
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

Spring 1979

An Application of a Single Chip Slave Microcomputer as an An Application of a Single Chip Slave Microcomputer as an

Intelligent Interface Intelligent Interface

Thomas J. Riordan
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Riordan, Thomas J., "An Application of a Single Chip Slave Microcomputer as an Intelligent Interface"
(1979). Retrospective Theses and Dissertations. 443.
https://stars.library.ucf.edu/rtd/443

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/443?utm_source=stars.library.ucf.edu%2Frtd%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages

AN APPUCATION OF A SINGLE CHIP
SLAVE MICROCOMPUTER AS AN INTELLIGENT INTERFACE

BY

THOHAS JANES RIORDAN
B.S.E., Florida Technological University, 1978

THESIS

Submitted in partial fulfillment of the
requirements for the degree of }laster of Sciencein
Engineering in the Graduate Studies Program of the

College of Engineering of University of Central Florida
at Orlando, Florida

Spring Quarter
1979

ABSTRACT

This thesis describes the operation of an intelligent con­

troller existing between a computer system and a peripheral. The

intelligent controller is implemented with an INTEL universal peri­

pheral interface, UPI-41, single chip slave microcomputer. The

interfaces between the controller and the computer system, and the

controller and the peripheral are described in detail, as are the

firmware and internal facilities of the controller itself. An

evaluation of system operation is presented and, finally, the organ­

izational philosophy of the system is discussed. Located within

the appendicies are a system schematic and listing of the controller

program.

TO : DR. HERBERT C. TCMLE

ACKNOWLEDGEMENT

The author wishes to thank Mr. Albert Marshal at the Orlando

Naval Training Center for his involvement in the preparation of this

~~esis. A special thanks goes to Mrs. Doug Caldes for her efforts

in typing the final draft.

iti

TABLE OF CONTENTS

ACKNOWLEDGMENT. • • • • •
LIST OF FIGURES •

I. INTRODUCTION.
II. SYSTEM DESCRIPTION.

SBC 80/20 to Controller Interface • .
Controller to ADM-3A Interface. . •
Control Swit~~es to Controller Interface. • .

III. UPI-41 SINGLE CHIP MICROOJMPUTER. •
IV. UPI-41 OONTROL PROGRAM. •

Initialization Procedures
Data Reception and Storage.
Data Decode and Message Transndssion.

l

v. SYSTEM EVALUATION
VI. OONCLUSION.

APPENDIX 1 CONTROLLER SCHEMATIC . •
APPENDIX 2 UPI-41 CONTROL PROGRAM •
APPENDIX 3 ALTERNATE BAUD RATE GENERATION S CHIDIE. •
LIST OF REFERENCES ••••••••••••

iv

iii

v

1

2

3
9

14

16

20

20
23
29

37

43

44

46

54

63

LIST OF FIGURES

1. System Block Diagram. 2

2. SBC 80/20 to Controller - Data Transfer Connections 4

3. SBC 80/20 to Controller - Clock Connections 5

4. SBC 80/20 to UPI-41 Data Byte 6

5. SBC 80/20 Input Source Configuration. . 9

6. Serial Transmission Character 10

7. ADM-3A Screen Use • 12

8. Character String Transmitted to ADM-3A. 13

9. Control Switches to Controller Interface .. 14

10. UPI-41 Single Chip Microcomputer Block Diagram .. 16

11. UPI-41 Control Program Memory Map • 17

12. UPI -41 RAM Memory Map . • • • 19

13a. UPI-41 Control Program Flowchart - Processing Loop. 21

13b. UPI-41 Control Program Flowchart - Interrupt Service
Routine 22

14. Interrupt Service Routine Flowchart 24

15. Fixed Base FIFO Operation • 26

16. Moving Base FIFO Operation. • 28

17. Register Bank 1 Map 29

18. Register Bank 0 Hap . • 30

19. Data Access Segment Flowchart ••••••• 31

20. UPI-41 Instruction Cycle. • 34

vi

21. IJPI-41 Character Transmission Subroutine. 36

A3-l. UPI-41 Timer/ Counter. 56

A3-2. Rate Mismatch Transmission. 59

A3-3. Serial Transmission Misread . . . 0 60

I. INTRODUC!ION

This thesis describes the hardware and software of an intel-

ligent controller system. The controller regulates communication

between a microcomputer system, an Intel SBC 80/20 (1), a CRT dis-

play, the Lear Seigler ADM-3A (2,3), and a set of control switches.

Controller components include:

1. An Intel Universal Programmable Interface, UPI-41, single chip
microcomputer (4)

2. A 7474 Dual D Flip Flop (5)

3. A 9602 Dual One Shot (6)

4. And a 75188 RS-232C Inverting Line Driver (7)

' The system schematic and the UPI-41 control program are located in

appendices 1 and 2 respectively.

The system description is divided into four sections: in

section II, a functional summary and a component interface descrip-

tion are presented. Performance criteria are also established in

this section. Section III describes the facilities available within

the UPI-41 and explains their use in the present application. Sec-

tion IV describes the UPI-41 control program and section V evaluates

the system with respect to assumption validity, performance cri-

teria, and maximum sys tern capabilities. Finally, in the conclusion

a discussion of the general organizational philosophy of the system

is presented.

II. SYSTEM DESCRIPTION

The function of the intelligent controller is to receive

parallel data from the SBC 80/20, decode the data, and cause a

message to appear on the ADM-3A screen based upon the content of

the data received. The control switch settings also affect con-

troller operation, but only secondarily.

A block diagram showing the system component relationships

appears in figure 1.

SBC 80/20 Intelligent ADM-3A
\ Controller

~ _).
\ \
I I
r f

~ -............;::..

Control
Switches

Fig. 1. System Block Diagram

The following describes the three component interfaces

shown in figure 1: SBC 80/20 to controller, controller to ADM-3A,

and control switches to controller.

SBC 80/20 To Controller Interface

3

The SBC 80/20 to controller interface is comprised of three

sets of connections. The first set, consisting of 8 data lines and

1 control line, are the data transfer connections. The second set

consists of the clock connections, while the third set consists of

only one connection, the initialization connection.

Data Transfer Connections

The 8 data lines of the data transfer set connect an 8 bit

output port on the SBC 80/20 to the 8 bit Interface Register of the

UPI-41. There are six I/O ports on the SBC 80/20 numbered 1 through

6 (1). These ports are divided into the Group A ports, 1- 3, and

the Group B ports, 4- 6. Each port group corresponds to a single

8255 Programmable Peripheral Interface, PPI (8). Port 4 of Group B

is programmed as an output port and used for the SBC 80/20 to UPI-41

data connection.

To transmit data to the UPI-41, the SBC 80/20 places data on

port 4 and sends a Data-Available pulse to the UPI-41 over the con­

trol line. The Data Available pulse is software generated and is

transmdtted through port 3 of the Group A 8255. The length of the

Data Available pulse is set by the time required to execute the in­

structions necessary to change the logic level of the control line

4
twice, first from high to low, then from low to high. For the SBC

80/20 this results in a 10 microsecond pulse. The maximum pulse

length to the UPI-41 is set at twice the instruction cycle length,

or 6.5 microseconds (4); therefore, the 10 microsecond Data Avail-

able pulse is sent to the one shot within the controller where it

is shortened to 1 microsecond. The 1 microsecond pulse from the

one shot supplies the WR input to the UPI-41. On the rising edge

of this pulse the data on the SBC 80/20 output port is latChed into

the UPI-41 Interface Register. SBC 80/20 to controller data trans-

fer connections are illustrated in figure 2.

SBC 80/20 Controller

I
Group A

Port 1 One One Shot
Shot

Port 2 UPI-41
.. _., -Port 3 ,. .,. WR

-DB7

Group B
-\

4 Port I ~
Port 5 Interface/

Register ~ DBO
Port 6

Fig. 2. SBC 80/20 to controller

5

Each byte of data transferred from the SBC 80/20 to the

UPI-41 contains two kinds of information encoded into separate

fields within the byte. The three most signi'ficant bits contain a

source identifier encoded in straight binary, and the four least

significant bits contain a message identifier, also in straight bi-

nary, see figure 3.

Most Significant
Bit

Bit four is not used.

Least Significant
Bit

1Bit71 I I IBitO I

Source
Identifier

Unused Message
Identifier

Fig. 3. SBC 80/20 to UPI-41 data byte

The rate of data transfer from the SBC 80/20 to the control-

ler can be characterized by three separate data transfer rates of

which the last two will be of interest. The first two rates are

determined by the SBC 80/20 input configuration, figure 4, while

the third is determined by the input configuration in combination

with the SBC 80/20 data processing rate.

The SBC 80/20 input configuration consists of 5 input

sources, where each source contains a data latch and a service re-

quest line. When data is latched into one of the sources, the SBC

80/20 receives a service request signal from that source. For each

Source 1

1

Source 2

2

Source 3

3

Source 4

4

Source 5

5

Service Request 1

Service Request 2

SBC 80/20

Service Request 3

Service Request 4

Service Request 5

Fig. 4. SBC 80/20 input snurce configuration

6

Controller

7

service request that the SBC 80/20 responds to, a data byte will be

sent to the controller.

The first data transfer rate is the average transfer rate

and occurs when the 5 sources are initiating service requests at

their nominal rate. The second data transfer rate is a peak average

rate, and occurs when all 5 sources are initiating service requests

at their maximum rate of 12 per second. This condition results in

a peak average rate of 12 x 5, or 60 transfers per second. The

third data transfer rate is the maximum rate, and occurs anytime

there are simultaneous service requests to the SBC 80/20. This

rate is determined by the processing rate of the SBC 80/20. Analy­

sis using : (1) real time emulation under control of Intel's In

Circuit Emulator, ICE-80 (9,10), (2) tabulation of instructions

execut,~d and their execution time (11), and (3) experimental deter­

mination (11), indicates that the SBC 80/20 processing rate is ap­

proximately 200 inputs per second.

As indicated before, the peak average transfer rate of 60

transfers per second, and the maximum transfer rate of 200 trans­

fers per second are the relevant quantities characterizing the data

transfer interface.

To keep up with the SBC 80/20 over extended periods, the

processing rate of the UPI-41 must equal or exceed the SBC 80/20

peak average transfer rate, and to keep up with the SBC 80/20 when

simultaneous service requests have occured, the reception rate of

the UPI-41 must equal or exceed the SBC 80/20 maximum transfer rate.

8

The requirement on the 1JPI-41 processing rate will be used

in the sequel to determine the baud rate used in the controller to

ADM-3A interface, while the requirement on the UPI-41 reception

rate will be used to establish the necessity of a data queue

within the UPI-41.

One final point is that there are no provisions for the UPI-

41 to indicate that it is ready to accept a data transfer from the

SBC 80/20. Thus, the data queue mentioned above will be filled by

an interrupt driven procedure. This technique will assure that a

data byte has been removed from the Interface Register before an

additional data transfer can occur.

Clock Connections

The clock connections supply the UPI-41 clock inputs, X1 and

X2. A single line from the SBC 80/20 supplies the controller with

a 9.216 megahertz clock which the SBC 80/20 makes available as the

BCLK output. Within the controller, the BCLK frequency is divided

in half by a D flip flop within the 7474. This division is neces-

sary to bring the BCLK frequency within the 1 to 6 megahertz op-

erating range of the UPI-41 (4). The Q and Q outputs of this flip

flop supply the UPI-41 inputs, Xl and X2, with a 180° out of phase

4.608 megahertz clock. While the UPI-41 is capable of generating

.
its uwn clock by connecting a crystal to the X1 and X2 inputs, the

BCLK frequency is used since the standard asynchronous communica-

tion frequencies can be derived from it. The clock connections are

shown in figure 5.

9

SBC 80/20 Controller

9.216 MHz 4.608
UPI-41

BLCK - Q
MHz -,. D - Xl

- 4. 608 }ffi~
Q - X2

Fig. 5. SBC 80/20 to controller - clock connections

Initialization Connection

\The initilization connection is between the INIT output of

the SBC 80/20 and the RESET input of the UPI-41. A low going pulse

on this line causes the control program of the UPI-41 to begin exe-

cution at location 0.

Controller to ADM-3A Interface

The controller to ADM-3A interface consists of a single line

which originates from line 0 of port 1 on the UPI-41, passes through

the 75188 inverting line driver, and terminates on the Receive Data,

RXD, input of the ADM-3A. The line driver converts the TTL output

of port 1, 0 - 5 volts, into RS-232C logic levels of+ 12 volts.

Information is transmitted from the UPI-41 to the ADM-3A ·

serially using 7 bit ASCII code under the RS-232C communication

10

protocol (2). For this application, the number of bits per charac-

ter has been minimized by using a single stop bit and no parity bit.

For a given serial transmission rate this configuration will result

in the fastest possible character transmission tim~. This time is

an important consideration, as each parallel byte received by the

controller from the SBC 80/20 will require a 22 character

message to be transmitted. With the single start bit, the 9 bit

serial character appears as shown in figure 6.

I I 1 I 13 I 4 I
~ •

2 5 6 7 Time

Marking
I I ' I

Ma k. ~ Start Data Stop r 1ng
Bit Bits Bit

Fig. 6. Serial transmission character

Each data byte received by the UPI-41, except as noted in

the next section, causes a string of 9 bit characters to be sent

from the UPI-41 to the AD}~3A, a 24 line by 80 character CRT dis-

play.

The function of the ADM-3A is to provide three kinds of in-

formation concerning the SBC 80/20 inputs to an observer. The ADM-

3A displays a message, indicates the SBC 80/20 source corresponding

to the message, and reflec~s the order of input occurrence. The

message is indicated by the characters displayed on the screen.

The source is indicated by dividing the ADM-3A screen into 5 columns

of equal width, with the first column reserved for source 1 messages,

the second column for source 2 messages, and so on for the five

11

sources. The order of inputs is indicated py scrolling the display

1 line each time a message is displayed.

For a screen width of 80 characters, and not allowing an

overlap of columns, the message field for each source is limited to

the integer portion of 80/5, or 16 characters. The ADM-3A screen

use is illustrated in figure 7.

To implement the function of the ADM-3A as described above

requires that 22 characters be sent to the ADM-3A for each SBC 80/20

to controller transfer. The 22 characters are sent in 3 groups:

a cursor control group, a message group, and a display control group.

The first group sent, the cursor control group, contains four

characters which cause the cursor of the ADM-3A to position itself

at the beginning of one of the five message columns. The first two

centre\: characters "escape 11 and "equals", activate the ADM-3A cursor

positioning logic, while the next two characters are interpreted as

the X and Y coordinates of the new cursor position, respectively.

The Y coordinate sent is always the same, 037H, and selects the bot­

tom line of the display. The X coordinate is determined by the

SBC 80/20 input source.

The second group sent, the message group, contains 16 charac­

ters. These characters will be printed on the screen of the ADM-3A

in the message field whose beginning was established by the cursor

positioning control group.

The third group sent, the display control group, contains

the remaining 2 characters. These characters, a carriage retu~

and line feed, cause the display to scroll up one line in prepara-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Source
1

Column

Source
2

Column

Source
3

Column

Source
4

Column

19 r
20 Message 1
21 Message
22 Message I
23 I Message I

Source
5

Column

24 _____________ 1 _________ ~1 ________ _.1 __________ LI __ M_es_s_a~.g~~e __ ~

16
characters ~

80 characters

Fig. 7. ADM-3A screen use
•

12

13

tion for the next control group 1 sequence.

The complete 22 character string appears as shown in figure

8.

1 2 3 4 1 16 1 2

I ESC I 137H I ~ • • • I nata I I ODH I OAR l
Control }1essage Control
Group 1 Group Group 2

Fig. 8. Character string transmitted to ADM-3A

The final aspect of the controller to ADM-3A interface is the

serial transndssion rate to be used. Having now established (1)

the number of characters sent by the controller to the AD~3A per

SBC 80/20 input, 22, the number of serial bits per character, 9,

~~d (3) the UPI-41 processing rate requirement, 60 transfers/sec,

a minimum serial transmission, or baud, rate can be computed as

22 characters/SBC 80/20 transfer x
minimum baud rate = 9 bits/character x (1)

60 SBC 80/20 transfers/second

or 11,880 bits per second. The next highest, indeed the highest,

baud rate at which the ADM-3A can receive data is 19,200 baud. This

value must necessarily be chosen as the data transmission rate.

14

Control Switches to Controller Interface

The control switches to controller interface is a 5 line

connection between 5 control switch outputs and the 5 least signi-

ficant inputs of port 2 on the UPI-41. The design~of port 2 on the

UPI-41 is such that if nothing is connected to a port line, the line

will read as a logic one, whereas, if the line is grounded through

a lk resistor, the port will read a logic zero (3). The control

switch to controller connections are shown in figure 9.

UPI-41

Di~
lK

4 Source 5 control _ Abort
- lK
Di~~ Source 4 control _ Abort 3

lK

Source 3 2 Port 1
lK

Source 2 1
lK

Source 1

Fig. 9. Control switches to controller interface

During the processing of a d~ta byte by the UPI-41, the bi-

nary source identifier is translated into a linear select code

which is then compared with the switch settings on port 2. If the

switch corresponding to the source identifier is set in the abort

15
position, a logic 0 is present and a message will not be sent.

This is the exception referred to in the controller to ADM-3A inter­

face description. If the switch is set in the display position a

logic 1 will be present and a message will be sent.

This concludes the overall system description. The next two

sections will describe the principal device within the intelligent

controller, the UPI-41 single chip microcomputer.

III. lJPI-41 SINGLE CHIP MICROCOMPUTER

The UPI-41 single chip microcomputer provides the intel1i-

gence of the intelligent controller. The block diagram below illus-

trates the facilities available within the UPI-41.

Interface
Register

CPU

Program
Memory

1024 X 8

8 Bit
Timer

Data
Memory
~

64 X 8

Port 1

Port 2

Fig. 10. UPI-41 single chip microcomputer block diagram

8

8

18

RAM within the UPI-41 serves three purposes: it contains

the registers, the subroutine and interrupt stack, and the variable

data storage locations. The distribution of the 64 RAM locations

between these three functions is shown in figure 12.

The registers in bank 0 are designated RO-R7, while those in

bank 1 are designated RO'-R7'. Only one register bank at a time

can be addressed. Bank selection is accomplished by executing a

special select register bank X, SEL RBX, instruction where X is

either 0 or 1. The registers of bank 0 are used for data processing

and message transmission, Y.Thile those of bank 1 are used for queue

control.

The UPI-41 contains a rather sophisticated timer which was

evaluated for use as the bit interval generator for UPI-41 to AD~3A

seri2:., transmission. As several difficulties were encountered, see

appendix 3, the use of the timer, while representing a possible area

for future research, was rejected in favor of a software timing

approach. The software timing routine will be described, along

with the rest of the UPI-41 control program, in the next section.

63

32
31

24
23

8
7

0

Variable
Data

Storage

Register Bank 1

Subroutine and
Interrupt Stack

Register Bank 0

Data Queue

Data reception, storage, and
removal control

19

Subroutine and interrupt calls

Data decode and message trans­
mission

Fig. 12. UPI-41 RAM memory map

IV. lJPI-41 CONTROL PROGRAM

The UPI-41 program is written in MCS-48/UPI-41 assembly

language (12). The program was assembled using a cross assembler

(13) operating on an Intel Microcomputer Development System, MDS-

800 (14,15). The machine code was burned into the EPROM program

memory of the UPI-41 (4) using an Intel Universal Prom Programmer

(16) and the Universal Prom }fapper Software (17). The assembly of

the program and the burning of the EPROM were done under control of

the Intel System Implementation Supervisor, ISIS II (18), operating

from an Intel Dual Floppy Disk Drive (19).

, The program description is divided into three parts:

1. Initialization procedures

2. Data reception and storage

3. Data decode and message transmission

The program listing is located in appendix 2, a flow chart appears

in figure 13a and 13b.

Initialization Procedures

The first section of the UPI-41 program performs functions

which are necessary prior to data reception. These functions are

the initialization of registers and the initialization of the ADM-3A

screen. The values placed in the various registers will be explained

as they are encountered within the program. The screen initializa-

Initialize
A. constants
B. cursor

Data
in

Queue?

Yes

Fetch Queue Data
Decrement Queue Status

Decode Identifier

No

No No

Position
Cursor

Decode
Message

Disable
Interrupts

Send Character Bit

Enable
Interrupts

Fig. 13a. UPI-41 control program flowchart - processing loop

21

Interrupt

in
Queue?

Yes

Fetch
Data

Put Data
In Queue

Increment
Queue

Status

Return

Fig. 13b. UPI-41 control program flowchart - interrupt
service routine

22

23

tion procedure consists of clearing the screen and positioning the

cursor in the bottom left hand corner. The screen is cleared by

transndtting a special character, OlAH, to the ADM-3A (3), while

the cursor is positioned using the 4 character cursor positioning

sequence described previously in the controller to ADM-3A inter-

face section.

As the final step in the initialization procedures, the UP!-

41 enables itself to data reception by outputting a logic zero to

port 2 line 7. This port line is connected to the UPI-41 chip se-

lect, CS, input as shown in the schematic in appendix 1. Since all

port lines are in the logic high state following a system reset,

UPI-41 input is disabled until the output instruction is executed.

Data Reception and Storage

When data is written into the UPI-41 interface register by

the SBC 80/20, an interrupt request is generated. Upon recognition

of the interrupt, the interrupt vector jump at locations 3 and 4 in

program memory is executed, and the interrupt service routine, lines

118 through 134 in appendix 2, is entered. The interrupt routine

inputs the data from the interface register and places the data in

a queue. A flowchart of the interrupt service routine appears in

figure 14.

It was pointed out in the section describing the SBC 80/20

to controller interface that the UPI-41 reception rate requirement

would necessitate the data queue. The necessity for the queue can

be shown as follows:

Interrupt

1) Select Register Bank 1
2) Save accumulator

Yes Queue
Full

?

1) Increment status register
2) Input data from interface regis­

ter
3) Store data at "Put Pointer"

Load "Put Pointer" with 1
less than stack base

Increment Put Pointer

Restore Accumulator

Return
and

Restore Status

No

Fig. 14. Interrupt routine flowchart

24

25

Unless the 19,200 baud rate can meet the UPI-41 reception rate re-

quirement as well as the processing rate requirement, it is neces-

sary to provide a data queue to prevent data from being overwritten

in the interface register. For this condition to be met, the 19,200

baud rate must be proportionately greater than the 11,800 minimum

baud rate by at least the proportion of the reception rate require-

ment to the processing rate requirement, or

19,200 ~ 200
11,800 = 60

as this is not true, a queue must be maintained.

(2)

To meet the storage requirements a First In First Out, or

FIFO, stack is implemented in the variable data storage area of the

RAM memory. See figure 12. A FIFO stack allows data to be re-

treived so that order of entry is preserved. The operation of a

FIFO stack can be conceptualized by consi~ering a storage mechanism

where data inputs are stacked one on top of the other as they arrive,

and where data removal is accomplished by pulling from the bottom.

As an entry is removed, all remaining entries move down one location.

This operation is illustrated in figure 15.

The problem with this implemention is in moving the remaining

data entries down. For N remaining inputs, the operation requires

2N memory accesses and 5N program steps as shown below:

1. Increment pointer

2. Load data byte - first memory access

3. Decrement pointer

4. Store data byte - second memory access

5. Increment pointer

26

Put----..

Input N+ 1 Pu t--+-

Input N Input N + 1

Input N

Input 2
I I Input I I 1
'- --Queue Base Input 2

Fig. 15. Fixed base FIFO operation

A more efficient algorithm uses a "get data" pointer as well

as the: "put data" pointer used in the implementation above. The
\

get data pointer allows the "bottom" of the stack to move upward as

data is removed from the stack. This eliminates the necessity of

moving each of the remaining inputs do~~. Instead, the get data

pointer is incremented once each time data is removed. The put

data pointer always identifies the next location available for data

storage and the get data pointer identifies the location of the next

value to be removed. The only problem with this implementation is

that unless data memory is infinitely long, storage locations will

run out at some point. This condition being tmacceptable, a ''top-

of-stack" must be defined, and as the pointers reach the top they

must wraparound. In this application the top-of-stack has been .

made coincident with the top of RAM, making the last location ad-

27

dress 63 and giving a stack size of (63 - 32) +1, or 32 locations.

As each pointer reaches location 63 it is returned to location 32

instead of being incremented further. Implemented in this manner,

the number of steps required for a data removal is independent of

N and, for the UPI-41, has a maximum value of 5 as indicated by

lines 85 through 89 of the program listing.

For either implementation some way of determining when the

stack is full must be available. For the two pointer implementa-

tion, the queue full condition is easily detected by maintaining a

queue status value which indicates how many entries are presently

on the stack. If a check of the queue status register indicates

that the queue is full additional data must be rejected to avoid

overwriting of the earliest entry with the newest entry. Since the

UPI-41 has been designed to meet the processing rate requirement,

it follows that the maximum stack usage must be less than or equal

to the number of SBC 80/20 input sources, or 5; therefore, the queue

full condition can never occur in this application. Use of the

queue status value in this application, then, is limited to deter-

mdning when data is available on the stack. Figure 16 illustrates

the operation of the moving base FIFO stack.

The put and get data pointers, the queue status, and the

constants used to determine the pointer wraparound and queue full

conditions are located in register bank 1. Also, since the data

reception routine is entered in response to an interrupt, another

bank 1 register is allocated for accumulator storage. Finally, one

register is used for temporary dat~ byte storage during computations.

Put &
Get

Get

Put

~

Empty

~ 3

•
•
•

3

33 Entries
63

Full

3
Put

Input 33 32 Ge

...
t,.

3 Entries

Empty

32 Removals

'

Empty

~,

Input 33

3

63

32

2 Removals

Empty

Other
Operations

Fig. 16. Moving base FIFO operation

28

3

Registers 0 and 1 are the only locations which can serve as

pointers into the variable data storage area; therefore, the get

and put data pointers are defined as the contents of registers 0

and 1 respectively, the other locations are assigned arbitrarily

as per figure 17.

29

Register 7' Temporary Storage

Register 6' Queue Status Con. = 224

Register 5' Wraparound Constant = 193

Register 4' Unused

Register 3' Accumulator Storage

Register 2' Queue Status

Register 1' Put Data Pointer

Register 0' Get Data Pointer

Fig. 17. Register bank 1 map

Data Decode and Message Transmission

Once data is placed in the queue by the interrupt service

routine, a check of the queue status register, lines 80 and 81 of

the program listing, will indicate that data is available for pro-

cessing. The program will then enter the main program loop, line

82, where the data decode and message transmission function begins.

This section of the program can be divided into 3 segments:

1. Data access

2. Source processing

3. Message processing

Data Access

The function of the data access segment is to remove a data

byte from the queue and perform the transition between register

bank 1 operation and register bank 0 operation. The data removal

30

steps are reminiscent of the steps performed in the interrupt rou-

tine, while the bank transition is accomplished by placing the data

in the accumulator and then selecting the new register bank. A

flowchart is shown in figure 18.

Register bank 0 is used for the remainder of the program.

All locations within this bank are assigned arbitrarily as shown in

figure 19.

Register 7 Data Byte

Register 6 Message Length Constant

Register 5 Binary Source Identifier

Register 4 Linear Select Source Identifier

Register 3 l-iessage Identifier

~~gister 2 Relay Counter

Register 1 Unused

Register 0 Serial Transmission Counter

Fig. 19. Register bank 0 map

Source Processing

The function of the source processing segment, lines 93

through 98, is to use the source identifier portion of the data

byte to (1) determine whether a message transmission is desired

and (2) position the cursor at the proper place on the ADM-3A

screen. The source processing segment calls three subroutines;

1-lll.SK, LOCSET, and TAB.

Fetch Data at Get Pointer

Place Data in Temporary
Storage Register

Decrement Queue Status
Register

"Get
Pointer"

Vlraparound
?

Yes

Load Get Pointer With
1 Less Than Stack Base

Increment Get Pointer

No

Retrieve Data From
Temporary Storage Register

Select Register Bank 0

.~

Fig. 18. Data access segment flowchart

31

32

Subroutine MASK, lines 144 through 156, coverts the binary

source identifier into the linear select identifier through the use

of the lookup table located at ~KDAT, line 143. The subroutine

then performs the comparison with the port 2 control switch lines

and sets a flag according to the result.

Subroutine LOCSET, lines 161 through 168, sends the charac­

ters which activate the cursor control logic and the Y coordinate

value to the ADM-3A.

Subroutine TAB, lines 157 through 160, converts the binary

source identifier into the proper X coordinate value and completes

the cursor positioning sequence by transmitting the coordinate

value to the ADM-3A.

:t-1essage Processing

The function of the message processing segment, lines 99

through 112, is to convert the message identifier portion of the

data byte into the page 3 address of the message string, output the

message string, scroll the ADM-3A display one line, and return to

the queue status checking loop.

The page 3 address of the message string is produced by

multiplying the binary message identifier by 16. Thus, the message

identifier is converted into the starting address of a 16 character

string which makes up the message. The multiplication is acco~

plished by swapping the high and low order nybbles of the data byte

and then masking out the low order nybble. This operation is equi­

valent to four left shifts and, therefore, multiplies the scource

33

identifier by 24 , or 16.

Subroutine STROUT, lines 169 through 175, uses the message

address produced by the preceeding multiplication and the string

length constant contained in register 6 to control the transmission

of the 16 character message string to the ADM-3A.

The CRLF procedure, lines 107 through 110 cause the scroll

of the ADM-3A display by sending the carriage return line feed

combination.

Finally, register bank 1 is selected so that when the jump

at line 112 occurs the register bank containing the queue status

value, R2', will be addressed by the 1.JAIT loop.

This completes the description of the control program ex-

cept for the subroutine which controls character transmission.

This function is accomplished by the OUTPUT subroutine, lines 176

through 191.

It was noted in the description of the clock connection,

section II, that the 4.608 megahertz clock input to the UPI-41

would be used to generate the proper communication frequency. The

following discussion explains this process and the operation of the

OUTPUT subroutine.

Each instruction in the UPI-41 instruction set consists of

either 1 or 2 instruction cycles. Each instruction cycle consists

of 5 machine states and each state consists of 3 clock periods.

See figure 20.

34

Clock

States [State 1 ••• State 5

Cycles Instruction Cycle

Fig. 20. UPI-41 instruction cycle

The instruction cycle execution rate, then, is 1/15 of the

input clock rate, or 307,200 instruction cycles per second. The

instruction cycle execution rate divided by 16 produces the serial

transmission rate of 19,200 baud. Therefore, a bit interval, i.e.

the time a serial bit should be present on port 1 during transmis­

sion, is exactly 16 instruction cycles. A 9 bit character can be

transmitted by constructing a loop which places a new serial bit

on the port 1 transmission line every 16 instruction cycles.

The OUTPUT subroutine, figure 21, expects the 7 least signi­

figant accumulator bits to hold the 7 bit ASCII representation of

the character to be sent. As 9 bits are required to send a complete

character, including the start and stop bits, the 8 bit accumulator

and the carry bit are catenated to form a 9 bit register. The

accumulators most significant bit and the carry bit serve as the

stop and start bits respectively. Once the 9 bit register is set

up with the character, the bits are sent by successively rotating

the bits into the least significant bit position of the accumulator

35

and then outputting the accumulator to port 1.

Instructions 1, 2, and 3 set up the character, the transmis-

sion loop begins at line 180. Note that the number of instruction

cycles required for each instruction in the transmission loop is

shown to the right of the instruction.

For the first eight bits transmitted, program execution pro-

ceeds through the steps indicated 1 through 8. As can be verified

by the reader, 16 instruction cycles are executed between bit

changes.

Program flow for the final bit proceeds through the steps

indicated A through E. \·lhile this sequence requires only 9 instru-

tion cycles, analysis of the complete program shows that for any

set of conditions a minimum of 8 additional instruction cycles will

be required to reach the initial output instruction for a new

character. Thus, a minimum of 9 + 8, or 17, cycles will be executed

exceeding the minimum of 16 by 1 cycle. But, as there is no maxi~um

length for the stop bit since its level corresponds to the non ac-

ti ve, or "marking" state, the value 17 is acceptable.

The instruction executed just prior to entry into the bit

transndssion loop disables interrupts, while the instruction just

before the return reenables them. Interrupts must be disabled

during transmission of a character since the occurance of an inter-

rupt service routine would insert extra instruction cycles, thereby

destroying the integrity of the software timing loop.

36

..
e12E 97 176 OJTPUT : CLR c ; CLEAR CARRY BIT
e12F E7 177 RL A ,; POSITION START BIT
H.3e A7 178 CPl. c ; SET CARRY E: IT
8131 15 179 DIS I ; D I SHEli HITEF..RtPTS
BL"Z2 39 A l 180 Lf))f'1: OOTL ~A Z. ; PUT ~.£R I Fl. BIT OH TRAH::-:rt IT L I HE
&133 E839 e, 2181 DJllZ Re, CCWIH 2.. ; JUMP TO CC~IT I HtE IF NOT [.(~£

eL\5 8889 e 182 110\J Ret 1'390 2, ; RELOffi BIT COUNTER
eu? es 0 183 EN I 1 ; ENABLE I NTEf~JPTS
81_18 83 E 184 RET z.; RET~ FROM stBRCllT IHE
01_19 67 3 1~ ruiTIH: RRC A 1 ; ROTATE NEXT BIT INTO TRFfl9tiT POSITI~
~ee 'i186 HOP I .: EVEN C'lUE COtm
B13B BAe1 ~ 187 rrJY R2~1€t1 2. ; SET C€LAY LEOOTH
~ 3441 &1B8 CALL raAY 2 .; CALL OELAY SLIBRfJJT I NE
e13F 2432 Cf189 JMP LC(JP1 Z. ; ffilT I NE U))P ~'EM ION
Bi41 EA41 7 19e DELAY: DJHZ ~raAY 2. ; YAR I ABLE [.fLR'r' [>£PEND I HG OH R2
(1143 83 8191 RET 2, .• RfTl.Fli FRCt1 SUBP..OIJTIHE

Fig. 21. UPI-41 character transmission subroutine

As a concluding remark on the UPI-41 control program, it is

noted that starting on page 51 of the listing a sample set of mes-

sage strings is shown.

The program listing refered to throughout this section is

the assembly listing produced during the assembly of the UPI-41

control program source file. This version of the program 'vas used

for the system evaluation to be presented in the next section.

V. SYSTEM EVALUATION

In section II equation (1) , the minimum UPI-41 to ADM-3A

serial transmission rate was computed by considering only the char-

acter string transmission time. It was assumed at that point that

processing done in decoding the input data would be insignificant

compared to the processing done within the serial transmission rou-

tine. The validity of this assumption can be evaluated by deter-

mining from the control program the percentage of instruction cy-

cles which are executed outside of the serial transmission routine.

As determined in section IV, sixteen instruction cycles are

required per serial bit transmitted. Since 22 characters at 9 bits

per character are sent for each input, the number of transmission

instruction cycles executed for each string transmission is

16 instruction cycles/bit x 9 bits/character x 22 characters/string

or 3168 instruction cycles/string (3)

Analysis of the UPI-41 program shows that 236 instruction cycles

are executed external to the serial transmission routine. Thus,

the percentage of instruction cycles executed outside of the serial

transmission routine is

236 instruction cycles
3168 instruction cycles x 100 percent, or 7.45 percent (4)

38

The assumption, then, gave a minimum baud rate within 10% of the

exact figure.

To meet the UPI-41 processing rate requirement requires that

the minimum baud rate of 11,880 computed in equation (1) be ad-

justed upward by 7.45 percent. The new minimum baud rate becomes

11,880 bits/sec+ (.0745 x 11,880 bits/sec), or 12,765 bits/sec (5)

However, since the baud rate chosen was already 19,200 bits per

second due to the ADM-3A receiving rate constraints, no program or

hardware adjustments are necessary.

Transmission at 19,200 baud instead of the minimum baud pro-

"\-ides an immediate system expansion capability of

19,200 bits/sec- 12,765 bits/sec
12, 765 bits /sec x 100 percent (6)

or approximately 50 percent. This expansion can be in terms of the

number of SBC 80/20 input sources or the source input rate, see

figure 5. If the source input rate is maintained at 12 inputs per

second, the number of sources could be expanded to 7.5, or realis-

tica1ly 7. Conversely, if the number of sources is taken as a con-

stant, the input rate can be expanded from 12 inputs per second to

18 inputs per second.

The expansion to 18 inputs per second would require no addi-

tional system expansion, while the expansion to 7 inputs would re-

quire either a wider display screen or a slight overlapping of the

message columns. Overlapping the columns would be preferable since

39

a wider screen would necessitate a new display device.

It ~as shown in section II that if the UPI-41 reception rate

requirement was to be met, a data queue would have to be maintained.

\&ile a necessary requirement, however, the queue~is not sufficient

to guarantee that the reception rate requirement will be met. The

guarantee ~ust be provided by insuring that the worst case interrupt

response time meets the requirement. The worst case response occurs

when an input occurs just as interrupts are disabled following entry

into the serial transmission loop. The interrupt response time for

this condition ~~11 be essentially equal to the character transmis-

sion time. The ~orst case reception rate will be one over this time

and can be represented as

1
1

19 , 200 bits/sec x 9 bits/transfer
(7)

or 2133 tr&1sfers per second. This value exceeds the required

UPI-41 data reception rate of 200 transfers per second by better

than an order of magnitude.

Comparing the above order of magnitude difference with the

50% difference computed in relation to the UPI-41 processing rate

requirement, it is seen that the constraints on system expansion

are primarily associated with data processing rather than data re-

ception, and, therefore, with the serial transmission rate. System

expansion beyond 7 sources or 18 inputs per·second would only be

possible by increasing the serial transmission rate. As 19,200 baud

is the highest transmission rate supported by the ADM-3A, any expan-

40

sion would require going to a different display device.

In terms of the UPI-41, the limits on system expansion are

related to its maximum serial transmission rate, the input identi-

fier field of the data byte, and the queue size.

If the input clock rate to the UPI-41 was increased to 5.76

megahertz, the highest clock rate which is both within the 1 - 6

megahertz operating range and an integral multiple of the standard

communication frequencies, the baud rate could be quadrupled to

76,800 baud. This baud rate corresponds to a serial bit time equi-

valent to 5 instruction cycles at the 2.604 microseconds per in-

struction cycle established by the 5.76 megahertz clock. By de-

creasing to a minimum the number of instructions executed in the

bit generation loop of the OUTPUT subroutine as follows:

Loop 1: OUTL
RRC
DJNZ

Pl, A
A
RO, Loopl

;2 cycles
; 1 cycle
;2 cycles

the 5 instruction cycle requirement can be met. For the 76,800

bit per second transmission rate, the system expansion percentage

becomes:

76,800 bits/sec- 12,765 bits/sec
100 12,765 bits/sec x percent (8)

or approximately 500 percent.

Now, the number of sources could be increased to 5 + (5 x 5)

or 30, or the maximum input rate could be increased to 12 +

(12 x 5), or 72 inputs per second. The changes required for the

41

increased input rate would be the alteration of the output subrou-

tine to the form shown above.

~

An increase in the number of sources to 30, however, must be

checked for plausability against two other system constraints:

the queue size, and the source identification field of the SBC 80/20

to controller data byte.

The queue size of the UPI-41 is 32 locations; thus, even if

it is assumed that the queue could be filled before any input could

be completely processed, the minimum number of inputs that could be

handled would be the queue size plus the entry being processed, or

33. Since the baud rate already limits the input sources to 30,

this is not a limiting factor. The source identification field is

currently 3 bits wide as necessitated by 5 sources allowing a pos­

sible identification of 23 or 8 sources, see figure 4. If the

4
undedicated bit is added to the source identifier field, then 2 ,

or 16 sources could be supported. As this value is less than the

limitation imposed by the serial transmission rate constraint, the

source identification field becomes the limiting factor on input

source expansion.

While not directly related to the scope of this thesis, it

is noted that expansion of the source input rate is a real possi-

bility as other input sources could be easily attached which have

higher characteristic input rates. For 5 source inputs, the SBC

80/20 is limited to servicing a source input rate of 40 inputs per

second. Thus, with a display device having a higher serial recep-

tion rate, the controller could easily handle the maximum source

42
input rate imposed by the SBC 80/20. Expansion to greater than 5

sources would require rather extensive hardware and software changes

within the SBC 80/20. For the source input rate of 12 inputs per

second, the SBC 80/20 could handle 16 input sources. This value

also compares favorably with the maximum capability imposed by the

UPI-41, also equal to 16 sources.

VI. CONCLUSION

The use of the UPI-41 as described in this thesis follows a

current trend in the design of computer control systems. This

trend is characterized by the spreading of the "intelligence"

throughout the entire system. Systems designed in this fashion are

grouped rmder the general classification of "distributed processor

systems 11
• The present application can be further classified as a

master/slave distributed processor system, where the SBC 80/20 co~

puter functions as the master and the UPI-41 functions as the slave.

Distributed processor systems provide for a certain degree of paral­

lelism within a control task, and thereby increase the operating

speed of the overall system. As the cost of processing elements

continues to decrease, distributed processor systems will become

increasingly prevalent in computer control applications.

The design and construction of the intelligent controller

system was completed during the summer/fall quarter of 1978. In

many tests since that time the system has performed as expected.

APPENDIX 1

CONTROLLER S CHE:MATI C

M
O
A
T
~

IZ

}1
\t>

lfT
 1

13

M
'D

A1
 Z

I'

/

M
t)

kl
 ~

16
 ,,

IO
D

I\
1

¢

7
1

7

I:t
>O

I(
t1

.
/8

lO
t>

A
l

2
,q

+5
'1

~-
~

-+
5'

(
-+

Si

..
 b-

./

~.
~

~
o
O
O
.

. -
1

H
 \T

~o

i"
ti

Q

G

~

Q

6
3

8c
,L

K
K

Q

6

Q

7
~

7
4
1
~

1~

SO
\"

\O
O

pl
=

n
[)1

/J
P1

6

01

PH

02
.

PH
.

DJ

p
~

P
\'i

p
;

P
\5

Pb

P'
6

P7

'f
l7

RD

1'2
9

'J,
.I

P
l-

l
l.

l.

PZ
.2.

2.!

>

~
y

RE
SE

T
n3

5S

~Z

'i

!>
5

X1

~z
.

C.
5

rz.
7

E.
~

S'1
N

C

8
7
~
(

S
H

E
.t

:r

"D
R

A
w

N
 '

"&
'I

io
~i

~-
A1
?~
.l

2
3

SE
. ~

ou

T

70
18

8

~
~

-A
8

F
fT

3

.tt
<

-
A
~
R
1

2.
1"<

-

A
B

R
l

3
1.'4

(
-
~
S
R
T
 4

il<

.
-1

\ '
B~
T

5

SC
 H

 E.
Mf
\T
'~

lt
nE
\.
.~
~\
rl
lt
t-
IT

1
N

Tt
:.R

 F
A

C
t.

APPENDIX 2

UPI-41 CONTROL PROGRAM

~ :F1:LPI41B. SRC MACROFILE DERJG 1'[()41 TITL£("27 FEB 79')

ISIS- I I ~1CS-4811JPI -41 MACRO RSS89.£R.. \12. a
27 FEB ?9

LOC OB.J SEQ SOJRCE STRIDENT

1 j *• •• *'**. *"****1"******** + •• + • •-+=***********-*-******+ +. + + •• +**
") . ')

3 ;
4 ;
5 i

6 i

7 ;
8 ;
9 i

10 j

11;

*
*
*
*
*

12 ; REGISTER BfH(e
13;
14 i

lf I -41 CONTROL PROGRAM

15 _; REGISTER 8(Re) 9 BIT SERifl. TRf*bl115SION COUNTER
16 ; REGISTER i(Ri) UNUSED
17 ; ~GISTER 2\R2) COJHT FOR VARIABLE DELAY
18 ; REGISTER 3(R3) CHARACTER STRING INDEX REGISTER
19 ; REGISTER 4<R4) SOJRCE IDENTIFIER <LINEAR SELECT)
2e ; REGISTER 5<R5) SOJRCE IDENTIFIER <BH.ffiRir')
21 .i REGISTER 6(R6) MESSAGE STRING L8~GTH ectfSTANT
22 ; REGISTER 7<R7) PARALLEL DATA TRANSFER
23 .i

24 ! REGISTER BANK 1
25;
26;
27 ; REGISTER 0(Re) GET DATA POINTER
28 .: REGISTER 1(R1) PUT DATA POINTER
29 ; REGISTER 2(R2) QUEUE STATUS
3e .: REGISTER 3(R3) ACCUMLlATOR STORAUE
31 ; REGISTER 4<R4) L"-rus£0
32 ; REGISTER 5(R5) loiRAPAROLW CONSTANT=193D
33 ; REGISTER 6<R6) QUEUE STATUS CONSTANT=224D
34 ; REGISTER 7 < R7) TEt1PORARV DATA WORD STORAGE
JS;
36 ;
37 ; PORT 1 SERIFL TRANSMISSION ON BIT e

*
*
*
*
*

47

48

3:8; PORT 2 LINES H USED A5 A MASK INPUT TO IHHIBIT TEXT
~· -- } STRING OUTPUT. LINE 7 USED TO EHAEU CHIP SELECT.
4&Jj
41 j

42 ;
43 i

eooe 44 ORG e
0000 MeA 45 M 100 ; PRE...C£R¥1£ I NTERRlfT VECTORS
(1003 46 ORG])
'3003 0458 47 EXTIHT: JMP INROUT j ,.n.JHP TO INTERRUPT ROUTINE

48 ;
49 ,;

C1ti3A sa ~ 1('\0
eeeA ~:e9 51 !NIT: MOV Re~ le9() .: !HIT BIT T~~AHSHISSIOH COLMER
eooc 2s1A 52 MOV ~#1AH _; ASCI I CHAR TO CLEff. CRT SCREEN
a.3eE 342£ 51 ffi_L Cd.JTF1JT
OOH~ 2:~FF 54 MOV A..leFFH ; START OF HESTED Dt.'LAY
t3812 BAFF 55 LC(IP: MOV R2.· #eFFH
(11314 3441 56 CHL.L OELfrt•
oc116 e7 57 (>£C A
0017 ~~!.2 58 JHZ LOOP _; END OF NE..c:rED DELAY
0019 3419 59 CALL LOCSET .: SET UP CRT TO ACl-:EPT X COL~:D VALUE
0018 2320 6e r-tOY ~~2a-i .: ~: YAUJE FOR COLUMN 1
0010 342E 61 CALL OUTPUT .i RCrtJT HIE TO SEN[) RSC I I CHARACTER
001F [~ 62 sa RB1
002'3 E'.S29 63 MOV Re!t3:20 _; UliTIAL VALLIE FOR READ ~t:.MORY POINTER
~'>2 Bm 64 l'[l\l R1J#120 .i INITIAL VALUE Ffk: l-F-ITE MEMOFY POitffER
0024 BAtte 65 MOV R2,te ; CLEAR QUEUE STATUS R£13 I STER
0026 BEEe 66 MOV R6,#224D .: 224 + 32 AVA I LAEtE LOCRT I OHS It~ RAM

67 _; = 256 =) (f,'ERfl~

0028 BOC1 f.8 MOV R5.a i19:ID ; 191 + 6J(LAST RAH ADDRESS) = 256 =>
69 .i OVERFUl~

002A 237F 76 MOV ft#i'FH ; NUMBER WILL KEEP LINES e-6 AS INPUTS
71 .: AND HILL ENABLE THE CHIP SRECT WHICH
72 _;IS TIED TO LINE 7

002C 3A 73 OJTL P2 .. A
0020 es 74 EN I ; ENABLE EXTERNtl.. IHTERRL~TS

75i
76 i

77 i

78;
79• ·'

002E FA 00 WRIT: MOY A,R2 i GET QUEUE STATUS
002F C62E 81 JZ WAIT ; IF QUE LIE EMF' TV tl\ OCT I OH
0031 Fe 82 START: I10Y A..@Re ; GET DATA FROM RAM LOCATI 1)-l

49

OOJ2 AF 83 t10Y R7,A ; STORE DATA
0033 CA 84 DEC R2 ; DECREMENT QIJB.JC STATUS ~GI 5TER
0034 FD 85 p(r\1 A..RS ; 19J DECIMAL
ee~ 68 86 ROO A..Re i CHECK FOR LAST ACCESS BEING @ TOP Cf Rffl
0036 963A 87 JNZ (J){T

OOJB B81F 88 I10Y Re,t31D ; ONE LESS THAH BOTIOt1 OF RAM
OOJA 18 89 COHT: IHC Re i IHCREMEKT GET [>ATA POINTER
0038 Ff 90 I'()V A..R? ;RETRIEVE DATA
00](: cs 91 SEL ROO
0030 AF 92 MOY R7, A ; STORE [>fiTA
003E 3495 9J Cfi..L MASK ; CHECK TO SEE IF OJTPUT DESIRED
0048 B658 94 JFe ESCAPE i IF FLAG SET WAIT FOR NEW [>F!TA
9042 3419 95 CALL LOCSET ; SET LIP ADM TO ACCEPT X-(:(J(tP.D VALUE
0044 FD 96 I10Y FLRS .i GET DATA ID FROf't F'ROCEI)IJRE MASK ST~lff

97 .i LOCATION
0045 3414 98 CfLL TAE: ; TAB OYER TO LOCATION CORRES TO DATA i
0047 FF 99 ~· R.. f.? ; RETRIEVE 00/20 DATA
ee48 47 100 5Wff' A ; PLIT CCOE FOR MESSAGE AD:ESS

1~1 .: IH LIPPER 4 BITS TO ALLCg~ RCCESS TO
1e2 ; 16 MEMORY LOCATIONS PER SHOT T~'PE

0049 53F8 183 Af{. A.· teFeH .i MAS¥. I)JT LOW ORDER BITS
8848 AB 184 M(I\J RJ.. A .: STORE RaATIVE fWR£55 OF aiAR STRI ~
0041: BE1e 185 trnl R6.· t16D .: STRING LENGTH C.OJNTER
ee4E 3426 1e6 CALL STROUT i PROCEDURE TO OUTPUT ASCI I STR
ee5'3 23'3A 1'37 CRLF~ P10V A.. leAH ; LH£ FEED
0052 342E 100 CALL OOTPUT
0054 2300 109 mv A·IOOH ; CARR I AGE RETURN
0056 342E ue CALL OUTPUT
Eta."S D5 111 ESCAPE: SEL RB1 ; RETORt-~ TO CORRECT REG BANK FOR WAIT LC(f
0059 842E 112 Jt'f WAIT

113 ;
U4 i

115 ;
116 j

117 .•
Era5B OS 118 1 HROlJT : SEL RB1 ; 1 NTERRlf'T REG BANK
ease AB 119 t10V R3}A ; SAYE ACCUMULATOR
0050 FE 129 ~ A.·R6 , ;224D
aesE 6A 121 AOO A.. R2
8e5F C66B 122 JZ ~JEFlt ; CHECK FOR QLIEUE Flll
e0611A 123 INC R2 ; It£REMENT QLIEUE STATL1S REGISTER
8062 22 124 IH A..DBB ; INPUT DATA

125 ; FROI1 5R I NTERRLIPT STORE FF
9063 A1 126 rtJY @RLA ; ST~ HEW DATA
0064 FD 127 I10Y ftR5 .•1930

50

0065 69 128 ADD A~Ri .: CHECK TO SEE IF STOF.£ ~
w i IN LRST AVAILABLE RAM LOCATION

8666 966A 13e JNZ CONTi ; IF NOT THEN COHTit-lE
0068 B91F 131 MOV R1_. t31D .: BOTIOM OF QUEUE
006A 19 132 CONTi: INC Ri .: IHCREMENT PUT [iATA REGISTER
&068 FB 133 Qlffit : HOV R .. R3 ; RESTORE ACCUMULATOR
006C 93 134 RETR .: RETURN FROM I HTERRUPT

1J5 _; t REEHABLE I NTERRIJPTS
136 j

137 j

138 j SUBROUTINES I H SEC!JID PAGE OF MEMORY
139;
140 ;
141 j

e1oo 142 ORG 256D
e1oo 01 143 MSKDAT: DB 1D, 20 .. 40 .. ~.0, 16I:i
tliet 82
ei(Q e4
e1'33 00
t3104 1{~

e1es :~:e 144 11ASK: ftl. ~JeE&H .: f1ASK Ol.IT 5 LOW 0Pl)£R BITS
a1e7 47 145 SWAP A .: DATA IO IN BITS L ~ 3
eiOO 77 146 RR A ; IN BITS 8,.1, 2
31(19 f{) 147 MOV RS~A ; ST~"E DATA CODE
e1oo e? 148 DEC A ; DATA COOE(FllE) e-4
~100 R3 149 MOVP A .. @A ; GET LOOKUP VALLIE FOR CURRENT DATA
910C AC 15e MOV R4,A i STORE VALLIE
f1100 eA 151 IN R.. P"2 .: GET DATA J·lASK
eteE 5C 152 ANt. A,R4
BieF S5 153 CLR Fe
e11e 9613 154 JNZ CONT2 i JUMP IF DATA ~IDT MASKED
BU2 95 155 CF'L Fe ; SET FLAG INDICATING MASK
e113 83 156 OJNT2: RET ; RETUF.N FROM SUBROLIT I NE
eu4 17 157 TAB: INC A ;CREATE CC~ICT DIGIT FOR HIGH BYTE
6115 47 158 SWAP A .i PUT IH HIGH BVTE
0116 342E 159 au. OUTPUT
eue 83 160 RET j RETURN FROM SliBRtlJT I NE
e119 2318 161 LOCSET: NOV A,tiBH .: ASCI I E..~APE <REF AOI'I JltAHUAL

162 ; RE CURSOR POSITIOHIHG)
9118 342£ 163 CALL OUTPUT
011D 233D 164 HOY FLI3DH _; ASCI I EQUALS
011F 342E 165 CALL OUTPUT
8121 2337 166 MO\I A,tJ7H j ROW 24 OF ADN TERMINAL
8123 342E 167 CfU OUTPUT
8125 83 168 RET ; RETURN FIDi SUBROUT I fiE

8126 FB

0127 £3
8128 1B
M.29 342E
9128 EE26
9120 83
B12E 97
812F E7
813'3 A7
8131 15
9132 39
e133 E8J9
0L<5~

e137 85
8138 83
B139 67
e1JA ee
01..18 BAe1
e130 3441
013f 2432
'3141 EA41
e143 83

9100
8300 4D455353
8394 4147452e
e38B 5A45524F
B38C 2K..I(@29

0310
e31e 4D4~'BSJ
8314 41474~~
0318 4F4E4~t2e
e31c 202e2e2e
8320
e:m 4D455353
el24 41474~'>9
0328 54574F2e
e12e meme
0330
'3330 4D455353

169 STROUT: W.W
17e
171 t10VP3
172 IOC
173 CALL
174 DJNZ
175 F.:ET
176 OJTPUT: CLR
1n RL
178 CPl.
179 DIS
1Be LOCIP1 : Cl.JTl
181 DJNZ
182 I10V
183 EH
184 RET
1~ CONTIH: Rk'C
186 Ht..tP
187 HOY
1~ CALL
189 Jlf'
19e DELAY: DJHZ
L'1. RET
L~.i

193 ;

FLR3

A..~

~3

O.JTPUT
R6 .. STRfJJT

c
A
c
I
?iJA
Re .. COHTIH
P.e.ta9D
I

A

R:2_.#(~

[afiY
LCIYi
R2} DELAV

i RETRIEVE PAGE 3 AI:~£55 Cf
; FL~II STRING ..
; GET ASCI I CHARACTER
; HEXT CHARACTER

; HAVE fl.l CHAR BEEN CmPUT
; RETURN FROM SLeROJT I HE
.: CLEAR CARRY BIT
;POSITION START BIT
; SET CARRV BIT
.i D 1 ~.ABLE I HTERRUPTS
_; Pt.JT SERIAL BIT ON TRANSMIT LINE
; JIJM? TO IX~-lTIHUE IF NOT DONE
; RELOAD BIT ccaJ~TER
.i ENAEli INTEFRIJPTS
; RETURH FROM SLIBROUT I HE

51

_;ROTATE NEXT BIT INTO Tm-8-\IT POSITIC~
.: EVEN CVCLE COI_~·fT

_; SET DELAY LENGTH
.i C.Frll [:.£LAY SUBROUTHiE
; CONTINE LOOP EXECJJTION
_; v.AR I ABLE f.f:LAY DEPEND I t¥.J ON F.2
i RETURN FROM 9J3ROIJTINE

L~;

LC15 ;
IDl STRINGS LC01TED I H PAGE 1 OF MEMOR¥

196 .i

197
LQS

003 38eH
OB "tESSffiE ZERO

~ 31eH
OB "tESSAGE ONE

003~
DB ~MESSAGE TWO

~ 330H
DB "f'ESSAGE TH~E

~

/

/

52

es34 4147452e
8318 54485245
e3~ 452020'2e
034e 205 Cf.'3 34(iH
ft34e 404553.53 2a6 00 / HESSAC£ FOUR ~

e344 41474~03
8348 4E4F5552
'3]4C 2e2e2e2e
~S543 2'37 ORG 35C1H
'33Se 4[)455:<53 288 DB /HESSA&t: FIVE
8J54 414745~13
'3?58 46495€45
e:r.sc me2e20
e3t.e 209 ORG 3:6eH
€1~-t.e 4045...~ 21e [~ "MESSf(i.iE SIX J

€1Jt4 414745~11

e3€-S 534958213
e16C 2e0"!2~2e
'337e 211 ORG 37BH
e:rro 4(~553.53 21.2 riB /MESSAGE SEVEN
8374 'i'7452e
e3?S 53455£.45
837C 4£2P...:-132e
e?w 213 ORG ~
e J.:'l3 4{)4 55353 214 DB /MESSAGE EIGHT /

6:034 4i4745i."e
13]S3 454~~748
~~ 5420~13.;:-e

039'3 215 ORG 59l1H
- 8?.90 40455353 216 DB ,. MESSAGE N I HE ~·

8394 41474~r:-e

e19S 4E494E45
e f?.C 2€f2'32\32e
e3"fJ3 217 ORG JAJ3H
e~ 40455353 218 DB ,.tESSAGE TEN
83A4 4147452'3
'3588 54454£~-'8
e~ 20202t12e
eJse 219 003 300H
eJOO 4D455353 22\3 DB /MESSAGE ELEVEN /

8384 41474528
e~qs 4~a4C4556

e:mc 454E~1i2e
eJCe 221 003 JC0H
e:?Ce 4MSSJS3 222 DB r r£55AGE TWELVE I

8JC4 4147452e
e3C8 5457454C
eJCC s;As2a2e
a :me
0300 4D45..Jr-m
03{)4 41474520
e:IDS 54484 952
eJoc 5445454£
eJEe
eJEe 40455353
'3~4 41474~'>0

e3Es 464F5.552
e3EC 5445454E
eJFe
e3Fe 4D4STI-'53
e:~F4 41474528
8JF8 46494654
e1Fc 45454E2e

IJSER SYMBOLS
COOT 003A
CRLF ~.0

HHT 600A
LOOPi 9132
Q!.EFLIL OOt":B
WAIT 002£

22.3
224

225
226

227
228

229

CONTi OOf.A
raAY e141
l~JT 005B
~ e1e5
START 0031

ORG 300H
00 I HESSAGE THIRTEEN'

OP.G 3EC1H
DB I HESSAGE FOURTEEN I

ORG 3F9H
DB I HESSf(;E FIFTEEN I

CCW2 8113
E_c;cAPE 0058
LOC"SET e119
f'tSKDAT e100
STROUT 0126

COf-lT IN 0L~ .
EXTINT 8001
LOO' 0012
((JTPUT 012E
TAB 0114

53

APPENDIX 3

ALTERNATE BAUD RATE GENERATION SCHEME

APPENDIX 3

This appendix describes the use of the UPI-41 8 bit timer as

an alternate way of generating the bit times for serial transmis-

sian.

The UPI-41 timer, figure A3-l, can be programmed to operate

in a number of different modes:

1. Internally clocked - the timer counts up one every 32 UPI-41
instruction cycles

2. Externally clocked - the timer count rate is controlled by an
external clock source. In this mode the maximum count rate is
once every three UPI-41 instruction cycles

3. SP~ flag on overflow- in this mode the timer flag, TF, will
bl' set when the counter overflows. The timer flag can be
tested by conditional branch instructions

4. Interrupt on overflow - an interrupt request is generated on
timer overflow. If the timer interrupt is enabled a call to
location 7 of program memory is executed

Operating the UPI-41 timer in the "interrupt on overflow

mode" permits the UPI-41 to execute a processing task and transmit

serial data concurrently. The rationale for operating the UPI-41

in this manner is to increase the system throughput by using the

instruction cycles which are wasted in the software timing i~le-

mentation to do other processing tasks. The following discussion

describes some of the analysis necessary to operationalize the

above concept within the UPI-41 control program. Two key points

will be made: (1) the gain in system throughput for this applica-

T
l

E
x

te
rn

a
l

C
lo

ck

-

+
3

2

8
-B

it

T
im

er
/
~

C
o

u
n

te
r

U
P

I-
41

 I
n

te
rn

a
l

B
u

s

F
ig

.
A

3-
1.

U

P
I-

41

T
im

er
/c

o
u

n
te

r

+
1

5

T
im

er

F
la

g

In
te

rr
u

p
t

57

tion would be very small, and (2) there will be an increase in the

probability of data transmission errors from close to zero for the

software timing implementation to some unknown but fairly signifi­

cant probability for the timer/interrupt implementation.

Consider the case where the processor and the timer are

operating synchronously at their maximum respective rates. This

condition corresponds to a UPI-41 input clock frequency of 6 mega­

hertz and a timer input frequency of 133.3 kilohertz, resulting in

a UPI-41 instruction cycle period of 2.5 microseconds per

instruction cycle and a timer count rate of one count per 3 instruc­

tion cycles, or one count per 7.5 microseconds (4). Synchronization

of the instruction cycle clock with the timer clock forces all timer

interrupts to occur at the same point within an ins.truction cycle,

while operating at the maximum permissable clock rates gives the

finest time resolution. Both of these conditions appear desirable

for transmission using the timer/interrupt technique.

1ne timer/interrupt transmission technique works by placing

the transmission control loop within the timer interrupt service

routine. l.fuen a character is available for transmission, it would

be placed in a character storage register within the register bank

used for the interrupt routine. Character transmission whould be

initialized by calling the interrupt service routine directly, and

the remaining bits of the character·would be sent as timer inter-·

rupts occurred. There exist two cases where the timer/interrupt

technique can be used. The first case requires that there be suf­

ficient processing tasks between all character transmissions so

58

that the processor does not end up waiting for the previous charac-

ter to be transmitted. This condition is not met in the present

application, as all processing is done before character transmission

begins. The second case is where the characters to be output are

placed in a queue. In this way the transmission of characters can

be independent of the program arrangement. For either implementa-

tion the details of the interrupt routine will be essentially iden-

tical, with the queued implementation requiring a couple of in-

structions to check the status of the queue. Assuming either imple-

mentation, the details of the interrupt routine can be inspected.

The first issue addressed will be the timing involved, after which

a discussion of the number of program steps required for implementa-

tion will be presented. For transmission at 19,200 bits per second,

the bi~ transmission time is 1/19,200, or 52.08 microseconds, cor-
\

responding to a time interval in instruction cycles of 52.08 micro-

seconds x 1/2.5 microseconds per instruction cycle, or 20.8 instruc-

tion cycles. The interrupt routine must be set up, then, so that

bit changes will occur at intervals of 20.8 instruction cycles. As

the timer can only generate interrupts in integral multiples of the

instruction cycle, the best approximation to this time will be off

by .2 instruction cycles. Over a 9 bit character this will result

in an error of 9 x .2, or 1.8 instruction cycles, corresponding to

a time shift in the final bit sent of 1.8 instruction cycles x 2.5

microseconds per instruction cycle, or 4.5 microseconds, see figure

A3-2. Since the ADM-3A reads the data bits at their nominal cen-

ter, however, it is unlikely that this baud rate/interrupt rate

59

"mismatch" alone would cause data misreads.

Sampling Clock

Read Read Read Read Read Read Read Read Read
1 2 3 4 5 6 7 8 9

Ideal Transmission~(_1 __ .__2 __ ~3 __ .__4~~-5~_6 __ ~_7 __ ~8--~-9~

Rate l-lismatch
Transmission

1 I 2 I
~r-o.s

3 4 5 6 7 8

microseconds 4.5 microseconds

9 I .
~~

Fig. A3-2. Rate mismatch transmission

In addition to the rate mismatch error, another error

arises due to the inability to predict where \>lithin an instruction

execution the timer interrupt will occur •. Even thoug~ an inter-

rupt is constrained, through synchronization with the instruction

cycle execution rate, to occur at the same point ,.;ithin an instruc-

tion cycle, it is not kno~~ whether it ~~11 occur during a one cycle

or a two cycle instruction. This condition leads to an additional

variation of one instruction cycle per bit interval generated. If

the timer interrupt routine is set up based on the assumption that

all interrupts occur during 1 cycle instructions, and the worst

case condition occurs, all interrupt~ occur during 2 cycle instruc-

tions, then a 2.5 microseconds/bit x 9 bits/character, or 22.5

microseconds/character error will result. If the rate mismatch

error is included a total error of 22.5 + 4.5, or 27 microseconds/

character will occur. As sho'tvn in figure A3-3 this condition

60
would cause a misread of the final bit.

Sampling Clock

Read 1 Read 9

Ideal Transmission} 1 2 3 4 5 6 7 8 9
----~------------~----~---L--~~--~~~-

Worst Case
Transmission

1 2 t 3 4

+2.7
microseconds

5 6

Fig. A3-3. Serial transmission misread

7 I a I 9.

27~
microseconds

Conversely, if all interrupts were assumed to occur during 2 cycle

instructions, the rate mismatch error would act favorably by re-

clueing the.final bit error to 22.5- 4.5,. or 18 microseconds, which

would appear to be an acceptable error.

Additional analysis which might prove fruitful in reducing

the posibility of error would be a statistical study of the program

to determine the relative probability of an interrupt occuring

within a two cycle instruction versus its probability of occurence

in a one cycle instruction. Once the probabilities were estab-

lished, the intervals generated by the timer could be set up so

that some would assume interrupt occurance during a 1 cycle in-

struction and some would assume occurance during a 2 cycle in-

struction.

One final approach to eliminating the transmission error

61
problem might be to step the input crystal frequency down from its

maximum value of 6 megahertz to 5.76 megahertz. As this frequency

is an integer multiple of the baud rate, the rate ndsmatch error

is eliminated. However, the error due to the variation in inter-

rupt occurance point becomes slightly larger.

The program steps required to implement the interrupt service

routine determine the amount of processing time that will remain

available for other processing tasks.

Using the software timing ·implementation described in sec-

tion V as a model, it is noted that a minimum of 5 instruction cy-

cles are required to control the character transmission loop. If

no additional instructions were required to implement the timer/

interrupt scheme, 21-5, or 16 instruction cycles would be available

for o·~er processing tasks per bit sent. For the present applica-
'

tion, this would allow the processing for several additional inputs

to be completed during transmission of the message characters for

one. Unfortunately, a considerable number of additional instruc-

tions must be executed for the interrupt implementation as shown

in the program flow listing below:

1. Jump to interrupt routine - 2 instruction cycles

2. Save accumulator - 1 instruction cycle

3. Load accumulator with character - 1 instruction cycle
The loop control instructions would be executed at this point

4. Store accumulator into character storage reg. - 1 instruction
eye~

5. Stop timer - 1 instruction cycle

6. Load accumulator with timer count - 1 instruction cycle

62
7. Load timer from accumulator - 1 instruction cycle

8. Start timer - 1 instruction cycle

9. Restore accumulator - 1 instruction cycle

10. Return from interrupt - 2 instruction cycles

These additional steps result in a rather dramatic decrease in the

number of instruction cycles available for other processing tasks.

Summing the cycle count in the right hand entries, reveals that 12

of the 16 cycles are used. Clearly, under these conditions the

timer/interrupt implementation does not appear · to be worthwhile.

Some relationship should exist between a processors instruc­

tion cycle execution rate, timer count rate, and the desired serial

transmission rate which would indicate when it might be cost effec­

tive to do the analysis necessary to use a timer/interrupt approach.

Additional research on the subject might reveal such a relationship.

LIST OF REFERENCES

1. SBC 80/20 Hardware Reference Manual. 98-317C. Santa Clara,
California: Intel Corporation, 1977.

2. ADM-3A Maintainance Manual. Anaheim, California: lear Sieglar
Incorporated.

3. AD~3A Interactive Display Terminal Operator's Manual. Anaheim,
California: Lear Sieglar Incorporated.

4. UPI-41 User's Manual. 980054A. Santa Clara, California:
Intel Corporation.

5. TTL Data Book. Dallas, Texas: Texas Instruments Incorporated,
1976.

6. TTL Data Book. Mountain View, California: Fairchild Semicon­
ductor, 1972.

7. l·ne Driver and Line Receiver Data Book. Dallas, Texas: Texas
Instruments Incorporated, 1977.

8. Intel Component Data Catalog. Santa Clara, California: Intel
Corporation, 1978.

9. ICE-80 Reference Manual. 98-167B. Santa Clara, California:
Intel Corporation, 1975.

10. ICE-80 Operator's Manual. 98-185C. Santa Clara, California:
Intel Corporation, 1976.

11. Towle, Herbert C. "Laboratory Record." Orlando, Florida: Naval
Training Equipment Center.

12. MCS-48 and UPI-41 Assembly Language Manual. 9800255C. Santa
Clara, California: Intel Corporation, 1978.

13. ISIS-II MCS-48/UPI-41 Macro Assembler Version 2.0. Santa Clara,
California: Intel Corporation. (Computer Program)

14. MDS-800 Hardware Reference Manual. 980132B. Santa Clara, Cali­
fornia: Intel Corporation, 1975.

64

15. MDS-800 Operator's Manual. 98-129A. Santa Clara, California:
Intel Corporation, 1975.

16. Prom Mapper Operator's Manual. 98-236A. Santa Clara, Califor­
nia: Intel Corporation, 1976.

17. ISIS-II Prom Mapper Version 2.0. Santa Clara,~California:
Intel Corporation. (Computer Program)

18. ISIS-II User's Guide. 9800306D. Santa Clara, California:
Intel Corporation.

19. MDS-DOS Hardware Reference Manual. 98-212A. Santa Clara,
California: Intel Corporation, 1976.

	An Application of a Single Chip Slave Microcomputer as an Intelligent Interface
	STARS Citation

	TITLE PAGE

	i

	ABSTRACT

	iia

	DEDICATION

	iib

	ACKNOWLEDGEMENT

	iii

	TABLE OF CONTENTS

	iv

	LIST OF FIGURES

	v
	vi

	I. INTRODUCTION

	01

	II. SYSTEM DESCRIPTION

	02
	SBC 80/20 to Controller Interface

	03
	04
	05
	06
	07
	08

	Controller to ADM-3A Interface

	09
	10
	11
	12
	13

	Control Switches to Controller Interface

	14
	15

	III. UPI-41 SINGLE CHIP MICROCOMPUTER

	16
	18
	19

	IV. UPI-41 CONTROL PROGRAM

	Initialization Procedures

	20
	21
	22

	Data Reception and Storage

	23
	24
	25
	26
	27
	28

	Data Decode and Message Transmission

	29
	30
	31
	32
	33
	34
	35
	36

	V. SYSTEM EVALUATION

	37
	38
	39
	40
	41
	42

	VI. CONCLUSION

	43

	APPENDIX 1. CONTROLLER SCHEMATIC

	44
	45

	APPENDIX 2. UPI-41 CONTROL PROGRAM

	46
	47
	48
	49
	50
	51
	52
	53

	APPENDIX 3. ALTERNATE BAUD RATE GENERATION SCHEME

	54
	55
	56
	57
	58
	59
	60
	61
	62

	LIST OF REFERENCES

	63
	64

