University of Central Florida

STARS

Retrospective Theses and Dissertations

Fall 1979

A Microcomputer Implementation of Real Time, Continuously
Programmable Digital Filters

William Edward Storma
University of Central Florida, bstorma@bellsouth.net

b Part of the Engineering Commons
Find similar works at: https://stars.library.ucf.edu/rtd
University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for
inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation

Storma, William Edward, "A Microcomputer Implementation of Real Time, Continuously Programmable
Digital Filters" (1979). Retrospective Theses and Dissertations. 450.
https://stars.library.ucf.edu/rtd/450

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/450?utm_source=stars.library.ucf.edu%2Frtd%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages

A MICROCOMPUTER IMPLEMENTATION OF
REAL TIME, CONTINUOUSLY PROGRAMMABLE
DIGITAL FILTERS

BY

WILLIAM EDWARD STORMA
B.S.E., Florida Technological University, 1976

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering
in the Graduate Studies Program of the College of Engineering
at the University of Central Florida; Orlando, Florida

Fall Quarter
1979

A MICROCOMPUTER IMPLEMENTATION OF
REAL TIME, CONTINUOUSLY PROGRAMMABLE
DIGITAL FILTERS

BY

WILLIAM E. STORMA

ABSTRACT

When a fillter transfer function in s is replaced with the
bilinear transform in z, the resulting discrete model represents
the original continous model within a second order accuracy of inte-
gration. A unique set of recently discovered minimum memory algo-
rithms that perform the bilinear transform on a continuous transfer
function are implemented on an INTEL 8080 microprocessor system.
Scaling techniques are used to frequency scale all transfer functions
to a standardized frequency. All data words are represented in a
signed binary double precision format to maintain higher calculation
speed and accuracy.

Three test case transfer functions of different order are
implemented using the bilinear transform algorithms. First, the
algeorithms are used to generate the three discrete models. Second,
the continuous time models are driven by a step input function,
generating a continuous time output. Third, the step function input
is discretized and used to drive the bilinear algorithm derived
models. Finally, the discrete outputs are compared with the
continuous time outputs to validate and evaluate the software
technigques used to implement the bilinear algorithms, which imply

that the techniques provide a basis for new hardware designs.

IList

Iist

II.

ITI.

IV.

V.

VI.

VII.

Appendix A.

References .« « o o«

TABLE

of Tables « o ¢« o o o &
of Flgures .« « ¢ ¢ ¢

Introduction « « =« « »

OF CONTENTS

Background « « « o ¢ & o &

Data Format Considerations

.

Scaling the Filter Function

Software Implementation
Filter Implementation

Results and Conclusions

111

INTEL 8080 Assembly Program Listing

12
17
20

43

57
73

Table

II.

III.
Iv.

V.

LIST OF TABLES

Input - Output Execution Time Based on Order

Of "TransTer Functlon « o « » & s s 2 & & & & & & s

Maximum Omega That Input - Output Routine Can

be Run in Real Time B 8 B 8 s @& B & € B 8 8 e 0 @

Scaled Second Order Transfer Functions . « « .+ &
Scaled Third Order Butterworth Transfer Functions

Scaled Third Order Chebychev Transfer Functions

iv

41
45
47
48

LIST OF FIGURES

Memory Map of Data Storage « « o« o« s o & o &
Binomial Tookup Table + o« ¢ s o o o o o o « o
XFORM f1low chaXt o o o ¢ o o o o o 2 o 2. o o »
XPORMZ Tlow ehart & s & @ & o & ¥ & & 5 & & @
XZNA flow chart o o « o o o ¢ 9 0 o o 2 ¢ @«
X2NB flow chart .« « o« ¢« ¢« ¢ o ¢ s o o o o o o
XFORM3 flow chart « « ¢« « o ¢ o« ¢ s ¢ o ¢ s @
XFORMY flow chaft o o o 5 o 5 & & & % » s & o

DIFF flo w Cha.rt L] . 1] L] . . . L] . L] L] L[] . L] L]
SIGe Tlow ehart o & o i i % o o ¢ & & & o & .#
S TG 3 f 10 w Chart L] L] L] L] L] . L] . L L] L] L[] L] L] .

Shifting of Differential Equation Time Values
Second Order Transfer Function « « « « « o o o
Third Order Butterworth Transfer Function . .

Third Order Chebychev Transfer Function . . .

Page
22
24
26
27
29
30
32
33
35
37
38
39
50
51
52

I. INTRODUCTION

Analog circuits and filters designed to process analog signals
often are limited in accuracy due to:

a. thermal drift

b. component tolerances

c. offset and bias conditions of operational amplifiers

d. signal noise introduced by the circuit itself
The only means to build highly accurate analog circuits is through
careful design and the use of high quality components. This often
results in designing expensive circuits and allowing bench time to
minimize circuit sensitivities due to circuit parameters.

The age of digital electronics has brought about many new
methods to handle the processing of analog signals. The ability to
design signal processing circuits that can handle the signals digi-
tally overcomes many of the handicaps of the analog circuits. Dig-
ital Signal Processing (D.S.P.) is a newer, more accurate and less
expensive means to analyze and process signals. The digital cir-
cuits have no thermal drift, no offset or bias problems, do not re-
quire high quality circuit components, and do not introduce noise
into the circuits. Thus, many signal processing systems have be-
come digital in nature, using analog-to-digital (A/D) and digital-
to-analog (D/A) converters to interface between the analog and digi-

tal systems.

The design of digital filters, a special case of D.S.P., has
become a fairly common practice with standardized design procedures.

2
The use-of these standard design procedures involves implementing a
filter transfer function in the form of a difference equation. The
result of this design is a digital circuit that is 'hard wired', i.e.
the characteristics of the circuit are not readily alterable. This
feature is unfortunate if the exact characteristics of the filter
are unknown and several designs must be tried before a circuit is
chosen.

An alternative to the above problem is the design of a com-
puter software package that allows a real time implementation of a
filter transfer function 'in circuit'. Also, giving the software
package the ability to alter the filter transfer function while the
digital filter is processing signals allows a 'continuous programming'
feature. The result is a real time continuously programmable digital
filter. By using an interface capability, the software can be imple-
mented on a microprocessor system and run 'in circuit’'. This allows
the microprocessor to actually synthesize any filter function and
modify the transfer function characteristics while the filter is 'in
circuit’'.

The basis of this thesis is the implementation of a software
package as described above. The software package is designed a-
round a new set of algorithms that perform a bilinear transform
using 2 minimum memory approach. An INTEL 8080/8085 based micro-
processor 1s used to process these bilinear algorithms. The program
starts with a transfer function in differential equation (or s domain)
form. Then, using a bilinear transform approach, the differential

equation is transformed into a difference equation. The program

3

then executes the difference equation in a real time mode, allowing
real time output.,

The program has memory allocated to operate on transfer functions
up to fifth order, using a double-precision (16 bit) data word.
The output from the program 1s a transient response in time, with the
input presently being a step function (though easily modified for any
signal input). A transient response (or time response) is preferred
over a frequency response in this case since a step function inputted
in a transfer function forces all filter characteristics to be dis-
played in the output. The combined features of a digital filter that
is continuously programmable, operates in real time, and can be used
'in circuit' make this digital filter system highly useful in the

design of digital signal processing systems.

II, BACKGROUND

Filtering is a technique whereby the frequency spectrum of a
signal is specified, such that certain frequencies are passed through
the filter and other frequencles are rejected by the filter. Filters
are initially designed in the frequency domain (or complex s plane),
where the frequency characteristics can be used to obtain a differ-
ential equation. This characteristic filter equation is usually
refered to as a transfer function (denoted by H(s)) and is a ratio
between the output (Y(s)) and the input (X(s)). The equation
is written as:

Y(s

LT - H(s) 211

and is described in the block diagram form as:

X(s) —E—) 1(s)

Y(s) = H(s) X(s)

Once an H(s) is specified, the equation can be transformed into

where

the time domain, using an inverse Laplace transform:

L) 1= m(v) 2.2)
The resulting h(t) is an equation of the analog filter characteristics
in a continuous time domain. Analog filter design, unlike digital

filter design, can be run on an analog computer, which operates

in a continuous time mode. However, with the advent of high speed

5
digital computers, a trend has developed to use digital equipment
to implement algorithms. The digital computer requires that the
algorithms be modified to work in other than a continuous time
domain. This is because a digital computer does not run in a
continuous time mode, like the analog computer, but in a discrete
time mode. This discrete time mode is due to the fact that a digital
computer works in cycle times, and calculations require a certain
number of machine cycles to implement. The result from a digital
computer is a string of outputs at discrete intervals of time.

It is therefore necessary to transform an H(s) into a discrete
time mode equation. The necessary discrete time mode equation is the
difference equation, which is implemented in the z domain. The
equation is written as:

X(o = H(z) 2.3)

where X(z) are discrete time inputs and Y(z) are discrete time out-
puts. The transformation from the z domain to a discrete time mode,
nT, is called the inverse z transform, denoted by:
&7 u(z)] = n(a1) 2.4)

where T is the time sample interval and n is the n'" sample period.

Ordinarilly, H(s) models are not transformed directly to H(z)
models. As an example of a textbook approach, the H(s) must first
be transformed into an h(t), then the continuous time, t, must be
changed to a sample interval time, nT, and finally the h(nT) must be

transformed to an H(z).

Mathematicallys
h(t) = X7 H(s)] 2.5)
h(nT) = h(t)lt = 2.6)
H(z) = [h(nT)] 2.7)

This and other similar approaches are cumbersome and slow processes
for a digital computer to perform. What would be more desireable
would be an algorithm that could calculate an H(z) based on an H(s).
This would avoid having to transform into and out of the time domain.
This calculation for an s to 2z conversion would be an approximation
of H(z), based on H(s) and sampling rates.

Although there are computer programs for transforming from the
s to the z domain, these programs require some amount of memory for
all temporary results. Some digital systems posess only a small
memory and therefore cannot use the s to z transformation processes.
What would be ideal for these digital systems with small memory space
would be an accurate algorithm that could approximate an H(z), based
on an H(s) and the sampling rate, and perform this algorithm 'in
place', i.e. using only the memory required for coefficient storage
for the algorithm process.

The specific algorithm to be discussed is based on the bilinear
transform:

_2 [zt
S-.'I', (zﬁ.) 2.8)

which is the average of the first order forward difference equation
and the first order backward difference equation. This bilinear

transform is the standard algorithm used in digital filter design.

?
The in-place algorithms for equation 2.8 were discoverd in 1978
[3] and were published and later modified to handle any general bi-
linear transformation [2]. The general form of the algorithms axe
reprinted here for convenience:

the bilinear transforms: BS === sy g C % 0 2.9)

where 7y = % B=~— g =

and the % factor is incorporated into the a,b,c,d variables. Now,

given a polynomial in z:

i 2.10)

and the bilinear transform (equation 2.9), the polynomial D(s) is

found by:

A az+b * P!z}

D(s) = & di e | = N 2.11)
i=0 (ez+d)

or

3 i N

P(z) = & P 2 = (cz+d)” D(s) 2.12)
i=0

The problem in getting an 'in place' algorithm requires computing the
pi's, the coefficient set of P(z), from the di's, the coefficient
set of D(s).
The four step algorithm process for this bilinear transformation
is as follows:
substituting 2.9 into 2.12:
P(z) = & (z+B)N D E%"é + y) 2.13)

Equation 2.14 can be broken down into elementary transforms, which are:

E(z) = D(z+y) 2.14)

F(z) = ¢ E(22) 2.15)
G(z) = 2" F(1/z) 2.16)
H(z) = G(z+8) 2.17)

Each elementary transform consists of a shift in the z domain

of the form:
z = 2% 2.18a)
z = z+B 2.18b)
z = 1/2 2.18¢)
z = zhy 2,184d)

and each of these cperations can be applied to polynomials by an
'in place’' operation. This means that any bilinear transform can
te applied to polynomials by performing a sequence of 'in place’
operations, such as the general equations of 2.18.

To prove that H(z) = P(z), substitute 2.16 into 2.17, 2.15 into
2.16 and 2.14 into 2.15.

H(z) = G(2z+B) 2.19)
1
= (z+8)" F ‘—z;g
= (z-i-B)N S E E%E
- (z-!-B)N (.':N D Z*I-LB + 'y]
= P(z)

The strategy is to compute first the coefficients of E(z) from

the coefficients of D(s), then the f,'s from the ei'a, then the

. 4

gi's from the fi's and finally the hi‘s from the gi's.

From these elementary transforms, a set of computaticral

equations can be obtained [2]. The final form of these equations are:

N i) 5

e5=d,; + T 1(j)y Jd.l 2.20)
=5+

£ = ob 2.21)

i o ei .

g = £ o 2.22)
: 3

R §=j+1 (j) g e

where
Y - 11
3 3T (1-3)1

An analysis of these equations will prove that all these operations
can be performed 'in place'. For the general case of a transfer

function in H(s):

2.24)

=
—~
w
~—
]
Iﬁ'["iZ'ﬁ'Ng
i

o

the four step bilinear algorithm would be applied to both the numer-
ator and the denominator seperately, with the highest coefficient
order (either M or N) being the order of both the numerator and

denominator in H(z). The H(z) would then be written as (assuming
th

M™" order):
M
) 2 cy zi
H(z) = i=0 _ (=)
M % = D(z) 2.25)
= di Z
i=0

] '
5 s and di 85

now occupy the memory locations originally designated for the

The resulting coefficients of H(z), i.e. the ¢

10

a,'s and b,'s, respectively. After obtaining the H(z), an inverse

- i

z transform can be applied to transform the equation to the time
domain. For the general case:

cmzm + cm_lzm~1 + so0o 4+ cozo
H(z) = 2.26)

4 Zm % d m-1 0
m m-1

Z" ~ o+ ooe + d 3
99

which can be rearranged as follows:

m m-1 : Ol
X(z)[c,Z * e 4z + + cyZ] =
m-1

m 0
Y(z)[a8 e] 2.27)
Applying the inverse z transform, the equation becomes:

cmx(nT+mT) - cm_lx(nT+(m-1)T) 4+ eee 4 cox(nT) =

d_y(nT+nT) + dm_iy(nT+(m-1)T) + eve 4 doy(nT) 2.28)

The inputs (x(nT+iT)) and the outputs (y(nT+iT)) both depend on
values at time t=nT and all future time values (t=nT+T, nT+2T, ocoe),
The equation can be converted so that the inputs and outputs depend
only on present (t=nT) and past values of time (t=nT-T, nT-2T,
oeo). This can be accomplished by allowing

n= n-i 2.29)
where n is the nth coefficient. This amounts to a shift in time.
The difference equation now becomes:

cmx(nT) + cm_lx(nT—T) + ee0 + cox(nT-mT) =

dmy(nT) - dm_iy(nT-T) + co0s 4 doy(nT-mT) 2.30)
The output at present time, y(nT), can be expressed as a function

of the present input and all past inputs and outputs of the equation,

as follows:

11

. dmy(nT) = cmx(nT) - cm_ix(nT-T) + o004 cox(nT-mT) -

dm_ly(nT-T) - s0e - doy(nT—mT) 2.31)

which can be rewritten as:

M M
z z
| 0g S(HT-ET) ~ T _; y(nT-1T)

g(ur) = 120 Mt 1=1 g 5, 8

The equations necessary to perform a bilinear transformation on
an H(s) have been developed. Also, the necessary equations have
been developed that will output a string of values based on a
string of input values. What has been derived is a set of equations
that allows a programmable implementation of a digital filter on a
digital computer. By a proper adjustment of the output rate of
the string of values from equation 2.32, the input-output operation
could be performed in a 'real time' mode. By updating the original
H(s) equation and allowing the bilinear transform to compute a new
H(z), the digital filter could become ' continuously programmable’
and run in 'real time’.

The implementation of the above bilinear transform algorithm
and a corresponding input-output routine are discussed in the
following sections. The implementation is a direct result of the

equations developed in this section.

III. DATA FORMAT CONSIDERATIONS

Implementation of the bilinear transform algorithm on an 8 bit
microcomputer poses some questions as to how the software is to handle
the program data. The areas of concern in dealing with the data
handling problems are:

a. should the program use fixed point binary or floating
point binary?
bs should the program use single or double precision?
Ce what is the highest order transfer function that can be
implemented, with respect to points a and b.
These are the software data handling problems that must be answered
before the actual software programs can be written.

The first data handling question concerns the method of
representing the data during algebraic manipulations. The use of
floating point notation allows data to be described over a wide range
of values. Floating point notation has a unique data structure and
cannot be represented with a normal 8 or 16 bit data word. Due to
the long data word required for floating point notatlion, execution
times for floating point routines are excessively long when compared
to analagous routines that are performed in a fixed point notation.
Since a requirement in executing these transform algorithms is a
rapid execution speed, the use of any floating point notation

would cause a considerable increase in the total execution time of

13
a program, which is a feature that cannot be tolerated in executing
these routines. Another disadvantage of using a floating point
notation is that the number of bits allocated for the data (mantissa)
are not the full 16 bits that are used in the double precision fixed
point notation. This means that the floating point notation will
not carry a full 16 bit accuracy in data and therefore is less
accurate than the fixed point notation in describing data. This
factor reinforces the undesireable aspects of using floating point

notation.

This leaves the fixed point representation of data to be
considered. Using a signed binary notation, data can be ranged
over +127 for single bit precision and ranged over +32767 for
double precision. If the sign bit is stored somewhere else than
with the data, the double precision data could be ranged over
+65535. In all cases, all integer values can be accounted for
in the fixed point representation. There still exists a problem
in describing data that exists in a fractional form or has some part
of the data in fractional form (i.e. 123.78, where the .78 is
the fractional part). To use data in fractional form, all the
data can be scaled to a pure fractional form (i.e. all data ranged °
between -1 and +1, excluding endpoints). This can be accomplished
by dividing all the data by a value, R, which is greater in magnitude
than any of the data, to convert all the data to a fractional form.
The result of scaling all the data to be less than the magnitude

of one provides a method of describing all data combinations with a

14

high degree of accuracy. For a single precision notation, numbers
55 BEELL a8 B (3.90625 x 1077) can be described and for double
precision notation, numbers as small as 2~16 (1.525 x 1077) can
be described. In both of the above fractional cases, it is assumed
that the sign bit is carried elsewhere and is not part of the 8 or
16 bit data word. Therefore, by properly scaling all of the data
to a fractional form, the accuracy of the data can be maintained.

From all the information known about fixed point binary and
floating point binary data, and the knowledge that the bilinear
transform algorithm requires rapid machine algebraic computations and
accurate data handling, one can postulate that the fixed point
binary data technique is best. To maintain the high accuracy of
the data during the algebraic computations, a 16 bit double precision
fractional format is necessary. To maximize the data accuracy,
the sign bit of the double precision data word is stored elsewhere
than with the data word itself.

Having answered the data handling questions to the first and
second areas, there remains the question as to what is the highest
order transfer function that can be implemented. With the knowledge
that double precision fixed point notation is used, it is necessary
to determine what is the smallest data word that can be accurately
described. Part of this question can be quickly determined by
examining the bilinear transform. An examination of equation 2.21,
which 1is:

N i

f, = caey 3.1)

depicts that the o is raised to a power, i, which is directly related

15
to the order of the e coefficient. For the bilinear transform of

- 851
e z+1 3.2)

with the % factor set equal to one, the value of o becomes
a=2-By=-1-1=-2 3.3)

and
c=1

With this information, equation 3.3 becomes

f1 = (—2)i e; 3.4)

h

For an Nt order system, the e, coefficient would be multiplied by

N

a (-2)" value. To insure that the f. coefficlent be less than the

N
1

magnitude of one, the e, can be divided by a 2N+ ‘

N
There still exists the problem of a data overflow in equations
2.20 and 2.22, due to the summations. Since the summed value is
determined by all the higher order factors and these higher order
factors can range in value between + 1, there is no absolute factor
to divide all the data by to insure against an overflow. Therefore,
it was necessary to determine a scaling factor based on sample
problems. By inspection of these sample problems and extrapolation
of the scaling factors determined for these sample problems, an
overall data scaling factor of 220+ has been determined for all
realizeable filter functions. From the data scaling factor and
the need to maintain some degree of accuracy in the data, an initial
limit on transfer functions has been determined to be fifth order.

Using the double precision fixed point notation, the data would be

16

maximally scaled by 29 (512), which leaves, at most, seven bits
of data that can be retained after the scaling process.

Based on the information presented and the knowledge of the
bilinear transform algorithm, filter transfer functions should be
no greater than fifth order. This allows sufficient data accuracy
for the double precision fixed point binary data format, which is
to be used in the algebraic computations. The basic'questions as to
what data handling techniques the software should use have been
answered. The next step is to scale the differential equation for

use by the bilinear transform.

IV, SCALING THE FILTER FUNCTION

Any given filter transfer function in differential equation
form will contain coefficients for each power of s. For any general
case, the coefficients will be any real number. These coefficients
must be converted to a double precision fixed point fractional
binary number before being implemented. Therefore, the transfer
function coefficients must all be scaled prior to implementing
the bilinear transform algorithm. A generalized scaling technique
must be obtained to handle any general transfer function.

Based on a bilinear transform of equation 3.2, a scaling
factor of 22N-1 was determined necessary to prevent data overflow

during the bilinear transform algorithm. This scaling factor was

determined with the £ factor set equal to one. In general, the 2

T T
factor is not equal to one and must be accounted for. If the %
factor were to be included in the a,b,c,d of equation 2.9, then
equation 3.2 would really be expressed as:

_ 2z -2
S =T, 7T 4.1)

and the a, B, Yy factors would all be influenced by T. Due to this
influence by T, the a, B, Yy factors would have to be changed every
time a different T is chosen. Since the a, B, Yy factors must be

included in the bilinear transform, the software must be alterable

to handle the changes in a, B, Y.

18

Thé variations in a would complicate the implementation of
equation 3.4, since raising a number o to a power is not easily
done on a microprocessor. However, raising 2 to a power can be
quickly accomplished on binary data by a sequence of shift oper-
ations. Therefore, it would be convenient to keep the (-2)i
factor in equation 3.4 . It is therefore necessary to scale the
transfer function to redefine the % factor to be equal to one.

The T factor must first be related to the filter frequency.
Consider a filter with a natural frequency of W . The period of
this filter is then T . The T factor is then some fractional part
of T, such that an integral multiple of T will equal 7 . This
integral multiple can be defined as x and is called a sample interval.
Now, to obtain % = 1, a frequency scaling technique must be incor-
porated. Given a sample interval, x, which determines the number

of data outputs (from the difference equation) per period,

the original transfer function (at W) yields:

- N e

Therefore:

2. 2 _ 2w

TS XT - 2nx 4.3)
Now, consider scaling the frequency to some (U ', such that'% = 1
Under these conditions:

g2 @ oty

T~ xT onx bolt)
or

2W’

= "2 4.,5)

19
To frequency scale from W to W', substitute equation 4.5 into

equation 4.1, as shown:

ot 268 - o
2mx ~ 2m 2W'T W’ 4.6)
2

which can be rewritten as:

W

X

w =W 4.7)

Equation 4.7 is the factor necessary to frequency scale from (J to
UJ'. By using this scaling format, the % factor will always be
set equal to one. For a general polynomial in s, the coefficients

are scaled using the formula:

Py = %JJE) % Fi i
For a normalized polynomial, withW > mx, the coefficients of P(s)
are scaled down to a fractional value, with the exception of the
NP coefficient, which is one. Once all the polynomial coefficients

are in a frequency scaled form, the additional scaling factor of
2N-1

2 can be performed. The generalized scaling algorithm now
becomes:
(_EE_)N‘i
By = 27{1:{0-_1“— *y #9)

This scaling algorithm insures that all the coefficients are
properly scaled to a fractional value and will not overflow during

the bilinear transform algorithm process.

V. SOFTWARE IMPLEMENTATION

Knowing the necessary equations to perform the bilinear trans-
form (equations 2.20 - 2.23) and that the data is to be represented
in a double precision fixed point signed binary format, the
actual software programming can be implemented. Knowledge of the
bilinear transform equations only describes the algorithm, but does
not specify how the equations are to be implemented in a software
program. These implementation procedures are based on the programmers'
interpretation of the equations and his experience of using a
particular programming language.

Based upon the transfer function limit of fifth order and the
full 16 bit data word, certain initial configurations for memory
storage locations are possible. The data is stored as two 8 bit
words with a third 8 bit word storing the sign bit, described

as follows:

M M.S.B.
M+ 1 L.S.B.
M2 Sign byte

with M.S.B. denoting most significant byte and L.S.B. denoting least
significant byte. Only one bit of the sign byte is used, with the
other bits set to zero. For positive numbers, bit 7 is set to zero
and for negative numbers bit 7 is set to one. Since three memory

locations are necessary to fully describe a data word and a fifth
order polynomial can have six coefficients (0 - 5), there must be

21

eighteen memory storage locations to store all the coefficients of
a fifth order polynomial. A filter transfer function could possibly
exist as a fifth order numerator over a fifth order denominator,
therefore a total of thirty two memory locations are needed to
store the coefficients of a transfer function in memory.

Knowing that the bilinear transform is to be performed on
data 'in place', then once the transform algorithms are executed, the
coefficients stored in the memory locations for the transfer function
now store the coefficients for the difference equation. The inverse
z transform then allows the coefficients of the difference equation
to become the coefficients of the discrete time equation. Since
every coefficient of a discrete time equation must have a discrete
time factor associated with it (i.e. p(nT-iT)), there must be
six discrete time factors each for the numerator and denominator
discrete time equations. The discrete time factors are also described
using the double precision fixed point signed binary format that is
used on the transfer function coefficients. This requires another
thirty two memory locations to store these discrete time factors.
On the basis of this requirement for memory, an allocation for
memory space was chosen, as shown in figure 1.

The next step involves implementing the bilinear transform
equations (equations 2.20 - 2.23). One of the first questions is

concerned with implementing the binomial factor

[5) - s 51)

Equation 5.1 can either be calculated each time equation 2.20 or

6000
16 Numerator
6011 coefficients
601212
Denominator
602 31 6 coefficients
6024 é
€0 2F,1 temporary storage
6030 16
16
x(nT - iT)
factors
1501&11 6
empty
6045
16 y(nT = iT)
factors
605646
empty
605&16 transfer funetion
description data
gggié
16
btinomial
lookup table
6074
16
607516 temporary
storage
60'71'“1L é
6080 16
main program
6511\1 6

Figure 1. Memory map of data storage

23
2.23 is-performed, or a lookup table, based on i and j, could be
performed. Knowing that rapid computations are desired and that a
factorial computation requires repeated multiplication, which requires
an extensive amount of computer computation time, a lookup table
would be easier to implement and faster to execute. To implement
the lookup table, a means to uniquely describe every i and j
combination must be determined. Examination of equations 2.20 and
2.23 show that 1 is less than j for all cases of 1. These restric-
tions state that some combinations of i and j do not occur in these
equations and can be disregarded. A means to determine a number
that is unique for all the possible combinations of i and J is
to multiply 1 and jJ such that
K=1x]j 5.2)

This K value can then be used to locate the position in memory of
the proper binomial value. The binomial number can then be retrieved
and used in the proper transform equation. The binomial lookup
table, based on equations 5.1 and 5.2, is shown in figure 2. The
value of K is added to memory location 606016 to 'point at' the
binomial value to be retrieved from the table.

To implement the bilinear transform equations (2.20 - 2.23),
a structured programming method is a desireable choice, both to aid
in understanding the flow of the program and to break the transform
process into 'blocks' that perform a specific equation on a specific
section of data. Equations 2.20 - 2.23 must be performed on both
the numerator and denominator coefficlents. Therefore, a software

subprogram must be written for each transform equation twice, once

2l

60€0, ¢

hvjwlWwlwnFlWIN]] -

10

10

10

10

10

60?14-1 p B

Figure 2. Binomial lookup table

25

for the numerator coefficients and once for the denominator coeff-

icients.

The first equation to be implemented is equation 2.20, which is:

ej=d,+ z () . a, 5.3)
i=j+1
Using the bilinear transform of
= 21
Bl 5.4)
with
2 _
=1 5.5)

the factors o, B, y become

o= =2 5-63.
B=+1 5.6b
y = +1 5.6¢c

Equation 5.3 reduces to
N
., + 2 () 5.7)
Joo1=5m1

A flow chart depicting the implementation of equation 5.7 on the
numerator and denominator coefficients is displayed in figures 3
and 4, respectively. In both subprograms (XFORM and XFORM2),
the program starts at j=0, evaluates the binomial factor and sums
the partial products onto ej « Once i=N, j is incremented and the
process repeats itself until j=N. The value of N is stored in
the memory as NUM for the numerator and DEN for the denominator.
These values must be placed in memory before the transformation
process begins. Once j=N, equation 5.7 will have been implemented

on all the coefficients and the program moves on to the next

26

Initialize registers
B,C=0
HL= 600016

X

Store H,L in TMP1

=l

Increment C

Set upr binomial pointer

Ioad A with binomial no.

Multiply [H,1] by A

Add product to low coeff,

load A with numerator
numbex

Increment B
C=3
H1s= 600016

A=38 1

Increment H,L by 3
Decrement A

no A=0

Figure 3. XFORM flow chart

27

Initialize registers
B,C=0
H‘L = 601216

%

Store H,L in TMP1
N

Increment C

Set up binomial pointer

load A with binomial no.

Multiply [H,L] by A

Add product to low coeff.

Ioad A with denominator
number

HLs= 601216

A=5E

ol

Increment H,L by 3
Decrement A

no A=20
7
yes
Load A with denominator
number
no A=38
7
o To X2NA

Figure 4, XFORM2 flow chart

28

subprogram.
The next equation to be implemented is equation 2.21, which is:

= Ny,
fi = ca'e; 5.8)

which reduces to:

g, = (-2)% e 5.9)

i 2
Equation 5.9 can be very easily implemented on a microcomputer.
Any multiplication by two can be performed by a series of shift
operations. A flow chart implementing equation 5.9 on the numerator
and denominator coefficients is shown in figures 5 and 6, respectively.
Again, the subprogram (X2NA or X2NB) starts with i=0, performs
equation 5.9 and then increments i, repeating equation 5.9 until
j=N, when the process is finished. The program then proceeds to
the next subprogram.

The third equation to be implemented is equation 2.22, which is:

B = £y 4 5.10)
This equation redefines the order of the coefficients. By keeping
track of where all the coefficients are for both the numerator and
denominator, the reassigmment of the coefficients can be handled
with software programming. This means that equation 5.10 does not
have to be actually performed. This allows a saving of computation
time since equation 5.10 is not actually implemented and this helps
to reduce the total execution time of the program.

The last equation to be implemented is equation 2.23, which is:

N
. 1] g3=3
hj—gj-i-z (j)s & 5.11)

i=j+1

29

Initialize registers
E=1
H,1= 600316

C=0 1

Load D,E with coefficient
Load A with sign bit
Store A in TMP2

Carry = 0

Right shift D,E
Compliment sign Bit
Increment C

A=3B

no A=2C

yes

load A from TMF2
&.miﬁ

Store sign bit in memory
stack
Store D,E in memory stack
Increment H,L by 3
Increment B
Load A with NUMM1
variable

To X2NB

5« XZ2NA flow chart

Initialize registers
B=1
H,L= 601516

with coefficient
th

sign bit
Store A in TMP2

Load A from TMPZ
ﬁ'mis

Store sign bBlt in
memory

Store H,L in memory

Increment H,L

Increment E

load A with IENM1
variable

To XFORM3

Figure 6. X2NB flow chart

31
This equation can be reduced to:
. 1

hy=g;+ i::j-l-i (j) 8, 5412)
since B=1. Equation 5.12 is identical to equation 5.7 in form, so
the actual programming should be similar. However, equation 5.12
must be executed on coefficients that have been reversed in order.
This difference must be accounted for in the subprogram (XFORM3
and XFORM4). Figure 7 and 8 depict the flow charts of the sub-
programs that operate on the numerator and denominator coefficients,
respectively.

Thoughout the subprograms that implement the bilinear transform,
certain variables are used to allow the program to know the order
of the transfer functions and properly implement the subprograms.
These variables are dependent on the order of the transfer function
and are obtained by using the following formulas:

a. NUM = order of the numerator
B DEN = order of the denominator

c. NUMPN = order of the numerator multiplied by three
d. DENPN = order of the denominator multiplied by three
€. NUMM1 = order of the numerator plus one

f. DENMl = order of the denominator plus one

These variables must be determined and loaded into memory with the
transfer function coefficients before the bilinear transform program
can be used.

After equation 5.12 has been performed on the numerator and
denominator coefficients, the coefficients that now reside in the
memory allocated for the numerator and denominator transfer functlon
coefficients are the coefficients of the difference equation. With

the coefficients of the difference equation obtained, a routine

32

Initialize registers
B,C=0
H,L= 600016 + NUMPN

=

Store H,L in TMP1

x|

Increment C

Set up binomial pointer
Load A with binomial no.
Multiply [H,L] by 4

Add product to low coeff,
Ioad A with denominator

numbexr
no A=C
T

yes
Increment B
C=238
H,L= 600016 + NUMPN
A=E

"

Decrement H,L by 3
Decrement A

no A
7
yes

load A with denominator
punbex

no
o To XFORM4

Figure 7. XFORM3 flow chart

33

Initialize registers
B,C=0
H,L = 601216 + NUMPN

!

Store H,L in TMP1

increment C

Set up binomial pointer
Ioad A with binomial no.
Multiply [H,L] by A

Add product to low coeff,
load A with denominator

number
no o
2
ves
Increment B
C=B8
H,L= 601216 + NUMPN
A=738

__HL

Decrement H,L by 3
Decrement A

s A=0
?
yes

Load A with denominator
hunbex

no A=3B
?
J®S 5 To DIFF

Figure 8. XFORM4 flow chart

4

must be written to output a string of values based on a string of
input values (based on the discrete time mode of the difference
equation). Since a system response to a step function is a common
method to determine a systems' transient response, a discrete time
step function 1s used as the input string of values. Knowing that
the input and output values must be fractional numbers, the input
values must be limited in value to prevent the output values from
overflowing. Knowing that a realizable transfer functions' output
will never exceed twice the input value, an input value limit
is chosen to be % unit.

Having determined the constraints on the difference equation
(equation 2.27), which is transformed into the discrete time domain
of equation 2.32, a program can be written to evaluate equation 2.32.

Equation 2.32 is restated here as:

m m
E:o c 4 X(nT-iT) - §=1 d__, y(nT-iT)
y(nT) = 3 5.13)
m

This equation can be broken down into three simpler equations that
can be used to design a structured software program. Equation 5.13
can be divided into three subprograms:
a. the summation over the x inputs
b. the summation over the y outputs
c. the division over the entire summation to obtain
the present time output.
A flow chart implementing the summation over the inputs is
shown in figure 9. This subprogram (DIFF) performs the discrete

time coefficient by discrete time input factor multiplication and

35

Initialize registers
Set TMP1 = 607C
Store gzero in TMP1
Stack pointer = 8800
H,L = 6030 + NUMPN
Store H,L in ADL
H,L = 6000 + NUMPN
Store H,L in TMP3

>
[Ioad H,L from ™3 |

L To STG2

Load B,C from [H,L] Load B,C with 8000
Load A with zero
Increment H,L by 2 Store B,C in [H.L]
Increment H,L 2
Load A from [H,L] Store A in H.H
L]

Store H,L in ADL
Determine product sign bit
H,L = B,C x D,E

Add K,L to [TNP1]

Load E,L from AL

Decrement H,L by &
Store H,L in AIIL

Figure 9. DIFF flow chart

36

sums these partial products into a memory storage location. For
the input at nT, the program inserts an input value of % into both
the program and the discrete time input factor memory storage location.
After the discrete time inputs have all been accounted for in
equation 5.13, the discrete time output values must be subtracted from
the memory location holding the partial summation over the inputs.
This program (STG2) performs the coefficient by discrete time
output factor multiplication, performs a twos' compliment on the
product and subtracts the product from the overall summation factor.
Figure 10 depicts the flow chart for this subprogram. Once all
the discrete time output factors have been multiplied and subtracted
from the discrete time input factor summation, the present discrete
time output, y(nT), must be evaluated. The program (STG3) divides
the total summation number by the coefficient dm to determine the
y(nT). The y(nT) is then outputted to an output device for viewing
and recording purposes. This subprogram is flow charted in figure 11.

When all the discrete time input and output factors have been
evaluated for t=nT, the sampling time point must be incremented
to t=nT+T. All the discrete time factors must be shifted back in
time by T so that the new sampling time point is nT. Since
equation 5.13 is determined from past and present time wvalues
for x and y, an increment in time, T, moves all the x and y values
back in time by T. Therefore, all the x and y discrete time factors
must be shifted in the memory location to match up with their
respective position in time. Figure 12 demonstrates how the x and y

values are shifted when the sample time point is incremented.

To STG3

H,L = 6045 + NUMPN
Store H,L in ADL

H,L = 6012 + NUMPN
Store H,L in T™MP3
1oad H,L from TMP3

Initialize registers

37

t sign bit

é,,i:imn
mmnm Lcmmzmm

MM m mm m.

4 m msmH

]

Add H,L to [TMP1

yes

load H,L from ADIL

Decrement L by 5§

Store H,L in AIL

STG2 flow chart

Figure 10.

=
device
To MOVE

38

Output result to output

STG3 flow chart

Figure 11.

39

New present
time values

l

p(nT)
=
p(nT - T)
-
e
p(al - 2T) L Shift all values
e by one time value
p(nT - 3T)
—
p(nT - 4T) I~
e
p(nT - 5T)

Discard oldest
time value

Figure 12. Shifting of difference equation time values

TABLE I
Input - output execution time based

on order of transfer function

N Execution time
1 10,443 usec.
2 16,486 usec.
3 22,529 usec.
L 28,572 usec.
5 34,615 usec,

41

TABIE II

Maximum omega that input - output

routine can be run in real time

N AT 05T 01T
1 60.16 30.10 6.01
2 38.11 19.05 3.81
3 27.88 13.94 2.78
L 21.99 10.99 2.19
2 18.15 9.07 1.81

42
Finally, to ensure that the output string of values occur in a real
time mode, any excess execution time must be used up before a new
input-output sequence begins. This timing routine must be adjustable
based on the updating rate of the output string. The execution time
of the input-output routine, based on the order of the transfer
function, must be included in the design of the timing routine.
Table I displays the execution time of the input-output routine of
first to fifth order functions. Based on this information, the maxi-
mum frequency that the input-output routine can be operated at, based
on the sampling rate, is depicted in Table II.

The end result is a computer program that is capable of per-
forming a bilinear transform algorithm on a differential egquation to
produce a difference equation. From this difference equation, an out-
put string of discrete time values can be evaluated and produced in a
real time mode. By using any transfer function that fits within the
constraints of this software program, a real time simulated digital
filter can be implemented using this program. With proper interfacing
techniques, the software program could actually be used to synthesize

a digital filter 'in circuit' in a real time mode.

VI. FILTER IMPLEMENTATION

Having designed a software program to implement the bilinear
transform, several filter transfer functions have to be tested
on the software program to determine the programs' accuracy. The
accuracy of the program can be determined by comparing the output
from the bilinear transform program with the output determined
from the original transfer function, using the same input conditions.
By comparing the two outputs, the sensitivity of the program to
data format and scaling parameters can be determined. The per-
formance of the program to known transfer functions will help
determine the response from any general transfer function.

Filter designs are based on a set of frequency characteristics
that are required for a circuit. Therefore, a filter is a frequency
selective device. Normally, a test for a filter would involve
implementing a frequency spectrum sweep on the filter and observing
the output frequency spectrum. However, a digital filter has a
different method to be used to check for accuracy. Based on the
original transfer function in s, a continuous time response can
be obtained from the analog filter. This continuous time response
can then be sampled at intervals of nT (or discretized) to obtain
a time sampled response. This response can then be compared to
the response from the digital filter, based on the same input,

although now discretized. If the digital filter response is accurate,

Ly
this output should be the same as the discretized response of the
analog filter. Upon this basis, the digital filters are tested
in the time domain and not in the frequency domain.

Based on the information in Tables I and II, an operating
frequency for the test transfer functions is selected to bel= 10,
Sampling rates of .1Tand .05T are used for the output rate of the
discrete time equation, based on (J = 10. Three transfer functions
are chosen to test the performance of the software program. These
transfer functions are:

a. second order low pass
b third order low pass Butterworth
Ce third order low pass Chebyshev with 1 dB ripple

These three transfer functions are sufficient to test the
software program, testing different types of transfer functions at
different system orders.

The transfer function for the second order low pass filter is:

H(s) = 100 6.1)
s + 10s + 100

Taking equation 6.1 and allowing X(s) to be a % unit step function
and then performing an inverse Laplace transform, the resultant

transient response is:

y(t) = 5 - e N[107 +2] ,t>0 6.2
¥l 3

From equation 6.1, the scaled transfer functions (using equation
4.9) using 17T and .057 sampling rates are determined and shown
in Table ITI. Table III displays the coefficients of the transfer

function in both decimal and hexadecimal form.

45

TABLE III

Scaled second order transfer functions

H(s) = .012337

A

H(s) =

b.

H(s) =

Ce

H(s) =

d.

1258° + .0392699s + .012337

1T sampling rate - decimal format

.0328
.2000s> + .0AODs + .0328

+17 sampling rate - hexadecimal format

.007308%
12582 + ,0196349s + .003084

+05T sampling rate - decimal format

+00CA
+ ,0506s + ,00CA

.2000s°

.05T sampling rate - hexadecimal format

Lé
The transfer function for the third order Butterworth low pass

filter is:

1000 6.3)

H(s) = ————
s” + 20s~ + 200s + 1000
Again using a 3 unit step input and taking the inverse Laplace

transform, the transient response of equation 6.3 becomes:

-10t -5t
y(t) = «5 - «5e 0% | =2 5% amy 75 ¢] 6.4)
J75
£>0
Using equation 6.3, the scaled transfer functions using .17 and 05T
sampling rates are shown in Table IV, in both decimal and hexadecimal
form.

The transfer function for the third order Chebyshev low pass

filter with 1 dB ripple is:

H(s) = — 291-3 6.5)
s” + 9.8834s" + 123.84s + 491.3

Taking equation 6,5 and allowing a % unit step input and then taking

an inverse Laplace transform, the transient response becomes:

F(t) = o5 - -59-4.941?t L e-2.4?1t SIN [53.315 t]
J93.314
t>0 6.6)
From equation 6.5, the scaled transfer functions using .17 and .057
sampling rates are shown in Table V, in both decimal and hexadecimal
form.
From equation 6.2, a plot of the response, y(t), versus time
is plotted in figure 13. Along with the transient response, the
outputs from the discrete time functions are also plotted. Similarly,

equation 6.4 and the discrete time function outputs are plotted in

47

TABLE IV

Scaled third order Butterworth transfer functions

0009689

H(s) = 3 >
031258 + 01963498 + .0061685s + .0009689

a. «1T sampling rate - decimal format

.003F
.0800s> + .0506s° + .0194s + ,003F

H(s) =

b. «1T sampling rate - hexadecimal format

.0001211
0312552 + .0098174s® + .0015421s + .0001211

H(s) =

Ce 05T sampling rate - hexadecimal format

H(B) = 100'0?
.0800s> + .0283s% + .0065s + .0007

d. 057 sampling rate - hexadecimal format

48

TABIE V

Scaled third order Chebychev transfer functions

000476
.0312583 + .009?0352 + .0038195s + .000476

H(s) =
as 1T sampling rate - decimal format

L001F
H(s) = 0800s> + .027Bs® + .00FAs + .001F

b. .17 sampling rate - hexadecimal format

.0000595
.03125s° + 00485155 + .0009548s + 0000595

H(s) =
ce «05T sampling rate - decimal format

.0003
H(s) = 58008 + .013Ds” + .003Bs + .0003

d. .05T sampling rate - hexadecimal format

k9
figure 14, and equation 6.6 and the discrete time function outputs
are plotted in figure 15.

Returning to figure 13, the outputs from the .1T and 05T
discrete time functions are seen to closely follow the transient
response, The output from the .05T discrete time function 'tracks'
the transient response more accurately than the .1T discrete time
function, due to more samples per time period. The steady state
value for the transient response is '800016 (+5000,) and the
steady state value for the .1T discrete time function is '800316
(.50016?810) and for the .05T discrete time function is .?F‘D?ié
(.11-993?4310). In both cases, the steady state error is less than
.125% for .?FD716 and less than .033% for .8001316. Both cases
represent very close approximation to the transient response.

Figure 14 shows that the .1T discrete time function accurately
follows the transient response, while the .05T discrete time function
does not match the transient response characteristics. Both
discrete time functions settle down to a steady state value, with
the 1T discrete time function having a .7EC916 (.49525410) value
and the .05T discrete time function having a .?4]311‘16 (.45603910)
value. The transient response has a steady state value of '800016
(+5000,). These steady state values represent a steady state
error of .949% for -7BC9, . and 8.792% for .?ll-BFlé.

In figure 15, the 1T discrete time function accurately follows
the transient response, while the .05T discrete time function does
not match the transient response characteristics at all. The

steady state value of the .17 discrete time function is .?D1016

Figure 13.

Second Order Transfer Function

-
imann T T T T
. T —a I *
I Tt
1 T t
¥
e
. e
%
%
s
- o
: - .
T
+ T
} :
wsEw mrwuaea
- + + ae
- ware ot 4 ¥ ==
- aumw
a . .w
I m
- .
;o
- 1 n
T
r $
3 i w m
t : . ryesTas
- v
% T T ¥
* t — THT 1
I T 1 T
- = n . - T
X - : = - o 3 St
4 1 - - e
- 11T
* T
¥ 1
t T T
T T T
" e s
¥ T : —
=
mEmwTR! ww i
ms ¥
: i : S
a : bopgemay
T aur aaanat
..
e +
e
L
T et
T . t
T+ - =
: X T 1 T
: = : = i =
' -
T .
5 T
T 1 : 1
T - 3 1
1 +t % * $ T
. $:
T * t : =
n
T
t
-
T
$
T+t : s T
- e = : T
T - : :
T 1 % *
T =it canan -
- - .
e
I Y
T T T T 1
I = T
3 bas
x T . t s
T
t 1 z : e
* . $ 1
t T * Tt
trrer T + — 1
T —— I u
: % T - :
I soam : i it
; = 1
t t =% wed)
: t 1 1 1 1
- : :
- - > s geueasy|
: t
s a &
. + ™ + T font
4t Tttt
o maas T
T 1 T
¥ 2 2 ;
T e — -
et + i o
: in 2
s t
i
1
1 >
- — e o =
1 t $ $
e : - as Sesisisels
T T .
- 5 >
T
: : : T
: T I 1
2 s -
- - : resapesazaaney
: T
2 T
I - PR b .
it T t
T
- m N LTS H
+ b T
e as & + i i
' 1
: as T H ™ s
i
$ - - .- S ﬁ
t
ST !
T = -
.2 o 11
: + e
s T haesd i
+ t
* I :
t T
I ¥ T \
1 i
T .
+ T 3
: Tt
3 Hrin t
: T ¥ 1 "
B AL St e 3e2ires : : : H
e Ars e nmadh N Tis . T t 3 .
34 : 2 + T 1 : s
-
~—~ 0O wy = ™
- - - - L -
-4

time

-9

.B

.7

6

5

o

51

" - e ;o - el
I ra s Saes r
e amnrae: - -
- - AATSNS ! FPESEEETE N *
3 . g 14 :
- > .
: TRy dEEs T
: = :
e _“ 1 >
H
£ -
- -) - * t
ot o :
e 8 8 -
R -
—
-e e
HH
waea
— .W
—F
= .m
= g
bttt n ¥
Ii- 1 i
et u -
3.d .
: Tt v .
- T ' 3 e
r e - -
: S [
e
— 13 ¥ s uy :
- - (=1
: - - - - :
. 5 3 I SR '8 *
e -
T ——t
- =
—
E=man; -
o
e
- —
e 3t
+
=+
..... -
—
.. ;1
+ *
> -
T - ﬂ
T
-
i ;
¥ T
. =
T
E It
t
-
s : ﬂ— .
=
t
: 33
o T -
s
v sam
TIET 2
= -
= -
$ ﬁ
- i waw
: -
T
= .
SN :
‘- - 1
- E et
- ' el -
T 43
> . - 7
e » | -
1 amei naw
- -
- ==
<
- - -
. — -
T . - = .
R Rr 3
— - ie
1
srash
u 13
s s
-
-
=
-
e il ._n
T
T 3
1 > 3 i
Yot o T
g it T

v()i

Figure

q., 2 i

14, Third Order Butterworth

o -
- -

Transfer Function

9

.8

7

6

5

lu

3

-
: ey saois = 5322! eai3iRIITIIIIIIINGE:
il SHEerE = ST ST =
SrEETITTT = jEssses 2 i g :
.W umxnﬂ- s m : = oes : u
jSsseaasss ! et a2 :
e e T ! Hm T s
= == = : «
: = s :
= i = i
: - 3 H e
= = &= .u :
- - re .u i u -
aesas SErssRees o EEiEsas] =
saEnnel 3 sisamsiiil i n M H %
P S35 m —
i : fzaas:
fress s = m m
I = i e - =
== 5 9 ="
: = 2 = . :
: S = Seeseees
o L = Pt i mmmmﬂu b
seesesas fassis :
T : Ssaiosse umjwz. o
“ mm : xl#ll.. : =4 -
.. i . x : ==
Seeasy dts Era = piaieil 35
: : I 3= = mw i V)
: Hasthts
-q- = ——
= n
: L # - =
H 33 wiE
m :: atazass T
- e = Taaas)
= : : : B Es iaas = "
i SRR S i
= qm_.mh 33 = I M

1]

i
Ll
I
o
8
- T
[I
hanne
.
pS Seanee
-t
b 4

vt

:
: B 4 {
i - 7 {
= ! 3 i
b : = ihe _ i
sepesisenntiit
|m.» *
e
il =3 : 1
: i : : : i
- E 1 -—
saEbaa: 3 = : jas:
R
-

L] u
-

Figure 15.

> 2 ® o

Third Order Chebychev Transfer Function

53
(.48852510) and for the .057 discrete time function is .60EB16

(.3?858510). The transient response has a steady state error of
2.295% for -?D1016 and 24.283% for .6OE316.

In all the discrete time functions, there exists a larger
steady state error for the .05T sampling rate than for the .17
sampling rate. An examination of the scaled transfer functions
for 1T and .05T sampling rates in hexadecimal format (parts b and
d in Tables III, IV, V) show that the number of non-zero bits in
the coefficient drops by as much as three bits as the sampling rate
increases from .1T to .057. For the higher order systems, this
leaves only two or three non-zero bits for the zero order coefficients.
The result of the coefficients being rounded off and expressed in
such small, truncated numbers is that these coefficients produce
round off errors when shifted, added and multiplied by the bilinear
transform. As long as there are sufficient bits in the coefficients
to retain data accuracy, the bilinear transform closely matches the
transient response (as in the .1T case, all transfer functions).
Once the data accuracy is lost, due to insufficient bits, the
bilinear transform is using truncated data words, and the output
from the discrete time equation is a poor approximation of the
transient response. The result is a tradeoff between sampling
rate and data accuracy; data accuracy diminishes with higher sampling
rates and the output is inaccurate. With a low sampling rate, the
output has less than 1% error for two of the functions tested at

«1T and less than 2.3% error for the Chebychev function at .1T.

VII. RESULTS AND CONCLUSIONS

The software program that is implemented in this thesis is
basically two separate programs linked together. One program per-
forms a bilinear transform on a transfer function to generate co-
efficlents for a difference equation. The other program actually
performs an input-output operation on the coefficients of the
difference equation. Through the implementation of both of these
software modules as one larger program, the performance of these
programs can be evaluated. By evaluating these performance charac-
teristics, the benefits/disadvantages of the programs are revealed.

The software program written to implement the bilinear transform
algorithm was designed around the need to calculate the data as
quickly as possible. To help increase calculation speed, a fixed
point notation was used to represent the data. Double precision
notation was needed to insure adequate word length during the cal-
culations. To insure that the data was represented accurately, the
data was scaled to a fractional form. To reduce calculation time
on the bilinear transform equations, a scaling factor was designed
to frequency scale the transfer function to a standardized fre-
quency, based on the sampling rate of the discrete time equation.
All these techniques were used in writing the bilinear transform
algorithm software program.

Based on the results of filter transform functions implemented

55

in Chapter VI, the bilinear transform software program results in an
output error less than 2.3% when the data is accurately represented
(minimum of last 7 of 16 bits are non zero or contain data infor-
mation). When the 16 bit data word truncates the value of the real
coefficients, the bilinear transform can provide an output error
greater than 8% of the real transient response. The truncation of
data occurs when the sampling rate is increased, causing the scaling
factor to decrease the values of the transfer functions' coefficients.
From this knowledge, there are several solutions to retain data
accuracy with increasing sampling speed. Among these ideas include:

a. using a 16 bit microprocessor with double precision

(32 bit) word length

b. using a different scaling technique

c. using a floating point notation

d. developing new equations to implement the bilinear

transform.

Using a 32 bit word would increase the data accuracy, until high sam-
pling rates are needed, where the data would again be truncated. A
different scaling technique could imply rewriting the algorithms,
possibly slowing down execution time. Floating point notation would
allow a wide range of data values, but would slow down execution time.
Other new algorithm equations are not yet developed to execute the bi-
linear transform with minimum memory. There appears to be no single
best solution to this problem. Using any alternate approach that will
not drastically increase execution time can be considered a feasible
solution.

From the information supplied in Tables I and II, the maxXimum

operating frequency of the program is limited by the input-output

56

routine. An analysis of the input-output program reveals that a
ma jor amount of execution time is spent in software multiply and
divide routines. The data acquisition and add routines are presently
using minimal execution time based on the 16 bit data word. An im-
provement in this program would be the implementation of a hardware
or firmware multiply/divide routine to decrease the execution time.
By decreasing execution time, the maximum frequency obtainable is
increased. Since the input-output routine is a very straightforward
process, the algorithms need not be modified. The execution time
can be raduced by using hardware or firmware multiply and divide
routines.

The algorithms designed to perform an 'in place' operation, based
on the bilinear transform, can result in output errors less than 2.3%
on a microprocessor system. Based on sampled cutputs from the bilinear
transform program versus outputs from the original transfér function,
the program data matches the theoretical data within a 2.3% error pro-
vided that the last 7 bits of the 16 bit data word contain data infor-
mation. Faster input-output operations can be obtained by substituting
a hardware or firmware multiply/divide routine for the present soft-
ware routine. With these modifications, a sufficiently powerful real-
time digital filter can be designed around a small memory microproc-
essor, with continuously programmable features that make this system
extremely attractive for digital filter design implementation. Further-
more, the generalized procedure for the second order accuracy bilinear
approach implies a search for similar higher order accuracy algorithms

that could be beneficial to state of the art digital filter design.

APPENDIX A

INTEL 8080 Assembly Program Listing

58

RENSO :FL.FILTER SPC SYMBOLS XREF

1

XFORM PRGE

IS1S-11 86888/9685 MACRD ASSEMBLER, Y20

§ TO Z TRANSFORM ALGIRITHS

EQ SOURCE STRTEMENT

Loc el

{ BESERVE 96 EYTES
17 BINOM: DB L.1.23.4.5 ; PINCMIAL LOCK'F TAELIE

‘5 TO Z TRANSFORM ALGORITHMS)

ummmmmwmm
CYFEYFEfEaE

1?-3‘.56?39“

MDE!HIEGI.IGHJH
12 Nt EQU 60SEH
13 DEMtL EQU 6B5FH
14

15 ORG 6208

16 TRELE: DS 68H

18 DB 3.3,6,6.18. 18

15 0B 4,4,4,16, 16,18

298 D8 18,18,5

BY COEFFICIERT

S m =
o
S o8 =g g
-
f owgd BB BE
| EhEe B8y 4

i gl

mmmm =

EELLL

. mmmmmmmmmmmmm

aaﬂﬂﬁxﬂaaﬂhnﬂnﬁ

FHELICRRELEFIIIETEEER mmmm&waﬁxzxmm

JEEEOGRERNYL FITEBENGILRLITLRLEEEEEY RN AREANY

IS1S-11 5808/8085 MACRD RSSEMELER, v2 @
5 T0 Z TRANSFORM ALGORITHMS

Lo 8

T
50848

83
i

2
FUNNIBBURATIVLBLBYANALIBL LSS LGS a3 YR

§9
68§

U LR
8 182 158

B854
i

EVVIRILBBRBYIIAA

SOURCE STRTEMENT

i
783

FEEPEEE
EQEQ

RHEEH
375§

53
4

i
§

5528
gl“l

PES
s

8535835
25c”
B

8
:

§ BI3RES3
z §78§

$3350%5
"ig*ﬁ“ﬁ
-

59

WP PRGE 2

- we W me we we

- = ws =

ADD MPY # TO IOW COEFFICIENT
CHECK FOR HIGHEST COEFFICIENT

LOOP BACK IF NOT DONE

SET UP NEW COEFFICIEF™ POINTER

AGETS A - 1
""FDATE CCEFFICIENT POINTER
A GETS MMEPATOR ORDER

100P BACK IF ALL COEFFICIENTS
HOT DCNE

B, C SET TO ZERO

H, L CETS €6012H

STORE H, L IN TMP1

D, E CETS 6060H

ACETSEX C
SET BINOMIAL POINTER

A GETS BINOMIAL “UMBER
MULTIPLY BIN. # BY COEFFICIENT
ADD MPY # TO LOW CCEFFICIENT
CHECK FCR HIGHEST COEFFICIEFT

LOOF BACK IF NOT DONE

C GETS B
H,L GETS 6012H

SET UP NEW COEFFICIEYT POINTER

UFDATE COEFFICIENT POINTER
A GETS DENOMINATOR CRDER

LOOP BACK IF ALL COEFFICIENTS
MOT DOYE

E IETS 1

A GETS NUMERATOR CRDER

EREAK O'™ IF NC CCEFFICIENT AFFECTED
H,L CETS 003K

LOAD COEFFICIENT INTO D,E

1SIS-11 8868/9985 MACRO ASSEMELER, V2 0

S T0 2 TRANSFORM ALGORITHMS

6148 17
6141 SF
6142 7n
6143 17
6144 57
5145 IR2650
6148 ¥
6149 322669
614C oC

SEQ SOURCE STATEMENT

258

E
L
AN

2
: 5IC

RBAEY8B e
244

97 MOV R.E
98 RAL

99 MOV EA
160 MOY A, D
161 RAL

182 MOY D.R
182 LDA TWP2

AIEEE5sE0T322ERYEFIE
itﬂsﬂr‘rrgr:rggigngni

558
2

2roretE
== x

e
P

§5§i§¥§
om @ RN
4 33

sBRREEEERERRBRRRERREBEERRECEREEBBSREE:

CEEEE-E

=
-
-
=4
)

NFORM PRGE 2

= wa ws ws

- we we wa

LOAD COEFFICIENT SICGK IN A
STORE A IN TMP2

SET CARRY EIT

CLEAR CARRY BIT

MULTIPLY CCEFFICIENT EY 2

COMPLIMENT SIGN BIT

A CETS B

CONTINUE MULTIFLY IF NOT DONE
CLEAN UP SIGN EIT

RESTCRE COEFFICIENT IN MEMORY

INCREMENT POINTER TC NEW COEFFICIENT

A CETS TOP OF STORAGE STACK MNUMEER
REPEAT SHIFT IF YEW COEFFICIENT AVAILAZLE

B GETS 1
H,L GETS €015H

LOAD COEFFICIENT INTO D,E

STCRE SICN ZIT IN TMF2
SET CARRY

CLEAR CARRY

MULTIPLY COEFFICIENT BY 2

COMPLIMENT SICK EIT

[SIS-11 8980/8085 WACRD ASSEMELER, 2.9
S T0 2 TRANSFORM ALGORITHIS

Loc 0eJ

614D 78
614E B9
£14F C23061
6132 2A2668
6135 E688
6157 77
6138 20
6159 72

SEQ

146 MOV R,B
147 CHP C
148 INZ SHFT2
149 LDR TMP2
150 ANI eBH
151 MOY M.A
152 DCR L
152 HOY ME
154 DCR L
155 MOY M.D
156 IR L
157 IR L
158 IR L
159 IR B
168 LDA DENML
1610 B
162 JNZ RPT2
162

164 XFORM3: LXI B,8eH
185 LXI H TRBLE
166 LDA MUMPH

167 DO L

168 MOY LA

163 CNTRZ: SHLD THPL
178 CONT2: LXI D, BINOM
171 IR C

172 CALL MLT

172 AOD E
174 WY ER

175 DR L

176 DCR L

177 DCR L

178 LDAX D

179 CALL WY

188 CALL ADM

181 LDA DEN
B20PC

183 JNZ CONT2

184 IR B

185 mov C.B

186 LXI H TRBLE
187 LDA NUMPN

188 ADD L

189 mo¥ LA

198 MOY R, B

191 INCR3: DCR L

L

RRRER
ERB8E

L
A
INCR2
DEN
197 P B
198 JNZ CNTRZ

3

209 XFORM4: LX1 B, 894

SOURCE STATEMENT

61

XFORM PAGE 4

- s wa

CONTINUE MULTIPLY IF NOT DONE
CLEAN UP SIGN BIT

RESTORE COEFFICIENT TO MEMORY

INCREMENT POINTER TO NEW COEFFICIENT

A CETS TOP OF STORAGE STACK NUMBER

REFEAT SHIFT IF NEW COEFFICIENT AVAILAELE

B & C SET TO ZERO
SET H,L TO FOINT TO LCW CCEFFICIENT

>
8
3
%]
to

XC

g
&
=
&
>
=y
bar)
o
=]
E

A GETS BINOMIAL NUMEER
MULTIPLY BIN. # BY COEFFICIENT
ADD MPY. i# TO LOW CCEFFICIENT
CHECK FOR HICHEST CCEFFICIENT
LOOF BACK IF NCT DONE

C CETS E

H,L GETS 600CH

SET H,L TO FOINT AT NEW COEFFICIERT

)

UPDATE CCEFFICIENT POINTER
A GETS DENOMINATCR CORDER

LOCP EACK IF ALL CCEFFICIENTS
NCT DONE
SET B & C TO ZERO

ISIS-11 2980/8685 MACRO ASSEMBLER, V2. 9

S TD 2 TRANSFORM ALGORITHMS

Loc el

SEQ SOURCE STRTEMENT

288k
| e

BREEEEERARERY
FES3
> E =

33828
—r-—mm

s
B8

§§§§E§

3
8

5352533
i %3

2ggkE
sxaé
w

= AEOQ
woiiﬁﬁgg:
g* 87

®
-

P L i R I R L L R P D R PP
i3

g IRAIS

g

't

¢
3

0: BINOH

:;"gé
=

62

XFORM PRGE §

H,L CETS 6012
SET H,L TO FOINT AT 1CW COEFFICIENT

STORE H,L IN TMP1
D,E GETS 6060H

ACETSBXC
SET BINOMIAL FOINTER

A CETS EINOMIAL NUMEER

MPY BIN. # BY COEFFICIENT
ADD MPY # TO LOW CCEFFICIENT
CHECK FOR HIGHEST COEFFICIENT

100P BACK IF NCT DONE
C GETS B

#,L GETS 6012H
SET H,L TO PCINT AT KEW COEFFICIENT

UPDATE CCEFFICIENT FPOINTER
A CETS DENOMINATCR CRDER

LOOP BACK IF ALL COEFFICIENTS NCT DONE

END OF PROGRAM

MULTIFLY ROUTINE FOR EINOMIAL POINTER

PUSH REGISTERS ON STACK

A CETS B

TEST FCRE=0
A GETS O
ADD B TO A C TIMES

CHECK IFC =0

POP REGISTERS OFF STACK
END SUBRCUTINE

A CETS 1

ADD ROUTINE
FPUSH ON STACK

ISIS-11 2998/6385 MACRD RSSEMELER, V2 0
S TO Z TRANSFORM ALGORITHMS

Loc o8y

6215 2A2750

] w:mzammamngnggnamcgaaagg%g

ggﬁ BOCEREREONORBUBRRRRERRRRRR

E
SRR R R PP R L RN EE ST Y

gpg? %32

6245 (D562

GRiE
ALER g gg

REGE &R
&

SEQ SOURCE STATEMENT

FTT
T

2ISTES
g:;::l:g::g

C38

23
3

JASHNNIREERERBRREAYY
g&ﬁﬁﬂﬁﬂ
E

3y
ey
ng
:

g3
a8
S
E

sy AEAy R
ngg : Eg
g B

E=°§ g

63

WFORM PRE &

w-. e ws ae -

H,L CET LOW CCEFFICIENT ADDRESS
D.E GET 1OW COEFFICIENT

A GETS SIGN BIT
2'S COMPLIMERT IF NEGATIVE

H,L GET MFY NUMBER
A CETS SIGN BIT

2'3 CCMPLIMENT IF NEGATIVE
CHECK SIGNS OF BOTH NUMBERS

ADD D,E TO H,L
PUT SIGN EIT IN A
FICURE SIGN OF SUM

2'S COMFLIMENT IF NECATIVE
SWAP D,B WITH H,L

H,L CET LOW COEFFICIENT ADDRESS
STORE COEFFICIENT IN MEMORY

FOP REGISTERS OFF STACK

END SUEROUTINE

SWAP D,E ¥ITH H,L

2'S COMPLIMENT ROUTINE
SWAF D,E WITH H,L

GO0 TO SET!

M'LTIPLY RCUTINE
FUSH RECISTERS ON STACK

7

WFORM PAGE
SOURCE STATEMENT

Loc o08J

ISIS-11 9288/8985 MACRO RSSEMSBLER. V2 @

S TO Z TRANSFORM RALGORITHMS

Wy 9

= w 8

& < £
£ - il A
: " HER %
3} a =1 =4 . B

x| +

4 [- “..u > w‘_M
O) o E-aE B s
o A SO 4 e =
by H om HO .m. s
2 m - s B L= pas [=N=]
o ~- nAa Honx 1G] ..nC
£ & na Eap g @mn
¥ - -5 Q -0 % L -
© n =<4 Ol [I P

OHEH&NN RWNHBB mm MM
EpEEELsEoYAEEEy BEEBEE
AAAARAGRASENNANANRARARSR

aﬁmum mma
FAEEE P EREEE

UEROUTINE

ot

ADD D,E TO H,L

POP COFF STACK

i DLbE=1
ER

i
i
i

mmua
I WL DA
336 I E1
WO D
338 POP D
339 RET
348

341 BND

] MREREF.&MMBMB

a2
§88 355555656888

BRIEEAS

TaaoTcacacx

T1I11]
CEEEEL E

EgByuik
SEEEESE

@@o @ o @ @©

BEEgERE
§58HY33

TEaoc oo o

EEsgEgf
gE55ENY

TTCcTaocTaT T

RSSEMELY COMPLETE. O ERRORS

65

ISIS-11 RSSEMELER SYMBOL CROSS REFERENCE, Y2 @ PRGE 1

b 26 66 188 216 255%
BINOM 17% 26 %6 1 28
CNTR 254
CNTRZ 558
(NTRZ 1894
CNTR4 2858
P 267
cowp2 272
coMP: 281
CONT 268
contz Sed
CONTZ 170%
CONT4 266#
77- e I8 AT Y

i A5 3

316
i72 28 z8%
49

BheSagekulEE

LELE
238383
g8 eonEBRBREYRREssE BRaEXSBEasiREERauEEEREne
8
g

Bas
58w
E¥n
Bdsg

R

66

RSME8 DIFFEQ. SRC SYMBOLS XREF

ISI5-11 8999/8685 MACR) ASSEMBLER, V2. 8 DIFFEQ PRGE 1
DIFF. EQN OUTPUT ROUTINE
Loc o'y SEQ SOURCE STATEMENT

1 STITLE C’DIFF. EGN QUTPUT ROUTINE")

2 NAIE DIFFEQ
€824 3 THPL EQU 6B24H
6676 4 THP3 EQU €876H
6078 5 ADL EQU 6878H
€829 6 MPYS EQU 6825H
#45C 7 NUWPN EQU 685CH
6845 8 YCOEFF EQU 6845H
6839 8 XCOEFF EQU 6830H
&87C 18 2 EQU 687CH
GA7E 11 2¥5 EQU 687EH
FoeF 12 QUT1 EQU 6FBEFH
6203 13 FDM EQU 6283H
6az7 14 WPYL EQU 6827
6068 15 TRBLE EQU 6880H

16

17
6368 18 ORG 6288
£108 217C58 19 DIFF: LXI H.2H + H,L GETS 607CH
6283 222468 28 SHD TP } STORE H,L IN TMP1
6386 210000 2 LXI H.09 ¢ H,L SET TC ZERO
6389 227068 2 SHD 2H
£38C lED8 2 V1 A H ¢ A 3ET TO ZERO
6I6E I27ECR 24 STR 245 ; GO7EH SET TO ZERC
6344 310988 25 LX1 5P, 6oaaH ¢ SET STACK FOINTER
6314 213069 26 LXI H, XCOEFF } H,L GETS 6030H
6317 3ASCER 27 LDR NBPH 3 SET H,L TO POINT AT OLDEST TIME
631R &5 28 AOD L i FACTOR
6318 €F 29 MY LA
631C 227868 38 SHLD AL ; STCRE H,L IN ADL
21F 210069 31 LXI H, TRBLE { H,L GETS 6000H
IRSCE8 32 LDA NUMPH 3 SET H,L TO POINT AT CCORRESPONDING
6325 85 ZADL ¢ CCEFFICIENT
6326 &F 24 MOV LA
6327 227650 35 SHD ™3 ¢ STORE H,L IN TMP3
632A 2R766R 36 BACK: LHLD THP3 ¢ LOAD H,L FROM TMP3
6320 70 7 MV AL :
632 FEFD 38 CP1 BFDH ; CHECK IF ALL COEFFICIENTS USED
£330 CAE363 19 JZ sTR2
62313 5% 48 MOV D, % ¢ LOAD D,E WITH COEFFICIENT
6334 X 4 IRL
6335 42 WV EN
6336 2C SImL
6337 TE 44 MY AN } A GETS SIGI EIT
6338 322968 45 STR MPYS
6118 20 46 DCR L t LGETS L - §
633 2 70 L
6330 2 SINRL
63E D 490CR L
633F 20 58 DCR L
6148 227650 51 SHO P2 3 STCRE H,L IN TMP3
6343 2A7868 52 LHLD ADL ; LOAD K,L FROM ADL

ISIS-11 2020/3885 MACRD ASSEMBLER, V2. @
DIFF. EON OUTPUT ROUTINE

Loc ey

6346 0
6247 FE20
6249 CATSE3
634C 46
6340 2C
64E 4E
634F 2C
6358 TE
6331 227860
6354 (S
6355 47
8356 3RZ960
6359 8

F2H3RRRR022R08898 §9539934%
Hmsaggaggmagggmagg gaumsaﬁgg

SOURCE STRTEMENT

§353N9E
orEEg?

zl‘
€
8

5::@-

SEBEESEERERISEEI5ES
Re™ " Te33td3 ;

5222
w
g

23859 333353332
8575 g57E°

S R R L P L L L L LT Iy e prprrn
Qiﬁnﬂigﬁigﬁﬁ
”2"§§E$~§§’§*

&

3

£

67

DIFFEQ PAGE 2

-

CHECK FOR PRESENT TIME FACTCR

INPUT X FACTOR IF TIME IS RIGHT
LCAD B,C WITH INPUT FACTOR

STORE H,L IN ADL

ADJUST PRODUCT SICN BIT

MULTIFLY CCEFFICIENT BY X FACTOR
ADD MPY # TO SUMMATICN

LOAD H,L FROM ADL
LCGETS L - §

STCRE H,L IN ADL
RETURN TO NEW INPUT

SET B,C = BOOOH

SETA=0
STCORE A,B,C IN X FACTOR TAELE

RETURN TO INFUT ROUTINE

H,L GETS 6045KH
SET H,L TO FOINT AT COLDEST TIME
FACTCR

STORE H,L IN ADL

H,L GETS 2012H

SET H,L TO POINT AT CORRESFONDING
COEFFICIENT

STCRE H,L IN TMP3
ICAD H,L FRCOM TMP3

CHECK IF ALL COEFFICIENTS USED
LOAD D,E WITH COEFFICIENT

68

ISIS-11 £88@/8665 MACRO ASSEMBLER, V2 @ DIFFER PRGE 2
DIFF. EBN OUTPUT ROUTINE

LoC 08J SE@ SOURCE STRTEMENT

63R6 TE
63A7 322968

=
x

; A GETS SIGN BIT

] LGETS L - 5

TEEEEE

STCORE H,L IN TMP3
3 LOAD H,L FROM ADL
B,C GETS OUTPUT FACTCR

prsrzﬁa

2°8%

STCRE H,L IN ADL

i ADJUST SIGN CF FRODUCT

y MULTIPLY CCEFFICIENT EY Y FACTOR

539285533835 35358
313738 3

CHECK FOR ZERO PRODUCT
ADD TC SUMMATICN

3
s

s LCETS L - 5

A8
BEYRGEEREEBRRREREREREEEREEEREERS

2355

STORE H,L IR ADL
¢ GO FOR NEW COEFFICIENT

§
1

¢ CHECK H,L FOR ZERO NUMBEER

"
4
55
b
g3

®

63FB (20663 150 J!P RRTE2

LHD T2 3 LOAD H,L FROM THP3
L} 3 B,C GETS Y OUTPUT CCEFFICIENT

Prorps
=

3352583 3

IOAD H,L WITH SUMMATION # LOCATION
; LOAD D,E WITH SUMMATION NUMEER

3
b
REEBEUREEHRR

3

Px
=
2

69

ISIS-11 2480/8065 MACRD ASSEMBLER, V2 8 DIFFEQ PAGE 4

OIFF. EON OQUTPUT ROUTINE
LoC mJ SEQ SOURCE STRTEMENT
a3 2C BB IRL
£404 SE 164 MY E N
6485 2 165 IR L
£405 46 166 MOV B. N § ALJ'ST SICN EIT
6487 A8 167 XFA B
6488 124769 168 STR YCOEFF+2 ¢ STORE SICN BIT
2468 1 169 POP B
S40C 316288 178 LXI SP, 2892M ; SET STACK POINTER
E40F CDFES4 171 CALL DIVDB ; DIVIDE D,E BY B,C
6412 214568 172 X1 . YCOEFF 1 H,L GETS 6045H
6445 70 173 WY M. B 3 STORE QUOTIENT IN MEMORY
6446 20 174 IR L
447 71 175 MOV M. C
6418 CS 176 PUSH B
6419 78 i77 WV A.B § OUTFUT QUOTIENT TO OUTPUT DEVICE
€418 CDB264 178 CALL HEXL
8410 C1 179 FOP B
644E 79 189 MOV A.C

6428 BEBD 184 WY1 C. 004 3 O'TP''T CARRIAGE RETVRY
6428 (DEFF8 185 CALL OuTi
5420 PEGA 186 WY1 C. ofH ; O"TFUT LINE FEED
€42F CDOFFB 187 CALL Ui
188
189
£432 14568 199 MOVE: LXI B, YCOEFF 3 H,L CETS 6045H
6435 3ASC68 191 LDA NUMPN } SET H,L TO FOINT AT OLIEST TIME FACTOR
6428 C6a2 192 ROl G2H
643A 8L 192 00 C
6438 4F 154 MOY C.R
£43C 3C 195 IR A
643D 3C 19 INR A
£43E IC 197 IR A
643F F 198 MY EA
6448 50 199 MOV D, B
6441 8A 208 SHFTDN: LDAX B ¢ MOVE ALL TIME FACTORS DCWN TO
6442 12 201 STRX D ; NEXT TIME FACTOR SLOT
5443 @0 22DRC
5444 1D 263 DCR E
6445 B 284 MV R.E
6446 FEZF 265 CPT @2rd
5443 CR4ES4 206 JZ TIMR $ JUMP TO TIMER WHEN FINISHED
6448 (34164 287 P SHFTDN
28
289
218
B44E 210989 214 TIMER: LXT H, S0deH
6451 28 212 THOUT: DEX H
&452 M 213 MY AL
6453 FEGE 24 CPL B
6455 (25164 245 e ™ot
6438 7C 26 MY AH
6439 FEGQ A7 CP1 0

70

I5IS-11 S09/5065 MRCRU ASSEMELER, v2 @ DIFFEQ PREE 5§
DIFF. EGN OUTPUT ROUTINE

LoC 0eJ SEQ SOURCE STRTEMENT

6458 (25164 218 N2 ™MOUT
S45E (20063 219 Jw DIFF

asa 228 05 58
b7 |
222 ;EMD OF PROGRAM
b}
6481 76 224 HLT
225 ; OUTPUT HEX NUMBERS
6482 FS5 226 HEXL: PUSH PSN ; PUSH REGISTER ON STACK
6483 F 227 RER ¢} RIGHT SHIPT 4 TIMES
6484 IF 228 RAR
6485 1F 229 AR
6485 1F 238 RAR
6487 EGOF 231 ANT 9FH } A GETS A LOGICAL AND OFH
£489 (638 232 A1 38M { A GETS A + 0H
64E8 FEIR 233 CP1 M
64ED FRC264 234 M oUT2 } CHECK IF A LESS THAN 3AH
6408 0687 235 A1 87H ; ADD 7 IF NOT
5402 4F 236 UT2: WY C,A
403 CDOFF8 237 CRLL OUTL } OUTPUT MOST SIGNIFICANT PART
€406 FL 238 POP PSH ¢ FOP REGISTER OFF STACK
§4C7 E6OF 239 ANI OFH ; A GETS A LOGICAL AND OHF
54(9 C&30 248 RDI M { A GETS A + 30H
FACB FEIR 244 CPI 3 } CHECK IF A IESS THAN 3AH
40D FRDZ64 242 M wm
5409 (667 243 ADT A7H i ADD 7 IF HOT
5402 4F 244 OUT3: MOV C.A
6403 COGFFE 245 CRLL OUTL ; CUTFUT LEAST SIGNIFICANT PART
6406 9 246 RET ; END OF SUBROUTINE
247
248
249 ; MULTIPLY/DIVIDE SUBROUTINE
258
£407 210000 251 WPYDB: LXI H.98 ¢ H,L SET TO ZERO
64DR 3E10 252 WY1 A 16 t A= 16
£40C F5 252 WPY2: PUSH PSH
640D 7B 254 MOV AE ; CHECK IF ISB IS ZERO
G4DE E5ML 255 ANI B1H
64ER CAE4E4 2% 17wy
S4E3 @9 57 DFD B ; ADD B,C TO H,L IF ISB # ZERO
64E4 7C 258 WPYL: MOV A H } RIGHT SHIFT H,L AND D,E
G4E5 IF 259 PR
F4ES 67 268 MW HA
6467 0 261 MOV AL
€4E8 IF 262 RFR
£4E9 6F 263 MY LA
S4EA 7R 264 MV RD
64EB 1F 265 AR
4EC 57 266 MOV D.A
64ED 78 267 MW RE
S4EE IF 268 FAR
G4EF SF 269 MY EA
£4FB FL 279 POP PSH
4F1 30 271 DR A } ACGETS A -1
£4F2 (20064 72 e w2 ; CONTINUE MULTIFLY IF A # 0

71

-

ISIS-11 8880/2985 MACROD ASSEMBLER, V2.9 DIFFEQ PAGE 6
DIFF. EGN OUTPUT ROUTINE
Loc oeJ S0 SOURCE STRTEMENT
64FS (9 273 RET ; END SUEROUTINE
274
64F6 37 275 pIvDB: STC ; CARRY SET
E4F7 IF 276 OC 3 CARRY CLEARED
64F8 7R 277 MY A D s+ RICHT SHIFT D,E
64F9 IF 278 RAR
64FR 57 279 MY D.A
54FB 288 MOV A.E
E4FC 221 RAR
282 MOY E.R
283 DIVDL: STC 1 SET CARRY
284 OHC ¢ CLEAR CARRY
285 MY A.B s RIGHT SHIFT AND 1'S CCHMPLIMENT B,C
RAR
A
MY B A
MY A.C
RAR
oA
MY C.A
B §t BGETS B + 1
L¥1 H.0@ s H,L SET TO ZERO
Wl A17 : A=16
XCHG ; SWAP D,E WITH H,L
DYB: PUSH H
DAD B ; ADD B,C TO H,L
Rl ; CHECK FOR CARRY BIT
POP H + RESTORE OLD H,L IF XO CARRY

3

; LEFT SHIFT D,E AND H,L

SRR S PP I R TR R TR B
Ez!:':.Fm:a&m3m::aamgsmmggaﬁmnwamnammﬂ:a

H-23338RIIRIIRIIBIIRSEE
Sma5878% 5 T &2 me

523 0 ; AGETS A - 1

6524 C20FSS + CONTINUE DIVISION IFA#O
€527 M ;: PLACE D,E IV B,C

a7

™

6520 oF

5328 310683 P, S600H ¢ SET STACK POINTER

652€ (9 ¢ END SUBROUTINE

SEPEREP It F e p b R b R e

USER SYMEOLS

IS1S-11 8080/8885 MACRD ASSEMELER, Y2 8
DIFF. EGN. OUTPUT ROUTINE

AL A 6a78
DIYDL A 64FE
WYL R S4E4
UT2 R e4c2
STE R 63F6
YCOEFF R 6845

M A 6203
DIYDB R 646
MPY2Z R &C
ouTz R 6db2
TRELE A 6668
ZH A earc

ASSEMBLY COMPLETE. NO ERRORS

BACK A 632A
D¥8 A 65eF
WPYDE A &4D7
PRSS A 63F3
TIMER R 644E
25 R 6E7E

e

DIFFEQ PRGE
BACK2 A 6399
M AGMS
WPL A 6827
RERTE R 6351
THOUT A 6451

CHK A 634
HEXL R 6482
MPYS R 6829
RRTE2 A 6306
™1 A 66824

CONT A 6303
INPX R 6375
NUMPN A 685C
SHFTDN A 6441
T2 A 6876

DIFF A 6308
MOVE R 6432
O0UTL R FeeF
STG2 A 6383
XCOEFF A 6838

4.

6.

73

REFERENCES

Close, C.M.; DeRusso, P.M.; and Roy, R.J. State Variables
For Engineers. New York: John Wiley and Sons, 1965.

Cohen, D., and Simons, F.0., Jr. "An In-Place Algorithm for
Computing the Bilinear Transform of Polynomials."
Unpublished research paper, California: University of
Southern California / Information Sciences Institute,
1978.

Harden, R.C., and Simons, F.0., Jr. "Differential Equation
Solutions For Up to 10th Order System Theory Models
With H.P. - 67 Compulators." Unpublished research paper,
Florida: University of Central Florida, 1978.

INTEL 8080 Assembly language Programming Manual. California:

INTEL Corp., 1976.

Stanley, W.D. Digital Signal Processing. Virginia:
Reston Publishing Company, Inc., 1975.

Wavell, R.B. "Microcomputers: An Alternative for Digital
Controllers." Unpublished Masters thesis, University
of Central Florida, 1979.

	A Microcomputer Implementation of Real Time, Continuously Programmable Digital Filters
	STARS Citation

	Front Cover
	01_FrontCover.tif

	Abstract
	02_Abstract.tif

	Table of Contents
	03_TableofContents.tif

	List of Tables
	04_ListofTables.tif

	List of Figures
	05_ListofFigures.tif

	Chapter l
	06_01.tif
	07_02.tif
	08_03.tif

	Chapter ll
	09_04.tif
	10_05.tif
	11_06.tif
	12_07.tif
	13_08.tif
	14_09.tif
	15_10.tif
	16_11.tif

	Chapter lll
	17_12.tif
	18_13.tif
	19_14.tif
	20_15.tif
	21_16.tif

	Chapter lV
	22_17.tif
	23_18.tif
	24_19.tif

	Chapter V
	25_20.tif
	26_21.tif
	27_22.tif
	28_23.tif
	29_24.tif
	30_25.tif
	31_26.tif
	32_27.tif
	33_28.tif
	34_29.tif
	35_30.tif
	36_31.tif
	37_32.tif
	38_33.tif
	39_34.tif
	40_35.tif
	41_36.tif
	42_37.tif
	43_38.tif
	44_39.tif
	45_40.tif
	46_41.tif
	47_42.tif

	Chapter Vl
	48_43.tif
	49_44.tif
	50_45.tif
	51_46.tif
	52_47.tif
	53_48.tif
	54_49.tif
	55_50.tif
	56_51.tif
	57_52.tif
	58_53.tif

	Chapter Vll
	59_54.tif
	60_55.tif
	61_56.tif

	Appendix A
	62_57.tif
	63_58.tif
	64_59.tif
	65_60.tif
	66_61.tif
	67_62.tif
	68_63.tif
	69_64.tif
	70_65.tif
	71_66.tif
	72_67.tif
	73_68.tif
	74_69.tif
	75_70.tif
	76_71.tif
	77_72.tif

	References
	78_73.tif

