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ABSTRACT

The study of shared memory concurrency is extensive. There exist many state-of-the-art strate-

gies for dealing with fundamental concurrency problems, such as race conditions or deadlocks,

to leverage massive performance boosts out of modern multiprocessors. With the introduction

of blockchain technology as a popular financial tool, we observe many decades-old concurrency

problems re-emerge within the context of decentralized networks. These challenges introduce ad-

ditional constraints, such as the lack of hardware atomic instructions like Compare-And-Swap, or

the potential for malicious clients to join the network. In this dissertation, we propose key algo-

rithms which adapt knowledge from the domain of shared memory concurrency to solve emerging

concurrency problems in decentralized networks.

We propose three key algorithms which further the state of the art in decentralized networks. (1)

We present Hash-Mark-Set, a concurrent algorithm for providing a read-uncommitted view of the

blockchain state, enabling a higher success rate in transaction use cases where state changes fre-

quently in relation to the block interval. (2) We propose Proof of Descriptor, a descriptor based

consensus mechanism for decentralized networks. Proof of Descriptor utilizes well-known tech-

niques from shared memory concurrent programming to create an efficient and scalable algorithm

for blockchain consensus. (3) We propose a descriptor-based algorithm for concurrent execution of

smart contracts that efficiently captures the concurrent execution as a graph of descriptors, enabling

validators to analyze the concurrent execution and verify its results through re-execution.
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CHAPTER 1: INTRODUCTION

Moore’s Law suggests that the number of transistors within a circuit doubles roughly every two

years [27]. Historically, this has resulted in a corresponding doubling of processor throughput

for sequential programs. However, recent trends suggest that this single-core speedup is falling

behind the curve [41]. The end of Moore’s Law, however, does not signal an end to computational

scalability. Shared-Memory Multiprocessing (SMP) is a computational model in which multiple

processors are linked to a single pool of shared memory. Each processor works independently, and

can only communicate with other processors via shared memory. For n processors, this enables at

most an n-fold increase in computational throughput. However, this n-fold increase is difficult to

achieve in many use cases, due to the difficulty of designing software that can efficiently divide a

task between n processors.

Algorithm 1 Concurrency Example
1: n = counter++
2: return isPrime(n)

Suppose two processors, p1, p2, are executing the code sample given by algorithm 1. The intended

effect of executing this code with multiple processors would be for each processor to read different

incremental values from the counter on line 1, so that they can perform the potentially lengthy

isPrime(n) calculation in parallel. However, it is possible for both processors to read the counter

at the same time, such that p1 and p2 observe the same value for n. This negates any potential

speedup from multiprocessing, as both processors would perform the same computation, redun-

dantly. This phenomenon is known as a race condition, and is a fundamental problem addressed

by the extensive body of literature on concurrent programming.

Although race conditions and related concurrency problems are well understood within the context

of share memory multiprocessing, we observe similar problems outside this scope, in the domain

1



of decentralized networks. A blockchain is a type of decentralized network in which participating

clients work to maintain a shared ledger of transactions. A local copy of the ledger is kept by each

client, which is propagated to new clients whenever they join the network. In order to achieve a

consensus on the state of the ledger, network participants use a consensus mechanism. Consensus

mechanisms must enable the network to reach agreement about the state of the ledger despite mali-

cious network participants possibly acting in bad faith. Existing solutions, such as those employed

by Bitcoin [28] and Ethereum [4], organize the shared ledger as a sequence of “blocks.” Each block

contains a sequence of transactions which are executed in order to determine the state of the ledger.

In these networks, the consensus mechanism is used to determine which block will be appended to

the chain next, creating a sequential chain of blocks.

Figure 1.1: The blockchain concurrency problem.

The sequential structure of the blockchain is chosen such that transactions have a total order, that

is, each transaction has a definite ordering relative to every other transaction. Although blocks

could potentially be appended faster if participants were able to append them in parallel, figure

1.1 demonstrates one of the problems that arises. Assume two blocks, B1, and B2 are appended

to the chain as siblings. In this case, the final state achieved by executing each block in sequence
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will differ depending on whether block B1 or B2 is executed first. Furthermore, it is unclear how

future blocks should be appended such that they have a total ordering with B1 and B2.

We observe that this problem, as well as several others explored in later chapters, is analogous

to concurrency problems in SMP. Network participants can be thought of as independent proces-

sors, capable of achieving higher throughput so long as they adhere to concurrent principles of

correctness. As such, we explore how these SMP solutions can be applied within decentralized

networks. In order to apply them, we must address the constraints introduced by the decentralized

network. Firstly, networks participants have no source of “shared” memory, nor do they have ac-

cess to powerful atomic primitives like Compare-And-Swap. Additionally, network participants

are anonymous, and may behave maliciously. Any proposed solution must be resilient against a

reasonable quantity of bad actors, who are capable of generating an arbitrary number of aliases on

the network.

In this dissertation, we propose the following:

• Hash-Mark-Set, a concurrent algorithm for providing a read-uncommitted view of blockchain

state. This approach appends a “mark” field to each transaction, which is updated whenever

the state changes. This mark can be used to deduce the intra-block state of each object,

decreasing the chance of transaction failure due to stale reads. [8], [32]

• Proof of Descriptor, a consensus mechanism for decentralized network which utilizes a

descriptor-based algorithm to determine the execution order of transactions within the ledger

concurrently, without reliance on a single party to propose a block. [30]

• A concurrent, lock-free algorithm for smart contract execution. Descriptors are utilized dur-

ing execution to capture all data conflicts between transactions, enabling the concurrent ex-

ecution to be re-executed deterministically on validator nodes. [31]
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CHAPTER 2: BACKGROUND

In this chapter, we overview concepts and approaches from shared memory processing, and decen-

tralized networks.

Concurrent Correctness

For an object in shared memory, it is possible for operations on that object to be invoked by concur-

rent processes, or threads. In order to define correctness for these types of operations, Herlihy and

Wing [19] propose linearizability. A concurrent history of operations, H , is linearizable if it can

be made equivalent to some valid sequential history of operations without violating any real time

orderings within H . Two method invocations, O1, O2, have a real time ordering if the response of

O1 precedes the invocation of O2. Thus, operations that overlap in real time may appear in either

order in the equivalent history where each operation was executed sequentially.

Two operations are said to commute if applying them in either order has the same effect. For

example, a method add(x) on a set would commute with the operation add(y) if x ̸= y, but

add(x) would not commute with contains(x), because the result of contains(x) is dependent on

if add(x) has already occurred.

Algorithm 2 Transaction Example
1: if set.contains(x) then
2: set.add(y)

One may want to execute a sequence of linearizable operations uninterrupted, without any concur-

rent operations taking place between. For example, in algorithm 2, we want to add y to a set only if

the set contains x. If x is in the set, but a concurrent operation removed x after the set.contains(x)

on line 1, this code would still add y to the set. Such a sequence of atomic operations is referred

4



to as a transaction [33]. For transactions, Herliy and Wing propose the correctness condition

strict serializability [19]. A concurrent history of transactions is said to be strictly serializable if

the result is equivalent to some sequential history of transactions (linearizability), and operations

in differing transactions are not interleaved (commutativity isolation).

Transactional Algorithms

Transactional Boosting [17] is a methodology for executing transactions on a lock-based data struc-

ture. Transactional boosting requires underlying linearizable operations to exist on a data struc-

ture prior to application. Transactional Boosting assigns an abstract lock [29] to each operation.

Method invocations share an abstract lock if they do not commute. To execute a transaction, a

thread acquires the abstract lock for each operation, and then executes the underlying linearizable

code for the operation. If a thread completes all operations in a transaction, it releases all acquired

locks. If a thread fails to acquire a lock at any point during a transaction, it must abort to allow the

conflicting transaction to proceed. This ensures non-commuting transactions appear to take place

uninterrupted, satisfying the property of commutativity isolation. If a transaction is aborted, any

changes written so far must be undone. This is accomplished by executing the inverse operation

m′ for each operation m executed so far. After all operations are rolled back, the locks acquired by

the transaction are released.

Due to the use of locks, this approach cannot guarantee lock-free progress. A thread may be

delayed arbitrarily long while holding an important lock. Additionally, the overhead of rollbacks

for aborted transactions grows large if transactions conflict frequently.

Lock-Free Transactional Transformation (LFTT) [50], is a descriptor based approach for transac-

tions for node-based data structures. Similar to Transactional Boosting, LFTT requires underlying

linearizable operations to exist prior to its application. A descriptor object is an object which con-
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tains enough information about an operation that an arbitrary thread would be able to complete the

operation. In LFTT, descriptor objects describe each operation in the transaction, and have a field

representing the status of the transaction as one of the following: {ACTIVE, COMMITTED,

ABORTED}. A descriptor reference is placed in the node class for any LFTT data structure.

In order to execute a transaction, a thread updates the descriptor reference in each modified node to

point to the transaction’s descriptor, using CAS. If any descriptor reference contains a pointer to a

concurrent, active transaction, threads help the competing transaction complete before proceeding

with their CAS operation. By updating a node’s descriptor reference, an operation is completed

“logically,” but not physically. This enables aborted transactions to be rolled back cheaply if they

abort. A node’s logical status can be interpreted by its contents, along with the descriptor it refer-

ences. If all operations are logically completed, threads execute the underlying linearizable oper-

ations, in order. This completes the physical component of the operation, such updating a node’s

next pointer. Similar to transactional boosting, commutativity isolation is guaranteed because a

transaction will only execute after every node’s descriptor pointers have been updated to reference

the transaction’s descriptor. Unlike, transaction boosting, if a CAS-based update fails due to a

concurrent transaction, the transaction does not have to abort. Instead, it can retry the CAS-based

update after helping the competing transaction complete.

By utilizing CAS instead of locks, LFTT avoids the overhead of locking mechanisms. Additionally,

by separating the logical and physical completion of each operation, LFTT avoids the overhead

of physical rollbacks whenever a transaction aborts. Due to the thread helping scheme, LFTT

experiences significantly fewer spurious aborts than transactional boosting. In LFTT, a transaction

only aborts if it is caught in a cyclic dependency with another transaction.
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Blockchain Networks

A blockchain is a publicly shared ledger to which network clients may append transactions without

reliance on a trusted third party. Blockchains utilize one-way hashing [36] to protect elements of

the ledger from tampering. In popular blockchains such as Bitcoin [28] or Ethereum [4], users can

submit transactions to the mempool, which are distributed throughout the network in a peer-to-peer

fashion. Generally, the network designates a leader via a consensus algorithm to select a block of

transactions from the mempool to append to the ledger.

Consensus

Proof of Work (PoW) is a consensus mechanism proposed by Satoshi Nakamoto [28] and is the

consensus mechanism of Bitcoin. In PoW, “miners” build blocks of transactions and compete to

add them to a shared chain of blocks, which represent the shared ledger. To do so, they seek a

“nonce” value which, when hashed with the contents of their block, as well as the hash of the

most recent published block, leads with a certain number of zero bits. If a valid hash is found,

the miner may append the block to the chain, receiving some compensation for their effort. This

approach generated a set of transactions with a total order, transactions are executed in the order

given by their blocks, and blocks are executed starting from the first block. It is possible for two

miners to simultaneously produce a valid block, producing a fork in the chain of blocks. Clients

resolve this by ignoring all blocks that are not part of the longest chain of blocks. Since appending

a block to the chain requires a significant expenditure of computational resources, it is not viable

for a malicious client to purposefully build their own branch in an effort to undo transactions on

the existing chain. To do so, they would need their branch to overtake and exceed the longest

branch, which would require the attacker to control more than 51% of the computational power on

the network.
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Proof of Stake (PoS) is a consensus mechanism in which blocks are chosen by users based on the

amount of monetary stake they hold in the network [20]. PoS introduces a class of network clients

known as “validators.” Validators have a chance to be selected to propose the next block based

on the amount of currency they are staking. Validators may lose their stake if they purposefully

engage in malicious behavior.
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CHAPTER 3: READ-UNCOMMITTED TRANSACTION FOR SMART

CONTRACT PERFORMANCE

In this chapter, we present Hash-Mark-Set (HMS). Initially, we discuss the problem of isolation

levels for transactions in decentralized networks. We then explain or solution, HMS, which ex-

poses a READ-UNCOMMITTED isolation level for blockchain transactions. Finally, we provide a

performance analysis of our solution, demonstrating a significant boost to transaction success.

Motivation

Blockchains rely on a consensus mechanism to agree upon the sequencing of client transactions

in a block, committing transactions as a group to the distributed ledger. Smart contracts are the

interface to process client requests and send transactions to the blockchain peer network. A block

of transactions must be validated to ensure that the sequence is consistent. All peers on the network

perform the validation step by re-executing the transactions within the block and checking that the

initial and final states match, introducing latency.

Latency resulting from the publishing and validation of a block decreases the success rate for the

transactions in the block due to the possibility of stale reads of state variables, also known as stor-

age variables. Changes to storage variables are only visible after they are committed to a published

block. This isolation level of intra-block transactions is called READ-COMMITTED. Transactional

reads of storage variables can become outdated while waiting on the validation step since other

published blocks may update the storage variables, leading to transaction failure. Additionally,

since read operations can only access the published storage variable value, intra-block changes can

also cause a transaction to fail due to a stale read.
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A smart contract transaction is a concurrent method, often with semantic dependencies. The way

block publishing commits multiple smart contract transactions simultaneously is analogous to the

way a transactional data structure [17, 50] commits multiple concurrent methods in what appears

to be a single atomic step. Using this analogy, the blockchain is a blind transactional data structure

that selects and sequences concurrent method calls without regard for their semantics, causing

many to fail due to the restrictive READ-COMMITTED isolation level. An ideal algorithm for

blockchain transactions would consider transaction semantics and include all related transactions

as a series in a block commit.

In this chapter, we detail our solution, Hash-Mark-Set (HMS), an algorithm that increases the

throughput of smart contract transactions by providing a READ-UNCOMMITTED view of the stor-

age variables. HMS organizes the pool of pending transactions (TxPool) on specific storage vari-

ables in a directed acyclic graph (DAG) that establishes an ordering among the transactions and

enables an uncommitted view of the storage variables to be retrieved. HMS reduces transactional

failures because the READ-UNCOMMITTED view increases the likelihood that a transaction has

consistent inputs. Latency is also reduced because concurrent actors will no longer need to wait

until a block is committed to see a change in storage variables that is likely to be committed in the

next block or two. We integrate HMS into smart contracts through Runtime Argument Augmenta-

tion (RAA), our proposed technique that allows smart contracts to communicate with external data

services prior to sending a transaction.

Challenging Use Cases

Blockchain performance, measured in terms of transaction throughput and latency, is a limiting

factor for many use cases [38, 16, 37, 44]. Latency and throughput are considered together in

this chapter because the READ-COMMITTED latency of state variable limits the throughput of
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successful transactions. This ubiquitous blockchain latency has been dubbed, ‘the long system

freeze” [14]. Our example use case is a decentralized market to buy and sell assets, a core use

case driving blockchain research and investment. This example also represents the general case of

concurrent actors reading a time sensitive shared state variable.

Say that trading opens at a certain price, visible to all buyers. Orders are received on the network

to be processed. To simplify, orders must be at the exact price, i.e. there are no limit or market

orders. The price changes frequently and unpredictably due to market dynamics. If 100 orders are

received at the published price near the start of a block interval and the price changes after the first

order, then only one will be accepted. Blockchain correctness (safety, consistency) is preserved

by the expedient of invalidating 99 of the 100 transactions in this example, clearly an inefficient

mechanism.

Due to miner privilege, the first order submitted in time may not be the first included in the block.

Progress of the system cannot be fair in any case because there is not enough information in the

TxPool on which to base a real time order of the requests from different peers. Even with such

information, miners are not bound to prevent starvation, quite the contrary they may cause it.

Information is also hidden from the buyers querying the smart contract for the price. Block replay is

not available within the smart contract. Unless it is separately analyzed, 98 of the 99 price changes

are invisible to participants and valuable market information about intermediate price changes is

lost. The arbitrary transaction priority combined with read latency also creates a vulnerability

known as blockchain frontrunning [39].
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Methodology

This section presents Hash-Mark-Set (HMS), an algorithm that overcomes the limitations of the

READ-COMMITTED isolation level by providing a READ-UNCOMMITTED view of storage vari-

ables. The READ-UNCOMMITTED view alleviates the problems demonstrated in the previous

section. Clients can observe partial changes within the block prior to publishing, reducing the

chance that a transaction will fail due to a stale read. The Mark in HMS also establishes a par-

tial intra-block order that a cooperating miner can enforce. Such cooperation is reasonable given

financial incentives that might be offered by decentralized asset exchanges.

HMS provides a READ-UNCOMMITTED view by maintaining the transactions in a directed acyclic

graph (DAG) that represents an ordering among the transactions in the unprocessed transaction

pool, TxPool, and applying a topological sort to the longest branch to retrieve the value of an

unpublished storage variable. To enable the READ-UNCOMMITTED view to be accessible through

smart contracts, we propose Runtime Argument Augmentation (RAA), our proposed technique

that modifies the Ethereum Virtual Machine (EVM) interpreter to apply the HMS algorithm and

access the value of an unpublished storage variable. The RAA technique is made available to users

through our proposed smart contract Sereth.

To evaluate the performance benefits of our proposed methodology, we present a new metric, state

throughput, which measures the throughput of successful transactions. State throughput disregards

failed transactions in the throughput measurement, which provides a better representation of the

rate at which state changes are made in comparison to raw throughput. In the following sub-

sections, we define state throughput, provide the Sereth smart contract application programming

interface, and explain HMS and RAA, the two innovations of this approach.
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State Throughput

Blockchains are different from databases in the following way: failed transactions are included in

the persistent shared ledger. Because a block may include a large percentage of failed transactions,

raw throughput of transactions per second is not an adequate measure of performance. In the

example described in Section 3 (Challenging Use Cases), raw throughput was 100 per interval,

but 99 of 100 transactions fail. In a database these rolled back transactions would not count in

throughput, but in a blockchain they are included in the block. A new metric, state throughput,

Tstate, is defined here as the product of the raw throughput and the ratio of transactions included in

a block that successfully make state changes. State throughput divided by raw throughput yields

the transaction efficiency η.
Tstate

Traw

= η (3.1)

Transactions in the TxPool form a concurrent history, with a non-deterministic outcome. We ob-

served that transaction failure can be reduced by obtaining a view of state that is more likely to be

consistent at the moment the transaction is committed to a block. To maximize η, transactions are

organized to provide a predictive view of state, ordering transactions such that the order closely

matches the real time order in which the transactions were received.

Sereth Smart Contract

Our implementation of HMS for Ethereum is called Sereth, a variation of Geth, the name of the

standard client. Sereth is implemented as an interoperable Ethereum client that can be substituted

for one or more peers in any standard Ethereum network, public or private. The Sereth smart

contract shown in Listing 3.1 manages the price and accepts the set and buy transactions from

addresses on the blockchain. The mark and get functions are read only. They do not create
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Listing 3.1: Sereth smart contract.

pragma solidity ˆ0.4.24;

contract Sereth {
...
// Mark, Set and Get are methods on state variables
// managed by the Hash-Mark-Set algorithm.

function mark(bytes32[3] raa)
private pure returns(bytes32) {

return raa[1];
}

function set(bytes32[3] fpv) public {
// If mark is valid, set new mark and value.
if (keccak256(fpv[1]) == keccak256(p[1])) {

nSet++;
p[0] = bytes32(msg.sender);
p[1] = keccak256(fpv[1], fpv[2]);
p[2] = fpv[2];

}
}

function get(bytes32[3] raa)
public pure returns(bytes32) {

return raa[2];
}

// Function buy() demonstrates a dynamic pricing use case
// for the Hash-Mark-Set transactional data structure.

function buy(bytes32[3] offer) public {
// If mark and price match then buy() succeeds.
if ((keccak256(offer[1]) == keccak256(p[1])) &&

(keccak256(offer[2]) == keccak256(p[2]))) {
nBuy++;
p[0] = bytes32(msg.sender);

}
}

}

transactions but are used to return the intra-block state that will be used in set and buy. This intra-

block state view uses RAA to get the results of the HMS algorithm. The values are written into the

function arguments using RAA and then returned to the calling address.

Hash-Mark-Set

Hash-Mark-Set takes advantage of an underutilized communication channel among the peers on a

blockchain, the transaction pool (TxPool). We created a smart contract, Sereth.sol, to manage

the state variables. In Sereth, function arguments are formatted so they contain three key elements

within the transaction, address, mark, and value. The address field contains the address of

the sender of the transaction. The mark field contains a Keccak256 hash [34] which solidifies

a transactions place in a series of Sereth transactions. The value field indicates how the sender
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would like to modify the state variable. Together, these elements are referred to as a transaction’s

AMV . To create a transaction using the Sereth contract, one must pass in three parameters: flag,

previous mark, and value. These parameters are referred to as the FPV . The FPV is easily

visible as a string of bytes within the transactions input field.

We define a transaction’s mark such that given Txn1 which follows Txn0,

Txn1.mark = Keccak256(Txn0.mark, Txn1.val)

This creates a sequentially consistent ordering between any number of transactions in what we

call a series. To create a series, the FPV of each transaction in the TxPool is extracted from

their respective Data fields. By matching the previous mark of a transaction with the mark

of a different transaction, we can determine a strict order of all Sereth transactions in the current

TxPool. This provides the smart contract with a Read-Uncommitted view of the intra-block state.

In addition, because every state change is linked by a unique hash that includes the value, multiple

state changes sequenced in the atomic block update are preserved.

Algorithm 3 shows the HMS algorithm as implemented on the Ethereum blockchain. Users interact

with the algorithm through an Ethereum contract. We refer to line x of algorithm A as A:x.

Algorithm 3 Transaction Serialization Algorithm
1: procedure HASHMARKSET(INPUT) ▷ Serialize a blockchain transaction pool
2: RAA← input
3: txnList← PROCESS(TxPool) ▷ Filter TxPool
4: if len(txnList) == 0 then
5: RAA← specialV alue
6: return
7: series← SERIES(txnList) ▷ Create series
8: RAA← COPY(series.tail.FPV )

A call to HashMarkSet() is made from the EVM interpreter when the transaction being processed

has a function signature that matches that of a Sereth transaction. The RAA variable on line 3:8
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Algorithm 4 Process Transactions
1: procedure PROCESS(TXPOOL, INPUT) ▷ Filter TxPool for HMS transactions
2: filteredList[]
3: for txn ∈ TxPool do
4: if SIGNATURE(txn) == “set” & SUCCESS(txn) then
5: txn.FPV ← txn.input
6: txn.mark ←

Keccak(txn.FPV [1], txn.FPV [2])
7: filteredList.push(new Node(txn))
8: return filteredList

9: procedure SUCCESS(TXN) ▷ Determines if a transaction succeeded or not
10: FPV ← txn.input
11: if FPV [0] == successF lag —— FPV [0] == headF lag then
12: return true
13: return false

represents the storage variable value obtained using the RAA technique. We first extract the RAA

from the given input field of the transaction we are processing. This process is simple, as each

element is stored in a contiguous 32 bytes within input. By writing the result of HashMarkSet()

to RAA, the result will be made visible within the contract’s execution.

Algorithm 4 details how the current transaction pool is filtered and then returned to the main

function for handling.

For each transaction in the pool, we check that the function signature is equal to one of the write

functions from our HMS contract. Additionally, we check the first 32 bytes of the FPV for a

flag indicating one of several possible states for the transaction. Due to this filtering only a small

percentage of the TxPool requires processing, so the overhead of HMS is relatively small.

First, the transaction may be one of the first HMS transactions that appeared during the current

block. In this case, we consider the transaction a head candidate, meaning that it or another

transaction with the same flag will serve as the head of the serialized list of transactions for the

current block. This allows us to easily continue the list from the previous block without being able
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to view the state variable. The second possible state indicates that the transaction is not a head

candidate, and at the time of the transaction’s submission, it was found to be the successor to the

current tail of the series. If a transaction contains neither of these flags, it is considered rejected

and is not included in the list of relevant transactions. If a transaction is accepted, The FPV is

then extracted from the input field. The FPV contains previous mark and value, which are the

two values needed to calculate the mark of a transaction and determine its place in the series. A

node is created from the transaction for later inclusion in a linked data structure.

Once txnList has been populated by transactions from the TxPool on line 3:3, we check on line

3:4 if the list is empty. If so, the submitted transaction is the first Sereth transaction sent in the

current block, and the way to know if it matches the previous mark is to check the state variable

within the contract. In this case, a flag is written to the data field, which will be visible to the

contract. The contract value will be written in the last 32 bytes of the transaction FPV by the

sender.

If the list contains one or more transactions, then we know that there already exists at least one

series for the current block. Algorithm 5 contains the functions which return the most valid series

from a list of Sereth transactions.

Line 5:1 refers to Series(), which iterates through each transaction in the list of Sereth transactions

and forms graph relations between all transactions with corresponding mark/value hashes. Due

to the uncertain nature of concurrency, it is possible for a transaction to have multiple potential

successors, but only one predecessor.

At line 5:9 we locate from multiple potential head nodes the one that produces the deepest graph.

From that graph, the deepest branch is our series. This logic mirrors that of the blockchain, in

which branches are resolved by taking the longest branch.
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Algorithm 5 Create a Series
1: procedure SERIES(TXNLIST) ▷ Create a serialized list from a set of transactions
2: for txn ∈ txnList do
3: for txn2 ∈ txnList do
4: if txn.mark == txn2.FPV [1] then
5: txn2.prevTxn← txn
6: txn.nextTxns.push(txn2)

7: highestDepth← 0
8: longestSeries← nil
9: for txn ∈ txnList such that txn.FPV [0] == headF lag do

10: depth← 1
11: path← [txn]
12: maxDepth← 0
13: maxPath← []
14: DEEPESTBRANCH(txn, depth,&maxDepth,

path, maxPath)
15: if maxDepth > highestDepth then
16: highestDepth← maxDepth
17: longestSeries← maxPath

18: return longestSeries

19: procedure DEEPESTBRANCH(HEAD, DEPTH, PATH, MAXDEPTH, MAXPATH) ▷ Recursively
find deepest branch

20: if len(head.nextTxns) == 0 then
21: if depth > maxDepth then
22: maxDepth = depth
23: maxPath = path

24: return
25: for txn ∈ head.nextTxns do
26: path.push(txn)
27: DEEPESTBRANCH(txn, depth+ 1, path,

maxDepth, maxPath)
28: path.remove(txn)

Runtime Argument Augmentation

Blockchain oracles provide a secure and verifiable medium for smart contracts to access external

data feeds, but still suffer from stale reads due to latency. In our implementation of HMS it became

clear that a traditional oracle would not satisfy the requirement for intra-block data. To overcome
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Figure 3.1: RAA activity diagram.

the limitations of oracles, we propose Runtime Argument Augmentation (RAA), a technique that

provides data to a smart contract by using the argument list as a channel to pass information. RAA

is a modification to the Ethereum Virtual Machine (EVM) interpreter, written in Golang. Figure

3.1 is an activity diagram showing the modified processing. In activity E2 the EVM interpreter

checks to see if a function is requesting external data items using RAA. If so, the interpreter calls

the RAA provider in activities R1 to R3, implemented as a Golang service compiled into the EVM.

Data is obtained from the RAA provider and written into the function arguments. The data types of

the items being requested must match the data types of the arguments. In E3 the function returns
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the result of evaluation using the modified arguments to the smart contract for use in activity S3.

RAA is flexible: any computation can be accomplished by the RAA provider, and the information

can flow in both directions. RAA is fast because it is written as an extension of the EVM. A smart

contract using RAA is indistinguishable to unmodified clients running Geth, who merely see that

arguments are passed in and a result returned.

There are some limitations. RAA cannot be used to modify the arguments of a smart contract

function that may send a transaction. This is because transactions along with their inputs are cryp-

tographically signed by the sending address, stored in parameters msg.hash and msg.sender.

Without this protection a malicious Geth client could modify the inputs of a transaction, for exam-

ple doubling the price offered for an item or changing the delivery address. In testing the limits of

RAA we found that the modified transactions would still be mined, but would not be accepted by

peers who must validate the newly created block. In order to use RAA information in a transaction,

a smart contract or other blockchain actor calls the RAA function first, then uses the information

provided to improve the subsequent transaction. This is the process used to obtain the experimental

results that follow.

Correctness

Concurrent systems are expected to satisfy correctness (safety) and progress (liveness) properties.

Correctness is determined according to a defined correctness condition presented in literature [18].

HMS is designed for the sequential consistency correctness condition because miners are required

to preserve the nonce order when committing a transaction from a given thread to a block. Since

the nonce is a counter that reflects the sequential ordering of transactions issued by the same thread

and a blockchain transaction is analogous to a concurrent method, the blockchain is inherently se-

quentially consistent. In the following lemma we show that HMS generates a series that provides a
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sequentially consistent ordering of the transactions in the longest branch. The benefit of generating

a series of transactions in the longest branch is that it offers the greatest potential for optimum state

throughput.

Lemma 1. The series generated from HMS preserves a sequentially consistent ordering of trans-

actions invoked in the longest branch of the directed acyclic graph.

Proof. For each transaction T in the transaction pool, if the signature is a set operation, and T is

either a possible head candidate or is a successor to the current tail in the series, then T ’s mark is

updated by hashing the predecessor transaction’s mark and value, and the list of transactions to be

considered for the series is amended to include transaction T . If the length of the list of transactions

is larger than one, then HMS generates a series of transactions by calling the SERIES function with

the transaction list as input. It now must be shown that the generated series is both sequentially

consistent and the longest branch. The SERIES function creates an adjacency list of all transactions

in the transaction list such that a transaction T2 that is a member of T1’s list indicates that T2 is

a successor to T1. The SERIES function then iterates through the potential head candidates and

applies the DEEPESTBRANCH algorithm. Each recursive call to DEEPESTBRANCH will iterate

through the list of successor transactions in the adjacency list and apply DEEPESTBRANCH to

each successor transaction until a transaction with no successors is reached. At each recursive

call to DEEPESTBRANCH, transaction txn passed as an input parameter is amended to the path.

Since the exploration of the adjacency list guarantees that all successor transactions are visited

after a predecessor transaction, any path generated from DEEPESTBRANCH will be sequentially

consistent because the program order established in the adjacency list is preserved. Since the

depth at each recursive call of DEEPESTBRANCH is incremented by one, and a path that exceeds

the maximum depth is recorded upon termination of the recursive calls, the final recorded path by

DEEPESTBRANCH will be the longest branch within the adjacency list.

21



Progress of the underlying blockchain (the computer) is assumed. We focus here on the progress of

smart contract methods using a view of state variables managed by HMS. Lock freedom is defined

as ensuring that some concurrent actor makes progress, and this is true for the blockchain as a

whole but not for an individual smart contract. Miners may assign a low priority to a particular

contract so it makes no progress. At peak times, many more transactions are sent to the network

than can be included in a block. Transactions sent may be lost due to network failures, memory

limitations or peers not replaying them. Miners may refuse to include transactions for arbitrary

reasons. As a result, the progress guarantee provided by Ethereum is smart contract termination [1,

24]. Since the TxPool is a finite list of transactions, Algorithm 4 trivially terminates. Algorithm 3

and Algorithm 5 terminate given that the recursive function DEEPESTBRANCH terminates. We

now show in the following lemma that DEEPESTBRANCH terminates.

Lemma 2. DEEPESTBRANCH presented in Algorithm 5 is guaranteed to terminate.

Proof. The txnList in the SERIES function is a finite list of transactions because it is a subset

of the TxPool generated by the PROCESS function. Therefore, each list within the adjacency list

of transactions constructed by the nested for-loop on line 2 of Algorithm 5 will also contain a

finite number of transactions. Since the txn.mark computed by PROCESS establishes an ordering

among the transactions in txnList, the adjacency list of transactions will not contain any cycles

due to the if-statement on line 4 of Algorithm 5. DEEPESTBRANCH will be invoked by the SERIES

function no more than the number of transactions contained in txnList. For each invocation of

DEEPESTBRANCH, a recursive call to DEEPESTBRANCH is made for each transaction in head’s

list of successor transactions. Since DEEPESTBRANCH is only invoked on the successors of head,

and each list in the adjacency list of transactions is finite, it is guaranteed that every invocation

of DEEPESTBRANCH will eventually reach a transaction with no successors. Upon reaching a

transaction with no successors, DEEPESTBRANCH terminates on line 24 of Algorithm 5.
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Results

This section shows experimental results of tests of the HMS algorithm on a private Ethereum

blockchain. The chain used for testing is a fork of an open source multi-peer private network con-

figuration [6]. Experiments were hosted on Ubuntu 16.04 EC2 servers in the AWS cloud. The

private network was configured to be a model of the Ethereum mainnet or the Ropsten testnet.

Proof of work was used as the consensus mechanism. The block difficulty, transaction fees, pro-

cessing power of the peers and peering topology were adjusted to produce block size and interval

in the range of production Ethereum blockchains.

Interoperability was tested by running experiments with a mix of peers running standard Geth

and modified Sereth clients. The first experiments were qualitative to demonstrate practical use

of the two innovations of this approach: HMS and RAA. Smart contract functions that created

transactions were followed through the process of invocation, interpretation, transactions sent to

the TxPool, replay, mining and validation. The Sereth client operated interchangeably with Geth

clients on the same network. This is not surprising because Ethereum already supports a variety of

clients with subtle differences, all following the same protocol. Deployment of Sereth in the wild

would not require a fork or any special permission from the network. The Solidity smart contract

equipped with RAA also functioned even when deployed to a Geth client, although of course the

substitution of arguments did not take place and they were returned unchanged.

Next we demonstrated that a sequential history was properly handled by sending a series of test

transactions from the address of a single peer so that there is only one possible history, where real

time order equals nonce order equals block order. As expected, the transaction failure rate was

zero and the transaction efficiency η was 1.0.

The quantitative experiments using concurrent peers demonstrated the effectiveness of HMS and
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the importance of transaction efficiency. Experiments considered the history of program execution

on a single shared variable P where P is an object containing the AMV tuple described in the

HMS algorithm. The dynamic pricing exchange from Section 3 (Challenging Use Cases) is used

to motivate the experiments, with the value of P representing the price. Two transaction types are

used in the experiments: buy (buys one item at the current price) and set (changes the price). A

ratio of buys (READ-UNCOMMITTED) to sets (WRITES) was used as a non-dimensional parameter

that would scale up to larger servers as the absolute number of transactions increased. The number

of set transactions was varied from 100 to 5, yielding a buy to set ratio of from 1:1 to 20:1.

Figure 3.2 depicts a plot of state throughput measured at different buy set ratios. Each data point

represents the result of 100 buy transactions, so state throughput is equivalent to η expressed as

a percentage. Transactions were submitted at an interval of one second, resembling a moderate

throughput smart contract use case. This interval was sufficient to demonstrate the problem of

stale reads and can easily be reproduced with ordinary servers using the provided source code. The

sets are evenly spaced over the processing of the buys. The lines are smoothed averages of the

points shown, with the shaded areas representing the 90 percent confidence interval for the lines.

Sets are not plotted, as their success is guaranteed.

Standard Geth client

The baseline scenario sends transactions to an unmodified peer running the standard Geth client.

The transaction efficiency at different buy to set ratios is labeled as “geth unmodified” in Figure

3.2. In this scenario, buy transactions that read the price P from block n − 1 and are included in

block n before the price is modified will be successful, while all other buys will fail. When there

are many price sets, as in the experiments with 1:1 and 2:1 ratios, only a few buys are successful.

In some runs no buy transactions succeeded at all. The efficiency increases somewhat as the ratio
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Figure 3.2: Transaction efficiency η vs READ-UNCOMMITTED / WRITE ratio.

of buys to sets goes above 10:1 because there are more buys reading correct values before an

intra-block set occurs. However it remains poor for two reasons.

First, with a low ratio of buys it is unlikely for a buy to land in the very beginning of the block

before any sets take place. Thus many will fail. Second, even as the ratio increases, because of

the large transaction pool there are often no buys going into block n + 1 that have a valid view of

block n. Instead, block n is assembled from buys that were submitted a few blocks ago, so they

may have a view of block n − 2, n − 3 or older blocks. These buys fail because the blockchain

state has passed them by before they were included. This phenomenon is frequently observed in

public blockchains [12].

Although not shown in the plot, it was also observed that with few state changes (high ratio of buys)

transaction efficiency becomes more sensitive to the transaction interval, as miners may sequence

a large number of buys together.
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Hash-Mark-Set without miner assistance

The second experimental scenario, labeled as “sereth client” in Figure 3.2, used the modified

Sereth client on the network, implementing the HMS algorithm. The set transactions were or-

dered with HMS while buy transactions were sent exactly as in the baseline scenario. Interleaved

with the sets, any buy at the right mark and price succeeded. The benefit of HMS in this scenario is

that the buy transactions have a READ-UNCOMMITTED view of the likely state of the storage vari-

able P when they will be evaluated. This allows many more transactions to succeed. A sequentially

consistent ordering of the set operations was established and their dependent buys have a view of

the state provided by HMS. Figure 3.2 shows an improvement in throughput by approximately a

factor of five over the entire range of read /write ratios. These results were achieved without miner

assistance, so they could be accomplished simply by running the modified client on the public

Ethereum blockchain, as long as access to the smart contract was via these clients.

This experiment also demonstrates how HMS alleviates the intra-block lost update problem. The

FPV arguments in each buy include the previous mark, a hash that relates it to an interval between

two sets. If a sequence occurs such as: set(5), buy(5), set(7), set(5), buy(5), a particular buy(5) can

prove that it was sent during the first or the second interval the price was set to 5. Linking each

buy transactions to a particular set price prevents the frontrunning attack mentioned in Section 3

(Challenging Use Cases).

Hash-Mark-Set with semantic mining

In the third experimental scenario, the inputs of the second scenario were repeated with the miner

using the HMS algorithm to determine the block order of transactions. In this scenario HMS

information about the TxPool is available to both smart contract users and miners. Since the miner
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now has awareness of the semantics of the transactions, we call this semantic mining. Previously

miners would not reorder transactions to increase transaction efficiency, but the semantic miners

have this capability. The line labeled “semantic mining” in Figure 3.2 shows the results. About 80

percent of transactions succeed due to semantic mining providing interleaving in conformance to

the READ-UNCOMMITTED view used by the smart contract clients when they sent the transactions.

Relative improvement in throughput was greatest with a high frequency of price changes, i.e.

where there are 1 or 2 buys per set. At these ratios the advantage of having the miner interleave

transactions increases transaction efficiency from a few percent to almost 90 percent, resulting in

a factor of six over the unassisted case. Overall, 10-20 percent of transactions were lost due to

the fact that the TxPool no longer contains marked transactions immediately after the block is

published. Transaction efficiency could approach 100 percent if HMS were extended to include

the final values from replaying each block. Other factors that would impact efficiency is if only

a fraction of the miners were assisting, or if communication of the TxPool were impeded among

the Sereth enabled peers. Performance would be degraded in these cases but there would still be

benefits proportional to the participation.

Chapter Summary

State throughput, the throughput of successful transactions, is proposed as the appropriate met-

ric for smart contract performance. An algorithm, Hash-Mark-Set, and a novel architectural

technique, Runtime Argument Augmentation, are presented and demonstrated together on the

Ethereum blockchain to improve state throughput.

HMS provides smart contracts a READ-UNCOMMITTED view of state. At the same time, HMS

provides information about transaction dependencies to the miners so they can adjust the block

order, called semantic mining. Miners cooperating with smart contracts using the HMS algorithm
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to order dependent transactions were able to create blocks in which most transactions were suc-

cessful. This is demonstrated to improve transaction efficiency from less than 5 percent to over 80

percent in cases where state changes are frequent, more than an order of magnitude improvement

in state throughput. Even without semantic mining, the READ-UNCOMMITTED view is helpful,

increasing state throughput by a factor of five across the full range of tested read to write ratios

from 1:1 to 20:1. Latency (as a function of correct reads) was also reduced in both scenarios,

client modifications only and semantic mining. In addition to the performance gains, HMS solves

the blockchain lost update and frontrunning attack problems because transactions using READ-

UNCOMMITTED values keep a unique hash validated record of the particular interval during which

the value was read.

RAA is presented as a new technique to provide smart contracts rapid communication with external

data services. In our experiments smart contracts used RAA to access READ-UNCOMMITTED

views of data necessary for transaction success and thus increase transaction efficiency. RAA

works at the architectural level of the EVM, using the interpreter to achieve high performance.

Peers running the RAA modified client were demonstrated to work interoperably with standard

peers.
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CHAPTER 4: BLOCKCHAIN SCALABILITY WITH PROOF OF

DESCRIPTOR

In this chapter, we present Proof of Descriptor (PoD). We begin by describing the problem of

blockchain consensus, and the necessity of a concurrent, scalable solution. We then describe our

solution, a consensus mechanism designed using traditional SMP techniques to enable concurrent

updates to a shared ledger by multiple network participants. Finally, we provide a performance

analysis of our approach using a simulated decentralized network.

Introduction

Several works [25, 49, 21, 9] address the inherent sequential execution of Proof-Of-Stake (PoS)

through sharding, a technique that partitions the clients into multiple smaller groups of clients

called shards that operate in parallel on disjoint blocks of transactions and maintain disjoint ledgers.

Atomicity and isolation for cross-shard transactions [21, 9] are handled using two-phase locking in

conjunction with a Practical Byzantine Fault Tolerance (PBFT) consensus [5]. PBFT incorporates

three phases: 1) the leader broadcasts the requests, 2) the clients agree on the order of the requests,

and 3) the clients commit the requests in the agreed order. In a traditional crash-failure model, a

faulty client (or thread) is one that stops sending and responding to requests. A Byzantine failure

model assumes a more hostile environment where a faulty client may also be a malicious attacker.

The challenge with PBFT is that a faulty leader must be replaced with an expensive view-change

protocol that changes the leader using O(N2) messages among N clients [9].

We observe that the challenges of providing scalable transaction execution in blockchain is anal-

ogous to the same challenges in shared-memory multiprocessor programming, in which threads
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synchronize to execute transactions concurrently on a shared data structure. We draw on this ex-

tensive body of work to address the shortcomings of PBFT with a cooperative strategy among

clients that does not require a designated leader. In multiprocessor programming, a concurrent his-

tory of transactions is a sequence of invocation and response events. Two histories are equivalent

if they contain the same set of transactions, and have equivalent start and end states. A concurrent

history is strictly serializable [33] if it is equivalent to some legal sequential history, obeying any

real time orderings [19].

Figure 4.1: Assume Tx1 and Tx2 have no conflicts, and therefore commute. In the equivalent
sequential derived from the concurrent ledger order, transactions t1/t2 can be executed in either
order to achieve a deterministic final state.

We propose Proof of Descriptor (PoD), a concurrent consensus mechanism for decentralized net-

works. In PoD, clients execute transactions in a strictly serializable manner. The execution order

of conflicting transactions is preserved in the form of a Directed-Acyclic-Graph (DAG), which

serves as the network’s shared ledger. This ledger can be treated as a precedence graph that is

conflict-serializable. As such, given a concurrent ledger h produced by PoD, all network partic-

ipants will observe the same final state after executing h from an identical starting state. This

solution leverages the fact that two non-conflicting transactions, t1, t2, can be appended to the
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ledger concurrently without a total ordering. If two transactions can be executed in either order

without changing the final state of the execution, those transactions are said to commute [19]. This

is visualized in figure 4.1.

We design Proof of Descriptor with the goal of enabling arbitrary network clients to achieve con-

sensus on a concurrent ledger, represented by a conflict-serializable precedence graph. To that

extent, we utilize a descriptor-based transaction execution algorithm from shared memory, Lock-

Free Transactional Transformations (LFTT) [50]. LFTT achieves strict serializability by detecting

semantic conflicts between transactions, and enforcing an order on only those transactions which

conflict. Executing LFTT, and creating a record of execution order of all conflicting transactions

yields a conflict-serializable precedence graph. Any conflict-serializable precedence graph would

satisfy the requirements for a distributed ledger, as executing the transactions in any order while

respecting their precedence yields a deterministic final state. As such, all network participants

will agree on the final state of the ledger despite possible divergence during intermediate steps.

There are several challenges for applying an LFTT-style methodology to blockchain consensus.

1) Clients on the network have no access to a source of shared memory, nor access to shared

memory atomic primitives such as compare-and-set. Additionally, 2) unlike threads in a multi-

processor, clients on a decentralized network may behave maliciously in order to manipulate the

ledger against protocol.

We address the first challenge by designating the role of semantic conflict detection to clients on

the network, which we refer to as “Stakers” (Figure 4.2). A stakers role is to provide a sequential

ordering for each operation that makes changes to their staked wallet. To guarantee the chosen

ordering is sequential, a wallet can only have one staker at any instance of time. The staker has no

access to the private key for the wallet it stakes. An owner of a wallet may choose to act as their

own wallet’s staker, or relegate it to a third party.
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Figure 4.2: Map of stakers to abstract list of wallet addresses.

Given a set of stakers, we can devise a decentralized version of LFTT. When a user submits a

transaction to the network, each stakers extracts the list of atomic operations that compose the

transaction. A transaction that transfers money from Alice to Bob would be composed of two

operations, the first operation removes some quantity from Alice’s balance, and the second opera-

tion adds that quantity to Bob’s balance. For each operation in the transaction, the corresponding

staker broadcasts a descriptor object which details that operation’s precedence order relative to

every other conflicting operation in the ledger. Operations only conflict if they make changes to

the same wallet address, thus, any operation that modifies wallet x will eventually be processed by

the staker for wallet x. This guarantees that conflicting operations are always handled by the same

staker. As such, a staker can guarantee that all operation conflicting about their wallet have a total

ordering. Furthermore, a staker is always able to propose an ordering that satisfies the commutativ-

ity isolation property of strict serializability. Commutativity isolation states that non-commuting

transactions appear to take place sequentially, without interleaving. If a staker broadcasts a de-

scriptor n1 as part of a transaction t1, then they will order the subsequent descriptor n2 (part of t2)

after the completion of t1. This results in a history where t1 appears to execute completely prior

to the start of t2. By broadcasting a descriptor, a staker is making a logical update to the shared

database, as the descriptor contains all information about how to apply its underlying operation.

This ordering between descriptors is communicated through the use of cryptographic hashes, simi-
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lar to the cryptographic linking of blocks in block-based ledgers. If a staker broadcasts a descriptor

d2 after a prior conflicting descriptor d1, it will include that hash of d1 in d2. The state of the ledger

can be computed by treating the graph of descriptor objects as a precedence graph, executing each

operation for each transaction in the order given by the descriptors. This precedence graph is

conflict-serializable, as LFTT’s semantic conflict detection ensures that all conflicting transactions

have a total order. This ensures that all participants will compute the same final state.

To address the second challenge, we introduce a proof of stake scheme to discourage misbehavior

by stakers. It is possible for a staker to lie about the ordering of their descriptors in an attempt to

retroactively modify the ledger. However, this behavior is impossible to hide, so long as a record of

all descriptors broadcast by that staker are available in the ledger. If a staker broadcasts a descriptor

that does not have a total ordering with every other descriptor they have broadcast, the staker is

slashed, and their stake is lost. A staker cannot feign ignorance in this situation, as the staker is

guaranteed to be aware of any descriptor they themselves created. The only exception for this case

is if a staker is making a correction to their own history as a result of faulty descriptors created by

a different staker on the network.

Similar to block based approaches, each descriptor includes the hash of any prior descriptor objects

that it references. As the ledger grows, older descriptors gains many descendants. Changing the

contents or ordering of a descriptor would change the hash of all descendants of that descriptor,

many of which will belong to other stakers on the network. As such, a staker can only succeed if

the staker of every descendant descriptor joins the attack.

Figure 4.3 gives an overview of the concurrent ledger. In this figure, an arrow from descriptor n to

descriptor m indicated that n was created before descriptor m. Consequently, n should be executed

before m when computing the state. The state of the ledger can be computed by executing each

transaction in the order given by a reverse topological sort of the graph. This topological sort is
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Figure 4.3: An overview of the ledger. Descriptor objects correspond to transaction operations,
which make an atomic change to some wallet address. Descriptors produced in sequence by the
same staker have a total ordering, because they directly conflict on a wallet address. The state of
the ledger can be computed by executing transaction in the order given by a reverse topological
sort of the graph.

guaranteed to produce an order that is equivalent to some sequential ordering because the ledger is

conflict-serializable. Furthermore, the final computed state is deterministic, as any two transactions

without a total order (such as transactions 2 and 3) are guaranteed to commute, therefore, their

relative order does not affect the final state. If two transactions do not commute, it means they

must share at least one staker, in which case that staker will determine the relative order of the

non-commuting transactions.
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Motivation

Blockchain technology is only a decade old, but is already bruited to replace traditional financial

systems [40]. Public blockchain implementations provide the advantages of trust [10], resilience

[42], financial inclusion [23] and decentralization [45]. Scalability is a major hurdle to adoption.

Decentralized public blockchains in wide use (Bitcoin, Ethereum) have a throughput of O(101)

transactions per second (tps) [2]. This is not adequate for the use cases at the core of the modern

financial system such as large E-commerce websites O(103) tps [35], card payments at peak times

O(104) tps [43] and major stock, option and FX exchanges O(105) tps [7].

Methodology

In this section, we detail the methods used by stakers to process transactions and publish them in

the ledger.

Algorithm 6 Definitions

1: struct Staker
2: int stakedWallets[]
3: Map<int, Descriptor *>descriptors
4: struct Operation
5: int type
6: int value
7: int address
8:
9: struct Transaction

10: int size

11: Operation ops[]
12: struct Descriptor
13: int opNumber
14: Hash transaction
15: Hash prevOpDesc
16: Hash prevTransactionDesc
17: struct Graph
18: Descriptor *root
19: Map<int, Descriptor *>walletMap

Algorithm 6 details the main structures for our algorithm. Here, we list only the objects pertaining

to the core functionality of PoD, as implementation details may vary.

The STAKER object contains fields used by a staker to track the wallets they are currently staking,
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as well as the descriptors they have created for those wallets. The stakedWallets field is an array of

wallet addresses that a staker is currently staking. The staker will be able to broadcast descriptors

for operations that affect any wallet within the stakedWallets array. This does not give the staker

the ability to create new transactions that affect these wallets unless they are the owner of the

wallet. A wallet can only be staked by a single staker on the network at a time. In the case that the

owner of a wallet wants to designate a new staker for their wallet, the wallet must be transferred

between stakers as part of a transaction, as this ensures the transfer occurs in a single atomic step

with a verifiable ordering relative to other transactions. The descriptors field maps wallet addresses

that are currently being staked to the most recent descriptor created for that wallet.

The OPERATION object stores information about the individual operations that make up a transac-

tion. The type and value field define the behavior of the operation, while the address field identifies

the address of the client whose wallet will be affected by the operation. These fields can vary de-

pending on the type of operation being performed.

The TRANSACTION object contains a sequence of operations which make some change to the state

of the ledger. Similar to traditional blockchain designs, a transaction is created when a user wants

to transfer some value between wallets. A transaction also contains the transaction signatures

necessary to verify the identity of its participants. Transactions acts as the blueprint for stakers to

create descriptors. The transaction object is passed alongside any descriptor objects to stakers so

they can view the operation affecting their staked wallet.

The DESCRIPTOR object is used to resolve conflicts between transactions that affect the same

wallet. A descriptor contains several hashes corresponding to the transaction, and operation that

it represents, as well as the preceding, conflicting descriptor prevTransactionDesc, and the pre-

vious operation belonging to the same transaction prevOpDesc. The job of creating a descriptor,

and therefore ordering a transaction relative to another, conflicting one, is performed by the cur-
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rent staker for the affected wallet. This means that two conflicting operations will necessarily be

processed by the same staker, eventually. In a typical multicore algorithm, a descriptor would gen-

erally be stored as a reference within the object being modified (such as a node). In our algorithm,

descriptors are stored in the ledger, which is replicated across all clients.

The GRAPH object represents a client’s local copy of the distributed ledger. The relationship

between descriptors by their prevOpDesc and prevTransactionDesc hashes naturally form a DAG.

The root node of our graph is analogous to the genesis block in PoW or PoS. It represents the initial

state of the ledger, in which no wallets have been created, and no state changes have occurred. All

descriptors will descend from the root node. The walletMap maps a wallet address x to the last

descriptor of the most recent transaction that affected wallet x. Throughout our pseudocode, we

assume that stakers update their graph in the background, in response to descriptors received from

other nodes on the network.

Algorithm 7 Staker Descriptor Processing
1: function PROCESSDESCRIPTOR(Transaction *t, int opNum,

Descriptor * descriptors)
2: walletAddress← t.ops[opNum].address
3:
4: Desc *d← Create descriptor from t
5: d.prevOpDesc← descriptors[opNum-1]
6: d.prevTransactionDesc← Graph.walletMap[walletAddress]
7:
8: if prevTransactionDesc.t.status != ACTIVE then
9: d.hash← sha256(d, prevOpDesc, prevTransactionDesc)

10: this.descriptors[walletAddress] = d
11: signAndEmit(d)

Algorithm 7 details the pseudocode for broadcasting descriptors. The goal of all stakers on the

network is to broadcast descriptor objects in an order that is strictly serializable, and to capture this

ordering to be preserved in the shared ledger as a precedence graph.

Upon receiving a transaction t from the mempool, a staker creates a new descriptor d. The staker
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is only concerned with the operation from t that modifies their staked wallet. The staker searches

for two distinct descriptors, which must exist before descriptor d can be published in order to

guarantee strict serializability.

• The “previous descriptor” prevOpDesc is the descriptor for the previous operation in transac-

tion t. If the current operation is the first operation in the transaction, then prevOpDesc is left

set as null, since there is no previous operation to reference. By waiting for this descriptor,

the staker ensures the transactions operations are applied sequentially.

• The “previous transaction” prevTransactionDesc is the final descriptor of the previous trans-

action that modified this staker’s staked wallet. By waiting for this descriptor, the staker

satisfies the commutativity isolation property of strict serializability. Stakers will always

know which transaction this is, as a prior descriptor they created will be a part of it.

Once the staker has collected the necessary descriptors, it computes the hash for d on line 9.

This hash is used to prove to any arbitrary client that both prevTransactionDesc and prevOpDesc

existed when descriptor d was created. This hash serves to strengthen the immutability of the

ledger, as well as to indicate the precedence order of a descriptor within the ledger. On line 11, the

descriptor is signed by the staker. Once the descriptor is fully formed and signed, it can be emitted

to the network. Doing so prompts the staker for the next operation in the transaction to execute

processDescriptor. If all stakers have executed processDescriptor, the transaction is complete. For

the purpose of correctness, a transaction’s linearization point occurs when the final staker executes

line 11, broadcasting their descriptor.
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Figure 4.4: Hash calculation for descriptor objects.

Directed Acyclic Graph

The hash of each descriptor object is generated based on a PoH scheme to prove its order relative

to other key descriptors. PoH leverages the observation that by calculating a hash H1 with a secure

and collision-resistant hashing algorithm to produce a hash H2, it can easily be proven that hash

H2 was computed after H1 since H1 must exist to compute H2. Furthermore, an additional hash

H1a could be appended to H1 before it is hashed into H2 to prove that both hashes H1 and H1a

were computed before H2. We use this to commit a precedence ordering between descriptors to

the ledger.

The hash of each descriptor object m is calculated from three components. The first component is

the hash of the descriptor object that comes before m within m’s transaction. The second compo-

nent is the hash of the final descriptor object for the transaction that previously accessed the same

wallet as m. The final component is the contents of the descriptor m itself. We refer to any descrip-

tor d whose hash is used to calculate m as a parent on m. We choose the parents of m such that their
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ordering satisfies strict serializability. Specifically, they prove that a transaction’s operation took

effect in sequential order, and that any prior conflicting transaction appeared to execute completely

before the next one began.

Figure 4.4 is a case with three stakers, Bob, Alice, and Lily. Each staker has a single unique

staked wallet. In this example, there are two transaction composed of two and three operations

respectively. Arrows point from child descriptors to their parents.

We can reason about the ordering of these transactions given just their parent-child relationships.

In this case, we must conclude that transaction 1 was committed before descriptors 2A or 2B were

created, since their hashes are computed from the descriptors of transaction 1. If any staker in this

system had attempted to violate transaction isolation by creating descriptors for multiple active

transactions, those inconsistencies would be visible in the resulting graph in the form of a cycle,

or an invalid parent-child relation. The ordering formed between these transactions is difficult to

modify, as in order to change a descriptor, one must recompute all descendants of that descriptor.

For this reason, a descriptor acts as a “confirmation” of all parents and grandparents. In order for

Bob to modify descriptor 1A, Bob would have to recompute the hashes for descriptors 1B, 2A, 2B

and 2C. So long as Alice and Lily are behaving honestly, Bob is unable to modify descriptors 1B

and 2C without the private keys for Alice and Lily.

Thus, descriptors created by PoD form a Directed Acyclic Graph (DAG) structure via their hashes.

In this graph, each vertex is a descriptor object, and each edge represents a parent-child relation-

ship, in which the hash of the parent node is used as input for the hash of the child. This graph con-

stitutes the shared ledger, as the combined descriptor objects contain enough information to reason

about the order of any transaction with respect to any other transaction non-commuting transac-

tion. Transactions are executed from parent to child, starting from the root node. A property of our

approach is that whenever a descriptor from wallet x becomes a descendant of a descriptor y, all
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subsequent descriptors from any transaction that affects wallet x will also be descendants of y. This

property enables descriptors to eventually be confirmed by the majority of network participants.

Staker Transferal

A wallet owner may sometimes want to change the staker of their wallet. To do so, a “transfer”

transaction must be issued containing the identity of the new staker. This transaction is processed

like all others, and must have a valid prevTransactionDesc field to establish the order in which the

transfer took place relative to other transactions.

Security

In this section, we provide a proof that a ledger generated by our approach satisfies strict serializ-

ability so long as clients are operating in accordance with the consensus protocol. We proceed to

analyze possible attacks on the network, and provide remedies in line with existing protocols like

Proof-of-Stake.

Safety

The presented formal proof of safety leverages the work of Herlihy et al. [17]. A history is a

sequence of invocation and response events. A sequential history is a history in which each event

has an instantaneous response. Two operations commute if they access different wallet addresses.

Definition 1. A history h is strictly serializable if the subsequence of h consisting of all events of

committed transactions is equivalent to a legal history in which these transactions execute sequen-

tially in the order they commit [33].
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Definition 2. Commutativity Isolation. For any non-commutative operations, op1 ∈ T1 and op2 ∈

T2, either T1 commits or aborts before any additional operations in T2 are invoked, or T2 commits

or aborts before any additional operations in T1 are invoked.

Lemma 3. Proof of Descriptor satisfies commutativity isolation.

Proof. Let T1 denote an active transaction that modifies wallet w1, i.e., op1 ∈ T1 and op1.address =

w1. Assume W1 is currently staked by staker s. If another transaction T2 were to attempt to modify

w1, it will eventually arrive in the PROCESSDESCRIPTOR(T2, n, d) method of staker s. The staker

will discover that the s.descriptors[w1] field contains an already active descriptor for wallet w1,

on line 8. Since the if-statement resolves to false, a descriptor for T2 will not be created, and T2

will need to wait until T1 is complete prior to proceeding with the operation on w1. When T2 retries

an access to w1, a descriptor will be created if T1 has been completed and no other transactions

have been accepted since then. It is thus ensured that the descriptor stored at s.descriptors[w1] is

committed before T2 proceeds.

Definition 3. A history h is linearizable if the method calls take effect in real time order, and

given a method call with invocation I and response R and another method call with invocation

I ′ and response R′, two concurrent invocations I and I ′ must be equivalent to either the history

h · I ·R · I ′ ·R′ or the history h · I ′ ·R′ · I ·R.

Lemma 4. The PROCESSDESCRIPTOR operation executed using the Proof of Descriptor protocol

is linearizable.

Proof. The PROCESSDESCRIPTOR operation modifies the state from the wallet’s current value.

Recall that stakers assume the role of Compare-And-Swap. A descriptor object contains all infor-

mation necessary to fully describe an operation that makes some state change to the network. Thus,
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this update is performed logically as soon as a descriptor is broadcast by a staker. The lineariza-

tion point, i.e. the instant in which the PROCESSDESCRIPTOR operation takes effect, occurs when

the staker locally updates their descriptor pointer on line 10. Since the wallet’s value is updated

in one indivisible step at some instant between the PROCESSDESCRIPTOR operation’s invocation

and response, PROCESSDESCRIPTOR is linearizable.

Theorem 1. For a block of transactions that is executed using the Proof of Descriptor consensus

protocol, the history of committed transactions is strictly serializable.

Proof. Follow lemmas 3, 4, and the main theorem of Herlihy et al.’s work [17], the theorem holds.

Threat Model

The model comprises a peer to peer message passing communication between clients. The com-

munication is asynchronous, which implies that descriptor delivery time can be infinitely delayed.

All descriptors are required to be 1) cryptographically signed by the originating staker, and 2) made

publicly visible to all clients. A staker is a client that owns some minimum threshold of monetary

stake on the network, and has 0 or more staked wallets. Wallets cannot be modified without an

active staker. The model assumes an honest majority of stakers, meaning > 50% of stakers act

in accordance with the agreed upon protocol. Transactions include a list of all wallets that will

be modified during execution. Stakers create descriptors for the purpose of ordering conflicting

transactions. Stakers automatically reject transactions that are not signed by all involved wallet

owner, or are malformed.
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Transaction Immutability And Finality

Transaction’s “lazily” gain confirmations over time based on their semantic conflicts. When a

staker submits a descriptor d, that staker implicitly commits to a view of the ledger that includes

all parent descriptors of d in the precise order given by the hash of d. This is demonstrated in figure

4.5.

Figure 4.5: Descriptors contain the hashes of their parents. These descriptors are said to “confirm”
their parent. Over time, a descriptor (D1) gains many confirmations, as its number of descendants
grow.

If an attacker were to attempt a long range attack by modifying a descriptor d, the attacker would

also need to recompute the hash of all descendants of d. Although this does not require a large

expenditure of computation, like that of PoW, it is still infeasible if the modified descriptor has

a large body of confirmations. This is because a descriptor is invalid if it is not broadcast by the

unique staker for the wallet address modified by d at d′s location in the graph. As such, if d has

any descendants that were produced by a staker other than the attacker, the attacker would need to
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either forge the signature of that descriptor, or convince the staker to join the attack. If the attacker

cannot do this for every descendant of d, the attacker’s corrupt ledger would contain at least one

pair of descriptors with mismatching hash sequences. PoD is similar to related approaches in that

the chance of a successful long range attack on a transaction decreases for transactions with more

confirmations. Specifically, a transaction that has received confirmations from x% of stakers on

the network would require a coordinated attack from all x% of confirming stakers to modify. As

such, it is possible for a transaction to achieve 100% immutability if it has received confirmation

from 100% of the staker on the network.

Since relations are only formed between transactions that have a semantic conflict, a particular

descriptor could remain in an isolated section of the PoD graph if it is part of a wallet with a low

volume of transactions. We address this problem by optionally including some number of “aux-

iliary parents” with descriptors. These descriptors have no semantic conflict with their auxiliary

parents, but still provide a confirmation to the auxiliary parent by including its hash and acknowl-

edging its correctness.

Illegal Fork

The prevTransactionDesc field of every descriptor created by a staker s form a sequential chain,

showing the relative ordering of every transaction involving the wallet staked by s. This sequence

allows the state of any wallet in the network to be computed by applying transactions in the order

formed by their descriptors. However, a malicious staker could select a prevTransactionDesc field

that does not truly reference the most recent transaction involving s, instead referencing some older

transaction. Figure 4.6 demonstrates this case. Here we see that a fork is created after Descriptor

1b by Bob. Since there is no total ordering between descriptors 2a and 3b, it is unclear in which

order they should take effect. The separate branches can never be merged, as the resulting history
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would not be serializable. Thus, one branch must be ignored. A malicious staker may attempt this

in an effort to “undo” a transaction, by convincing the network to commit to a new branch that

doesn’t contain the transactions they want undone.

Figure 4.6: Descriptors 2a and 3b have no total ordering, despite conflicting about Bob’s staked
wallet. Since all conflicting descriptors in the ledger must have a total ordering, one branch must
be ignored. This is an attack by Bob in an attempt to undo either Descriptor 2a, or 3b, and is
analogous to a double-spend.

In PoD, we mitigate this attack by having each staker append their staked currency to the ledger

as a transaction. These “stake” transactions must be appended every n-th descriptor emitted by the

staker. This transaction is included in the descriptor sequence. In the case that an attacker creates

a fork, it can be ambiguous which branch is the original, and which one is new. However, since

stakers include their stake in the descriptor sequence of their descriptors, and since each descriptor

confirms its parents, we can assess the stability of a descriptor by the sum of staked currency

that confirms it. Consequently, in the case that an illegal fork appears in the ledger, we choose to

ignore the branch with less staked currency confirming it. When a transaction is newly added to the
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ledger, it can quickly start receiving confirmations from subsequent transactions, some of which

will include some amount of stake. The more stake that confirms a descriptor, the more difficult it

becomes to undo the descriptor by creating a competing a branch. In order to do so, the attacker

must control more stake than the growing number of stakers on the original branch. This is similar

to PoW or PoS, in which users often wait for a certain number of block confirmations before they

consider their transaction final.

Once the fork has been resolved, the network must come to agreement on the most recent descrip-

tor from the offending staker in the chosen branch. This can be handled similar to the approach

described in Ethereum EIP2982 [13], in which a 2/3 super majority vote to slash the offending

staker at a point in time corresponding to descriptor d means the network will ignore any descrip-

tors produced by the offending staker that are descendants of d. In the example given by figure 4.7,

honest stakers vote to slash the offending staker at Descriptor3, as it is the latest descriptor in the

branch with the most staked tokens at the time of the vote.

Figure 4.7: A staker produces a fork at descriptor 1. The branch corresponding to descriptor 2 has
a larger quantity of network staked tokens confirming it, and is considered the majority branch.
Descriptor 2b has fewer tokens confirming it, and is the minority branch. Descriptor 3 is the latest
descriptor from the offending staker at the time of the fork.
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In the case that a staker is lured into creating descriptors on an attacker’s branch, that staker will

need to switch over to the branch that has more stake confirming it. This would create a fork in

their own history, but should not be considered malicious since it cannot be proven that they were

involved in the original, illegal fork. Assume in figure 4.6 that the branch starting with descriptor

3b has more stake confirming it. In this case, Alice cannot continue her descriptor sequence after

descriptor 2b, as it is on a branch that will be ignored by the network. In this case, she can

ignore descriptor 2b and proceed from descriptor 1a, but ensure that her next descriptor confirms

descriptor 3b via auxillary parent. This proves that the fork she creates at descriptor 1a came as a

direct result of the fork created by Bob, and that she switched after Bob issued descriptor 3b.

In this approach, stake serves two purposes. Firstly, stake acts as a deterrent for malicious behavior,

as it is forfeited if a staker creates an illegal fork in the ledger. Secondly, it serves a “vote” on the

state of the ledger. By placing stake into the ledger following a particular descriptor, a staker is

expressing an intent to acknowledge the full history of transactions that leads up to that point, as

well as an intent to continue that history by appending more transactions. The staker is discouraged

from switching to a conflicting branch, as doing so would undo any work they did in the original

branch.

Transaction Denial Attack

A transaction denial attack occurs when an attacker tries to prevent a certain transaction from being

confirmed. This attack can occur if the staker of a wallet ignores a valid transaction, refusing to

produce a descriptor and stalling the transaction’s progress indefinitely. This situation can also

occur if a staker were to go offline without first transferring or relinquishing their staked wallet.

Our algorithm mitigates this attack because descriptors must be created in the same order as the

operations for the transaction. Therefore, the next staker for an active transaction is always known.
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Stakers on the network wait until they have personally observed inactivity from a staker pertaining

to an active transaction for a minimum threshold of time, after which they will initiate a vote to

slash the staker using the same approach as the previous section.

Centrality

The scaling problem has been stated as a trilemma: only two of three desired properties (secu-

rity, decentralization and scalability) can be achieved in a blockchain architecture [46]. Although

disputed in theory [26], with some blockchains claiming solutions for specific applications such

as bank to bank transfers and centralized program executions[2], the trilemma remains a practical

challenge.

In this paper, we proposed a blockchain consensus solution with emphasis on scalability, and se-

curity. Our approach does not claim to solve the blockchain trilemma, as there are several factors

in PoD that could prevent clients with few resources from competing with clients with many re-

sources. Firstly, PoD stakers must remain constantly active. stakers who cannot keep up with the

network will be unable to work, and get slashed. Secondly, in order to minimize latency, stak-

ers with a large quantity of stake may be incentivized to stake many wallets, allowing them to

avoid the network latency cost of waiting for other stakers to complete a transaction. Additionally,

the increased number of fees collected for processing transactions on a larger number of wallets

would incentivize stakers to grow as large as possible. Though we believe these incentives could

be mitigated, solutions for doing so are beyond the scope of this work.
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Experimental Results

In this section, we analyze the factors which affect the scalability of PoD in order to compute

maximum throughput in realistic scenarios. Additionally, we perform an analysis on confirmation

growth of transactions for varying numbers of auxiliary parents.

Effect of Latency

Figure 4.8: Effect of latency on a PoD transaction.

In PoD, stakers work with each other to efficiently build the shared ledger. This can result in sit-

uations where a staker must wait on the result of a network communication with another staker.

Figure 4.8 demonstrates an example where we are trying to publish two transactions that each

begin by modifying Wallet 1. In this case, the staker for Wallet 1 would be responsible for creat-

ing Descriptors 1 and 3. In order to ensure an unambiguous transaction ordering, and to preserve

commutability isolation, Descriptor 3 cannot be created while Transaction 1 is active. Therefore,
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Descriptor 3 must be created after Descriptor 2. If it takes 5ms after the creation of Descriptor 1 to

alert the next staker via network communication, then Transaction 2 must wait at least 5ms before

it can begin. The wait time associated with P2P latency is typically much larger than the CPU time

needed to process a transaction and create a descriptor. This means that the throughput of consec-

utive non-commuting transactions is limited by the average latency of network communications.

Commuting transactions are unaffected by this, as they can execute in parallel. Thus, assuming all

wallets are equally active, the throughput in terms of transactions per second for a PoD network

scales in two ways:

1. As the average latency of the network decreases.

2. As more wallets are added to the network, increasing the percentage of transactions that com-

mute.

We design our throughput experiments to evaluate our algorithm with respect to these metrics.

Transactions Per Second

We benchmark our algorithm by designing a test to simulate stakers processing transactions on a

distributed network to measure transactions per second (tps). In our design, each staker stakes a

single wallet, and attempts to execute as many transactions as possible within a timeframe. We

restrict each staker to a single wallet to ensure that each transaction requires at least one network

communication in order to thoroughly examine the effects of latency.

Stakers execute on a single process and communicate through shared memory with a tune-able

communication delay. We compare against the Proof of Work and Proof of History (PoH) [48]

consensus mechanisms, where PoH is the consensus mechanism used by Solana [47].
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In our benchmark, we measure the time it takes for 1,000,000 transactions to be committed. We

select this quantity so that the average experiment executes for about 5 second. Each transaction

represent a common blockchain use case, the sending of currency from one wallet to another. Thus,

each transaction composed of two operations, one for the sending wallet, and one for the receiving.

Each staker receives a constant influx of transactions initialized by executing their PROCESSDE-

SCRIPTOR method, allowing them to create a descriptor and pass it on to the next staker. This

represents a case where each wallet is maximally active, sending as many transactions per second

as the network can handle. Each staker tracks their execution time, included time spent waiting for

an active transaction to complete. The maximum of these times is used to compute the tps of the

network in terms of successful transactions.

Communication Latency

Real blockchains are not fully connected, nor is communication perfectly reliable. Clients self-

organize with a limited number of peer connections (Bitcoin uses 8) and do not enforce a network

topology. Communication is broadcast to all peers, so the shortest path is found by brute force. We

calculate the average minimum hops (shortest path) using the random network model of Erdös-

Renyi [15].

lER =
ln(N)− γ

ln(k)
+

1

2
(4.1)

Eulers constant γ = 0.5772. Average path is proportional to the log of the number of clients

over the log of the number of peer connections. In our experiments, we multiply the latency of a

single hop by the average number of hops given by equation 4.1 to compute the time penalty of

sending a descriptor object to a staker on the network. This means that as the number of stakers

52



on our network grows, so does the average minimum hops. Our experiments demonstrate that this

increase in communication time does not outpace the network’s ability to scale with added wallets.

Figure 4.9: Throughput scaling of PoD, compared against PoH and PoW.

Figure 4.9 gives the results of our scalability experiment, plotted using a log scale on the y-axis.

For comparison, we plot our results against PoW, maintaining a throughput of 5,500 tps, in line

with the peak tps measures in BSV. We plot PoH at 710,000 tps in accordance with their maximum

theoretical throughput[47].

We plot 3 experiments for PoD, representing different levels of simulated latency for a single hop

on the network. We note that as the number of wallets on the network grows, the average number

of hops increases. “PoD 8ms” represents the case where each hop takes 8ms, and therefore the

cost of sending a descriptor to the next staker takes as much as 53ms when the number of wallets

(and therefore the size of the network) is 40,000. Although the overall latency rises with the

size of the network, the scalability generated by adding wallets to the network steadily outpaces

the added latency, achieving as much as 2,800,000 tps in the 2ms case with only 40,000 wallets
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on the network, and 700,000 tps in the 8ms case. These findings agree with our performance

evaluation given by figure 4.8. Firstly, we see that when we reduce the latency of each hop, our

throughput increases at all wallet counts. This is due to the fact that stakers are able to more quickly

pass their descriptors forward to the next staker, completing each transaction in a faster time.

Similarly, increasing the number of wallets on the network increased the percentage of transactions

that commute in the case that all wallets are operating at maximum workload. Since commuting

transactions are able to execute concurrently in PoD, this increases throughput as wallets are added.

Our approach outperforms Solana’s theoretical maximum by as much as 4x in the 2ms case, and in

the 8ms case, our approach matches Solana’s performance at 40,000 wallets. Solana’s performance

is unaffected by the number of wallets on the network, as Solana does not allow transactions to be

mined concurrently, thus there is no effect of contention. Our results demonstrate that our approach

is scalable, surpassing Solana’s theoretical throughput in under 40,000 wallets across a range of

network latencies.

Transaction Confirmations

In our second experiment, we evaluate the growth of transaction confirmations as transactions are

added to the ledger. To do so, we compute the average number of descendants per descriptor in

the ledger starting from initialization. Unlike PoW, there is not a large inherent mathematical cost

associated with computing the hash of a descriptor. Instead, the hash of a descriptor is composed

of the descriptors that lead up to it. For this reason, descriptors are “confirmed” by their descen-

dants. The more descendants a descriptor acquires, the more difficult it is to modify or revert that

descriptor.

We prepare our experiment by filling our ledger with transactions using the same distribution as

the previous experiment. We begin with the ledger being empty, representing a state where no
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descriptors have any descendants, and observe the average number of descendants per descriptor

as the size of the ledger grows. We repeat this experiment, varying the number of auxiliary parents

per descriptor from 0 to 4 in order to demonstrate the effectiveness of auxiliary parents at increasing

the connectivity of the overall graph. The auxiliary parents for each descriptor are chosen randomly

from the pool of all descriptors already in the graph. This represents a worst-case scenario where

coordination is minimal and clients cannot be guaranteed to choose up-to-date, effective auxiliary

parents.

Figure 4.10: Analysis of confirmation growth.

Figure 4.10 displays the results of our security analysis. We observe that as the number of trans-

action in the ledger increases, the average number of descendants per descriptor increases as well.

This growth occurs faster in ledgers where more auxiliary parents are used. In the 4 auxiliary

parents case, the average descriptor achieves confirmations from 3,500 descriptors. Since each

transaction contains two operations, this represents 35% of the descriptors in the ledger. This

rapid growth in confirmation count across all descriptors in the network ensures that any arbitrary

transaction can reach finality.

55



Chapter Summary

In this chapter we described Proof of Descriptor, a descriptor based methodology for solving the

consensus problem on a decentralized network. Proof of Descriptor manages shared resources

to enable commutative transactions to be appended to a shared ledger concurrently. The use of

descriptor objects allows parallel cooperation among stakers, who work to find valid orderings

between non-commuting transactions. Written to the ledger, descriptor objects persist to prove

not only that a transaction took place, but how and where. Unlike traditional sequential consensus

mechanisms, our proposed Proof of Descriptor scales with the size of the network, and inversely

with communication latency.

56



CHAPTER 5: LOCK-FREE CONCURRENT SMART CONTRACTS

In this chapter, we present an approach for lock-free execution smart contracts. A concurrent con-

sensus mechanism like the one discussed in chapter 4 would be costly to implement in existing

blockchains. In this section, we describe an approach for existing networks to benefit from con-

currency without changing their consensus mechanism. Additionally, we provide an experimental

evaluation of our approach in comparison to related works.

Motivation

There are several steps involved in the creation and continued execution of a smart contract. Firstly,

a smart contract’s code is compiled and submitted in the form of a transaction to the mempool.

Miners select transactions from the mempool to include in a block, which they then try to append

to the ledger using a consensus mechanism. Once a smart contract has been deployed, its method

calls are also submitted as transactions, and included in subsequent blocks. In order to compute the

changes to the ledger made by smart contracts within a block, miners execute each transaction in

sequential order and write the corresponding changes to the block. If a miner succeeds in append-

ing their block to the chain, validators re-execute the same code, in order to verify that the state

changes written by the miner are correct. Platforms such as Ethereum implement fees proportional

to the computational steps required to execute smart contracts, called “gas.” By executing the smart

contracts within their blocks concurrently, miners and validators could perform their work faster,

increasing their own profit as well as the potential scalability of the shared ledger. However, this

makes it difficult for validators to verify the correctness of the proposed block. A block may be

composed of many smart contract invocations, each making multiples accesses to their own state

variables or even the state variables of other smart contracts. As a result, different thread inter-
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leavings can have an unpredictable effect on the state change computed from a block. In order

to guarantee that a block is invalid, validators would need to check every possible interleaving

to see if it could produce the state change proposed by the miner of the block. This intractable

computation fully negates the performance gain for the miner in executing the block concurrently.

Existing works have proposed solutions for executing smart contracts in parallel. Dickerson et al.

[11] propose an approach based on “Transactional Boosting” [17], in which each miner specula-

tively executes smart contracts in parallel by acquiring a set of locks corresponding to the desired

resources. The parallel execution is distributed as a fork-join schedule [3] to validators so that the

execution’s results can be verified.

In this chapter, we propose a lock-free methodology for concurrent smart contract transactions

which utilizes descriptor objects to synchronize thread access to shared smart contract state vari-

ables, as well as to form a concurrent history which can be checked by validators. Our approach is

based on “Lock-Free Transactional Transformations” [50]. An overview of this approach is given

by figure 5.1. Smart contract code is modified to contain a descriptor pointer for all state variables.

Whenever a descriptor is replaced using CAS, a pointer is included in the new descriptor, which

references to the old one. This naturally produces a directed graph G in which any two transac-

tions that modify the same state variables will have a total ordering. If a block of transactions is

re-executed concurrently, obeying the orderings given by G, the final state of the computation is

deterministic. This graph G is distributed along with the block, similar to [11]. Afterward, val-

idators can use graph G to deterministically re-execute the block such that their execution matches

the original.

58



Figure 5.1: Descriptors protect state variables, enabling thread synchronization and naturally cap-
turing transaction conflicts.

Methodology

In this section, we introduce a lock-free two-phase mechanism for concurrent smart contract exe-

cution. In the Primary Execution phase, a miner executes a block of smart contracts concurrently

using an algorithm based on LFTT, and distributes a graph of descriptors to validators. In the Val-

idation phase, the block is re-executed by validators, who obey the conflict ordering given by the

descriptor graph.

Primary Execution

Algorithm 8 gives the object definitions in our approach. A Transaction is a smart contract in-

vocation which has been submitted to the mempool. The Func field contains the method being

invoked, and the Data field contains any parameters. TxStatus represents the three possible states

of a transaction during a concurrent execution. The Desc object is a descriptor used to indicate the

59



Algorithm 8 System objects
1: struct Transaction
2: Data
3: Func
4: struct TxStatus
5: Active
6: Committed
7: Aborted
8: struct Desc
9: Transaction* t

10: TxStatus status
11: Set<Desc *> prevs
12: T returnValues[]
13: Operation ops[]
14: struct OpInfo
15: Desc* desc
16: T value
17: T prevValue
18: OpInfo * prev

status of a transaction that is being executed concurrently. It contains a status field, which can be

updated by threads to commit or abort transactions in a single atomic step. Additionally, it contains

a concurrent map of pointers to descriptors, prevs, representing non-commuting transactions that

committed immediately prior to t. We apply the approach of DTT [22] by adding a returnValues

field to each descriptor, which threads can refer to while helping a transaction complete to avoid

repeating method calls already completed by other threads. The OpInfo class represents a single

read/write taking place as part of a transaction. It contains an abstract type value which represents

the value of a state variable, as well as the previous value prevValue. These fields are used to log-

ically interpret the status of a state variable depending on if it commits or aborts. OpInfo objects

are accessed via pointers, which are added to the smart contract source code. Threads update these

pointers using Compare-And-Swap, ensuring that if two threads attempt to access a state variable

at the same time, only one will succeed. Additionally, whenever an OpInfo pointer is updated using

CAS, we include the previous OpInfo object in the prev field, signifying a happens-before relation
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between the two conflicting operations.

Algorithm 9 Pseudocode for a concurrent vending machine smart contract
1: OpInfo *tokens
2:
3: function DISPENSETOKENS(uint amount, Desc desc)
4: val = CallOp(desc, tokens, “GetAndIncrement”, -amount)
5: if val ≥ 0 then
6: return true
7: else
8: return false
9:

10: function GETTOKENS(Desc desc)
11: val = CallOp(desc, tokens, “Get”)
12: return true

In order to satisfy strict serializability, each data structure operation must be linearizable. For this

reason, we replace any updates within a smart contract with a CAS-based loop. Additionally, since

the concurrent execution must be re-executed deterministically by validators, we use each OpInfo’s

prev field to record transaction conflicts as they occur.

Algorithm 9 provides a simple modified smart contract as an example. The smart contract contains

a quantity of tokens represented by the state variable tokens. The method DispenseTokens subtracts

a given value from the tokens held by the smart contract. To facilitate concurrent updates, tokens is

declared as a pointer to an OpInfo object, which contains an abstract type T, representing the value

of the state variable. Instead of directly modifying the state variable, we use the library method

CallOp, passing in the operation type, as well as the amount of tokens to subtract from the state

variable. Afterwards, we check if the resulting value has gone below 0. If so, we return false,

aborting the transaction and logically rolling back any work made by it. Similarly, the GetTokens

method retrieves the current value of the state variable.

Transaction execution is handled with an approach based on Lock-Free Transactional Transfor-

mations [50], and is given by Algorithm 10. This algorithm takes a descriptor, and executes the
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Algorithm 10 Driver for transaction execution
1: thread local Stack helpStack
2:
3: function EXECUTE(Desc desc)
4: helpStack.init()
5: ExecuteTransaction(desc)
6:
7: function EXECUTETRANSACTION(

Desc desc)
8: if helpStack.contains(desc) then
9: desc.status.CAS(ACTIVE, ABORTED)

10: return
11: helpStack.push(desc)
12: ret = desc.t.Func(desc.t.data, desc, localMap)
13: helpStack.pop()
14: if ret == true then
15: desc.status.CAS(ACTIVE, COMMITTED)
16: else
17: desc.status.CAS(ACTIVE, ABORTED)

corresponding smart contract method call. Threads enter through the Execute method, in which a

thread local helpstack is initialized before ExecuteTransaction is called. We inherit the helpstack

from LFTT in order to prevent threads from getting stuck in a cyclic dependency while helping

transactions complete. If a thread finds a transaction descriptor is already in its help stack on line

10.8, it means there exists a cyclic dependency between some other transaction and desc. In order

to resolve this and prevent the thread from looping indefinitely, the transaction is aborted. After-

ward, the thread reads the method and parameters of the smart contract call from desc, and calls the

corresponding method. Once the thread has reached the end of the smart contract code path, the

status of the transaction is atomically set to committed on line 10.15, signalling to all other threads

that the transaction is complete, and any that subsequent conflicting transactions may proceed.

The CallOp method is given by algorithm 11. This method takes a state variable pointer p, and

performs the operation given by type, utilizing any arguments given by args. On line 11.2, we

check if the current transaction is still active by check the status field of its descriptor. Since
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Algorithm 11 Call Operation
1: function CALLOP(Desc * desc, OpInfo * p, OpType type, args...)
2: if desc.status == ABORTED then
3: return null
4: opid = helpstack.GetOpId()
5: if desc.returnValues[opid] exists then
6: return desc.returnValues[opid]
7: desc.ops[opid] = new Operation(args)
8: newInfo = new OpInfo()
9: newInfo.desc = desc

10: newInfo.opid = opid
11: while true do
12: ret, val = UpdateInfo(p, newInfo, type, args)
13: if ret == SUCCESS then
14: break
15: if ret == FAIL then
16: return null
17: desc.returnValues[opid] = val
18: helpstack.NextOp()
19: return val

threads may work on transactions concurrently, it is possible that another thread completed the

transaction, in which case the current thread stops its execution. The id of the current operation

is retrieved from the helpstack on line 11.4. This enables the thread to check if there is already a

returnValue for this operation in the descriptor. If so, we simply return the returnValue stored in

the descriptor, avoiding the need to repeat any work completed by another thread. Afterwards, a

new OpInfo object is initialized, and passed into the UpdateInfo method. The UpdateInfo method

attempts to update p to contain newInfo. If successful, the while loop can be broken, otherwise,

the loop is retried. Upon success, the new value of the state variable is written to the descriptor’s

returnValues field on line 11.17. Additionally, the helpstack is updated to increment the opid of

the current transaction.

Algorithm 12 gives the CAS-based update pattern similar to that of LFTT. First, the current value

of p is atomically dereferenced, and stored as oldInfo. The objective of this method is to atomically

63



Algorithm 12 CAS-based update
1: function UPDATEINFO(OpInfo * p, OpInfo * newInfo, OpType type, args...)
2: oldInfo = p.load()
3: if oldInfo.desc != newInfo.desc then
4: ExecuteTransaction(oldInfo.desc)
5: else if oldInfo.opid ≥ newInfo.opid then
6: return SUCCESS
7: if oldInfo.desc.status == COMMITTED then
8: val = oldInfo.value
9: else

10: val = oldInfo.prevValue
11: newInfo.prevValue = val
12: if type == “Get” then
13: newInfo.val = val
14: else if type == “Write” then
15: newInfo.val = args
16: else if type == “GetAndIncrement” then
17: newInfo.val = val + args
18: if desc.status != ACTIVE then
19: return FAIL
20: newInfo.prev = oldInfo
21: if p.CAS(oldInfo, newInfo) then
22: return SUCCESS, newInfo.val
23: else
24: return RETRY

swap the value of p from oldInfo to newInfo. If oldInfo references a descriptor that is different to

that of newInfo, the thread will first help that transaction complete by calling ExecuteTransaction

on line 12.4. Otherwise, if another thread has already completed the operation, the rest of the

operation is skipped (line 12.6). The current value of the state variable is logically interpreted

based on the status of the descriptor on line 12.7. If the previous operation committed, we read

the value field. If the transaction did not commit, we instead read the prevValue field, effectively

rolling back the changes made by the aborted transaction. The new value of the state variable is

computed based on the operation being performed, before CAS is used to update p on line 12.21. If

the CAS succeeds, it means no other threads attempted to update p after its value was read on line
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12.2. If another thread did change p in that time, the CAS operation will fail, returning a RETRY

code. Since oldInfo represents the previous operation that modified p, we must capture their relative

execution order so that the concurrent execution can later be validated deterministically. This is

done by storing a reference to oldInfo within newInfo on line 12.20.

Validation

During the validation phase, all validators on the network re-execute each transaction within the

proposed block and verify that the final state proposed by the miner is accurate. In our approach,

validators execute the block concurrently using the same lock-free algorithm as in the primary

phase, treating the descriptor graph as a fork-join schedule.

Algorithm 13 Graph construction
1: function COMPUTEGRAPH

2: for each state variable s do
3: currInfo = s.load()
4: while currInfo != null do
5: prevInfo = currInfo.prev
6: if prevInfo != null then
7: currInfo.desc.prevs.append(prevInfo.desc)
8: currInfo = prevInfo

Algorithm 13 gives the code for building the graph after all transaction have been executed. The

current OpInfo object is loaded from each state variable. Since each OpInfo object contains a

reference to the operation the occurred immediately prior, we finalize the graph by appending each

reference to the corresponding descriptor on line 13.7. Afterwards, we set currInfo = prevInfo

and repeat until currInfo is null. This process iterates over each state change that occurred during

execution, requiring only O(n ∗m) time, where n is the size of the block, and m is the number of

operations performed per transaction.
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Algorithm 14 Block validation
1: function VALIDATEBLOCK

2: leafs← leafs nodes ∈ ComputeGraph()
3: for desc in leafs do
4: fork→ Validate(desc)
5: join all forks
6: if final state matches block then
7: return valid
8:
9: function VALIDATE(Desc *desc)

10: for prev in desc.prevs
11: fork→ Validate(prev)
12: join all forks
13: ExecuteTransaction(desc)

The ValidateBlock method takes a graph of descriptors given by ComputeGraph, and executes each

transaction descriptor with respect to its conflict ordering during the primary execution phase. To

begin, a thread is spawned for each leaf node in the graph, which call Validate on line 14.4. In

the Validate method, the block is re-executed deterministically using a fork-join approach. On line

14.10, the thread loops through all predecessors of desc, containing the transactions that immedi-

ately preceded desc in the history represented by the descriptor graph. The thread forks for each

sub-task by calling ExecuteTransaction, passing in the current descriptor. The join operation on

line 14.12 ensures that each predecessor of desc executes fully before desc. After desc is executed,

the thread compares the descriptor produced by the call to ExecuteTransaction to the descriptors

produced during the execution phase on line 14.6. If the descriptors differ, then the block fails its

validation. If the descriptors match those of the execution phase, then execution proceeds until all

transaction have been executed. If none of the generated descriptors differ from the original execu-

tion, then the proposed state of the block given by the miner matches the state given by executing

the block of transactions concurrently according to the ordering given by the descriptor graph.
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Correctness

Our proposed algorithm is designed for the correctness condition strict serializability. The defini-

tion of strict serializability is given by Herlihy and Koskien [17]. Our work follow from the proofs

of Zhang et al. [50] that LFTT is strictly serializable.

Rule 1. Linearizability For any history h, two concurrent invocations I and I’ must be equivalent

to either the history h · I · R · I’ · R’ or the history h · I’ · R’ · I · R

Rule 2. Commutativity Isolation: For any non-commutative method calls I1,R1 ∈ T1 and I2,R2 ∈

T2, either T1 commits or aborts before any additional method calls in T2 are invoked, or vice-versa.

A data structure is strictly serializable if each operation on that data structure is linearizable [19],

and each transaction satisfies commutativity isolation. To prove the linearizability of our approach,

we identify the linearization points. To prove that transactions in our approach satisfy commuta-

tivity isolation, we examine possible transaction conflicts in the code path of our algorithm.

Lemma 1. The UpdateInfo method is linearizable

Proof. The linearization points for a variable updated in the style of algorithm 9 occurs on line

12.21, when the CAS operation is executed. It is at this point that the changes made by a thread

to some state variable s become visible to all threads. If the operation fails, it means that another

thread has succeeded their own CAS operation, and the loop is retried.
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Lemma 2. Transactions executed by ExecuteTransaction satisfy commutativity isolation

Proof. Two smart contract method invocation commute if they read or write to a disjoint set of

state variables. Let T1 be an active transaction that has successfully updated the descriptor pointer

for a state variable s1 by executing the CAS on line 12.21. If a transaction T2 attempts to update

s1, it will read the status of the descriptor placed there by T1 at line 12.4, and help T1 complete. In

this case, T1 clearly commits before T2 is able to access s1.

If T1 and T2 were to arrive at line 12.21 at the same time, having read the same value for oldInfo,

one will succeed the CAS operation, and the other will fail. On the next loop, the failing thread

will, if necessary, help the succeeding transaction complete before proceeding. In this case, the

thread that succeeds the CAS operation will commit its transaction before the failing thread is able

to update the descriptor.

Theorem 1. The proposed concurrent smart contracts algorithm is strictly serializable

Following from the conclusions of Herlihy and Koskien [17], given Lemma 1 and 2, our proposed

algorithm is strictly serializable.

Progress Guarantee

Our approach provides a guarantee of Lock-Free progress. Lock-Freedom guarantees that for any

given execution, at least one thread will make progress in a finite amount of steps. To prove this,

we analyze the unbounded loop CAS-based loop pattern given by algorithm 11. The while-loop

during any state variable read/write terminates when the call to UpdateInfo returns true. For any
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active transaction, UpdateInfo returns true if the CAS on line 12.21 succeeds, terminating the loop.

If the CAS fails, it means another thread has succeeded their own operation, therefore at least one

thread is guaranteed to make progress. In the case that a thread must help a pending operation

complete, the maximum number of recursive help calls is equal to the maximum number of active

transactions, which is equal to the number of threads i. In the worst case, i− 1 all help to complete

the transactions started by thread i. In this case, all threads will execute the CAS on line 12.21,

and at least one will make progress.

Descriptor Graph

In this section, we prove that the references placed in each transaction descriptor during transaction

execution represent a strictly serializable history of that execution.

LFTT detects conflicts semantically whenever transactions attempt to modify the same memory

location using CAS. In the UpdateInfo method, the current state of a memory location p is atom-

ically dereferenced on line 12.2. If the CAS operation on line 12.21 succeeds, it means that no

updates occurred at p after oldInfo was read. Thus, the operation described by oldInfo reaches its

linearization points before the operation described by newInfo, with no operations occurring in be-

tween. This ordering is captured by including a reference to oldInfo within newInfo on line 12.20.

This produces a total ordering between each pair of non-commuting operations. Since commuting

operations can be executed in any order without affecting the final state, the resulting descriptor

graph can be executed deterministically to verify the validity of the Primary Execution.
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Experimental Evaluation

We benchmark our algorithm by implementing a Vending Machine smart contract. In this contract,

threads can execute Vend(i), which updates a state variable at array index i. For our experiments,

Vend may be invoked multiple times in a single transaction, increasing the number of state variables

accesses per transaction.

We perform experiments to analyze the scalability of our approach in terms of transaction through-

put. We generate a block of 106 Vend calls, containing N state variable accesses. This very

large block size allows threads to perform a large number of concurrent transactions, ensuring

that threads have an appropriate amount of time to execute concurrently. Indices of operations are

selected in a uniform random manner. We hold the number of user keys constant at 10,000 to gen-

erate conflict between operations. In many implementations, smart contract methods may make

calls to other smart contracts, potentially accessing a large number of state variables in a single

transaction. As such, we repeat our experiment for each N ∈ 4, 8, 16, where N is the number of

state variable accesses per transaction. We execute our benchmarks on an Intel i7-12700k proces-

sor with 8 cores. We execute each algorithm using 1 to 8 threads, taking the average execution

time across 10 runs. Timing begins when threads are spawned and begin execution transactions.

Timing completes when all transactions have been executed. We measure the throughput in op/ms,

and plot each algorithm’s throughput against the number of threads.

In order to compare our approach, we implement the transactional boosting approach of Dicker-

son et al. [11]. For transactional boosting, we pre-allocate locks for each state variable in the

experiment. Additionally, we implement an undo log for rolling back transactions upon abort. 1.

Figure 5.2 gives the results of our throughput experiments. We denote our approach “LFTT,” and

1The source code for our experiments is available at: https://github.com/ZacharyPainter/ConcurrentSmartContracts/tree/main
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Figure 5.2: Scalability comparison.

transaction boosting approach “Boosting.” We observe that as the value of N increases, the cost of

transaction rollbacks increases for boosting, causing a decrease in performance relative to LFTT.

LFTT outperforms boosting by 20% across each thread count when N = 8, and as much as 28%

when N = 16. This is due to the thread helping scheme preventing transactions from aborting in

LFTT except in cases where a cyclic dependency occurs. In boosting, aborted transactions must be

physically rolled back, negating any progress made during the transaction in addition to delaying

the start of a new transaction.
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Figure 5.3: Failed transactions comparison.

Figure 5.3 compares the ratio of aborted transactions generated by each algorithm. As transaction

size increases, and therefore the likelihood of transaction conflicts, the ratio of spurious aborts

in boosting increases up to almost 10% at the largest transaction size (N=16). In comparison,

LFTT aborts only .05% of transactions. This is because LFTT only aborts transactions in the case

of a cyclic dependency, whereas boosting aborts transactions whenever a conflict is detected. In

this way, LFTT dramatically reduces the number of transactions that must be re-executed without

coverage by smart contract execution fees.

Chapter Summary

In this chapter, we described a lock-free algorithm for concurrent smart contracts. Our approach

uses descriptor objects to synchronize thread access to smart contract state variables, as well as

to build a fork-join schedule without the use of locks. Validators utilize the fork-join schedule to

verify the correctness of a proposed block using the same lock-free algorithm.
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CHAPTER 6: CONCLUSION

In this dissertation, we described several approaches for solving concurrency problems in decen-

tralized networks by adapting known SMP techniques.

In chapter 3, we presented Hash-Mark-Set (HMS). HMS provides blockchain clients with a READ-

UNCOMMITTED view of blockchain state variables. Additionally, HMS provides clients with in-

formation about transaction dependencies, allowing miners the option to minimize the number of

failed transactions per block by choosing a transaction order that respects the dependencies given

by HMS. We evaluate our approach in cases where state variables change frequently between

blocks, with read to write ratios varying between 1:1 and 20:1. In these tests, our approach im-

proves transaction efficiency by as much as 16x when semantic mining is used, and by an average

of 5x when no miner involvement is used.

In chapter 4, we presented Proof of Descriptor (PoD). PoD is a consensus mechanism designed

to support concurrent updates to the ledger by clients on the network. This differs from existing

consensus mechanisms, which designate a single “leader” to propose the next block. Our approach

adapts the use of descriptor objects from LFTT, enabling clients to produce a history of transactions

that is strictly serializable, and therefore, equivalent to some history of transactions where each

transaction is executed sequentially. In experiments, we demonstrate our approach is capable of

outperforming Solana, the fastest sequential blockchain, due to the possibility of concurrent ledger

updates.

In chapter 5, we presented an algorithm for lock free execution of smart contracts. This approach is

designed for existing blockchains, where it may be infeasible to replace the consensus mechanism

with that of Chapter 4. This approach also adapts the descriptor-based execution of LFTT to enable

all transactions with a block to be executed concurrently. The descriptor objects created during this
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process are re-purposed to form a graph representing all transaction conflicts that occurred during

execution. This graph is used by validators to re-execute the block deterministically, ensuring

that they achieve the same computational result as the miner. Our approach outperforms related

approaches due to its better handling of contention, and efficient construction of the dependency

graph.
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