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ABSTRACT 

Accelerating Deep Learning frameworks, particularly Convolutional Neural Networks 

(CNNs) for computer vision applications on the edge require the development of specialized 

computing solutions capable of maintaining high accuracy and performing real-time inference. 

This research is motivated by the open-source hardware design frameworks such as FINN and 

HLS4ML, and its primary focus is on hardware acceleration, model compression, and efficient 

implementation of computer vision CNNs algorithms on the AMD SoC-FPGAs using High-Level 

Synthesis (HLS) to enhance on-chip data structures and optimize the resource utilization, thereby 

improving the throughput/watt of FPGA-based AI accelerators compared to a traditional fixed-

logic chips, like CPU and GPU implementations, as well as other edge accelerators.  

Furthermore, this dissertation proposed unique solutions to hardware and software co-

design approaches for accelerating deep learning algorithms, specifically focusing on CNNs, 

Generative Adversarial Networks (GANs), and Human Action Recognition (HAR) models 

implemented on AMD ZYNQ SoC-FPGAs edge chips. Our methodologies leverage advanced 

techniques such as quantization, knowledge distillation, loop tiling transformation, and dataflow 

modeling to optimize the performance, accuracy, and resource utilization of these models.  

Additionally, we introduced a novel CNN compression technique named "Two-Teachers 

Net," which utilizes PyTorch FX-graph mode to train an 8-bit quantized student model using dual-

teachers knowledge distillation approach. It improved the accuracy of the compressed model by 

1% - 2% compared to the existing solutions for edge platforms. This method can be applied to any 

CNN model and dataset for image classification and seamlessly integrated into existing AI 
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hardware and software optimization toolchains, including Vitis-AI, OpenVINO, TensorRT, and 

ONNX, without architectural adjustments. This provides a scalable solution for deploying high-

accuracy CNNs on low-power edge devices across various applications, such as autonomous 

vehicles, surveillance systems, robotics, healthcare, and smart cities. 

In summary, this dissertation aims to push the state-of-the-art in efficient compression and 

resource scheduling of CNNs on resource-constrained platforms through FPGA hardware 

acceleration. It provides a scalable solution for deploying high-accuracy CNNs on low-power edge 

devices for various industries applications, including autonomous vehicles, surveillance systems, 

robotics, healthcare, and smart cities. 
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CHAPTER ONE: INTRODUCTION 

Convolutional Neural Networks (CNNs) have upscaled the field of computer vision in 

many applications, such as image classification, object detection, and instance segmentation [1]. 

CNNs are Deep Neural Networks (DNNs) designed to handle structure input data in grid 

representations of pixel values by leveraging the spatial and temporal dependencies [2]. As the 

demand for Artificial Intelligence (AI) and autonomous systems increases, there is a growing 

interest in utilizing DNNs and CNNs on edge devices, such as smartphones, drones, and IoT 

sensors. This is done to enable real-time data and low-latency inference [3]. For instance, 

EfficientNetV2 [4] is a state-of-the-art (SOTA) lightweight CNN architecture. It leverages a unique 

compound scaling method to systematically scale up the depth, width, and resolution of CNNs. 

This scaling approach effectively reduces the model size, computing cost, and number of 

parameters. The model achieved superior performance with an accuracy of top-1 87.3% for the 

ImageNet [5] classification challenge. Fig. 1 shown a simple design for CNN architecture used in 

most of this dissertation.  

 

Figure 1. Simple CNN architecture design.  
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However, the computational requirements of CNNs pose considerable obstacles to their 

implementation on resource-constrained platforms [6]. For example, the EfficientNet-B7 model 

[7] consists of 66 million parameters and requires 37 billion floating-point operations (FLOPs) to 

process a single image. This translates to a memory requirement of 256 MB and a computational 

demand of 74 Giga Floating-Point Operations per Second (GFLOPS) [4]. These requirements 

exceed the capabilities of most edge devices, such as smartphones, IoT sensors, and low-power 

processors (e.g., ARM Cortex-A series) [8]. Additionally, real-time inference on the edge often 

demands a high processing throughput of 24 frames per second (fps) for video applications. This 

further increases the computing load [9]. 

Nevertheless, CNNs demonstrated superior performance and efficiency compared to 

Vision Transformers (ViTs) on smaller datasets, making them a good choice for edge deployment. 

On the CIFAR-10 dataset, MobileNetV3 [10] achieved a state-of-the-art accuracy of 98.22% with 

only 2.3M parameters and 56.6M multiply–accumulate (MACs), while the ViT [11] requires 5.7M 

parameters and 246.8M MACs to achieve a lower accuracy of 97.12%. Similarly, on the CIFAR-

100 dataset, ShuffleNetV2 [12] achieves an accuracy of 95.45% with 3.5M parameters and 134.2M 

MACs, outperforming the ViT, which achieved an accuracy of 94.55%. These results demonstrate 

the superior efficiency and accuracy of CNNs on small datasets, making them the choice for edge 

deployment, where computational resources are limited. Fig. 2 below shown the most recent graph 

for a CNN model trained on CIFAR-10 dataset, which outperformed the ViT in terms of accuracy.  



3 
 

 

Figure 2. The Efficient Adaptive Ensembling CNN model outperformed ViT in terms of accuracy 

on CIFAR-10 dataset [13]. 

Moreover, CNNs have also been shown to be more efficient in terms of training time and 

memory requirements. For example, the training time for MobileNetV3 on CIFAR-10 is 

approximately 10 hours on a single NVIDIA V100 GPU, while the training time for the ViT is 

approximately 24 hours on the same hardware. Similarly, the memory requirements for CNNs are 

significantly lower than those for ViTs, with MobileNetV3 requiring approximately 1.2 GB of 

memory to train on CIFAR-10, compared to 3.5 GB for the ViT. 

However, several methods have been suggested to optimize DNNs for efficient deployment 

on edge devices while still achieving high accuracy and real-time performance. These techniques 

include model compression [14] and hardware acceleration [15].  
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Motivation 

Fig. 3 illustrates the design philosophy of this thesis and shows an end-to-end algorithm 

optimization and hardware co-design to make DNN inference more efficient on dedicated SoC-

FPGA accelerators compared to GPU and CPU. 

 

Figure 3. A complete HW/SW flow co-design in sequence (1-4) for deep learning that aims to 

address algorithms compression techniques for high accuracy and fast inference. 

Fig. 4 is shown some model compression techniques that helps reduce the model size and 

computational complexity of DNN architectures while maintaining high accuracy. Pruning is one 

technique that involves removing redundant or less essential weights, filters, or channels from the 

model [16]. Cai et al. [17] proposed a channel pruning method for CNNs that achieved a 2× 

reduction in model size and a 3× reduction in computational complexity for the EfficientNet-B0 

model on the ImageNet dataset, with only a 0.3% drop in top-1 accuracy. Quantization is another 

effective technique that reduces the precision of weights and activations. It usually converts them 

from 32-bit floating-point to 8-bit or even 1-bit integers [18]. Nagel et al. [19] introduced a novel 

quantization scheme called AdaRound. This method resulted in a 4× reduction in model size and 
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a 2× speedup in inference time for the MobileNetV2 model on the ImageNet dataset, with only a 

0.3% drop in top-1 accuracy. Knowledge Distillation is also another helpful technique that 

transfers knowledge from a large, complex model (teacher) to a more minor, more straightforward 

(student) model [20]. Yun et al. [21] proposed a novel knowledge distillation method called RKD, 

which achieved a 1.2% higher top-1 accuracy than the original EfficientNet-B0 model on the 

ImageNet dataset while being 2× smaller and 1.5× faster. These model compression techniques 

can be combined to achieve even higher efficiency gains for edge inference [22]. 

 

Figure 4. a. Pruning, b. Quantization, and c. Knowledge Distillation  

On the other hand, researchers have investigated many hardware platforms, such as 

Graphics Processing Units (GPUs), Central Processing Units (CPUs), Application-Specific 

Integrated Circuits (ASICs), Tensor Processing Units (TPUs), and Field-Programmable Gate 
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Arrays (FPGAs), to speed up DNN inference on edge devices [23]. Table 1 below is shown a 

comprehensive comparison among the mentioned hardware.  

Table 1. A comprehensive comparison among the different hardware used in AI computing. 

 GPU CPU ASIC TPU FPGA 

Purpose General-

purpose 

computing 

General-

purpose 

computing 

Specialized 

computing 

for specific 

tasks 

AI processing, 

deep learning; 

and data center 

Reconfigurable 

computing for 

various tasks 

Architecture  Many-core, 

parallel 

processing 

Few-core, 

serial 

processing 

Custom-

designed for 

specific 

tasks, fixed-

function 

Custom-

designed for 

AI, systolic 

array 

Reconfigurable 

logic elements, 

LUTs (Look-Up 

Tables) 

Performance High, 

10-100 

GFLOPS 

High, 

10-100 

GFLOPS 

High,  

1-10 Gbps 

High,  

10-100 

TFLOPS 

High,  

1-10 GFLOPS 

Power 

consumption 

High,  

50W-500W 

Medium, 

5W-100W 

Low,  

0.1W-10W 

Low, 

5W-50W 

Low,  

1W-25W 

Cost Medium to 

High,  

$500-$10,000 

Low to 

Medium, 

$50-$1,000 

High, 

$1,000-

$50,000 

High,  

$1,000-

$50,000 

Low to 

Medium,  

$250-$10,000 

Flexibility Multi-GPUs 

support 

Multi-cores 

support 

Fixed 

function 

Fixed function Reconfigurable 

computing; 

multi-FPGAs 

support 

Scalability High, multi-

GPU support; 

10-100 GPUs 

Medium, 

multi-core 

support; 2-

16 cores 

Low, fixed-

function; 1-

10 ASICs 

Low, fixed-

function; 1-10 

TPUs 

High, multi-

FPGAs support; 

10-100 FPGAs 

 

GPUs are widely used for training DNNs and offer high computational throughput and 

parallelism. This makes them well-suited for accelerating inference on edge devices with relatively 
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high-power consumption [24]. The NVIDIA Jetson Xavier NX is an example of a popular edge 

GPU that can deliver up to 21 Tera Operations Per Second (TOPS) for INT8 inference. This 

enables real-time performance for complex models like YOLOv5 [25]. Conversely, CPUs are more 

common and offer flexibility, but their performance is limited compared to dedicated accelerators 

[26]. ASICs, such as Google's Edge TPU and Intel's Movidius Myriad X, are highly optimized for 

specific DNN models and offer the best performance and energy efficiency. However, they lack 

flexibility and have high development costs [27], [28]. Due to their reconfigurable fabric and low 

power consumption, FPGAs have become famous for edge inference because of their flexibility 

and energy efficiency [29]. As an illustration, the AMD SoC-FPGA ZYNQ UltraScale+ MPSoC 

can achieve up to 38 TOPS/W for INT8 inference. This ZYNQ architecture [30] features a unique 

Programmable Logic to Processing System (PL-PS) interface that utilizes the Advanced 

eXtensible Interface (AXI) protocol. This interface enables high-speed, low-latency data transfer 

between the FPGA fabric (PL) and the CPU (PS), which typically consists of ARM Cortex-A 

processors. Nevertheless, FPGAs present a more challenging learning process and demand 

specialized programming expertise (e.g., VHDL) compared to alternative platforms [31]. 

However, developing custom hardware accelerators using System-on-Chip Field-

Programmable Gate Array (SoC-FPGA) with High-Level Synthesis (HLS) for CNN-based 

computer vision algorithms presents several challenges and difficulties. The CNN algorithms 

require significant computational resources and memory bandwidth [32]. Mapping these 

algorithms onto the FPGA fabric efficiently while optimizing for performance, resource utilization, 

and power consumption is a non-trivial task [33]. The HLS design methodology introduces 
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additional complexity, such as managing data dependencies, optimizing memory access patterns, 

and ensuring efficient HW-SW partitioning [34] as shown in the sequence design in Fig. 5. 

 

Figure 5. The HW/SW co-design required for CNN using Vivado HLS and PYNQ framework [35]. 

Additionally, implementing techniques like on-chip buffers, custom memory hierarchies, 

and efficient data reuse requires careful design considerations and trade-offs between resource 

utilization and performance [36]. Besides this, achieving real-time performance needs careful 
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optimization techniques, such as loop unrolling, pipelining, and dataflow analysis, which can be 

challenging to implement effectively in an HLS context [37]. Furthermore, the limited resources 

available on FPGAs, such as logic elements, memory blocks RAM (BRAM), and DSP slices, 

impose limitations on the size of the CNN models that can be accelerated [38]. Despite these 

challenges, researchers and industry practitioners are actively developing efficient SoC-FPGA 

generic design methodologies and tools to accelerate CNN-based computer vision applications 

[39]. 

Objectives 

DNNs and CNNs have revolutionized the field of computer vision, enabling unprecedented 

levels of accuracy in tasks such as image classification, object detection, and semantic 

segmentation [2]. However, the computational complexity and memory requirements of these 

networks pose significant challenges when deploying them on resource-constrained edge devices 

for real-time inference [6]. The limited processing power, memory bandwidth, and energy 

efficiency of edge devices hinder the widespread adoption of DNNs and CNNs in applications that 

demand low latency, high throughput, and energy efficiency [40]. To address these challenges, 

model compression and hardware acceleration techniques have emerged as a promising solution. 

First, techniques such as pruning, quantization, and knowledge distillation have been 

proposed to compress CNN models [41]. Pruning involves removing redundant or less essential 

weights and connections, while quantization reduces the precision of weights and activations. 

Knowledge Distillation further up-scale the accuracy for the quantized student weights by mimic 

the larger teacher model to frequently occurring values. However, the effectiveness of these 
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compression techniques varies depending on the CNN architecture and the target hardware 

platform [42]. 

Second, among various hardware platforms, AMD SoC-FPGAs with ZYNQ architecture 

shown in Fig. 6 have gained significant attention due to their flexibility, reconfigurability, and high 

performance. SoC-FPGAs combine the programmability of software with the parallel processing 

capabilities of the hardware, making them suitable for accelerating DNNs and CNNs [43]. The 

programmable logic (PL) fabric of SoC-FPGAs enables the implementation of custom hardware 

accelerators, while the integrated processing system (PS) ARM allows for flexible software control 

and data management.  

 

Figure 6. SoC-FPGA ZYNQ [44] architecture used in the whole design of this dissertation. The 

PS part has four core ARM processing unit while the PL part has high-performance ports to 

send/receive data. And a DDR4 which is the external memory.  
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However, the limited on-chip memory and bandwidth of FPGAs require efficient data reuse 

and memory access patterns [45]. The dataflow architecture and parallelization strategies need to 

be optimized based on the compressed model structure and the available hardware resources. 

Additionally, the use of HLS tools has emerged as a promising approach to bridge the gap between 

software and hardware design, enabling faster development cycles and improved productivity. 

To demonstrate the effectiveness of CNN compression and hardware acceleration on AMD 

SoC-FPGAs, several benchmarking studies have been conducted. For example, Sun et al. [46] 

presented a mixed-precision quantization scheme for CNN acceleration on an AMD Zynq SoC-

FPGA in 2022. They utilized 8-bit and 4-bit quantization for different layers of the different 

networks, using intra-layer, mixed-precision quantization. Each layer assigns 4-bit precision to 

95% of filters and 8-bit precision to 5% of filters, along with 5-bit activations, and employs an 

optimized accelerator architecture with techniques like DSP packing, weight reordering, data 

packing, and a comprehensive resource allocation model, achieving accuracy comparable to 32-

bit designs and over 500 fps throughput comparable to 4-bit designs on AMD ZCU102 SoC-

FPGAs for ResNet-50 and MobileNetV2 models. Similarly, Shao et al. [47] proposed a friendly 

CNN compression method that utilized maps by transforming the stored data into frequency 

domain using a hardware-implemented 8×8 discrete cosine transform. They co-designed the 

compression algorithm and hardware architecture to maximize the utilization of FPGA resources. 

Their implementation on an AMD Zynq SoC-FPGA achieved a compression ratio of 30% and a 

throughput of over 400 GOPS for a compressed VGG-16 and ResNet-50 model, outperforming 

previous works in terms of both compression ratio and acceleration performance. 
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Despite the potential of SoC-FPGAs and HLS for accelerating DNNs and CNNs, several 

challenges still need to be addressed. These include the efficient partitioning of workloads between 

hardware and software components, the optimization of data movement and memory access 

patterns on BRAM, and the exploration of different parallelization strategies such as loop tiling, 

loop unrolling, and double buffering. This research aims to address these challenges by 

investigating novel hardware acceleration techniques for CNNs on AMD SoC-FPGAs with ZYNQ 

architecture. The focus will be on developing efficient HW-SW co-design methodologies, 

exploring HLS-based acceleration techniques, and optimizing real-time inference of computer 

vision CNN algorithms for AMD Fast Inference Neural Network (FINN) [48] and HLS4ML [49]. 

The research will also contribute to the advancement of AI frameworks by enabling a new 

compression method that maintained high accuracy for CNN image classification models on 

resource-constrained devices, opening up new possibilities for intelligent and autonomous systems 

applications. Lastly, the trade-offs between compression ratio, accuracy, and hardware 

performance need to be carefully analyzed and balanced. 

The purpose of this study is to eliminate the challenges encountered during DNNs model 

compression and develop a CNN-based computer vision HW-SWs co-design across various AI 

frameworks for deployment on edge AMD ZYNQ SoC-FPGAs boards using HLS for high 

accuracy and high performance. A brief summary of the goals is as follows: 

• Develop a novel CNN compression method to reduce model size and computational 

complexity while preserving accuracy. Advanced approaches, including pruning, 

quantization, and knowledge distillation, will be explored to provide cutting-edge 

techniques that shrink CNN models for edge deployment [50]. 
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• Supporting popular DNN frameworks like FINN and HLS4ML to efficiently deploy 

different CNN-based algorithms on edge devices. This will need HW-SW co-design 

methods that maximize compressed CNN model mapping onto the target hardware 

platform. 

• Accelerating different HW-CNN architectures on AMD SoC-FPGA platforms, and 

benchmark their performance and inference time against traditional CPU and GPU 

implementations. This will accelerate the execution of compressed CNN models for low-

latency and energy-efficient for the edge. 

The proposed methods will be evaluated using relevant performance metrics, such as inference 

latency, throughput, energy efficiency, and resource utilization, to demonstrate their effectiveness 

and practicality in real-world computer vision applications. 

Contributions 

This dissertation explores the co-design of algorithms compression and hardware 

reconfigurability for Edge AI CNN-based computer vision applications on AMD SoC-FPGA 

platforms [32]. The primary focus is on developing high-accuracy and high-performance solutions 

that enable real-time inference using the open-source FINN [51] and HLS4ML [52] framework 

while considering the limitations of computational resources, memory bandwidth, and power 

consumption for edge FPGAs.  

However, edge FPGAs often have limited resources such as memory bandwidth and 

available resources (LUT, DSP, and FF), which makes it challenging to run computationally 

intensive CNN models in real-time. For instance, state-of-the-art CNN models like YOLOv8x [53] 
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and EfficientNet-B7 [7] require billions of floating-point operations (FLOPs) and millions of 

parameters, making them difficult to deploy on resource-constrained edge devices. Therefore, 

there is a pressing need for efficient and optimized hardware-software solutions that can accelerate 

CNN inference on edge devices while meeting the strict latency, throughput, and energy efficiency 

requirements.  

The proposed research addresses this need by focusing on the development of a 

comprehensive HW-SW co-design optimization framework that leverages the capabilities of AMD 

SoC-FPGA with ZYNQ architecture and HLS techniques. The ZYNQ architecture, which 

combines a powerful ARM processor with PL fabric, offers a unique opportunity to accelerate 

CNN inference through hardware-software partitioning and optimization. By exploring various 

aspects of the framework, such as partitioning and mapping of CNN layers such as layer-level, 

channel-level, and kernel-level partitioning, optimization of data transfer and communication 

using high-speed interconnects like AXI, exploring the use of Direct Access Memory (DMA) 

engines and data buffering techniques to minimize latency and maximize throughput, HLS design 

patterns and directives for efficient implementation on the PL fabric like pipelining, loop unrolling, 

dataflow, array partitioning, loop tiling, resource sharing, scalable hardware architecture design 

using reconfigurable computing techniques, and software optimization techniques for model 

compression like quantization, pruning, and knowledge distillation, this research aims to provide 

a holistic solution for accelerating CNN inference on edge devices.  

The first contribution is an HLS-based scalable dataflow inference accelerator for transpose 

convolution in quantized Deconvolutional Generative Adversarial Networks [54] (QDCGAN), 

built on the FINN framework. We provided an open-source framework covering training to 
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hardware implementation, allowing researchers to study the impact of different bit widths for 

weights and activations on performance, resource usage, throughput, and image quality. The 

proposed accelerator uses an efficient deconvolution engine enabling high parallelism for GAN-

based edge FPGA computing. Various precisions, datasets, and scalability options were analyzed 

for low-power edge inference, with performance benchmarked against NVIDIA Jetson Nano. This 

work encourages the exploration of efficient implementation of super-resolution GANs on low-

power FPGAs, potentially aiding the deployment of technologies like NVIDIA DLSS [55] on edge 

platforms. This work was published in the 2022 IEEE 56th Annual Conference on Information 

Sciences and Systems (CISS) [56]. 

Next, we proposed a scalable HLS-based architecture built on the HLS4ML framework 

that efficiently maps pre-trained CNN models with 16-bit fixed-point quantization onto a hardware 

template, achieving a high performance-to-resource utilization ratio. The design leverages loop 

tiling transformation and dataflow modeling to optimize convolutional and fully connected layers 

for on-chip vector multiplication. This allowed the accelerator IP to transfer a fixed amount of data 

from DRAM to BRAM, enabling efficient computations. A comparative analysis with previous 

developments demonstrated that the proposed method achieved 1.3x - 1.7x higher performance 

(230 GOP/s) operated at 200-MHz with minimum data execution time on well-known networks 

like AlexNet [57], VGG16 [58], and LeNet. This work was published in the 2022 IEEE 

International Conference on Networking, Architecture and Storage (NAS) [59]. 

After that, we presented an innovative approach to accelerate Human Action Recognition 

(HAR) on edge devices using SoC-FPGA. We developed a full-stack scalable HW/SW co-design 

based on an enhanced 8-bit quantized Two-Stream SimpleNet-PyTorch [60] CNN architecture. We 
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fused convolutional, batch-norm, and ReLU operations into a single layer and utilized the Lucas-

Kanade motion flow method to enhance the intellectual property (IP) parallelism and optimized 

on-chip computing. The design demonstrated significant improvements over prior work, achieving 

nearly 81% prediction accuracy with an approximate 24 FPS real-time inference throughput at 

187MHz on ZCU104. This performance represents a 1.7x - 1.9x increase in throughput compared 

to previous research. This work was published in the 2023 IEEE 20th International Conference on 

Smart Communities: Improving Quality of Life using AI, Robotics, and IoT (HONET) [61].  

In the last contribution, we presented a novel generic compression technique called "Two-

Teachers Net," which utilizes PyTorch FX-graph mode to train an 8-bit quantized student model 

using knowledge distillation from two teacher models. This innovative method improves the 

accuracy of the compressed model by 1%-2% compared to existing solutions for edge platforms 

and can be seamlessly integrated into existing AI hardware and software optimization toolchains 

without architectural adjustments. This methodology aimed to create a generic scalable solution 

on top of Vitis-AI [62], OpenVINO [63], TensorRT [64], and ONNX [65] edge AI frameworks. 

This is done without architectural adjustments to the predefined dimension layers to prove the 

effectiveness of hardware-algorithm co-design through experimental results in real-time inference 

[66]. This work has been submitted to the 2024 IEEE 21st International Conference on Smart 

Communities: Improving Quality of Life using AI, Robotics, and IoT (HONET).  

Dissertation Organization 

This dissertation is organized as follows: Chapter 2 describes a detailed background on 

DNN and CNN compression approaches alongside the HLS-based accelerator for SoC-FPGA. 

Then, we present an edge scalable inference accelerator for the GAN algorithm built on the FINN 
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framework in Chapter 3. In Chapter 4, we explored an efficient CNN architecture change built on 

the HLS4ML framework using on-chip vector multiplication for generic types of layers on the 

FPGA. Chapter 5 introduced an enhanced CNN-based HAR accelerator design by fusing most 

layers into a single layer for better data parallelism on edge. Additionally, Chapter 6 proposed a 

generic CNN compression technique using quantization and dual-teacher knowledge distillation 

to improve the accuracy by 1%-2% compared to exiting solutions and frameworks available for 

edge implementation. Finally, Chapter 7 concludes the dissertation and discusses the future work. 
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CHAPTER TWO: LITERATURE REVIEW 

In this chapter, we will first introduce Deep Learning and CNN, how they work, their 

applications, and some SOTA architectures and frameworks we experimented with alongside 

datasets we use to train the model. Then, we will introduce the most advanced DNN compression 

strategies for edge computing that maximize performance while maintaining accuracy. Finally, we 

will discuss some methodologies for CNN-based hardware acceleration with HW-SW co-design 

approaches focusing on AMD ZYNQ SoC-FPGA with the PYNQ framework. 

Fundamentals of Deep Learning 

 

Figure 7. Deep Neural Network input and output mathematical equation 

DNNs are a class of machine learning models inspired by the structure and function of the 

human brain. They consist of multiple layers of interconnected nodes, called neurons, which 

process and transmit information through the network [67]. The basic building blocks of DNNs 

are dense layers, also known as fully connected (FC) layers, which form the core of the network's 

architecture. In a dense layer, each neuron is connected to every neuron in the previous layer, 

forming a fully connected structure. The output of a neuron is mathematically computed by 
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applying an activation function to the weighted sum of its inputs as shown in Fig. 7 and can be 

expressed as follows: 

                                                𝑦 = (𝑓 ∑ 𝑤𝑖𝑥𝑖 𝑛
𝑖=1 +  𝑏)                                         (2.1) 

where 𝑦 is the neuron output, 𝑓 is the activation function, 𝑊𝑖 is the weight associated with each 

input 𝑋𝑖, 𝑛 is the number of inputs, and 𝑏 is the bias term. The weights and biases are the learnable 

parameters of the network, which are adjusted during the training process using optimization 

algorithms such as gradient descent [68]. The weights determine the strength of the connections 

between neurons, while the biases allow for shifting the activation function to fit the data better. 

For example, consider a dense layer with three input neurons and two output neurons. The weight 

matrix 𝑊 and bias vector 𝑏 for this layer can be represented as follows:  

                                            𝑊 = (
𝑊11 𝑊12 𝑊13

𝑊21 𝑊22 𝑊23
) ,      𝑏 = (

𝑏1

𝑏2
)                                          (2.2) 

Given an input vector 𝑥 = [𝑥1, 𝑥2, 𝑥3], the output of the dense layer can be computed as follows:  

                                    𝑦 = 𝑓(𝑊𝑥 + 𝑏) = 𝑓 (
𝑤11𝑥1+𝑤12𝑥2+𝑤13𝑥3+𝑏1

𝑤21𝑥1+𝑤22𝑥2+𝑤23𝑥3+𝑏2
)                                 (2.3)         

The choice of activation function 𝑓 depends on the specific requirements of the task and the desired 

properties of the network. Common activation functions shown in Fig. 8 include the Sigmoid 

Function, Hyperbolic Tangent (TANH), and Rectified Linear Unit (ReLU) [69]. By stacking 

multiple dense layers, DNNs can learn hierarchical representations of the input data, enabling them 

to capture complex patterns and relationships.  
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Figure 8. Different kind of activation function used while training DNN models. 

 Additionally, the backpropagation algorithm is used within network training, where 

predictions are compared to the ground truth labels using a loss function, such as the Mean Squared 

Error or Cross-Entropy Loss [70]. The goal is to minimize the loss function by adjusting the 

network's weights and biases. This is achieved by computing the gradients of the loss with respect 

to the parameters using the chain rule of derivatives. Let 𝐿 be the loss function, and ∂𝑦 be the 

ground truth labels. Then, we compute the gradient of the loss with respect to the output activations 

as in the following equation follows:  

                                                       ∂𝐿

∂𝑎
(𝐿) =

∂𝐿

∂𝑦
                                              (2.4) 

The depth of the network and the number of layers play a crucial role in its ability to learn intricate 

features and abstractions [71]. Besides, the feed-forward and backpropagation algorithms are 

repeated iteratively over multiple epochs until the network converges to a satisfactory solution 

[72].  

Common DNN Framework and Datasets 

 The success of DNNs can be attributed to the development of powerful deep learning 

frameworks, such as TensorFlow [73] and PyTorch [74], which provide a wide range of tools and 
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techniques for training and deploying DNN models. For example, Transfer Learning has become 

a crucial technique in training DNN models, especially when dealing with limited labeled data 

[75]. TensorFlow and PyTorch provide a wide range of pre-trained models that can be fine-tuned 

for specific vision tasks. Data augmentation is another essential technique for improving the 

model's generalization and robustness by applying random transformations to the training data 

[76].  

On the other hand, the performance of DNN models is typically benchmarked on standard 

datasets, such as ImageNet [57] and MS COCO [77]. For instance, the current state-of-the-art 

model on the ImageNet dataset is OmniVec, achieving a top-1 accuracy of 92.4% [78]. Moreover, 

deploying DNNs on edge devices with limited computational resources and memory can be 

challenging. To address this issue, several datasets have been developed that are well-suited for 

benchmarking and evaluating the performance of DNNs on edge hardware, such as MNIST, 

CIFAR-10 shown in Fig. 9, and CIFAR-100 [79], Pascal VOC [80] shown in Fig. 10, and Tiny 

ImageNet [81]. These datasets have characteristics, such as small image sizes and a limited number 

of classes, that make them suitable for resource-constrained platforms. By using these datasets, 

researchers and practitioners can assess the accuracy and efficiency of compact DNN architectures 

and make informed decisions when deploying DNNs on edge hardware. 

 

Figure 9. Subset of Cifar-10 dataset  
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Figure 10. Subset of Pascal VOC dataset. 

Convolutional Neural Networks 

CNNs as shown in Fig. 11 are a class of deep learning designed to process grid-like data, 

such as images and time series, by learning hierarchical representations through a series of 

convolutional, pooling, and FC layers [67]. The critical advantage of CNNs lies in their ability to 

exploit spatial locality and translation invariance, making them well-suited for vision tasks such 

as image classification, object detection, and semantic segmentation [71].  

 

Figure 11. CNNs description including features extracting and pooling layers.  
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They are commonly represented in the RGB color space, where each pixel is described by 

three values corresponding to the intensities of red, green, and blue. However, the core of CNNs 

is convolutional layers, which consist of a set of learnable filters that slide across the input, 

performing element-wise multiplication using 3D convolutional kernels and summing the results 

to produce feature maps. The output of a convolutional layer can be mathematically expressed as 

follows: 

                    𝑦𝑖 , 𝑗, 𝑘 = 𝑓(∑ ∑ ∑ 𝑤𝑚,𝑛,𝑐
𝐶−1
𝑐=0

𝑁−1
𝑛=0

𝑀−1
𝑚=0 ∗ 𝑥𝑖+𝑚,𝑗+𝑛,𝑐 + 𝑏𝑘)                    (2.5) 

Where 𝑦𝑖,𝑗,𝑘  is the output value at position (𝑖, 𝑗) in the 𝑘-th feature map, 𝑓 is a non-linear activation 

function (e.g., ReLU ), 𝑤𝑚,𝑛,𝑐,𝑘 is the weight at position (𝑚, 𝑛) in the 𝑐-th input channel and 𝑘-th 

output channel, 𝑏𝑘  is the bias term for the 𝑘-th output channel. 𝑀, 𝑁, 𝑎𝑛𝑑 𝐶 are the convolutional 

kernel’s height, width, and depth, respectively. Moreover, the spatial dimensions of the output 

feature map can be calculated using the following equations: 

𝐻𝑜𝑢𝑡 = [
𝐻𝑖𝑛+2𝑃− 𝐾ℎ

𝑆ℎ
] + 1       (2.6)             ,             𝑊𝑜𝑢𝑡 = [

𝑊𝑖𝑛+2𝑃− 𝐾𝑤

𝑆𝑤
] + 1       (2.7) 

Where 𝐻𝑜𝑢𝑡 and 𝑊𝑜𝑢𝑡 are the height and width of the output feature map, 𝐻𝑖𝑛  and 𝑊𝑖𝑛  are the 

height and width of the input feature map, 𝑃 is the padding size, 𝐾ℎ and 𝐾𝑤 are the height and 

width of the convolutional kernel. 𝑆ℎ and 𝑆𝑤 are the stride values in the vertical and horizontal 

directions, respectively. Additionally, normalization comes after, which is a preprocessing 

technique used to standardize the input data before feeding it into the CNN [82]. Min-Max 
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normalization is the most common normalization method that scales the pixel values to a fixed 

range from 0 to 1 using the following formula: 

                                               𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                              (2.8) 

Where 𝑥 is the original pixel value, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum pixel values, 

respectively. 

Pooling layers, on the other hand, are another essential component of CNNs. It down-

sample the spatial dimensions of the feature maps while retaining the most relevant information 

[83]. The most common types of pooling operations are max pooling and average pooling, in which 

the max pooling can be expressed mathematically as follows: 

              𝑦𝑖,𝑗,𝑘  =  max
𝑚=0,𝑛=0

𝑀 − 1, 𝑁 − 1 𝑥𝑖. 𝑠ℎ+𝑚,𝑗 . 𝑠𝑤+𝑛,𝑘                          (2.9) 

Where 𝑦𝑖,𝑗,𝑘  is the output value at position (𝑖, 𝑗) in the 𝑘-th feature map, 𝑥𝑖. 𝑠ℎ+𝑚,𝑗 . 𝑠𝑤+𝑛,𝑘 is the 

input in the 𝑘-th channel, and 𝑀 and 𝑁 are the height and width of the pooling window, 

respectively. Moreover, fully connected layers are typically used at the end of the CNN architecture 

to perform high-level reasoning and classification [57]. These layers take the flattened output of 

the last convolutional or pooling layer and apply a linear transformation followed by a non-linear 

activation function. These layers perform classification, represented as: 

                                                                    𝑦 = 𝑓(𝑊. 𝑥 + 𝑏)                                                     (2.10) 

Where 𝑦 is the output vector, 𝑓 is a non-linear activation function (e.g., SoftMax for multi-class 

classification [84]), 𝑥 is the input vector, 𝑊 is the weight matrix, and 𝑏 is the bias vector. Lastly, 

those combination of convolutional, pooling, and fully connected layers, along with carefully 
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designing architectures and optimization techniques, enables CNNs to achieve remarkable 

performance on a wide range of computer vision tasks. 

Computation Complexity of CNNs 

CNNs have become the dominant architecture for various computer vision tasks due to 

their exceptional performance. However, the computational complexity of CNNs is a critical factor 

in their deployment, especially on resource-constrained devices. It is primarily determined by the 

number of floating-point operations (FLOPs) performed during a single forward pass. The total 

FLOPs in a CNN are the sum of the FLOPs in all convolutional, pooling, backbone, and other kind 

of layers. layers. The number of FLOPs in a convolutional layer can be calculated using the 

following equation: 

                                      𝐹𝐿𝑂𝑃𝑠𝑐𝑜𝑛𝑣 = 2 ⋅ 𝐻𝑜𝑢𝑡 ⋅ 𝑊𝑜𝑢𝑡 ⋅ 𝐶𝑖𝑛 ⋅ 𝐾ℎ ⋅ 𝐾𝑤 ⋅ 𝐶𝑜𝑢𝑡                             (2.11) 

Where 𝐻𝑜𝑢𝑡 and 𝑊𝑜𝑢𝑡 are the height and width of the output feature map, 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 are the 

number of input and output channels, and 𝐾ℎ and 𝐾𝑤 are the height and width of the convolutional 

kernel. For example, a layer transforming 224 × 224 × 3 input into a 112 × 112 × 64 output with a 

3 × 3 kernel, the FLOPs calculation is:  

                            𝐹𝐿𝑂𝑃𝑠𝑐𝑜𝑛𝑣 = 2 × 112 × 112 × 3 × 3 × 3 × 64 = 86,704,128                        (2.12) 

Fully connected layers also contribute to the computational complexity. The number of FLOPs is 

determined by the number of input and output neurons, as shown in the following equation:        

                                                             𝐹𝐿𝑂𝑃𝑠𝑓𝑐 = 2 ⋅ 𝑁𝑖𝑛 ⋅ 𝑁𝑜𝑢𝑡                                            (2.13) 
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Where 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 are the numbers of input and output neurons. Moreover, the number of 

multiply-accumulate (MAC) operations is another metric used to measure the computational 

complexity of CNNs. MACs represent the number of multiplication and addition operations 

performed in a layer. For convolutional layers, the number of MACs is equal to the number of 

FLOPs divided by two, as shown in the equation follows: 

                                      𝑀𝐴𝐶𝑠𝑐𝑜𝑛𝑣 =
𝐹𝐿𝑂𝑃𝑠𝑐𝑜𝑛𝑣

2
= 𝐻𝑜𝑢𝑡 ⋅ 𝑊𝑜𝑢𝑡 ⋅ 𝐶𝑖𝑛 ⋅ 𝐾ℎ ⋅ 𝐾𝑤 ⋅ 𝐶𝑜𝑢𝑡               (2.14) 

In addition to FLOPs and MACs, the number of parameters in a CNN also contributes to its 

computational complexity and memory requirements. It can be calculated as follows: 

                                           𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑐𝑜𝑛𝑣 = (𝐾ℎ ⋅ 𝐾𝑤 ⋅ 𝐶𝑖𝑛 + 1) ⋅ 𝐶𝑜𝑢𝑡                              (2.15) 

To put these metrics into perspective, let us consider the computational complexity of some 

popular CNN architectures. The VGG-16 model [58] has 138 million parameters and requires 15.5 

billion FLOPs for a single forward pass. On the other hand, the MobileNet-V2 [85] architecture 

has only 3.5 million parameters and requires 300 million MACs, making it more suitable for 

resource-constrained devices. However, the high memory footprint makes deploying these 

networks on devices with limited memory resources challengng. Thus, reducing the computational 

complexity of CNNs is crucial for their deployment on edge devices and real-time applications.  

Benchmarking the computational requirements and performance of DNNs and CNNs is 

crucial for assessing their suitability for applications and devices. The MLPerf benchmark [86] is 

a widely adopted benchmark suite that measures the performance of machine learning models 

across various tasks, including image classification, object detection, and semantic segmentation. 
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The benchmark provides a standardized way to compare the performance and efficiency of 

different hardware platforms and software frameworks. For example, the MLPerf benchmark 

results [87] as in Fig. 12 show that the NVIDIA A100 GPU can process 16,819 images per second 

on the ResNet-50 model for image classification. In comparison, the Google TPU v4 can process 

27,366 images per second on the same model. These benchmarks help researchers and practitioners 

decide to select hardware and software platforms for their specific use cases. Lastly, various 

techniques have been proposed for edge computing and deployment to achieve this goal, such as 

pruning, quantization, and knowledge distillation where they will be discussed in the upcoming 

subsection. 

 

Figure 12. MLPerf benchmark various DNNs among GPU, CPU, TPU, and FPGA.  

State of the Art CNNs Architectures 

When considering CNN architectures for edge computing, it is crucial to consider the 

limited computational resources, memory constraints, and power consumption. Edge computing 

refers to processing data locally smartphones, Internet of Things (IoT) devices, and embedded 
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systems rather than sending the data to the cloud for processing [88]. This subsection will discuss 

CNN architectures for different vision tasks that are well-suited for edge computing, along with 

examples and metric benchmarking. 

Image Classification: The EfficientNet architecture [7] shown in Fig. 13 (a) introduces a 

compound scaling method that uniformly scales the width, depth, and resolution. This allows for 

creating a family of models, from EfficientNet-B0 to EfficientNet-B7, with increasing complexity 

and accuracy. The EfficientNet-B7 model achieves a top-1 accuracy of 84.3% and a top-5 accuracy 

of 97.0% on ImageNet, surpassing the performance and efficiency of other state-of-the-art models. 

Moreover, the smaller versions of EfficientNet, such as EfficientNet-B0 and EfficientNet-B1, are 

particularly well-suited for edge computing due to their low computational complexity and 

memory requirements. It achieved a top-1 accuracy of 77.1% on the ImageNet dataset, with only 

5.3 million parameters and 390 million FLOPs. This makes it an attractive choice for edge devices 

with limited computational resources and memory. 

Object Detection: The YOLO (You Only Look Once) architecture [89] shown in Fig. 13 

(b) has undergone several improvements. The latest version YOLOv8 [53] incorporates a modified 

version of the CSPDarknet53 [90] architecture forms the backbone and uses a Rectified Adam 

(RAdam) for improved optimization with Mix-up learning rate scheduler to achieve faster 

convergence and higher accuracy. One of the critical features of YOLOv8 is the use of a self-

attention mechanism in the head that allows it to achieve an Average Precision (AP) of 53.9% on 

the MS COCO dataset at a real-time inference speed of 283 frames per second (FPS) on a Tesla 

A100 GPU. YOLOv8n is the most miniature version of YOLOv8 with only 3.2 million parameters 
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and 4.6 billion FLOPs. It achieved an impressive mAP (mean Average Precision) of 37.3% on the 

COCO dataset. 

Instance Segmentation: YOLOv8 has been extended by adding a specialized segmentation 

heads [91] to its architecture in parallel with the existing branch for bounding box recognition. 

These heads work alongside the detection components, leveraging multi-scale feature maps 

produced by the backbone and enhanced through feature fusion techniques like Feature Pyramid 

Networks (FPNs) or Path Aggregation Networks (PANs) [92]. This integration allows YOLOv8 to 

generate precise pixel-wise masks, making it adept at instance segmentation. Its backbone 

achieved an AP of 43.1% on the MS COCO dataset, for instance, segmentation while running at 

248 FPS on a Tesla A100 GPU. 

 

Figure 13. EfficientNet [7] and YOLOv8 architectures [53].  
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However, the performance of these architectures can be further improved by transfer 

learning, fine-tuning, and domain adaptation [93]. Transfer learning involves pre-training the 

models on large-scale datasets like ImageNet and fine-tuning them on specific tasks or domains. 

This approach can significantly reduce the training time and improve the performance, especially 

when dealing with limited labeled data. Both EfficientNet and YOLOv8 are two CNN architectures 

well-suited for edge computing due to their excellent balance between accuracy and efficiency, 

making them attractive choices for deployment on resource-constrained devices.  

Deployment Challenges of CNNs on the Edge 

Edge computing brings data processing closer to the source, offering benefits such as 

reduced latency and improved privacy [88]. However, deploying DNNs and CNNs on embedded 

systems with limited hardware resources, including data processing, memory bandwidth, and 

energy consumption, presents several challenges in some popular edge hardware platforms, such 

as Jetson, FPGA, ASIC, and Raspberry Pi. Those devices often have low-power CPUs, small 

amounts of RAM, and limited storage capacity, making running complex CNN models in real-

time difficult. The depth and width of CNN networks increase the computational complexity, 

making it difficult to execute them efficiently. The choice of hardware platform depends on the 

specific application requirements, deployment scale, and budget constraints. To illustrate more, 

the number of FLOPs indicates the computation required to perform a single inference pass 

through the network. At the same time, memory bandwidth refers to the amount of data that can 

be transferred between the processor and memory per of unit time. To address these challenges, 

researchers have proposed various techniques for optimizing DNNs and CNNs for edge 

deployments, such as model Pruning, Quantization, Knowledge Distillation, and Neural 
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Architecture Search [94]. These techniques aim to reduce the models’ computational complexity 

and memory footprint of the models while maintaining high accuracy.  

Compression and Optimization of CNNs 

Due to the significance important of efficient DNN for edge computing, extensive research 

has been conducted to enhance their accuracy, latency, and performance. This section will provide 

an organized overview of the prior studies. Initially, we examined previous endeavors in network 

compression, followed by enhanced precision achieved by regularization, and ultimately, we aim 

to expedite inference by leveraging hardware acceleration. 

Pruning 

Pruning as shown in Fig. 14 has emerged as a popular technique for compressing DNNs 

and CNNs by removing fewer essential weights, filters, or channels from the model, thereby 

reducing the model size and computational complexity while maintaining acceptable accuracy. 

Magnitude-based pruning is one of the most widely used techniques, which removes weights with 

small absolute values. This method is mathematically represented as follows: 

                                              𝑊𝑃 = {𝑤 ∈ 𝑊: ∣ 𝑤 ∣> 𝜃}                                               (2.16) 

Where 𝑊 is the set of all weights, 𝜃 is the threshold, and 𝑊𝑃 is the set of weights after pruning. The 

efficiency of magnitude-based pruning is quantified using a Compression Ratio (𝐶𝑅), calculated as the 

ratio of the total number of weights to the number of pruned weights and expressed as follows: 

                                                            𝐶𝑅 = |
𝑊

𝑊𝑃
|                                                         (2.17) 
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Han et al. [95] proposed a three-step pruning pipeline: training a dense model, pruning redundant 

connections based on weight magnitude, and retraining the pruned model to fine-tune the 

remaining weights. This method achieved a compression ratio of up to 9x for AlexNet and 13x for 

VGG-16 on the ImageNet dataset without significant loss in accuracy. They reported a top-5 

accuracy of 80.3% for AlexNet and 89.1% for VGG-16 after pruning, compared to the original 

accuracies of 80.2% and 90.0%, respectively. However, magnitude-based pruning often results in 

irregular sparsity patterns, which are difficult to accelerate on hardware due to the overhead of 

handling sparse matrix operations.  

 

Figure 14. A well description of pruning processing before and after [96].  

Structured pruning (filter pruning) is another method proposed to address the limitations 

of magnitude-based pruning by removing entire filters or channels from the CNN model. This 

method selects filters for removal whose L1-norm falls below a certain threshold 𝛼. The formula 

for identifying these filters is as follows:  

                                             𝐹𝑃 = {𝐹𝑖 ∈ 𝐹: ∥ 𝐹𝑖 ∥ 1 > 𝛼}                                                   (2.18) 
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Where 𝐹 represents the set of all filters in a layer, and 𝐹𝑃 is the subset of filters retained after 

pruning. The compression ratio for filter pruning is then calculated by comparing the original 

number of filters to the pruned set as follows: 

                                                                          𝐶𝑅 =
𝑛

|𝐹𝑃|
                                                         (2.19) 

Li et al. [97] proposed a filter pruning method that removes filters with small absolute weights and 

retrains the model to compensate for the accuracy loss. They achieved a 1.4× speedup for ResNet-

110 on the CIFAR-10 dataset with only a 0.02% increase in error rate and reported an error rate of 

6.45% for the pruned model, compared to 6.43% for the original model. Moreover, He et al. [98] 

proposed a channel pruning method that achieves a 2× speedup for VGG-16 on the ImageNet 

dataset with only a 0.3% decrease in top-5 accuracy. They reported a top-5 accuracy of 89.8% for 

the pruned model, compared to 90.1% for the original model.  

Several advanced pruning techniques have also been proposed to improve the compression 

ratio and accelerate edge devices inference. Wen et al. [99] proposed a structured sparsity learning 

method that regularizes the structures of DNNs, such as filters, channels, and layers, to achieve 

high compression ratios and speedups. Liu et al. [100] proposed a network slimming method that 

learns channel-wise scaling factors and prunes channels with small scaling factors, achieving up 

to 20× compression on the VGG-16 model. Yang et al. [101] proposed a neural network accelerator 

architecture that leverages structured sparsity to achieve high performance and energy efficiency 

on FPGAs. Lastly, Lin et al. [102] proposed a framework for automatically pruning and deploying 

DNNs on resource-constrained edge devices, achieving up to 6.3× speedup on a Raspberry Pi. 
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Despite the remarkable progress made in CNNs pruning for edge computing, striking the 

right balance between model accuracy and computational efficiency remains a significant 

challenge [103]. To address these issues, future research should focus on developing more 

sophisticated pruning algorithms that can better understand and maintain the essential 

characteristics of the network [104]. This could involve leveraging advanced techniques from 

graph theory, information theory, and network science to analyze the connectivity patterns and 

information flow within the CNN, enabling more targeted and effective pruning strategies [105], 

[106]. Moreover, exploring dynamic pruning methods that can adapt to the edge device's current 

computational load in real-time offers another potential direction for future research [107].  

Quantization 

Quantization shown in Fig. 15 is a process that involves mapping a large set of continuous 

or high-precision values to a smaller set of discrete values. In the context of DNNs and CNNs, 

quantization is applied to weights and activations by converting the floating-point numbers (e.g., 

32-bit floats) into lower-precision data types, such as integers (e.g., 8-bit integers) [6]. Uniform or 

post-training quantization is the simplest and most commonly used method for quantizing weights 

and activations. Given a real value 𝑥 in the range [𝑎, 𝑏], the quantized value 𝑞 can be obtained 

using the following equation: 

                                                             𝑞 = 𝑟𝑜𝑢𝑛𝑑 (
𝑥−𝑎

𝑏−𝑎
 ⋅ (2𝑛 − 1)) ⋅

𝑏−𝑎

2𝑛−1
+ 𝑎                               (2.20)    

where 𝑛 is the number of bits used for quantization. The quantization error 𝐸 can be calculated as 

follows:  
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                                                                        𝐸 = 𝑥 − 𝑞                                                         (2.21) 

Jacob et al. [108] proposed a uniform quantization scheme for quantizing weights and activations 

to 8-bit integers. They benchmarked their method on the ImageNet dataset using popular CNN 

architectures, such as MobileNet and Inception-V3. For MobileNet, they achieved a 4× 

compression ratio with only a 0.5% drop in top-1 accuracy compared to the full-precision model. 

 

Figure 15. Quantization method used to convert a floating point into fixed point.  

 Moreover, quantization-aware training (QAT) is another method incorporated into the 

training process, allowing the model to adapt to reduced precision and mitigate accuracy loss. The 

forward pass uses quantized weights and activations during QAT, while the backward pass uses 

full-precision values. The gradients are computed concerning the quantized values using the 

straight-through estimator (STE) [109] as in the equation follows: 

                           
𝜕𝐿

𝜕𝑊
≈

𝜕𝐿

𝜕𝑊𝑞
              (2.22)        ,                       

𝜕𝐿

𝜕𝐴
≈

𝜕𝐿

𝜕𝐴𝑞
                    (2.23) 

Where 𝑊 and 𝐴 represent the original weights and activations, respectively, while 𝐿 denotes the 

loss function acting as a scaling factors. Krishnamoorthi [110] presented a comprehensive study 

of QAT techniques, including techniques for handling batch normalization and activation 
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functions. They achieved a 4× compression ratio with less than 1% accuracy loss on the ImageNet 

dataset for ResNet-50 and MobileNet-V2.  

 Mixed-precision quantization is another technique that assigns different bit-widths to 

different layers or operations within the network based on their sensitivity to quantization errors 

[111]. This technique allocates varying bit-widths across different network layers or operations. 

For the 𝑖 − 𝑡ℎ layer with bit-width 𝑛𝑖, the quantized weight 𝑊𝑞𝑖  and activation 𝐴𝑞𝑖 are calculated 

as follows: 

                𝑊𝑞𝑖 = 𝑟𝑜𝑢𝑛𝑑 (
𝑊𝑖

𝑠𝑤𝑖
) ⋅ 𝑠𝑤𝑖              (2.24),           𝐴𝑞𝑖 = 𝑟𝑜𝑢𝑛𝑑 (

𝐴𝑖

𝑠𝑎𝑖
) ⋅ 𝑠𝑎𝑖        (2.25)              

Where 𝑠𝑤𝑖 and 𝑠𝑎𝑖 are the scaling factors for the 𝑖 − 𝑡ℎ layer, this approach allows for a more fine-

grained trade-off between compression and accuracy. Wang et al. [112] proposed a hardware-aware 

automated quantization framework called HAQ, which jointly optimizes the bit-width and 

associated hardware accelerator design. They demonstrated a 4.1× speedup for MobileNet-V2 on 

an FPGA with less than 1% accuracy loss. 

 In summary, quantization is a technique that maps continuous or high-precision values to 

a smaller set of discrete values. This process is essential for reducing the model size and 

computational complexity of DNNs and CNNs, enabling their deployment on resource-

constrained devices. Thus, using FX-Graph [113] Mode Quantization in PyTorch involves the 

implementation of quantization at the graph level, offering precise control over model 

compression. This method transforms a model into a graph of operations, enabling targeted 

quantization on specific subgraphs or nodes. It supports both automatic quantization and manual 



37 
 

quantization, allowing for custom strategies. This makes it an essential tool for deploying deep 

learning models on edge devices while maintaining acceptable accuracy. 

Knowledge Distillation 

Knowledge distillation (KD) shown in Fig. 16 is a model compression technique that 

transfers knowledge from a large, complex teacher model to a smaller, more efficient student 

model, enabling the deployment of DNNs and CNNs on edge devices [114]. By leveraging the 

knowledge of the teacher model, the student network is trained to mimic the outputs of the more 

extensive network. These outputs (often class probability distributions) provide richer "soft 

targets" than complex compared ground-truth labels. The softmax temperature-based knowledge 

distillation is one type of soft target that involves training the student model to match the softened 

softmax outputs of the teacher model. The outputs are then obtained by dividing the logits (pre-

softmax activations) by a temperature parameter 𝑇, which is given by: 

                                                              𝑃𝑇(𝑥𝑖) =
exp (

𝑧𝑖
𝑇

)

∑ 𝑒𝑥𝑝(
𝑧𝑖
𝑇

)𝑗
                                                       (2.26) 

Where 𝑃𝑇(𝑥𝑖) denotes the softened probability for class 𝑖, 𝑧𝑖 is the logit corresponding to class 𝑖, 

and 𝑇 is the temperature parameter. Moreover, the student model is trained to minimize the 

Kullback-Leibler (KL) divergence between its softened softmax outputs and those of the teacher 

model, as given in the following equation: 

             𝐿𝐾𝐷 = 𝑎𝑇2𝐷𝐾𝐿(𝑃𝑇(𝑥𝑡𝑒𝑎𝑐ℎ𝑒𝑟)||𝑃𝑇(𝑥𝑠𝑡𝑢𝑑𝑒𝑛𝑡)) + (1 − 𝑎)𝐿𝐶𝐸(𝑦𝑡𝑟𝑢𝑒 , 𝑥𝑠𝑡𝑢𝑑𝑒𝑛𝑡)            (2.27) 

Where 𝐿𝐾𝐷 is the overall knowledge distillation loss, 𝐷𝐾𝐿  is the 𝐾𝐿 divergence, 𝐿𝐶𝐸 is the cross-

entropy loss, 𝑦𝑡𝑟𝑢𝑒  are the actual labels, 𝑥𝑡𝑒𝑎𝑐ℎ𝑒𝑟 and 𝑥𝑠𝑡𝑢𝑑𝑒𝑛𝑡 are the logits of the teacher and 
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student models, respectively, and 𝛼 is a hyperparameter that balances the importance of the two 

loss terms. 

 

Figure 16. Knowledge Distillation method for high accuracy on the student model [115].  

Hinton et al. [114] introduced this concept, demonstrated its effectiveness on the MNIST 

dataset. They achieved a 2.6% error rate using a student model with only 30% of the parameters 

of the teacher model. Additionally, Furlanello et al. [116] extended this approach and applied it to 

larger datasets, such as CIFAR-10 and CIFAR-100. They achieved a 2.5% error rate on CIFAR-10 

using a student model with only 50% of the parameters of the teacher model. 

 In addition to matching the softmax outputs, Probabilistic KD methods aim to transfer the 

knowledge of the teacher model in the form of probability distributions. Malinin et al. [117] 

proposed a method called Uncertainty-Aware Knowledge Distillation (UAKD), which models the 

uncertainty of the teacher model's predictions using a Dirichlet distribution. The Dirichlet 

distribution is parameterized by a concentration parameter 𝛼, which is learned by the teacher 

model. Then, the student model is trained to match the concentration parameter of the teacher 

model as in equation follows: 

                                            𝐿𝑈𝐴𝐾𝐷 = 𝐷𝐾𝐿(𝐷𝑖𝑟(𝑎𝑡𝑒𝑎𝑐ℎ𝑒𝑟)||𝐷𝑖𝑟(𝑎𝑠𝑡𝑢𝑑𝑒𝑛𝑡))                              (2.28) 
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Where 𝐿𝑈𝐴𝐾𝐷  is the uncertainty-aware knowledge distillation loss, 𝐷𝑖𝑟 denotes the Dirichlet 

distribution, and 𝑎𝑡𝑒𝑎𝑐ℎ𝑒𝑟  and 𝑎𝑠𝑡𝑢𝑑𝑒𝑛𝑡 are the concentration parameters of the teacher and student 

models, respectively. Malinin evaluated its performance on the CIFAR-10 and CIFAR-100 

datasets. They achieved a 3.89% error rate on CIFAR-10 and an 18.22% error rate on CIFAR-100 

using student models with only 50% of the parameters of the teacher models.  

Quantized KD is a popular technique for reducing the memory footprint and computational 

complexity of DNNs and CNNs. Polino et al. [118] proposed a method called Quantized 

Distillation (QD), combining KD with quantization to achieve greater compression and efficiency. 

In QD, the teacher model is first quantized using a quantization function 𝑄 which can be expressed 

mathematically as follows: 

                                                  𝑊𝑞𝑡𝑒𝑎𝑐ℎ𝑒𝑟
= 𝑄(𝑊𝑡𝑒𝑎𝑐ℎ𝑒𝑟)                                             (2.29) 

Where 𝑊𝑡𝑒𝑎𝑐ℎ𝑒𝑟  and 𝑊𝑞𝑡𝑒𝑎𝑐ℎ𝑒𝑟
 are the original and quantized weights of the teacher model, 

respectively. The student model is then trained to minimize the combined loss as follows: 

                              𝐿𝑄𝐷 = 𝛽𝐿𝐾𝐷(𝑥𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , 𝑥𝑠𝑡𝑢𝑑𝑒𝑛𝑡) + (1 − 𝛽)𝐿𝐶𝐸(𝑦𝑡𝑟𝑢𝑒 , 𝑥𝑠𝑡𝑢𝑑𝑒𝑛𝑡)               (2.30) 

Where 𝐿𝑄𝐷  is the quantized distillation loss, 𝐿𝐾𝐷 is the knowledge distillation loss, 𝐿𝐶𝐸 is the cross-

entropy loss, and 𝛽 is a hyperparameter balancing the two loss terms. Polino evaluated its 

performance on the CIFAR-10 and ImageNet datasets. For CIFAR-10, they used a ResNet-18 

teacher model and a student model with the same architecture. The teacher model achieved an 

accuracy of 94.8%, while the student model achieved an accuracy of 94.2% with 8-bit quantization 

and 93.7% with 4-bit quantization. This demonstrates that QD can maintain high accuracy even 

with aggressive quantization.  
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 KD has proven to be an effective technique for compressing DNNs and CNNs. However, 

several challenges associated with KD compression methods that need to be addressed to improve 

their performance and applicability. First, architecture selection is a crucial challenge in KD. 

Choosing the optimal architecture for the student model is essential for achieving the desired 

compression rate while maintaining sufficient capacity to learn from the teacher model [119]. Next, 

KD methods often focus on transferring low-level features or class probabilities, which may not 

capture the high-level semantic information learned by the teacher model [120]. To solve those 

issues, automated architecture search is a promising direction for future improvements in KD. 

Developing automated methods for searching the optimal student model architecture based on the 

teacher model's characteristics and the target compression rate could streamline the KD process 

[121]. Adaptive hyperparameter tuning is another potential improvement, where adaptive 

mechanisms for automatically adjusting the hyperparameters during training could reduce the need 

for manual tuning and improve the robustness of KD methods [122]. In addition, distributed and 

parallel knowledge distillation is an essential area for future improvements, as it could enable their 

application to large-scale datasets and models, reducing the computational burden and memory 

requirements [123]. Finally, integrating KD with other compression techniques, such as pruning, 

quantization, and low-rank factorization, could lead to more effective and compact models suitable 

for deployment on edge devices [124].  

Hardware-Software CNNs Inference Accelerator Design 

Hardware-Software co-design with Deep Learning Accelerators (DLA) plays a crucial role 

for the rapid growth and widespread adoption of AI applications in computer vision and Large 

Language Model (LLM). These specialized hardware architectures are designed to execute the 
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complex mathematical operations involved in DNNs efficiency, providing significant performance 

and energy efficiency compared to general-purpose processors such as CPU [125]. The increasing 

demand for real-time inference in computer vision applications brings computation and data 

storage closer to the source of data, thereby reducing latency and bandwidth requirements [126]. 

Several key metrics are commonly used when comparing DLAs. These include: 

• Throughput: It is used for evaluating the raw performance of the accelerator and its ability 

to handle large-scale workloads. It can be measured in frames per second (fps). 

• Latency: It refers to the time taken by the accelerator to process a single input sample or 

perform a specific operation. 

• Energy Efficiency: It is a critical metric for edge devices DLA. It is measured in terms of 

operations per second per watt (OPS/W) or samples per second per watt (samples/s/W). 

• Flexibility: It refers to the ability of the accelerator to support different DNN architectures, 

data types, and optimization techniques. A flexible accelerator can adapt to evolving DNN 

models and application requirements, making it more future-proof. 

• Scalability: It measures the ability of the accelerator to maintain performance as the size 

and complexity of the DNN models increase. Scalable accelerators can handle larger 

models and datasets without significant degradation in performance. 

To evaluate these metrics, DLA can be bench-marked using the MLPerf benchmark suite [127]. 

Another popular benchmark and standardization efforts is the MLCommons [128]. It aims to 

provide a collaborative platform for developing and maintaining benchmark suites, ensuring fair 

and consistent comparisons across different accelerators among different vendors. 
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On the other hand, one of the primary challenges in DLA is the vast computational and 

memory requirements of DNNs. To address this, many accelerators employ specialized processing 

units, such as systolic arrays or tensor cores, which are optimized for the matrix-matrix and matrix-

vector operations prevalent in DNNs [129]. These processing units are often arranged in a spatial 

architecture, where the processing elements (PEs) are arranged in a two-dimensional array. Each 

PE typically consists of a MAC unit, a local memory, and a control unit. The spatial arrangement 

allows for parallel computation and efficient data reuse, reducing the need for frequent memory 

accesses [130]. For example, the TPU developed by Google features a 256x256 systolic array that 

can perform 65,536 MAC operations per clock cycle [27]. Similarly, the Eyeriss accelerator 

employs a spatial architecture with 168 PE arranged in a 12x14 grid, enabling efficient 

computation of convolutional layers [40]. In terms of performance characteristics, the TPU has 

shown a 15-30x speedup over CPUs and GPUs on inference tasks. The Eyeriss accelerator has also 

achieved a power efficiency of 278 GOPS/W on convolutional layers, which is 2-3 orders of 

magnitude higher than CPUs and GPUs. However, the performance of DLA can vary depending 

on the specific DNN model, dataset, and hardware configuration. On the other hand, DLA typically 

incorporate high-bandwidth memory systems, such as high-bandwidth memory (HBM) or on-chip 

scratchpad memory, to minimize data movement and improve overall performance [131]. Besides, 

DLA often incorporate flexible dataflow mechanisms, allowing for scheduling of data movement 

and computation based on the specific characteristics of the target DNN [132]. 

DLA can be implemented by leveraging different hardware acceleration platforms such as 

GPUs, FPGAs, and ASICs to optimize the execution of neural network workloads [32]. These 

platforms offer massive parallelism, high memory bandwidth, and energy efficiency, making them 
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suitable for the compute-intensive and data-parallel nature of CNNs. However, each platform has 

its own advantages and limitations in terms of performance, flexibility, and development 

complexity [6]. GPU with NVIDIA's CUDA programming model and cuDNN library have made 

it easier to develop and optimize CNN applications on GPUs [133]. However, GPUs have 

limitations in terms of power consumption and may not be suitable for low-power embedded 

systems. ASICs offer high performance and energy efficiency but the high non-recurring 

engineering costs and longer design cycles associated with ASICs make them suitable for high-

volume production and specific application domains [27]. Examples of ASIC-based CNN 

accelerators include Google's TPU and Intel's Neural Network Processor (NNP) [134]. However, 

FPGAs have become a popular choice for DLA at the edge due to their reconfigurability, flexibility, 

and rapid prototyping capabilities [135]. FPGA-based accelerators can be customized to match the 

specific requirements of a given deep learning model, enabling efficient resource utilization and 

reduced power consumption [136]. Moreover, HLS tools, such as AMD Vitis-HLS and Intel 

OpenCL SDK for FPGAs, allow developers to describe hardware functionality using high-level 

programming languages, facilitating rapid prototyping and design space exploration [137]. On the 

other hand, SoC-based DLA have also gained traction in edge computing scenarios, as they offer 

a balance between performance, energy efficiency, and flexibility. These accelerators integrate 

multiple processing units, such as CPUs, GPUs, and dedicated neural processing units (NPUs), on 

a single chip, enabling efficient data sharing and communication. The heterogeneous nature of 

SoC-based accelerators allows for the optimization of different tasks, such as data preprocessing, 

model inference, and post-processing, leading to improved overall system performance. By 

performing inference and decision-making close to the data sources, edge intelligence can reduce 
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latency, improve privacy, and enable many applications in areas such as robotics and autonomous 

systems. 

Nowadays, AMD has redefined the embedded systems landscape by merging a high-

performance CPU with a flexible FPGA fabric to create the heterogeneous ZYNQ SoC-FPGA 

architecture shown in Fig. 17. This innovative architecture combines the flexibility of 

programmable logic with the performance of a high-speed processing system, making it an 

excellent choice for deep learning accelerators. This architecture consists of two main components: 

the PS and the PL [138]. The PS is built around a dual-core ARM Cortex-A9 processor, which 

provides a familiar and powerful computing environment for running operating systems, software 

frameworks, and applications. The PL, on the other hand, is a flexible FPGA fabric that can be 

customized and programmed to implement hardware accelerators and custom interfaces using HLS 

[139]. it provides a rich set of on-chip block Random Access Memory (BRAMs) resources, Look-

Up Table (LUT), Digital Signal Processing (DSP) slices, and high-speed interconnects bus; named 

AXI alongside DMA, which are essential for implementing efficient DLA. Another advantage of 

the ZYNQ SoC-FPGA for DLA is its energy efficiency. FPGAs are known for their low power 

consumption compared to other accelerator platforms, such as GPUs. This is particularly important 

for edge computing scenarios, where energy efficiency is a critical consideration.  
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Figure 17. AMD ZYNQ Ultrascale+ [140] architecture internal details used to implement CNNs.  

Since CNNs are computationally intensive and require significant processing power, the 

ZYNQ CPU part can handle the overall control flow, data management, and high-level operations, 

while the FPGA fabric can be utilized to implement custom hardware accelerators and exploit 

inherent parallelism for CNNs that involve a large number of matrix multiplications through CLB 

as shown in Fig. 18. This is done through: 
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• Utilizing DSP slices, which are optimized for mathematical operations commonly found in 

DNNs algorithms such as MAC operations. 

• Enabling DMA with AXI interface for fast data transfer between the PS and the PL, as well 

as between different hardware modules within the FPGA fabric.   

• BRAMs can be used as on-chip buffers to store intermediate results and minimize external 

memory accesses, reducing latency and improving energy efficiency. 

• LUTs can be configured to stores the truth table of the desired logical function in the Static 

RAM (SRAM) while the multiplexers can select the appropriate output based on the input 

combination. 

 

Figure 18. This is the internal structure of FPGA chip consists of building blocks (CLB) that do 

MAC operations. 

However, there are also challenges associated when using ZYNQ SoC-FPGAs for DLA. 

One challenge is the development complexity involved and limited memory bandwidth in 

designing hardware accelerators on FPGAs [32]. While AMD provided HLS tools and frameworks 

that made the development process more accessible, there is still a learning curve associated with 

FPGA programming and optimization techniques. Additionally, the limited resources on FPGAs, 

such as memory and logic elements, can pose constraints on the size and complexity to store 
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weights, activations, and intermediate results of the deep learning models that can be accelerated. 

Despite these challenges, the ZYNQ SoC-FPGA remains an attractive platform for edge DLA due 

to its unique combination of flexibility, performance, and energy efficiency. As the field of deep 

learning continues to evolve, with the emergence of new algorithms and architectures, the 

adaptability of ZYNQ SoC-FPGAs allows developers to quickly prototype and deploy high-

performance DLA that are optimized for specific workloads [141].  

Understanding CNNs Internal Structure for Edge Acceleration 

Optimizing the CNNs architecture is crucial for maximizing throughput and efficiency 

when it comes to hardware acceleration. CNNs are composed of multiple layers, including 

convolutional layers, pooling layers, and fully connected layers, each performing specific 

operations on the input data [1]. The convolutional layers are the most computationally intensive, 

as they perform a large number of MAC operations alongside floating point to convolve the input 

feature maps with learnable filters [2]. To maximize CNN throughput, it is essential to optimize 

the MAC computation and compress the model, which is the primary bottleneck in CNN inference 

[3]. it is also essential to consider the trade-offs between accuracy and computational complexity. 

By carefully selecting the number and size of filters, the depth of the network, and the type of 

activation functions, it is possible to strike a balance between model performance and inference 

speed. 

Analysis CNN For Multiply and Accumulate Operations 

MAC operations are the core computational units in Convolutional Neural Networks 

(CNNs). In a CNN, the majority of the computations occur in the convolutional layers, where the 
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input feature maps are convolved with a set of learnable filters to produce output feature maps. 

Each convolutional operation involves a large number of MAC operations, which can be a 

significant bottleneck in terms of computational complexity and energy consumption, especially 

on resource-constrained edge devices. The number of MAC operations required for a single 

convolutional layer can be calculated using the following formula [40]: 

                                    𝑀𝐴𝐶𝑜𝑝𝑠 =
𝐾ℎ×𝐾𝑤×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡×𝐻𝑜𝑢𝑡×𝑊𝑜𝑢𝑡

𝑠𝑡𝑟𝑖𝑑𝑒2                                        (2.31) 

Where 𝐾ℎ and 𝐾𝑤 are the height and width of the convolutional kernel respectively, 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 

are the number of input and output channels, 𝐻𝑜𝑢𝑡 and 𝑊𝑜𝑢𝑡 are the height and width of the output 

feature map, and 𝑠𝑡𝑟𝑖𝑑𝑒 is the stride of the convolution. This formula act as an evident that the 

number of MAC operations scales linearly with the number of input and output channels, as well 

as the spatial dimensions of the output feature map. Therefore, reducing the number of channels 

and the spatial dimensions can significantly reduce the computational complexity of CNNs. 

To optimize more the internal structure of CNNs for MAC computation shown in Fig. 19, 

several techniques have been proposed in recent years. These techniques aim to reduce the 

computational complexity and memory footprint of CNNs while maintaining their accuracy and 

performance. One popular approach is to use depthwise separable convolutions, which decompose 

the standard convolution operation into a depthwise convolution followed by a pointwise 

convolution. This technique significantly reduces the number of parameters and MAC operations 

required, making it suitable for resource-constrained edge devices. MobileNet [142] and Xception 

[143] are examples of CNN architectures that employ depthwise separable convolutions to achieve 

high efficiency. Another technique for optimizing CNN internal structure is to use group 
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convolutions, which divide the input channels into groups and perform convolutions within each 

group independently. This approach reduces the computational complexity and memory bandwidth 

requirements of CNNs, as demonstrated in architectures like ResNeXt [144] and ShuffleNet [145]. 

By carefully designing the grouping strategy and combining it with channel shuffling, these 

architectures achieve a good balance between accuracy and efficiency. 

 

Figure 19. The ZYNQ architecture shown the internal parts that handle CNN computation.  

Structured sparsity is another promising approach for optimizing CNN internal structure. 

By inducing sparsity in the convolutional filters, the number of non-zero weights and MAC 

operations can be significantly reduced [146]. Techniques such as channel pruning [147], filter 

pruning [148], and block-based sparsity [149] have been proposed to exploit structured sparsity in 

CNNs. These techniques not only reduce the computational complexity but also facilitate efficient 

hardware implementations by leveraging the regular structure of the sparse filters. Moreover, Low-

bit quantization is also an effective technique for optimizing CNN internal structure. By quantizing 
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the weights and activations of CNNs to lower bit widths, the memory footprint and MAC 

computation can be significantly reduced. Binarized Neural Networks (BNNs) [150] and Ternary 

Weight Networks (TWNs) [151] are extreme cases of quantization, where the weights and 

activations are represented using only 1 or 2 bits. These quantized networks can be efficiently 

implemented on hardware using bitwise operations and lookup tables, resulting in substantial 

computational and memory savings. In addition to these techniques, Batch normalization [152] is 

another technique that normalizes the activations of each layer, which not only improves the 

training stability but also allows for higher learning rates and faster convergence. 

Lastly, by carefully designing and applying these techniques, it is possible to achieve 

significant reductions in computational complexity and memory footprint while maintaining the 

accuracy and performance of CNNs inference on edge devices. 

Methodology of SoC-FPGA-based CNNs Inference Accelerators Design 

The design methodology of CNNs inference accelerators involves various aspects of the 

system architecture as shown in Fig. 20, including the PS, PL, PEs, single instruction multiple data 

(SIMD) units, AXI, DMA, fixed-point arithmetic, double data rate (DDR) memory, and on-chip 

BRAM weight buffers. The design also requires careful consideration of frequency, energy 

efficiency, and educing memory access and memory bandwidth to achieve optimal throughput 

while minimizing power consumption [33].  
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Figure 20. CNN-FPGA architecture design used to accelerate the inference. 

The design methodology involves partitioning the CNN workload between the PS and PL, 

leveraging the strengths of each component. The PS is responsible for scheduling and coordinating 

the execution of the CNN layers, while the PL accelerates the convolutional, pooling, and fully 

connected layers [153]. The PS can be used to implement the softmax and classification layers, 

which are less computationally intensive than the convolutional and fully connected layers. On the 

other hand, the PL is ideal for accelerating the computationally intensive operations, such as 

convolutions and matrix multiplications, which can be parallelized and pipelined for high 

throughput [154]. The communication between the PS and PL is facilitated by the AXI 

interconnect, which provides high-bandwidth, low-latency data transfer [155]. The AXI 

interconnect supports various communication protocols, such as AXI4-Full, AXI4-Lite, and AXI4-

Stream, which can be used for different types of data transfer, such as memory-mapped, register-

based, and streaming interfaces, respectively. The design methodology involves selecting the 

appropriate AXI protocol and configuring the AXI interconnect to optimize the data transfer 
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between the PS and PL, taking into account the bandwidth and latency requirements of the CNN 

workload. 

The PL of the SoC-FPGA is used to implement an array of PEs that perform the core 

computations of the CNN [130]. Each PE typically consists of MAC units, which perform the dot 

product operations between the input activations and the weights [154]. The number and 

configuration of the PEs depend on the available resources of the FPGA, the performance 

requirements of the CNN workload, and the power and energy constraints of the system. Moreover, 

the PEs are designed to efficiently compute the innermost loop MAC operations. The number of 

MAC operations required for a single output feature map can be expressed as: 

                                   𝑀𝐴𝐶𝑜𝑝𝑠 = 𝑁 × 𝑀 × 𝑃 × 𝑄 × 𝐾 × 𝑅 × 𝑆                                 (2.32) 

Where 𝑁 is the batch size, 𝑀 is the number of output channels, 𝑃 and 𝑄 are the dimensions of the 

output feature map, 𝐾 is the number of input channels, and 𝑅 and 𝑆 are the dimensions of the 

convolutional kernel. To exploit the parallelism in CNN computations, the PEs are often organized 

into SIMD units, which allow multiple MAC operations to be performed simultaneously. The 

number of MAC operations that can be performed in parallel by a SIMD unit of width 𝑊 is as 

follows: 

                                                                     𝑆𝐼𝑀𝐷_𝑀𝐴𝐶𝑜𝑝𝑠 = 𝑊                                            (2.33) 

And, the number of SIMD units required to compute a single output feature map is as follows: 

                                                                       𝑆𝐼𝑀𝐷𝑢𝑛𝑖𝑡𝑠 =
𝐾𝑥𝑅𝑥𝑆

𝑊
                                              (2.34) 
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The SIMD units can be implemented using the DSP slices or the LUTs of the FPGA, depending 

on the precision and throughput requirements of the CNN workload. The PEs can be arranged in 

a single layer or multiple layers, depending on the depth and width of the CNN. In a single-layer 

arrangement, the PEs are connected in a pipeline, with each PE performing a single MAC operation 

per clock cycle. In a multi-layer arrangement, the PEs are connected in a mesh or a systolic array, 

with each PE performing multiple MAC operations per clock cycle. The total number of PE cycles 

required to compute a single output feature map is as follows: 

                                                              𝑃𝐸𝑐𝑦𝑐𝑙𝑒𝑠 =
𝑁𝑥𝑀𝑥𝑃𝑥𝑄

𝑆𝐼𝑀𝐷𝑢𝑛𝑖𝑡𝑠 𝑥 𝑃𝐸𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
                                (2.35) 

Where 𝑃𝐸𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  is the utilization factor of the PEs, dependent on dataflow and memory access 

patterns. 

On the other hand, DMA can be used to minimize the overhead of data transfers which 

allows the PL to access the PS memory directly without the involvement of the processor. DMA 

enables fast and efficient data transfer between the PS and PL, reducing the latency and increasing 

the throughput of the CNN workload. The DMA engine can be implemented using the DMA 

controller IP provided by the FPGA vendor or using custom DMA engines optimized for the 

specific requirements of the CNN workload. The DMA engine can be configured to support 

various transfer modes, such as single transfer, burst transfer, and circular transfer, depending on 

the data access patterns of the CNN layers. The design methodology involves selecting the 

appropriate DMA configuration and optimizing the data transfer parameters, such as the burst size 

and the transfer width, to minimize the latency and maximize the throughput of the data transfers. 
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Additionally, CNN inference accelerators often use a fixed-point arithmetic format for the 

weights and activations to reduce the hardware complexity and improve the performance and 

energy efficiency compared to floating-point arithmetic [156]. Fixed-point arithmetic represents 

numbers with a fixed number of bits for the integer and fractional parts, which simplifies the 

hardware implementation and reduces the memory footprint. The choice of fixed-point format 

involves a trade-off between accuracy and efficiency. Using a higher number of bits for the integer 

and fractional parts can improve the accuracy of the CNN inference, but it also increases the 

hardware complexity and reduces the performance and energy efficiency, and vice versa [157]. 

Techniques such as quantization can be used to optimize the fixed-point format. Quantization 

involves mapping the floating-point weights and activations to a set of discrete values, which can 

be represented using a fixed number of bits. The quantization scheme can be uniform or non-

uniform, depending on the distribution of the weights and activations.  

SoC-FPGAs typically include external DDR memory, which serves as the main storage for 

the input data, output data, and intermediate feature maps of the CNN [44]. DDR memory provides 

high capacity and bandwidth, but accessing it incurs significant latency and energy overhead. The 

bandwidth (BW) of the DDR memory can be expressed as follows: 

                                               𝐵𝑊𝐷𝐷𝑅 = 𝑓𝐷𝐷𝑅  𝑥 𝑊𝐷𝑅𝑅  𝑥 𝑁𝐷𝐷𝑅                                      (2.36) 

Where 𝑓𝐷𝐷𝑅  is the clock frequency of the DDR memory, 𝑊𝐷𝑅𝑅  is the width of the DDR memory 

interface, and 𝑁𝐷𝐷𝑅  is the number of DDR memory channels. Techniques such as tiling, caching, 

and prefetching can be used to optimize the memory hierarchy [153]. Tiling involves partitioning 

the input and output data into smaller tiles that can fit into the on-chip memory of the FPGA, 
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reducing the need for frequent DDR memory accesses. The tiling parameters, such as the tile size 

and the tiling order, can be determined using techniques such as loop tiling and data tiling, which 

optimize the data locality and minimize the data movement. Caching involves storing frequently 

accessed data in on-chip buffers, such as BRAMs or distributed RAMs (DRAMs), which have 

lower latency and energy overhead compared to DDR memory. It can be determined using 

techniques such as working set analysis and cache modeling, which estimate the temporal and 

spatial locality of the data accesses. Prefetching involves fetching the data from DDR memory in 

advance, before it is needed by the computation, hiding the latency of the memory accesses. It can 

be determined using techniques such as data flow analysis and access pattern prediction, which 

estimate future data access patterns based on past accesses. 

 To reduce the latency and energy overhead of accessing the weights from the DDR 

memory, SoC-FPGA-based CNN inference accelerators often include on-chip weight buffers. 

These buffers are implemented using the fast on-chip memory resources of the FPGA, such as 

BRAMs [158]. The on-chip weight buffers store a subset of the weights that are frequently 

accessed by the PEs, reducing the need for off-chip memory accesses. The size of the on-chip 

weight buffer can be expressed as follows: 

                                                                𝑆𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑁𝑃𝐸  𝑥 𝑆𝑃𝐸                                                  (2.37) 

Where 𝑁𝑃𝐸 is the number of PEs and 𝑆𝑃𝐸 is the size of the weight buffer per PE. The size of the 

weight buffers can be determined using techniques such as working set analysis and buffer sizing, 

which estimate the minimum amount of memory needed to store the frequently accessed weights. 

The organization of the weight buffers can be determined using techniques such as data layout 
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optimization and memory partitioning, which optimize the data placement and minimize memory 

conflicts. The weight buffers can be organized in various ways, depending on the dataflow and the 

computation order of the CNN layers. For example, the weights can be stored in a row-major or 

column-major order, depending on the access patterns of the convolutional and fully connected 

layers. The weights can also be stored in a compressed format, using techniques such as sparse 

matrix compression and run-length encoding, which reduce the memory footprint and the memory 

bandwidth requirements. The number of weight buffer accesses required for a single convolutional 

layer can be expressed as follows: 

                                                                    𝑁𝑎𝑐𝑐𝑒𝑠𝑠 =
𝐾 𝑥 𝑅 𝑥 𝑆

𝑆𝑏𝑢𝑓𝑓𝑒𝑟
                                                   (2.38) 

Additionally, the buffer organization can be determined using techniques such as data reuse 

analysis and access pattern optimization, which maximize the data locality and minimize the data 

movement [154]. The compression scheme can be determined using techniques such as sparsity 

analysis and compression ratio estimation, which estimate the compression efficiency and the 

decompression overhead. In addition to the on-chip weight buffers, SoC-FPGA-based CNN 

inference accelerators often include on-chip activation buffers and output buffers, which store the 

intermediate feature maps and the output feature maps, respectively. Nevertheless, throughput can 

represent the amount of data that the accelerator can process per unit of time, typically measured 

in operations per second (OPS) or frames per second (FPS). Higher throughput indicates faster 

execution of CNN workloads, which is essential for real-time applications such as video 

processing, autonomous driving, and robotics [66]. The throughput of a CNN accelerator can be 

calculated using the following equation: 
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                                                   𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐵𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒  𝑥 𝐶𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ
                                (2.39) 

Where 𝐵𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 is the number of inputs processed in each batch, 𝐶𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  is the operating 

frequency of the accelerator in Hz, and 𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ is the number of clock cycles required 

to process each batch. However, to achieve high throughput, CNN accelerators must be designed 

with efficient hardware architectures and memory hierarchies that can exploit the parallelism and 

data reuse opportunities in CNN workloads. This includes techniques such as pipelining, data 

tiling, and caching, which can reduce the latency and memory bandwidth requirements of CNN 

operations. 

As the field of CNN acceleration continues to evolve, new techniques and architectures are 

emerging to address the challenges of performance, efficiency, and scalability. These include the 

use of more advanced process technologies, such as 3D integration and non-volatile memory, as 

well as the exploration of new computing paradigms, such as in-memory computing and 

neuromorphic computing. Ultimately, the success of SoC-FPGA-based CNN inference 

accelerators will depend on the ability of designers to keep pace with the rapidly evolving 

landscape of CNN workloads and hardware platforms and to develop innovative solutions that can 

meet the growing demands for intelligent and efficient computing at the edge. 

Strategies for Accelerating CNN Inference on FPGA 

Optimizing SoC-FPGA-based CNN inference accelerators involves a systematic approach 

considering both hardware and software aspects. Hardware acceleration techniques aim to exploit 

the parallelism and data reuse opportunities in CNNs by utilizing spatial and temporal architectures 

to optimize the accelerator datapaths’ performance, energy efficiency, and resource utilization. 
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These techniques include the use of systolic arrays [159], dataflow architectures [160], and 

memory hierarchy optimizations [154] to minimize data movement and maximize computational 

throughput. Additionally, algorithmic optimizations, such as loop unrolling, loop tiling, and data 

layout transformations [45], can be applied to improve the utilization of hardware resources and 

minimize data transfer overhead. HLS shown in Fig, 21 has also emerged as a powerful tool for 

accelerating the development of CNN accelerators on Zynq SoC-FPGAs [34]. HLS allows 

designers to describe the accelerator architecture and functionality using high-level programming 

languages, such as C/C++ and automatically generates the corresponding hardware description 

language (HDL) code [161]. HLS enables rapid prototyping, design space exploration, and 

optimization of CNN accelerators, reducing the development time and effort compared to 

traditional HDL-based approaches [38]. 

 

Figure 21. The High-Level Synthesis sequence design for CNN deployment on FPGA.  
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The combination of hardware acceleration techniques, software optimizations, and HLS-

based design methodologies has significantly accelerated CNN inference on Zynq SoC-FPGAs. 

This subsection will explore various strategies for accelerating CNN inference and investigate the 

trade-offs between performance, energy efficiency, and resource utilization. Through a 

comprehensive analysis and experimental evaluation, we aim to contribute to the state-of-the-art 

CNN acceleration on Zynq SoC-FPGAs and pave the way for deploying of intelligent edge devices 

in real-world applications. 

Compression and Layer Fusion  

Compression and layer fusion are two important techniques for optimizing the CNN model 

for inference. These techniques reduce computational complexity, memory footprint, and energy 

consumption while maintaining accuracy and performance. Compression techniques, such as 

pruning, quantization, and KD, can significantly reduce the size and complexity by removing 

redundant or less important parameters and representations. Layer fusion, on the other hand, 

involves merging multiple layers of the CNN model into a single layer, which can reduce the 

number of memory accesses and data movements between the layers [142]. This is particularly 

important for FPGA-based accelerators, where the on-chip memory and bandwidth are limited, 

and the off-chip memory accesses are expensive regarding latency and energy. The intermediate 

feature maps can be kept on-chip and reused by fusing the layers for multiple operations, reducing 

the need for off-chip memory accesses [160]. For example, Alwani et al. [162] proposed a layer 

fusion technique that automatically fuses a CNN model’s convolutional and fully connected layers 

based on their data dependencies and resource constraints. They demonstrated that their technique 
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reduced the resource utilization and DSP usage by 95%, compared to a baseline implementation 

without layer fusion.  

Designing efficient compression and layer fusion techniques for CNN inference 

accelerators is a challenging task that requires careful consideration of the trade-offs between 

accuracy, performance, and resource utilization. However, the integration of compression and layer 

fusion techniques into the hardware architecture of the accelerator requires specialized design tools 

and methodologies that can automate the process of model optimization and hardware generation. 

AMD Vitis-HLS can facilitate the design of compressed and fused CNN accelerators by providing 

high-level abstractions and optimizations for hardware implementation [137].  

Loop Unrolling and Loop Tiling 

Loop unrolling and loop tiling are two important optimization techniques for improving 

the performance and efficiency of CNN inference accelerators on FPGAs. These techniques 

exploit the parallelism and locality of the computation and data access patterns in the convolutional 

layers, which are the most computationally intensive and time-consuming parts of the CNN 

inference [154]. 

Loop unrolling is a technique that reduces the overhead of loop control and increases the 

parallelism of the computation by replicating the loop body multiple times and adjusting the loop 

bounds accordingly. In the context of CNN inference accelerators on FPGAs, loop unrolling can 

be applied to the loops that iterate over the input and output channels, the kernel dimensions, and 

the output feature map dimensions. For example, consider a convolutional layer with a 3x3 kernel, 

64 input channels, and 128 output channels. The computation of this layer can be expressed as a 



61 
 

nested loop with six levels: output channel, input channel, output row, output column, kernel row, 

and kernel column [163]. By unrolling the loops over the output and input channels, the accelerator 

can compute multiple output and input channels in parallel, increasing the throughput and 

utilization of the hardware resources [164]. However, the degree of loop unrolling is limited by 

the available hardware resources on the FPGA, such as the number of DSP slices, memory blocks, 

and registers. Excessive loop unrolling may lead to resource contention and routing congestion, 

which can degrade the performance and power efficiency of the accelerator.  

Several studies have proposed various techniques for loop unrolling in CNN inference 

accelerators on FPGAs. For example, Ma et al. [165], the authors proposed a tool called "ALAMO" 

that automatically generates and optimizes the accelerator design based on the loop unrolling 

parameters specified by the user. They demonstrated that their tool can achieve up to 4.8x speedup 

and 3.2x energy efficiency improvement compared to a baseline design without loop unrolling. 

Similarly, T et at. [166] proposed a technique called "fine-grained dynamic-precision data 

quantization" that dynamically adjusts the precision of the data based on the range of the 

activations in each unrolled loop iteration. They showed that their technique can reduce the 

accelerator’s memory bandwidth and power consumption by up to 50% while maintaining the 

accuracy of the CNN model within 1% of the full-precision baseline on Zynq FPGA. 

On the other hand, loop tiling is a technique that improves the locality and reuse of the data 

by partitioning the loop iteration space into smaller blocks or tiles and reordering the loop nests to 

minimize the data movement between the memory hierarchies [167]. It can be applied to the loops 

that iterate over the input and output feature map dimensions, the kernel dimensions, and the batch 

size [168]. For example, consider a convolutional layer with a 224x224 input feature map, a 3x3 
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kernel, 64 input channels, and 128 output channels. The computation of this layer can be tiled into 

smaller blocks, such as 56x56 input tiles, 64x64 output tiles, and 16x16 kernel tiles. By processing 

the tiles in a specific order, such as input-channel-first or output-channel-first, the accelerator can 

maximize the reuse of the input and output data in the on-chip memory and minimize the data 

transfer between the off-chip memory and the PL part. However, the optimal tile size and tiling 

order depend on the memory hierarchy and bandwidth of the FPGA platform, as well as the data 

access patterns and dependencies of the CNN model. Small tiles may lead to frequent data transfers 

and low reuse, while large tiles may exceed the capacity of the on-chip memory and cause pipeline 

stalls. Therefore, the design of efficient loop tiling requires careful analysis and optimization of 

the data flow and memory management of the accelerator [169]. 

Despite the benefits of loop unrolling and loop tiling for CNN inference accelerators on 

FPGAs, there are several challenges and opportunities for future research and development in this 

area. One challenge is the scalability and flexibility of the accelerator design with respect to the 

CNN model and the FPGA platform. As the complexity and diversity of the CNN models continue 

to grow and the FPGA platforms continue to evolve, the accelerator design needs to be modular, 

configurable, and adaptable to different requirements and constraints [170]. Therefore, there is a 

need for HLS programming models that can abstract the details of the hardware and the software 

and enable the rapid development and deployment of the accelerator [34]. An opportunity in this 

area is the integration and acceleration of the pre-processing and post-processing stages of the 

CNN inference pipeline on the FPGA [39]. These stages, such as image resizing, normalization, 

and non-maximum suppression, can account for a significant portion of the end-to-end latency and 

energy consumption of the inference. By offloading these stages to the PL part and optimizing 
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them together with the convolutional layers, it is possible to achieve further speedup and efficiency 

gains.  

Systolic Array Architecture 

Systolic arrays are a type of spatial architecture that has been widely used for accelerating 

CNN inference on SoC-FPGAs. A systolic array consists of a grid of PEs that perform 

computations in a synchronized and pipelined manner [171]. Each PE is connected to its 

neighboring PEs in a regular and structured way, allowing data to flow through the array in a 

rhythmic and parallel fashion [29]. The PEs are typically arranged in a 2D grid where each PE is 

responsible for performing a single MAC operation [172] and passing the results to their 

neighboring PEs, which accumulate the partial sums and produce the output feature maps. The 

input feature maps and weights are stored in on-chip memory BRAMs and are streamed into the 

array in a choreographed manner. This architecture is particularly well-suited for the matrix-matrix 

and matrix-vector operations as it can exploit the inherent parallelism and data reuse in these 

operations [173]. One of the key advantages of systolic arrays is their ability to achieve high 

throughput and energy efficiency by exploiting the spatial and temporal locality of data [38].  

However, designing efficient systolic arrays for CNN inference SoC-FPGAs also presents 

several challenges. One challenge is the limited on-chip memory capacity, which can limit the size 

of the CNN models that can be accelerated. To address this challenge, designers can use techniques 

such as tiling and data reuse to minimize the amount of data movement between the BRAM and 

DRAM. This has led to successful CNN inference accelerators in a variety of applications, such 

as image classification, object detection, and semantic segmentation. To implement systolic arrays 
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on SoC-FPGAs, researchers have explored the AMD Vitis-HLS tool, which allows designers to 

describe the architecture using HLS programming languages (C/C++), which are then 

automatically translated into HDL code [174]. This abstraction enables faster design iterations, 

parameterization, and optimization of the systolic array architecture.  

Several recent works have demonstrated the effectiveness of systolic arrays for CNN 

inference acceleration on SoC-FPGAs. For example, Chua et al. [171] proposed a systolic array-

based accelerator for quantized CNNs on the ZYNQ chip, achieving a peak performance of 10.98 

GOPS and an energy efficiency of 30.26 GOPS/W. Similarly, Zhang et al. [160] proposed a systolic 

array CNN accelerator for AMD Zynq-7000. The accelerator consists of a 16x16 array of PEs, 

each capable of performing a MAC operation on an 8-bit input and an 8-bit weight. The array is 

connected to a set of BRAMs that store the input feature maps, weights, and output feature maps. 

They demonstrated that the accelerator achieved a peak performance of 200 GOPS at a clock 

frequency of 200 MHz while consuming only 3.5 W of power. Those accelerators employed a 

novel output-stationary weight and incorporated techniques such as loop unrolling and pipelining 

to optimize resource utilization and throughput. In conclusion, systolic arrays have proven to be a 

highly effective spatial architecture for accelerating CNN inference by exploiting the parallelism, 

data reuse, and heterogeneous computing capabilities of embedded systems. 

Dataflow Architecture  

Dataflow architectures have emerged as a promising temporal architecture for accelerating 

CNN inference on FPGAs. Unlike spatial architectures like systolic arrays, which focus on the 

spatial distribution of PE, dataflow architectures emphasize the temporal scheduling and 
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orchestration of data movement and computation [36] to maximize data reuse, minimize memory 

accesses, and improve overall performance and energy efficiency [33]. It is modeled as a directed 

acyclic graph (DAG), where nodes represent computational tasks and edges represent data 

dependencies [163] in a pipelined manner, with each node processing the data as soon as it 

becomes available and passing the results to the next node. Then, the accelerator can exploit the 

inherent parallelism in the CNN computation, enabling efficient utilization of the FPGA resources. 

One of the key advantages of dataflow architectures is the ability to leverage the flexibility and 

reconfigurability of the FPGA fabric to create custom data paths and memory hierarchies to create 

a specialized pipeline that matches the computational requirements of the CNN. This allows for 

fine-grained control over the data movement and computation, enabling the optimization of data 

locality, bandwidth utilization, and memory access patterns [175]. 

There are several popular dataflow patterns that have been used for CNN inference on 

FPGAs, such as:  

1. Output stationary (OS): In this dataflow, the output feature maps are stored in the on-chip 

memory of the FPGA, and the input feature maps and weights are streamed through the 

PEs. This allows for efficient accumulation of the partial sums and minimizes the memory 

bandwidth required for writing the output data [176]. 

2. Weight stationary (WS): In this dataflow, the weights are stored in the on-chip memory of 

the FPGA, and the input feature maps are streamed through the PEs [48]. This allows for 

efficient reuse of the weights and minimizes the memory bandwidth required for reading 

the weight data. 
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3. No local reuse (NLR): In this dataflow, both the input feature maps and weights are 

streamed through the PEs without any local storage or reuse. This minimizes the on-chip 

memory requirements but may increase the memory bandwidth and energy consumption 

deep compress[6]. 

4. Row stationary (RS): In this dataflow, a row of the input feature maps and a row of the 

weights are stored in the on-chip memory of the FPGA, and the computation is performed 

in a systolic manner. This allows for efficient reuse of both the input and weight data and 

minimizes memory bandwidth and energy consumption [177].  

The choice of dataflow pattern depends on the specific characteristics of the CNN model, such as 

the layer dimensions, kernel sizes, and data precision [178]. It also depends on the available 

hardware resources on the FPGA, such as the number and size of PEs, memory blocks, and 

interconnects. Therefore, designing efficient dataflow architectures requires careful analysis and 

optimization of the data dependencies, resource utilization, and performance trade-offs. 

Several recent works have demonstrated the effectiveness of dataflow architectures for 

CNN inference acceleration on ZYNQ. For example, Umuroglu et al. [48] proposed a dataflow 

architecture called "FINN" for accelerating CNN inference on Zynq FPGA. The architecture 

consists of a set of compute engines (CEs) that are connected in a pipeline, with each CE 

implementing a specific layer of the CNN. The data is streamed through the pipeline in a row-

stationary dataflow, with the input and weight data stored in the on-chip memory of the CEs. This 

architecture achieved a latency of 283 𝑢𝑠 with CIFAR-10 at a clock frequency of 200 MHz while 

consuming only 25 W of power. This example demonstrated the potential of dataflow architectures 

as temporal architectures for accelerating CNN inference that achieved high performance and 
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energy efficiency for a wide range of CNN models and applications. However, designing efficient 

dataflow architectures requires careful consideration of the data dependencies, resource 

constraints, and performance trade-offs. As the demand for real-time, low-power, and high-

performance CNN inference continues to grow, dataflow architectures on ZYNQ SoC-FPGAs will 

likely play a crucial role in enabling the deployment of CNNs on edge devices and embedded 

systems. 

Parallel Abstraction of HLS 

HLS allows designers to describe the functionality of the accelerator using high-level 

programming languages, such as C/C++ or OpenCL, which are then automatically translated into 

HDLs like VHDL or Verilog [176]. This abstraction enables rapid prototyping, design space 

exploration, and optimization of CNN accelerators without the need for time-consuming and error-

prone manual HDL coding. One of the key challenges in designing efficient CNN accelerators on 

FPGAs is exploiting the inherent parallelism in CNN computation, such as data-level parallelism 

(DLP) and task-level parallelism (TLP). HLS addresses this challenge by providing a compiler 

that automatically generates the corresponding HDL code that implements the specified 

parallelism and optimizations [175]. 

One common abstraction for expressing parallelism in HLS is the use of parallel loops or 

loop unrolling [163]. By annotating loops with HLS directives, such as #pragma HLS unroll in 

AMD Vitis HLS for FPGAs, designers can instruct the HLS compiler to unroll the loop and 

generate parallel hardware resources for each iteration. This enables the simultaneous processing 

of multiple data elements, such as input features or output channels, thereby increasing the 
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throughput of the accelerator [179]. Another abstraction for expressing parallelism in HLS is the 

use of pipelining, which allows the overlapping of different operations in the accelerator, enabling 

the concurrent execution of multiple CNN layers. HLS directives, such as #pragma HLS pipeline 

in AMD Vitis HLS can be used to specify the desired pipelining strategy and optimize the hardware 

architecture for maximum throughput [154]. HLS also provides abstractions for data partitioning 

and memory optimization, such as #pragma HLS array_partition or #pragma HLS allocation, 

which can specify how the input data and intermediate results are partitioned and stored in the on-

chip memory BRAM. It can also split the 2D array into two smaller arrays, allowing the inner loop 

to access two elements of A concurrently. This enables the efficient utilization of memory 

bandwidth and the optimization of data reuse, which are critical for achieving high-performance 

CNN inference on FPGAs. Additionally, HLS tools provide various pragma directives and libraries 

to express and optimize task-level pipelining alongside memory hierarchy and access patterns 

[180], such as:  

• The #pragma HLS dataflow directive enables task-level pipelining by creating separate 

hardware modules for each task and connecting them with FIFOs or streams.  

• The hls::stream library provides a set of templated classes for modeling and synthesizing 

streaming interfaces between tasks, enabling efficient communication and synchronization.  

• The #pragma HLS interface directive specifies the type and behavior of the input and 

output interfaces of a task, such as the handshake protocol, the data width, and the buffer 

depth. 
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• The #pragma HLS array_reshape directive changes the shape and layout of an array to 

improve the memory access efficiency, such as merging multiple small arrays into a larger 

one, or splitting a large array into multiple smaller ones. 

• The #pragma HLS dependence directive provides hints to the HLS tool about the data 

dependencies and access patterns in the algorithm, enabling more aggressive optimization 

and parallelization. 

Then, the hardware architecture will have a distributed and hierarchical memory system, where 

the data is stored and accessed in a way that maximizes the memory bandwidth utilization and 

minimizes the memory access latency. 

 In recent years, several parallel abstraction frameworks have been proposed to further 

facilitate the development and optimization of CNN accelerators in HLS, several parallel 

abstraction frameworks have been proposed in recent years. These frameworks provide high-level 

APIs, libraries, and tools for expressing and optimizing the parallelism, memory hierarchy, and 

dataflow of CNN accelerators, hiding the low-level details of HLS and FPGA programming from 

the user. One such framework is FINN [48], which is an open-source framework for building fast 

and scalable CNN accelerators on FPGAs. FINN provides a high-level API for specifying the CNN 

model and the accelerator architecture as well as a set of tools for automatically generating the 

HLS code and the FPGA bitstream. FINN supports various parallelization and optimization 

techniques, such as quantization, pipelining, and dataflow, and can achieve up to 200 TOPs/s 

performance on a single FPGA. Another framework is HLS4ML [49], which converts a trained 

CNN model into an optimized HLS code for FPGA implementation. The tool uses a DSL to 

describe the CNN model and the hardware architecture and applies various parallelization and 
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quantization techniques to optimize the HLS code. The authors demonstrated that their tool can 

achieve up to 9.37 TOPs/s performance and 5.21 TOPs/W efficiency on an AMD Virtex 

UltraScale+ VU9P FPGA for a range of CNN models and datasets. These frameworks demonstrate 

the potential of parallel abstraction in HLS for enabling the rapid and efficient development of 

CNN accelerators on FPGAs. By providing high-level abstractions and automated tools for 

parallelization, memory optimization, and hardware generation, these frameworks can 

significantly reduce the development time and effort and improve the performance and efficiency 

of the resulting accelerators. 

Hardware Implementation and Experimental Setup 

 The hardware implementation involves several critical steps and considerations. AMD 

SoC-FPGAs, such as the Zynq UltraScale+ series, offer a powerful and flexible platform for 

implementing CNN accelerators due to their integrated PL and ARM PS [1]. To ensure clarity and 

precision in describing the hardware implementation and experimental setup for CNN accelerators, 

we can organize the process into detailed sequential steps using tools like Vitis HLS, Vivado, and 

PYNQ at each stage: 

A. High-Level Synthesis with Vitis HLS. 

1. FPGA Platform Selection and Setup: 

• Select an appropriate AMD SoC-FPGA platform based on the requirements of the 

CNN inference accelerator, considering factors such as computational complexity, 

performance metrics, power and resource constraints, and cost [1]. 
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• Resource Utilization: Estimate the FPGA resources (DSPs, BRAMs, LUTs) needed 

to achieve the performance targets without exhausting the FPGA's capabilities. 

2. Develop HLS IP for CNN using Vitis HLS: 

• Create a new Vitis HLS project and specify the target FPGA platform and clock 

frequency. 

• Implement the CNN accelerator architecture using HLS in C/C++. 

• Optimize the HLS code for performance and resource efficiency by applying 

techniques such as loop unrolling, pipelining, and dataflow optimization. 

• Specify the interface protocol (e.g., AXI4, AXI4-Stream) for the accelerator's 

input/output ports. 

• Simulate and validate the functionality of the HLS code using test benches and 

reference models. 

• Synthesize the HLS code into register-transfer level (RTL) code (e.g., VHDL, 

Verilog) and generate the IP core. 

3. Optimization and Iteration: 

• Feedback Loop: Iterate on the design by adjusting the HLS pragmas based on 

synthesis results to better meet or balance performance objectives. 

B. Detailed FPGA Implementation with Vivado: 

1. Import RTL into Vivado and configure the block design: 

• Create a new Vivado project and specify the target FPGA platform and design 

constraints. 

• Import the generated IP core from Vivado HLS into the Vivado project.  
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• Integrate the CNN accelerator IP with other system components, such as the Zynq 

PS, memory controllers, and communication interfaces, using the Vivado IP 

Integrator. 

• Configure the PS-PL interface (e.g., AXI4, AXI4-Lite) and memory mapping for 

efficient data transfer between the PS and the accelerator. 

2. Set Up FPGA Constraints: 

• Timing Constraints: Define the clock frequencies and the timing requirements for 

interfaces.  

• I/O Pin Assignments: Specify the mapping of input/output pins on the FPGA to 

facilitate connections to other hardware or peripherals. 

3. Implementation Tools: 

• Place and Route: Execute the placement and routing processes. This step involves 

the physical allocation of the logic to specific locations on the FPGA and the 

planning of interconnects between them.  

• Timing Analysis: Conduct extensive timing analysis to ensure all paths meet timing 

requirements, adjusting placement and routing as necessary.  

• Generate Bitstream: Produce the bitstream file, which contains all the programming 

data for the FPGA. 

4. Hardware Validation: 

• Real Hardware Testing: Program the FPGA with the bitstream and test it in a real-

world scenario to verify it meets the functional and performance specifications. 
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• Generate the bitstream for FPGA configuration and export the hardware platform 

for software development.  

C. Experimental Setup with PYNQ: 

1. Prepare the PYNQ Environment: 

• Setup and Configuration: Install the PYNQ image on the ZYNQ board, set up the 

Jupyter Notebook server, and install necessary Python libraries, such as NumPy, 

OpenCV, and TensorFlow, PyTorch. 

2. Deploy CNN Model: 

• Model Conversion and Deployment: Convert the trained CNN model into a format 

compatible with the PYNQ environment and upload it to the FPGA. 

• Load the hardware platform and the bitstream generated from Vivado into the 

PYNQ environment.  

• Develop software applications to control and interact with the CNN accelerator 

using PYNQ's Python APIs and libraries. 

3. Run Inference: 

• Data Handling: Process input data through the FPGA-accelerated model, using 

PYNQ to manage data transfer between Python and the FPGA. 

4. Performance Measurement: 

• Metrics Collection: Gather data on key performance indicators. Utilize built-in 

PYNQ tools to measure throughput, latency, and power consumption. 

5. Iterate and Optimize: 
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• Performance Tuning: Based on the collected metrics, tweak the FPGA design or 

Python code to optimize performance, reducing bottlenecks or enhancing 

efficiency. 

By following these steps and leveraging the capabilities of Vitis HLS, Vivado, and PYNQ, 

researchers and developers can effectively implement, evaluate, and deploy CNN inference 

accelerators on FPGAs. The combination of HLS, IP integration, and software-hardware co-design 

enables rapid prototyping, performance optimization, and scalable deployment of CNN 

accelerators for various applications. 

Open-Source HW-SW Co-Design Framework 

The rapid advancement of CNNs has led to a growing demand for efficient and high-

performance hardware accelerators. However, designing and deploying CNN accelerators can be 

a complex and time-consuming process, requiring expertise in both hardware and software 

domains. To address this challenge, open-source HW-SW co-design frameworks have emerged as 

a promising solution, enabling researchers and developers to collaborate, innovate, and accelerate 

the development of CNN accelerators. These frameworks provide a unified environment for the 

joint design, optimization, and deployment of CNN accelerators, taking into account both 

hardware and software considerations. These frameworks typically include a set of tools, libraries, 

and methodologies that facilitate the exploration of different hardware architectures, software 

optimizations, and system-level integration. FINN [48] and HLS4ML [49] are two popular open-

source HW-SW co-design frameworks that have gained significant attention in the research 
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community for their contributions to the acceleration of CNNs on FPGAs. Let's discuss each of 

these frameworks in more detail. 

FINN Framework 

FINN is an open-source framework developed by AMD Research Labs (now AMD) that 

aims to provide fast, scalable, and flexible CNN accelerator inference on FPGAs [48]. FINN 

leverages HLS and quantization techniques to reduce the precision of weights and activations, 

enabling more efficient hardware implementations without significant loss in accuracy. Key 

features of FINN include:  

• Support for various quantization schemes, such as binary, ternary, and fixed-point 

quantization.  

• Automated generation of optimized dataflow architectures based on the quantized CNN 

model.  

• Streamlined design space exploration and performance estimation tools.  

• Integration with popular deep learning frameworks, such as TensorFlow and PyTorch, 

through the ONNX (Open Neural Network Exchange) format.  

The generated hardware accelerator leverages the parallelism and fine-grained control offered by 

FPGAs to achieve high performance and energy efficiency. FINN employs a streaming dataflow 

architecture, where the computation is organized as a pipeline of PEs that operate on the input data 

in a synchronized manner. Each PE performs a specific operation, such as convolution, pooling, 

or activation, and communicates with other PEs through high-bandwidth on-chip connections. This 
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dataflow architecture enables efficient data reuse, minimizes off-chip memory accesses, and 

allows for high throughput processing of the neural network inference. 

FINN has been extensively evaluated on various FPGA platforms and CNN models, 

demonstrating significant improvements in performance and energy efficiency compared to CPU 

and GPU implementations [181]. For instance, on the AMD ZC706 FPGA board, FINN achieved 

a throughput of 12.45 TOP/s (tera operations per second) for the AlexNet CNN model, which is 

8.3× higher than the throughput of an NVIDIA Titan X GPU. As a result, it is a powerful and 

comprehensive framework for fast, scalable, and efficient deployment of deep learning inference 

on FPGAs. By leveraging the flexibility and performance of FPGAs, along with advanced 

optimization techniques such as quantization, pruning, and folding, FINN enables the acceleration 

of CNN models with high throughput and energy efficiency. The ease of use, accessibility, and 

integration capabilities of FINN make it an attractive choice for researchers and developers seeking 

to harness the benefits of FPGAs for deep learning inference in various applications. Additionally, 

it has a strong and active community that contributes to the development of the framework by 

submitting bug reports, feature requests, and pull requests. The community also engages in 

discussions and knowledge sharing through forums, mailing lists, and online platforms. 

HLS4ML Framework 

HLS4ML is an open-source framework that aims to simplify the deployment of machine 

learning algorithms on FPGAs using HLS and focuses on the acceleration of CNN inference for 

scientific applications [182]. It is developed by a collaboration between the Fermi National 

Accelerator Laboratory, CERN, and Stanford University. The toolkit takes a trained neural network 
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model, specified in a high-level framework such as TensorFlow or PyTorch, and converts it into a 

synthesizable hardware description using HLS. By leveraging HLS, HLS4ML allows machine 

learning practitioners to focus on the design and training of their models, while automatically 

handling the low-level hardware implementation details. Key features of HLS4ML include: 

• Automated translation of trained CNN models into HLS code (C/C++) for FPGA 

implementation and other hardware acceleration platforms, such as ASICs and SoCs.  

• Support for various CNN architectures and layers, such as convolutional, dense, and 

activation layers.  

• Support newer neural network architectures, such as Graph Neural Networks (GNN) and 

transformers. 

• Configurable precision settings for weights and activations, enabling trade-offs between 

accuracy and resource usage.  

• Integration with popular machine learning frameworks, such as TensorFlow and PyTorch, 

through model serialization formats like ONNX.  

HLS4L leverages the capabilities of modern HLS tools, such as AMD Vitis HLS and Intel 

OpenCL SDK for FPGAs, to generate optimized hardware designs from high-level descriptions of 

CNN models. To facilitate the deployment and integration into larger systems, the framework 

provides a set of driver and interface code for connecting the accelerators to host processors and 

external memory. This includes C++ and Python APIs for configuring and controlling the 

accelerators, as well as RTL templates for integrating the accelerators into FPGA-based systems 

using standard interfaces such as AXI4 and PCIe. The framework also includes a set of tools and 



78 
 

scripts for automating the build and deployment process, such as Makefiles and Tcl scripts for 

Vivado and Quartus.  

The HLS4ML framework has been extensively validated and benchmarked on a range of 

FPGA platforms and devices, including AMD Zynq, Virtex, and Kintex devices, as well as Intel 

Arria and Stratix devices. The framework has also been successfully applied to various scientific 

use cases, such as the acceleration of CNN-based trigger systems for particle physics experiments, 

and the implementation of real-time object detection and classification on FPGAs. Recent 

advancements in HLS4ML include the incorporation of pruning and quantization techniques for 

further optimization of CNN models [183]. The HLS4ML project has a growing community of 

users and contributors, who are actively involved in extending and improving the toolkit. The 

project maintains an open-source repository on GitHub, which serves as a central hub for 

development, collaboration, and issue tracking [49].  

Optimized HW-SW Co-Design Framework 

The demand for deploying CNNs on edge devices has grown significantly due to the 

increasing popularity of AI-driven applications in various domains, such as autonomous vehicles, 

smart surveillance, and industrial automation [184]. However, the computational complexity and 

memory requirements of CNNs pose significant challenges for resource-constrained edge devices, 

which often have limited processing power, memory, and energy budgets. To address these 

challenges, several closed-source optimized HW-SW CNN frameworks have been developed by 

leading technology companies, such as AMD, Intel, and NVIDIA. These frameworks aim to 

accelerate CNN inference on edge devices by leveraging specialized hardware accelerators, such 

as FPGAs, ASICs, and GPUs, and applying various optimization techniques to reduce the 
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computational and memory overhead of CNN models. Those frameworks offer a comprehensive 

solution for deploying CNNs on edge devices, providing a full stack of tools, libraries, and runtime 

environments to simplify the development and optimization process. They typically include the 

following key components:  

• Model Optimization Tools: These tools help developers optimize CNN models for specific 

hardware targets by applying techniques such as quantization and pruning to reduce 

computational complexity while maintaining acceptable accuracy [14].  

• Hardware Acceleration Libraries: These libraries provide optimized implementations of 

CNN operations, such as convolution, pooling, and activation functions, that are tailored 

for specific hardware accelerators. These libraries take advantage of the parallelism and 

memory hierarchy of the hardware to maximize performance.  

• Compilation and Deployment Tools: These tools automate the process of compiling and 

deploying optimized CNN models on edge devices. They handle the mapping of CNN 

operations onto the hardware accelerator, manage memory allocation and data movement, 

and generate efficient executable code [185].  

• Runtime Environment: The runtime environment provides a set of APIs and libraries to 

enable the execution of optimized CNN models on edge devices. It manages the scheduling 

of computation and data transfer, handles synchronization and communication between the 

host processor and the hardware accelerator, and provides performance monitoring and 

profiling capabilities.  
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By leveraging these components, developers can accelerate CNN inference on edge 

devices with minimal manual effort. Some of the most notable closed-source optimized hardware-

software CNN frameworks include AMD Vitis-AI [62], Intel oneAPI [186] with OpenVINO [63], 

and NVIDIA TAO Toolkit [187] with TensorRT [64]. These frameworks have gained significant 

adoption in industry and academia due to their performance, ease of use, and strong ecosystem 

support. 

AMD Vitis-AI is a comprehensive development platform that enables the deployment of 

accelerated AI applications on AMD FPGAs and SoCs. It provides a unified software stack, 

including IP cores, optimized libraries, pre-built models, and tools for quantization, pruning, and 

compilation to simplify the development process and achieve high performance and efficiency. 

Vitis AI supports a wide range of CNN models and frameworks, such as TensorFlow and PyTorch 

and offers runtime support for edge devices like the AMD Zynq UltraScale+ MPSoC [180]. 

Intel OneAPI is a unified programming model and toolkit that enables developers to write 

high-performance, cross-architecture applications for various platforms, including CPUs, GPUs, 

VPUs, and FPGAs [188]. It includes a deep learning toolkit called (oneDNN), which provides 

optimized building blocks for deep learning frameworks and enables efficient inference on Intel 

hardware. OneAPI can be integrated with Intel OpenVINO which is another prominent framework 

that facilitates the optimization and deployment of CNN models on Intel hardware. It provides a 

set of tools and libraries for model optimization, such as quantization, layer fusion, and post-

training optimization, as well as runtime inference engines for various platforms. OpenVINO also 

integrates with OpenCV for computer vision and image processing tasks for applications ranging 

from robotics and industrial automation to smart city and retail analytics [189]. 
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NVIDIA TAO Toolkit is a low-code AI toolkit that simplifies the training, optimization, 

and deployment of AI models on NVIDIA hardware, including GPUs and Jetson edge devices 

[190]. It offers a set of pre-trained models, transfer learning capabilities, and pruning techniques 

to optimize models for specific tasks and target platforms]. TAO Toolkit integrates with the 

NVIDIA TensorRT inference optimizer and runtime, enabling high-performance inference on edge 

devices with real-time constraints [191]. 

These closed-source optimized hardware-software CNN frameworks offer end-to-end 

solutions for accelerating deep learning inference on edge devices. They abstract the complexity 

of hardware-specific optimizations and provide high-level APIs, tools, and libraries to simplify the 

development process [185]. However, the closed-source nature of these frameworks may present 

certain limitations, such as the lack of flexibility and customization options for specific use cases 

or the inability to integrate with proprietary hardware accelerators. Additionally, the licensing and 

cost associated with these frameworks may be a consideration for researchers, developers, and 

organizations. Despite these limitations, they provide a powerful and accessible solution for 

deploying AI applications on resource-constrained edge devices, enabling new possibilities for 

intelligent and responsive systems at the edge.  

Standardize HW-SW Co-Design Framework 

 The deployment of deep learning models on edge devices, such as smartphones, IoT 

devices, and embedded systems, poses significant challenges due to the limited computational 

resources and power budgets of these devices. To address these challenges, there has been a 

growing interest in developing efficient and generic methods for representing, optimizing, and 

deploying DNNs on edge devices. ONNX (Open Neural Network Exchange) [65] and ONNC 
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(Open Neural Network Compiler) [192] are two prominent open-source projects that have emerged 

to tackle these challenges. ONNX is an open-source format for representing deep learning models, 

enabling interoperability between different frameworks and tools. ONNC, on the other hand, is a 

compiler framework that takes ONNX models as input and generates optimized code for various 

hardware targets, particularly edge devices. 

The development of ONNX was motivated by the fragmentation of the deep learning 

ecosystem, with various frameworks, such as TensorFlow, PyTorch, and MXNet [193] using 

different model formats and APIs. This fragmentation made it difficult to exchange models 

between frameworks and deploy them on different hardware platforms. ONNX addresses this issue 

by providing a standard way to define the computation graph, operators, and tensors of a neural 

network, enabling models to be trained in one framework and deployed in another. ONNX has also 

gained significant adoption in the industry, with support from major technology companies, 

including Microsoft, Facebook, Amazon, Intel, AMD, and NVIDIA. It has become a crucial 

component in the deep learning toolchain, enabling the deployment of models on a wide range of 

platforms, from cloud servers to edge devices. 

ONNC on the other hand, was built upon the ONNX format to provide a comprehensive 

solution for optimizing and deploying deep learning models on edge devices. The main goal of 

ONNC is to bridge the gap between the high-level representations of deep learning models and the 

low-level, hardware-specific optimizations required for efficient execution on embedded system. 

ONNC achieves this goal by employing a multi-stage optimization pipeline that takes an ONNX 

model as input and applies a series of optimization passes to generate efficient executable code for 

the target hardware. These optimization passes include operator fusion, constant folding, and 
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memory allocation optimization, which aim to reduce the computation and memory footprint of 

the model. One of the key strengths of ONNC is its modular and extensible design, which allows 

for the integration of new optimization techniques and hardware backends. This flexibility enables 

ONNC to support a wide range of hardware targets, from general-purpose processors CPU to 

specialized accelerators, such as GPUs, FPGAs, and ASICs. 

In conclusion, ONNX and ONNC provide a powerful framework for optimizing and 

deploying deep learning models on edge devices. The open-source nature and wide industry 

adoption of ONNX ensure model interoperability and portability, while ONNC's modular 

architecture and extensive hardware support enable efficient acceleration of deep learning 

inference on diverse edge platforms. Together, they form a comprehensive ecosystem that supports 

end-to-end deployment of neural networks, from model training on one platform to efficient 

execution on another, As the demand for edge AI continues to grow, ONNX and ONNC are 

expected to play an increasingly important role in enabling the deployment of intelligent and 

responsive applications on resource-constrained devices. 

Discussion 

This review provided a comprehensive overview of the fundamentals of deep learning and 

CNNs and emphasized the importance of model compression and optimization techniques, such 

as pruning, quantization, and knowledge distillation, along with state-of-the-art CNN architectures 

and datasets commonly used for benchmarking and evaluation. We demonstrated an end-to-end 

toolchain for training, optimizing, and deploying CNNs on edge FPGA using AMD Vitis HLS and 

Vivado environments alongside others framework. In particular, we delved into the HW-SW co-

design approaches for accelerating CNN inference on edge devices with a focus on the accelerator 
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design, including the PS, PL, PEs, SIMD, memory hierarchy, and data flow optimization 

techniques using HLS. The most difficult part of this research was the emerging trends and 

opportunities in the field of CNN acceleration, such as the use of open-source frameworks like 

FINN and HLS4ML, as well as the adoption of standardized representations like ONNX and 

ONNC for improved interoperability and portability of CNN models However, the review also 

acknowledges the challenges and limitations associated with deploying CNNs on edge devices, 

such as the trade-offs between accuracy, performance, and resource utilization, as well as the 

complexity and learning curve associated with hardware-software co-design and FPGA 

programming.  
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CHAPTER THREE: GENERATIVE ADVERSARIAL NETWORK ON THE 

EDGE 

Introduction 

 Generative Adversarial Networks (GANs) [54] have emerged as a robust generative 

modeling algorithm capable of producing realistic samples across various domains, including 

images, videos, and audio. GANs consist of two neural networks, a generator 𝐺 and a discriminator 

𝐷, that engage in a competitive game. The generator aims to create realistic samples that resemble 

the data distribution, while the discriminator tries to distinguish between actual and generated 

samples, as shown in Fig. 22.  

 

Figure 22. Generative Adversarial Networks working principle 
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The generator’s objective is to maximize the probability of the discriminator making a 

mistake, while the discriminator aims to minimize the classification error. This adversarial training 

process can be formulated as a minimax game, where the generator and discriminator are 

optimized alternately [194]. The generator inputs a random noise vector 𝑧 and maps it to the data 

space through convolutional, upsampling, and deconvolutional layers [195]. On the other hand, 

the discriminator takes both the natural and generated sample as input and outputs a probability 

score indicating the likelihood of the sample being real [196]. The architectures of the generator 

and discriminator can vary depending on the specific application and the type of data being 

modeled [197].  

During training, the generator and discriminator are updated iteratively using 

backpropagation and gradient-based optimization techniques, such as stochastic gradient descent 

(SGD) or Adam. The generator is trained to minimize the adversarial loss, encourages it to produce 

samples that fool the discriminator. The discriminator, in return, is trained to maximize the log-

likelihood of correctly classifying actual and generated samples [198]. One of the main challenges 

in training GANs is ensuring stability and convergence [199]. The training process can be sensitive 

to hyperparameter settings, network architectures, and optimization techniques [200]. Mode 

collapse, where the generator produces a limited variety of samples, and vanishing gradients are 

common issues hindering the learning process. Various techniques have been proposed to address 

these challenges, including modified objective functions, regularization methods, architectural 

improvements, and Wasserstein GANs (WGANs) [196], which use the Wasserstein distance to 

stabilize the objective function.  
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Another challenge in GANs is the evaluation and comparison of generated samples. 

Traditional metrics, such as log-likelihood or perplexity, are not directly applicable to GANs, as 

the generator does not explicitly estimate a probability distribution [201]. Instead, researchers have 

proposed alternative evaluation measures, such as the Inception Score (IS) [194] and the Fréchet 

Inception Distance (FID) [202], which assess the quality and diversity of generated samples based 

on pre-trained classifiers. The IS measures the quality and diversity of generated samples by using 

a pre-trained Inception network. It calculates the expected Kullback-Leibler divergence between 

the conditional class distribution predicted by the Inception network and the marginal class 

distribution. Higher IS values indicate better quality and diversity of generated samples.  

On the other hand, The FID compares the distributions of generated and actual samples in 

the feature space of a pre-trained Inception network. It calculates the Fréchet distance between the 

two distributions, which considers the features’ mean and covariance. Lower FID values indicate 

better similarity between the generated and actual distributions. In Table 3.1, Wang et al. [203] 

summarized the performance of GANs using IS and FID for four different datasets, which are the 

most widely used as a benchmarking dataset. 

Lastly, GANs have undergone various architectural modifications to improve performance 

and address specific challenges. The original GAN architecture struggled with generating high-

quality images and suffered from training instability. Subsequent architectures, such as Deep 

Convolutional GANs (DCGANs) [195], introduced convolutional layers and batch normalization, 

significantly improving the quality of generated images and training stability. Further architectural 

advancements include using Self-attention mechanisms GANs (SAGAN) [204], which enable 

long-range dependencies and improve the global coherence of generated samples. Additionally, 



88 
 

the style-based generator architecture proposed in StyleGANs [197] separates the high-level 

attributes from the low-level details, allowing for more control over the generated images and 

enabling the synthesis of highly realistic and diverse samples.  

Table 2. Performance summary across different types of GANs discussed in Wang’s paper on 

different datasets. ”-” to experiments that have not been done in the literature. 

Model CIFAR10 (IS/FID) ImageNet (IS/FID) LSUN (FID) CelebA (FID) 

FCGAN 

BEGAN 

PROGAN 

LSGAN 

DCGAN 

WGAN-GP 

SNGAN 

Geometric GAN 

RGAN 

AC-GAN 

BigGAN 

RealnessGAN 

MSG-GAN 

SS-GAN 

YLG 

Sphere GAN 

6.41 / 42.6 

5.62 / - 

8.80 / - 

6.76 / 29.5 

6.69 / 42.5  

8.21 / 21.5 

8.43 / 18.8 

- / 27.1 

- / 15.9 

8.25 / - 

9.22 / 14.7 

- / 34.6  

- / - 

- / 15.7 

- / - 

- / - 

- / - 

- / -  

- / - 

- / - 

- / 74.2 

11.6 /62.1  

36.8 / 27.6  

- / - 

- / - 

- / -  

166.5/ 7.4  

- / - 

- / - 

- / 43.9  

57.2 / 15.9  

- / - 

-  

-  

8.3 

216. 

16.1 

22.8 

- 

- 

- 

- 

- 

- 

5.2 

13.3 

- 

16.9 

-  

83.3 

7.3 

- 

63.1 

- 

- 

- 

- 

- 

- 

23.5 

8.0 

24.36 

- 

- 

 

GAN Challenges in Edge Computing  

 The deployment of GANs on edge devices has gained significant attention in recent years 

due to the increasing demand for real-time and privacy-preserving applications. Edge devices, such 

as smartphones, IoT devices, and embedded systems, often have limited computational resources 

and power constraints [205]. However, the ability to generate realistic samples directly on edge 

devices opens up new possibilities for applications like augmented reality, personalized content 

creation, and anomaly detection. One of the key challenges in deploying GANs on edge devices is 
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the computational complexity of the models. GANs typically require deep neural network 

architectures and iterative training processes, which can be resource-intensive and time-

consuming. To address this challenge, various techniques have been proposed to optimize GAN 

models for edge deployment, including model compression and architecture simplification [206].  

Hardware acceleration is another crucial aspect of enabling efficient GAN deployment on 

edge devices [207]. Specialized hardware accelerators, such as GPUs, FPGAs, and ASICs, can 

significantly speed up the computation of GAN models by exploiting parallelism and optimizing 

memory access patterns [208]. GPU acceleration has been widely used for GAN training and 

inference, leveraging the massively parallel processing capabilities of GPUs. FPGAs offer 

flexibility and energy efficiency, allowing for custom hardware designs tailored to the specific 

requirements of GAN models. ASICs provide the highest performance and energy efficiency but 

require significant development efforts and upfront costs.  

Related Work 

 Benchmarking studies have also been conducted to evaluate the performance and 

efficiency of GAN models on edge devices. In [209], Shrivastava et al. presented a comprehensive 

survey of hardware acceleration techniques for GANs and conducted benchmarking experiments 

on various edge devices, including NVIDIA Jetson boards, FPGA, and Intel Neural Compute 

Sticks. They evaluated the inference time, power consumption, and generation quality of different 

GAN architectures and optimization techniques. Their results showed that model compression 

techniques can significantly reduce the inference time and memory footprint of GAN models with 

minimal impact on generation quality. For example, a compressed DCGAN model achieved a 4.2x 
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speedup and a 3.8x reduction in memory usage compared to the original model, with only a slight 

degradation in the IS from 4.5 to 4.2.  

In [203], Wang et al. conducted a benchmarking study of GAN deployment on mobile 

devices, comparing the performance of different GAN architectures and acceleration frameworks. 

They evaluated the inference time, power consumption, and FID of various GAN models on an 

NVIDIA Jetson TX2. Their results demonstrated that MobileNet-based GAN architectures and 

TensorFlow Lite acceleration framework provide the best trade-off between performance and 

efficiency for mobile deployment. A MobileNet-based GAN model achieved an FID of 26.5 and 

an inference time of 18.2 ms on the NVIDIA Jetson TX2, compared to an FID of 29.3 and an 

inference time of 45.6 ms for a standard DCGAN model.  

Yazdanbakhsh et al. [210] proposed a hardware-efficient GAN architecture, called 

FlexiGAN, which is optimized for FPGA deployment. They designed a lightweight generator 

network using depth-wise separable convolutions and a resource-efficient discriminator network 

using binarized weights. FlexiGAN achieved a peak performance of 158.7 GFLOPS and an energy 

efficiency of 14.2 GFLOPS/W on a AMD ZCU102 FPGA while consuming only 1.8 MB of on-

chip memory. Compared to a GPU-based implementation, FlexiGAN demonstrated a 7.5x speedup 

and a 5.2x energy efficiency improvement, with comparable generation quality. 

Objective 

 Deconvolution is the spatial inverse of convolution as it transforms the input to a higher 

dimension of output, as shown in the proposed architecture in Fig. 3.2. When applied to photos, it 

results in an up-sampling. While most open-source projects focus on CNN, which employs an 
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ordinary convolution, DCGAN has received less attention regarding the implementation on edge 

platforms than convolution and CNN. Even so, deconvolution is used in image super-resolution 

GAN SRGAN [211] for mapping a low-resolution picture to a higher-resolution image. This is 

specially used in microscopic images [212] to obtain high-quality photos and produce results in 

real-time. An efficient implementation of deconvolution also enables the deployment of super-

resolution on low-power edge devices and opens the possibility of having technologies like 

NVIDIA DLSS on low-power edge computing.  

The most recent work that approaches our idea is proposed by Colbert et al. [213], which 

implemented a deconvolution CNN (DCNN) in the PYNQ-Z2 device. Nevertheless, this research 

is qualitatively distinct from the past one. Several issues are introduced and solved in this paper. 

To begin with, it is constrained to a 32-bit fixed-point implementation without the ability to 

experiment with other bit widths. Second, the accelerator is a non-scalable systolic array, which 

implies that each layer is executed sequentially by a single engine, resulting in increased latency. 

Third, the weight of each layer is streamed from the DDR (there is no on-chip storage for all the 

network weights), resulting in increased power consumption. Lastly, it does not make the 

quantized training, accelerator design, and deployment code open-source to enable 

experimentation with different network sizes and accelerator design choices. 

This study is focusing on utilizing FINN by AMD [48], which is an open-source research 

framework for accelerating DNNs inference on FPGAs. They provide efficient building blocks for 

training the quantized neural network (QNN) and developing inference accelerators while only 

supporting limited DNN layers. In this paper, FINN was extended to train a quantized 

deconvolutional GAN (DCGAN) [214], designed a scalable accelerator, and deployed the 
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inference on SoC-FPGAs. We also benchmarked our implementation against NIVIDA Jetson Nano 

and achieved a superior throughput-to-power ratio when running the inference.  

In this study, we proposed an HW/SW co-design approach for training quantized 

deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow 

architecture capable of achieving higher throughput versus resource utilization trade-off. The 

developed accelerator is based on an efficient deconvolution engine that offers high parallelism 

with respect to scaling factors for GAN-based edge computing. Furthermore, various precisions, 

datasets, and network scalability were analyzed for low-power inference on resource-constrained 

platforms. Lastly, an end-to-end open-source framework is provided for training, implementation, 

state-space exploration, and scaling the inference using Vivado HLS for AMD SoC-FPGAs and a 

comparison testbed with Jetson Nano. The contributions of this research are as follows:  

• Developed a scalable inference accelerator for transpose convolution operation for 

quantized DCGAN (QDCGAN) on top of FINN.  

• Provided a complete open-source framework [214] (training to implementation stack) for 

investigating the effect of variable bit widths for weights and activations.  

• Demonstrated that the weights and activations influence performance measurement, 

resource utilization, throughput, and the quality of the generated images. 

Methodology 

Network Architecture  

Training GAN comes in a zero-sum game between two competing networks: the generator 

𝐺 and the discriminator 𝐷. G tries to maximize the loss of D by mapping a noise vector to the input 
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space while 𝐷 objectives to maximize the chance to identify the real distribution of data. Basically, 

𝐺 is trained to fool 𝐷 as in the equation as follows: 

                         𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝐸𝑥~𝑝𝑟
[𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑥~𝑝𝑔

[log(1 − 𝐷(𝑥̃))]                         (3.1) 

Where 𝑃𝑟 is the data distribution, and 𝑃𝑔 is the model distribution implied by (the input 𝑧 to the 

generator is sampled from the noise distribution 𝑝). Since GAN are inherently unstable, 

Wasserstein GAN loss (WGAN) along with the gradient penalty proposed by Gulrajani et al. [215] 

is applied to stabilize the training and optimize 𝐺. The WGAN loss function equation is as follows: 

                                      𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝐸𝑥~𝑝𝑟
[ 𝐷(𝑥)] + 𝐸𝑥̃~𝑝𝑔

[𝐷(𝑥̃)]                                      (3.2)                   

Adding the gradient penalty term as follows: 

                      𝐿 = 𝐸𝑥̃~𝑝𝑔
[𝐷(𝑥̃) − {𝐸𝑥~𝑝𝑟

∗ 𝐷(𝑥)} + 𝜆 ∗ 𝐸𝑥~𝑃𝑥̂
{(‖𝛻𝑥̃𝐷(𝑥̂)‖2 − 1)2}]               (3.3) 

𝐷 works as a continuous function and is not trained to classify the data, represent a straight line 

between the data distribution of 𝑃𝑟 & 𝑃𝑔 with a fixed coefficient that has been proven to work on 

various architectures and datasets. Besides, applying the previous critical model eliminates the 

need for batch normalization [152] in any network, as well as calculating different thresholds for 

every layer and only using the simple thresholds (quantize ReLU), which resulted in better image 

quality. In contrast, weights and activations were quantized in the forward pass using a hard tanh 

function followed by an n-bit width quantizer. The following equation is for rounding and clipping 

the weights: 

                                                      𝑄(𝑥, 𝑛) = 𝐶𝑙𝑖𝑝 {
𝑟𝑜𝑢𝑛𝑑(𝑥∗2𝑛)

2𝑛 , −1, 1}                                     (3.4)                                                      
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𝑥 is the input, whereas 𝑛 represents the number of bits. If the magnitude of the input during the 

forward pass is 1 < 𝑥 ≤ -1, the straight-through estimator (hard tanh) will pass the gradients. Yet, 

if the input is outside this range, hard tanh will zero out the gradients according to the following 

equation: 

                                                                  𝑔𝑥 = {𝑔𝑞 ∗ 1|𝑥|≤1 }                                                    (3.5)                                                 

Prior equations were applied to improve and stabilize the training of QDCGAN on MNIST 

and celebA datasets. These publicly available datasets were the most commonly used for new 

GANs. Besides, the developed QDCGAN architectures shown in Fig. 23 were trained in full-

precision weight (W) and activation (A), e.g., W32A32, and then fine-tuned to lower bit-widths 

(fixed point), e.g., W4A4 and W1A2. 

 

Figure 23. QDCGAN architectures for training and inference acceleration on FPGA.  

Accelerator Design 

The accelerator was built on top of FINN, and it uses the processing element (PE) and the 

single instruction multiple data (SIMD) scaling factor for each layer separately. Every layer has its 
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engine for execution. The resources utilization versus throughputs is balanced by variable 

precisions and numbers of PE & SIMD, which define the inputs and outputs parallelism 

respectively on the PL part as shown in Fig 24.  

 

Figure 24. I1 to I… are neighboring activations of the input feature map. They are mapped to 

neighboring PEs, where they are multiplied with a kernel K and produce an output feature map 

result. These results are aggregated over time. 

Moreover, the overall parallelism is calculated by the folding factor (FF) as in the following 

equation: 

                                                                 𝐹𝐹 =  {
𝐻∗𝑊

𝑃𝐸∗𝑆𝐼𝑀𝐷
}                                                            (3.6) 

𝐻 and 𝑊 represent the height and width of the matrix, respectively. The smaller the folding factor, 

the lower the latency to execute the weight matrix. Moreover, the developed accelerator uses a 

transpose convolution that works by applying certain degrees of expansion and padding of zeroes 

between the input feature map values. The expansion and padding values are determined by the 

stride and filter size of the deconvolution layer. Using this pre-processing step of learnable up-

sampling, deconvolution can be implemented with an efficient convolution accelerator. Fig. 25 

demonstrates an example of how this method helps in the implementation of GAN-based edge 
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devices. The sliding window generator for deconvolution uses a circular ring buffer, which has an 

efficient mechanism for maintaining and moving a list of values systematically. It helps to store a 

small portion of the input feature map channels on-chip. 

 

Figure 25. Pre-processing of up-sampling (expansion) for implementing deconvolution operation 

as a convolution. 

Subsequently, the accelerator receives inputs from the processor's DDR, executes the 

layers, and outputs the results back to the processor. The weights are then stored on-chip (BRAM) 

and can be accessed concurrently by the partitioned PE elements in parallel, which results in fast 

execution. After training, the generator network's weights are then extracted, packed according to 

the PE and SIMD of each layer, and saved in an FPGA-readable format. Hence, the proposed 

accelerator is then introduced in the FINN-HLSLIB open-source library [216], synthesized to run 

at 125 MHz, and implemented on SoC-FPGAs. To this end, the network architecture is 

customizable for larger platforms and datasets. 

Host Code with PYNQ 

Python with PYNQ API [35] is used to write the driver code that communicates with the 

hardware, load the accelerator bitstreams into the programmable-logic (PL), loads the weights, 

passes input/output buffers from DDR, and convert the output data into a visual format to the user. 
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Experimental Setup and Results  

Development Environment  

Nvidia Tesla P4 GPU was used to train the QDCGAN. PyTorch was used as a training 

framework, while Brevitas library from AMD [217] was used for quantization aware-training. 

Brevitas is a flexible quantization library utilized for training quantized DNNs and deconvolution 

as well. It is also capable of adjusting and controlling the bit width of each layer's weight and 

activation as well as performing multiply and accumulates (MAC) operations.  

On the hardware side, Vivado synthesized the accelerator bitstream and analyzed the design 

architecture. Additionally, FINN-HLSLIB is one of the development tools utilized and built upon 

in this research. It is an open-source library to develop and implement an efficient QNN accelerator 

using AMD high-level synthesis (HLS). PYNQ is another open-source project-based tool used for 

Zynq platforms that provides a Python framework and APIs to load the bitstream and run the 

inference. Fig. 26 shows the steps followed in the training environment and hardware 

implementation. 

 

Figure 26. Block diagram of training and hardware environment steps. 
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After implementing and generating the results, the developed accelerator appeared to be 

very efficient due to the streaming dataflow architecture, on-chip weights storage, and being fully 

pipelined where each layer has its engine to speed up the processing, reduce the latency, and 

provide far more performance per watt than the GPU and CPU. 

Implementation Results  

Characteristics of hyperparameters during training play a significant role in achieving 

promising results of QDCGAN, in which trials and errors were the baselines of this research. 

MNIST and celebA datasets were trained from scratch on full precision, fine-tuned to the lowest 

possible bit-width, and achieved aesthetically clear generated images. Since MNIST is a greyscale 

dataset and has one channel, the lowest possible bit-width utilized were W1A2 and W4A4. 

Conversely, celebA is a large colored dataset with three channels, and the lowest possible bit-width 

utilized was W4A4. Moreover, the FID was employed to quantify the quality of generated images 

for various precisions. There is no specific range or scale for measuring the FID. However, a lower 

score indicates better-quality images. Hence, the generated images for both datasets are illustrated 

in Fig. 27 which shows different precisions with an associated FID score for each one. 
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Figure 27. MNIST and celebA were trained from scratch on W32A32 for 100 epochs and resulted 

in (a) and (d) with an FID score of 49 and 104 respectively. Then, MNIST fine-tuned to a lower 

bit-width with more training epochs resulted in (b) W4A4 and (c) W1A2 with an FID score of 53 

and 126 respectively. Finally, celebA is also fine-tuned to the lowest possible bit-width with more 

training epochs resulted in (e) W4A4 with an FID score of 129. 

The developed accelerator-based deconvolution proved to be efficient in terms of less 

resource usage.  Table 3 shows the resource utilization for Ultra96 and ZCU104 in runtime weights 

for both datasets. Moreover, running the inference with runtime configurable weights produces 

2.1x-2.5x times higher throughput than the baked-in weights with less than 10% increase in the 

resource utilization reported. Lastly, the network architecture, scalability, throughput in frame per 

second (FPS), actual power consumption when running the inference, and the proposed accelerator 

efficiency (performance per watt) is reported and benchmarked against Jetson Nano in Table 4.  

a b c 

d e 



100 
 

Table 3. Resource utilization.  

Datasets MNIST celebA 

Device Ultra96 Ultra96 ZCU104 

Bit-width / 

resources 

W1A2 W4A4 W4A4 

Flip-Flops 22k (15%) 141k (26%) 60k (42%) 63k (13%) 

LUTs 17k (24%) 70k (46%) 44k (63%) 77k (33%) 

BRAM 22 (10%) 48 (22%) 156 (72%) 174 (55%) 

LUTRAM 1k (4%) 28k (5%) 1k (3%) 1k (1%) 

DSP Slices 1 (0.28%) 1 (0.28%) 5 (1%) 5 (0.29 %) 

 

Table 4. Performance measurement.  

Dataset MNIST celebA 
Device Jetson N Ultra96 Jetson N Ultra96 ZCU104 

Output 

Channels 
[128, 64, 32, 1] [256, 128, 64, 32, 3] 

PE - [4,8,8,1] - [4,8,8,3] [16,16,16,16,3] 

SIMD - [4,16,16,8] - [4,16,16,16,8] [16,16,16,16,16] 

FPS 233-284 1802-1813 60-76 301-312 890-904 

Power (W) 4.5-3.3 = 

1.2 
5.5-5.3 = 

0.2 
4.5-3.3 = 

1.2 
5.5-5.3 = 0.2 11.9-11.6 = 0.3 

FPS/W 208 9K 58 1.5K 3k 
 

Conclusion and Future Work  

This chapter utilized AMD’s publicly accessible FINN project to develop a scalable 

accelerator for QDCGANs. The proposed architecture is based on a ring buffer to generate the 

sliding windows for deconvolution resulted in higher throughput while using fewer resources. The 

provided open-source code can contribute to the community to explore and search efficient 
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implementation of SRGAN on low-power FPGAs and assist in deploying NIVIDA DLSS on edge 

platforms which are considered as a solution for a wide range of medical and microscopic imaging 

applications. This work was published in the 2022 IEEE 56th Annual Conference on Information 

Sciences and Systems (CISS) [56]. 

  



102 
 

CHAPTER FOUR: CONVOLUTIONAL NEURAL NETWORK ON THE 

EDGE 

Introduction 

CNNs have become the go-to architecture for various image-processing tasks, such as 

classification, object detection, and segmentation. CNNs are a class of deep neural networks that 

exploit the spatial structure of input data, typically images, by applying a series of convolutional, 

pooling, and fully connected layers. The core building block of a CNN is the convolutional layer, 

which consists of a set of learnable filters that slide across the input image, performing element-

wise multiplications and summing the results to produce feature maps. These filters capture local 

patterns and features, such as edges, corners, and textures, which are essential for understanding 

the content of an image.  

Convolutional layers are then followed by pooling layers, which reduce the spatial 

dimensions of the feature maps and introduce translation invariance. The pooled features are then 

passed through an activation function, such as ReLU, to introduce non-linearity. This process is 

repeated multiple times to capture high-level features. Lastly, the feature maps are flattened and 

passed through fully connected layers for high-level reasoning and producing the output, such as 

class probabilities for classification tasks. This combination of layers shown in Fig 28 allows 

CNNs to learn hierarchical representations and achieve state-of-the-art performance on computer 

vision tasks.  
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Figure 28. Traditional CNN architecture.  

Additionally, the success of CNN algorithms in vision tasks heavily relies on effectively 

training of the network parameters. Various training techniques have been proposed to improve 

the convergence, generalization, and robustness of CNN applications. The most common 

techniques are:  

• Data augmentation involves applying random transformations to the input images, such as 

rotation, scaling, cropping, and flipping [76].  

• Transfer learning leverages pre-trained models on large-scale datasets, such as ImageNet, 

to initialize the weights of a new CNN [93].  

• Regularization and dropout are also crucial for preventing overfitting and improving the 

generalization of CNNs [218].  

• Learning rate scheduling improve the convergence and stability of CNN training.  

• Batch normalization is widely used in each layer to have zero mean and unit variance, 

which help reduces the internal covariate shift and allows for higher learning rates [82]. 
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These adaptive optimization algorithms can accelerate the convergence and improve the stability 

of the training process. As a result, CNNs have achieved remarkable accuracy on vision tasks. One 

of the most notable achievements is the performance of CNNs on the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC), which involves classifying images into 1000 object categories 

[57]. In 2012, the AlexNet architecture achieved a top-5 error rate of 15.3% on the ILSVRC, 

significantly outperforming the previous methods [219]. This marked a turning point in computer 

vision and sparked the widespread adoption of CNNs. Since then, numerous CNN architectures 

have been proposed, each pushing the boundaries of accuracy on the ImageNet benchmark. Table 

5 is shows that some SOTA architectures achieved top-1 accuracy on ImageNet alongside other 

benchmarking and performance metrics. 

Table 5. CNN architectures performance results on ImageNet measured on V100 GPU [4]. 

Model Top-1 Acc Params FLOPs Inference 

time (ms) 

EfficientNet-B3  

EfficientNet-B7 

RegNetY-8GF 

RegNetY-16GF 

ResNet-101 

ResNet-200 

EfficientNet-X 

NFNet-F0 

NFNet-F4 

EfficientNetV2-S 

EfficientNetV2-L 

81.5% 

84.7% 

81.7 

82.9% 

83.0% 

83.9% 

84.7% 

83.6% 

85.9% 

83.9% 

85.7% 

12M 

66M 

39M 

84M 

48M 

70M 

73M 

72M 

316M 

22M 

120M 

1.9M 

38B 

8B 

16B 

13B 

36B 

91B 

12B 

215B 

8.8B 

53B 

19 

170 

21 

32 

31 

76 

- 

30 

309 

24 
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CNN Challenges in Edge Computing  

Despite their remarkable performance, CNNs face significant computational challenges, 

mainly when deployed on resource-constrained edge devices. The primary challenge stems from 
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the many of parameters and the intensive matrix multiplications required in convolutional layers. 

As CNNs become more profound and complex, the computational demands increase 

exponentially, making real-time inference on edge devices daunting. Various techniques have been 

proposed to address these challenges, including network pruning, quantization, and knowledge 

distillation [6]. These methods reduce the model size and computational complexity while 

maintaining acceptable accuracy. Another approach to mitigate the computational burden of CNNs 

is to design efficient architectures that balance accuracy and complexity. Architectures such as 

MobileNet [142], ShuffleNet [145], and EfficientNet [7] have been proposed to enable real-time 

inference on mobile and embedded devices by leveraging depthwise separable convolutions, 

channel shuffling, and neural architecture search.  

Hardware acceleration using specialized architectures such as GPUs, FPGAs, and ASICs 

has also been explored to speed up CNN inference [220]. GPUs consist of many programmable 

cores that efficiently execute the matrix multiplications and convolutions required in CNNs [221]. 

The availability of high-level programming frameworks, such as CUDA and OpenCL, has made 

GPUs accessible to a broad range of developers. However, GPUs are known to consume significant 

power, which can be a limitation for energy-constrained systems. Recent advancements in GPU 

architectures, such as NVIDIA's Tensor Cores and AMD's Radeon Instinct, have focused on 

improving CNN inference performance and energy efficiency but are still considered power-

hungry for edge devices. 

ASICs, on the other hand, are custom-designed circuits that are explicitly tailored for CNN 

inference [40]. ASICs offer the highest performance and energy efficiency among the three 

platforms, as they can be optimized at the transistor level for the specific computation patterns of 
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CNNs. Examples of ASIC-based CNN accelerators include Google's TPU [222] and Intel's 

Nervana Neural Network Processor (NNP) [134]. ASICs provide superior performance and energy 

efficiency compared to GPUs and FPGAs, but they lack flexibility and require a high development 

cost and time. Moreover, ASICs are fixed-function devices that cannot be easily updated to support 

new CNN models or algorithms. 

FPGAs balance the flexibility of GPUs and the efficiency of ASICs [66]. FPGAs consist 

of an extensive programmable logic blocks and interconnects that can be reconfigured to 

implement custom hardware accelerators. This reconfigurability allows FPGAs to be adapted to 

different CNN models and optimized for specific performance and energy requirements. FPGAs 

have lower power consumption compared to GPUs and can customized to achieve higher 

performance than ASICs for specific CNN workloads.  

Related work 

Several studies have conducted benchmarking and comparison of these hardware platforms 

for CNN inference. Nurvitadhi et al. [223] compared the performance and energy efficiency of 

GPU, ASIC, and FPGA platforms for a range of CNN models. They found that ASICs achieved 

the highest performance and energy efficiency, followed by FPGAs and GPUs. However, the 

performance gap between FPGAs and ASICs narrowed for larger CNN models, indicating the 

potential of FPGAs for scalable CNN inference.  

Jouppi et al. [27] presented a detailed analysis of Google's TPU ASIC and compared its 

performance and energy efficiency to contemporary GPUs and CPUs. They demonstrated that the 

TPU achieved 15x - 30x higher performance per watt than GPUs and CPUs for CNN inference 
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workloads. The TPU's architecture was optimized explicitly for the dataflow and memory access 

patterns of CNNs, enabling significant gains in performance and energy efficiency.  

Qasaimeh et al. [224] surveyed and compared of FPGA-based CNN accelerators. They 

analyzed various FPGA architectures, design methodologies, and optimization techniques for 

CNN inference. The study highlighted the diversity of FPGA-based CNN accelerator designs and 

their trade-offs in performance, energy efficiency, resource utilization, and flexibility. The authors 

emphasized the need for standardized benchmarking and evaluation methodologies to facilitate 

fair comparisons among different FPGA-based CNN accelerators.  

Objective 

Previous researchers have reported significant issues on the scalability side. First, different 

CNN architectures have different layers' parameters that complicate the accelerator design. 

Second, some platforms need more scalability due to their restricted resources. However, the most 

recent work in line with our idea is proposed by Bjerge et al. [179], which implemented a 16-bit 

quantized CNN in 2.14 format of two-bits integer and fourteen-bits fractional using a PYNQ 

framework. Nevertheless, this paper is qualitatively distinct from the past ones. Our proposed 

methodology addressed these issues, optimized performance, latency, and resource utilization, and 

benchmarked against previous developments. 

This research aims to find common patterns among two algorithms, create an HW/SW 

partitioning scheme, and then develop an efficient and scalable accelerator on the PL to compute 

the intensive operations of convolution and FC layers and gain higher performance. On the 
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contrary, network initialization, pooling, normalization, SoftMax, and other layers are performed 

on the PS. The contributions of this study are as follows: 

• Computed convolutional and FC layers operations in vector multiplication on a single on-

chip compute unit for AlexNet, VGG16, and LeNet architectures.  

• We Utilized loop tiling transformation efficiently to construct the IP accelerator core. 

• We have demonstrated that the proposed methodology achieved superior performance up 

to 230 GOP/s under 200-MHz with minimum data execution time. 

Methodology 

Network Architecture 

CNN architecture, as shown in Fig. 29, is used as a case study for the proposed template.  

 

Figure 29. CNN AlexNet architecture. 
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All these networks consist of convolutional and FC layers, the number and size of these layers 

vary across different operations. The algorithm of convolutional layers is illustrated in the equation 

follows: 

∀ row ∈ {1, 2, . . . , R}  
∀col ∈  {1, 2, . . . , C}  
∀co ∈ {1, 2, . . . , 𝓆 } 

∀ci ∈ {1, 2, . . . , 𝓅} 

∀i ∈ {3,5, . . . , 𝒦 } 

∀j ∈ {3,5, . . . , 𝒦 } 

                                𝑂𝐹𝑀 [𝑟𝑜𝑤: 𝑐𝑜𝑙: 𝑐𝑜] = ∑ ∑ ∑
 𝐼𝐹𝑀[𝑠 ∗ 𝑟𝑜𝑤 +  𝑖][𝑠 ∗  𝑐𝑜𝑙    

+ 𝑗][𝑐𝑖] 𝑊 [𝑐𝑜][𝑐𝑖][𝑖][𝑗]
                   (4.1) 

Rows (𝑅) and columns (𝐶) represent the image/matrix size. At the same time, the input channel 

(𝓅) and output channel (𝓆) are the third dimensions of input feature map (𝐼𝐹𝑀) and output feature 

map (𝑂𝐹𝑀), respectively, and (𝒦) represents the kernel/filter size. The total number of 

convolutional operations is as in the equation follows:  

                                          𝑁𝑜. 𝑜𝑓 𝐶𝑂𝑁𝑉 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = ∏ 2𝑅𝐶𝓅𝓆 𝒦2                                  (4.2) 

On the other hand, the algorithm of FC layers is illustrated in the equation follows:  

∀co ∈ {1, 2, . . . , 𝓆 } 

∀ci ∈ {1, 2, . . . , 𝓅} 

                                                𝑂𝐹𝑀 [co] = ∑ ∑ 𝐼𝐹𝑀[ci] × W[co][ci]                                   (4.3)                 

Where the operations of FC Layers have one-dimensional data on the input and output neurons, 

which have fewer processing tasks compared to the convolutional layers. The total number of FC 

operations is as in the equation as follows:  

                                                     𝑁𝑜. 𝑜𝑓 𝐹𝐶 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛s = ∏ 2𝓅𝓆                                         (4.4) 
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As previously mentioned, these layers are operationally expensive regarding computation and 

latency. For this reason, it is pertinent to map them into the PL part of ZYNQ. The previous 

equations represent symmetrical operation, while the dynamics and dataflow of the layers are 

different. The proposed methodology finds a common dataflow pattern for an optimized 

accelerator design. 

Loop Tiling Transformation 

Equation 4.1 represents layer values of R, C, 𝓅, 𝓆 and 𝒦 as variable values in which using 

these values to perform direct implantation leads to an inefficient accelerator design. Hence, loop 

tiling is performed, which converts loops into fixed points/blocks. It is also represented in the same 

algorithm and uses the tile size as (𝒯) for 𝑅, (ℭ) for 𝐶, (𝜇) for 𝓅, and (𝜏) for 𝓆. Thus, we can 

transfer a fixed amount of data from the external memory (DRAM) to on-chip memory (BRAM). 

Once the data is cashed into BRAM, fixed computations are performed by the accelerator. On the 

contrary, loop tiling for the FC layers uses the tile size as (𝜆) for 𝓅 and (Ω) for 𝓆. 

In the accelerator design, the FC layers have larger vector values in the input and output 

channels compared to the convolutional layers. Hence, different sizes of tiles are chosen. However, 

choosing the same size of tiles for the input and output channels resulted in performance reduction. 

Lastly, the overall selection of these tiles can result in maximum resource utilization and lower 

latency. 

Accelerator Design  

The proposed template-based vector design is illustrated in Fig. 30, which shows the loop 

tiling factors of  𝒯, ℭ, 𝜇, 𝜏, 𝜆, and Ω that determine the on-chip buffers. Due to the size difference 
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of input and output channels in convolutional and FC layers, different sizes of tiles are used and 

prompted to use dedicated buffers for both types of layers. This method resulted in more resource 

utilization and overcome the reading and writing overhead latency owing to the multi-dimensional 

array. Additionally, those dedicated buffers are being used in the size of weights in both layers 

which allow the design to have better efficiency and lower latency at the cost of more resource 

utilization. 

 

Figure 30. The proposed FPGA template-based design.  

First, data is cashed on-chip in these buffers using two data ports where one can be used 

for read/write of (𝐼𝐹𝑀) and (𝑂𝐹𝑀), and the other one can be used only for reading the weights. 

Those ports are memory-mapped (M-AXI), which enables a burst transfers and improv the external 

memory bandwidth. The input and weight buffer are partitioned in dimension τ to improve the 

design latency as multiple reads and writes are possible on arrays. This proposed compute unit is 

designed to do a dot-product between μ and τ input/output neurons respectively. 

 𝒯 ∗  ℭ ∗ 𝜇 

𝜇 * 𝜏 * 𝒦2 

 𝒯 ∗  ℭ ∗  𝜏 

ℭ ∗ 𝜏 
𝜆 

𝜆 * Ω 

Ω 
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 The template design has a scheduling mechanism among the interconnect, which 

orchestrate control logic and dataflow. Furthermore, the ping pong data transfer method is used on 

the input, weight, and output buffers to ensure a simultaneous data transfer happens from DRAM 

to on-chip buffers and then from on-chip buffers to the compute unit. Lastly, equations of the total 

operations performed by IP accelerator in Eq. 4.5 and performance measurement in Giga 

Operations per second (GOP/s) in Eq. 4.6 are as follows:  

                                                                  𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 𝐼𝑃 =   ℐ𝒫  = ∏ 2 𝒯 ℭ 𝜇 𝜏 𝒦2                                (4.5) 

                                                            𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐺𝑂𝑃/𝑠 =   𝒢𝒫𝒮   =
ℐ𝒫

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
                                       (4.6) 

Dataflow Modeling 

Dataflow modeling is done concerning the architectural details of on-chip buffers and the 

compute unit. Convolutional algorithm in Eq. 4.1 is based on window operation in which 𝒦 * 𝒦 

weight window is convolved with 𝒦 * 𝒦 patch of the input pixel of the (𝐼𝐹𝑀). The sum of these 

operations is resulted in the (𝑂𝐹𝑀) at a particular index. This straightforward approach has a 

complex data pattern on the FPGA which produce poor architecture design. On the contrary, the 

FPGA can parallelize the workload, so layers dataflow is simplified and present low dependency 

from the on-chip buffers to the compute unit. 

The dataflow modeling of convolutional layers in Fig. 31 is shown 𝒯 ∗ ℭ ∗  𝜇 as an input 

neuron, 𝒯 ∗ ℭ ∗ 𝜏 as an output neuron, and 𝜇 ∗ 𝜏 ∗  𝒦2 as a weight value where all of them are 

cashed into input, output, and weight buffers for on-chip processing. First, the data is moved from 

the input and weight buffers to the compute unit to perform dot product which and resulted in a 
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written values in the output buffer. Then, the dataflow occurs in a form of vector values across 

those channels. All (𝐼𝐹𝑀) values across channels (0, 1, 2…, 𝜇-1) are read starting from the index 

(0,0) to the last index (𝒯-1, ℭ-1) and then transferred alongside with the weight’s values to the 

compute unit. After that, the compute unit performs dot product along the channel dimension of 

(𝑂𝐹𝑀) and resulted in the output vector (0, 1, 2…, 𝜏-1). This process is continuously repeated for 

a spatial location of 𝒦 * 𝒦 on (𝐼𝐹𝑀) and then stored on (𝑂𝐹𝑀) to achieve high parallelism in the 

dimension of input and output channels (𝜇, 𝜏) and reduce data dependency for reading and writing 

among those buffers. 

 

Figure 31. Depiction of Convolution dataflow and computation on FPGA.  

On the other hand, FC layers working principle is illustrated in Fig. 32 shown 𝜆 input 

neurons and 𝜆 * Ω weight values are cashed on the BRAM buffers. These values are too large to 

be processed by the compute unit at once. As a result, another set of loop tiling/block is introduced 

for the FC layers which break (𝜆, Ω) data into smaller (𝜇, 𝜏) sizes. The input size 𝜇 and the weights 

size 𝜇 * 𝜏 are transferred to the compute unit while the output size 𝜏 is written back to the output 

( ,  ) (0,1) (0,0)

( ,  ) (0,1) (0,0)

( ,  ) (0,1) (0,0)

( ,  )(0,1)(0,0)

( ,  )(0,1)(0,0)
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buffer. This method ensure that the entire input vector is processed efficiently on the same 

compute unit. 

 

Figure 32. Depiction of Fully Connected dataflow and computation on FPGA.  

Scalability and Efficiency 

The proposed accelerator utilized a pre-trained model with 16-bit fixed-point quantization 

in 2.14 format. Nevertheless, the tiling size of convolution and FC layers determines the optimum 

performance of the template. We used a trial-based method to fine-tune the accelerator for higher 

efficiency and better scalability across various SoC-FPGAs ZYNQ boards and CNNs architecture. 

The parameters were randomly selected, and the design was simulated until the resources and 

latency were met. After sets of trial and error, we found that the tile factor of 𝜇*𝜏 affect the 

performance directly in which this proposed template achieved higher performance when 𝜏 is 

approximately twice 𝜇 under resource constraints. As a result, the accelerator can run advanced 

CNN architecture such as ResNet-50, SSD, MobileNets and YOLO of any version. Since all of 
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these networks have same type of layers, the proposed methodology can map any CNN 

architecture.  

Experimental Setup and Results  

Development Environment 

 The accelerator design was simulated and synthesized using Vivado HLS (2019.2), and 

utilized pre-trained models from PyTorch Model Zoo. It was tested with AlexNet, VGG-16, and 

LeNet architectures and can work with any advanced CNNs network. 

Results 

The proposed template operated under 200MHz, and achieved superior performance of up 

to 230 GOP/s. Table 6 reported the resource utilization and performance measurement of AlexNet 

network demonstrated on Ultra96, ZCU104, and ZCU102. The BRAM and DSP were directly 

dependent on the tile size of 𝒯and ℭ, and the number of dot-products in the compute unit, while 

FF and LUT were used to control the logic gates and state machine for running the loops and 

controlling the dataflow. Finally, our accelerator was benchmarked against the previous 

development [179] on Ultra96 for performance and lower latency, as reported in Table 7.  

Table 6. Resource utilization and performance measuremment for AlexNet architecture.  

Device Ultra96 ZCU104 ZCU102 

Compute Unit  𝜇 * 𝜏 12 x 24 20 x 30 20 x 55 

Flip-Flops 23.5k (16%) 46k (10%) 139k (25%) 

LUTs 15.6k (22%) 24k (10%) 57k (20%) 

BRAM 332 (76%) 594 (95%) 1.7K (95%) 

DSP Slices 334 (92%) 586 (33%) 1.7K (67%) 

Performance 51 GOP/s 107 GOP/s 230 GOP/s 

Frequency 169 MHz 198 MHz 167 MHz 
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Table 7. Benchmarking and comparision.  

Device Ultra96 

Development Previous method [179] Proposed method  

Max frequency 170 MHz 169 MHz 

Bit width 16 16 

Performance 31 GOP/s 51 GOP/s 

Latency (ms) 4.6 0.174  

Power (w) 3.55  4.7 

 

Conclusion 

The proposed template efficiently utilized the loop tiling and dataflow modeling for 

optimized accelerator design. As a result, a range of 1.3x - 1.7x higher performance was achieved 

along with a minimal layer of execution time when compared to the previous development. The 

analysis and simulation results proved to be optimistic and can be extended to create a complete 

framework. This will allow the community to use our open-source project and search an efficient 

implementation for real-time applications [59]. This work was published in the 2022 IEEE 

International Conference on Networking, Architecture and Storage (NAS) [225].  
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CHAPTER FIVE: HUMAN ACTION RECOGNITION ON THE EDGE 

Introduction 

Human Action Recognition (HAR) is a crucial task in computer vision that aims to 

understand human interaction in video representation and time-series data automatically. In recent 

years, different DNN algorithms have achieved SOTA performance on various HAR datasets. 

Three prominent DNN architectures for HAR are: 3D-CNNs, Graph Convolutional Networks 

(GCNs), and two-stream CNNs. Fig. 33 is shows a simple DNN network and how HAR is 

constructed.  

 

Figure 33. Human Action Recognition CNN-based framework architecture. 

First, 3D-CNNs extend the traditional 2D convolution operation to the temporal dimension, 

enabling them to learn spatio-temporal features directly from video data [226]. 3D-CNNs can 

effectively capture the motion and appearance cues necessary for action recognition by considering 

spatial and temporal information. One of the seminal works in this area is the C3D network [227], 

which employs 3D convolutions with a fixed kernel size of 3𝑥3𝑥3 and demonstrates impressive 

performance on various HAR benchmarks. To train 3D-CNNs effectively, large-scale datasets such 
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as Kinetics and UCF101 are commonly used. Data augmentation techniques, including random 

cropping, flipping, and temporal jittering, are applied to enhance the diversity of the training data 

and improve generalization. 

Recent advancements in 3D-CNNs include the Inflated 3D ConvNet (I3D) [228], which 

leverages pre-trained 2D CNN weights and inflates them into 3D kernels, allowing for efficient 

training and improved accuracy. Another notable architecture is the R(2+1)D network [229], which 

factorizes the 3D convolution into separate spatial and temporal convolutions, reducing 

computational complexity while maintaining performance. 

Similarly, GCNs have emerged as powerful tool for modeling structured data, such as 

human skeleton sequences in HAR tasks. By representing human joints as nodes in a graph and 

their connections as edges, GCNs can effectively capture the spatial and temporal dependencies 

between body parts. Attention mechanisms have been incorporated into the training of GCNs to 

focus on the most informative joints and time steps.  

The seminal work by Yan et al. [230] introduced the Spatial-Temporal (ST-GCN), which 

applies graph convolutions on skeleton sequences to learn both spatial and temporal patterns for 

action recognition. Subsequent works have extended the ST-GCN architecture to improve its 

representational power and robustness. For example, the Two-Stream Adaptive (2S-AGCN) [231] 

introduced an adaptive layer to capture richer dependencies between joints and a two-stream 

framework to fuse both skeleton and pose information for higher accuracy on skeleton-based HAR 

datasets.  
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On the other hand, two-stream CNNs introduced by Simonyan and Zisserman [232] have 

become a popular approach for HAR by processing both spatial (appearance) and temporal 

(motion) information separately. The spatial stream operates on individual frames to capture static 

appearance cues, while the temporal stream operates on optical flow fields to capture motion 

information. RGB frames and optical flow are utilized to train two-stream CNNs. The spatial 

stream is typically pre-trained on large-scale image datasets like ImageNet, while the optical flow 

is computed using algorithms like TV-L1 [233]. 

The outputs of both streams are then fused to make the final prediction. Variants of the two-

stream architecture have been proposed to improve its performance and efficiency. The Temporal 

Segment Network (TSN) [234] extends the two-stream framework by sparsely sampling frames 

from different video segments, enabling the network to capture a long-range temporal structure 

that helped robust performance on challenging video datasets.  

Deep learning-based methods such as CNNs and GNN have shown promising results in 

capturing the spatial and temporal dependencies of human actions. Transfer learning and domain 

adaptation techniques have been used to leverage knowledge from related domains and adapt 

models to new environments. Attention mechanisms and graph-based representations have been 

explored to focus on relevant regions and model the relationships between body parts.  

However, many datasets used for performance measurement to evaluate HAR models, and 

confusion matrix and recognition accuracy are the commonly used criteria. The confusion matrix 

indicates the detailed recognition results between each category, while the recognition accuracy is 
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the ratio of the number of correctly recognized data elements to the total number of test data 

elements. Table 8 presents the benchmarking accuracy among different datasets.  

Table 8. Recognition accuracies of methods on RGB datasets [235]. 

Methods  Hollywwod2 HMDB51 Olympic 

Sports  

UCF101 Kinetic 

Motion Vectors 

ST-GCN  

3D-Scale 

Hidden-Two Stream 

3D-ConvNets 

Deep Local 

Kinetics HAR 

Two Stream- DTPP 

I3D models 

- 

- 

68.1% 

- 

- 

- 

- 

- 

80.2% 

- 

- 

- 

78.7% 

63.5% 

75% 

- 

74.8% 

- 

- 

- 

94% 

- 

- 

- 

- 

- 

- 

86.4% 

- 

- 

97.1% 

93.2% 

95.3% 

- 

95.8% 

97.9% 

- 

81.5% 

- 

- 

- 

- 

79% 

- 

- 

 

HAR Challenges in Edge Computing 

Implementing HAR on edge devices poses several challenges due to their limited 

computational resources, memory constraints, and power consumption requirements. Traditional 

HAR approaches, such as 3D-CNNs GCN, require substantial computational resources and 

memory, making them unsuitable for deployment on resource-constrained edge devices. 

Moreover, the limited storage capacity of edge devices restricts the size of the DNN models. In 

addition, edge computing scenarios often demand low-latency and real-time responses, especially 

in applications like video surveillance and human-robot interaction, which makes it difficult to 

achieve real-time performance while maintaining high accuracy [236].  

Two-stream CNNs have emerged as an efficient and effective solution for HAR on edge 

devices to address these challenges. It consists of two separate networks: a spatial stream that 
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processes individual frames to capture appearance information and a temporal stream that operates 

on optical flow to capture motion information. By decoupling the spatial and temporal processing, 

two-stream CNNs can balance accuracy and computational efficiency well. The spatial stream of 

a two-stream CNN can be implemented using lightweight CNN architectures, such as MobileNet 

[142] or ShuffleNet [145], specifically designed for edge devices. These architectures employ 

techniques like depthwise separable convolutions and channel shuffling to reduce the 

computational complexity and model size while maintaining high accuracy. On the other hand, the 

temporal stream can be realized using efficient optical flow estimation methods, such as FlowNet 

[237] or LiteFlowNet [238], which can be optimized for real-time performance on edge devices. 

By employing previous techniques, a two-stream CNN’s the spatial and temporal streams can be 

pre-trained on large-scale action recognition datasets such as Kinetics [239] or UCF101 [240]. 

These pre-trained models can then be fine-tuned on the target HAR dataset, requiring less training 

data and computational resources than training from scratch. Transfer learning not only improves 

the accuracy of the models but also reduces the training time and computational requirements on 

edge devices. 

Related Work 

Numerous studies have investigated the implementation of HAR on edge devices using 

various approaches, and several benchmarking studies have been conducted to evaluate the 

performance of two-stream CNNs on different edge hardware platforms. Nooruddin et al. [241] 

benchmarked the inference speed and accuracy of two-stream CNNs on various edge devices, 

including Raspberry Pi, NVIDIA Jetson Nano, and Intel NCS. They found that the NVIDIA Jetson 
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Nano achieved the highest inference speed, processing up to 40 frames per second (FPS) for real-

time HAR, while the Intel NCS provided the best balance between speed and power consumption. 

Sarabu et al. [242] conducted a comprehensive benchmarking study of two-stream CNNs 

on the AMD ZCU102 FPGA board. They implemented the spatial and temporal stream CNNs 

using HLS and optimized the design for performance and resource utilization. Their FPGA 

implementation achieved an inference speed of 60 FPS, outperforming the GPU implementation 

in terms of both speed and energy efficiency.  

Sun et al. [243] benchmarked the performance of two-stream CNNs on the Google Coral 

Edge TPU, a purpose-built ASIC for edge AI applications. They quantized the models to 8-bit 

precision and deployed them on the Edge TPU using the TensorFlow Lite framework. The Edge 

TPU implementation achieved an impressive inference speed of 200 FPS, enabling real-time HAR 

with high accuracy and low latency. 

Objective 

Several embedded platforms, such as ASIC, NVIDIA Jetson Nano, Raspberry Pi, and AMD 

Kria KV260, have been utilized to accelerate the two-stream CNN on the edge. Among those, the 

AMD SoC-FPGA stands out as the only hardware that offers PL fabric coupled with an ARM-

based PS. This unique feature allows developers to reconfigure the PL fabric part and synthesize 

deeply pipelined custom accelerators for any algorithm. The SoC-FPGAs also allow exploring 

different precision optimizations to trade-off between latency, throughput, and power. 

Moreover, the most researchers and open-source efforts focus on utilizing 3D-CNN and 

GCN algorithms in order to achieve extraordinary HAR accuracy on large FPGA boards. However, 
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these algorithms have a higher number of parameters and require more compute resources, which 

is inefficient for MAC operation and on-chip (BRAM) memory units on edge FPGAs. For this 

reason, the developed accelerator for two-stream CNN-based achieved a balanced accuracy and 

optimal performance for real-time inference on edge FPGAs. As a result, an efficient 

implementation of HAR opens the possibility of having technologies like Tesla-Autopilot 

deployed on low-power computing platforms. 

The most recent work that is in line with this study is proposed by Lin et al. [244], which 

implemented an 8-bit quantized two-stream VGG7-CNN with ResNet-18 backbone on a large 

FPGA board (ZCU102) and achieved 12-15 FPS. Nevertheless, this research is constrained to; 

First, it showed one dataset result without experimenting with the network effect on smaller 

datasets. Second, the accelerator is not fully optimized for real-time performance, which implies 

that some layers are executed sequentially on the PS, causing in increased latency. Third, the model 

weights require larger boards and more available resources (ex. ZCU102), resulting in more power 

consumption.  

In this research project, we adopted the SimpleNet-PyTorch architecture [245] and 

extended it with QAT two-stream CNN. We also designed a scalable accelerator, deployed the 

inference on the edge, and benchmarked our design against several hardware platforms. Our key 

contributions are as follows:  

• Parallelized the two-stream HAR SimpleNet workload by incorporating an improved 

fusion layer [246], consolidating all convolutional layers with batch-norm and ReLU into 
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a single homogeneous five-layers structure, and utilizing Lucas-Kanade optical flow 

algorithm in training and implementation [247] on UCF101 and UCF24 datasets.  

• Developed an open-source scalable and customizable inference accelerator known as 

(FPGA-QHAR) [248] and deployed it with PYNQ image on the ZCU104 board.  

• Demonstrated that the proposed methodology achieved nearly 81% accuracy and real-time 

throughput up to 24 FPS under 187MHz with a performance up to 120 GOP/s. 

Lastly, our proposed methodology addressed these issues by balancing the network accuracy and 

accelerator performance to meet the needs for smaller edge devices in real-time applications.  

Methodology 

Network Architecture 

To achieve optimal efficiency in both resource usage and algorithm acceleration, our 

customized architecture (SimpleNet) shown in Fig. 34 employs two-stream lightweight CNNs with 

a design process of homogeneously stacking several types of layers such as Convolutional, Batch-

Normalization, and ReLU in one group layer. This approach [249] allows us to easily manage the 

number of parameters in the network while providing better max pooling information for each 

semantic level. Moreover, the homogeneous layer group makes the network compression via layer 

fusion possible [250] to meet the constraint of edge FPGAs resources.  
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Figure 34. The proposed QAT two-stream CNN architecture combining Convolutional (Conv), 

Batch-Normalization (BN), and ReUL into single five layers. Input-channel (In_Ch), Output-

Channel (O_Ch), Stride (S), and Kernel (K) determined the size of each layer. 

The CNN computations of 𝐼𝐹𝑀 and 𝑂𝐹𝑀 represent the input feature maps and the output 

feature maps, respectively, and can be mathematically expressed as shown in the equation follows: 

                                        𝑂𝐹𝑀 = ∑ ∑ 𝐼𝐹𝑀[𝑛][𝑘]𝑘∗𝑘
𝑘=1

𝑁
𝑛=1 × 𝑊[𝑛][𝑘] + 𝐵𝑖𝑎𝑠                           (5.1) 

Where 𝑁 represents the number of 𝐼𝐹𝑀 channels, 𝐾 is the kernel size, and 𝑊 is matrix weights. 

This operation is followed by BN to improve the training speed, accelerate the convergence, and 

reduce the insensitivity initialization weights of the network. It can be expressed as follows: 

                                                                 𝑥 = 𝛾
𝑂𝐹𝑀−𝜇

√𝜎2+𝜀
+ 𝛽                                                    (5.2)                

Where 𝜇 and 𝜎2 represent the mean and variance, respectively, 𝑥 denotes the output pixel after 

BN, 𝛾 refers to the scale coefficient; 𝛽 is the offset coefficient, and 𝜀 indicates a very small positive 
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number. The results are then passed through ReLU to introduces non-linearity into the network 

and learn complex relationships in the data, as in the equation follows: 

                                           𝑦 = {
𝑥, 𝑥 ≥ 0

0.1𝑥, 𝑥 < 0
         ,       𝑦 = {

𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

                                         (5.3) 

Adding a pooling layer in the network after the homogeneous group helps to reduce overfitting by 

indicating the maximum value of the selected region. After that, the 𝑂𝐹𝑀 of pooling is the 𝐼𝐹𝑀 

of the next homogeneous layer, which is expressed as in the following equation: 

                                               𝑓 = {max (𝑦1, 𝑦2, , 𝑦3, … , 𝑦𝑛), & max 𝑝𝑜𝑜𝑙𝑖𝑛𝑔                                 (5.4) 

Those operations are then followed by FC layers to perform nonlinear transformations on the 

features extracted by convolutional layers. In addition, the Full Fusion linear layer is introduced 

to minimize the computational cost of the network by combining the neurons of the spatial and 

temporal networks, while also enabling the learning of more complex data relationships.  

Subsequently, the SoftMax layer generates a probability distribution (value number 𝑍) over the 

possible classes as indicated in the equation follows: 

                                                                 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑥𝑝(𝑧𝑖)

∑ 𝑒𝑥𝑝(𝑧𝑖)𝑖
                                                (5.5) 

Finally, the cross-entropy loss function shown in Eq. 5.6, is used to measure the dissimilarity 

between the predicted probabilities and the true labels, while the Stochastic Gradient Descent 

(SGD) shown in Eq. 5.7, is computed during backpropagation to minimize the losses by updating 

the parameters of the network. 

                                    ℒ(𝜃) = − ∑ 𝑦⏞
𝑖

. log(𝑦𝑖) 𝑛
𝑖=0 | 

𝑦𝑖: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑦⃗
𝑦𝑖̂: 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑦̂

                      (5.6) 
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                                                                 𝜃 = θ − α∇𝜃𝐽(𝜃; 𝑥(𝑖), 𝑦(𝑖)                                               (5.7) 

On the other hand, the temporal stream is computed through LK-OF proposed in [247]. 

This method involves the calculation of horizontal and vertical components at 𝑡 as a derivative of 

𝑑𝑥𝑡 and 𝑑𝑦𝑡. The flow channels 𝑑𝑥 and 𝑦𝑡 of 𝐿 form consecutive frames at 2𝐿 input channels to 

reduce the processing latency. Additionally, the Lucas-Kanade method assumes that the optical 

flow points 𝑣𝑥 and 𝑣𝑦  are constant within a small window 𝑊 of size 𝑛 × 𝑛 pixels. Thus, the optical 

flow holds all pixels of the coordinates 𝑞 = (𝑘, 𝑙) to window 𝑊 as expressed in the equation 

follows: 

                                                  𝐼𝑥(𝑞)𝑣𝑥 + 𝐼𝑦(𝑞)𝑣𝑦 = −𝐼𝑡(𝑞)   ∀𝑞 = (𝑘, 𝑙) ∈ 𝑊                                (5.8) 

Where 𝐼𝑥 , 𝐼𝑦 , and 𝐼𝑡are the partial derivative of the image intensity with respect to 𝑣𝑥 , 𝑣𝑦 . However, 

to obtain a compromise solution by the least squares principle, we computed a transpose matrix of 

A as in the equation follows:  

                                       [
𝑉𝑥

𝑉𝑦
] = [

∑ 𝐼𝑥(𝑞𝑖)
2

𝑖 ∑ 𝐼𝑥(𝑞𝑖)𝑖 𝐼𝑦(𝑞𝑖)

∑ 𝐼𝑦(𝑞𝑖)𝑖 𝐼𝑥(𝑞𝑖) ∑ 𝐼𝑦(𝑞𝑖)
2

𝑖

]

−1

[
− ∑ 𝐼𝑥(𝑞𝑖)𝑖 𝐼𝑡(𝑞𝑖)

− ∑ 𝐼𝑦(𝑞𝑖)𝑖 𝐼𝑡(𝑞𝑖)
]                (5.9) 

This solves the 2 × 2 system, being computationally more efficient, and less sensitive to image 

noise than point-wise methods by assuming the flow is essentially constant in a local pixel 

neighborhood under consideration. 

Overall, the design of both spatial and temporal model has much fewer parameters (≈ 1.3M) 

and one order of magnitude less computation overhead compared to all available alternatives [245] 

with a slight decrease in accuracy. Besides, the model is compressed by QAT (8-bit) and layer 

fusion for efficient implementation on edge SoC-FPGAs. 
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Accelerator Design 

The proposed accelerator was built on top of Lin’s project [244] and was further optimized 

for real-time performance. It leveraged the PL fabric to compute and parallelize the fused 

convolutional, batch-norm, ReLU, and max pooling layers alongside the Lukas-Kanade Optical 

Flow (LK-OF) separately on the PE and the SIMD. This approach allowed us to speed up the most 

intensive multiplication matrices by utilizing dedicated buffers within the memory, DSP, and LUT 

resources. On the other side, the remaining layers in the design (FC and Linear Fusion) were 

carried out on the PS part to complete the prediction action as illustrated in Fig. 35. This HW/SW 

scheme resulted in a reduction of the output data that is needed to be read from the DDR4 by 

shared buffers.  

 

Figure 35. The mixed HW/SW accelerator for QHAR Layers on SoC-FPGA. 

The developed accelerator incorporates a scheduling mechanism that efficiently transfers 

data between inputs, weights, and outputs using the high-performance AXI interconnect and 

memory controller. This is achieved through the effective execution of up-sizing, downsizing, and 

routing operations. The accelerator receives inputs from the processor's DDR4, executes the layers, 
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and outputs the results back to the processor. The weights are then stored on-chip BRAM, allowing 

concurrent access by the partitioned PE elements in parallel, which leads to faster execution. This 

improves the external memory bandwidth and ensures simultaneous data read/write of 𝐼𝐹𝑀, 𝑂𝐹𝑀, 

and LK-OF from DDR4 to the on-chip engine and then from the on-chip engine to the compute 

unit. Lastly, equations of the FPS performed by the accelerator and the performance measurement 

in Giga Operations per second (GOP/s) are illustrated respectfully: 

                                                      𝐹𝑟𝑎𝑚𝑒 𝑃𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 (𝐹𝑃𝑆) =
𝑁𝑜.𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 (𝑠𝑒𝑐𝑜𝑛𝑑)
                       (5.10) 

                                                    𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐺𝑂𝑃/𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝐸𝑥𝑐𝑢𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑠𝑒𝑐𝑜𝑛𝑑)
 × 109

                    (5.11) 

Loop Tiling Transformation 

Loop tiling and loop unrolling are utilized as optimization techniques for the spatial 

network in our architecture, specifically for the ZCU104 board. This approach improves data 

locality and parallelizes the design. We fetched small portions of the data on BRAM by tiling the 

loop alongside the row, column, and channel directions of the 𝐼𝐹𝑀 and 𝑂𝐹𝑀 and converted them 

into a one-pixel channel. Then, the corresponding data in all the input channels were element-wise 

multiplied by filter weights and then summed together to save the resources and reduce the number 

of loop iterations, resulting in more efficient instruction scheduling. 

Host Code  

Python with PYNQ framework [35] is used to write the two-stream application driver-code 

that communicates with the hardware via Linux kernel, as shown in Fig. 36. The driver loads the 
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accelerator bitstreams and model weights into the PL part, passes input/output buffers from DDR4, 

and run the prediction actions inference when deployed on USB camera or video files. 

 

Figure 36. Software control of the accelerator via driver and operating system. 

Experimental Setup and Results 

Development Environments 

The proposed two-stream QHAR SimpleNet was trained and tested on Google Colab 

powered by Nvidia A100 GPU with PyTorch framework and FX-Graph QAT library. Vivado HLS 

synthesized the accelerator bitstream and analyzed the available resources on ZCU104 board after 

place and route.  Furthermore, experiments were conducted on two well-known action recognition 

datasets, UCF101 and UCF24, which contain 101 and 24 action classes, accordingly, and 13, 320, 

and 6500 video clips respectfully. 

Results 

Our QHAR architecture was trained from scratch on full precision and then fine-tuned 

(quantized weights) to an 8-bit unsigned integer. This approach achieved ≈79% and ≈81% 
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prediction accuracy on UCF101 and UCF24 datasets respectfully. The enhanced two-stream 

SimpleNet demonstrated higher accuracy results on smaller datasets with fewer classes. This is 

due to the fewer number of parameters (≈1.3M) and being lightweight architecture. On the other 

hand, the optimized accelerator operated at a frequency of 187MHz and achieved a performance 

of up to 120 GOP/s on ZCU104. Additionally, it was implemented with a USB camera 

demonstrating 22.5 FPS alongside the prediction classes as shown in Fig. 37. The throughput shots 

sometimes fluctuate in a range of (22 – 24.5) FPS when running the inference due to the model 

and hardware variability. We also ran the inference with video clips on ZCU104 and achieved more 

than 30 FPS as shown in Fig. 37. This phenomenon is due to the camera delay in real-time, being 

preprocessed and post-processed on the PS part. Nevertheless, the developed accelerator-based 

QHAR proved to be efficient in terms of resource usage, as shown in Table 9. Lastly, our network 

design and accelerator inference results are reported in Table 10 showing some comparisons and 

benchmarks of our QHAR model (SimNet) against the CPU, GPU, NVIDIA Jetson Nano, and the 

previous ResNet18-FPGA study. 

 

Figure 37. Action classified from videos and USB camera shown the action name and No. of FPS.  
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Table 9. Resource utilization comparison 

Device ZCU104 (our) ZCU102 (prior study) 

Flip-Flops 83k (18%) No report  

LUTs 19.1k (38%) 227.8k (81%) 

BRAM 22.6k (59%) 472 (13%) 

DSP Slices 967 (59%) 1390 (54%) 

Frequency 187 MHz 200 MHz 

 

Table 10. Benchmarking with several platforms and studies  

Platform GPU T4 CPU Intel 

Xeon ®  

Jetson Nano ZCU102 

(previous study) 

ZCU104 

(our) 

Model SimNet SimNet SimNet ResNet18 SimNet 

Dataset UCF24 UCF24 UCF24 UCF101 UCF24 

Bit width 8-bit 8-bit 8-bit 8-bit 8-bit 

M-size 5.1 MB 5.1 MB 5.1 MB 22.3 MB 5.1 MB 

Accuracy 81% 81% 81% 86% 81% 

Frequency 585MHz 2.2 GHz 1.5GHz 200MHz 187MHz 

GOP/s - - - 4.12 120 

FPS ≈51 ≈1 ≈9 ≈15 ≈24 

 

Conclusion and Future Work 

This research project introduced a scalable real-time QHAR-based hardware accelerator 

for two-stream CNN on SoC-FPGA. The proposed technique optimized SimpleNet with 

homogeneous layers and LK-OF estimation method for less computation and higher accuracy. As 

a result, a range of 1.7x - 1.9x higher throughput was achieved along with fewer network 
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parameters compared to the previous research. This optimistic end-to-end open-source framework 

[248] can be more customized to work with different boards and datasets. Future work includes 

improving our architecture accuracy and developing an open-source multimodal real-time 

accelerator for Advanced Driver Assistance System with HAR that can recognize not only driver 

actions but also actions of pedestrians, cyclists, and other vehicles on the road, similar to Tesla 

Autopilot. This work was published in the 2023 IEEE 20th International Conference on Smart 

Communities: Improving Quality of Life using AI, Robotics and IoT (HONET) [61].  
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CHAPTER SIX: QUANTIZATION-BASED TWO-TEACHERS NET ON 

THE EDGE 

Introduction 

QAT and KD, shown in Fig. 38, have emerged as two prominent approaches for CNN 

compression. QAT is a technique that simulates the quantization process during training, allowing 

the model to adapt its weights and activations to the reduced precision [108]. Additionally, the 

weights and activations of the CNN are quantized to a lower precision representation, such as 8-

bit integers, which reduces the memory footprint and computational complexity compared to the 

original 32-bit floating-point representation. By training the model with quantization in mind, QAT 

minimizes the accuracy loss caused by the quantization process, as the model learns to adjust its 

parameters to compensate for the reduced precision [111].  

 

Figure 38. Description of combining quantization and knowledge distillation within one CNN. 
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On the other hand, KD is a technique that transfers knowledge from a large, pre-trained 

teacher model to a smaller student model [20]. The key idea behind KD is to leverage the 

knowledge captured by the teacher model, which has been trained on a large dataset and has 

achieved high performance, to guide the training of the student model. In KD, the student model 

learns to mimic the behavior of the teacher model by minimizing a loss function that measures the 

discrepancy between the outputs of the two models. By doing so, the student model can benefit 

from the teacher's knowledge and achieve comparable performance with reduced computational 

complexity.  

Recent research has explored the combination of QAT and KD to achieve even higher 

compression rates and improved accuracy [251]. By integrating KD into the QAT process, the 

student model can learn from the teacher model's knowledge while being quantized, resulting in a 

compressed model that retains a significant portion of the teacher's performance. This combined 

approach has shown promising results in various CNN architectures and applications, such as 

image classification, object detection, and semantic segmentation. The process of combining QAT 

and KD typically involves the following steps:  

1. Training a large, high-performance teacher model on the target task.  

2. Applying QAT to the student model, simulating the quantization process during training.  

3. Using the pre-trained teacher model to generate soft labels or hints for the training data.  

4. Training the quantized student model using the standard loss function (e.g., cross-entropy) 

and a KD loss function (e.g., Kullback-Leibler divergence).  

5. Fine-tune the quantized student model using the target dataset to improve its performance.  
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The benefits of combining QAT and KD for CNN compression are manifold:  

1. Reduced Model Size: QAT allows for using lower-precision weights and activations, 

significantly reducing the model size compared to full-precision models.  

2. Faster Inference: Quantized models require fewer computational resources and can be 

efficiently executed on hardware with limited precision support, leading to faster inference 

times.  

3. Improved Accuracy: KD helps the student model learn from the teacher model’s 

knowledge, resulting in higher accuracy than standalone quantization.  

4. Flexibility: The combined approach can be applied to various CNN architectures and tasks, 

providing a versatile solution for model compression.  

5. Energy Efficiency: Compressed models consume less energy during inference, making 

them suitable for deployment on battery-powered edge devices. 

QAT and KD Challenges for Training and Testing 

One of the critical challenges in combining QAT and KD is the selection of appropriate 

hyperparameters. The choice of quantization bit-width, distillation temperature, and loss function 

weights can significantly impact the performance of the compressed model. To address this 

challenge, researchers have proposed various techniques for hyperparameter optimization, such as 

Bayesian optimization and reinforcement learning. These techniques automate the search for 

optimal hyperparameters, reducing the manual effort required and improving the overall 

performance of the compressed model.  
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Another important aspect of combining QAT and KD is the choice of teacher and student 

models. The teacher model should be a high-performance model trained on a large dataset and 

achieve state-of-the-art accuracy. On the other hand, the student model should be a smaller model 

with reduced computational complexity and memory footprint. The selection of the student model 

architecture is crucial, as it determines the trade-off between compression rate and accuracy.  

Related Work 

The combination of QAT and KD has demonstrated its effectiveness in reducing model 

size, accelerating inference, and maintaining high accuracy. Mishra and Marr [251] proposed 

Apprentice, a framework that combines QAT and KD to train low-precision student models called 

"quantization distillation," where the student model learns from both the teacher model's outputs 

and the intermediate feature maps. On the ImageNet dataset, using ResNet-18 as the base model, 

Apprentice achieved a 68.5% top-1 accuracy with 4-bit quantization, resulting in a high 

compression rate compared to the full-precision model.  

In addition, Zhang et al. [252] introduced Deep Mutual Learning (DML), a framework that 

combines QAT and KD where multiple student models are trained simultaneously, and they learn 

from each other through KD. On the CIFAR-100 dataset, using ResNet-32 as the base model, DML 

achieved a 70.6% top-1 accuracy with 4-bit quantization, just below the baseline full-precision 

model by 2.2%.  

Chen et al. [253] developed a hardware-aware CNN compression framework called 

AdaDeep, which combines QAT, KD, and NAS. AdaDeep automatically designs efficient CNN 

architectures for edge devices, considering the target device’s hardware constraints and energy 
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consumption. By jointly optimizing the quantization parameters, knowledge distillation process, 

and network architecture, AdaDeep achieved state-of-the-art performance on various edge devices. 

On the ImageNet dataset, using EfficientNet-B0 as the base model, AdaDeep achieved a 75.8% 

top-1 accuracy with 4-bit quantization, resulting in a 3.8x speedup on a Raspberry Pi device.  

However, it is essential to note that the benchmark results may vary depending on the 

specific hardware platform, CNN architecture, and dataset used. Therefore, it is crucial to consider 

the experimental setup, evaluation metrics, and target devices when comparing different CNN 

compression methods to ensure a fair comparison. Furthermore, the choice of quantization bit-

width, distillation technique, and compression pipeline may impact the final performance of the 

compressed model.  

Objective 

Compression techniques such as pruning, quantization, and KD are essential for deploying 

AI models on edge hardware using tools like Vitis-AI, Intel OpenVINO, Nvidia TensorRT, and 

ONNX, ensuring efficient real-time inference. However, these platforms require advanced 

methods like combining of two or three compression methods to maximize their potential. Those 

end-to-end frameworks are semi-open-source AI tools that can enhance interoperability, enabling 

the conversion and optimization of models for various hardware platforms like FPGAs, GPUs, 

CPU, and AI accelerators, ensuring efficient training and execution across diverse deployment 

environments for real-time inference. They address the challenges on resource constraints 

platforms by enabling lower bit-width operations and reducing model sizes, leading to faster 
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computation on limited on-chip memory and logic resources, improving power efficiency, and 

improving throughput for handling real-time data streams effectively.  

While Large Language Models (LLMs) [254] have garnered significant attention recently, 

CNNs remain a more suitable choice for edge computing applications. This is due CNNs are 

inherently more efficient regarding of memory and computational requirements, making them 

ideal for resource-constrained edge devices [4]. The growing focus on LLMs often overshadows 

the practical benefits of CNNs for edge computing. LLMs typically demand substantial 

computational power and memory, which can be impractical for edge devices. In contrast, CNNs 

can be efficiently quantized and pruned to fit the limited resources of edge hardware, making them 

more adaptable for real-time inference on devices with strict performance and power constraints. 

The most recent work that aligns with this idea is proposed by Kim et al. [255], a method 

that coordinates quantization and KD in three phases: Self-studying, Co-studying, and Tutoring. 

This approach aims to mitigate and regulate the effect of KD on low-bit quantized models and 

improve the initialization and adaptability of the teacher network for better knowledge transfer. 

However, this method is different from our proposed idea. First, it utilized a single-teacher network 

and focused on making the teacher more quantization-friendly through joint training phases. 

Second, it implemented quantization through a uniform quantization scheme, which is hardware-

friendly but might be efficient for some hardware types. Third, it demonstrated significant 

improvements in accuracy for low-bit quantized models but did not explore the use of multiple 

teachers for enhanced performance.  
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In this research project, we aim to develop an advanced compression technique that 

combines QAT and 2+KD to enhance the performance of CNNs on edge devices. This method 

utilized a dual-teacher knowledge distillation approach to achieve optimal class-specific accuracy 

in a quantized student model. The proposed technique addressed the current methods’ limitations 

by ensuring compatibility with edge hardware, such as FPGAs and other edge accelerators, 

ensuring a scalable integration into various AI accelerator frameworks while maintaining high 

accuracy and efficiency. Our key contributions are as follows:  

1. It employed two teacher networks to distill knowledge into the quantized INT 8-bit student 

model using cross-entropy loss, which calculate the optimal ratio of each class's knowledge 

from both teachers. 

2. Integrated the PyTorch 2.0 FX-graph library, provided a flexible and robust framework for 

more fine-tuned control over the quantization process, ensuring compatibility with a 

broader range of edge hardware, including AMD Vitis-AI, Intel OpenVINO, NVIDIA TAO 

Toolkit, and ONNX frameworks. 

3. Demonstrated the effect on image classification architectures such as EfficientNet [7], 

RegNet [256], and ConvNeXt [257] and datasets [Cifar-10 and Cifar-100] by 1% - 2% 

higher accuracy over existing solutions.  

This technique helps resource constraints, improve power efficiency, reduce latency, and enhance 

throughput, ensuring that models can perform real-time inference effectively on various edge 

devices. 

 



141 
 

Methodology 

Network Architecture 

The "Two-Teachers Net" is a novel generic CNN compression technique designed to 

enhance the performance of quantized models on edge platforms. The teacher models are trained 

on the full-precision 32-bit weights and activations, while the student model is trained using QAT 

8-bit with two teachers KD. The student model architecture is identical to the teacher models, with 

the exception of the quantized weights and activations. The training phase can be used with any 

CNN architecture and has four stages as shown in Fig. 39 to achieve a higher accuracy.  

 

Figure 39. The proposed method “Two-Teacher Net”. This method contains four stages to train 

two teachers models with one student model. Phase 1: choosing two CNN architectures (two large 

models for the two teachers, and of them should be a light version of one of them for image 

classification task. Phase 2: train all of them in full precision in separate notebook. Phase 3: train 

all of them in “two-way” one notebook by applying a modified equation through PyTorch. Phase 

4: Train only the student in 8-bit in “one-way”.  
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The knowledge distillation process is achieved through a combination of two loss 

functions:  

• Cross-entropy loss (𝐿𝐶𝐸) between student model's output and the labels.  

• Knowledge distillation loss (𝐿𝐾𝐷) between student model's and teachers' models' outputs. 

The modified cross-entropy loss function (𝐿𝑚𝑜𝑑) is calculated as follows: 

                                                             𝐿𝑚𝑜𝑑 = 𝐿𝐶𝐸 + 𝛼 ∗ 𝐿𝐾𝐷                                                    (6.1) 

Where 𝛼 is a hyperparameter that controls the strength of the knowledge distillation loss. To 

compute the two teachers' knowledge distillation best classes ratio and transfer them to the student 

model, we denoted the output of the two teachers' models as 𝑇1 and 𝑇2, respectively. Then, we 

computed the similarity between the two teachers' models using the following equation:  

                                                                𝑆 =
1

𝑁
∑ (𝑇1

𝑖 ∗ 𝑇2
𝑖)𝑁

𝑖=1                                                     (6.2) 

Where 𝑁 is the number of classes, and 𝑇1
𝑖 𝑎𝑛𝑑 𝑇2

𝑖 are the output probabilities of the 𝑖𝑡ℎ class from 

the two teachers' models, respectively. In addition, the best classes ratio R can be computed as 

follows:  

                                                                        𝑅 =
𝑆

max(𝑆)
                                                                 (6.3) 

Where max(𝑆) is the maximum similarity value across all classes. Next, we transferred the 

knowledge from the two teachers' models to the student model using the following equation: 

                                                  𝐿𝑘𝑑 = ∑ (𝑅𝑖 ∗ (𝑇1
𝑖 log(𝑆𝑖) + 𝑇2

𝑖 log(𝑆𝑖)))𝑁
𝑖=1                                (6.4) 
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Where 𝐿𝑘𝑑 is the knowledge distillation loss, 𝑅𝑖 is the best classes ratio for the 𝑖𝑡ℎ class, 𝑇1
𝑖 𝑎𝑛𝑑 𝑇2

𝑖 

are the output probabilities of the 𝑖𝑡ℎ class from the two teachers' models, respectively, and 𝑆𝑖 is 

the softmax output of the student model for the 𝑖𝑡ℎ class which can be calculated as follow: 

                                                                    𝑆𝑖 =
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑁
𝑗=1

                                                       (6.5) 

Where 𝑆𝑖 is the softmax output of the student model for the 𝑖𝑡ℎ class, 𝑧𝑖 𝑎𝑛𝑑 𝑧𝑗 are both the output 

of the student model, and 𝑁 is the number of classes. Here, the denominator 𝑧𝑗 is the sum of the 

exponentials of the outputs of the student model for all classes, which normalizes the softmax 

output to ensure it sums to 1. The final loss function for the student model is a combination of the 

cross-entropy loss and the knowledge distillation loss, as described in Eq. 6.1.  

On the other hand, the student model has to be quantized to have lower computing 

calculation through the following equation: 

𝑤𝑞 = 𝑟𝑜𝑢𝑛𝑑 (
𝑤

𝑠𝑤
) ∗ 𝑠𝑤                      (6.6)               ,                  𝑎𝑞 = 𝑟𝑜𝑢𝑛𝑑 (

𝑎

𝑠𝑎
) ∗ 𝑠𝑎             (6.7) 

Where 𝑤 and 𝑎 are the original weights and activations, 𝑠𝑤 and 𝑠𝑎 are the scaling factors, and 𝑤𝑞 

and 𝑎𝑞 are the quantized weights and activations. Moreover, a straight-through estimator (STE) is 

needed to calculation backpropagation through quantization. It can be computed as in the equation 

follows: 

                                                                           
∂L

∂x
=

∂L

∂𝑥𝑞
                                                            (6.8) 

Where 𝑥 represents the model parameters (weights or activations) and 𝑥𝑞 their quantized 

counterparts.  
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By following this comprehensive methodology, the student model learns to distill the 

knowledge from the two teachers' mode and can effectively be compressed and optimized through 

EfficientNet, RegNet, and ConvNeXt models, as shown in Fig. 40 for deployment on edge 

hardware, achieving high accuracy by almost 1% - 2% depending on the batch-size selected and 

number of epochs trained for. It is proven to be efficient and suitable for real-time image 

classification applications. 

 

Figure 40. The architectures of a. EfficinetNet, b. RegNet, and c. ConvNeXt.  

b 

c 

a 
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Framework Integration   

The Two-Teachers Net compression method is a framework-agnostic approach that enables 

seamless integration into various AI frameworks and tools, making it a versatile solution for 

deploying efficient CNNs on edge devices. The key technical points that contribute to the research 

are:  

1. The method's native implementation in PyTorch leverages the PyTorch 2.0 FX-graph mode 

for efficient 8-bit quantization of the student model, reducing memory footprint and 

computational complexity.  

2. The trained and quantized student model is exported to the ONNX format using PyTorch's 

torch.onnx.export function [258] to integrate with frameworks and tools like Vitis-AI, 

OpenVINO, TensorRT, and ONNX. 

3. The exported ONNX model can be imported into the target AI framework or tool for further 

optimization and deployment.  

Experimental Setup and Results 

Development Environments 

The proposed Two-Teachers Net compression method was trained and tested on Google 

Colab powered by Nvidia A100 GPU with PyTorch framework and FX-Graph QAT library. With 

ONNX conversion, we ensured interoperability and broad hardware compatibility by converting 

models into this standard format.  Furthermore, experiments were conducted on three architectures, 

EfficientNet, RegNet, and ConvNeXt, and tested with two well-known image classification 

datasets, Cifar-10 and Cifar-100. 
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Results 

Our method was trained from scratch with four stages on full precision, as shown in Fig. 

1, and then fine-tuned (quantized weights and activation) to an 8-bit unsigned integer for the 

student model. This approach achieved almost higher accuracy on Ciar-10 and Cifar-100 datasets 

by 1% - 2% over existing solutions. The enhanced Two-Teachers Net was trained with 50 epochs 

for Cifar-10 and 30 epochs for Cifar-100 and demonstrated higher accuracy results on RegNet and 

ConvNeXt smallest models, respectfully. These lightweight architectures are indeed needed for 

edge deployment on CPU or FPGA. We have trained these models with four stages and shown the 

accuracy and losses for each stage. All of them were trained with the EfficinetNet large model as 

the main teacher baseline model. Nevertheless, the developed method proved to be efficient and 

provided high accuracy with fewer number of trained epochs, as shown in Table 11.  

Table 11. The accuracy results when comparing two architectures keeping in that EfficinetNet 

was always the teachers one model for both of RegNet and ConvNeXt.  

Architectures  RegNet ConvNeXt 

Dataset Cifar-100 Cifar-10 

No. of training epochs  30 - 50 30 - 50 

Metric measurement  Accuracy  Loss  Accuracy Loss 

Phase 1 - Student model 32-bit 78% ≈ 1.5 85% ≈ 0.25 

Phase 2 - Student model 8-bit 95% ≈ 0.2 97.65% ≈ 0.2 

Phase 3 – Two-way: 2-KD & student 8-bit 95.7% ≈ 0.1 97.8% ≈ 0.13 

Phase 4 – One-way: 2-KD & student 8-bit 97.5% ≈ 0.05 99.1% ≈ 0.08 
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Conclusion and Future Work 

This research project introduced an efficient dual-teacher QAT compression method for 

edge inference. The proposed technique optimized different CNN architectures with homogeneous 

and parallel inline-four training phases for less computation and fewer number of epochs. As a 

result, a range of 1% - 2% higher accuracy was achieved alongside the capability of integration 

into various AI frameworks. This optimistic end-to-end open-source framework can be more 

customized to work with different architectures and datasets. Future work includes improving 

accuracy and integrating this solution for medical imaging low-cost real-time hardware for 

hospitals and clinics that can run AI medical imaging for patients to recognize several diseases, 

similar to the MONAI project. This work has been submitted to the 2024 IEEE 21st International 

Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT 

(HONET).  
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CHAPTER SEVEN: CONCLUSION AND FUTURE WORK 

In the era of AI applications, where there is a significant need for processing capacity, 

clouds and datacenters have emerged as the primary locations for data processing. As the demand 

scaling and Moore’s law is slowing down where multi-core processors approach their limits, 

heterogeneous architectures and hardware accelerators for AI and DNN are becoming increasingly 

important to meet the growing demands for processing these algorithms. FPGAs have attracted the 

interest of researchers and industry as AI hardware accelerators due to their flexibility, 

reconfigurability, energy efficiency, and potential for high performance for edge computing and 

on-device AI data processing.  

However, due to the distinct programming nature of FPGAs compared to software 

programming, application designers find them challenging to employ. Unlike other peripherals, 

FPGAs are hardware devices that may be reconfigured. Interfacing with them is more complex 

since particular communication methods are required for each design. In order to utilize FPGA 

accelerators, it is necessary to have an interface framework that can integrate applications running 

on the host with the FPGA accelerators. Vitis-AI and IntelOpenVINO are AI training and inference 

accelerators for AMD and Intel FPGAs for many applications that can execute Linux machines. 

Unlike power-hungry hardware such as GPUs, FPGAs are power-efficient and can be customized 

based on the algorithm’s layers for high performance.  

This dissertation focuses on two parts: CNN compression for improving the efficiency and 

accuracy of CNNs and FPGAs HLS accelerators designed for real-time inference. Chapter 3 

introduced a transformative contribution to the FINN project by partitioning a novel HW/SW co-
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design approaches that optimize the critical trade-off between throughput and resource utilization. 

We have developed a cutting-edge, scalable streaming dataflow architecture for training quantized 

deconvolution GAN (QDCGAN) on FPGAs, harnessing the power of an efficient deconvolution 

engine with paralleled parallelism. This accelerator design has been augmented by an end-to-end 

open-source framework that streamlines the entire training, implementation, state-space 

exploration, and inference scaling process using Vivado HLS for AMD SoC-FPGAs. By providing 

a complete toolchain for GAN acceleration on edge devices, our work has broken new ground in 

deploying generative CNN-based models in resource-constrained environments, unlocking many 

new applications in domains such as image synthesis, data augmentation, and anomaly detection. 

In Chapter 4, we have introduced a highly efficient and scalable SoC-FPGA CNN-based 

accelerator design optimized of performance and resource utilization. Our innovative template 

leverages advanced techniques like loop tiling transformation and dataflow modeling to convert 

convolutional and fully connected layers into vector multiplication between input and output 

feature maps. This results in a single, highly optimized compute unit on-chip. By analyzing the 

computational workload, data dependency, and external memory bandwidth, our accelerator has 

achieved a peak performance of 230 GOP/s on ZYNQ boards, setting a new standard for CNN 

acceleration on edge devices. This groundbreaking work has opened a new implication for the 

deployment of high-performance computer vision models in various applications, from 

autonomous vehicles and robotics to intelligent surveillance systems. 

In Chapter 5, we addressed the unique challenges of HAR on edge devices where we have 

developed an end-to-end HAR scalable HW/SW accelerator co-design based on an enhanced 8-bit 

quantized Two-Stream SimpleNet-PyTorch CNN architecture. Our approach fused convolutional, 
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batch-norm, and ReLU operations into a homogeneous layer. It leveraged the cutting-edge Lucas-

Kanade motion flow method to enable a high parallelism accelerator design optimized for on-chip 

engine computing. Our accelerator has shattered previous benchmarks by achieving an exceptional 

81% prediction accuracy with an approximately 24 FPS real-time inference throughput at 187MHz 

on ZCU104, outperforming prior research by an astonishing 1.7x - 1.9x. This work set a new 

boundary in deploying HAR models in real-time surveillance, robotics, and human-computer 

interaction applications on edge devices. 

 In Chapter 6, this research has introduced a novel CNN compression technique called 

"Two-Teachers Net," which utilizes PyTorch FX-graph mode to train an 8-bit quantized student 

model using knowledge distillation from two teacher models. This innovative method improves 

the accuracy of the compressed model by 1%-2% compared to existing solutions for edge 

platforms. It can seamlessly integrated into AI hardware and software optimization toolchains 

without architectural adjustments. By advancing the state-of-the-art in model compression, our 

work has opened up new possibilities for deploying high-accuracy CNNs on low-power edge 

devices, enabling a wide range of applications in fields such as healthcare, smart cities, and 

industrial automation. 

Future Work 

One particularly promising direction for future work is the design of efficient and scalable 

HLS accelerators for Vision in Transformer (ViT) models, which have recently gained significant 

attention due to their exceptional performance in natural language processing and vision tasks, 

such as image classification, detection, segmentation without a specific annotated data or labels. 

Designing HLS accelerators for ViT presents a unique set of challenges due to their immense size 
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and complexity. ViT such as DINOv2 [259], SAM (Segment Anything) [260], and EfficientViT 

[261], have billions of parameters and require substantial computational resources and memory 

bandwidth, making their deployment on ZYNQ SoC-FPGA and resource-constrained edge devices 

a challenging task.  

To address these challenges, we should develop more optimized compression methods and 

create a novel HW/SW co-design approach that optimize the trade-off between performance, 

power consumption, and resource utilization on ZYNQ architecture while exploiting the inherent 

parallelism and sparsity of ViTs. One promising approach to designing efficient HLS accelerators 

for ViTs is to leverage the principles of dataflow architecture and fine-grained parallelism. By 

decomposing the ViTs into smaller, more manageable sub-modules, such as self-attention layers, 

feed-forward networks, and embedding layers, researchers can develop specialized hardware 

accelerators that exploit the unique characteristics of each sub-module. For example, the self-

attention mechanism, which is a core component of a transformer, can be accelerated using a 

systolic array architecture that enables efficient matrix multiplication and data reuse. Similarly, the 

feed-forward networks can be accelerated using a combination of parallel processing elements and 

on-chip memory hierarchies that minimize data movement and maximize data locality.  

To further optimize the performance and efficiency of HLS accelerators for ViTs, 

researchers should investigate advanced quantization techniques that reduce the bit-width of 

weights and activations without compromising model accuracy. One example of such a model is 

the one proposed by Microsoft (BitNet-model [262]) leveraging newer quantization and mixed-

precision method results in 1.58-bit only for the entire model, where different sub-modules are 

quantized only to a minimum of 4-bit due to sensitivity errors. This can significantly reduce the 
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memory footprint and computational complexity while maintaining high accuracy. Another critical 

aspect of designing efficient HLS accelerators for ViTs is the development of flexible and scalable 

architectures that can adapt to different ViTs configurations and target platforms. Future research 

should focus on creating modular and parameterizable HLS templates that allow for rapidly 

exploring different hardware architectures and design trade-offs.  

To facilitate the deployment and inference of ViTs on FPGA, future research should also 

investigate the integration of HLS accelerators with existing AI frameworks and toolchains, such 

as TensorFlow, PyTorch, and ONNX. By developing standardized interfaces and APIs that allow 

for the seamless integration of HLS accelerators with these frameworks, researchers can enable 

the rapid development and deployment of ViTs-based applications on FPGA. Finally, the 

challenges of real-time inference for ViT on edge devices are critical at the current hardware 

limitation. By developing efficient scheduling algorithms and memory management techniques 

that enable the dynamic allocation of hardware resources based on the current workload and 

environmental conditions, researchers can ensure that ViTs can adapt to changing input data and 

user requirements in real-time.  

In conclusion, designing efficient and scalable HLS accelerators for ViTs is a complex and 

multifaceted challenge that requires a holistic approach spanning hardware architecture, software 

algorithms, and deployment frameworks. By leveraging state-of-the-art techniques in dataflow 

architecture, compression, HW-SW co-design, and real-time inference, researchers can unlock the 

full potential of ViTs on FPGA and enable a new generation of intelligent, responsive, and adaptive 

edge computing systems. Future work in this area has the potential to revolutionize the way we 

interact with and benefit from AI technologies, ultimately leading to more efficient, effective, and 
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user-friendly edge computing solutions that can transform a wide range of industries and 

applications. 
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