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ABSTRACT

When a production company commits to creating a film based on a novel, it is essen-

tial that their team is equipped to manage the extensive responsibilities required to

authentically translate the book to the big screen. This study aims to explore and

address these challenges by utilizing contemporary Generative Artificial Intelligence

technologies, including Large Language Models, Text-To-Speech, and Text-To-Image

models. While recent advancements have focused on enhancing these models, there

is a gap in research on their practical application and effectiveness in real-world sce-

narios. This research will detail the steps necessary to deconstruct a novel’s narrative

and produce the final cinematic product. Additionally, it will propose novel methods

to mitigate errors such as hallucinations generated by Language Models and image

models, enhancing the fidelity and quality of the adaptations.
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ABBREVIATIONS

ChatGPT A version of the GPT (Generative Pre-trained Transformer) model fine-

tuned for chat applications.

CoT Chain of Thought: A technique used in AI models to process a series of rea-

soning steps or thought processes.

DALL-E A model developed by OpenAI that generates images from textual descrip-

tions.

EOS End of Sentence: A token used in natural language processing tasks to signify

the end of a sentence or the completion of a text passage.

EPCT Expanded Prune Chain of Thought: A specific adaptation of the Chain of

Thought technique that involves expanding on initial ideas and then refining or

pruning these ideas to enhance model output.

GenAI Generative Artificial Intelligence: AI techniques that are used to generate

new content, including text, images, and audio.

LLM Large Language Models: Models trained on vast amounts of text data to

perform a variety of language tasks.

NLP Natural Language Processing: The technology used to aid computers to un-

derstand, interpret, and manipulate human language.

TTS Text-To-Speech: A technology that converts text into spoken voice output.
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INTRODUCTION

The adaptation of written stories into visual narratives presents complex challenges

for producers, directors, writers, and possibly even the original novelists. These

stakeholders are tasked with ensuring that the visual representation faithfully captures

the essence and subtleties of the source material. This thesis explores the potential of

Generative AI, especially LLMs, to streamline and enhance this adaptation process.

Traditional methods of scene delineation in literary adaptations rely heavily on

human interpretation and manual segmentation, which can be both time-consuming

and inconsistent. The advent of advanced NLP techniques offers a promising alter-

native. By employing LLMs, this research aims to automate the segmentation of

narratives into distinct scenes. This automation is expected to improve consistency

and efficiency in capturing the narrative flow essential for visual storytelling.

Following the identification of scenes, the next challenge lies in content general-

ization and context synthesis. LLMs are utilized to abstract the essential elements of

each scene, ensuring that all relevant details are preserved while unnecessary specifics

are omitted. This abstraction is crucial for crafting concise yet comprehensive scene

descriptions, which serve as the foundation for subsequent narration and visual rep-

resentation.

The process continues with the generation of detailed prompts for Text-To-Speech

and image generation models. These prompts are meticulously engineered by the

LLM to produce vivid narrations and accurate visual depictions of each scene. The

research leverages modern GenAI, including OpenAI’s TTS and DALL-E models, to

transform these prompts into audio and visual content. The effectiveness of prompt

engineering, especially in terms of precision and adaptability, plays a pivotal role in

the fidelity of the output.

The research outlined here sets a structured framework for using LLMs in film

adaptation, detailing each phase of the process from scene delineation to the gen-
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eration of multimodal outputs. By integrating NLP with GenAI technologies, the

project not only aims to streamline the adaptation process but also to enhance the

creative potential of visual storytelling. Through systematic analysis and application

of these technologies, the study demonstrates how automated processes can coexist

with artistic goals to produce engaging and faithful adaptations.
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LITERATURE REVIEW

As Language Models grow in popularity, as do their use cases, which include clas-

sification and named entity recognition(Wang et al., 2023; Sun et al., 2023). The

transformer architecture not only provides a robust means of handling tasks but of-

ten enhances the performance of these tasks. While models can be trained from

scratch, it is often more cost-effective and practical to fine-tune or use pre-trained

models, mainly due to the high costs associated with training models from scratch.

The predominant architecture among high-performing Language Models is the

transformer, which typically consists of an encoder and a decoder. The encoder

processes every token in the input sequence with full contextual awareness, while the

decoder generates tokens sequentially, using only previous tokens as context. These

components may be combined into a single unified model or used separately and are

typically layered multiple times to enhance prediction accuracy (Vaswani et al., 2017).

Text sequences are initially processed by a tokenizer, which segments the raw text

into discrete tokens. These tokens are then embedded into a high-dimensional space

and further enriched with positional encodings to account for the lack of inherent

sequence recognition in the transformer architecture:

e
′

t = Em(xt)

et = e
′

t + pt

Here, Em represents the embedding function mapping each token xt to its vector

representation et. The positional encoding pt is then added to each vector, ensuring

that the sequential order of tokens is preserved.

The core mechanism of the transformer, the attention mechanism, uses these

embeddings to model the contextual relationships between tokens effectively:
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Q = Wqet

K = Wket

V = Wvet

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

Here, Q, K, and V represent the query, key, and value matrices, respectively, each

derived from the embeddings through distinct linear transformations (Wq, Wk, Wv).

The dimensionality of the key vectors, dk, is used to scale the dot products, improv-

ing training stability and performance. The attention heads are then concatenated

into a single matrix, leading to multi-head attention, which is designed to handle the

downstream process in a unified manner. The concatenation and subsequent pro-

cessing layers, including residual connections and normalization, allow the model to

effectively integrate information across the entire sequence, enhancing both accuracy

and efficiency. The LayerNorm and Residual Connection which were both indicated

in Vaswani’s work.

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O

Result = LayerNorm(x + Sublayer(x))

Finally, the multi-head is fed into a Feed Forward Network(FFN), this assists the

model in handling any possible non-linear terms. The FFN consists of two linear

transformations with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2

4



This output can now been used to create a probability distribution by applying a

softmax onto the resulting logits of the transformer model.

P (tk+1|t1, t2, . . . , tk) = softmax(zk+1) = ezk+1∑
j ezj

Here, tk+1 is the token at position k + 1, zk+1 represents the logits output by the

model for all possible next tokens given the tokens t1, t2, . . . , tk up to position k, and

the denominator represents the sum of the exponential of all logits, ensuring that

the probabilities sum to 1. This probabilistic output allows for diverse applications

of language models, such as text generation, where sampling from this distribution

enables the creation of text sequences, for classification and translation, where the

most likely output is chosen based on the learned context.

Moving beyond merely training large language models, prompt engineering, par-

ticularly through techniques like Chain-of-Thought (CoT), signifies a substantial evo-

lution in model application to complex reasoning tasks. Prompt engineering tran-

scends traditional training methods by incorporating strategically crafted prompts

that guide the model through a logical, step-by-step reasoning process, thus enhanc-

ing performance on tasks demanding deeper cognitive capabilities. This approach not

only augments the technological capabilities of models but also aligns their outputs

more closely with human-like reasoning processes. By employing such techniques,

researchers can elicit more nuanced and accurate responses from models, showcasing

the impact of prompt engineering in modern applications (Sahoo et al., 2023, p. 2).

From the text input given by training and prompting LLMs, the expected outputs

for this research are both spoken audio and corresponding images that capture the

scene’s essence. A crucial objective of this research is to manage inconsistencies and

hallucinations effectively, ensuring each scene’s robust and coherent representation.
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To improve the fidelity and relevance of generated images, we employ refined prompt

engineering techniques, as discussed in related research (Wang et al., 2024). This

strategy ensures that image models prioritize and accurately represent the essential

content of the input.

For the Text-to-Speech component, the primary input from the CoT process is the

text content, which the models convert into spoken audio. Here, the focus is less on

contextual depth and more on clear and precise narration of the content, addressing

the narrative needs without the complexity of maintaining character consistency or

context, as detailed in the research found (Tan, Qin, Soong, & Liu, 2021).

Given the multi-modal nature of this project, each output—audio and visual—requires

a tailored approach to address specific challenges identified during the research. This

nuanced handling is vital for achieving a seamless and engaging user experience, where

each modality complements the other to produce a coherent and captivating multi-

media narrative. By integrating these advanced techniques, the project aims to push

the boundaries of what is possible with generative models, setting a new standard for

automated content creation.
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THEORY

This section builds upon the foundational understanding of Language Models’ the-

oretical properties established in earlier discussions. We introduce novel approaches

leveraging transformer technology, aimed at enhancing the robustness and reliability

of Language Models in practical applications. Transformers generate sequences by

predicting one token at a time, based on the current state of the prompt, until an End

of Sentence (EOS) token is produced, signaling the termination of a sequence. This

dynamic allows for the flexible generation of text based on the preceding context,

pivotal in tasks such as translation, summarization, and more.

Traditional use of Language Models for tasks such as classification or Named En-

tity Recognition (NER) often relies on a static application of single prompts, leading

to rigid and sometimes unreliable outputs. To address this, we explore a resampling

strategy that involves generating multiple outputs from a single prompt, thereby ex-

tending the variability and robustness of the generated sequences through the stochas-

tic nature of token generation and sequence termination.

Sequence Distribution

Language models, especially those based on the transformer architecture, gener-

ate sequences by predicting one token at a time. Given an initial sequence of to-

kens x1, x2, . . . , xn, the model extends this sequence by generating additional tokens

xn+1, xn+2, . . . , xn+k, where each token is conditioned on the preceding tokens. The

probability of generating any specific token xn+i can be mathematically expressed as:

P (xn+i|x1, x2, . . . , xn+i−1)

This probability is calculated using the output of the transformer model, where each

subsequent token prediction is influenced by the logits obtained from the final trans-
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former layer, translated into probabilities through a softmax function:

P (xn+i|x1, x2, . . . , xn+i−1) = softmax(zn+i) = ezi+1∑
j ezj

where xn+i−1 represents the logits output by the model for all possible next tokens

given the tokens x1, x2, . . . , xn +i−1 up to position i, and the denominator represents

the sum of the exponential of all logits, ensuring that the probabilities sum to one.

The softmax function can then used to generate the probabilities required to define

a categorical distribution. And to obtain the probability of the entire sequence of

tokens generated it is possible to represent this by

P (P) =
n+i∏
j=1

P (xj|x1, x2, . . . , xj−1)

where P is an initial prompt that will be fed into the Transformer model. And

now with this step we are given a distribution that represents each token generated

update to a index of i, and the final result is a conditional probability mass function,

where each subsequent token is conditional on the previous. Each function at each

step is a categorical distribution, by virtue of the SoftMax function. And with the

assumption that each token generated are independent from one another, we can

generalize a transformer architecture into the following:

P (P) =
n+i∏
j=1

P (xj)

Where P (∗) is the categorical distribution. Since with the independent assumption

and P (∗), we can create a multinomial distribution with different values for each

X1 = x1, X2 = x2, . . . , Xi = xi, we can redefine all the combination of each token

8



generated, to be singular random variable X ‘, and then the resulting joint distribution

will become a singular multinomial distribution where X ‘ is the entire sequence of

tokens.

P (P) = n!
x1! · · · xk!p

x1
1 · · · pxk

k

where k is the number of tokens.

Sequence Termination

The generation of an EOS token is a critical aspect of sequence modeling, as it

determines the point at which the sequence should logically conclude. The probability

of the k-th token being an EOS token, given the preceding sequence x1, x2, . . . , xk−1,

is given by:

P (xk = EOS|x1, x2, . . . , xk−1)

This probability is computed from the transformer’s output at position k − 1, trans-

formed through a SoftMax layer that normalizes logits corresponding to each possible

next token, including the EOS:

P (xk = EOS|x1, x2, . . . , xk−1) = ezEOS∑
l ezl

where zEOS is the logit for the EOS token, and the denominator sums the exponentials

of logits for all possible tokens. The product of the probabilities leading up to and

including the EOS token provides the likelihood of the sequence ending at the k-th

token:

9



PEOS(x1, x2, . . . , xk) =

P (xk = EOS|x1, x2, . . . , xk−1) ×
k−1∏
i=1

P (xi ̸= EOS|x1, x2, . . . , xi−1)

This outlines that the mathematical basis for understanding how language models

predict the end of sequences, emphasizing the fact that the sequence termination

leads to a conditional multinomial distribution with the final prediction being the

EOS prediction.

Bootstrapping

Bootstrapping is a statistical resampling technique used to estimate the distribution

of a statistic by sampling with replacement from the original dataset. Developed by

Efron (1979), this method is essential for assessing the stability of statistical esti-

mates, providing confidence intervals, and performing hypothesis testing when the

underlying distribution of the data is unknown or complex. Its non-parametric na-

ture makes bootstrapping particularly valuable across various fields such as economics,

medicine, and machine learning, where traditional assumptions of parametric tests

are not feasible.

Extending its utility beyond these areas, bootstrapping is also crucial in the field of

artificial intelligence, specifically in assessing the outputs of language models. Within

the realm of transformer-based models, the technique is invaluable for evaluating

the distribution and reliability of generated text sequences. These models, central

to tasks such as translation, summarization, and automated response generation,

benefit greatly from bootstrapping as it allows researchers to measure and ensure the

robustness and consistency of their outputs under varying conditions.

For a given prompt P , let S = {s1, s2, . . . , sk} represent the sequences generated

10



by the transformer in response to P . To perform bootstrapping, we generate multi-

ple bootstrap samples {S∗
1 , S∗

2 , . . . , S∗
m}, where each S∗ consists of sequences chosen

randomly with replacement from S.

S∗ = {s∗
1, s∗

2, . . . , s∗
k}

Each sequence in S∗ is generated based on the probabilistic outputs of the resam-

pled sequences of the transformer model:

P (s∗
i |P) = Probability of sequence s∗

i including its termination by EOS token

The joint probability of all sequences in a bootstrap sample S∗, conditioned on

the prompt P , can be computed as:

P (S∗|P) =
k∏

i=1
P (s∗

i |P)

This joint probability encompasses the probabilities of individual sequence gener-

ations. Analyzing the new generations of P (S∗|P) across different bootstrap samples

helps quantitatively evaluate the model’s consistency and robustness. Such analyses

are crucial for applications requiring high levels of precision and reliability, allowing

developers to fine-tune and optimize models based on observed performance variabil-

ity and stability in output generation.
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Resampling Refinement

Consider a transformer model L that, given an initial prompt P , generates a distri-

bution over possible continuations, and denoting this distribution as PEOS(P). Given

a prompt P , we generate n samples S1, S2, . . . , Sn from the model L. Each sample Si

is drawn from the conditional distribution PEOS.

Concatenate these samples into a single sequence:

Sconcat = S1 ⊕ S2 ⊕ . . . ⊕ Sn

where ⊕ denotes the concatenation operation.

And instead of the original prompt P , Sconcat is used as the input to the model.

The new conditional distribution becomes PEOS(Sconcat).

Now consider that the concatenation Sconcat effectively conditions the model on a

more constrained subset of the possible continuations of P . This can be seen as a

form of intersection of the conditional distributions from each sample:

P(Sconcat) ≈
n⋂

i=1
P(Si)

Where ⋂ denotes the intersection of the distributions. This intersection results in

a distribution with lower entropy because it focuses on the commonalities among the

samples, filtering out less likely continuations.

Since the output of the Transformer is a multinomial distribution, the change in

entropy reduces the variance, boosting model efficiency. The entropy of a multinomial

distribution is maximized when all probabilities pi are equal, i.e., pi = 1
k

for all i, which

leads to the highest uncertainty. As entropy decreases, the probabilities pi become

less uniform. Categories with high pi will have lower variance because pi(1 − pi)

decreases as pi approaches 1 or 0. The variance for each category in a multinomial

distribution is given by:

12



Var(Xi) = npi(1 − pi)

Where n is the number of samples, and pi is the probability of category i. When

pi is close to 0 or 1, the term pi(1 − pi) is small, resulting in low variance. Conversely,

when pi = 1
k
, the variance is maximized. This relationship shows that as entropy

decreases, the distribution becomes more peaked, and the variance decreases.

When given the concatenated sequence Sconcat, the model’s input domain is nar-

rowed to the intersection of the contexts provided by each sample, leading to reduced

entropy and variance. This enhances the consistency and predictive accuracy of the

model’s outputs, making the model more efficient and reliable in practical applica-

tions. Shepp and Olkin (1978) demonstrated that the entropy of a multinomial dis-

tribution is maximized when the probabilities are equal, confirming that entropy and

variance are interrelated. Therefore, as entropy decreases, the variance also decreases,

supporting the model’s improved efficiency and reliability.

Since entropy is a measure of the uncertainty in the distribution, a reduction in

entropy suggests a reduction in variance:

V (P(Sconcat)) < V (P(P))

When given the concatenated sequence Sconcat, the model updates its internal state

to reflect the additional context. The updated conditional probability P(Sconcat) fo-

cuses on a more specific subset of possible continuations compared to P(P). By

concatenating multiple samples, the model’s input domain is narrowed to the inter-

section of the contexts provided by each sample. This reduction in the domain leads

to a concentration of the probability mass in the conditional distribution P(Sconcat).

The intersection of the conditional distributions P(Si) captures the commonalities

among the samples. Since unlikely continuations are less likely to appear in multiple

13



samples, they are filtered out in the intersection, resulting in a distribution with lower

entropy. Mathematically, this is shown as:

H(P(Sconcat)) = −
∑

y

P(Sconcat) log P(Sconcat) <

H(P(P)) = −
∑

y

P(P) log P(P)

A lower entropy corresponds to a lower variance in the output distribution. As

variance decreases, the model’s predictions become more consistent, thus increasing

predictive accuracy. And using Sconcat as input to the transformer model, denoted

as T (Sconcat) = D, results in a final prompt D. The predictive accuracy of this final

prompt D is better than any of the original samples Si due to the reduced variance

and increased consistency of the model’s outputs.
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METHODOLOGY

In this section, we explore the application of LLMs to a corpus, demonstrating the

efficacy of Prompt Engineering with the CoT approach. These slight adjustments aim

to resolve issues with inconsistent LLM responses, ensuring that the model maintains

the context of the narrative as it processes the text. By breaking down the nar-

rative into individual sentences and employing a carefully designed system prompt,

this method seeks to preserve the integrity and coherence of the narrative as it is

transformed through AI. The details outlined here provide a foundation for further

analysis on maintaining narrative continuity and consistency through advanced AI

techniques.

The multifaceted approach used here can be broken down into two language chains

of Language Models and other GenAI models. The initial phase of the model processes

the entire text corpus into a format that the subsequent phase can handle more

easily, primarily focusing on generating the narrated visual representation of the book.

However, before advancing, each sentence is categorized into its respective scenes

using the language architecture depicted in Figure 1. This setup ensures context is

provided for both the previous and the current sentence under examination.

Current Sentence Prior Sentences

Scene delineation

Binary Result

Figure 1: Sentence parsing for scene delineation. The model assesses both the
current and prior sentences to determine the occurrence of a scene change,

outputting a binary result.

Once the binary results are collected, the scenes will be organized into groups,
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and the subsequent architecture will process each clustered scene to produce the audio

narration and visual representations for the book adaptation. This phase necessitates

the characterization of the various tasks that production companies must manage.

The figure depicted in 2 outlines the sequence of steps utilized to transform each

scene into a film component. This sequence primarily involves the use of LLM for

prompt engineering and continued refinement. It is crucial as it ensures the narrative

fed to both the TTS and image models retains its context and clarity regarding the

intended tasks. The first critical step before advancing to the second chain is the

initial generation of scene data.

Scene Delineation and LLM Resampling

in this study, the application of Language Models is leveraged to scrutinize narrative

transitions within a text, employing a method known as Prompt Engineering with

CoT to assess the continuity of scenes. The prompt’s design mandates the LLM

to discern whether a new sentence introduces a change in the scene, guided by the

narrative context formed by preceding sentences. The model responds with a binary

indication, ’0’ for no scene change and ’1’ for a definitive scene change, underscoring

the emphasis on narrative integrity and minimizing false positives in scene delineation.

The resampling approach presented in the theory step is used to take multiple

samples of the LLM here, so that the prediction has multiple samples to make predic-

tion off of, instead of just accepting a single response of the model. The enhancements

to the classification and NER capabilities of LLMs by generating multiple outputs

from a single prompt to create a probability distribution of potential named entities.

This technique aims to mitigate the risk of hallucinations — incorrect or irrelevant

responses — which are common in traditional NER tasks. The approach not only re-

fines the model’s output for reliability but also ensures the generation of context-aware

responses that maintain the narrative flow and coherence essential for robust NER
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Scene Input

Replace Pronouns

Generate Context

Named Entity
Recognition

Get Entity
Descriptions Narration

TTS ModelImage Model

Final Output

Figure 2: Architecture for Generating Narrated Scenes from Text Using LLMs.
This diagram outlines the step-by-step process from initial scene input to the final
output involving both visual and auditory modalities. The workflow incorporates

stages such as pronoun replacement, context generation, named entity recognition,
entity description, and multi-modal output generation using image and

text-to-speech models
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Your task is to carefully assess whether a new sentence presents a definitive change
in the scene of a story, based on the context comprised of the preceding sen-
tences (Prior) and the sentence being analyzed (User). Concentrate exclusively
on substantial evidence within the first sentence that unmistakably indicates a
transition to a new scene. Your response should be a binary choice, 0 or 1, where
0 signifies no scene change and 1 indicates a definitive scene change (Must return
0 or 1). Given the importance of narrative integrity and flow, always err on the
side of marking 0 (no scene change) unless the sentence unequivocally introduces
a new environment, time period, or a pivotal shift in the storyline that cannot be
interpreted in any other way. Furthermore, to prevent an overestimation of scene
changes, only consider marking a scene change if the new sentence introduces
elements that are absolutely incompatible with the ongoing scene, such as a dif-
ferent location that requires travel or a time skip that is explicitly mentioned.
Prior:
User:
Response:

Figure 3: Task description for assessing scene changes in a story. The task involves
analyzing a new sentence against preceding sentences to determine if there is a
definitive scene change. Responses are binary: 0 for no scene change and 1 for a

definitive scene change.

applications. From the generated scenes, it is now possible to create the necessary

information for all downstream tasks in the chain.

Scene Context

Understanding the scene’s core narrative is a crucial step, particularly focusing on

what characters are present, doing, and look like. The initial task involves replacing

all pronouns in the text with the actual names of the entities they refer to. This

is done to help subsequent language models accurately identify who is performing

each action. Pronouns, while helpful in reducing repetitiveness in prose, can lead to

ambiguities that challenge language models during NER. This ambiguity often makes

it difficult for models to correctly identify and attribute actions to the right characters.

To address this issue, every pronoun is replaced with the corresponding character’s

name, which simplifies the text stream for the language models, thereby refining the
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input for more accurate processing. This method enhances the precision of character

tracking and interaction analysis within each scene, setting a more detailed context

for subsequent tasks. The given prompt to the model is given in figure 4.

This task involves meticulously replacing pronouns in a text with the specific
named entities they refer to, ensuring clarity and accuracy in reference. The
process will utilize a ’prior’ text, serving as context to inform the correct iden-
tification and substitution of pronouns in the ’input’ text section. Ensure that
all entities maintain the same name through each and every scene. The goal is
to achieve precise and unambiguous communication by explicitly naming the in-
dividuals, locations, or objects that pronouns such as ’he,’ ’she,’ ’it,’ ’they,’ etc.,
represent.
Prior:
User:
Response:

Figure 4: Task description for assessing scene changes in a story. The task involves
analyzing a new sentence against preceding sentences to determine if there is a
definitive scene change. Responses are binary: 0 for no scene change and 1 for a

definitive scene change.

The refined scenes are now ready for the next stage of context generation. Up to

this point, the process has utilized Chain of Thought (CoT) and resampling to create

initial outputs. And now, the mathematics written with Resampling Refinement will

be introduced combining both resampling and prompt engineering. To enhance the

depth required by image and audio models, an adaptation to CoT is introduced:

Expanded Prune Chain of Thought (EPCT). This technique involves resampling to

generate diverse outcomes from a single prompt and subsequently condensing these

into a singular, optimal response. EPCT enables a LLM to produce detailed outputs

or select the most effective result for downstream tasks. While this approach is

promising, its effectiveness in this research context remains to be thoroughly assessed,

ensuring no detail is overlooked during rapid transitions between sections.

There are many possible implementation of EPCT, and the one utilized within

this research is where samples are produced off of the same initial prompt, and a two

chain will generalize or summarize all the the given samples back down to a distilled
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Initial
Prompt

1st Result 2nd Result 3rd Result . . . Nth Result

Final
Prompt

Desired
Output

Figure 5: Expanded Prune Chain of Thought (EPCT) technique, which refines
diverse outcomes from a single prompt into an optimal response, streamlining model

outputs for critical downstream tasks.

version. The structure of this approach can be seen in the following diagram.

And to leverage this strategy of CoT, new prompts should be introduced and

given to the LLMs to provide context of the given tasks. These two prompts should

initially give the desired output of the model, and then resampling will be deployed

to generate the necessary duplicate values for the reduction step in the process. The

final prompt should inform the LLM that it will be either enhancing the detail or

producing a more distilled version of the result. This new prompt approach will allow

the ability to generate enough context for downstream models in this research.

And so once the pronouns are replaced from the scenes in the story, the system

prompt to summarize each scene, as well as the scene corpus, are injected to the

language model. The prompt should be clear in nature and provide a single solution

to the language model to handle. And since the context of each scene will be created

in detail and no lost information should occur, the next prompt was utilized to handle

the given task. And the prompt shown in figure 6 is the initial prompt in the EPCT

method.

Once the results are resampled to the desired amount, the next prompt, shown in
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Given the background context provided by previous texts, this task focuses on
generating a response that zeroes in on the new information introduced in the
current prompt. It’s crucial that this response not only acknowledges the foun-
dational context but also significantly elaborates on the fresh details. Aim to
weave a response that is intricately connected to the current prompt’s specifics,
enriching it with a level of detail that is both profound and comprehensive. En-
sure that every new piece of information introduced is explored and expanded
upon with the utmost depth, embedding it seamlessly within the broader context
established by the preceding texts. The response should act as a magnifying
glass, highlighting and elaborating on new details in a way that is relevant and
directly tied to the query at hand. While the background context must inform
the response, the focus should remain on the novel elements, exploring their im-
plications, nuances, and potential impact with precision and detail. Maximize
the use of available tokens to paint a vivid picture that is rich in detail and full
of insight, ensuring the response is not only relevant but also adds substantial
value and depth to the discussion. The goal is to create a response that, within
the limit of 4048 tokens, is as informative and detailed as possible, providing a
thorough exploration of the new information while situating it within the larger
narrative provided by the previous texts.
Prior:
User:
Response:

Figure 6: Initial step in the EPCT method, focusing on generating detailed
responses that both recognize foundational context and expand on new information

for each scene.

figure 7, will take in all of these and then return a final result that will encapsulate

the entire meaning behind each scene. The prompt explains the context the LLM is

working in and the goal of returning a detailed description of the scenes given.

And the input in this example will be the concatenated responses of the previous

step in the EPCT approach. The results are long and detail account of each scene,

which can be leveraged to create the list of known entities, the description of each

entity, the images to illustrate the scene, and finally the text for narration.
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This task requires the generation of extraordinarily detailed and intentionally
redundant texts to ensure an image model can produce consistent visuals across
various prompts. The goal is to saturate the description with vivid, precise, and
repeated visual details that paint a clear and unambiguous picture of the scene
or subject. This means going beyond mere description to include nuances of
light, texture, color, and spatial relationships. Think about how each element
interacts with the others, and how they collectively contribute to the atmosphere
of the scene. Use metaphors, similes, and descriptive adjectives liberally to add
depth and dimension to your descriptions. Remember, the aim is not just to
describe but to evoke a sensory experience that is almost tangible. When dis-
cussing objects, characters, or landscapes, consider their appearance, emotion,
and significance within the scene. Where relevant, include background informa-
tion that might influence the image’s interpretation but weave this information
seamlessly into the visual description to maintain focus. The narrative should be
so detailed that someone could draw the scene with accuracy based solely on your
text, capturing not only the physical attributes but also the mood and emotions
conveyed. Your text should serve as a comprehensive guide for the image model,
allowing it to generate images that are remarkably consistent, regardless of how
many times it is prompted. Redundancy is key; do not shy away from repeating
important visual elements to ensure they are captured in the generated images.
Be as detailed as feasibly possible, aiming to create a text-rich canvas from which
the image model can draw inspiration.
User:input
Response:

Figure 7: Task description for generating detailed and redundant texts to ensure
consistent visuals from an image model. The goal is to create vivid and precise

descriptions that capture nuances of light, texture, color, and spatial relationships,
evoking a sensory experience. This comprehensive narrative guides the image model

to generate consistent images across various prompts

Narration

Narration is a vital component in storytelling, serving as the backbone that supports

the entire structure of the narrative. It informs the reader’s understanding, guiding

their emotions and perspectives throughout the tale. The way an author chooses to

narrate a story can profoundly influence its tone and the overall reading experience.

Effective narration imbues the story with depth, making it compelling and thought-

provoking. Thus, creating a precise and evocative narrative prompt is essential to

ensure that the story resonates well and maintains its intrigue. This prompt below
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shall give enough information to provide that level of importance.

Using the information provided in the previous texts as background context,
generate a response that focuses on the new information presented in the current
prompt. Please ensure the response is relevant to the current prompt and avoids
repeating details from the earlier texts. Aim to weave a rich narrative that
explores the implications and nuances of the new information, enhancing the
story’s depth and emotional resonance. Previous Texts for Reference (do not
repeat these details):
Note: The response should build upon the context provided by the previous
texts but should be specifically about the new elements introduced in the current
prompt. The narrative should be insightful and detailed, providing a thorough
exploration of the new information within a limit of three sentences, without
being repetitive.
User:
Response:

Figure 8: Directs the model to generate an in-depth narrative based on new
information, encouraging detailed exploration without repeating background

context.

Character Description

And to branch away from the narration, the focus will be on the illustration of the

story. The next important step in this pipeline is the character descriptions. Thus,

it is required to find the named characters present in each scene. And Named Entity

Recognition will be instrumental in the story stream to the characters for each scene.

This step will also employ resampling from the LLM, and this situation is more

important since the response is not a singular token, but multiple with conditions on

the previous tokens provided.

The prompt that shall return the necessary list of entities that are present in this

scene. This prompt aims to give context to the LLM that it will in turn provide the

name of the present characters

This process will generate a list of named entities after analyzing multiple sam-

ples from the given prompt. To mitigate the likelihood of hallucinated entities by the
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Analyze the given text to identify and extract all character names mentioned.
Create a Python list named ’characters’ containing each character’s name as a
separate string. Ensure to include every character mentioned by name, regardless
of the frequency of their appearance. Exclude entities not explicitly named. In the
case of no character names being present, return an empty list. Prior user input
should be incorporated to update the list with any character names introduced
earlier in the story. Note: Only provide the Python list.
Previous Character List:
User Input:
Response:

Figure 9: Analyzes text to compile a list of character names using Python,
updating an existing list based on prior input and incorporating resampling

techniques to ensure comprehensive and accurate extraction

Language Model, a threshold, denoted as p, will be applied. This threshold serves

to filter and retain only the most probable entities from the resampled data. Conse-

quently, the final list will encompass the predicted entities within each scene, setting

the stage for the subsequent task of acquiring detailed descriptions for each identified

entity.

With the named entities established for each scene, we can now progress to de-

riving detailed character descriptions, which are pivotal for the final segment of the

project—scene illustration. To ensure that the visual attributes and characteristics

of each character are accurately captured, the model will focus on the first n ap-

pearances of characters in each scene. The Expanded Chain of Thought Reduction

(EPCT) technique is employed again to obtain these detailed descriptions, which are

essential for ensuring consistent visual representations across the illustrations. The

initial prompt used for this task is illustrated in the following figure:

the prompt in figure 10 is designed to intake a specified input alongside the name

of the entity to be described. This approach is particularly effective in scenarios where

scenes are populated with multiple characters, prompting the model to focus solely

on providing a description for the targeted entity. Subsequently, the next prompt

will "prune" the samples and select the most relevant character descriptions into a
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This task involves creating detailed, repetitive texts that accurately describe the
physical traits of {entity}, including features, stature, attire, and distinguishing
marks. Use clear, descriptive language to ensure the image model can consistently
and accurately depict {entity}’s appearance. The description should serve as
a comprehensive guide, enabling the creation of detailed visuals that faithfully
represent {entity}.
Input:
AI:

Figure 10: Creates detailed, repetitive descriptions of an entity’s physical traits,
which will guide the image model in producing consistent and accurate visual

representations. This detailed character profiling is critical for ensuring that the
visuals generated by the model faithfully reflect the described features of the entity.

concise, yet comprehensive character profile.

Take the input and summarize it into one extremely detailed and short descrip-
tion of entity and only that entity. Do not provide anything else besides the
description.
Input:
Response:

Figure 11: Involves condensing extensive character descriptions into a singular,
precise depiction of an entity, focusing solely on essential traits to guide accurate

visual representation.

With these enriched character descriptions at hand, along with the detailed con-

texts of the scenes in which these characters appear, we are well-prepared to execute

the final phase of the project: the illustration of the narrative. For this task, a spe-

cialized prompt will collate only the relevant character descriptions for each scene,

coupled with the scene descriptions. This streamlined prompt, simpler than its pre-

decessors, is crafted to deliver just the right amount of detail to the image model,

ensuring clarity and precision in the visual rendering of the story.

This approach concatenates the character descriptions as well as the scene context

to prompt the image model to create the desired results. So in the chain, there is

a check to evaluate which characters are present in which scenes. The tracking of

characters as well as knowledge of the current scene ensures a clear transition from
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scene:{scene_context}
character descriptions:{input}

Figure 12: This prompt combines the scene context and character descriptions to
guide the image model in generating accurate visual representations. It ensures the

scene’s coherence and character details are well-integrated.

textual analysis to visual representation, crucial for the successful adaptation of the

narrative into illustrated format.
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FINDINGS

The implementation and test of the methodologies outlined in the previous sections,

exploring their efficacy and reliability in achieving desirable outcomes for each step.

This segment of the research focuses on an extensive array of tasks derived from the

original corpus of text, including sentence delineation, scene context generation, nar-

ration, and image generation. Each task is crucial for reconstructing the narrative

in a format suitable for analysis and visualization, employing advanced generative

models. The process begins by dissecting the corpus into sentences, which are then

methodically analyzed to establish their scene grouping. These delineations serve as

a foundation for generating coherent narrative scenes, which are subsequently trans-

formed into narrated segments and visual representations. This systematic approach

ensures that the transition from textual content to multimedia output retains the

integrity and continuity of the original narrative, addressing both the challenges and

potentials of leveraging large language models in literary analysis and content cre-

ation.

To execute the methodologies from the previous sections, the pre-trained LLM

leveraged is OpenAI’s ChatGPT 3.5-turbo. For TTS and image models, this research

utilizes OpenAI’s TTS and DALL-E models, respectively, for their specific tasks.

Scene Delineation

During the scene delineation step of this research, the input will be given to the model

in addition to any possible prior sentences in the sequence to ensure the language

model is able to decide if and when new scenes are introduced. An example of this

can be seen in the figure 13 below.

Each of these prompts will either return 0, 1, or ’neither’. Results classified as

’neither’ will be discarded and then resampled to ensure a robust dataset. This
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Alice was beginning to get very
tired of sitting by her sister
on the bank, and of having

nothing to do: once or twice
she had peeped into the book
her sister was reading, but it

had no pictures or conversations
in it, “and what is the use of a
book,” thought Alice “without
pictures or conversations?” So
she was considering in her own
mind (as well as she could, for
the hot day made her feel very
sleepy and stupid), whether the
pleasure of making a daisy-chain

would be worth the trouble of
getting up and picking the daisies,

when suddenly a White Rabbit
with pink eyes ran close by her.

There was nothing so very remark-
able in that; nor did Alice think
it so very much out of the way
to hear the Rabbit say to itself,
“Oh dear! Oh dear! I shall be

late!” (when she thought it over
afterwards, it occurred to her that

she ought to have wondered at this,
but at the time it all seemed quite

natural); but when the Rabbit
actually took a watch out of its
waistcoat-pocket, and looked at
it, and then hurried on, Alice

started to her feet, for it flashed
across her mind that she had never

before seen a rabbit with either
a waistcoat-pocket, or a watch
to take out of it, and burning

with curiosity, she ran across the
field after it, and fortunately was
just in time to see it pop down a
large rabbit-hole under the hedge.

ChatGPT 3.5

1

Prior

Input

Figure 13: The processing of textual input using ChatGPT 3.5. The model utilizes
prior context from previous sentences as well as the current sentence to predict if a

scene change had occurred.
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resampling is conducted for each sample to accurately predict the occurrence of scene

changes within each sentence of the story. A sample size of 5 was implemented, and a

cutoff threshold of 80% was utilized to minimize the number of scene changes, aiding

in more effective context generation for downstream tasks.

Figure 14: Graph depicting the sampled averages of sentence changes determined
by ChatGPT 3.5-turbo, indexed by sentence position. Each point represents the
percentage of identified scene changes, with a red dashed line indicating the 80%

threshold

And figure 14 shows that the prediction is likely to return a scene change for some

of the scenes, and we should increase our thresholds to ensure each scene has enough

information in it to reduce hallucinations and poor contexts for narration and image

generation. With a increased sample size, and a smart selection of the threshold, it

is clear to see that the resampling method for LLMs gives robust analysis into results

of an LLM.

The exploration of Bootstrapping reveals its effectiveness in analyzing the distri-

bution of output means from the LLM. With the outcomes to generate a series of

bootstrap samples, each of which is used to compute estimations of the mean. These
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estimations are then employed to create a distribution of these estimators, providing

insights into the variability and reliability of the model’s performance. By analyzing

thousands of bootstrap samples, the mean of the model’s output distribution can be

estimated with greater confidence.

Figure 15: Distribution of bootstrap means with adjusted bins. This histogram
illustrates the variability and concentration of bootstrap sample means.

This plot visualizes the distribution of the bootstrap means, focusing on the anal-

ysis of the transformer model’s performance with binary outputs. The histogram

showcases the concentrated distribution of mean values around 0.8, indicating a strong

tendency of the model to consistently predict a specific class in binary scenarios. The

distribution’s shape, with its peak at 0.8 and tails extending towards lower and higher

means, provides a visual representation of the variability in the model’s output.

Context Generation

These scenes are then grouped with the previous scene if the current prediction is

not true. The scenes will have their pronouns replaced with the actual named of

the present entities and run through EPCT to provide detailed scene context. The
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structure for the pronoun replacement is quick direct and the model is fed in the

input, which is the current scene, and the system prompt as shown in figure 4, tasks

the model to remove all pronouns.

The model shown in figure 16 handle the replacement of pronouns effectively, and

after this is done through each scene iteratively, the detailed contexts generated are

then processed through the EPCT implementation. This process produces multiple

samples of the same prompt, and the pruning step compresses everything into a more

detailed response for downstream systems.

Once the scenes are fully processed and the context is well-defined, the next step

is to ensure that these scenes are coherent and accurately reflect the narrative’s flow.

The refined scene contexts are crucial for subsequent tasks and an example of these

are shown in figure 20, such as narration and visual representation, ensuring that the

generated outputs are rich in detail and maintain the integrity of the original narra-

tive. This method enhances the depth required by image and audio models, setting

a strong foundation for creating comprehensive and coherent multimedia outputs.
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There was nothing so very remark-
able in that; nor did Alice think
it so very much out of the way
to hear the Rabbit say to itself,
“Oh dear! Oh dear! I shall be

late!” (when she thought it over
afterwards, it occurred to her that

she ought to have wondered at this,
but at the time it all seemed quite

natural); but when the Rabbit
actually took a watch out of its
waistcoat-pocket, and looked at
it, and then hurried on, Alice

started to her feet, for it flashed
across her mind that she had never

before seen a rabbit with either
a waistcoat-pocket, or a watch
to take out of it, and burning

with curiosity, she ran across the
field after it, and fortunately was
just in time to see it pop down a
large rabbit-hole under the hedge.

In another moment down went
Alice after it, never once con-

sidering how in the world
she was to get out again.

ChatGPT 3.5

In another moment down went
Alice after the White Rabbit,

never once considering how in the
world Alice was to get out again.

Prior

Input

Figure 16: The processing of textual input using ChatGPT 3.5. The input is fed
into the model with the system prompt to remove any pronouns.
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Alice was beginning to get very tired
of sitting by Alice’s sister on the

bank, and of having nothing to do:
once or twice Alice had peeped into
the book Alice’s sister was reading,

. . .
whether the pleasure of making a

daisy-chain would be worth the trou-
ble of getting up and picking the

daisies, when suddenly a White Rab-
bit with pink eyes ran close by Alice

ChatGPT 3.5

On a hot afternoon, young Alice
finds herself wearisomely seated

by her sister on a riverbank,
. . .

the embodiment of her longings and
demands for a world thriving with vi-
brant activity that engages her senses
and intellect in extraordinary ways.

Figure 20: Implements EPCT for creating detailed scene descriptions. Taking in
one scene expanding it within EPCT and then back into one result.

Narration

Once the scene context is refined, it can be used to generate the text for narration.

This text is then input into the TTS model developed by OpenAI. The process starts

with the enhanced scene context, incorporates narration generation, and finally, feeds

this narrative text into the TTS model. This chain effectively transforms the refined

text into the spoken word, mirroring the voice and intonations of the story as intended

in the book.

The effectiveness of this chain in processing audio from the narrative text was
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On a hot afternoon, young Alice
finds herself wearisomely seated

by her sister on a riverbank,
. . .

the embodiment of her longings and
demands for a world thriving with vi-
brant activity that engages her senses
and intellect in extraordinary ways.

ChatGPT 3.5

Intrigued by the sudden appearance of the
White Rabbit, this unexpected distraction
stirred Alice from her lethargy. Overcome

by curiosity, she watched as it ran past her,
its pink eyes standing out vividly against
the green landscape. The arrival of the

White Rabbit marked a new phase in her
day, breaking the monotony and arousing

her interest in a potential adventure

Text-To-Speech

voice.mp3

Figure 18: Taking in the scene context, to convert to the text narration, and
finally to a mp3 of the voice talking.
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notable. The transition from text to speech maintained a high fidelity to the original

tone and emotion of the story, demonstrating the TTS model’s capability to produce

clear, expressive audio that faithfully represents the narrative content. This leave the

chain to now work on handling character descriptions for image generation, and then

finally the scene generation.

Character Description

To obtain character information in this information, the iteration through each scene

and leveraging LLMs once again to produce the NER for each character present in

the scenes. Resampling will once again be employed to increase the efficiency of

traditional uses of LLMs for entity recognition. The follow figure 19 demonstrates

the difference between the classification results of LLMs to resampling expecting a

specific result. If the model generates a non-conforming result, that response will be

discarded and another samples will be produced.

As it can be seen in 19, the response is not a single classification, but a list of

present entities. This approach allows for the handling of diverse narrative elements

within the text, ensuring that each character’s presence or absence contributes sig-

nificantly to the richness of the narrative context.

The data shown in figure 21 highlights the presence percentages for four characters:

the White Rabbit, Dinah, Alice, and Alice’s sister. The graph clearly delineates

the characters’ involvement, with the White Rabbit and Alice showing consistent,

high-frequency appearances across the samples. In contrast, Dinah and Alice’s sister

appear less frequently, suggesting their peripheral roles in the storyline.

This binary result of presence-absence, where characters are marked as either com-

pletely present or absent in each sample demonstrates the LLM is extremely confident

if the present characters of the story. This technique, derived from the resampling

methods discussed in the Methodology section, ensures a precise characterization of
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Alice was beginning to get very
tired of sitting by her sister
on the bank, and of having

nothing to do: once or twice
she had peeped into the book
her sister was reading, but it

had no pictures or conversations
in it, “and what is the use of a
book,” thought Alice “without
pictures or conversations?” So
she was considering in her own
mind (as well as she could, for
the hot day made her feel very
sleepy and stupid), whether the
pleasure of making a daisy-chain

would be worth the trouble of
getting up and picking the daisies,

when suddenly a White Rabbit
with pink eyes ran close by her.

There was nothing so very remark-
able in that; nor did Alice think
it so very much out of the way
to hear the Rabbit say to itself,
“Oh dear! Oh dear! I shall be

late!” (when she thought it over
afterwards, it occurred to her that

she ought to have wondered at this,
but at the time it all seemed quite

natural); but when the Rabbit
actually took a watch out of its
waistcoat-pocket, and looked at
it, and then hurried on, Alice

started to her feet, for it flashed
across her mind that she had never

before seen a rabbit with either
a waistcoat-pocket, or a watch
to take out of it, and burning

with curiosity, she ran across the
field after it, and fortunately was
just in time to see it pop down a
large rabbit-hole under the hedge.

ChatGPT 3.5

[’Alice’, "Alice’s sis-
ter", ’White Rabbit’]

Prior

Input

Figure 19: The processing of textual input using ChatGPT 3.5. The model utilizes
prior context from previous sentences to predict the present entities in a given scene.
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narrative elements. This not only supports the generation of contextually rich nar-

rative outputs but also enhances the predictive capabilities of automated systems in

content creation.

Now, with the list of entities in the story and when they appear, it is possible to

create the descriptions of each of the characters leveraging EPCT.

Image Generation

Since the image generations will take in each scene context as well as the character

description, a trade off appears when attempting to give the image model, OpenAI’s

Dall-E enough information on the scene and a character description. This results in

inconsistent character visualization or lost of the context of the scene at hand. The

character comparison in figure 22 have been generated and are present in different

scenes, and as it can be seen the illustrations of Alice do not maintain any structure

or style guides. The prompts have been experimented with to see if this could remedy

this issue, but these attempts returned similar results.
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On a hot afternoon,
young Alice finds

herself wearisomely
seated by her sister

on a riverbank,
. . .

the embodiment
of her longings

and demands for
a world thriving

with vibrant activity
that engages her

senses and intellect in
extraordinary ways.

The image we have
to draft would need
to paint a picture

that is as vivid and
detailed as the story

of Alice meeting
the White Rabbit.
We start with our
protagonist, Alice

. . .
add up to a whim-
sical ensemble that

tantalizes the viewer’s
curiosity and ignites
a desire to navigate
further into Alice’s

impending adventure.

Alice’s spontaneous
propensity to

trail the White
Rabbit, without
sparing a second

thought to potential
consequences, paints
a compelling portrait

of her character.
. . .

universally shared
conditions associated

with life’s unpre-
dictable caprices.

EPCT

Alice is a young, energetic, and ad-
venturous blonde in a tidy pinafore

dress, characterized by extraordinarily
curious deep-set eyes that reflect her
relentless quest for knowledge and

understanding. Agile on her feet and
unafraid of the unknown, she exhibits
a blend of disciplined upbringing and
inherent disobedience that makes her
an iconic symbol of youthful courage

and curiosity. Her defining interaction
with the peculiar anthropomorphic
White Rabbit serves as an allegory
for her readiness to challenge norms
and venture into unpredictable situ-
ations, marking her exploration into
realms of novelty and self-discovery.

Figure 20: Integrating and refining inputs into a singular, comprehensive narrative
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Figure 21: These results showcase the models ability to validate when certain
entities are present in each scene. It can be see that Alice is present in almost all

scenes, and all other characters are only present partly

Context is extremely import to image models and Dall-E’s model is a stable dif-

fusion model, and so since the input prompt includes both the sense and character

description, the model loses context in the description of the character as well as the

limitation of diffusion models where even with the same prompt results can inconsis-

tent. This limitation likely lies within the architecture of the diffusion model where

the initial state is random and slowly creating an image that using the prompt to

guide the image creation(Sohl-Dickstein, Weiss, Maheswaranathan, & Ganguli, 2015).

Language models’ ability to transform textual narratives into structured, analyz-

able formats and multimedia content is possible. The Text to Speech model success-

fully delivers desirable results. However, this cannot be said for the Diffusion model.

Dall-E’s problem lies in the architecture of the model, and this issue only compounds

when the model cannot achieve consistent results between scenes. Addressing these

architectural challenges and enhancing model robustness will be crucial for future ap-

plications, aiming to improve reliability and expand the practical uses of generative
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Figure 22: Illustrates the inconsistency in visual outputs generated by a DALL-E,
depicting four versions of Alice from "Alice in Wonderland." Each rendition varies

significantly in style and detail

models in creative industries.
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CONCLUSION

In this thesis, we explored the capability of foundation models, specifically focusing on

their application without fine-tuning, to transform textual narratives into structured,

analyzable formats and multimedia content. Through our extensive experimentation

with resampling techniques, we demonstrated that these models could effectively parse

and reconstruct narratives into detailed scenes and character descriptions, facilitating

the generation of rich multimedia content.

However, challenges were evident, particularly in the domain of image generation

using Dall-E. The model’s architecture, while robust, showed limitations in achieving

consistent visual outputs across different prompts. This inconsistency highlights a

critical area for improvement within the underlying mechanisms of diffusion models.

Despite their robustness, diffusion models such as Dall-E currently struggle with con-

sistency across different prompts, which remains a significant limitation. Addressing

these consistency issues with improved implementations could enhance their reliabil-

ity and effectiveness.

Future research should focus on integrating enhanced model architectures and

considering minimal fine-tuning to address discrepancies. These advancements could

be tailored for creative industries, potentially enhancing utility and improving mul-

timedia content reliability. This approach aims to refine performance and extend the

applicational scope, leading to richer, more precise multimedia narratives.

This thesis addresses the challenges of converting written narratives into films

by showcasing the potential of Generative AI to enhance adaptation fidelity and

efficiency. Automating and refining scene segmentation and narration through LLMs

promotes a more consistent and accurate conversion of text into visual and audio

formats. Combining traditional techniques with cutting-edge methods enriches the

adaptation process and could shift the roles of creatives in the industry, focusing more

on artistic expression. The exploration of advanced NLP and GenAI technologies
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opens new prospects for film adaptations, capturing the essence of original narratives

more effectively.
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