Fig. 6-4. 

  

Figure 6-4: Calculated small signal gain for the (a) LP11 mode Stokes wave and (b) flexural acoustic wave in 10 

meters of FMF with a pump power of 400mW. 

As can be seen from Fig. 6-4, the power of both the LP11 optical wave and flexural acoustic 

wave keep increasing within the 10-meter-long TMF. The total gain for the Stokes wave is 12.3 

dB. The gain of the phonon wave is smaller due to its lower coupling efficient and higher loss. In 

the 10-meter FMF, the phonon power is increased by a factor of 1.35. These results indicate that 

it is possible to produce both photon and phonon mode lasing in the same fiber laser cavity with a 

proper design. 
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Figure 6-5: (a) Schematic setup for a TMF-based system that can simultaneously generate photon and phonon lasers, 

(b) schematic and functions of the FMF coupler. 

The schematic setup of the proposed phonon and photon laser system is shown in Fig. 6-

5(a). It contains a TMF ring cavity. The optical pump in LP01 mode from the incident FMF was 

coupled into the ring cavity through an FMF coupler. The structure of the fiber coupler is shown 

in Fig. 6-5(b). It is a fused-fiber-type coupler for two fibers having the same core size but different 

cladding sizes. The outer diameter for the other fiber is 80 μm. This design can break the 

degeneracy of the acoustic modes so that the first fiber will not couple to the other fiber even if 

the two fibers are melted at their taper waist. Since the two LP modes have different coupling 

coefficients, we can control their power split ratio by adjusting the length of the waist. For the LP01 

mode, the power is nearly completely coupled into the other fiber. For the LP11 mode, the coupler 

performs as a 50:50 splitter. It should be noted that the transition lengths of both sides need to be 

long enough (>2.5 cm) so that the acoustic wave can propagate through the coupler without notable 
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power loss. The total length of the FMF ring cavity in our design is 10 meters. The intermodal 

forward SBS will occur inside the 10-meter TMF, and both the LP11 mode Stokes and flexural 

acoustic waves will be amplified. Once the phase matching conditions are satisfied for both photon 

and phonon modes, the power for both of them will keep increasing until the round trip gain equals 

the loss. Once the steady state is reached, the flexural acoustic wave will keep resonating inside 

the fiber ring cavity, while the LP11 optical mode will receive a constant output from the coupler. 

The free spectral range (FSR) of the LP11 optical mode is around 20 MHz, which is larger than the 

Brillouin gain bandwidth. In order to satisfy its phase matching condition, we need to gradually 

sweep the pump frequency to let the gain peak overlap with one of the longitudinal modes. The 

FSR of the acoustic mode is less than 200 Hz, so it could be easily find a frequency within the gain 

bandwidth that satisfies its phase matching condition. 

Next, we simulated the power of the photon and phonon lasers. Having reached the steady 

state condition, the gain of the 10-meter FMF will balance the round trip loss for both lasers. For 

the LP11 mode optical laser, there is 3-dB loss coming from the 50:50 output coupler, plus another 

3 dB insertion loss from the FMF coupler. For the phonon laser, the round trip loss mainly comes 

from the transition section of the FMF coupler, which is estimated to be 0.8 dB on each side. There 

is also another 0.1 dB propagation loss from the fiber coupler because when the fiber cladding size 

changed, the conservation of momentum was no longer satisfied, meaning that there is no gain in 

this region. The steady state conditions can be expressed by: 

𝑃𝑠(𝑧 = 𝐿) = 4 × 𝑃𝑠(𝑧 = 0)                                                  (6-12) 

𝑃𝐹(𝑧 = 𝐿) = 1.5 × 𝑃𝐹(𝑧 = 0)                                               (6-13) 
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We iteratively solved the three-wave coupled-wave equations by gradually increasing the 

initial power of both the photon and phonon waves until the steady state conditions were satisfied 

for both of them. We define the power right after the FMF coupler at 𝑧 = 0 to be the intra-cavity 

laser power. We plot the laser power at different pump powers in Fig. 6-6. 

 

Figure 6-6: Simulated laser power vs. pump power for (a) LP11 mode photon laser and (b) phonon laser. 

Fig. 6-6(a) shows the laser power of the LP11 mode photon laser at different pump powers, 

and Fig. 6-6(b) shows the power of the flexural mode phonon laser. We find that the photon lasing 

starts prior to the phonon lasing because it is easier for an optical wave to accumulate enough gain 

for the lasing. The threshold pump power of the photon laser is 150 mW, which is lower than that 

of the phonon laser (300 mW). At pump powers below the phonon laser threshold, the LP11 mode 

optical laser power is much lower. Once the pump power exceeds the phonon laser threshold, the 

power of both lasers increases linearly in a dramatic fashion due to the higher acoustic power 

enhancing the gain for the Stokes wave and vice versa. At an incident pump power of 400 mW, 

the intra-cavity photon laser power was calculated to be over 60 mW, whereas the phonon laser 

had a power of 4.5 nW. For a Brillouin fiber laser with such a low acoustic dissipation rate, the 
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resulting optical laser would be exceptional coherent with the pump, which means they would have 

similar linewidths. The linewidth of the phonon laser is much narrower and is supposed to be only 

tens of Hertz.  

6.3 Experimental Setup and Results 

 

Figure 6-7: Experimental setup for the simultaneous generation of the photon and phonon lasers in a TMF ring 

cavity. 

The experimental setup of our photon and phonon laser system is shown in Fig. 6-7. The 

976 nm fiber-coupled pump diode has a linewidth of ~1 MHz and a maximum output power of 

400 mW. Its TEC controller can control the operation temperature precisely with a step size of 

0.001 °C. The fundamental mode pump was launched into the TMF with an 80 μm outer diameter 

and completely coupled into the TMF with a 60 μm outer diameter. A PC was used to optimized 

the pump power that coupled into the fiber ring cavity. The forward intermodal SBS took place in 

the 10-meter uncoated TMF, and both the LP11 mode Stokes and flexural acoustic waves were 

amplified and travelling clockwise. We gradually swept the pump frequency via the operating 
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temperature. Once the photon and phonon lasing condition was satisfied, the phonon laser was 

oscillating inside the 10-meter TMF ring cavity, while the LP11 mode photon laser was partially 

coupled out through the FMF coupler, together with the LP01 mode residual pump. There is a 

frequency downshift between the photon laser and the pump of around 5.1MHz, which is equal to 

the phonon laser frequency. We employed a low-crosstalk 3-mode MSPL to separate the pump 

and the Stokes waves of different LP modes. We measured the optical power of the LP11 mode 

Stokes wave with a power meter. We also characterized the beat-note electrical spectrum between 

the pump and the Stokes wave with an ESA. 

 

Figure 6-8: (a) Measured optical power of the LP11 mode Stokes wave, (b) RF peak power of the beat-note electrical 

spectra at each pump power. 

The measured LP11 mode optical power at different pump powers is shown in Fig. 6-8(a). 

We can clearly see that there are two thresholds that correspond to the photon laser and phonon 

laser. The threshold pump power of the photon laser was 180 mW, and the Stokes wave starts 

lasing beyond that. However, due to lack of acoustic power, the output optical laser power was 

low at only a few milliwatts. When the pump power increased to 308 mW, the phonon laser began 
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operation. The stronger acoustic field also enhanced the gain of the Stokes wave. The output laser 

slope became much sharper in this region. The maximum optical laser power was measured as 

21.8 mW at a pump power of 367 mW. We also checked the peak power on the RF beat-note 

spectra at different pump powers, as shown in Fig. 6-8(b). The resolution bandwidth for this 

measurement was fixed at 10 kHz. We can see that there are two obvious jumps in the RF peak 

power matching the thresholds of the photon and phonon lasers. 

 

Figure 6-9: Beat-note electrical spectrum between pump and Stokes wave at pump powers of (a) 100mW, (b) 

161mW, (c) 271mW, and (d) 367mW. 

We recorded the beat-note electrical spectrum at different incident pump powers, as shown 

in Fig. 6-9. Their transitions in terms of electrical spectrum lineshape can be clearly observed. In 

the first state, only some spontaneous scattering signals are detected, as shown in Fig. 6-9(a). The 
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3-dB linewidth was 2.2 MHz at a central frequency of 5.4 MHz, which agrees with the broad gain 

bandwidth of spontaneous Brillouin scattering. In the second state, SBS became the dominant 

phenomenon, as shown in Fig. 6-9(b). This time, the 3-dB linewidth was narrowed down to 1.6 

MHz as a result of the Brillouin gain. The beat-note spectrum of the photon laser is shown in Fig. 

6-9(c). We can see that there is a much stronger peak at the f 5.6 MHz frequency. Its 3-dB linewidth 

was measured to be 30 kHz. For the forward-SBS-based laser system, since the acoustic damping 

is not as strong as the backward SBS, the pump linewidth narrowing effect is not as strong, which 

means that the Brillouin laser has a similar linewidth to that of the pump. Finally, we observed the 

results for the photon and phonon lasers, as shown in Fig. 6-9(d). The phonon laser has a 3-dB 

linewidth of only 1.7 kHz at a frequency of 5.2 MHz. The drift of the phonon center frequency 

was caused by the fluctuation of the pump frequency, and the frequency difference between the 

pump and optical longitudinal mode changed. For the phonon lasing case, the pump and the optical 

laser were exceptionally coherent. It should be noted that the intrinsic acoustic dissipation rate of 

the phonon at such a low frequency is only 50 Hz. The increase in the phonon laser’s emission 

linewidth was mainly caused by the additional acoustic losses that came from the fiber and coupler. 
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CHAPTER 7 CONCLUSIONS 

 

First of all, we proposed a low-crosstalk FM-EDFA by exploiting the unitary property of 

the coupling matrix of a symmetric PL. We also demonstrated a 3-mode FM-EDFA with a small-

signal gain larger than 25 dB and crosstalk below -10 dB over the entire C-band experimentally. 

This type of FM-EDFA can replace multiple parallel single-mode EDFAs in SMF trunk lines and 

networks. Using our scheme, the overall costs of long-haul fiber optics transmission systems could 

be greatly reduced. 

In the area of amplification of high-order spatial modes, we also demonstrated an EDFA 

for OAM modes using an annular-core PL. In the active FMF, both the first- and second-order 

OAM modes were amplified with small-signal gains of up to 22.1 dB and 16.7 dB, respectively. 

The amplified OAM mode intensity profiles were clearly observed, and our scheme works well 

for the entire C-band. Such high-power OAM modes could be used in microscopy systems to 

enhance the resolution of images by orders of magnitude for a variety of structures. 

We also demonstrated an intra-cavity transverse mode-switchable Er-doped fiber laser 

using a 6-mode MSPL experimentally. The lasing mode can be switched between the six LP modes 

and two donut modes by simply switching the input port of the MSPL. The generated lasers’ mode 

profiles look nearly ideal. These high-purity HOM lasers could be beneficial in a variety of 

applications ranging from fiber sensors and laser material processing to the detection of 

gravitational waves. 

Additional techniques for the generation of HOM fiber lasers were explored in this thesis 

by utilizing SBS in the passive FMF. We presented a transverse mode-selective BFL based on an 
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intermodal SBS effect, where the fundamental mode was the pump. In this configuration, pump 

mode converters are not required, which can greatly reduce the costs and complexity of the entire 

laser system.  

Finally, we proposed a fiber ring cavity that can simultaneously produce photon and 

phonon lasing based on forward intermodal SBS. We experimentally demonstrated for the first 

time, to the best of our knowledge, a two-domain ring laser using a 10-meter reduced-cladding 

TMF. The measured LP11 mode optical laser power was over 20 mW, and the phonon laser 

linewidth was on the order of 1 kHz. This is a brand-new, never-before-observed physical 

phenomenon. It could pave the way for future investigations of optomechanics and narrow-

linewidth laser sources. It also has potential in applications such as acoustic and optical trapping 

and high-quality microwave signal generation.  
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