Numerical Modeling Of Dissimilatory Iron Reduction In Sediments At A Field Site

2005

Chun-Wen Chen
University of Central Florida

Find similar works at: http://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Environmental Engineering Commons

STARS Citation

http://stars.library.ucf.edu/etd/439

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
NUMERICAL MODELING OF DISSIMILATORY IRON REDUCTION IN SEDIMENTS AT A FIELD SITE

by

CHUN-WEN (ARVIN) CHEN
B.S. National Yunlin University of Science & Technology, 2000

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida

Summer Term
2005
ABSTRACT

The primary purpose of this study is to identify the “universal” rate formulations with scaled-dependent parameters for the biological reduction of hematite. Three possible rate formulations were proposed to describe the bioreduction rate of hematite, and two kinds of simulation were conducted to validate the formulations and parameters with both batch and column experimental data: a reaction-based biogeochemical (batch) modeling with BIOGEOCHEM 1.0 and a reactive biogeochemical transport (column) modeling via HYDROGEOCHEM 4.0. Based on the results of simulations, only the dual Monod kinetic with inhibition rate formulation with respect to the concentrations of lactate, \equivFeOOH, and Fe$^{2+}$ under certain initial concentration of dissimilatory metal-reducing bacterium could fit the experimental data well. Our results also revealed that the equilibrium reaction rate for the surface hydration of hematite may have to be substituted with the kinetic rate formulation.
ACKNOWLEDGMENTS

First of all, I would like to convey my deep appreciation and respect to my advisor, Dr. Gour-Tsyh (George) Yeh, for his patient guidance and financial support during my graduate studies. I admire him not only for his comprehensive knowledge, but also for his attitude of conducting research. He often educated his students that sometimes people may not care how good your works are, but they do care your attitude. This concept influences me to have a positive attitude towards my life.

I would like to thank my thesis committee members, Dr. C. David Cooper and Dr. Scott C. Hagen. From Dr. Cooper I learned the spirit of being an engineer you should know where you are, where you want to go, then choose the best way to reach the goal. I would like to express my appreciation to Dr. Hagen for providing me with the office in my first semester of graduate study and treating me like his students.

I want to thank Dr. Bill Burgos and his student, Morgan Minyard, for providing the experimental data for my graduate research. I would like to thank Mr. Thomas Kimble for carefully revising my thesis and my officemate, Dr. Fan Zhang, for her enthusiastic assistance in the project. Finally, I want to convey my love to my girlfriend, Min-Chun Tsai, for encouraging me all the time.

This research was supported by NABIR, Department of Energy, under contract with UCF Grant #DERG0201ER63181.
TABLE OF CONTENTS

LIST OF TABLES ... v

LIST OF FIGURES ... vi

CHAPTER 1: INTRODUCTION .. 1
 1.1 Background and Literature Review .. 2
 1.2 Objective of Work ... 5
 1.3 Format and Content .. 6

CHAPTER 2: SIMULATION AND EXPERIMENT IN BATCH SYSTEMS 7
 2.1 Model Description .. 7
 2.2 Modeling Approach ... 9
 2.2.1 Theory and Mathematical Formulations .. 10
 2.2.2 Data Needs .. 14
 2.2.3 Modeling Processes .. 15
 2.3 Results of Batch Simulation .. 20
 2.3.1 Reaction Matrix Decomposition ... 20
 2.3.2 Formulations and Parameters for Kinetic Reactions ... 25
 2.3.3 The Simulation Results .. 34
 2.4 Conclusion and Discussion .. 44

CHAPTER 3: SIMULATION AND EXPERIMENT IN COLUMN SYSTEMS 46
 3.1 Model Description .. 46
 3.2 Modeling Approach .. 48
3.2.1 Theory and Mathematical Formulations .. 48
3.2.2 Data Needs ... 49
3.2.3 Modeling Processes ... 50
3.3 Results of Column Simulation ... 53
 3.3.1 Formulations and Parameters for Column Simulation 54
 3.3.2 Reaction Matrix Decomposition .. 55
 3.3.3 The Simulation Results .. 56
3.4 Conclusion and Discussion .. 70

CHAPTER 4: SUMMARY AND FUTURE WORK ... 72
 4.1 Summary ... 72
 4.2 Future Work .. 75

APPENDIX A: BATCH AND COLUMN EXPERIMENTAL DATA 77

LIST OF REFERENCES .. 89
LIST OF TABLES

Table 2.1: Input Data for Running BIOGEOCHEM 1.0 .. 10
Table 2.2: Initial Concentrations of Hematite-coated Sand, Fe(III), Lactate, and Cell for

Individual Experimental Conditions ... 15
Table 2.3: Reaction Network of Bioreduction of Hematite ... 17
Table 2.4: Reaction Matrix Decomposition .. 22
Table 2.5: Partial Species Concentration-versus-Time for Experiment #4 27
Table 2.6: Input Parameters for the Reaction Rate Formulations 34
Table 3.1: Column Experimental Parameters .. 49
Table 3.2: Input Parameters for HYDROGEOCHEM 4.0 ... 53
Table A.1: Experimental Data for Batch Experiment #4 ... 81
Table A.2: Experimental Data for Batch Experiment #5 ... 81
Table A.3: Experimental Data for Batch Experiment #6 ... 82
Table A.4: Experimental Data for Column A-D ... 82
Table A.5: Experimental Data for Column G-J ... 83
Table A.6: Experimental Data for Column K-N ... 84
LIST OF FIGURES

Figure 1.1: Mineral Hematite.. 2
Figure 2.1: Reaction Network of Bioreduction of Hematite...18
Figure 2.2: Sorption of Fe(II) to Hematite... 18
Figure 2.3: Curve of the Empirical Freundlich Equation (R3) for Exp. #4............... 27
Figure 2.4: The Kinetic-Variable Concentration-vs-Time for Exp. #4 28
Figure 2.5: R _{1} \text{ versus } \equiv \text{FeOOH} \text{ for Exp. #4}30
Figure 2.6: 1/R _{1} \text{ versus } 1/\equiv \text{FeOOH} \text{ for Exp. #4}30
Figure 2.7: 1/\{R _{1} \times (1+K _{F}/\equiv \text{FeOOH})\} \text{ versus } 1/[\text{lactate}] \text{ for Exp. #4}30
Figure 2.8: Optimization Curve of the Third Proposed R1 Formulation for Exp. #4......32
Figure 2.9: Lactate Utilization in R4 for Exp. #4 ... 32
Figure 2.10: [DMRB]/ (R4 [lactate] Utilization Rate) versus 1/ [lactate] for Exp. #4 32
Figure 2.11: Optimization Curve of the Proposed R4 Formulation for Exp. #433
Figure 2.12: Simulation Results of the First Proposed R1 Formulation for Exp. #4...... 35
Figure 2.13: Simulation Results of the Second Proposed R1 Formulation for Exp. #4 ...36
Figure 2.14: Simulation Results of the Third Proposed R1 Formulation for Exp. #437
Figure 2.15: Simulation Results of the First Proposed R1 Formulation for Exp. #5...... 38
Figure 2.16: Simulation Results of the Second Proposed R1 Formulation for Exp. #5 ...39
Figure 2.17: Simulation Results of the Third Proposed R1 Formulation for Exp. #540
Figure 2.18: Simulation Results of the First Proposed R1 Formulation for Exp. #6...... 41
Figure 2.19: Simulation Results of the Second Proposed R1 Formulation for Exp. #6 ...42
Figure 2.20: Simulation Results of the Third Proposed R1 Formulation for Exp. #643
Figure 3.1: The Domain of Interest with the Initial Conditions (top) and the Discretization for the Domain (bottom) ..51

Figure 3.2: Fitting the Experimental Breakthrough Curve with Different Longitudinal Dispersivities ... 52

Figure 3.3: Simulation Results for Column A-D (Q=10.6 ml/day) and Parameters Determined from Batch Experiment #4..58

Figure 3.4: Simulation Results for Column G-J (Q=1.6 ml/day) and Parameters Determined from Batch Experiment #4.. 59

Figure 3.5: Simulation Results for Column K-N (Q=6 ml/day) and Parameters Determined from Batch Experiment #4... 60

Figure 3.6: Simulation Results for Column A-D (Q=10.6 ml/day) and Parameters Determined from Batch Experiment #5.. 61

Figure 3.7: Simulation Results for Column G-J (Q=1.6 ml/day) and Parameters Determined from Batch Experiment #5.. 62

Figure 3.8: Simulation Results for Column K-N (Q=6 ml/day) and Parameters Determined from Batch Experiment #5.. 63

Figure 3.9: Simulation Results for Column A-D (Q=10.6 ml/day) and Parameters Determined from Batch Experiment #6.. 64

Figure 3.10: Simulation Results for Column G-J (Q=1.6 ml/day) and Parameters Determined from Batch Experiment #6.. 65

Figure 3.11: Simulation Results for Column K-N (Q=6 ml/day) and Parameters Determined from Batch experiment #6.. 66
Figure 3.12: Comparison between the Equilibrium and Kinetic R2 Rate Formulation with the First Proposed R1 Formulation

Figure 3.13: Comparison between Equilibrium and Kinetic R2 Rate Formulation with the Second Proposed R1 Formulation

Figure 3.14: Comparison between Equilibrium and Kinetic R2 Rate Formulation with the Third Proposed R1 Formulation

Figure A.1 Varied initial Fe(III) sand concentration batch experimental data. (A) The rate from the first 12 hours of each experiment was based on the amount of total iron produced over time. (B) The rate of each experiment was plotted against the experimental condition in order to determine the order of the reaction.

Figure A.2 Varied initial cell concentration as cell/mL. (A) The rate for the first twelve hours of each batch experiment was used to calculate the rate of reduction. (B) The rate plotted against the batch experimental condition in order to determine the order of reaction R1.

Figure A.3 Varied Lactate concentrations in mM. (A) The first twelve hours of each batch experimental condition was used to determine the rate. (B) Rate plotted against batch experimental condition to determine reaction order.

Figure A.4 Raw data form four column experiments run in triplicate or quadruplicate.
CHAPTER 1: INTRODUCTION

Hematite (Fe$_2$O$_3$) is the most important ore of iron on earth and deposited as sediment from streams and rivers (see Figure 1.1); however, the biogeochemistry of microbial Fe(III) reduction and of associated contaminant interactions is very complicated. Under anaerobic conditions, hematite is the principle electron acceptor, and bacteria will reduce both crystalline (Roden and Phillips, 1996) and non-crystalline (Lovley and Zachara, 1986) ferric oxides producing Fe(II). In addition, the secondary reactions of bioreduction (biological reduction) of hematite may contain aqueous complexation (Roden et al., 1999; Zachara et al., 1999), surface complexation to the residual ferric oxides, precipitation of ferrous minerals (e.g. FeCO$_3$) (Fredrickson et al., 1998), and re-oxidation.

Our study was to analyze the bioreduction of natural hematite and to determine the rate formulations and parameters of the reaction network via modeling. Two kinds of simulations were conducted: a reaction-based biogeochemical (batch) modeling with BIOGEOCHEM 1.0 (Yeh et al., 2005a) and a reactive biogeochemical transport (column) modeling via HYDROGEOCHEM 4.0 (Yeh et al., 2004). Furthermore, the results of simulations were compared with both batch and column experimental data to see if the employed models could be used to adequately determine the reaction rate formulations/parameters and simulate the biological reduction of hematite. If they do, then, hopefully, they can be used satisfactorily for other chemical reaction networks because the biological reduction of solid-phase ferric oxides is much complicated than other chemical reactions.
1.1 Background and Literature Review

The bioreduction of hematite and of associated contaminant interaction is very complicated and difficult to describe because multiple simultaneous reactions often occur under Fe(III)-reducing conditions. For instance, bioreduction of Fe(III) will generate biogenic Fe(II) and secondary reactions of Fe(II) may include sorption/surface complexation to mineral surface, aqueous complexation (if complexants are present) (Urrutia et al., 1999; Zachara et al., 2000), and precipitation of ferrous minerals (Fredrickson et al. 1998). The dissimilatory metal reducing bacteria (DMRB) can be employed to dissolve ferric oxides and the biogenic Fe(II) can then chemically react with other reducible compounds in the biologic-chemical reactions (Burgos et al., 2003). Reducible compounds of concern comprise both organic and inorganic pollutants and can
be “directly” (biologic) or “indirectly” (combined biologic-chemical) reduced by DMRB. For example, DMRB will directly reduce benzene and toluene (Lovely et al., 1994), but biogenic Fe(II) will indirectly reduce chlorinated aliphatics (Curtis Reinhard, 1994; Kim and Picardal, 1999) and nitroaromatics (Klausen et al., 1995). Besides, various metal such as Co(III) (Caccavo et al., 1994; Brooks et al., 1999), Cr(VI) (Fendorf and Li, 1996), Tc(VII) (Wildung et al., 2000) and U(VI) (Lovley et al., 1991; Fredrickson et al., 2000) can be directly reduced by DMRB or indirectly reduced by biogenic Fe(II).

Because the reactions of bioreduction of hematite are complicated, an appropriate biogeochemical numerical model is needed to properly evaluate and design the bioreduction system of Fe(III). Early geochemical models classified the chemical reactions into two categories (Rubin, 1983): (1) “sufficiently fast”/equilibrium reaction which was mathematically formulated with the mass action equation or (2) slow/kinetic reaction represented by a rate that was the difference between forward and backward rates. Some models conduct the equilibrium reactions very well and are used extensively such as WATEQ (Truesdell and Jones, 1974), MINEQL (Westall et al., 1976), and PHREEQE (Parkhurst et al., 1980). However, more complicated types of geochemical and biochemical reactions cannot be characterized just via equilibrium chemistry (Friedly and Rubin, 1992); thus, mixed equilibrium chemistry and kinetic chemistry is necessary to describe the complex reactions. Some models such as KEMOD (Yeh et al., 1995), OS3D (Steefel and Yabusaki, 1996), BIOKEMOD (Salvage and Yeh, 1998), and RAFT (Chilakapati et al., 2000) have the capability to deal with the mixed kinetic and
equilibrium reactions; nevertheless, most of them still have many limitations in kinetic or equilibrium reactions.

“Qualitative geochemical and biochemical processes must be conceptualized quantitatively as a reaction network” (Yeh et al., 2001), and the reaction network should be converted into matrix forms, so that the equilibrium and kinetic reactions in the reaction network can be decoupled via Gauss-Jordan elimination (Steefel and Macquarrie, 1996; Chilakapati et al., 1998; Yeh et al., 2001). As a result, a reaction-based biogeochemical model is the most generic approach to deal with mixed equilibrium and kinetic reactions (Fang et al., 2003) because the reaction-based models formulate and simulate the production-consumption rate of chemical species based on both the thermodynamic and chemical kinetic principles. Using both principles, the governing equations can be decomposed into three subsets of equations: mass action equations for equilibrium reaction; kinetic-variable equations; and mass conservation equations (Yeh et al., 2001). So, it can be adequately employed to simulate and predict the complex biogeochemical system (Yeh et al., 2001; Burgos et al., 2002; Fang et al., 2003). For example, the simulations of bioreduction of hematite by the dissimilatory-metal reduction bacterium *Shewanella putrefaciens* strain CN32 under nongrowth condition with H$_2$ as the electron donor are commendable via using a reaction-based model (Burgos et al., 2002; 2003).

In reactive transport modeling, the decomposition on species transport equations is used instead of the matrix decomposition on species balance equations in the batch system; thus, a reaction-based model is applicable to the reactive transport systems (Fang et al.,
For example, BIOGEOCHEM 1.0 can be operated with any hydrologic transport model. Moreover, in the reactive transport modeling, species reactive transport equations can also be decomposed via Gauss-Jordan column reduction of the reaction network into two sets: nonlinear algebraic equations and transport equations of kinetic-variables to represent the equilibrium reactions and kinetically controlled reaction rates, respectively (Fan et al., 2005). There are many general purpose transport models that can be modified to improve the design capabilities for simulating the mixed equilibrium/kinetic reactions due to this approach of matrix decomposition (Fang and Yeh, 2002). The advantages of the reaction-based models are conspicuous; however, some disadvantages also exist in the reaction-based models. The primary disadvantage of using a reaction-based model is that it is difficult to propose the reaction network and to determine the reaction mechanisms (Steefel and van Cappellen, 1998). Moreover, the minimum measured data needs are another major disadvantage (Yeh et al., 2001).

1.2 Objective of Work

The primary objective of this research is to simulate the bioreduction kinetics of natural hematite-coated sand by dissimilatory metal-reducing bacterium (DMRB), *Shewanella putrefaciens* CN32, under growth conditions with lactate as the electron donor. A reaction-based biogeochemical model BIOGEOCHEM 1.0 (Yeh et al., 2005a) will be employed to determine the rate formulations and parameters of the reaction network of hematite bioreduction, and the results of simulation are simultaneously compared with a series of batch experimental data with different initial conditions. A successful
simulation using BIOGEOCHEM 1.0 would serve to validate the individual rate formulations/parameters and the overall theoretical approach.

In addition, the determined rate formulations and parameters will be systematically tested with the column experimental data by using a reactive biogeochemical transport model Hydrogeochem 4.0 (Yeh et al., 2004) that coupled hydrologic transport and reactive biogeochemistry. The column experiments will focus on transient reactive transport and will be conducted under otherwise identical conditions, except that the flow rates are systematically varied. Furthermore, the assumptions regarding equilibrium reactions will be assessed. We will demonstrate that bioreduction of hematite-coated sand in column system can be simulated reasonably using rate formulation/parameters determined from batch experiments. And, we will test if the mechanistic-based reaction rates of batch system can be scaled up and exported to column system.

1.3 Format and Content

This thesis is composed of four chapters. Chapter 2 focuses on the bioreduction of hematite in batch system; it describes the employed model, modeling approach, and the simulated results. Chapter 3 focuses on the bioreduction of hematite in column system; similar to the batch system, it presents the employed model, modeling approach, and the results of simulation in the column system. Chapter 4 summarizes the work of the thesis and outlines some future work in this field.
CHAPTER 2:
SIMULATION AND EXPERIMENT IN BATCH SYSTEMS

The rate formulations and parameters of the reaction network are the keys to simulate or analyze the chemical reactions. In the past, to determine the rate formulations and parameters extensive experiments in the laboratory are required, but now we can easily conduct that with modeling that requires only a specified set of experiments. This chapter focuses on how to formulate the rates of chemical reaction and how to determine the parameters using a reaction-based biogeochemical model in the batch system. In the following sections, we will describe the model, modeling approach, and the results of the simulations.

2.1 Model Description
A reaction-based biogeochemical model is designed to deal with the mixed equilibrium and kinetic reactions for the complicated reaction networks such as geochemical and biochemical reactions. For our study, we employ BIOGEOCHEM 1.0 to conduct the simulations for determining the formulations/parameters of the bioreduction of hematite in the batch system. The following are this model’s unique aspects (Fang et al., 2003):

- facilitate the segregation (isolation) of linearly independent kinetic reactions and thus enable the formulation and parameterization of individual rates one reaction by one reaction when linearly dependent kinetic reactions are absent,
enable the inclusion of virtually any type of equilibrium expressions and kinetic rates users want to specify,
reduce problem stiffness by eliminating all fast reactions from the set of ordinary differential equations governing the evolution of kinetic variables,
perform systematic operations to remove redundant fast reactions and irrelevant kinetic reactions,
systematically define chemical components and explicitly enforce mass conservation,
accomplish automation in decoupling fast reactions from slow reactions, and
increase the robustness of the numerical integration of the governing equations with species switching schemes.

As I know, there is no existing model to comprise these aspects simultaneously. In addition, for making the model applicable to a extensive range of problems, BIOGEOCHEM 1.0 provided multiple reaction types like aqueous complexation, adsorption-desorption, ion exchange, oxidation-reduction, precipitation-dissolution, acid-base reactions, and microbial mediated reactions. From the point of view of reaction rate, this model treats an equilibrium reaction as a reaction with infinite rate governed by a mass action equation (Yeh et al., 2001).

In addition to the equilibrium reaction, several kinetic formulations such as the elementary rate law, multiple Monod kinetics, and \(n^{th} \) order empirical formulation are programmed to represent the kinetic reaction rates. The most unique function in
BIOGEOCHEM 1.0 is that user can specify and program the equilibrium and kinetic reaction rate formulations into the code. This function is useful when conducting the mixed equilibrium and kinetic reactions of any complicated reaction network.

In short, BIOGEOCHEM 1.0 is a computer code for modeling the reactive chemicals in the batch systems and designed to be easily coupled with a transport model. BIOGEOCHEM 1.0 is run under the DOS system; thus, it needs some commands (an input file) to execute the program. The input file has to define the reaction network, reaction rate formulations/parameters, time steps, and so on. Table 2.1 presents the required input data for running BIOGEOCHEM 1.0.

2.2 Modeling Approach

Before we employ BIOGEOCHEM 1.0 to determine the rate formulations and parameters of the bioreduction of hematite, we have to propose a reaction network to describe the reaction system, and obtain the experimental data that provide the minimum required number of measured species. The consistency of mass conservation equations must be assessed with the experimental data and the assumptions regarding equilibrium reactions should also be assessed. In addition, we also need another software program such as Mathematica 5.0 (Wolfram Research, Champaign, IL) to help us to solve the mass action and mass conservation equations from the reaction matrix decomposition. Before going through the detailed steps, an overview of procedure is necessary.
Table 2.1: Input Data for Running BIOGEOCHEM 1.0

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Data Set Name</th>
<th>Command Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA SET 1</td>
<td>TITLE</td>
<td>Array for the title of the problem.</td>
</tr>
<tr>
<td>DATA SET 2</td>
<td>NUMBER OF SPECIES AND REACTIONS</td>
<td>Specified the number of species, equilibrium reactions, and kinetic reactions.</td>
</tr>
<tr>
<td>DATA SET 3</td>
<td>SPECIES INFORMATION</td>
<td>Defined the species’ name, phase, mobility, simulate status, initial concentration, and charge.</td>
</tr>
<tr>
<td>DATA SET 3A</td>
<td>ADSORPTION INFORMATION</td>
<td>Selected adsorption model and defined the number of adsorption sites.</td>
</tr>
<tr>
<td>DATA SET 3B</td>
<td>ION-EXCHANGE INFORMATION</td>
<td>Additional information for ion-exchanged species.</td>
</tr>
<tr>
<td>DATA SET 4</td>
<td>REACTION INFORMATION</td>
<td>Specified the individual reactions.</td>
</tr>
<tr>
<td>DATA SET 5</td>
<td>INPUT THE SUSPECTIOUS SPECIES</td>
<td>Selected the suspected component and specified the decomposition performance.</td>
</tr>
<tr>
<td>DATA SET 6</td>
<td>INPUT ADSORBING SITE INFORMATION</td>
<td>Exit program command.</td>
</tr>
<tr>
<td>DATA SET 7</td>
<td>H⁺, e⁻, AND IONIC STRENGTH CORRECTION INFORMATION</td>
<td>Designated ionic strength and located the H⁺ and e⁻ among global species list.</td>
</tr>
<tr>
<td>DATA SET 8</td>
<td>TEMPERATURE, PRESSURE AND EXPECTED pE AND pH</td>
<td>Indicated the temperature and expects the minimum and maximum of pE and pH.</td>
</tr>
<tr>
<td>DATA SET 9</td>
<td>BASIC REAL AND INTEGER PARAMETERS</td>
<td>Indicated numeric of the simulation.</td>
</tr>
<tr>
<td>DATA SET 10</td>
<td>PRINTER AND AUXILIARY STORAGE CONTROL</td>
<td>Specified which time steps would be printed on the output file or be stored in the storage file.</td>
</tr>
<tr>
<td>DATA SET 11</td>
<td>SOURCE PARAMETERS</td>
<td>Designated the source input parameters.</td>
</tr>
</tbody>
</table>

2.2.1 Theory and Mathematical Formulations

A biogeochemical system is completely defined by specifying reaction networks (Yeh et al., 2001), and the production-consumption rate of every species is resulted from all reactions that produce or consume that species. From a mathematical point of view, M
species in a reactive and complete mixed batch system can be presented by a set of M ordinary differential equations that can be written as:

$$\left(\frac{dC_i}{dt} \right) = r_i|_N, \quad i \in M$$

(2.1)

where C_i is the concentration of the i-th chemical species, t is time, $r_i|_N$ is the production-consumption rate of the i-th species due to N biogeochemical reactions, and M is the number of chemical species. For reaction-based modeling, the production-consumption rates are described by:

$$r_i|_N = \sum_{k=1}^{N} (\nu_{ik} - \mu_{ik})R_k$$

so that

$$\frac{dC_i}{dt} = \sum_{k=1}^{N} (\nu_{ik} - \mu_{ik})R_k, \quad i \in M$$

(2.2)

where N is the number of biogeochemical reactions, ν_{ik} is the reaction stoichiometry of the i-th species in the k-th reaction associated with the products, μ_{ik} is the reaction stoichiometry of the i-th species in the k-th reaction associated with the reactants, and R_k is the rate of the k-th reaction. Equation (2.2) states a mass balance for any species in a reactive system and the concept of any species' rate of mass change is due to all reactions that produce or consume this species simultaneously. Furthermore, for facilitating numerical integration, equation (2.2) can be converted into a matrix form:

$$U \frac{dC}{dt} = vR$$

(2.3)

where U is an unit matrix, C is a vector with its components representing M species concentrations, v is the reaction stoichiometry matrix ($M \times N$), and R is the reaction rate vector with N reaction rates as its components. The reaction matrix decomposition decouples equilibrium (i.e., “fast”) reactions from kinetic (i.e., “slow”) reactions and enforces mass conservation of chemical components via using Gauss-Jordan elimination.
In addition, the decomposition of equation (2.3) also determines the number of linearly independent reactions (N_I) and selects the mass-conserved chemical components (N_C) where N_C is equal to M minus N_I. According to certain assumptions, the researcher can identify the number of linearly independent equilibrium reactions (N_E). As a result, the decomposition of equation (2.3) reduces a set of M simultaneous ordinary differential equations governing the production-consumption of M species into the following three subsets of equations:

- the first subset contains N_E nonlinear algebraic equations representing mass action laws and/or user-specified algebraic equations for the equilibrium reactions and be defined as:

Mass Action Equations for N_E Equilibrium Reactions

$$\frac{dE_i}{dt} = D_{kk} R_k + \sum_{j \in N_{KK})} D_{ij} R_j; \quad i \in N_E; \quad k \in N_E: \quad R_k = 0 \Rightarrow \frac{dE_i}{dt} \approx D_{kk} R_k,$$

which is replaced with a thermodynamically consistent algebraic equation.

- the second subset contains ($N_I - N_E$) simultaneous ordinary differential equations representing the rate of change of the kinetic-variables and be defined as:

Kinetic-Variables Equations for ($N_I - N_E$) Kinetic Reactions

$$\frac{dE_i}{dt} = D_{kk} R_k + \sum_{j \in N_{KL})} D_{ij} R_j; \quad i = N_E + 1, N_E + 2, \ldots, N_I - N_E; \quad k \in N_{KI}\text{ where } E_i = \sum_{j=1}^{M} b_{ij} C_j,$$

- the third subset contains N_C linear algebraic equations representing mass conservation of the chemical components and be defined as:
\[\frac{dT_i}{dt} = 0; \quad i = 1, 2, \ldots, N_c \]

where \(T_i = \sum_{j=1}^{M} b_{ij} C_j \) \((2.6) \)

where \(E_i \) is the i-th kinetic variable, \(D_{kk} \) is the diagonal term of the decomposed reaction matrix, \(N_{KD(k)} \) is the subset of linearly dependent kinetic reactions, which depends on the k-th reaction, \(N_{KI} \) is the number of linearly independent kinetic reactions, \(b_{ij} \) is the i-th row and j-th column of the matrix resulting from the Gauss-Jordan decomposition of the unit matrix of size \(M \times M \), and \(T_i \) is the i-th component.

A thermodynamically consistent algebraic equation can be a mass action equation derived based on the law of mass action or a users’ specified equation based on one’s understanding of the system. The law of mass action means that the forward reaction rate \((r_f) \) divided by the backward reaction rate \((r_b) \) equals the equilibrium constant \((K^e) \); it can be mathematically expressed as:

\[r_f = K_f [A]^a [B]^b ; \quad \text{for a reaction as: } aA + bB \Leftrightarrow cC + dD \] \((2.7) \)

\[r_b = K_b [C]^c [D]^d ; \quad \text{for a reaction as: } aA + bB \Leftrightarrow cC + dD \] \((2.8) \)

\[K^e = \frac{[C]^c [D]^d}{[A]^a [B]^b} = \frac{K_f}{K_b} ; \quad \text{for a reaction as: } aA + bB \Leftrightarrow cC + dD \] \((2.9) \)

where \(K_f \) and \(K_b \) are the forward and backward rate constants, respectively.

A kinetic-variable equation represents a linear combination of species concentrations, so that the slope of a kinetic-variable-vs.-time graph can be used to estimate the rate of a kinetic reaction when this kinetic reaction is a linearly independently reaction. On the
other hand, if the reaction network involves the parallel kinetic reactions (kinetic reactions that are linearly dependent on at least one other kinetic reaction), the slope can only be used to measure “lumped” reaction rate, not individual rate, (Yeh et al., 2001). However, for equilibrium reactions we just need to deem that all N_E reactions are linearly independent since any equilibrium reaction that is linearly dependent on another equilibrium reaction is redundant. Moreover, the result of decomposition is variant because the selection of chemical components is not unique (Yeh et al., 2001), which could be employed to assess system consistency.

2.2.2 Data Needs

For a reaction-based modeling, a certain number of chemical species (or operational quantities) must be measured in order to adequately analyze the experimental data and further to assess the consistency of mass conservation equations. In general, we can estimate the kinetic suite of reactions if the minimum $(N_I - N_E)$ species were measured. Nevertheless, for a complete assessment of system consistency, as many as $(N_I - N_E + N_C)$ species should be measured. In our study, four species, Fe(II), H$^+$, lactate, and acetate (incomplete), and one operational quantity, total $[\text{Fe}^{2+}] = [\text{Fe}^{2+}] + [\equiv\text{FeOOFe(II)}^+]$, were measured in batch experiments at Pennsylvania State University. Table 2.2 specifies the initial concentrations of hematite-coated sand, lactate, and cell for our batch simulation. The methods and results of batch experiments are summarized in Appendix A (Morgan’s work).
Table 2.2: Initial Concentrations of Hematite-coated Sand, Fe(III), Lactate, and Cell for Individual Experimental Conditions.

<table>
<thead>
<tr>
<th>Batch Experiment</th>
<th>[Sediment] (g/ml)</th>
<th>[Fe(III)] (mM)</th>
<th>[lactate] (mM)</th>
<th>[cell] (cells/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (DEF)</td>
<td>0.06831</td>
<td>25</td>
<td>37</td>
<td>10^9</td>
</tr>
<tr>
<td>#2 (GHIJ)</td>
<td>2</td>
<td>732</td>
<td>10.5</td>
<td>10^6</td>
</tr>
<tr>
<td>#3 (KLMN)</td>
<td>0.06234</td>
<td>22.8</td>
<td>3.37</td>
<td>10^8</td>
</tr>
<tr>
<td>#4 (OPQ)</td>
<td>0.0682</td>
<td>25</td>
<td>0.69</td>
<td>10^8</td>
</tr>
<tr>
<td>#5 (STU)</td>
<td>0.0683</td>
<td>25</td>
<td>3.75</td>
<td>10^9</td>
</tr>
<tr>
<td>#6 (VWX)</td>
<td>0.0683</td>
<td>25</td>
<td>3.75</td>
<td>10^7</td>
</tr>
<tr>
<td>#7 (AaBbCc)</td>
<td>0.0342</td>
<td>12.5</td>
<td>3.67</td>
<td>10^8</td>
</tr>
<tr>
<td>#8 (EeFfGg)</td>
<td>0.00684</td>
<td>2.5</td>
<td>3.65</td>
<td>10^8</td>
</tr>
<tr>
<td>#9 (ABC)</td>
<td>0.06831</td>
<td>25</td>
<td>54.5</td>
<td>10^6</td>
</tr>
<tr>
<td>#10 (EFG)</td>
<td>0.06831</td>
<td>25</td>
<td>6.5</td>
<td>10^6</td>
</tr>
</tbody>
</table>

2.2.3 Modeling Processes

This section presents how to use BIOGEOCHEM 1.0 to determine the formulations and parameters of the reaction rates for the hematite’s bioreduction reactions. Before going through the detailed steps of the modeling procedure, it is necessary to recall the following definitions of terminology in our procedure:

- M: number of chemical species in the reaction network,
- N_E: number of equilibrium reactions,
- N_K: number of kinetic reactions,
- N: total number of biogeochemical reactions in reaction network (where $N = N_E + N_K$),
- N_I: number of linearly independent reactions, and
For employing BIOGEOCHEM 1.0 to conduct the simulation of batch system, we have to propose a reaction network to describe the system. For our case, the proposed reaction network is exhibited in Table 2.3 and illustrated in Figure 2.1. Where the first reaction represents the “bacterial reduction of hematite”, second reaction reveals the “surface hydration of hematite”, third reaction expresses the “sorption of biogenic ferrous iron, Fe(II), to hematite” (see Figure 2.2), fourth reaction describes the “bacteria growth with lactate as electron donor”, and the last one means “PIVES buffering”. According to the reaction network, we can conduct the matrix decomposition and further to determine the kinetic formulations and parameters via BIOGEOCHEM 1.0. Generally, the reaction-based modeling includes the following steps:

1. A reaction network of N reactions and M species is proposed to describe the system.
2. This information is turned into an input file for BIOGEOCHEM 1.0.
3. The input file is run through the BIOGEOCHEM 1.0 preprocessor to generate an acceptable reaction matrix decomposition.
4. The mass action and mass conservation equations from the decomposition, and the \(N_i - N_E \) quantities measured from the experiments are entered into Mathematica (Wolfram) and a simultaneous equation solver routine is used to calculate “all chemical species concentration-vs-time curves”. These data are compiled and saved as an Excel (Microsoft) file.
5. The kinetic-variable concentration(s) are summed from the appropriate individual species concentrations. A kinetic-variable concentration is plotted versus time (in
Excel), a trend-line equation is obtained, and the derivative of this equation is the reaction rate equation. The rate equation is used to calculate “the reaction rate-vs-time”. This is repeated one reaction at a time for all kinetic-variables.

6. Rate formulations are proposed and tested for the individual kinetic reactions. The species concentration-vs-time obtained in step 4 and the reaction rates-vs-time obtained in step 5 are used to match the rates from experimental measurements with those from proposed rate formulations. The rate parameters for any formulation are obtained by graphical optimization for initial parameter estimation followed by an iterative optimization procedure.

7. The BIOGEOCHEM 1.0 input file is updated with these reaction rate formulations and parameters, and BIOGEOCHEM 1.0 is run to simulate the system and calculate all species concentration-vs-time.

8. Comparisons are made between the BIOGEOCHEM 1.0 model simulations and the experimental measurements.

Table 2.3: Reaction Network of Bioreduction of Hematite

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction Network</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>(2\text{Fe}_2\text{O}_3 + \text{lactate}^- + 7\text{H}^+ \rightleftharpoons 4\text{Fe}^{2+} + \text{acetate}^- + \text{HCO}_3^- + 4\text{H}_2\text{O})</td>
<td>Kinetic</td>
</tr>
<tr>
<td>R2</td>
<td>(\text{Fe}_2\text{O}_3\text{(bulk)} + \text{H}_2\text{O} \rightleftharpoons 2\equiv\text{FeOOH})</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>R3</td>
<td>(\equiv\text{FeOOH} + \text{Fe}^{2+} \rightleftharpoons \equiv\text{FeOOFe(II)}^+ + \text{H}^+)</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>R4</td>
<td>(5\text{lactate}^- + 4\text{CO}_2 + \text{H}_2\text{O} + \text{NH}_4^+ \rightleftharpoons \text{DMRB} + 5\text{acetate}^- + 4\text{HCO}_3^- + 5\text{H}^+)</td>
<td>Kinetic</td>
</tr>
<tr>
<td>R5</td>
<td>(\text{HPI} \rightleftharpoons \text{PI} + \text{H}^+)</td>
<td>Equilibrium</td>
</tr>
</tbody>
</table>
Figure 2.1: Reaction Network of Bioreduction of Hematite

Figure 2.2: Sorption of Fe(II) to Hematite
Once the reaction network is decided, the N reactions and M species should be numbered and arranged in any order. Typically, the most important chemical reaction is listed first followed by others, and species order depends on the sequence of each species’ appearance. We do not usually include H$_2$O as a species because we assume its activity is one. In addition, we need to select N$_C$ chemical component among the M species in order to identify the mass conserved equations; nevertheless, the selection of chemical components is not unique and can be one of the most difficult aspects of these kinds of problems. For instance, the reaction matrix decomposition may result in a set of components that does not make physical sense to the eye of geochemists, yet they are completely correct from a mathematical standpoint of view and may be used to assess system consistency. The crucial consequences of the reaction decomposition are to select chemical components that yield the most important kinetic-variable equation (i.e., central process under investigation). This outcome is used to formulate a rate equation for the kinetic reactions.

In addition, before we propose and justify the rate formulations and parameters for the individual kinetic reactions, we should clearly comprehend that a reaction rate is estimated by a kinetic-variable equation, not by a time-variant species concentration. Although in some simple systems a kinetic-variable may only consist of a single species. Based on the kinetic-variable equations, we can formulate the rate equation and solve the rate parameters; however, to propose an adequate rate formulation for a kinetic reaction is the most difficult and complicated step of the reaction-based modeling. First, we have to study the reaction network and to estimate which species may influence and be involved
in a particular kinetic reaction rate and then try to formulate the rate equation with these species. For example, R1 of our reaction network expresses the reduction of Fe^{3+} to Fe^{2+}, so we reasonably think that the R1 rate should be relative to Fe_2O_3; however, physical evidence indicates that microbes must be in contact with the hematite surfaces to catalyze the reduction reaction. Therefore, we estimate the R1 rate is proportional to $\equiv\text{FeOOH}$ even though R1 doesn’t involve in the species $\equiv\text{FeOOH}$.

After formulating the rate equation and solving the parameters, we conducted the simulation with the determined formulations/parameters and to compare the results with experimental data in order to justify our proposed formulations and estimated parameters. Generally, for obtaining the most satisfactory rate formulations, we should propose several rate formulations such as the elementary rate, Monod kinetic, and empirical formulations to compare with experimental data.

2.3 Results of Batch Simulation

In our study, we apply BIOGEOCHEM 1.0 to conduct the simulations of bioreduction of hematite. This model is employed to yield the reaction matrix decomposition and to formulate the kinetic reaction rates of the reaction network in batch system. Following sections will represent the results after running BIOGEOCHEM 1.0.

2.3.1 Reaction Matrix Decomposition

According to Table 2.3, the reaction network of bioreduction of hematite contains 13 species ($M = 13$) except for H_2O, and 5 reactions ($N = 5$). Experimental evidence
suggested R2, R3, and R5 were equilibrium reactions; thus, $N_E = 3$, so that $N_K = N - N_E = 2$. Furthermore, there is no kinetic reaction that is dependent on the other kinetic reactions; therefore, all reactions are linearly independently reactions ($N_I = N = 5$), so the required number of chemical components is eight ($N_C = M - N_I = 8$). In our case, the solution of thirteen species concentration-vs-time will required thirteen equations, so equation (2.3) can be written in matrix form as:

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{d[Fe_{2}O_{3}]}{dt} \\
\frac{d[lactate]}{dt} \\
\frac{d[H^{+}]}{dt} \\
\frac{d[Fe^{2+}]}{dt} \\
\frac{d[acetate]}{dt} \\
\frac{d[HCO_{3}^{-}]}{dt} \\
\frac{d[FeOOH]}{dt} \\
\frac{d[FeOOFe]}{dt} \\
\frac{d[CO_{2}]}{dt} \\
\frac{d[NH_{4}^{+}]}{dt} \\
\frac{d[DMRB]}{dt} \\
\frac{d[HPipes]}{dt} \\
\frac{d[PIPES]}{dt}
\end{bmatrix} =
\begin{bmatrix}
-2 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -5 & 0 \\
-7 & 0 & +1 & +5 & +1 \\
+4 & 0 & -1 & 0 & 0 \\
+1 & 0 & 0 & +5 & 0 \\
+1 & 0 & 0 & +4 & 0 \\
0 & +2 & -1 & 0 & 0 \\
0 & 0 & +1 & 0 & 0 \\
0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & +1 & 0 \\
0 & 0 & 0 & 0 & +1 & 0 \\
0 & 0 & 0 & 0 & 0 & +1
\end{bmatrix}
$$

After matrix decomposition, the selected eight components out of the thirteen species have to yield the kinetic-variable equation for R1 (the most important reaction) since to evaluate the rate of iron reduction is our main objective. In addition, the matrix decomposition also must produce at least one mass conservation equation in terms of species. The matrix decomposition is displayed in Table 2.4. Before calculating the concentration of all species, the equations for equilibrium equations must be determined. Generally, the literature references or preliminary experiments were employed to determine the equilibrium reaction constants. In our study, we have defined or assumed the “surface hydration of hematite” (R2), “sorption of Fe(II) to hematite” (R3), and
Table 2.4: Reaction Matrix Decomposition

\((N_I - N_E) \text{ Kinetic-variable Equations:}\)

\[
\frac{d([Fe^{2+}] + [≡ FeOOFe(II)])}{dt} = 4R_1
\]
(2.11)

\[
\frac{d[DMRB]}{dt} = R_4
\]
(2.12)

\(N_C \text{ Mass Conservation Equations:}\)

\[
\text{TOT}[Fe_2O_3] = [Fe_2O_3] + 0.5 [Fe^{2+}] + 0.5 [≡ FeOOH] + [≡ FeOOFe^+] \quad (2.13)
\]

\[
\text{TOT}[\text{lactate}^-] = [\text{lactate}^-] + 0.25 [Fe^{2+}] + 0.25 [≡ FeOOFe^+] + 5 [DMRB] \quad (2.14)
\]

\[
\text{TOT}[H^+] = [H^+] + 1.75 [Fe^{2+}] + 0.75 [≡ FeOOFe^+] - 5 [DMRB] - [\text{PIPES}^-] \quad (2.15)
\]

\[
\text{TOT}[\text{acetate}^-] = -0.25 [Fe^{2+}] + [\text{acetate}^-] - 0.25 [≡ FeOOFe^+] - 5 [DMRB] \quad (2.16)
\]

\[
\text{TOT}[\text{HCO}_3^-] = -0.25 [Fe^{2+}] + [\text{HCO}_3^-] - 0.25 [≡ FeOOFe^+] - 4 [DMRB] \quad (2.17)
\]

\[
\text{TOT}[\text{CO}_2] = [CO_2] + 4 [DMRB] \quad (2.18)
\]

\[
\text{TOT}[\text{NH}_4^+] = [NH_4^+] + [DMRB] \quad (2.19)
\]

\[
\text{TOT}[\text{HPIPES}] = [\text{HPIPES}] + [\text{PIPES}^-] \quad (2.20)
\]

\(N_E \text{ Mass Action Equations:}\)

\[
\frac{d[≡ FeOOH]}{dt} = R_2 - R_3; \quad R_2 = \infty \quad \Rightarrow \quad \frac{[≡ FeOOH]^2}{[Fe_2O_3]} = K_2^e \quad (2.21)
\]

\[
\frac{d[≡ FeOOFe]}{dt} = R_3; \quad R_3 = \infty \quad \Rightarrow \quad \frac{[≡ FeOOFe][H^+]}{[≡ FeOOH][Fe^{2+}]} = K_3^e \quad (2.22)
\]

\[
\frac{d[\text{PIPES}^-]}{dt} = R_5; \quad R_5 = \infty \quad \Rightarrow \quad \frac{[\text{PIPES}^-][H^+]}{[\text{HPIPES}]} = K_5^e \quad (2.23)
\]

TOT[species] means the total concentration of this species; \(K_2^e\); \(K_3^e\); and \(K_5^e\) are the equilibrium constants.
“PIPS buffering” (R5) are equilibrium reactions. Furthermore, based on the reference (Burgos et al., 2002), R2 is relative to certain crystalline oxide surfaces, so the mass action equation (2.21) in Table 2.4 cannot adequately describe the formulation for R2 in our modeling because the stoichiometry of R2 is not probably maintained for all hematite surface atoms. Therefore, a “user-specify” formulation for R2, which is based on the concept of surface site species’ concentration corresponding to the mineral suspension concentration (Stumm and Morgan, 1996), is proposed to distinguish between the bulk and surface species. In our case, we employed the following equation to substitute for equation (2.21).

\[
[≡ FeOOH]_T = [≡ FeOOH] + [≡ FeOOFe(II)]^+ = K_{TSS}^e [Fe:O_3] \\
\text{where } K_{TSS}^e = \frac{S_N S}{N_A} MW_{FeO_3}
\tag{2.24}
\]

where \([≡FeOOH]_T\) is the total hematite surface site concentration (mol sites L\(^{-1}\)), \(K_{TSS}^e\) is the “lumped” equilibrium constant for the total surface sites, \([Fe_2O_3]\) is the hematite activity concentration (assumed to equal 1 mole site L\(^{-1}\) for crystalline solid), \(S_N\) is the hematite unit surface area (m\(^2\) g\(^{-1}\)), \(N_S\) is the surface site density (sites m\(^{-2}\)), \(N_A\) is Avagadro’s number (sites mol\(^{-1}\)), and \(MW_{FeO_3}\) is the molecular weight of hematite (160 g mol\(^{-1}\)). In our case, we have assumed a site density of 52 sites nm\(^{-2}\) (Cornell and Schwertmann, 1996; Jeon et al., 2001). Using the estimated \(N_S\) value of 52 sites nm\(^{-2}\) and the measured surface area of 9.04 m\(^2\) g\(^{-1}\) (Burgos et al., 2002); thus, \(K_{TSS}^e\) for equation (2.24) is then calculated as:

\[
K_{TSS}^e = \frac{9.04 (m^2/g) \times 52 (site)}{6.02 \times 10^{23} (site/mole)} \times 160 (g/mole) = 0.125 \Rightarrow \log K_{TSS}^e = -0.9 \tag{2.25}
\]
Similarly, the maximum amount of adsorption is proportional to the amount of surface area; however, not all of the area is accessible to aqueous adsorbates (Water Quality & Treatment, Fifth Edition). Therefore, the mass action equation (2.22) in Table 2.4 was not used to represent the reaction of “sorption of Fe(II) to hematite” in our simulation. For R3, a “user-specify” formulation based on the concept of the attachment of the material to be adsorbed to adsorbent at an available adsorption site (Snoeyink and Summers, 1999) is proposed to substitute for equation (2.22). In our case, we chose “Freundlich equation” instead and it is described as:

\[q_e = KC_c^n \]

(2.26)

where \(q_e \) (mass adsorbate/mass adsorbent) and \(C_c \) (moles/volum) are the equilibrium adsorbate and adsorbent concentrations, respectively. \(K \) is the Freundlich capacity factor (the units of \(K \) are determined by the units of \(q_e \) and \(C_c \)), and \(n \) is the Freundlich intensity parameter (unitless). Therefore, the sorption of Fe(II) to hematite in R3 can be expressed as:

\[\equiv \text{FeOOFe(II)}^+ = K[\text{Fe}^{2+}]^n \]

(2.27)

Freundlich equation is an empirical equation and it is very useful to describe many adsorption data accurately. For our study, because both \(\text{Fe}^{2+} \) and total \([\text{Fe}^{2+}] = [\text{Fe}^{2+}] + [\equiv\text{FeOOFe(II)}^+] \) were measured, the parameters, \(K \) and \(n \), can be determined, independent of other rate equations, via the “best fit” equation using a spreadsheet. Finally, for the last mass action equation (2.23), the logarithm equilibrium constant for PIPES buffering \((\log K_\varepsilon) \) is equal to – 6.8 according to the product information (Sigma-Aldrich, St. Louis, MO).
2.3.2 Formulations and Parameters for Kinetic Reactions

Based on N_C mass conservation equations (equations 2.13–2.20), N_E equilibrium equations (equations 2.23–2.24, and 2.27), and $(N_I - N_E)$ species measured data, we can compute all 13 species concentration-versus-time via using Mathematica software. However, before calculating the concentration of all species, the unit of concentration must be converted into the same units. For our case, the unit of concentration for all species is mole per liter; thus, the unit of cells/mL for bacteria, DMRB, has to be converted into mole per liter. For instance, the 10^{-8} cells/mL is approximated to equal 5×10^{-3} mole L$^{-1}$ based on the bacterium’s molecular formula which was assumed as $C_5H_7O_2N$ and thus each cell has 5×10^{12} g. The accurate value for $[DMRB]$ is 4.4×10^{-3} mole L$^{-1}$; nevertheless, the approximated value of 5×10^{-3} mole L$^{-1}$ is used due to the assumptions involved (Burgos et al., 2002).

The most important work in the batch system simulation is to determine the rate formulations and parameters for the kinetic reactions. Three rate formulations for R1 will be tested: (1) a physically-based formulation proposed to be first-order with respect to “free” hematite surface sites, \equivFeOOH, (equation 2.28), (2) a dual Monod kinetic rate formulation with respect to the concentrations of lactate and \equivFeOOH (equation 2.29), and (3) a dual Monod kinetic with inhibition rate formulation with respect to the concentrations of lactate, \equivFeOOH, and Fe$^{2+}$ (equation 2.30). In addition, a formal bacteria growth kinetic with cell decay was used to describe R4 (equation 2.31; Metcalf and Eddy, 2003).
\[R_1 = K_{fss}[\equiv \text{FeOOH}] \] (2.28)

\[R_1 = U_{\text{max}} \frac{[\text{lactate}]}{(k_L + [\text{lactate}])} \times \frac{[\equiv \text{FeOOH}]}{(K_F + [\equiv \text{FeOOH}])} \] (2.29)

\[R_1 = V_{\text{max}} \frac{[\text{lactate}]}{(k_{La} + [\text{lactate}])} \times \frac{[\equiv \text{FeOOH}]}{\{[\equiv \text{FeOOH}] + K_{Fe}(1 + \frac{[\text{Fe}^{2+}]}{K_1})\}} \] (2.30)

\[R_4 = \frac{B_{\text{max}}}{Y_s} \frac{[\text{lactate}]}{(K_b + [\text{lactate}])} \times [\text{DMRB}] - K_d[\text{DMRB}] \] (2.31)

where \(K_{fss} \) is the rate constant (hr\(^{-1}\)) for R1 in equation (2.28); \(U_{\text{max}} \) and \(V_{\text{max}} \) are the maximum specific reaction rate (M hr\(^{-1}\)) for R1 in equation (2.29) and (2.30), respectively; \(K_L, K_F, K_{La} \) and \(K_{Fe} \) are the half-velocity constant (M) for R1 in equation (2.28), (2.29), and (2.30), respectively; \(K_1 \) is the inhibition coefficient (M) for R1 in equation (2.30); \(B_{\text{max}} \) is the maximum specific growth rate of DMRB (M new cells/M cells-day); \(Y_s \) is the substrate (lactate) consumed coefficient (mol biomass/mol substrate); \(K_b \) is the half-velocity constant of bacteria growth rate (M); \(K_d \) is the endogenous decay coefficient (M substrate/M substrate-day).

As mentioned above, after the matrix decomposition, we can compute all 13 species concentration-versus-time with the measured data; however, according to the results of standard deviation, we only chose the best three experimental data (Exp. 4~6) with different initial concentrations of DMRB from the ten experiments to conduct our batch simulation. In the following, we employ the data of experiment #4 to interpret how we determine the parameters for each “kinetic” rate formulation; however, before conducting that, the parameters of “equilibrium” formulations should be defined first. In last section,
we have determined the value of K_{TSS}^e and K_5^e for R2 and R5, respectively; thus, now we need to determine the parameters, K and n, of equilibrium equation (2.27) for R3 via plotting $[Fe^{2+}]$ versus $[≡FeOOFe(II)^+]$ and fitting the curve with a power equation as a function of $[Fe^{2+}]$. From Figure 2.3 we can obtain the approximate values of 0.036 and 0.51 for K and n, respectively. After evaluating all of the parameters for the equilibrium reaction, the species concentration-versus-time can be calculated with the experimental data via software Mathematica. Table 2.5 shows the partial (important) species concentration-versus-time for experiment #4.

Table 2.5: Partial Species Concentration-versus-Time for Experiment #4

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>$[Fe_2O_3]$ (M)</th>
<th>$[\text{lactate}]$ (M)</th>
<th>$[Fe^{2+}]$ (M)</th>
<th>$[≡FeOOH]$ (M)</th>
<th>$[≡FeOOFe^+]$ (M)</th>
<th>$[\text{DMRB}]$ (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0125</td>
<td>0.00069</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>0.17</td>
<td>0.0117439</td>
<td>0.000660112</td>
<td>9.09E-07</td>
<td>0.00144554</td>
<td>3.29E-05</td>
<td>0.00501283</td>
</tr>
<tr>
<td>1</td>
<td>0.0117281</td>
<td>0.000644779</td>
<td>3.64E-06</td>
<td>0.00141286</td>
<td>6.36E-05</td>
<td>0.00501701</td>
</tr>
<tr>
<td>2</td>
<td>0.0117099</td>
<td>0.000645773</td>
<td>0.0001033</td>
<td>0.0013786</td>
<td>9.56E-05</td>
<td>0.00501063</td>
</tr>
<tr>
<td>4</td>
<td>0.0116791</td>
<td>0.000617633</td>
<td>0.0002256</td>
<td>0.0013213</td>
<td>0.000149</td>
<td>0.00501765</td>
</tr>
<tr>
<td>8</td>
<td>0.0116309</td>
<td>0.000562214</td>
<td>0.00004982</td>
<td>0.0012402</td>
<td>0.000224</td>
<td>0.00503552</td>
</tr>
<tr>
<td>12.25</td>
<td>0.0115849</td>
<td>0.000530732</td>
<td>0.00007337</td>
<td>0.00116009</td>
<td>0.000298</td>
<td>0.00503972</td>
</tr>
<tr>
<td>20.58</td>
<td>0.0115364</td>
<td>0.000469803</td>
<td>0.000119883</td>
<td>0.00109749</td>
<td>0.000355</td>
<td>0.00506078</td>
</tr>
<tr>
<td>24</td>
<td>0.0115111</td>
<td>0.000432746</td>
<td>0.000136954</td>
<td>0.00105757</td>
<td>0.000392</td>
<td>0.00507492</td>
</tr>
<tr>
<td>36.3</td>
<td>0.0114579</td>
<td>0.000321781</td>
<td>0.000190584</td>
<td>0.00099135</td>
<td>0.000451</td>
<td>0.00512443</td>
</tr>
<tr>
<td>48</td>
<td>0.0113879</td>
<td>0.000267134</td>
<td>0.000235627</td>
<td>0.000878829</td>
<td>0.000555</td>
<td>0.00513488</td>
</tr>
<tr>
<td>72.1</td>
<td>0.0113124</td>
<td>0.000171555</td>
<td>0.000321838</td>
<td>0.000794906</td>
<td>0.000629</td>
<td>0.00516807</td>
</tr>
</tbody>
</table>

Figure 2.3: Curve of the Empirical Freundlich Equation (R3) for Exp. #4
As the first step in determining the parameters of kinetic rate formulations, we use the kinetic-variable Equation (2.11) and (2.12) to plot the kinetic-variable concentration-vs-time and fit the curve with an equation as a function of time (see Figure 2.4). Second, the time derivative of this equation divided by the rate factor is then equal to the reaction rate. For example, the “best fit” equation in Figure 2.4 for ([Fe$^{2+}$] + [≡FeOOFe(II)$^+$])-vs-time is:

$$([\text{Fe}^{2+} + [\equiv \text{FeOOFe(II)}^+])(M) = -1.39 \times 10^{-7} t^2 + 2.2 \times 10^{-5} t + 7.09 \times 10^{-5}$$

(2.32)

so

$$\frac{d([\text{Fe}^{2+} + [\equiv \text{FeOOFe(II)}^+])}{dt} (M/hr) = 4R = -2.78 \times 10^{-7} t + 2.2 \times 10^{-5}$$

(2.33)

Figure 2.4: The Kinetic-Variable Concentration-vs-Time for Exp. #4
Third, we can use equation (2.33) to generate R_1 as a function of time; therefore, the rate formulations and parameters can be tested and determined with all species concentration-vs-time and the reaction rate-vs-time. For instance, equation (2.28), first proposed R_1 rate formulation, can be plotted as R_1 versus \equivFeOOH and the K_{fss} then can be determined from the slope. From Figure 2.5 we obtain the rate constant, K_{fss}, of 0.0038 M/hr. For the second proposed R_1 rate formulation, we should rearrange the dual Monod kinetic rate formulation (equation 2.29) as:

$$R_1 = \frac{U_{\text{max}}}{k_L} \frac{[\equiv \text{FeOOH}]}{([\text{lactate}] + 1) (K_F + [\equiv \text{FeOOH}])}$$

(2.34)

assuming $U_{\text{max-app}} = \frac{U_{\text{max}}}{k_L} \frac{[\equiv \text{FeOOH}]}{([\text{lactate}] + 1)}$; thus, $R_1 = U_{\text{max-app}} \frac{[\equiv \text{FeOOH}]}{(K_F + [\equiv \text{FeOOH}])}$

(2.35)

so

$$\frac{1}{R_1} = \frac{K_F}{U_{\text{max-app}}} \frac{1}{[\equiv \text{FeOOH}]} + \frac{1}{U_{\text{max-app}}}$$

(2.36)

where $U_{\text{max-app}}$ is an approach maximum specific reaction rate (M hr$^{-1}$) for R_1, so the dual Monod kinetic form can be represented by a “single” Monod kinetic form (equation 2.35), and Equation (2.36) then can be plotted as $1/R_1$ versus $1/[\equiv \text{FeOOH}]$ to determine the value of K_F (from 1/y-intercept multiplies the slope). From Figure 2.6 we can obtain the half-velocity constant, K_F, of 4.26×10^{-3} M. Then, we rearrange equation (2.29) as:

$$\frac{1}{R_1} \times \left(1 + \frac{K_F}{U_{\text{max}}} \frac{1}{[\equiv \text{FeOOH}]}
ight) = \frac{1}{U_{\text{max}}} \frac{1}{[\text{lactate}]} + \frac{1}{U_{\text{max}}}$$

(2.37)
Figure 2.5: R_1 versus $[\equiv\text{FeOOH}]$ for Exp. #4

Figure 2.6: $1/R_1$ versus $1/[\equiv\text{FeOOH}]$ for Exp. #4

Figure 2.7: $1/(R_1 \times (1+K_F/[\equiv\text{FeOOH}]))$ versus $1/\text{[lactate]}$ for Exp. #4
After inputting the determined value of K_F into equation (2.37), we can plot $1/\{R_1 \times (1 + K_F/\equiv FeOOH)\}$ versus $1/[\text{lactate}]$ to find out the values of K_L/U_{max} (from the slope) and $1/U_{\text{max}}$ (from the y-intersect). From Figure 2.7 we can acquire the half-velocity constant, K_L, of 7.93×10^{-4} M and the maximum specific reaction rate, U_{max}, of 5.24×10^{-5} M/hr, respectively.

In addition, we utilize the iterative optimization procedure to predict our third proposed R_1 (where R_1 denotes Reaction No. 1) rate formulation. In the beginning, we plot the R_1 (where R_1 denotes rate of R_1) versus time via Excel and set up this rate formulation into Excel. Then, we adjust each parameters of this formulation with the involved species concentration-vs-time to fit the curve of R_1-versus-time. After achieving the “best fit” (Figure 2.8), we can obtain each specific value for each parameter. The parameters in equation (2.30) were estimated as 8.5×10^{-5} M/hr, 9.0×10^{-3} M, 3.5×10^{-5} and 6.0×10^{-4} for V_{max}, K_{La}, K_{Fe}, and K_{I}, respectively.

For evaluating the bacteria growth kinetic rate formulation (R_4), we should consider the substrate, lactate, utilization first. According to the reaction network, R_1 and R_4 both consume the lactate; hence, the lactate utilization for DMRB will be the initial lactate amount minus the consumption of lactate in R_1. The consumption of lactate in R_1 will generate four times of total Fe^{2+} (total $[Fe^{2+}] = [Fe^{2+}] + [\equiv FeOFe(II)^+]$); therefore, the lactate utilization in R_4 is equal to the initial lactate amount minus one fourth amount of Fe^{2+} and $\equiv FeOFe(II)^+$. So, we can plot the lactate consumption-vs-time of R_4 and fit the curve with an equation as a function of time (Figure 2.9) and the time derivative of
Figure 2.8: Optimization Curve of the Third Proposed R1 Formulation for Exp. #4

Figure 2.9: Lactate Utilization in R4 for Exp. #4

Figure 2.10: [DMRB]/ (R4 [lactate] Utilization Rate) versus 1/ [lactate] for Exp. #4
This equation is then equal to the lactate utilization rate in R4. Based on Figure 2.9 we can calculate the lactate utilization rate of R4 for each specific time point and we also know the lactate utilization rate formulation of R4 as (Metcalf and Eddy, 2003):

\[
\text{Lactate Utilization Rate of R4} = B_{\text{max}} \frac{[\text{Lactate}]}{K_b + [\text{lactate}]} \times [\text{DMRB}] \quad (2.38)
\]

Therefore, equation (2.39) can be plotted as \([\text{DMRB}] / (\text{R4 Lactate Utilization Rate})\) versus \(1/\text{[lactate]}\) in order to determine the values of \(B_{\text{max}}\) and \(K_b\). According to Figure 2.10, the values of \(B_{\text{max}}\) and \(K_b\) are \(2.54 \times 10^{-3}\) M new cells/M cells-day and \(8.21 \times 10^{-4}\) M, respectively. However, two more parameters, \(Y_s\) and \(K_{d_s}\) need to be found out for the bacteria growth kinetic rate formulation (equation 2.31). There, \(Y_s\) is the lactate consumed coefficient, so based on the fourth reaction of our reaction network \(Y_s\) is equal to 5 mol DMRB/mol lactate. Furthermore, we employ the iterative optimization procedure to determine \(K_d\) (Figure 2.11); the determined value of \(K_d\) is then equal to \(1 \times 10^{-6}\) M substrate/M substrate-day.

![Figure 2.11: Optimization Curve of the Proposed R4 Formulation for Exp. #4](image)
2.3.3 The Simulation Results

In the same way, we repeated the procedures of determining parameters of experiment #4 to find out the parameters of rate formulations for the other experiments. As a result, we can obtain each parameter represented in Table 2.6 (without the units) for each experiment. Moreover, before using BIOGEOCHEN 1.0 to conduct the simulations, we should update the input files with these proposed rate formulations and determined parameters. After running BIOGEOCHEN 1.0, we then can acquire all of the species’ concentration at the specific time points that we would like to compare with the batch experimental data. The following figures display the results of simulation contrasted with the batch experimental data simultaneously.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Exp. #4</th>
<th>Exp. #5</th>
<th>Exp. #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{fss}</td>
<td>3.8×10^{-3}</td>
<td>9.5×10^{-3}</td>
<td>4.2×10^{-3}</td>
</tr>
<tr>
<td>U_{max}</td>
<td>5.24×10^{-5}</td>
<td>5.5×10^{-5}</td>
<td>2.2×10^{-5}</td>
</tr>
<tr>
<td>V_{max}</td>
<td>8.5×10^{-5}</td>
<td>3.2×10^{-5}</td>
<td>1.8×10^{-5}</td>
</tr>
<tr>
<td>B_{max}</td>
<td>2.54×10^{-3}</td>
<td>3.3×10^{-4}</td>
<td>2.55×10^{-2}</td>
</tr>
<tr>
<td>K_L</td>
<td>7.93×10^{-4}</td>
<td>7.0×10^{-4}</td>
<td>5.5×10^{-4}</td>
</tr>
<tr>
<td>K_F</td>
<td>4.26×10^{-3}</td>
<td>4.0×10^{-3}</td>
<td>3.3×10^{-3}</td>
</tr>
<tr>
<td>K_{La}</td>
<td>9.0×10^{-3}</td>
<td>9.8×10^{-3}</td>
<td>9.6×10^{-3}</td>
</tr>
<tr>
<td>K_b</td>
<td>8.21×10^{-4}</td>
<td>2.52×10^{-3}</td>
<td>1.1×10^{-5}</td>
</tr>
<tr>
<td>K_{Fe}</td>
<td>3.5×10^{-3}</td>
<td>6.0×10^{-6}</td>
<td>2.0×10^{-3}</td>
</tr>
<tr>
<td>K_I</td>
<td>6.0×10^{-4}</td>
<td>1.0×10^{-5}</td>
<td>1.5×10^{-5}</td>
</tr>
<tr>
<td>Y_s</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>K_d</td>
<td>1.0×10^{-6}</td>
<td>1.0×10^{-6}</td>
<td>1.0×10^{-6}</td>
</tr>
<tr>
<td>K</td>
<td>3.6×10^{-2}</td>
<td>1.35×10^{-1}</td>
<td>1.5×10^{-2}</td>
</tr>
<tr>
<td>n</td>
<td>0.51</td>
<td>0.624</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Figure 2.12: Simulation Results of the First Proposed R1 Formulation for Exp. #4
Figure 2.13: Simulation Results of the Second Proposed R1 Formulation for Exp. #4
Figure 2.14: Simulation Results of the Third Proposed R1 Formulation for Exp. #4
Figure 2.15: Simulation Results of the First Proposed R1 Formulation for Exp. #5
Figure 2.16: Simulation Results of the Second Proposed R1 Formulation for Exp. #5
Figure 2.17: Simulation Results of the Third Proposed R1 Formulation for Exp. #5
Figure 2.18: Simulation Results of the First Proposed R1 Formulation for Exp. #6
Figure 2.19: Simulation Results of the Second Proposed R1 Formulation for Exp. #6
Figure 2.20: Simulation Results of the Third Proposed R1 Formulation for Exp. #6
2.4 Conclusion and Discussion

The biogeochemistry of microbial Fe(III) reduction and of associated contaminant interactions is very complicated, so an appropriate biogeochemical numerical model is needed to properly evaluate and design the bioreduction system of Fe(III); furthermore, using a model to determine the rate formulations and parameters of the reaction network is more convenient and economic than the statistical method because it is not necessary to measure all of the chemical species for using a reaction-based model.

Our primary objective of batch system is using a reaction-based biogeochemical model BIOGEOCHEM 1.0 to simulate the bioreduction kinetics of natural hematite-coated sand by dissimilatory metal-reducing bacterium (DMRB), *Shewanella putrefaciens* CN32, under growth conditions with lactate as the electron donor. This reactive system can be completely defined by a specifying reaction network (Yeh et al., 2001); therefore, we proposed a reaction network on Table 2.3 to describe the hematite bioreduction for our study, and further converted this reaction network into a matrix form. As a result, the equilibrium and kinetic reactions in the reaction network can be decoupled via Gauss-Jordan elimination into three subsets of equations: mass action equations for equilibrium reaction, kinetic-variable equations for kinetic reaction, and mass conservation equations. After the matrix decomposition, we can calculate all species’ concentration with the experimental data; however, a “reliable” experimental data is extremely important because dispersive data will result in a bad fit of the reaction rate via fitting the curve of the kinetic-variable concentration-vs-time. Moreover, the experiments have to be carefully designed to satisfy minimum data need.
The most important task of the batch system simulation is to identify the rate formulations and parameters of the “bacterial reduction of hematite” (R1). Therefore, we proposed three possible rate formulations to describe the bioreduction rate of hematite and systematically determined each parameter for each rate formulation. These rate formulations and parameters were verified by comparing the results between simulation and experiment. A successful simulation using BIOGEOCHEM 1.0 would serve to validate the individual rate formulations and parameters and the overall theoretical approach. From Figure 2.12 to Figure 2.20, we can know that our proposed formulations with the determined parameters are reasonably good to express the R1 rate. However, the determined rate formulations and parameters should be also systematically tested with the column experiments by using a reactive biogeochemical transport model in order to further demonstrate these formulations/parameters and the hypothesis that mechanistic-based reaction rates of batch system can be scaled up and exported to column system.
CHAPTER 3:
SIMULATION AND EXPERIMENT IN COLUMN SYSTEMS

An important part of this research is to determine the reliability of batch simulations. We will do this by comparing the results from our batch simulations with column experiments. This chapter will describe the model, modeling approach, and the results of the column simulations.

3.1 Model Description

HYDROGEOCHEM 4.0 is an evolution of HYDROGEOCHEM 3.0 (Personal Communication). The major modifications of HYDROGEOCHEM 3.0 are the reformulation of the reactive chemistry calculations and the addition of a heat transfer module. HYDROGEOCHEM 4.0 is modified for generic application to reactive transport problems controlled by both kinetic and equilibrium reactions in subsurface media and incorporates heat transfer. As a result, HYDROGEOCHEM 4.0 is a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical transport under variably saturated conditions in two dimensions.

In short, HYDROGEOCHEM 4.0 is a hydrologic transport model coupled with a reaction-based model, BIOGEOCHEM 2.0 (Yeh et al., 2005b). It is noted that BIOGEOCHEM 1.0 was designed for batch modeling while BIOGEOCHEM 2.0 was developed for coupling with hydrologic transport. The two versions are identical in theory and numerical approximations. They differ only in the code structure to facilitate
the coupling of BIOGEOCHEM 2.0 with hydrologic transport, so HYDROGEOCHEM 4.0 also includes the unique function that user can specify and program the reaction rate formulations into the code. Furthermore, this model can simulate complexation reactions, adsorption/desorption reactions, ion-exchange reactions, precipitation/dissolution reactions, reduction/oxidation, volatilization reactions, diffusion reactions, and sedimentation reactions.

HYDROGEOCHEM 4.0 runs on the DOS operating system and it requires two kinds of inputs: the run-stream input file names and the input data file. The input data file includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the medium, reaction network, and the initial and boundary conditions. The program output includes the spatial distribution of pressure head, total head, velocity fields, moisture contents, temperature, and chemical concentrations as a function of time as well as the distribution of all chemical species at user-specified nodes.

Furthermore, the units of measure are: decimeter (dm) for length, mole for the mass for any chemical species, kg/dm3 (kg/liter) for density, equivalents/mass for the ion-exchange capacity, kelvin (K) for temperature, and any units of time may be used as long as the time unit is consistent throughout the input file. Furthermore, the corresponding concentration unit of all species (aqueous, sorbed, and precipitated species) and the corresponding unit for the sorption distribution coefficient are mole/liter of fluid (Molar) and dm3/kg (ml/g), respectively.
3.2 Modeling Approach

HYDROGEOCHEM 4.0 is an accurate, efficient, and robust tool for solving the governing equation of fluid flow and reactive chemical transport; thus, using a reactive transport model is an easier and convenient way to demonstrate the hypothesis that mechanistic-based reaction rates of batch system can be scaled up and exported to a column system. Before using HYDROGEOCHEM 4.0 to simulate the reactive chemical transport, the formulations and parameters of the kinetic reactions must be given or determined via a reaction-based model. Also, the consistency of mass conservation equations and the assumptions regarding equilibrium reactions were assessed.

3.2.1 Theory and Mathematical Formulations

Finite difference method and finite element method are the most two common numerical methods used to reduce partial differential equations into the most basic form of the governing equations. HYDROGEOCHEM 4.0 uses the finite element method to solve the partial differential equations; the advantages and details of the finite element method can be found elsewhere (Yeh, 1999, 2000).

As mentioned in Chapter 2, a biogeochemical system is completely defined by specifying reaction networks, and the production-consumption rate of every species is out of the entire reactions which produce or consume that species. Therefore, the ordinary differential equations (equation 2.2 and 2.3) in a reactive batch system can be extended to the reactive transport system via replacing the ordinary equations with the transport equation as shown by Fan et al (2003):
\[\frac{\partial C_i}{\partial t} - L(C_i) + QC_i = \theta r_{i|N} = \sum_{k=1}^{N} (\nu_{ik} - \mu_{ik}) R_k, \quad i \in M; \text{ where } L(C_i) = \frac{\partial}{\partial x} \left(\theta D \frac{\partial C_i}{\partial x} \right) - \nu \frac{\partial C_i}{\partial x} \] (3.1)

where \(\theta \) is the effective moisture content, \(r_{i|N} \) is the production-consumption rate of the \(i \)-th species due to \(N \) biogeochemical reactions, \(C_i \) is the concentration of the \(i \)-th chemical species, \(t \) is time, \(L \) is the advection-dispersion/diffusion operator, \(Q \) is the flow rate, \(N \) is the number of biogeochemical reactions, \(\nu_{ik} \) is the reaction stoichiometry of the \(i \)-th species in the \(k \)-th reaction associated with the products, \(\mu_{ik} \) is the reaction stoichiometry of the \(i \)-th species in the \(k \)-th reaction associated with the reactants, \(R_k \) is the rate of the \(k \)-th reaction, \(M \) is the number of chemical species, \(D \) is the hydrodynamic dispersion coefficient, \(x \) is the distance, and \(v \) is the velocity. Equation (3.1) is a statement of mass balance for any species in a transport system and can be converted into a matrix form for decomposing the reaction network.

3.2.2 Data Needs

The column experiments were conducted at Pennsylvania State University as well and focused on transient reactive transport under otherwise identical conditions, except that the flow rate was systematically varied. The specific flow rates and initial conditions for each column experiment are shown in Table 3.1, and the details and results are summarized in Appendix A (Morgan’s work).

<table>
<thead>
<tr>
<th>Columns</th>
<th>Average Flow Rate (ml/day)</th>
<th>Average Sand Weight (grams)</th>
<th>Initial Cell Concentration (cells/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-D</td>
<td>10.6</td>
<td>9.069</td>
<td>(10^8)</td>
</tr>
<tr>
<td>G-J</td>
<td>1.6</td>
<td>9.007</td>
<td>(10^8)</td>
</tr>
<tr>
<td>K-N</td>
<td>5.9</td>
<td>9.009</td>
<td>(10^8)</td>
</tr>
</tbody>
</table>
3.2.3 Modeling Processes

This section describes how to utilize HYDROGEOCHEM 4.0 to conduct the simulation for the transport of bioreduction of hematite and to test the determined rate formulations and parameters from the batch system. Before going through the detailed steps of the modeling procedure, an overview of procedure represented below is useful for understanding the column modeling.

1. Rate formulations and parameters of the reaction network were determined by the batch system via running BIOGEOCHEM 1.0.
2. The domain of interest of column is defined and divided into an appropriate amount of elements and nodes.
3. The basic characteristics (bulk density, pore volume, porosity et al.) of the porous medium are estimated from the column experimental setup and the tracer experimental data.
4. HYDROGEOCHEM 4.0 is employed to determine the longitudinal dispersivity of material via fitting the breakthrough curve of the tracer.
5. After obtaining all of the needed information, the combined information from batch and column system is then transferred into an input file for HYDROGEOCHEM 4.0 to model the concentration of each species at any node and time point that we would like to compare with experimental data.
6. Comparisons are made between the HYDROGEOCHEM 4.0 model simulations and the column experimental measurements.
Before conducting the column simulation, we have to define the domain of interest.

According to the column experimental setup, the domain of interest has an inner diameter of 1 cm and 7.5 cm long. This region is packed with a concentration of bacteria of 10^8 cells/mL and 9 g of iron coated sand as shown in Figure 3.1. The bulk density of this region is 1.53 g/cm3. We divided the domain into 30 equal size elements (0.25 cm long x 1 cm diameter each) corresponding 62 nodes revealed in Figure 3.1 as well.

![Figure 3.1: The Domain of Interest with the Initial Conditions (top) and the Discretization for the Domain (bottom)](image)

From the breakthrough curve of tracer (Figure 3.2), we measured the pore volume of 4 mL and the porosity of 0.68 pore volume mL/bulk volume mL (at effluent concentration/influent concentration = 0.5), respectively. For determining the longitudinal dispersivity (Ld), the best approach is to plot the entire data set and the
theoretical breakthrough curve for a range of values of longitudinal dispersivity by modeling and then select the value that provides the best overall fit with the tracer experiment data. From Figure 3.2, we selected the value of 0.01 cm for the longitudinal dispersivity of the porous medium.

Figure 3.2: Fitting the Experimental Breakthrough Curve with Different Longitudinal Dispersivities

After obtaining the basic characteristics of the medium, we then create an input file including all information from batch and column system to model the hematite bioreduction transport. However, creating an input file for running HYDROGEOCHEM 4.0 is much more complicated than for BIOGEOCHEM 1.0. This is due to the consideration of chemical transport. The input data file for HYDROGEOCHEM 4.0 should indicate the geometry of the system, the spatial distribution of finite elements and
nodes, the properties of the media, reaction network, the initial condition, and the boundary conditions. Table 3.2 shows the important input parameters for our column simulation. After executing HYDROGEOCHEM 4.0 with the input file, the output file will automatically provide the concentration of each species at the specific nodes and time points that we would like to know. Finally, the results of simulation are compared with the experimental data to see if our determined formulations and parameters from batch system are reliable.

Table 3.2: Input Parameters for HYDROGEOCHEM 4.0

<table>
<thead>
<tr>
<th>Parameter’s Name</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of time steps</td>
<td>5200</td>
</tr>
<tr>
<td>Time step size (hr)</td>
<td>0.1</td>
</tr>
<tr>
<td>Longitudinal dispersivity (dm)</td>
<td>0.001</td>
</tr>
<tr>
<td>Bulk density (kg/dm3)</td>
<td>1.53</td>
</tr>
<tr>
<td>Moisture content (dimensionless)</td>
<td>0.68</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>62</td>
</tr>
<tr>
<td>Number of elements</td>
<td>30</td>
</tr>
<tr>
<td>Number of species</td>
<td>13</td>
</tr>
<tr>
<td>Number of equilibrium reactions</td>
<td>2</td>
</tr>
<tr>
<td>Number of kinetic reactions</td>
<td>3</td>
</tr>
<tr>
<td>Absolute temperature (K)</td>
<td>293</td>
</tr>
<tr>
<td>Inflow velocity (dm/hr)</td>
<td>0.056; 0.0085; and 0.032</td>
</tr>
<tr>
<td>Boundary condition type</td>
<td>Variable boundary</td>
</tr>
</tbody>
</table>

3.3 Results of Column Simulation

In column simulation, we apply the formulations and parameters determined from batch system to HYDROGEOCHEM 4.0 to simulate the bioreduction of hematite with different flow rates. The reaction network of hematite bioreduction is also the same with batch system. The results of column simulation will be represented in the following sections.
3.3.1 Formulations and Parameters for Column Simulation

Before dealing with the column simulation, we need to identify the formulations and parameters for the chemical reaction rates. In batch system, we defined R1 and R4 as kinetic reactions and defined R2, R3, and R5 as equilibrium reactions; however, in column system we have to change the second reaction, surface hydration of hematite, into a kinetic reaction. The reason is that in column system not all of the hematite surface sites react with water at the same time. In other words, the surface sites of hematite picked in the column do not contact with the influent solution simultaneously because the influent solution does not permeate throughout the entire column immediately. Therefore, the equation (2.24) for R2 is modified as:

\[
R_2 = K_{fw}[\text{Fe}_2\text{O}_3] - K_{bw}(\equiv \text{FeOOH} + \equiv \text{FeOOFe(II)}^+); \quad \text{where} \quad \frac{K_{fw}}{K_{bw}} = K_{TSS}^e \quad (3.2)
\]

\[
K_{TSS}^e[\text{Fe}_2\text{O}_3] = \equiv \text{FeOOH} + \equiv \text{FeOOFe(II)}^+ \quad (2.24)
\]

where \(K_{fw}\) is the forward rate constant, \(K_{bw}\) is the backward rate constant, and \(K_{TSS}^e\) is the “lumped” equilibrium constant for the total surface sites. The forward rate constant divided by the backward rate constant must equal the equilibrium constant. Therefore, in the column system the rate of R2 eventually will reach the identical equilibrium situation with batch system. In Chapter 2 we calculated the value of 0.125 for \(K_{TSS}^e\); thus, in column simulation the quotient of the forward rate constant to the backward rate constant should equal 0.125.

The main purpose of column simulation is to examine the formulations and parameters determined from batch system. With the exception of the formulation of R2, the rate
formulations are the same as the batch simulation. In addition, the parameters arranged in Table 2.6 for individual batch experiment have to be identically input into the column simulation in order to inspect the accuracy of the resolved parameters and our proposed rate formulations.

3.3.2 Reaction Matrix Decomposition

The reaction network can be converted into a matrix form by HYDROGEOCHEM 4.0, decoupling the equilibrium and kinetic reactions of the reaction network. After the matrix decomposition, we obtain eleven kinetic-variable equations and two equilibrium equations. The kinetic-variable equations are represented as follows:

\[
\frac{d([Fe_2O_3])}{dt} = -2R_1 - R_2 \tag{3.3}
\]

\[
\frac{d([\text{acetate}^{-}])}{dt} = -R_1 - 5R_4 \tag{3.4}
\]

\[
\frac{d\left([H^{+}] + [Fe^{2+}] - [\text{PIPS}^{-}]\right)}{dt} = -3R_1 + 5R_4 \tag{3.5}
\]

\[
\frac{d([\text{acetate}^{-}])}{dt} = R_1 + 5R_4 \tag{3.6}
\]

\[
\frac{d([\text{HCO}_3^{-}])}{dt} = R_1 + 4R_4 \tag{3.7}
\]

\[
\frac{d\left(-[Fe^{2+}] + [\equiv \text{FeOOH}]\right)}{dt} = -4R_1 + 2R_2 \tag{3.8}
\]

\[
\frac{d([Fe^{2+}] + [\equiv \text{FeOOFe(II)}^{+}])}{dt} = 4R_1 \tag{3.9}
\]
\[
\frac{d([CO_3])]}{dt} = -4R_4
\] (3.10)

\[
\frac{d([NH_4^+])}{dt} = -R_4
\] (3.11)

\[
\frac{d([DMRB])}{dt} = R_4
\] (3.12)

\[
\frac{d([\text{HPIPES}]+[\text{PIVES}^-])}{dt} = 0
\] (3.13)

In addition, one mass action equation and one user specified rate formulation were used to describe the equilibrium equations. The user specified formulation is the same as equation (2.27), and the mass action equation is identical to equation (2.23); they are represented as follows:

\[
\frac{[\text{PIVES}^-][\text{H}^+]}{[\text{HPIPES}]} = K_s^e = 10^{-6.8}
\] (2.23)

\[
[\equiv \text{FeOOFe(II)}^+] = K[\text{Fe}^{3+}]^n
\] (2.27)

3.3.3 The Simulation Results

Column simulations were assigned to further demonstrate the reliability of formulations and parameters determined from the batch system. Three proposed rate formulations for R1 in batch simulation were tested under the same condition to see which one could provided the best overall fit with the experimental data: (1) a physically-based formulation proposed to be first-order with respect to “free” hematite surface sites, \(\equiv \text{FeOOH} \) (equation 2.28), (2) a dual Monod kinetic rate formulation with respect to the
concentrations of lactate and \equivFeOOH (equation 2.29), and (3) a dual Monod kinetic with inhibition rate formulation relative to the concentrations of lactate, \equivFeOOH, and Fe$^{2+}$ (equation 2.30). In addition, a formal bacteria growth kinetic with cell decay (equation 2.31) described R4 rate formulation was also verified via column simulation. Figure 3.3 to 3.11 display the results of simulation contrasted with the column experimental data simultaneously.

As mentioned above, we changed the R2 rate formulation from an equilibrium to a kinetic reaction (equation 3.2); therefore, we should go back to check if equation 3.2 is applicable to the batch system in order to demonstrate the reliability of our assumption. This iterative examination is a very important procedure to justify the consistency of our entire simulations between batch and column system. We employed the data of batch experiment #4 to make the comparison between equilibrium R2 rate formulation and kinetic R2 rate formulation under the same circumstance. The forward rate constant, K_{fw}, and the backward rate constant, K_{bw}, for equation 3.2 are 0.03 hr$^{-1}$ and 0.24 hr$^{-1}$, respectively. As a result, the “lumped” equilibrium constant, K_{TSS}^{e}, for the total surface sites in equation 3.2 is the same value (0.125) as the batch system. The compared results are shown in Figure 3.12 to 3.14.
Figure 3.3: Simulation Results for Column A-D (Q=10.6 ml/day) and Parameters Determined from Batch Experiment #4
Figure 3.4: Simulation Results for Column G-J (Q=1.6 ml/day) and Parameters Determined from Batch Experiment #4
Figure 3.5: Simulation Results for Column K-N (Q=6 ml/day) and Parameters Determined from Batch Experiment #4
Figure 3.6: Simulation Results for Column A-D (Q=10.6 ml/day) and Parameters Determined from Batch Experiment #5
Figure 3.7: Simulation Results for Column G-J (Q=1.6 ml/day) and Parameters Determined from Batch Experiment #5
Figure 3.8: Simulation Results for Column K-N (Q=6 ml/day) and Parameters Determined from Batch Experiment #5
Figure 3.9: Simulation Results for Column A-D (Q=10.6 ml/day) and Parameters Determined from Batch Experiment #6
Figure 3.10: Simulation Results for Column G-J (Q=1.6 ml/day) and Parameters Determined from Batch Experiment #6
Figure 3.11: Simulation Results for Column K-N (Q=6 ml/day) and Parameters Determined from Batch experiment #6
Figure 3.12: Comparison between the Equilibrium and Kinetic R2 Rate Formulation with the First Proposed R1 Formulation
Figure 3.13: Comparison between Equilibrium and Kinetic R2 Rate Formulation with the Second Proposed R1 Formulation
Figure 3.14: Comparison between Equilibrium and Kinetic R2 Rate Formulation with the Third Proposed R1 Formulation
3.4 Conclusion and Discussion

The main purpose of column simulation is to examine the formulations and parameters determined from the batch system. In the batch system, we obtained three groups of parameters (Table 2.6) for each rate formulation from batch experiment #4, #5 and #6, respectively. These three groups of parameters and proposed kinetic rate formulations were systematically tested by a reactive biogeochemical transport model, HYDROGEOCHEM 4.0, with column experimental data in order to find out the “universal” rate formulations with scale-dependent parameters of the bioreduction of hematite.

From Figure 3.3 to Figure 3.11, we found that only the dual Monod kinetic with inhibition rate formulation with respect to the concentrations of lactate, \(\equiv \text{FeOOH} \), and \(\text{Fe}^{2+} \), with the parameters obtained from batch experiment #4 could fit the experimental data well for all flow rates. The reason is the column experiments were conducted under the same initial concentration \((10^8 \text{cells/mL}) \) of dissimilatory metal-reducing bacterium (DMRB) with the batch experiment #4; therefore, DMRB is believed to affect the reduction of \(\text{Fe}^{3+} \) to \(\text{Fe}^{2+} \). This assumption also can be demonstrated by simply comparing the column simulation results between batch experiment #5 (initial DMRB = \(10^9 \text{cells/mL} \)) and #6 (initial DMRB = \(10^7 \text{cells/mL} \)) because these two experiments were conducted under the same condition except the concentration of DMRB.

From Figure 3.6 to Figure 3.11, we determined that the R1 reaction rate of batch experiment #5 is higher than experiment #6; therefore, in the future the third proposed R1
rate formulation should be modified to be proportional to the DMRB and the formulation for the bacterial growth rate (R4) should be the same as R1 except the coefficients. Additionally, the column simulation results of the third proposed R1 rate with the parameters determined from batch experiment #4 (Figure 3.4~3.6) demonstrate the hypothesis that mechanistic-based reaction rates of batch system can be scaled up to and exported to column system. Based on the results of whole column simulation, we recognize that the rate formulations and parameters determined with modeling have to be iteratively tested in order to avoid misjudging the reliability of the proposed formulations and the determined parameters.

Figure 3.12 to Figure 3.14 shows that in the batch system the equilibrium reaction rate for surface hydration of hematite (R2) can be substituted for the kinetic rate formulation (equation 3.2). In the past, most people deemed R2 reaction in the batch system as an equilibrium reaction; however, based on our research R2 can be represented in more than one way. This demonstration could vanquish the issue of the consistency of the R2 rate formulation between our batch and column simulation, and further suggests that many chemical reactions may be expressed by more than one unique rate formulation.
CHAPTER 4: SUMMARY AND FUTURE WORK

4.1 Summary

The biogeochemistry of microbial Fe(III) reduction and of associated contaminant interactions is very complicated; thus, we proposed a reaction network for analyzing the bioreduction of natural hematite-coated sand by dissimilatory metal-reducing bacterium (DMRB), *Shewanella putrefaciens* CN32, under growth conditions with lactate as the electron donor. Furthermore, the rate formulations and parameters of the reaction network were determined and validated by a reaction-based biogeochemical model, BIOGEOCHEM 1.0, and a reactive biogeochemical transport model, HYDROGEOCHEM 4.0, respectively.

The proposed reaction network of hematite bioreduction is comprised of thirteen species and five chemical reactions: (1) the bacterial reduction of hematite, (2) the surface hydration of hematite, (3) the sorption of Fe(II) to hematite, (4) the bacteria growth with lactate as electron donor, and (5) the PIPES buffering. In the batch system we defined the bioreduction of hematite (R1) and microbial growth (R4) as kinetic reactions and defined the hydration (R2), adsorption of ferrous iron (R3), and PIPE buffering (R5) as equilibrium reactions. This reaction network was then decoupled via Gauss-Jordan elimination into three mass action equations for equilibrium reactions, two kinetic-variable equations for kinetic reactions, and eight mass conservation equations. Based on these equations and the batch experimental data, we calculated the concentration of each species to generate the kinetic rate equations as a function of time by fitting the curve of
the kinetic-variable concentration-vs-time for formulating the kinetic reaction rates and
determining the parameters.

Our primary objective was to determine the rate formulations and parameters for the
bacterial reduction of hematite, R1. We proposed three rate formulations to represent R1:
(1) a physically-based formulation proposed to be first-order with respect to “free”
hematite surface sites (≡FeOOH), (2) a dual Monod kinetic rate formulation with respect
to the concentrations of lactate and ≡FeOOH, and (3) a dual Monod kinetic with
inhibition rate formulation with respect to the concentrations of lactate, ≡FeOOH, and
Fe$^{2+}$. Furthermore, a formal formulation for bacteria growth kinetic with cell decay was
used to describe the kinetic bacteria growth rate.

For the equilibrium reactions, two “user-specify” formulations were employed to
substitute for the mass action equations of the surface hydration of hematite (R2) and the
sorption of Fe(II) to hematite (R3), respectively. The first “user-specify” formulation for
R2 was based on the concept of surface site species concentration corresponding to the
mineral suspension concentration; thus, in R2 the total surface site ([≡FeOOH] +
[≡FeOOF(II)$^+$]) was proportional to the concentration of hematite. The second “user-
specify” formulation for R3 was expressed using a empirical Freundlich equation
according to the concept of the attachment of the material to be adsorbed to adsorbent at
an available adsorption site, so in R3 the concentration of ≡FeOOF(II)$^+$ was represented
by a power equation as a function of [Fe$^{2+}$]. The last equilibrium reaction, PIPES
buffering, was described by a mass action equation and the logarithm equilibrium constant was equal to – 6.8 according to the product information.

After determining all of the reaction rate formulations, the parameters for each rate formulation were systematically resolved with the batch experiments #4, #5, and #6 data. The determined formulations and parameters were input into BIOGEOCHEM 1.0 to simulate the bioreduction of hematite under the batch system, and individually compared the results with batch experimental data for verifying the individual rate formulations/parameters and the overall theoretical approach. The determined formulations and parameters were compared with the column experiments by using a reactive biogeochemical transport model, HYGROGEOCHEM 4.0.

For the column simulation, we estimated the basic characteristics of the porous medium and determined the domain of interest from the column experimental setup and the tracer experimental data, and then divided the domain of interest of column into 30 elements (0.25 cm x 1 cm each) corresponding to 62 nodes. After obtaining all of the needed information, the combined information from batch and column system was converted into an input file for HYDROGEOCHEM 4.0 to model the transportation of hematite bioreduction. We made comparisons between the simulations and the column experimental data to see which proposed R1 rate formulation with determined parameters could provide the best overall fit with the column experimental data.
Our batch simulations for each batch experiment were reasonably good at predicting the bioreduction of hematite for all proposed R1 rate formulation. In our column simulations, only the dual Monod kinetic with inhibition rate formulation with respect to the concentrations of lactate, \(\equiv \text{FeOOH} \), and \(\text{Fe}^{2+} \), with the parameters obtained from batch experiment #4 could fit the experimental data well for all flow rates. The reason is that the column experiments were conducted under the same initial concentration of DMRB with batch experiment #4; thus, we conclude that the reaction rate of hematite bioreduction is relevant to the concentration of DMRB. Moreover, from the iterative batch and column simulations we conclude that while hydration reaction has been considered fast based on batch experiments and physical reasoning in the literature, the assumption of fast reaction does not hold up in column experiments. We also find that a slow-reaction hypothesis for hydration reaction is valid based on both batch and column experiments.

4.2 Future Work

The rate formulations and parameters of the reaction network are the keys to successfully simulate or analyze the biological reduction of hematite. We found only the third proposed R1 rate formulation under certain concentrations of DMRB was satisfactory. In the future, the R1 rate formulation should be modified to include the initial concentration of DMRB. Furthermore, the column experiment should be carefully designed to measure the influence of different initial DMRB’s concentrations. Therefore, if the modified R1 rate formulation with the parameters determined from batch system can fit well with the column experimental data for all flow rates and concentrations of DMRB, the “universal”
rate formulations with scaled-dependent parameters for the bioreduction of hematite can be established.
Note: these experiments were conducted in 2003 and 2004 at Pennsylvania State University by Morgan Minyard.

A.1 Batch Experimental Approach and Results

For batch experiments, all reactors were managed in 120 mL clear serum bottles with 80 to 90 mL of the background electrolyte solution at a constant temperature of 20 °C. To each reactor the hematite-coated sand, lactate, and cells were added, then all reactors’ solution volume were increased to 100 mL with the background electrolyte solution. At times of around 0, 1, 2, 4, 8, 12, 20, 24, 36, 48, 72, 96, and 120 hours, duplicate or triplicate 5 mL samples were collected to analyze acid-extractable Fe(II), dissolved Fe(II), total Fe(II), organic acids, and pH.

For analytical techniques, the acid-extractable Fe(II) was measured by adding a 2 mL collected sample to a vial containing 0.2 ml of 5.5 N HCL in an anaerobic chamber. This sample was then removed from the anaerobic chamber and placed on the shaker table for 24 hours to extract the Fe(II). After the acid-extraction, a 0.25 µm pore bottletop was employed to filter the sample and 0.01 to 0.08 mL of the filtered sample was then added into 2.4 mL of ferrozine reagent solution (1 g/L ferrozine in 50 mM HEPES Buffer, pH = 8.0). The acid-extractable Fe(II) was detected via Shimidzu UV/Vis-1601 Spectrometer at a wavelength of 562 nm and the concentration was determined based on a Fe(II) standard curve. Similarly, the dissolved Fe(II) was measured by adding 0.1 to 0.5 mL collected sample with filtered into 2.4 mL of ferrozine reagent in the anaerobic chamber.
Then, the analytic procedure of dissolved Fe(II) is the same with the acid-extractable Fe(II) analysis.

In addition, the remaining filtrate from the acid-extractable sample was utilized to measure the organic acids, lactate and acetate, via a Water 2695 Separations Module High Performance Liquid Chromatography. The Waters 2996 Photodiode Array Detector at 211 nm was employed to detect the organic acids and the concentrations of lactate and acetate were then determined by comparing with the standard curves. For evaluating the solution pH, the combined remaining filtrate from the experimental reactors in the anaerobic chamber was used to evaluate the pH. Table A.1 to A.3 and Figure A.1 to A.3 show the results of batch experiments.

A.2 Column Experimental Approach and Results

The column experiments were managed in triplicate or quadruple for minimizing the discrepancy of results due to any variation in the pore volume, and the columns used in the experiments have an inner diameter of 1 centimeter and are 10 centimeter long. Before injecting the feed solution, all columns were packed with 9 grams of iron coated sand packed to a bed length of 7.5 cm and a bacteria concentration of 10⁸ cells/mL. The feed solution employed in all column experiments was the same background electrolyte solution used in the batch experiments with around 8.8 mM sodium lactate and 0.1 gL⁻¹ yeast extract. The feed solution was filtered through a 0.25 pore size filter and then autoclaved at 121 °C for fifteen minutes. While the solution was still warm, the feed solution was purged overnight with nitrogen gas.
After purging the feed solution, the different flow rate of feed solution was then set to push through the columns for individual column experiment. During the period of column experiments (21 days), the column effluent was sampled every 24 hours in a scintillation vial with 1 to 5 mL of 1 N HCl depending on the amount of effluent liquid collected. The collected samples were then weighed, filtered using 0.25 um pore filter, and wrapped with Teflon tape and Parafilm before being stored at 4 °C until analyzed. After 21 days, the columns were deconstructed in an anaerobic chamber and 1 g samples of sand from the influent, middle, and effluent sections of the column were collected in vials containing 5 mL of 0.625 N HCl in order to analyze total Fe(II).

The 1,10-phenanthroline method was employed to evaluate the Fe(II) concentration at a wavelength of 510 nm via the following steps: (1) put 3.2 mL of MilliQ filtered water, 0.5 mL of collected sample and 0.05 mL of concentrated HCL into a scintillation vial. The HCl is needed to keep the pH of solution below 2 to prevent the oxidation of Fe(II) in the sample. (2) Add 0.24 mL of 0.73 M ammonium fluoride and allow to complex with Fe(III) for 2 minutes. (3) Add 0.5 mL of 1,10-phenanthroline and 0.5 mL of 15.5 M ammonium acetate buffer for dyeing the Fe(II). After completely mixing the solution, 1.65 mL of this solution was used to measure the Fe(II) by 1601 Shimidzu UV/Vis Spectroscope at 510 nm. Furthermore, the column analytic procedure of organic acids, lactate and acetate, is the same with the batch system analysis. Table A.4 to A.6 and Figure A.4 shows the result of the column experiments.
Table A.1: Experimental Data for Batch Experiment #4

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>Fe(II) Tot (mol/L)</th>
<th>Fe(II) aq (mol/L)</th>
<th>pH</th>
<th>Lactate (mol/L)</th>
<th>Acetate (mol/L)</th>
<th>Cell # (initial)</th>
<th>Control Lactate (mol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.93E-05</td>
<td>0.17</td>
<td>9.08E-07</td>
<td>2.86E-07</td>
<td>7.02</td>
<td>0.0006601</td>
<td>0.00067361</td>
</tr>
<tr>
<td>1</td>
<td>6.72E-05</td>
<td>6.08E-06</td>
<td>7.09</td>
<td>0.0006448</td>
<td>0.000716734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0001059</td>
<td>3.04E-06</td>
<td>7.02</td>
<td>0.0006458</td>
<td>0.000733785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0000176</td>
<td>8.45E-06</td>
<td>7.02</td>
<td>0.0006458</td>
<td>0.000733785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.35E-05</td>
<td>4.98E-05</td>
<td>7.02</td>
<td>0.0006458</td>
<td>0.000733785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.08E-06</td>
<td>7.33E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0004747</td>
<td>3.08E-05</td>
<td>7.08</td>
<td>0.0004698</td>
<td>0.000746593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0005286</td>
<td>2.37E-05</td>
<td>7.08</td>
<td>0.0004327</td>
<td>0.000733785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0006417</td>
<td>0.000176</td>
<td>9.60</td>
<td>0.0002617</td>
<td>0.000746593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0007905</td>
<td>0.0002356</td>
<td>7.35</td>
<td>0.0001906</td>
<td>0.000746593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0009511</td>
<td>9.54E-05</td>
<td>7.35</td>
<td>0.0001370</td>
<td>0.000746593</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.2: Experimental Data for Batch Experiment #5

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>Fe(II) Tot (mol/L)</th>
<th>Fe(II) aq (mol/L)</th>
<th>pH</th>
<th>Lactate (mol/L)</th>
<th>Acetate (mol/L)</th>
<th>Cell # (initial)</th>
<th>Control Lactate (mol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.71899E-05</td>
<td>0.17</td>
<td>9.08E-07</td>
<td>2.86E-07</td>
<td>7.02</td>
<td>0.0006601</td>
<td>0.00067361</td>
</tr>
<tr>
<td>1</td>
<td>0.000219093</td>
<td>5.44E-06</td>
<td>2.37E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>2</td>
<td>0.000322599</td>
<td>2.33E-05</td>
<td>4.26E-06</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>3</td>
<td>0.00046799</td>
<td>3.11E-05</td>
<td>4.76E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>4</td>
<td>0.000710016</td>
<td>1.48E-05</td>
<td>2.37E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>5</td>
<td>0.000819658</td>
<td>5.01E-05</td>
<td>8.75E-06</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>6</td>
<td>0.000989376</td>
<td>2.23E-05</td>
<td>1.84E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>7</td>
<td>0.001078394</td>
<td>9.40E-05</td>
<td>1.13E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>8</td>
<td>0.001215751</td>
<td>0.0001262</td>
<td>1.08E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>9</td>
<td>0.001377923</td>
<td>7.73E-05</td>
<td>1.86E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>10</td>
<td>8.75E-05</td>
<td>0.0002452</td>
<td>1.84E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>11</td>
<td>9.40E-05</td>
<td>0.0003453</td>
<td>0.0003453</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
<tr>
<td>12</td>
<td>0.000376785</td>
<td>5.29E-05</td>
<td>5.29E-05</td>
<td>2.51E-06</td>
<td>6.95</td>
<td>0.0005307</td>
<td>0.000712192</td>
</tr>
</tbody>
</table>
Table A.3: Experimental Data for Batch Experiment #6

<table>
<thead>
<tr>
<th>Time events</th>
<th>hrs</th>
<th>Fe(II) Tot (mol/L)</th>
<th>std dev</th>
<th>Fe(II) aq (mol/L)</th>
<th>std dev</th>
<th>pH</th>
<th>Lactate (mol/L)</th>
<th>Acetate (mol/L)</th>
<th>Cell # initial</th>
<th>Control Lactate (mol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5.5176E-01</td>
<td>1.719E-05</td>
<td>-2.479E-07</td>
<td>0.0037097</td>
<td>10^-7</td>
<td>0.003711036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.05</td>
<td>4.87322E-05</td>
<td>4.243E-06</td>
<td>4.131E-07</td>
<td>0.0037056</td>
<td></td>
<td>0.003723068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.05</td>
<td>6.4842E-05</td>
<td>6.976E-06</td>
<td>1.405E-07</td>
<td>0.0036669</td>
<td></td>
<td>0.003719142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.05</td>
<td>0.000109547</td>
<td>9.766E-06</td>
<td>4.627E-06</td>
<td>0.0036785</td>
<td></td>
<td>0.003750399</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8.02</td>
<td>0.000182444</td>
<td>1.485E-05</td>
<td>1.429E-05</td>
<td>0.0036919</td>
<td></td>
<td>0.003796706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12.04</td>
<td>0.0002484094</td>
<td>3.079E-05</td>
<td>2.936E-06</td>
<td>0.0036471</td>
<td></td>
<td>0.00370291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20.27</td>
<td>0.000358846</td>
<td>2.849E-05</td>
<td>6.161E-06</td>
<td>0.0007412</td>
<td></td>
<td>0.003756253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>24.03</td>
<td>0.000466782</td>
<td>3.659E-05</td>
<td>6.744E-06</td>
<td>0.0009401</td>
<td></td>
<td>0.003869242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>0.000695944</td>
<td>0.0001064</td>
<td>3.176E-05</td>
<td>0.0028547</td>
<td></td>
<td>0.003767482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>46.45</td>
<td>0.000921317</td>
<td>0.002787</td>
<td>9.064E-05</td>
<td>0.0022535</td>
<td></td>
<td>0.003735046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>70.45</td>
<td>0.001188451</td>
<td>0.002039</td>
<td>1.431E-07</td>
<td>0.0019292</td>
<td></td>
<td>0.00267777</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>94.4</td>
<td>0.001343535</td>
<td>0.005084</td>
<td>0.0002073</td>
<td>0.0015241</td>
<td></td>
<td>0.0028998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>117.5</td>
<td>0.001649795</td>
<td>0.005166</td>
<td>0.000271</td>
<td>0.0014041</td>
<td></td>
<td>0.0029902</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.4: Experimental Data for Column A-D

<table>
<thead>
<tr>
<th>Cul time (hr)</th>
<th>Average Vol (ml)</th>
<th>Cumulative Vol (ml)</th>
<th>Avg Flow (vol/time)</th>
<th>pore volumes</th>
<th>avg [Fe(II)] (umol/L)</th>
<th>avg [lactate] (mM)</th>
<th>avg [acetate] (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:38:00</td>
<td>10.6508</td>
<td>10.6508</td>
<td>2.6627</td>
<td></td>
<td>18.585</td>
<td>8.28745</td>
<td>0.938047</td>
</tr>
<tr>
<td>39:46:00</td>
<td>10.34955</td>
<td>21.00035</td>
<td>10.37</td>
<td>5.250088</td>
<td>152.2225</td>
<td>7.665983</td>
<td>2.567419</td>
</tr>
<tr>
<td>65:06:00</td>
<td>10.4488</td>
<td>31.44915</td>
<td>10.42</td>
<td>7.862288</td>
<td>192.16</td>
<td>7.708561</td>
<td>3.164005</td>
</tr>
<tr>
<td>87:54:00</td>
<td>10.19555</td>
<td>41.6447</td>
<td>10.42</td>
<td>10.41118</td>
<td>217.6575</td>
<td>7.766583</td>
<td>3.320641</td>
</tr>
<tr>
<td>111:39:00</td>
<td>10.61405</td>
<td>52.25875</td>
<td>10.49</td>
<td>13.06469</td>
<td>237.335</td>
<td>7.8882</td>
<td>4.076575</td>
</tr>
<tr>
<td>136:12:00</td>
<td>10.4933</td>
<td>62.75205</td>
<td>10.52</td>
<td>15.68801</td>
<td>280.0725</td>
<td>7.571722</td>
<td>3.051879</td>
</tr>
<tr>
<td>159:25:00</td>
<td>10.38955</td>
<td>73.1416</td>
<td>10.56</td>
<td>18.2854</td>
<td>373.44</td>
<td>6.106161</td>
<td>2.403189</td>
</tr>
<tr>
<td>183:16:00</td>
<td>10.5373</td>
<td>83.6789</td>
<td>10.60</td>
<td>20.91973</td>
<td>448.14</td>
<td>7.690352</td>
<td>2.988933</td>
</tr>
<tr>
<td>207:16:00</td>
<td>10.83505</td>
<td>94.51395</td>
<td>10.58</td>
<td>23.62849</td>
<td>559.6775</td>
<td>8.470399</td>
<td>3.282031</td>
</tr>
<tr>
<td>232:02:00</td>
<td>11.35955</td>
<td>105.8735</td>
<td>10.65</td>
<td>26.46838</td>
<td>618.0625</td>
<td>8.53105</td>
<td>3.340068</td>
</tr>
<tr>
<td>256:52:00</td>
<td>11.2298</td>
<td>117.1033</td>
<td>10.94</td>
<td>29.27583</td>
<td>672.8775</td>
<td>8.713326</td>
<td>2.892662</td>
</tr>
<tr>
<td>280:17:00</td>
<td>12.7868</td>
<td>129.8901</td>
<td>11.21</td>
<td>32.47253</td>
<td>656.2175</td>
<td>8.843961</td>
<td>2.755826</td>
</tr>
</tbody>
</table>
Table A.4: Experimental Data for Column A-D (Continued)

<table>
<thead>
<tr>
<th>Cul time (hr)</th>
<th>Average Vol (ml)</th>
<th>Cumulative Vol (ml)</th>
<th>Avg Flow (vol/time)</th>
<th>pore volumes</th>
<th>avg [Fe(II)] (umol/L)</th>
<th>avg [lactate] (mM)</th>
<th>avg [acetate] (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303:29:00</td>
<td>11.06805</td>
<td>140.95815</td>
<td>11.30</td>
<td>35.23954</td>
<td>631.8425</td>
<td>9.244578</td>
<td>2.860068</td>
</tr>
<tr>
<td>327:08:00</td>
<td>10.3938</td>
<td>151.35195</td>
<td>10.41</td>
<td>40.43431</td>
<td>722.2875</td>
<td>9.27328</td>
<td>3.291137</td>
</tr>
<tr>
<td>351:16:00</td>
<td>10.3853</td>
<td>161.73725</td>
<td>10.45</td>
<td>43.06558</td>
<td>723.42</td>
<td>9.462558</td>
<td>3.286523</td>
</tr>
<tr>
<td>374:46:00</td>
<td>10.52505</td>
<td>172.2623</td>
<td>10.38</td>
<td>45.65709</td>
<td>732.8425</td>
<td>9.360683</td>
<td>3.446218</td>
</tr>
<tr>
<td>400:01:00</td>
<td>10.36605</td>
<td>182.62835</td>
<td>10.45</td>
<td>48.29041</td>
<td>781.6575</td>
<td>9.585822</td>
<td>3.214308</td>
</tr>
<tr>
<td>422:31:00</td>
<td>10.5333</td>
<td>193.16165</td>
<td>10.45</td>
<td>50.91736</td>
<td>799.68</td>
<td>8.720175</td>
<td>2.579209</td>
</tr>
<tr>
<td>447:55:00</td>
<td>10.5078</td>
<td>203.66945</td>
<td>10.48</td>
<td>53.47869</td>
<td>817.705</td>
<td>9.671469</td>
<td>3.440379</td>
</tr>
<tr>
<td>471:15:00</td>
<td>10.2453</td>
<td>213.91475</td>
<td>10.40</td>
<td>56.04295</td>
<td>2749.416</td>
<td>9.692184</td>
<td>3.131141</td>
</tr>
<tr>
<td>495:15:00</td>
<td>10.25705</td>
<td>224.1718</td>
<td>10.40</td>
<td>58.47659</td>
<td>443.7547</td>
<td>9.618311</td>
<td>3.183266</td>
</tr>
</tbody>
</table>

Table A.5: Experimental Data for Column G-J

<table>
<thead>
<tr>
<th>Cul time (hr)</th>
<th>Average Vol (ml)</th>
<th>Cumulative Vol (ml)</th>
<th>Avg Flow (vol/time)</th>
<th>pore volumes</th>
<th>avg [Fe(II)] (umol/L)</th>
<th>avg [lactate] (mM)</th>
<th>avg [acetate] (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:16:00</td>
<td>1.574883</td>
<td>1.574883</td>
<td>1.57</td>
<td>0.393721</td>
<td>12.41268</td>
<td>8.071459</td>
<td>1.87267</td>
</tr>
<tr>
<td>38:40:00</td>
<td>1.601217</td>
<td>3.1761</td>
<td>1.52</td>
<td>1.185829</td>
<td>331.1664</td>
<td>2.966715</td>
<td>7.952379</td>
</tr>
<tr>
<td>63:23:00</td>
<td>1.567217</td>
<td>4.743317</td>
<td>1.52</td>
<td>1.587717</td>
<td>531.9365</td>
<td>0.572434</td>
<td>10.7314</td>
</tr>
<tr>
<td>87:18:00</td>
<td>1.60755</td>
<td>6.350867</td>
<td>1.61</td>
<td>1.971021</td>
<td>594.3329</td>
<td>0.756687</td>
<td>10.24722</td>
</tr>
<tr>
<td>111:10:00</td>
<td>1.533217</td>
<td>7.884083</td>
<td>1.54</td>
<td>2.364075</td>
<td>712.8819</td>
<td>1.361621</td>
<td>9.6675</td>
</tr>
<tr>
<td>134:23:00</td>
<td>1.572217</td>
<td>9.4563</td>
<td>1.63</td>
<td>2.766629</td>
<td>805.1674</td>
<td>0.890590</td>
<td>14.93446</td>
</tr>
<tr>
<td>157:56:00</td>
<td>1.610217</td>
<td>11.06652</td>
<td>1.64</td>
<td>3.199017</td>
<td>819.206</td>
<td>0.197938</td>
<td>11.00444</td>
</tr>
<tr>
<td>183:48:00</td>
<td>1.72955</td>
<td>12.79607</td>
<td>1.60</td>
<td>3.617154</td>
<td>871.7248</td>
<td>0.127819</td>
<td>11.05216</td>
</tr>
<tr>
<td>208:31:00</td>
<td>1.67255</td>
<td>14.46862</td>
<td>1.62</td>
<td>3.994958</td>
<td>974.0774</td>
<td>0.355757</td>
<td>10.88266</td>
</tr>
<tr>
<td>230:36:00</td>
<td>1.511217</td>
<td>15.97983</td>
<td>1.64</td>
<td>4.400346</td>
<td>1225.042</td>
<td>0.437321</td>
<td>11.15893</td>
</tr>
<tr>
<td>254:30:00</td>
<td>1.62155</td>
<td>17.60138</td>
<td>1.63</td>
<td>4.822567</td>
<td>1244.87</td>
<td>0.346192</td>
<td>10.11989</td>
</tr>
<tr>
<td>279:04:00</td>
<td>1.688883</td>
<td>19.29027</td>
<td>1.65</td>
<td>631.8425</td>
<td>9.244578</td>
<td>2.860068</td>
<td>3.147555</td>
</tr>
</tbody>
</table>
Table A.5: Experimental Data for Column G-J (Continued)

<table>
<thead>
<tr>
<th>Cul time (hr)</th>
<th>Average Vol (ml)</th>
<th>Cumulative Vol (ml)</th>
<th>Avg Flow (vol/time)</th>
<th>pore volumes</th>
<th>avg [Fe(II)] (umol/L)</th>
<th>avg [lactate] (mM)</th>
<th>avg [acetate] (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>301:34:00</td>
<td>1.50755</td>
<td>20.79782</td>
<td>1.61</td>
<td>5.199454</td>
<td>1256.345</td>
<td>0.602025</td>
<td>10.64884</td>
</tr>
<tr>
<td>325:34:00</td>
<td>1.63255</td>
<td>22.43037</td>
<td>1.63</td>
<td>5.607592</td>
<td>1306.881</td>
<td>0.545856</td>
<td>10.54883</td>
</tr>
<tr>
<td>351:06:00</td>
<td>1.748883</td>
<td>24.17925</td>
<td>1.64</td>
<td>6.044813</td>
<td>1341.327</td>
<td>0.631908</td>
<td>11.08197</td>
</tr>
<tr>
<td>375:43:00</td>
<td>1.63255</td>
<td>22.43037</td>
<td>1.63</td>
<td>6.463033</td>
<td>1303.046</td>
<td>0.53513</td>
<td>10.86043</td>
</tr>
<tr>
<td>398:35:00</td>
<td>1.58255</td>
<td>28.94857</td>
<td>1.61</td>
<td>7.237142</td>
<td>1224.437</td>
<td>0.204308</td>
<td>10.99205</td>
</tr>
<tr>
<td>422:07:00</td>
<td>1.513883</td>
<td>27.36602</td>
<td>1.59</td>
<td>7.641504</td>
<td>1278.637</td>
<td>0.596566</td>
<td>10.83399</td>
</tr>
<tr>
<td>446:07:00</td>
<td>1.58255</td>
<td>30.53578</td>
<td>1.59</td>
<td>7.633946</td>
<td>1225.636</td>
<td>0.204308</td>
<td>11.13087</td>
</tr>
</tbody>
</table>

Table A.6: Experimental Data for Column K-N

<table>
<thead>
<tr>
<th>Cul time (hr)</th>
<th>Average Vol (ml)</th>
<th>Cumulative Vol (ml)</th>
<th>Avg Flow (vol/time)</th>
<th>pore volumes</th>
<th>avg [Fe(II)] (umol/L)</th>
<th>avg [lactate] (mM)</th>
<th>avg [acetate] (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:48:00</td>
<td>6.559883</td>
<td>6.559883</td>
<td>1.639971</td>
<td>59.01998</td>
<td>7.210081</td>
<td>5.834554</td>
<td>5.201668</td>
</tr>
<tr>
<td>45:12:00</td>
<td>6.260217</td>
<td>12.8201</td>
<td>6.15759</td>
<td>3.205025</td>
<td>222.9864</td>
<td>6.105412</td>
<td>5.309075</td>
</tr>
<tr>
<td>67:17:00</td>
<td>5.572217</td>
<td>18.39232</td>
<td>6.055843</td>
<td>4.598079</td>
<td>347.764</td>
<td>5.834554</td>
<td>5.307827</td>
</tr>
<tr>
<td>91:17:00</td>
<td>6.178217</td>
<td>24.57053</td>
<td>6.157909</td>
<td>6.142633</td>
<td>422.8487</td>
<td>5.772492</td>
<td>5.309075</td>
</tr>
<tr>
<td>115:17:00</td>
<td>6.252217</td>
<td>30.82275</td>
<td>6.252217</td>
<td>7.705688</td>
<td>559.9489</td>
<td>5.886197</td>
<td>5.307827</td>
</tr>
<tr>
<td>138:58:00</td>
<td>5.88455</td>
<td>36.7073</td>
<td>9.176823</td>
<td>740.7919</td>
<td>6.073936</td>
<td>5.37755</td>
<td></td>
</tr>
<tr>
<td>163:16:00</td>
<td>6.234883</td>
<td>42.94218</td>
<td>6.157909</td>
<td>10.73555</td>
<td>861.7128</td>
<td>6.099437</td>
<td>5.265167</td>
</tr>
<tr>
<td>187:41:00</td>
<td>6.41955</td>
<td>49.36173</td>
<td>6.310001</td>
<td>12.34043</td>
<td>963.612</td>
<td>6.295423</td>
<td>4.810928</td>
</tr>
<tr>
<td>211:58:00</td>
<td>6.278883</td>
<td>55.64062</td>
<td>6.205623</td>
<td>15.91015</td>
<td>983.0434</td>
<td>6.395684</td>
<td>4.723364</td>
</tr>
<tr>
<td>234:43:00</td>
<td>5.22555</td>
<td>60.86617</td>
<td>5.512668</td>
<td>15.21654</td>
<td>983.6614</td>
<td>6.249638</td>
<td>5.018598</td>
</tr>
<tr>
<td>259:12:00</td>
<td>3.632367</td>
<td>64.49853</td>
<td>16.12463</td>
<td>1107.133</td>
<td>5.889626</td>
<td>5.730688</td>
<td></td>
</tr>
<tr>
<td>283:00:00</td>
<td>5.29755</td>
<td>69.79608</td>
<td>17.44902</td>
<td>1007.944</td>
<td>6.434675</td>
<td>5.358218</td>
<td></td>
</tr>
<tr>
<td>308:06:00</td>
<td>6.428217</td>
<td>76.2243</td>
<td>19.05608</td>
<td>973.5912</td>
<td>6.080963</td>
<td>5.345572</td>
<td></td>
</tr>
<tr>
<td>331:10:00</td>
<td>5.845883</td>
<td>82.07018</td>
<td>20.51755</td>
<td>1183.01</td>
<td>6.420761</td>
<td>4.900585</td>
<td></td>
</tr>
<tr>
<td>354:07:00</td>
<td>5.801217</td>
<td>87.8714</td>
<td>21.96785</td>
<td>1126.813</td>
<td>6.660072</td>
<td>5.26085</td>
<td></td>
</tr>
<tr>
<td>379:24:00</td>
<td>6.240217</td>
<td>94.11162</td>
<td>23.5279</td>
<td>1079.859</td>
<td>6.572478</td>
<td>5.292567</td>
<td></td>
</tr>
<tr>
<td>402:12:00</td>
<td>5.727883</td>
<td>99.8395</td>
<td>24.95988</td>
<td>1167.226</td>
<td>6.344265</td>
<td>5.110898</td>
<td></td>
</tr>
<tr>
<td>426:20:00</td>
<td>5.99455</td>
<td>105.8341</td>
<td>26.45851</td>
<td>1176.423</td>
<td>6.446127</td>
<td>5.482115</td>
<td></td>
</tr>
<tr>
<td>450:47:00</td>
<td>6.068217</td>
<td>111.9023</td>
<td>27.97557</td>
<td>1148.969</td>
<td>6.10323</td>
<td>5.391081</td>
<td></td>
</tr>
</tbody>
</table>
Figure A.1 Varied initial Fe(III) sand concentration batch experimental data. (A) The rate from the first 12 hours of each experiment was based on the amount of total iron produced over time. (B) The rate of each experiment was plotted against the experimental condition in order to determine the order of the reaction.
Figure A.2 Varied initial cell concentration as cell/mL. (A) The rate for the first twelve hours of each batch experiment was used to calculate the rate of reduction. (B) The rate plotted against the batch experimental condition in order to determine the order of reaction R1.
Figure A.3 Varied Lactate concentrations in mM. (A) The first twelve hours of each batch experimental condition was used to determine the rate. (B) Rate plotted against batch experimental condition to determine reaction order.
Figure A.4 Raw data from four column experiments run in triplicate or quadruplicate.
LIST OF REFERENCES

Yeh, G.T., Fang, Y.L. and Burgos, W.D., 2005a. BIOGEOCHEM 1.0: A Numerical Model to Simulate BIOGEOCHEMICAL Reactions under Multiple Phase Systems in Batches. Technical Report. Dept. of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816

