
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

Fall 1979

A Microcomputer Implementation of Real Time, Continuously A Microcomputer Implementation of Real Time, Continuously

Programmable Digital Filters Programmable Digital Filters

William Edward Storma
University of Central Florida, bstorma@bellsouth.net

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Storma, William Edward, "A Microcomputer Implementation of Real Time, Continuously Programmable
Digital Filters" (1979). Retrospective Theses and Dissertations. 450.
https://stars.library.ucf.edu/rtd/450

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/450?utm_source=stars.library.ucf.edu%2Frtd%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages

•

A MICROCOMPUTER IMPLEMENTATION OF
REAL TIME . CONTINUOUSLY PROGRM1MABLE

DIGITAL FILTERS

BY

WILLIAM EDWARD STORMA
B. S .E •• Florida Technological Uni yersity . 1978

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science :in Engineering

in the Graduate Studies Program of the College of Engineering
at the Univer sity of Central Florida ; Orlando . Florida

Fall Quar"Cer
1979

A MICROCOMPUTER IMPIEMENTATION OF
REAL TIME , CONTINUOUSLY PROCRAMMABLE

DIGITAL FILTERS

BY

WILLIAM E , STORI1A

ABSTRACT

When a f llt er t ransfer function 1n 5 is replaced with the

bilinear transform in z , t he result ing discrete model represents

t he original continous model wit hin a second order accuracy of inte-

gration . A unique set of recently discovered minimum memory algo-

ri thms that perform the bilinear transform on a continuous transfer

function are implemented on an INTEL 8080 microprocessor system .

Scal1~~ techniques are used to frequency scale all transfer functions

to a standardized frequency . All data words are represented in a

signed binary double precision format to maintain higher calculation

speed and accuracy .

Tb~ee test case transfer functions of different order are

implemented using the bilinear transform algorithms . First, the

algortthl:lS are used to generate the three discrete models . Second ,

the continuous time models are driven by a step input function ,

generating a continuous time output . Third , the step function input

is discretized and used to drive the bilinear algOrithm derived

models . Finally, the discrete outputs are compared with the

continuous time outputs to validate and evaluate the software

techniques used to implement the bilinear algOrithms, which imply

that the techniques provide a basis for

TAJlLE OF CONTENTS
•

Page

Ust of Tables • • • • • • • iv

Ust of Figures • • • • • • v

I. Introduction • • • • • • 1

II . Background • • • • • • • 4

III . Data Format Considerations • • 12

IV . Scaling the Fll ter Function • 17

V. Software Implementation 20

VI . Filter Implementation • • • • • • 43

VII. Results and Conclusions • • • • • • • • 54

Appendix A. INTEL 8080 Assembly Program Usting 57

References • • • • • • • • • • 73

i11

Table

1.

II.

LIST OF TABLES

Input - Output Execution
Of Transfer Function . •

Maximum Omega That Input
be Run in Real Time • .

Time Based on Order
• • • • • • • • •

- Output Routine Can
• • • • •

III. Scal ed Second Order Transfer Functions

.
•

•

IV . Scaled Third Order Butterworth Transfer Functions •

V. Scaled Third Order Che bychev Transfer Functions

iv

Page

40

41

45

47

48

LIST OF FIGURES

Figure Page

1. Memory Map of Data Storage • • 22

2 . Binomial Lookup Table 24

3· XFORM flow chart • • • 26

4 . XFORM2 f low chart • • • • • 27

5 . X2NA flow chart • • • 29

6 . X2NB flow chart • • • 30

7 . XFORM3 flow chart • • • • 32

8 . XFORM4 flow chart • • • • • • 33

9. DIFF flow chart • • • • • • 35

10 . STG2 flow chart • • 37

11 . STG3 flow chart • • • • 38

12. Shifting of Differential Equation Time Values 39

13. Second Order Transfer Function • • • • • • • • • 50

14 . Third Order Butterworth Transfer Function • 51

15. Third Order Chebychev Transfer Function • • 52

v

•

I. INTRODUCTION

Analog circuits and filters designed to process analog signals

often are limi t ed in accuracy due to :

a . t he mal drift
b. component tolerances
c. offset and bias conditions of operational amplifiers
d . signal noise introduced by the circuit itself

The only means to build highly accurate ap.alog circuits is through

careful design and the use of high quality components. This often

results in designing expensive circuits and allowing bench time to

minimize circuit sensitivities due to circuit parameters.

The age of digital electronics has brought about many new

methods to handle the processing of analog signals . The ability to

design signal processing circuits that can handle the signals digi-

tally over comes many of the handicaps of the analog circuits. Dig

ital Sigp.al Processing (D. S. P .) is a newer, more accurate and less

expensi ve means to analyze and process signals. The digital cir-

cuits have no thermal drift, no offset or bias problems, do not re-

quire high quality circuit components , and do not introduce noise

into the circuits . Thus, many signal processing systems have be-

come digital in nature , using analog- to- digital (A/D) and digital

to- analog (D/A) converters to interface between the analog and digi-

tal systems .

The design of digital filters, a special case of D.S.P . , has

become a fairly common practice with standardized design procedures .

2

The use of t hese standard design procedures i nvolves implementing a

f1lter t ransfer function in t he form of a difference equation. The

result of this design 1s a digital circuit that is 'hard wired', 1.e.

t he characteristi cs of the circuit are not readily alter able . This

feature is unfortunate if the exact characteristics of the fllter

are unkno wn and several designs must be tried before a cirelli t 1s

chosen.

An alternative to t he above problem 1s the desi gn of a com-

puter software package that allows a real time implementation of a

fl1 ter transfer function 'in cireui t ' . Also, giving the software

package the ability to alter the filter transfer function while the

digital fllter 1s processing signals allows a ' continuous programming '

feature . The result 15 a real time continuously programmable digital

filter. By using an interface capability , the software can be imple

mented on a microprocessor system and run fin circuit'. This allows

the microprocessor to actually synthesize any filter function and

modify the transfer function characteristics while the filter is ' in

cirelli t' .

The basis of this thesis is the implementation of a software

package as described above . The software package is designed a-

round a new set of algori thros that perform a bilinear transform

using a minimum memory approach. An I NTEL 8080/8085 based micro

processor is used to process these bilinear algorithms. The program

s t arts with a transfer function in differential equation (or s domain)

fom . Then , using a bilinear t ransform approach , the differential

equation is transformed into a difference equation. The program

then exeautes the difference equation in a real time mode, allowing

real time output .

The program has memory allocated to operate on transfer functions

up to fifth order, using a double-precision (16 bit) data word .

The output from the program is a transient response in time, with the

input presently being a step function (though easily modified for any

signal input) . A transient response (or time response) is preferred

over a frequency response in this case since a step function inputted

in a transfer function for ces all filter characteristics to be dis

played in the output. The combined feature s of a digital filter t hat

is continuously programmable, operates in real time, and can be used

' in circuit ' make this digital filter system highly useful in the

design of digital signal processing systems.

•

II. BACKGROUND

Filtering is a technique whereby the frequency spectrum of a

signal 1s specified , such that certain frequencies are passed through

the fllter and other frequencies are rejected by the fllter . Filters

are initially designed in the frequency domain (or complex s plane),

where the frequency characteristics can be used to obtain a differ

ential equation . This characteristic filter equation is usually

refered to as a transfer function (denoted by H(s)) and 1s a ratio

between the output (yes)) and the input (xes)) . The equation

1s written as :

if:l ~ H(s) 2 .1)

and 1s desert bed in the block diagram form as :

xes) -.;;>11 H(s) f-~:> yes)

where

yes) ~ H(s) xes)

Once an R(s) 1s speci fied , the equation can be transformed into

the time domain , using an inverse Laplace t r ansform :

~-1[H(s)] ~ h(t) 2 .2)

The resulting h(t) is an equation of the analog filter characteristics

in a continuous time domain . Analog fllter design , unlike digital

filter design , can be run on an analog computer , which operates

in a continuous time mode . However , with the advent of high speed

5

digital computers , a trend has developed to use digital equipment

to implement algorithms . The digital computer requires that the

algorithms be modified to work in other than a continuous time

domain . This is because a digital computer does not run in a

continuous time mode I like the analog computer, but in a discrete

time mode. This discr ete time mode is due to the fact that a digital

computer works in cycle times , and calculations require a certain

number of machine cycles to implement . The result from a digital

computer is a string of outputs at discrete intervals of time .

It 1s therefore necessary to t ransform an HCs) into a discrete

time mode equation . The necessary discrete time mode equation is the

difference equation , which 1s implemented in the z domain . The

equation is written as :

~ = H(z) X\zY 2 .))

where X(z) are discrete time inputs and Y(z) are discrete t ime out-

puts . The t ransformation from the z domain to a discrete time mode ,

nT , is called the inverse z t ransform , denoted by:

.1: -1[H(z)] = h(nT) 2 .4)

where T is the time sample interval and n is the nth sample period .

Ordinarilly , H(s) models are not transformed directly to H(z)

models . As an example of a textbook approach, the H(s) must first

be transformed into an h(t) I then the continuous time , t , must be

changed to a sample interval time, nT , and finally the h(nT) must be

transformed to an H(z) .

Mathematically :

h(t) = ;t.-1[H(s)]

h(nT) = h(t) It = nT

H(z) = .:U h(nT)]

6

2,5)

2.6)

2,7)

This and other similar approaches are cumbersome and slow processes

for a digital computer to perform . What would be more desireable

would be an algorithm that could calculate an H(z) based on an H(s) ,

This would avoid having to transform into and out of the time domain .

This calculation for an s to z conversion would be an approximation

of H(z), based on H(s) and sampling rates ,

Although there are computer programs for transforming from the

5 to the z domain , these programs require some amount of memory for

all temporary results . Some digital systems posess only a small

memory and therefore cannot use the s to z transformation processes.

What would be ideal for these digital systems with small memory space

would be an accurate algorithm that could approximate an H(z), based

on an H(s) and the sampling rate , and perform this algorithm 'in

place' , i .e . using only the memory required for coefficient storage

for the algorithm process .

The specific algori thIn to be discussed is based on the bilinear

transfom:

2
5 = T

IZ-1)
\ z+l

2 , 8)

which is the average of the first order forward difference equation

and the first order backward difference equation . nus bilinear

transfom is the standard algorithm used in digital filter design .

7

The in-place algorithms for equation 2 . 8 were discoverd in 1978

[J] and were published and later modified to handle any general bi

linear transformation [2J. The general form of the algorithms are

reprinted here for convenience :

the bilinear transform :

a
where y = C d

~ = -
C

C f 0

and 2
the T factor is incorporated into the a,b , c,d variables .

given a polynomial in z:

N
D(z) = E

i=O

No w,

2.10)

and the bilinear transform (equation 2 .9) . the polynomial D(s) is

found by :

or

D(s)
N

= E
i=O

d (az+b)i
1 cz+d

= p(z)
(cz+d)N

N
p(z) = E Pi zi = (cz+d)N D(s)

i=O

2.11)

2 .12)

The problem in getting an 'in place ' algorithm requires computing the

Pi 's, the coefficient set of p(z) , from the di 's, the coefficient

set of D(s).

The four step algorithm process for this bilinear transformation

is as follows :

substituting 2 .9 into 2. 12 :

p(z) = eN (z+~)N D (z~e + Y) 2 .13)

Equation 2 . 14 can be broken down into elementary transforms I which are:

E(z) = D(z+y) 2 . 14)

8

F(z) N 2 .15) = c E(2z)

G(z) = zN F(l/z) 2 .16)

H(z) = G(z+S) 2 .17)

Each elementary transform consists of a shift in the z domain

of the form :

z = 2z

z = z+S

z = l/z

z = z+y

and each of these

2.18a)

2 .18b)

2 .18c)

2 .18d)

operations can be applied to polynomials by an

'in place ' operation . This means that any bilinear transform can

be applied to polynomials by performing a sequence of 'in place '

operations , such as the general equations of 2 . 18.

To prove that H(z) = p(z) . substitute 2. 16 into 2. 17 . 2.15 into

2. 16 and 2.14 into 2 .15 .

H(z) = G(z+S) 2. 19)

= (+S) N F (~) z z+S

= (z+S)N c
N

E ~ z~S 1
= (z+S)N c

N
D z~S + Y)

= p(z)

The strategy 1s to compute first the coefficients of E(z) ~om

the coefficients of D(s), then the fi'S from the ei 's , then the

gi's from the f 1 's and finally the hi's from the gi 's,

From these elementary transforms , a set of computatlcrAl

equations can be obtained [2J . The final form of these equations are:

e j =

fi =

gi =

hj =

where

N (i) i - j
d. + E . Y

J i=j+l J

N i c a. ei

f
N

_
i

+ ~ (i) Si-j g . .
J i=j+l J

9

di

gi

2 . 20)

2 . 21)

2.22)

2 . 23)

An analysis of these equations will prove that all these operations

can be performed I in place' . For the general case of a transfer

function in H(s),

2 . 24)

the four step bilinear algori thIn would be applied to both the nurner-

ator and the denominator seperately, with the highest coefficient

order (either M or N) being the order of both the numerator and

denominator in H(z). The H(z) would then be written as (assuming

Mth order) ,

H(z)

M
E

= i=O
M
E
i=O

=QW
D(ZJ 2 . 25)

The resulting coefficients of H(z), 1 .e . the ci 's and dl 's ,

now occupy the memory locations originally designated for the

10

ai 's and bi's, respectively . After obtaining the H(z), an inverse

z transform can be applied to transform the equation to the time

domain . For the general case :

m m-l 0
c z + c 1 z +.,," + coz

H(z) = -.Jm!'-.-_-2!!m-:..±....----:,.-___ ~
d zm + d zm- l + "" . + dOZO

m m-l

which can be rearranged as follows:

X(Z)[

Y(z)[

c zm +
m

m
d z +

m

m- 1
c 1z + . .. " m-

m-1 d
m

_
1
z +

Applying the inverse z transform, the equation becomes :

cmx(nT+mT) + cm_1x(nT+(m-1)T) + ... + cOx(nT)

dmy(nT+mT) + dm_1y(nT+(m- 1)T) + ... + doy(nT)

2 .26)

2.27)

=

2.28)

The inputs (x(nT+iT)) and the outputs (y(nT+iT)) both depend on

values at time t=nT and all future time values (t=nT'tT J nT+2T I "" .) .

The equation can be converted 60 that the inputs and outputs depend

only on present (t=nT) and past values of time (t=nT- T, nT- 2T,

0' 0) . This can be accomplished by allowing

n = n- i 2 . 29)

th where n is the n coefficient . This amounts to a shift in time .

The difference equation now becomes :

cmx(nT) + cm_1x(nT- T) +

dmy(nT) + dm_1y(nT- T) +

• 00

,0'

+ cOx(nT- mT)

+ dOY(nT-mT)

=

2. JO)

The output at present time, y(nT) , can be expressed as a function

of the present input and all past inputs and outputs of the equation,

as follol-is :

11

= c x{ nT) + c 1x{ nT-T) + '" + cOx{ nT- mT) -m m-

which can be rewritten as :

y{ nT) =

M
L
i=O

M
L cM_i x{nT- iT) - i=l

2 .)1)

~-i y{ nT-i T)
2 .)2)

The equations necessary to perform a bilinear transformation on

an H(s) have been developed . Also , the necessary equations have

been developed that will output a string of values based on a

string of input values . What has been derived 1s a set of equations

that allows a programmable implementation of a digital filter on a

digital computer . By a proper adjustment of the output rate of

the string of values from equation 2 .)2, the input-output operation

could be performed in a 'real time I mode . By updating the original

H(s) equation and allowing the bilinear transform to compute a new

H{z) , the digital filter could become' continuously programmable '

and run in 'real time' .

The implementation of the above bilinear transform algorithm

and a corresponding input- output routine are discussed in the

following sections . The implementation is a direct result of the

equations developed i n this section .

•

III . DATA FORMAT CONSIDERATIONS

Implementation of the bilinear transform algorithm on an 8 bit

microcomputer poses some questions as to how the software 1s to handle

the program data . The areas of concern 1n dealing with the data

handling problems are:

a . should the program use fixed point binary or floating
point binary?

b . should the program use single or double precision?
c. what is the highest order transfer function that can l:e

implemented, with respect to points a and b .

These are the software data handling problems that must be answered

before the actual software programs can be written .

The first data handling question concerns the method of

representing the data during algebraic manipulations . The use of

floating point notation allows data to be described over a wide range

of values. Floating pOint notation has a unique data structure and

cannot be represented with a normal 8 or 16 bit data word. Due to

the long data word required for floating point notation ! execution

times for floating point routines are excessively long when compared

to analagous routines that are performed in a fixed pOint notation.

Since a requirement in executing these transform algorithms is a

rapid execution speed! the use of any floating point notation

would cause a considerable increase in the total execution time of

13

a program, which is a feature that cannot be tolerated in executing

these routines . Another disadvantage of using a floating point

notation 1s that the number of bits allocated for the data (mantissa)

are not the full 16 bits that are used in the double precision fixed

point notation . This means that the floating point notation will

not carry a full 16 bit accuracy 1n data and therefore 1s less

accurate than the fixed point notation in describing data . This

factor reinforces the undesireable aspects of using floating point

notation .

This leaves the fixed point representation of data to be

considered . Using a signed binary notation, data can be ranged

over ~1 27 for single bit precision and ranged over ~J2767 for

double precision . If the sign bit is stored somewhere else than

with the data, the double precision data could be ranged over

~65535 . In all cases, all integer values can be accounted for

in the fixed point representation . There still exists a problem

in describing data that eXists in a fractional form or has some part

of the data in fractional form (i.e. 123 . 78. where the .78 is

the fractional part) . To use data in fractional form I all the

data can be scaled to a pure fractional form (i. e . all data ranged

between -1 and +1 I excluding endpoints). This can be accomplished

by dividing all the data by a value, R, which is greater in magnitude

than any of the data, to convert all the data to a fractional form.

The result of scaling all the data to be less than the magnitude

of one provides a method of describing all data combinations with a

14

high dearee of accuracy. For a single precision notation, numbers

-8 (as small as 2 3 .90625 x 10- 3) can be described and for double

precision notation , numbers - 16 (- 5) as small as 2 1 .525 x 10 can

be described . In both of the above fractional cases, it is assumed

that the sign bit 1s carried elsewhere and 1s not part of the 8 or

16 bit data word . Therefore , by properly scaling all of the data

to a fractional form , the accuracy of the data can be maintained .

From all the information known about fixed point binary and

floating point binary data , and the knowledge that the bilinear

transform algorithm requires rapid machine algebraic computations and

accurate data handling, one can postulate that the fixed point

binary data technique is best. To maintain the high accuracy of

the data during the algebraic computations, a 16 bit double precision

fractional fonnat is necessary . To maximize the data accuracy,

the sign bit of the double precision data word is stored elsewhere

than with the data word itself .

Having answered the data handling questions to the first and

second areas , there remains the question as to what is the highest

order transfer function that can be implemented . With the knowledge

that double precision fixed point notation is used, it 1s necessary

to determine what is the smallest data word that can be accurately

described. Part of this question can be quickly determined by

examining the bilinear transform . An examination of equation 2 . 21 ,

which is :

3 . 1)

depicts that the Q is raised to a power, i , which is directly related

15

to the order of the e coefficient . For the bilinear transform of

with

and

z-l s =-
z+l

2
the T factor set equal to one, the value of a becomes

b
a = C - ~y = - 1 - 1 = - 2

c = 1

With this information , equation J.J becomes

3 .2)

3.3)

th
For an N order system, the eN coefficient would be multiplied by

N
a (- 2) value . To insure that the fN coefficient be less than the

magni tude of one I the eN can be divided by a 2N+l .

There still exists the problem of a data overflow in equations

2 . 20 and 2 . 22 , due to the summations . Since the summed val ue is

determined by all the higher order factor s and these higher or der

factors can range in value between ~ 1 , there is no absolute factor

to d.1 vide al l the data by to insure against an over flow . Therefore,

it was necessary to determine a scaling factor based on sample

probl ems. By inspection of these sample probl ems and extrapolation

of the scaling factor s determined for these sample pr obl ems , an

2N- 1 overall data scaling factor of 2 has been determined for all

realizeabl e filter functions . From the data scaling factor and

the need to maintain some degree of accuracy in the data , an initial

limi t on transfer functions has been determined to be fifth order .

Using the double precision fixed point notation , the data would be

16

maximallY scaled by 29 (512), which leaves, at most , seven bits

of data that can be retained after the scaling process .

Based on the information presented and the knowledge of the

bilinear transform algorithm, fllter transfer functions should be

no greater than fifth order . This allows sufficient data accuracy

for the double precision fixed point binary data format , which is

to be used 1n the algebraic computations. The basic questions as to

what data handling techniques the software should use have been

answered . The next step 1s to scale the differential equation for

use by the bilinear transform .

•

IV. SCALING THE FILTER FUNCTION

Any given fllter transfer function in differential equation

form will contain coefficients for each power of s . For any general

case, the coefficients will l>e any real number. These coefficients

must be converted to a double precision fixed point fractional

binary number 1:efore being implemented . Therefore, the transfer

function coefficients must all be scaled prior to implementing

the bilinear transform algorithm . A generalized scaling technique

must be obtained to handle any general transfer function .

Based on a bilinear transform. of equation 3 . 2 , a scaling

factor of 2
2N

- 1 was determined necessary to prevent data overfl ow

during the bilinear transform algori thrn . This scaling factor was

determined 2
with the T factor set equal to one. 2

In general , the T
factor is not equal to one and must be accounted for . 2

If the T
factor were to be incl uded in the a , b , c ,d of equation 2 .9 , then

equation) .2 would really be expressed as :

s = 2z - 2
T Tz +

and the a , S, y factors would all be influenced by T .

4 .1)

Due to this

influence by T. the a. S. y factors would have to be changed every

time a different T is chosen . Since the a , 13 , y factors must 1:e

included in the bilinear transform , the software must be alterable

to handle the changes in a,S , y .

18

The variations in n would complicate the implementation of

equation 3.4 , since raising a number n to a power is not easily

done on a microprocessor. However, raising 2 to a power can be

quickly accomplished on binary data by a sequence of shift oper

ations . Therefore , it would be convenient to keep the (_2)1

factor in equation 3.4 It 1s therefore necessary to scale the

transfer function 2
to redefine the T factor to be equal to one .

The T factor must first be related to the fllter frequency .

Consider a fl1 ter with a natural frequency of W . The period of

this f11 ter 1s then 1". The T factor 1s then some fractional part

of .,. such that an integral multiple of T will equal ". This

integral multiple can be defined as x and is called a sample interval .

2 Now , to obtain T ~ 1, a frequency scaling technique must be incor-

porated . Given a sample interval, x, which determines the number

of data outputs (from the difference equation) per period,

the original transfer function (at W) yields:

W = 2TIf

Therefore:

~ = 2 = 2 41
T x T 2TIx

Now , consider scaling the frequency to some ~

Under these conditions :

2
T =

or

x =

2 --,= xl"

2 W'
2TI

2W'
2TIx

4 .2)

4.3)

such
2

that T = 1.

4 .4)

19

To frequency scale from W to w' I substitute equation 4 . 5 into

equation 4.1, as shown:

2 W =
2rrx

2 W '
2rr 2W' =

2rr

w
W·

whi ch can be rewritten as ;

w'~=W
rrx

Equation 4 . 7 is the factor necessary

W'. By using this scaling format ,

to frequency

2 the T factor

4.6)

scale from W to

will always be

set equal to one . For a general polynomial in 5, the coefficients

are scaled using t he formula :

= (
1TX) N- i
W Pi 4 .8)

For a normalized polynomial , with W > tTX , the coefficients of pCs)

are scaled down to a fractional value , with the exception of the

Nth coefficient , which 1s one . Once all the polynomial coeffi cients

are in a frequency scaled form , the additional scaling factor of

2N- 1 2 can be perforned . The generalized scaling algor1 thIn now

becomes :

4.9)

This scaling algorithm insures that all the coefficients are

pr operly scaled to a fractional value and will not overflow during

the bilinear transform algorithm process .

•

V. SOFTWARE IMPlEMENTATION

Knowing the necessary equations to perform the bilinear trans-

form (equations 2 . 20 - 2 . 2)) and that the data is to be represented

1n a double precision fixed point signed binary format, the

actual software programming can be implemented . Knowledge of the

bilinear transform equations only describes the algorithm , but does

not specify hoW' the equations are to be implemented 1n a software

program . These lmplementa tion procedures are based on the programmers I

interpretation of the equations and his experience of using a

particular programming language .

Based upon the transfer function 11m1 t of fifth order and the

full 16 bit data word , certain initial configurations for memory

storage locations are possible . The data 1s stored as two 8 bit

words with a third 8 b1 t word storing the sign bit, deseri bed

as folloW's :

M
M + 1
M + 2

M.S .B .
L.S .B .
Sign byte

with M.S.B. denoting most significant byte and L .S .B. denoting least

significant byte. Only one bit of the sign byte is used , with the

other bits set to zero . For positive numbers, bit 7 is set to zero

and for negative numbers bit 7 1s set to one . Since three memory

locations are necessary to fully describe a data word and a fifth

order polynomial can have six coefficients (a - 5), there must be

21

eighteen memory storage locations to store all the coefficients of

a fifth order polynomial. A fllter t ransfer function could possibly

exist as a fifth order numerator over a fifth order denominator ,

therefore a total of thirty two memory locations are needed to

store the coefficients of a transfer function in memory .

Knowing that the bilinear transform 1s to be performed on

data 'in place ' , then once the transform algorithms are executed, the

coefficients stored in the memory locations for the transfer function

now store the coefficients for the difference equation . The inverse

z transform then allows the coefficients of the difference equation

to become the coefficients of the discrete time equation . Since

every coefficient of a discrete time equation must have a discrete

time factor associated with it (i . e . p(nT-iT)), there must be

six discrete time factors each for the numerator and denominator

discrete time equations . The discrete time factors are also described

using the double precision fixed point signed binary format that is

used on the transfer function coefficients . This requires another

thirty two memory locations to store these discrete time factors .

On the basis of this requirement for memory, an allocation for

memory space was chosen , as shown in figure 1 .

The next step involves implementing the bilinear transform

equations (equations 2. 20 - 2.23) . One of the first questions is

concerned wi th implementing the binomial factor

Equation 5 . 1 can either be calculated each time equation 2 . 20 or

22

•

Numerator

co.i:f'1dents

:o.nomina.tor

coefncients

temporary storage

x (n! - iT)
r .. ciors

empty

y(nT - iT)
f&ctors

empty

transfer funC'd.on

desc:1ptlon data

binomial

lookup table

temporary

IItor~

.&in program

Figure 1 . Memory map of data storage

23

2 . 2) 1s performed, or a lookup table , based on i and j , could be

performed . Knowing that rapid computations are desired and that a

factorial computation requires repeated multiplication , which requires

an extensive amount of computer computation time , a lookup table

would be easier to implement and faster to execute . To implement

the lookup table , a means to uniquely descri be every 1 and j

combination must be determined . Examination of equations 2 . 20 and

2 . 2) show that 1 1s less than j for all cases of i . These restric

tions state that some combinations of 1 and j do not occur in these

equations and can be disregarded . A means to determine a number

that is unique for all the possible combinations of 1 and j 1s

to multiply i and j such that

K = i x j

This K value can then be used to locate the posl ticn 1n memory of

the proper binomial value . The binomial number can then be retri eved

and used in the pr oper transfom equation . The binomial lookup

table , based on equations 5 . 1 and 5 . 2 , is shown in figure 2 . The

value of K is added to memory location 606016 to ' point at ' the

bi nomial value to be retrieved from the table .

To impl ement the bi linear transform equati ons (2. 20 - 2 . 23).

a str uctured pr ogrammi ng method is a desireabl e choice , both to aid

in understanding the flow of the program and to break the t r ansform

process into ' blocks ' that perform a specific equation on a specific

section of data . Equations 2 . 20 - 2 .23 must be performed on both

the numerator and denominator coefficients . Therefor e, a software

subpr ogram must be written for each transform equation twice , once

24

•

1

1
2

J
4

5
J

J
6

6

10

10

4

4

4

10

10

10

10

10

5

Figure 2. Binomial lookup table

25

for the numerator coefficients and once for the denominator coeff-

icients .

The first equation to be implemented 1s equation 2.20 , which is :

e
j

= d. + ~ (i) i -j di J i=j+1 J

Using the bilinear t ransform of

with

z-1
s =-

z+1

2 - = 1
T

the factors n , ~ , y become

a: = - 2
~ = +1
Y = +1

Equation 5. 3 reduces to

5.4)

5.5)

5 .6al 5.6b
5.6c)

A flow chart depicting the impl ementation of equation 5.7 on the

numerator and denominator coefficients 1s displayed in figures J

and 4, respectively . In both subprograms (XFORM and XFORM2) ,

the pr ogram starts at j=O, evaluates the binomial factor and sums

the partial pr oducts onto e
j

Once l =N, j 1s i ncremented and the

process repeats itself until j=N . The value of N 1s stored in

the memory as NUM for the numerator and DEN for the denominator .

These values must be placed in memory before the transformation

process begins . Once j=N I equation 5 . 7 will have been implemented

on all the coefficients and the program moves on to the next

26

•

lnit1&l1ze reg1stsr8
B,C" 0
H.L • 600016

I Store H.L 1n TMPl

Increment. C
- Set up b1nom1.&l pointer

l.oad It. wi th binom1.al no.
""'-tiply [H,L] by •
Add product to low coef! .
l.oa.d A with nUlll8r& to:::

number

-2
Y"

Increment B
C' B
H,L- 600016 A • 11 •

Increment H.L by J
Decrement A

no

<>-Y"
Load A !rl,th numerat.or

no <2 v." To XFORII2

Figure 3, XFORM flo w chart

27

•

Ia1~1&l1ze registers
11, C ,. 0
H,L'"' 601216

r Store H.L 1n TKPl I

Increment C
Set up binomial pointer
load A with binomial no .
Multiply [M,L] by A
Add product to lov coef! .
Load A with denomina.tor

n""ber

no ¢.>
Ln.

Incre.llent B
c· B
H,L" 601216 A • B

Increment M,L by J
Decrement A

no <2 ve.

I Load A wi th denoa1nator I
flumbl!rr

no <2 "". To

Figure 4 , XFORM2 flow chart

28

subprOgIlaffi .

The next equation to be implemented 1s equation 2 . 21 , which is :

which reduces to :

5.9)

Equation 5 .9 can be very easily implemented on a microcomputer .

Any multiplication by t wo can be performed by a series of shift

operations . A flow chart implementing equation 5 .9 on the numerator

and denominator coefficients is shown in figures 5 and 6 , respectively .

Again , the subprogram (X2NA or X2NB) starts with 1=0, performs

equation 5.9 and then increments i , repeating equation 5.9 until

j=N , when the process is finished. The program then proceeds to

the next subprogram.

The third equation to be implemented is equation 2 . 22 , which 1s:

This equation redefines the order of the coefficients . By keeping

track of where all the coefficients are for both the numerator and

denominator, the reassignment of the coefficients can be handled

with software programming. This means that equation 5 . 10 does not

have to be actually performed . This alloW's a saving of computation

time since equation 5 . 10 is not actually implemented and this helps

to reduce the total execution time of the program .

The last equation to be implemented is equation 2 . 2) , which is :

N (1) 1- j h .= g . +E . ~ g1
J J 1=j+1 J

5 . 11)

29

•

Initialize reg1a~.rs
B • ,
H.L· 6003,6

-'"
c - 0
Load D,E with coe!,fic1.ent
Load It. wi t.h sign b1 t
Store A 1n TKP2

-'"
Ca=y. 0
Right sh1..ft. D. E
Cocpl.i.llent sign b1 t.
Incre_nt C
A = B

no ¢:
y ••

Load It. :!'rom TMP2
A" E016
Store Gign bit in memory

.tack
Store D,E 1n memory stack
Increment H,L by J
Increment B
Load It. rl th NUMMl

variable

no 0. yes
To X2NB

Figure 5 . X2NA flow chart

•

1111 t1&l1ze registers
B- 1
M.L· 601516

--L-

c - 0
toad D,E ldth coefficient
load A with sign b1 t
Store A in TKP2

CarTy - 0
Risht sh1ft D,E
Complillent sign b1 t
In.c:re_nt C
A - B

-<>-ve,
Load A fro. TMP2
A' 8:1 16
Store sign b1 t in

lIIemory
Store H, L in !Demory
Increment H,L
Increment B
lo&d A with IENMl

varta.ble

<>-ye. To XFORI'lJ

Figure 6 . X2NE flow chart

J1

This equation can be reduced to :

h.=g .+ ~ (i) gi
J J i=j+1 J

since ~=1 . Equation 5 . 12 is identical to equation 5 .7 in form , so

the actual programming should be similar. However, equation 5 . 12

must be executed on coefficients that have been reversed in order.

This difference must be accounted for in the subprogram (XFORMJ

and XFORM4) . Figure 7 and 8 depict the flow charts of the sub-

programs that operate on the numerator and denominator coefficients ,

respectively.

Thoughout the subprograms that implement the bilinear transform ,

certain variables are used to allow the program to know the order

of the transfer functions and properly implement the subprograms ,

These variables are dependent on the order of the transfer function

and are obtained by using the following formulas :

a. NUM = order of the numerator
b . DEN = order of the denominator
c . NUMPN = order of the numerator multiplied by three
d. DENPN = order of the denominator multiplied by three
e . !lUMM1 = order of the numerator plus one
f . DENM1 = order of the denominator plus one

Th~se variables must be determined and loaded into memory with the

transfer function coefficients before the bilinear transform program

can be used.

After equation 5 . 12 has been performed on the numerator and

denominator coefficients, the coefficients that now reside in the

memory allocated for the numerator and denominator transfer function

coefficients are the coefficients of the difference equation . With

the coefficients of the difference equation obtained , a routine

32

•

In1t1al1ze reg1s~era
B,O .. 0
M,L· 600016 + NUMPN

I Store M,L in TMPl I

Increment C
Set up binoml.a.l pointer
Load A with binomial no .
Multiply [H,L] by A
Add product to low coeU .
Load A nth denominator

number

no <>. y ••

Increment B
C · •
H,L " 600016 + NUMPN
A - •

DIIcrement H,L by J
Decrement A

no ¢.>
"' ..

I lDad A with denoa1,~tor

" -
no <2 Y·· To X

Figure 7 , XFORM3 flow chart

JJ

•

Ir~t1al1ze reg1a~ers

lI , e - 0
H,L· (:012

16
+ NUMPN

Store H,L in THPl I

:nc:rement c
Se't up binomial pointer
load A ld. th h1.noJUal no.
Multiply [H,LJ by A
Add product to low cos!! .
load A w::I. th denomina:tor

nUlllber

no

<>-Y··
Increment 11
C· •
H. t • 601216 + NUMPN
A' •
Decrement H,L by 3
Decrement A

no Q
v ••

Load A with denomina:tor
nU!'1bo~

no <)
:yes To m IT

Figure 8 , XFORm flow chart

must be written to output a string of values based on a string of

input values (based on the discrete time mode of the difference

equation) . Since a sys tem r esponse to a step function is a common

method to determine a systems' transient response , a discrete time

step funct ion is used as the input string of values . KnO wing that

the input and output values must be fractional numbers, the input

values must be limited in value to prevent the output values from

overflowing . KnOwing that a realizable transfer functions ' output

will never exceed twice the input value, an input value limit

is chosen to be t unit .

Having determined the constraints on the difference equation

(equation 2 . 27) . which is transformed into the discrete t ime domain

of equation 2 .)2, a program can "be written to evaluate equation 2 .)2 .

Equation 2 .32 is restated here as:

m m
E c

m
_

i
1'(nT-iT) E d

m
_

i
y(nT-iT)

i=O i =l y(nT) = ~'-------"""7""":=--'-----
dm

This equation can be broken down into three simpler equations that

can be used to design a structured software program . Equation 5 .1)

can be divided into three subprograms :

a . the summation over the x inputs
b. the summation over the y outputs
c . the division over the entire summation to obtain

the present time output .

A flow chart implementing the summation over the i nputs is

shown in figure 9 . This subprogram (DIFF) performs the discrete

time coefficient by discrete time input factor multiplication and

35

•

1ni tlal1ze registers
Se't TMP1 • 6O?C
Store zero 1n TMPl
Stack poi nter = B800
H,L· 6OJO + NUMPN
Store H,L 1n ADL
H.L.: 6000 + HUMPH
Store H,L in TMPJ

I load n,L trom TKPJ I

~ .. To STG2

no

Load D.E fi'oo [H.L]
Increment H,L by 2
Load • !n>o [H .L]
Store A 1n l'IPnl
Decrement H,L by 5
Store H,L 1n TMP)
Load H, L troll Am.

no ~-.
7

Load B.C from [H.L] Load 11 , C with 8000
Load A with zero

Increment H,L by 2 Store Bte 1n [H,tJ

Load • from [H.L]
Increaent HLL ~ 2
Store A 1n H,L

J,
Store H,L 1n ADL
Det.nine product. algn bit
H.L. B,e x D,E
Add H,L to [TMP1]
Loa.d P.. L !rom Am.
Decrement H,L by 5
store H.L 1n ADL

Figure 9 . DIFF flow chart

)6

sums these partial products into a memory storage location . For

the input at nT , the program inserts an input value of t into both

the program and the discrete time input factor memory storage location .

After the discrete time inputs have all been accounted for in

equation 5 . 13, the discrete time output values must be subtracted from

the memory location holding the partial summation over the inputs .

This program (STG2) performs the coefficient by discrete time

output factor multiplication , performs a twos' compliment on the

product and subtracts the product from the overall summation factor .

Figure 10 depicts the flow chart for this subprogram . Once all

the discrete time output factors have been multiplied and subtracted

from the discrete time input factor summation , the present discrete

time output , y(nT) , must be evaluated . The program (STG)) divides

the total summation number by the coefficient d to deter mine the
m

y(nT). The y(nT) is then outputted to an output device for viewing

and recording purposes. This subprogram is flow charted in figure 11 .

When all the discrete time input and output factors have been

evaluated for ~nT, the sampling time point must be incremented

to ~nT+T . All the discrete time factors must be shifted back in

time by T so that the new sampling time point 1s nT . Since

equation 5 . 13 1s deter mined from past and present time values

for x and y , an increment in time, T, moves all the x and y values

back in time by T . Therefore , all the x and y discrete time factors

must be shifted in the memory location to match up with their

respective position in time . Figure 12 demonstrates how the x and y

values are shifted when the sample time point is incremented .

•

37

Init1alize registers
H,L .. 6045 + 1M1PN
Store H.L in ADL
H,L - 6012 .. NUMPN
Store H, L in TMPJ

Load H. L from TMPJ

Load D,E rrc. [H,L]
Increment H,L ~ 2
load A fro. [Po ,L]
Sto:-e A in "IPIS
De crement H,L by 5
Store H,L in TMPJ
Load Po. L from ADL
Load ',C ho. [H,L]
Incremettt H,L by 2
Load A hom [H,L]
Store H,L in AUt

•

Determine product sign bit
H,L a D,E X B,a

To STCJ

no r---------,
H,L = 0

?

ye.

Load H,L ft'o1l ADL
Decr .. ent L by 5
Store H, L in ADL

Figure 10 , STG2 flow chart

Add H,L to [TMPIJ

•

38

Load H.L from TMPJ
Load BoC hom [MoL]
Inc:rement H,L by 2
Load A hom [MoL]
Load H,L with 607C
Load DoE hom [M oL]
Dete:ndne quotient s1gn
Stack pointer • 8802
B,C .. D,E + :S , C
loa.d H,L with 6042
Store B,C 1n[P.,LJ
Output reaul t 'to output

device

To MOVE

Figure 11 0 son; 3 flow chart

•

New present
time values

,

p(nT)

p (nT - T)

p(nT - 2T)

p(nT - JT)

p(nT - 4T)

p(nT - 51')

,

Discard oldest
time value

:39

....
IE-
....
IE-
.... Shift all values

IE-
by one t i me value

I-

IE-
....
IE-

Figure 12 . Shifting of difference equation time values

•

40

TABlE I

Input - output execution time based

on order of transfer function

N Execution time

1 10 ,443 usee .

2 16 ,486 usee .

J 22 ,529 usee .

4 28 ,572 usee.

5 34,615 usee .

•

N

1

2

3

4

5

41

TAllIE II

Maximum omega that input - output

routine can be run in real time

.1 1" .051" .01'1"

60 .16):l . 10 6 .01

38. 11 19 .05 3.81

27 .88 13 .94 2.78

21.99 10 .99 2. 19

18 . 15 9 .07 1.81

42

Finally, to ensure that the output string of values occur in a real

time mode , any excess execution time must be used up before a new

input-output sequence begins . This timing routine must be adjustable

based on t he updating rate of the output string. The execution time

of the input-out put routine , based on the order of the transfer

function, must be included 1n the design of the timing routi ne .

Table I displays the execution time of the input- output r outine of

first to fifth order functions . Based on this information , the maxi

mum frequency that the input- output routine can be operated at , based

on the sampling rate , 1s deplcted in Table II .

The end result 1s a computer program that 1s capable of per

forming a bilinear transform algorithm on a differential equation to

produce a difference equation. From this difference equation , an out

put string of discrete time values can be evaluated and produced in a

real time mode . By using any transfer function that fits within the

constraints of this software program , a real time simulated digital

filter can be implemented usi ng this program . With proper inter facing

techniques , the software program could actual ly be used to synthesize

a digital filter ' in circuit ' in a real time mode .

•

VI . FILTER IMPLEMENTATION

Having designed a software program to implement the bilinear

transform , several fllter transfer functions have to be tested

on the software program to determine the programs' accuracy . The

accuracy of the program can be determined by comparing the output

from the bilinear transform program with the output determined

from the original transfer function, using the same input conditions .

By comparing the two outputs, the sensitivity of the program to

data format and scaling parameters can be determined . The per

formance of the program to known transfer functions will help

determine the response from any general transfer function .

Filter designs are based on a set of frequency characteristics

that are required for a circuit. Therefore , a fllter is a frequency

selective device. Normally, a test for a filter would involve

implementing a frequency spectrum sweep on the filter and observing

the output frequency spectrum . However , a digital filter has a

different method to be used to check for accuracy . Based on the

original transfer function in 5, a continuous time response can

be obtained from the analog filter . This continuous time response

can then be sampled at intervals of nT (or discretized) to obtain

a time sampled response. This response can then be compared to

the response from t he digital filter , based on the same input,

although now discretized . If the digital filter response is accurate,

44

this output should be the same as the discretlzed response of the

analog filter . Upon this basis , the digital filters are tested

in the time domain and not in the frequency domain.

Based on the information in Tables I and II, an operating

frequency for the test t ransfer functions 1s selected to be W = 10.

Sampling rates of . r r and .05 ; are used for the output rate of the

discrete time equation , based on UJ = 10. Three transfer functions

are chosen to test the performance of the software program . These

transfer functions are:

a . second order low pass
b. third order low pass Butterworth
c . third order low pass Chebyshev with 1 dB ripple

These three transfer functions are sufficient to test the

software program, testing different types of transfer functions at

different system orders .

The transfer function for the second order low pass filter is :

H(s) = 2 100
5 + lOs + 100

6.1)

Taking equation 6 . 1 and allowing Xes) to be a t uni t step function

and then performing an inverse Laplace t ransform , the resultant

transient response 1s :

ye t) = . 5 - __ 1 __ e- 5t SIN [loJJi + ~]
./3 J

,t>O 6.2)

From equation 6. 1, the scaled transfer functions (using equation

4.9) using . 11" and .051"sampl1ng rates are determined and shown

in Table III . Table III displays the coefficients of the t ransfer

function in both decimal and hexadecimal form .

•

TABlE III

Scaled second order transfer functions

H (6) = -----;2,----~· 0'-'1"'2.<..))u.7 _ __ _

.125. + .0392699. + .012))7

a . .rr sampling rate - decimal format

H(s) = __ -,,;---'."'°-"32""8'--__ _
.2000.

2 + . 0AODs + . 0328

b . .11" sampling rate - hexadecimal format

H(s) = _ --,;---".0"'0""'30"'84=-___ _

. 12552 + . 0196)495 + .00):)84

c . .05'1 sampling rate - decimal format

H(5) = _ _ -,,------'."'OO'-'GA"'-__ _
.2000s2 + .05065 + . OO GA

d. .05'r sampling r ate - hexadecimal format

46

The transfer function for the third order Butterworth low pass

filter i5 :

1000 H(5) ; ---,,-------,;,:="------
53 + 2052 + 2005 + 1000

6 . 3)

Again using a t unit step input and taking the inverse Laplace

transform , the transient response of equation 6.3 becomes :

y(t) ; . 5 - . 5e-10t - ---2- e-5t SIN [.J75 t] 6 .4)
.ff5

t> 0

Using equation 6.3, the scaled transfer functions using . 1"T and .05 '1

sampling rates are shown in Table IV , in both decimal and hexadecimal

form .

The transfer function for the third order Chebyshev low pass

filter with 1 dB ripple i5 :

H(5) ; --:<"" ___ --:4"'9""1.!-. 3'--___ _
53 + 9 . 88)452 + 123.845 + 491 . 3

Taking equation 6 . 5 and allOwing a t unit 5tep input and then taking

an inverse Laplace transform I the transient response becomes:

y(t) ; .5 - . 5e- 4 . 9417t _ 2 .47 e - 2 .471t SIN [)93 . 314 t]

)930314
t > 0 6 . 6)

From equation 6 . 5 , the scaled transfer functions using .1T and .05 T

sampling rates are shown in Table V, in both decimal and hexadecimal

form .

From equation 6 .2, a plot of the response , y(t) , versus time

is plotted in figure 13 . Along with the transient response , the

outputs from the discrete time functions are also plotted . Similarly ,

equation 6.4 and the discrete time function outputs are plotted in

47

•

TABlE IV

Scaled third order Butterworth transfer functions

() .0009689 Hs ; ----~----~~~-~-~-----------
.OJ1255J + .0196349.2 + .0061685s + .0009689

a . . 17" sampling rate - decimal format

()
__ _ =;--_--'."'O"-O~JF'-------H 5 ; -

.0800sJ + .0506s2 + .0194. + .OOJF

b. . 17' sampling rate - hexadecimal format

.0001211 H(s) ; ----~------'='?2;='---------------
.OJ125sJ + .0098174s + .0015421s + .0001211

c . .oyr sampling rate - hexadecimal format

H(s) = .0007
.08005J + .028J52 + .00655 + .0007

d. .057' sampling rate - hexadecimal format

48

•

TABIE V

Scaled third or der Chebychev transfer functions

.000476 H(s) = ---o----'-'''''''!L''.-------
.0)1255) + .00970)52

+ .00)81955 + .000476

a . .11" sampling rate - decimal format

.001F
H(5) = .OB005) + .027Bs2 + .00FAs + .001F

b . .11' sampling rate - hexadecimal format

H(5) = __ ---,, ___ -'.0:.00"'0"'0 59 5<--_____ _

.0)1255) + .004851552 + .00095485 + .0000595

c . .05; 5ampling rate - decimal format

.000)
H(5) = .OB005) + 2 .01)Ds + .00)E5 + .000)

d. .05'r sampling rate - hexadecimal format

49

figure 14 , and equation 6 .6 and the discrete time f unction outputs

are plotted in figure 15 .

Returning to figure 1) , the outputs from the . 1/ and .05'1"

discrete time functions are seen to closely follow the transient

response . The output from t he .oyr discrete t ime function ' t racks'

the transient response more accurately than the . 1T discrete time

function , due to more samples per time period . The steady state

value for the transient response is . 8000 16 (. 500010) and the

steady state value for the . 11"" discrete time function 1s . 800B
16

(.500167810) and for the .O;rr discrete time function is . 7FD7
16

(.499374310) , In both cases , the steady state error 1s less than

. 125% for .7FD716 and less than .033% for • 800B16 . Both cases

represent very close approximation to the transient response .

Figure 14 shows that the . 1/ discrete time function accurately

follows the transient response , while the .05"r discrete time function

does not match the t ransient respo~~e characteristics . Both

discrete time functions settle down to a steady s tate value I with

the .1'r discrete time function having a .7EC916 (.49525410) value

and t he .05/ discrete time function having a . 74BF16 (. 45603910)

value . The transient response has a steady state value of . 800016

(.500010), These steady state values represent a steady state

error of .949% for .7EC916 and 8 . 792% for • 74BF16 •

In figure 15, the .1'r discrete time function accurately follows

the transient response , while the .05'T discrete time function does

not match the transient response characteristi cs at all . The

s teady state value of the . 11"' discrete time function 1s . 7Dl016

•

F
ig

u
re

1
).

S
eco

n
d

 O
rd

er T
ra

n
sfe

r F
u

n
c
tio

n

51

•

F
ig

u
re 14

.
T

h
ird

 O
rder B

u
tterw

o
rth

 T
ran

sfer F
unction

52

F
ig

u
re

 15
.

T
h

ird
 O

rd
er

C
h

eb
y

ch
ev

 T
ra

n
sfe

r
F

u
n

c
tio

n

53

(.48852510) and for the .05/ dlscrete t ime function is . 60EB16

(. 37858510) , The transient response has a steady stat e error of

2 . 295% for . 7Dl016 and 24 . 28)% for . 60EB16•

In all the discrete time functions , there exists a larger

steady state error for t he .O.5 i sampling rate than for the .rT

sampling rate . An examination of the scaled transfer functions

for . 1T and .05/ sampling rates in hexadecimal format (parts band

d in Tables III , IV, V) show t hat the number of non- zero bits in

the coef ficient drops by as much as three bits as t he sampling rate

increases from . 1T to .OST. For the higher order systems , this

leaves only t wo or three non- zero bits for the zero order coefficients .

The result of the coefficients being rounded off and expressed i n

such small , truncated number s 1s t hat these coefficients produce

r ound off errors when shifted , added and multiplied by the bi linear

t ransform . As long as there are sufficient bits 1n the coefficients

to retain data accuracy , the bil inear transform closel y matches the

t r ansient response (as 1n the .1 i case , all transfer functions) .

Once the data accuracy is los t , due to insuffi ci ent bits , the

bilinear transform is using truncated data words , and the output

from t he discrete time equation is a poor appr oximati on of the

transient response . The r esult is a tradeoff between sampling

rate and data accuracy ; data accuracy diminishes with higher sampling

rates and the output is inaccurate . With a low sampling rate , t he

output has less than 1% error for two of the functions tested at

. 11' and less than 2. 3% error for the Chebychev function at .11'.

•

VII . RESULTS AND CONCLUSIONS

The software program that 1s implemented in this thesis is

basically two separate programs linked together . One program per

forms a bilinear transform on a transfer function to gener ate co

efficients for a difference equation . The other program actually

performs an input- output operation on the coefficients of the

difference equation . Through the implementation of both of these

software modules as one larger program , the performance of these

programs can be evaluated . By evaluating these performance charac

teristics , the benefits/disadvantages of the programs are revealed .

The software program written to implement the bilinear transform

algorithm was designed around the need to calculate the data as

quickly as possible . To help increase calculation speed , a fixed

point notation was used to represent the data . Double pr ecision

notation was needed to insure adequate word length duri ng the cal

culations . To insure that the data was represented accurately, the

data was scaled to a fractional form . To reduce calculation time

on the bilinear transform equations , a scaling factor was designed

to frequency scale the transfer function to a standardized fre

quency, based on the sampling rate of the discrete time equation.

All these techniques were used in wr1 ting the bilinear transform

algorithm software program .

Based on the results of filter transform functions implemented

55

in Chapter VI, the bilinear transform software program results in an

output error less than 2.)% when the data is accurately represented

(minimwn of last 7 of 16 bits are non zero or contain data infor

mation) . When the 16 bit data word truncates the value of the real

coefficients , t he bilinear transform can provide an output error

greater t han 8% of the real transient response . The truncation of

data occurs when the sampling rate is increased , causing the scaling

factor to decrease the values of the transfer functions' coefficients .

From this knowledge , there are several solutions to retain data

accuracy with increasing sampling speed . Among these ideas include :

a. using a 16 bit microprocessor with double precision
(32 bit) word length

b . using a different scaling technique
c. using a floating point notation
d . developing new equations to implement the bilinear

transform •

Using a)2 bit word would increase the data accuracy , until high sam-

pling rates are needed, where the data would again be truncated . A

different scaling technique could imply rewriting the algorithms ,

possibl y slowing down execution time . Floating pOint notation would

allow a wide range of data values , but would slow down execution time .

Other new algorithm equations are not yet developed to execute the bi-

linear transform with minimum memory . There appears to be no single

best solution to this problemo Us i ng any alter nate approach that will

not drastically increase execution time can be considered a feasi ble

solution.

From the information supplied in Tables I and II I the maximum

operating frequency of the program is limited by the input- output

56
routine. An analysis of the input-output program reveals that a

major amount of execution time 1s spent in software multiply and

divide routines . The data acquisition and add routines are presently

using minimal execution time based on the 16 bit data word . An im

provement 1n this program would be the implementation of a hardware

or firmware multiply/divide routine to decrease the execution time .

By decreasing execution time , the maximum frequency obtainable 1s

increased . Since the input- output routine is a very straightforward

process , the algorithms need not be modified. The execution time

can be reduced by using hardware or firmware multiply and divide

routines .

The algorithms designed to perform an 'ln place ' operation , based

on the bilinear transform, can result in output errors less than 2 . J%

on a microprocessor system . Based on sampled outputs from the bilinear

transform program versus outputs from the original transfer function ,

the pr ogram data matches the theor etical data within a 2 . 3% error pro

vided that the last 7 bits of the 16 bit data word contain data infor

mation . Faster input- output operations can be obtained by substituting

a hardware or firmware multiply/divide routine for the present soft

ware routine . With these modifications , a sufficiently powerful real

time digital filter can be designed around a small memory mi croproc

essor, with continuousl y pr ogrammable features that make this system

extremely attractive for digital filter design implementation . Further

more , the generalized procedure for the second order accuracy bilinear

approach implies a search for similar higher order accuracy algorithms

that could be beneficial to state of the art digital filter design.

57

•

APPENDIX A

INTEL 8080 Assembly Program Listing

-

58

1515-1! 8888IS8(I:5 t«RO RSSaQ..ER, Y2. e
5 TO Z TF.ffISF(I!ft Jl~IT!t!S

Ltc OOJ '"
"". ..,.
"27
"" ""
"" "'" "" "" "'"
"'" -"'" et <06,et
"'292
.""3 "" ..
"'" OS
"'" 8l "'783
"'" " 6869 &6

"'" .. "" .. "" .. "" .. ,e, ...
"'" ., '''I .,
6871 WI
"n .,
<en .,
6&7" 85
"" " 68Il3 21ae68

"" 212'"
6e89 11E168
' .. ",e ""'" ... " ,e,,,,'
"'" " '''' " ... "
"" 111
"" """

1 I TITlE ('5 TO Z TRfHjf(e! fl,GCIUTltl5 ')
2 fft£)of(Jl!l

J TI'P1 EOO 6824H
<4 nt'2 (00 6tI26H
5 If"rt [lilt 6927H
Ii IPItt Ell! 6II28H
7 IfYS a\J 6eaI
8 IU1 BIU 685ItI
9 DEN E\lIJ 6I15BH

18 II.Ifl4 EClJ 6fi:H
11 oeFH EOO QNoH
12 !IItI1 EW 6tiH
13 teft1 EaJ 685FH
14

" !JiG """ 16 Till.!. 05 6I:t1 PESEP'JE; 96 Er.'ES
17 81101. c.a LL2.3.4.S PII:CMlAL LDCK'·P "'ULE

21! OS 19. 18. !i

210"'"
22
21)/f(JM: txI 8.II1II
24 L'<I K. Tf8...E
25 OOR: 9l.D Tlf'1
26 aM U(! O.8UDt
27 l~ C
28 au IU.T

" .," !8 KN LR
11 It« l
12 IIrQ l
n II« L
14 l.DftI(D

" au If'Y

sZ'" B & C ;0 Z:::O
sZ"' jJ , L '" ~OO!l
S'""C?Z 1" . L I"' '"':-:PI
r,E ~E::'3 6060H

ACE-SBxe
~ EI::cz.aAL 1'01' ZR

A CE'!':J EIlicmAL nmEEp.
11l,'L71PLY .5I::. /I BY CCEIT:CI~'~

ISIS-II 000tJ.I88tl5 tRl!O RS5e!elER. Y2. e
5 TO Z TPJWSFOOI fl.fmITltlS

LIX IBJ

"" <OOl62

"'" """'" ... " ... """ ,.,,'" -.. "'" ,,,, ..
"R'"
"'" 2C
"'" 2C _2C
6<R:lD

"'" ""'" ,,,.
.... C28668

""'"
"'" 2U2<8
"'" 222<68
"" """
"" 0:
6&:4 1lO61

'''''' "" " "'" " ... "
"" " "'" ,.
6{(0 C05!52

"" ""'" .. " " '0" """ "'" .. "'" .. 680C 2l12<8 " .. , 2C
0E12C
""'2C

"" lD 6££4 C2£868

"" ""'" ... " ... ""'"
"'" -,." """"
"" " tilF4 C1i2£51
6ff7 aSl6e
£BFA I!£ee

"~Fe " "

."
"au ,..
''''''' ..
'" Of> C
39 1HZ COO
<iii IhI!: 8
41 lIlY C. 8
42 LXI Ii. TJ8.E
43 rm ItS
« ItO: If« L
45 Hil L
46 ItI! L
.7 ocr A
48 .1HZ Ito:
49 LDA tUI

" Of> ,
51 JN2 OOR
52
53)o1tm: LXI 8. 8iIf
~ LXI Ii. TfB.£+taI
:5:5 0fTR2: SK.D TI'PI.
56 COO2: LXI D, SIIOI
57 IIIl C
~ ClUIlLT

'''''0£ Iii! lIN E.. A
6.1 !/oR l

'21ft"
53 I/oill

'' '''''' ,
'" au "" "au ..
'"'''' DElI
" Of> C
" iNZC'''''
79 llil 8
71 I(N C, 8
72 LXI Ii. TEI3I.£+12H
73 KlY Its
7. 1tG:2: It« l
~ llill
76 llIll
77 OCR ,
18]HZ 1J(R2

" U,,""" .. Of> ,
S1 JIll CIm2
82
8l X2W1" flY! IL l .,,'" "" . ,OJ, """
B1 LXI It. Tf8..£+3
88 RPT: ""I C,S
89I1NO, /t
~ IN! L

59

ADD :iFY II ;-0 W:I CCEFFICIE'
C:tE:CK F'CR Hlt;;u:sr CCF.F'n:~I;:::;-'

Lcep EACK IF "C"" DC:::::

C GE:S E
H, L C.8';S eOOO H
A GE""S B
3E'" L'P ·'E· ... COEFFICIE! POI: -~

A C8TS A - 1
r'l'CATE CCErr-ICI E:", por"TE?
A GZTS "uMEPATOR OP':J~

lOOP BACK: I F ALL CCEmCIr;;~

B, C SET '!"O ZERO
H, L C£""S 6012.1{
~O?E if , L I" ':"MPt
D, E CE""S 6OCOH

AGSTS:9XC
SS";' 5I ~'OI-UAL roI:'~

A r::::rs BI!I'OMIAL ' 1l.'~:EEP

MULTIPLY BW . ;, BY cozm cn:::,-r
ADD liPY N '!'O to :CEmCIE",:"
CHECK PeR HIGHEST COEmCI::!

LOOP BACK IF ':or OO!'E

C CETS B
lI , L CET:; 6012H

'.'!lIlA':£' COE.FFICIE:;""' PCI~:'"'E:R

A CE'""$ OZ: :CMI~"A':"OR CR~

LOOP BACi{ I F ALL COEFF! CIE~-S
'"ar OO"E
E ,~EiS 1
A CE.";S n:~rOP CRI:ZR

EREAY. 01 IF "0 CCE::?I ClE:C:- Ar""'F:::C'!"ED
H, L G~ 600JH

LCAD CO.:.: f'I~::;r. 1:1""0 Dr E

ISIS-II 88B8It!885 If010 RSSDB..£R. Y2. 9
5 ro 2 TRANSFIB I\.Wm1f6

Let reJ

on " 6IfflC
6iN i'E
6181 322668
6194 Jl
61&5 !f
6196 78
6197 17
6198 'Sf
611r.1 7A
619f1 17
61£IB 57

'180 """"
"If If

'ill """ 6Wa::
6U478

"'''' 6U6 C294fi1
6119 !F0i68
6llC E688
611E 77

,ur '"
"'''' "" '" 6122 n
'''' 2C 6124 2C

'''' 2C
"" 84 . 6127 K:f68

""lB' 6128 C2FA68

,""ru9 211568
,m ""
'''' " 61.lfi 2C
runE
6138 2C
"-" 7E
61lA 322b68

'1lD "
'1lE IF

"'" 78 6148 17
6141 SF
6142 7fI
614117
610W 51
61457R2&5e

".,,'
6149 l22E68
61~ a::

9:1. lIlY E."

" II." 91 rrN !U
94 STR TIfI2
95 SIfT 51C ".,.,
'11 lIlY It E
,,"'-
99 IllY E. R

11!1111)Y It D

'81 "'-
182 lIlY D. R

ill "'" Ilr.!
'84 OIl
19:1 STII TIf'2
196 Ull C
117 lOr' IU
198 OF C
199 JNZ 9Fr
!1iI l.DR TIf'2
U1 !IU stfj

U2 lIlY ",R
ill OCR l
U4 lIN ItE
USet'"
Wi lIlY "'0
U7 11« l
118 It« l
119 I~ l
129 It« B
121"'"
'" "" , 123 JHZ RPT
,2<
125 :011: ""I B.l
J26 LXI It. Tf8..E.1!i1
127 RPT2: PlY! e. B
128 IllY 0.11
~ IN!: l
13lI lIlY LII
111 Iii! l
112 IIW R.II
ill STR TIf'2
134 SWT2 . STC

'" 01: 116 II)Y R. E
ill "'-
138 lIlY Eo A
139 lIlY R. D ". "'-141 lIlY D. R
U2 lDR nP2
14l 011
140(STR 1JIP2
US Iii! C

60

LOAD COEFFICI.EJ SIC:: I~l A
S70R:.: A n: -1-!F2
SE7 CAFRY EI7
cu:.:.R CARRY BI T
Ht!LTIPLY CCEFFICIE:rr PY 2

CO:o{PU MEr;-r SI C!I BIT

I A CETS B

CO!ITIlruE KULTIFLY IF' NOT DOr-!:
CLEA!l lIP SICf' BIT

RESTORE COEF'F'ICIErT III i1E¥.ORY

A CETS ~OP OF S':"ORACE STACK !1:MEER

REPEAT SHIF'I" IF 'fEW COEFTICI E!;r AVAI UEIE

I B c::.-s 1
Ii t L CETS 60 15H

LOAD COEFFICIE1;"" Ili":"O D. ::

S':"CJE SI CN BI T I :; '!'MP2
SE1" CARRY
CLEA1I CARRY
X\1LTIPLY COEFFICIElIT BY 2

CC:tpU!:E:77 SIC!: EI':"

ISIS-II ae88r"80S5 lIDO RSSDIUR. Y2.9
S TO Z TRff6F1JRI1 fl..OCPITlItS

lOC IBJ

6HO 78
614£ 119
6HF C2lD61
6152 JA266e
61S5 E688
&15777
61582D
6159 13
615fi 2D

"" n
"'" 2C 615D 2C
615£ 2!:
6151=" 94
61611 !R5F68
6163 B8
6164 C2J3H

""~ 61611 218t16e
6160 lfI5C6S
6179 85
6171 6f
6172 222<168
6175 U685e
6178 OC
6179 COEfI61

"It " "71) ,.-
617E 20
61iF 2D

"'''' "'''' 6182 C05362

'IBS ""'"

"" ""'" 6188 B5I
me ~1
'"" .. ",,,.
6191219968

'''' ""'" ",,,,
6L<18 fif
6Lqg 78

""'" 6LQ8 2D
&LOC 2!)

"'tll'
619E~1

'1J!1 ""'"
'1M " 61115 C27261

'1!18~

'"
146 I(l\I A. B
14701' C
148 mz 9fT2
14' LM TIP2
158 fWl SElf
151 ttJII t1. A
152 OCR L
mrmf'tE
1~ OCR L
155 lIN f'tO
156 ItB L
157 II« L
ISS ItB L
159 II« a
168 "" DElfI1
161 Of •
162 JKZ RPT2
!6l
164 XFIJOO : LXI B.98H
16'5 LXI It TfQ.E

'" 111ft
167 fl'O L
168 rm LA
169 omo: 9lD nP1
178 !lim: U(J /),810
171 ItB C
172 Cfll IUJ
173 fl'O E
174 tm SA
175 OCR l
176 OCR L
in OCR l
178 lDAX 0
179 Cfll I'fY

188 au "'"
181lDA l'€N
182 Of' C
!83 1HZ COOl
1114 Itfi 8
185 PlIY C, B
186 LXI It TfIl.E
187 LDA tUf'H
188 fl'O L
189 I(l\I LA
Lae trN 11.8
191 1!(lU: OCR l
L"2 OCR l

""'O"
"'''''" L<15 !HZ lItE
LC16 l./)fI OEH
197 Of' B

'" JIIZ CHlR3

'" 29B lIf<M4: Ll(1 B.88H

61

cc:m:,1.'E Ml'L7IPLY IF rOT 001 E
CLEAN UP SICN BI T

RESTCRE COEFTICIZ:;T TO ~iEl·;CRY

Il'CREl'Sm' POI::"'"ER TO l'Eli CCEFP'ICIE1"r

A GE"'S "'OP OF S""QRACE STACK r;UI".EER

REF&\'!' SHIF'T IF l:E~1 cczmCIEm AVAIUEIE

!! &: C SF.;'!' TO ZERO
SET H, L "'0 FOIrT ':"0 LC:.I CCEFFICIE'I'I"

STORE H,L I II THPl
D,E GETS 6OCOH

A GETS B X C
SET Bl!:OlUAL POn,TER

A GETS EINOMIAL 1n.'MEER
!-!l'LTlPLY" BI N, " BY COEFFICIENT
ADD HPY , .~ TO LO",;r CCEITICIE1"7
C""rlE:CK FOR HIC1~7 CCEFFICIE:r"

LOOP BACK I F "C::- OONE

c r:::E':'S E
H, L C~S 6000H
3E':" H, L TO FOI!IT AT !\Ell COITFICIENT

UPOATE COEFFICI ErT FOnTER
A GETS IlE!:OMI!~A'!OR OEDER

LOOP BACK IF ALL CCEF7ICIE!,"TS
i;CT OOUE
SE::' B &- G ""0 ZEPO

ISI5--11 8I:'StVSe8'5 Ifl'RO RSS89.fR, V2. II
5 TO Z 1PA'fSFtRn RlBlntIS

lOC lBJ

"III 211268

"" """" "B18' "., " 61Bl 222461
5te6 116868
1ii89 OC
61Bf1 a.£A6l
6"" 8l
6lEE 51'

"'''' """ 61(1 2tl
61C2 1fI
510 1M!G2

61" ctO!62

"'"
"ct " 61Jl) cmi61

"" .. 61D1<8
6102 21126e

'''' ""'" ''''' " "" " 61D'''.

"" " ""''' ""'''
'''' 3D 51Df C21l!!61
6"'
61E'S BB
61£6 C2S161

5ID 75

""'" "'SO,
"'''' 61E1" .
6lEE ""
51F9 Cff'E61
618 3££t

"'''' 61F6 00
61F7 C2F561
61FA E1

"18 " 61Ft C1

' 1fl) '"
61FE 3£81
S29I CfP61

"" "

SEO 5Il.Ra: STAID'EHT

2'81 LXI It !REl£+12Jl

"" lfIII "'" 2el RXll
21M IfN L.A
295 CNTR'" SH.D nF'1
296 tafT .. · lXl I), Bltllt
287 It« C
288 Cfti III T "' .. ,
2111 IfN E..A
211 OCR l
212 OCR l
21JOCRl
21" lDR< 0

'" ou. PI'Y
216 ou. filii
217 ~ OEM
218 CPt' C
Z1!3 JHZ C(Jr(H

228 II« B
22l1fN CS
222 LXI It TfRE+i3I
2Zl lfIII OOII'!I
22< .. l
2ZI rfH L..A
226 IIJY IU
'ZZ7 na.. OCR l

"" OCR l
'" OCR l 2lII OCR ,
211 JNZ UO:4
232 lfIII tel
ZlJ Of' ,
23<f JHZ 0iTR<f

'" Zl61U
Z!I
218 IU. r: PUSH 8

'" """ 0 248 PlJSJI H
2411fN IU
2 .. 2 CPI II
241lZ M
24<1 ""I !tII
245 It. TV fro 8
246 OCR C
247 JNZ ILlY
248 fIlA.. : Fff' H
249 Fff' D 2."',. ,
"un
252 1)£ /lV1 It 1
253 Jlf' FIIfL

'" 255 fI)tI . PIJgj H

62

XfCN1ll P!U ~

11 . 1 ~ COl2.P.
:::::r H. L TO POI!:":' AT I.e;': CCEF7IC1E:~

S'rORE H. L I:I ,[HPl
D, E GlITS 6OCOH

A CCTSBXC
SET BHomAL POI:r.'ER

A CE'!"S Bn :OM!AL Nl'MEE!i
MPl' PI:: . ;; E'f COEFFICI ENT
ADD r·py H "'c LC:'" CCEFFIcn.::rr
~c:{ F'OP HlG~T COEFFICIE"!:or'

I I.DOP EAC{ I F :1C'!' DO!'E

C CE:'!'S B
:;- , L CE'!'S 6012H
SET H. L TO PCI~''!' AT r:E'.I COEFTICIEr'i

I;PDA~ CCEFF'ICIr:;~,. FOn l::.R
A CE.'!: DEl;O~~J;ATCR eRDE!!

I LOOP EACK If' AI.:. COEF'FI CI'<:: Ii':"S l;QT DONE

END OF' PRCCRAr~
I :,,;,r L-IPL'f PCI'T!::E FO~ EI:jOm.AL For :rr:::R

F':SH rux;r s':"ERS 0:: STACK

A w.:TS B

'"'E:'!' F'CR B .., 0
A C::7S 0
ADDB""O A c"'n~

CHECK I F C ::: 0
PCP RECISr.:RS OFF ,s"'ACK

E::'D st:;~crTI:::E

A GE'iS 1

ADD ROl''"I~:E
pt;5H eN S7ACK

ISIS· II !!lI98I8EI8:! ftl:I!I) 1£ SDfl.£R. V2. B
S TO Z TRftEFw. flOORlnttS

l OC <BJ

"'" ,. ".",
"" f"5
6297 ZR2468

""'" ""12'
"" " ".,,,, ".UE "'" .,
621B FE88
6212 "'-""
621S2fIZ76(1

6218 ""'" ""1<' 621C FE"
621E ell""
622118
6222 ..
622J .,

"'. lESe "'61'
"', If

"" III

"'''' "'" "'"'"'
"" lESe 622f EB
62J8 ,,,,.68
62JJ 72

62342'
=12
"'62' 62l7n
62J8 f1
62J9C1
''ll101
62J8 E1

62JC "

623'''' "" cog" 6241 EB
6242 C31S62

"" ""''' "" """ "" ".", 524£: 1£88

"" ="
6253 '" "" ..
""'''
"" "

SE.

'" PUg" '" """ ,
25B """ "" 2:)9 Ut..D TlI'1
268 tfN 0,"
261 1/(1(H
262 IfN E."
2G3 1/(1(H
~ IfN fl."
2G5 1mB. A
266 171 SIJt

,., " "'" 26B S£Tl : ut..O IPrt

'" I.llfi "'" 278 WJ¥ CA
271 [PI 881

Z72 " ClJP2
Z73S£T2 : IfNfl.B
274 ~ C
27'5 NlY 8. A
Zl61f111 A.B

m "'" ZI8 OIl "" .. ,
281 JC cttP3
282 ifill A.B
28l INSRT: lOll
2B4 UlD 1lf'1
285 p(Jy It. 0
2S6 II« H
287 'fIIH It. E
2S8 II« H
2S9 IfN It.A

"''''''''' '" "" , '" "" , 291 FW H

"" RET

'" 2!16 cttP ' lCIJ«I

297 ou "'" 2'''0'' m Jrf' S£Tl
JO!
1e1 aJF2. au f'ID1
l!2 JlI' 5ET2
18l CtJI'l: au IIJ)1

194 ifill fl,SIIj
lll5 JII' _

"" lf7 II'Y: f\I9I B
!88 AJSH 0
3{19 F\lSiI H
liB PIJSH PSII

6)

E , L GET LCil ~C:::FFICIE:'T ADDRESS
D. E GET LGil' COEFFICIE::'!

A CE"'S SIGN BI T

2 ' 3 COMPUME1:T IF !1EX:;ATIVE

H, L GET HP'! ::liMEE!t
A GETS SICII EIT

2 ' 3 CCMPU~:EN1' I F i;&;ATIVE

CHECK 5I C:;3 OF EOTH !1.'M5EP.S

ADD D, E TO !-f , L
PI,.'T SI CS BI T I~l A
FlCl'R!: 51::;:: OF SCM

2 ' 5 COMFUMZ:<T IF ~CCATIV:::

S~AP D , ~ JI~H H,L
H. L GET LC:'" CCEFFICI~"!' ADDRESS
STORE CCEFF'ICIE!:7 III ~:!:: MORY

POP REGISTERS OFr STACK

E::D SUERO!.rr1:lE

S~,AP D, E ~~ I "'H H, L
2 ' 5 COXPLIXE:;r P.CL'TI~
S'.lAP D, E . I TH H,L
CO 'TO 3.:.""':'1

li" L':':::PLY P.OI}- I :·'E
F.'S:{ RECI~ or STACK

1515·11 898t1888'5 IIUO R55E!t3L.£R, Y2.e
5 TO Z TmGFte fl.G(l/ ITlttS

LlI: ""

"'''' "" 23

"'''' "'" 23

""" €25C 122968

"" F1 6268 218888
6l6l19

'''' '" "" C26l6'
"" l22768

""" 6l6C 01
met

'"" "
"" " "" It
6211 tf

'''''' "'17'
'''' "
"" if
627' ""
"" 1EB1
"". 19
"'" 01
627C '"

fULlC 9MU.S

00ER!fL """'-'

1m """'-'
IIlII . .,.,
Dlf'2 II 62~ """ . ..,.
lHSRT II 622f

""" "'29 1m • ill]

T102 "'"

5['

lU lfJI 0, /1
112 no: M
11J lfJI £0/1
114 no: H
313 PlJllIIoII
316 STR IPr'S
317 f'UI P9I
liB 1..'(1 Ho8llH
31.9 1flY2 ; llf[) 0
'" OCR ,

'" JHZ """ ""I" ""'
J2J "" H
J2~ PIP 0

JZ5 "" ,

'" RET J27
128 10)1 . PUSH 0
329 ffJI It H
no OIl
:m lIlY It R
ll2 II1t' It L
nJ OIl
m lIlY L.R
m PlY! 0, 8
136 IIYt £,1
ill [II) D

JJ8 "" D no RET ,..
34' ""

"101 """ """ "'14'
""'" "''''' .. TV II 61F5
".l.T , "'" SEli . ""
""" "'lEE

CH1R
coo
FIIR
SEll

"""
f65£/II. Y COf'1flE, """""

"''''' , ...
""FA , "" , ..,.
• 6121

, "'"

64

D.:: CF: ':OEf?ICIE:;:

H, L " 0
ADD D,E TO H' . L

CCf"'I:~'rE 'TO ADD IF A i 0
II , L STORED r:: lWYL
POP REX:I3':::RS OFF S"'ACK

pt'SH 0 0:; STACK
1' 03 COMPLEJ,:;::!';-:- Ii , L

Ott :: 1

ADD D, E TO H,t
pop OFF STACK
2!m St'EROl."'I~:E

00R2 CIm!J
CO<T2 ""'" COOl
11<11 · "'" lI<R2
If'Y · "" """"'"

"6in

"'''' "'". • 6l6l ".,'
SI<T "194 gm '''''' ,.." · '"'" lG'"1lm2 A 68B?

""'" "'1I!l "'" , 6ZlI)

COO. "'''' ""
11m II 6LCIfI II"" · "'" ""'- • 6817 """ · ..,. <It: "'" WT
Till! II 68118 "'" ·)lf1lltQ II 6167)fCJ!IH R 61.R8

65

1515· 11 RSsatliR swro. Cf10SS Ii!fEF.EI[L V2.B "'" 1

"'"
,. .. 18. 21' "'" 81"" 171 " " 17. 286

CKlR '" " 00R2 '51 81
(/100 1031 L"8
eHTR. "" ,1<
,Of> ,.,

"" 0JI'2 on l81'

""" "" ,m

"'" 26' " cam '" " cam '''' 181

""" 286' 219

"" " " " 181 L" 217 232
DElfI1 ll' 166
IlEIf>N U ' "" 22l

'"'" '481 253
(ID! '" ..
"<R2 '" " (100 191' L"
(II'" 227. 231
IHSRT 281' "" "-1'1 245. '47
"'" '" l81 ,., l28t
!PI l5 '"

,,, 21' 187.
If'I'2 "" 321
""'- " '68 '" """ " "'" 71 '" J16 ... , " " '72 '" 2l8f ... " J7 " 121 121 '" 166 187
IH 241 "" "" '" 123 .. " 127' 162
sm "'. "" "" ro. ,.,
"'" '" '" om 1l .. '" 'IIIlE '" 24 42 " 72 87 126 "" '86 "" 222

"0' " 2S " 16' 29S '"
,..

TII'2 .. " 183 to, U8 ill 142 '" 14'
"'" ".
"'" 86 125'

"""
, 23t

""'" Sl'
IIFcm "". IIF"'" ""
CR<lSS """"" COf'lill

•

ISIS·II 8988IS88:5 tR:F.1J fISSEi'Il..a \12. 8
OIFF EQN. MM I!IlITlt£

La: IBJ SE.

66

OlfFEQ PK£ 1

1 fTlTlE (' OIIT. Ell!. WTP\1I' I!IlITU£')
2 '*1£ OIFF£1I

'.24
'''' "" "" "" ,."
"" "'" "" 'BlI'
"" <821 ...
"" "'" 21_
6Z83 222468

"" ""'" "" ""'" <Ja: "'"
"" l27E"
6111 l18iI88

"14 """
m7 "'"'"
63111 85

'l1B '"
m, """
6!1F210068

= ""'" '3''',
"'''' "" "'''' 0J2FI 2fl7668

"21)7'
"" "" "'" 0l8l6l rnl"
",nt

"'". "'&:,:
6127 7E

"'" ""'.
"" " """" "'" "
6ll["

"" " me 2276Ei
6143 2FI78QJ

3 'Of'1 EOO ~
4 nPJ EQU 687Q1
5 f«. EIIV 6871Jj
6 f'Pr'5 EOO 6829H
7 tuFH &f b8XH
8 'IUUf £QU 6&151
,)(t(EfF EQU 683'8H

18 2>Ili EW 6870l
U zxs ~ 687EH
12 WI1 EQJ 1f'Bff'H
11 fbi EIlI 6293H
1'4 "..",. EW 682i1l
15 TfB.£ EOO 6ENi

" 17
18 CRG 6l9III
19 GIIT LXI H. Z»I

" SIll> TlF1
21 LXI It. BII

22 ""
Zl PlYI Rolli
24 STFI ZX5
25 L'<l SP. 888!tI
26 LXI H.XC!EFF
27 lM I<JI'Ij

" Il1O l
29 rfN LII

" SIll> '" 11 !.XI It TfB.£
l2lM
II Il1O l
?4 IIJV LA

" SIll> IlFl
16 al:I(: UI..D T1Pl
1l111V R.l
J8 0'1 In!
19 JZ STG2
48 rfN D, /I
41 III! L
i2 I'fH E."
43 lNi1l
44 tlJY fl."
45 5TA II"r'S
"OCI!l
47 OCR l
.. '(>L
49 OCR l
,. OCR l

" SIll> IlFl
:52 LII.D fI)L

H. L CEi.S 607CH
s:orer; H. L IN 7l":P1
H, t S~ TO ZE.'F:O

It. 3E;"" -0 ZeRO
C07EH SE:T ~o ZERO
SF:!' STAC{ FOr"'1:R
H, L czrs 6O»H
SET H, L 70 POll, AT OLDEST ':"II€:
r Ae-OR

STORE H, L IN Aot
H, L GETS 6000H
SET H, t TO FO!:'T AT CORRESPOr;DIh-C;
COEFF'IClENT

STORE H. L I N ""MPJ
LOAD H, L FRO:1 TMPJ

CiECK 1-0;0 ALL COEFFICIENTS USED

LOAD D,E WITH COEF'F:::ClE:,";'

It. CE7S SICI' BIT

L CE':'S L - .5

3'XRE I! , L 11\ TMPJ
LCAD H, t FROM ADL

ISI5-11 88f9I8eG:5 IRl!Q ASSDB.£R. V2.'
DIFF Et'ft WJM RWTlt£

67

D1FfEQ PFa 2

'" SIlRCE STRTOOiT

.J'''' 6J.47 me
,,., CII1'S6J
f»4C <46 "<0,,
614E <1£

... '" " 'J"'" 6151 227868

"'''' 'J''''
"" ""'" "" ..
"" lW68 'J""!
6l5£ c007~
.,., 22mII
.,.. CIIeJ62

6157 """" "'" .. "" ,. "" ,. "'" ,. "" ..
<!/if 2211!68

"" ""'"
="" 6J77

"""'" 6l71l III
6J1t 2C
6J7l) 7!
6l7E 2C
6lIF77
6188 CJ:5163

638l 214568

6lS6 """"
6JS> " 'J"""
"" 2211!68

"" ""'" "" """" ,J, .. ,
"" " <l!6 227""

"" ""'" 5J!''''
""' FW 6J!f Cll'66J

".,,' 6lIIJ 2C
6lIM,.
."" 2C

S3 tfJi ILl
54 0'1 JIll
:'j5 JZ IPFlC
56 IllY S. pt
57 I~ l
~ lIlY Cpt
59 I~l
58 IIJY A. pt
61 RERTE: sa.o fill
62 PtJ9I B
6l IllY S. R

'HIlII "'"
" lOll ,
66 SIR IFVS

" "" B
" CIU """ 59 SHJ) If"It
III CIU",
71 ut.D lilt..
72 OCR L
7J OCR L
74 OCR l

" OCR L
75 OCR l
77 OlD ""

III JIf' "'"

" 88 IPFlC: IIYI B.89H
9111Y1 C. e
82 IIYT A. e
83 II)Y It B
1M ltii: L
85 lIlY It C
86 1111: l
87 rf:N It A

" JIf' IIfR1[

" 98 SIG2;lXI II. Y£X£FF

'''"''' '21l)OL
91 tr:N LA

" OlD ""-
!l5 LXI !I. TIlU+12H
~ LDA tuf'N
'711)OL
98 WJI LA
"OlD TIPl

198 BfIX2: Ul.D nPJ
181 If.'N fL l
182 0'1 12H
1Bl JZ 5TIiJ
1.H lIlY D, pt
111:5 l~ l
185 lIlY E.pt
187 I~ l

C::::CX FOR PRESE::'!' -:-IY.E FACI'OR

llJ'ti' X FAC'I'OR IF ':'Ii,!'.:: IS RICh":'
LGAD 3 , C IiI!:1 I!;Ptr.' FACTOR

S'!'ORE H, L II' ADt

ADJ~S~ PRODUCT SICN BIT

Ml.:L':"IPLY CCEP'FICIE::- EY x FACTOR

ADD MPY Ii TIl St:M:1A TIC:I
lDAD H, L mOM ADL
LCETSL-5

5'I'OP.E H, L n: ADL
RETI.rtUI TO tZ.l I!'Ft.'T

SET I! , C '" OOOOH

SE'rA::IO
S70RE A,B,C I:' x FAC':'OR ,AELE

~,IRll TO INPt:T RQU-:'I!:E

H, L CE':'S 6045H
SiIT H, L ':0 FOI::7 Aor OLDEST TIME
E'AC!;OR

I SCORE H,L IN ADL
H,L C~ C012H
SET H, L TO POUT AT COP~'IDiFONDIllC
COEFFICI E:t:T

STORE H,L IN T!>lP)
LC.\D H. L FROM TMP)

C!l3C'j{ I F AU COEFFICI E:'TS USED

LOAD D. E: IoTii CCEFFICIE::'T

IS 15-11 S8S8/aIB'5 IfCRO RSSaI!l..£R. Y2.'
OIFf Elli. OOTPIJT RWT I/£

LO: Il>l

".,,'
"'" """ ... '" """. "'" '" """. .". ,.
<!If "'''''
63B2 """'"

"" " "" " "",.,
"""" "" " 6JEA 2l186II

".",
"'" 47 "'"
"" " "'" '" 631:4 E6S8

"" """
"'" C1 6J(:A COO7&'

"'" l227"
"'" ClE<6l
630] CNJ62

"" """'" ""'" "'" '" 6lIIO ,.

"'" ,. "" ,.
"" 2l186II
6Ja Cm6J

"" ,.
"'''''' <lE7 ""'..63

"'" It

"""'" aD C2FJ63

"" ""'" 6JFl C1:0353

63f62fr76U

"'''' "" " "" 4E 63ft 2t

"'" " "" c:s
"" ,,""" ""'56

'EQ
188 WJf It,.
189 STR /FYS
118 OCR l
1U O:H
ll21X>L
W OCR L
U4 COl: l
11:5 T1I'3
116 ULO fl'ot.
117 lIlY B.,.
118 11« l
W WJf t il
128 II« l
121. lIlY ft,,.

122 fIlL

l2J "'" B
124 WJf e.A
125 lI>A If\'S

'" "" B 127C'"
128 ~I 8111
~ SIR IFYS
ue P{f' S

131 au """
132 lItJ) ""
ill JIf' 01(

U4 am; CIU filii
13:S RRTE2: ULO fit.
136 OCR L
137 OCR L
tJ8 OCR L
!39 OCR L
1411 OCR l
141 SIt.O fK
142 bF Bfl)(2

143
1+4 at(lIlY R.l
145 (PI 8
146 JIfZ PfISS
147 WJf R.H
1<f8 !:PI 8
14' JXZ PRSS
158 .JlF RRTE2
151 PflSS: JIf' atrT

'" ill
154 STGl: UlD nPl
15S lIlY e.,.
1S6 I~ l
1.57 WJf t,.
158 It« l
1S9 lIlY R.,.
168 PUSH 8
151 LXI H. 2»1
162 f'DI 0."

68

DlfffiI Pra]

A G5:TS ~IG~ BI T

LGETSL - 5

STORE H. L HI ':'MPJ
WAD H. L FROM ADL
a, C CE":'S Ol1'I'PL'T FACTOR

STORE H, L I N ADL

ADJUST SIG lI OF fRODUCT

lIDLTlPLY CC:;:FF'ICI S::;or EY Y FACTOR

CHECK FOR ZERO PRODUG:
I ADD TO SU~~TION

L GETSL - 5

STORE H. L 1:1 ADL
GO FOR VE".I COEFFICIEii'"

CH:::C"t: H, L FOR ZERO lit'!1EE:R

LOAD H, L rnml ':'NPJ
B, C GETS Y 01J!Ft"!" CCEFFlCIEll'!'

LeAD H, L <lITH ZUHl-:ATI O:: II LOCATION
LOAD D,E :''1'tH St'}:!:ATIQ:; ~1:;$ER

151S-11 €8eeI!I88S IfOD RS5eB..ER. Y2. B
OIFF E<JI. WTM P.IlITII£

lIX: oaJ

"'32' "'n, ".,,' ".,,'
"" " &488 324768

"" C! 604« 318288

"" Cllf ...
6U2 214568
6415 711
6416 2C
6417 71
60118 CS

'''' II

'''' "'"'" "ID C!

"'£1' "If CII0264
6422 3IM76B

"" ""'" "" ,,,.
"'" CIifff.

'''' "" 642F CDBfFB

6432 914568

"" '""" "38 ""
",. 81
'''S<F
"JC JC
64W :!C
",. JC

'''". "'". "" ..
"" 12 "" ., 11)

"" II -"" "" ""'" 6448 04164

-''',., ~1211

"" III
6453 FE9B

"'" C25!64 ;4087C
64'59 FEIIil

'"
163 IIIi l
1£4 lIlY Eo"
16'5 Iii! l
166 IIJY U
167 XRR B
168 STII YCXUF+2
169 PO'> B
178 LXI51', 88e2!i
171 au DIW)8
172 LXI H. '1t((ff

17l11JY It 8
174 lit! l
1~ I'IJY ItC
176 F\Si B
177 IfR FLB
178 CIU I£X1

'" "" B 188 IIJY fH
IBI au I£X1
182 L.M 'rt((FF+2
181 au }£'<1

184 PlYI CIIlH
18.'5 au ruTt
186 ttYI C.IIH
187 au WTt
188

lB' 198 IIM: ; LXI a. YCtEFF
191 '""
1!12 fil l iI2H
191 fI» C
~ IIJY CII
195 IIIR II
1.96 fllR II
197 Iii! A
198 lIN Eo II
199 IIJY D. 8
28iI SWTON ; l.DAX B
2et SlFt< D
282 OCR C
,., OCR E
2&4 IfN ftE
29:i 0'1 I92FH
29!'i 12 TlID
2<7 Jll>gmo
28B

'" 2IB
21.1 TIlER: LXI H. 8B8I!H
212 no.rr . DOC H
213 IIJY R. L
214 CPI B
21'5 JNZ no.rr
216 WR R.H
217 CPI B

69

DlmQ f'fr£ 4

AN'S'!' SIGlI BIT

STORE SIGN BIT

SET STACK POn:-!l:R
DIVIDE D.E BY B. C
H. L GE""S 6045H
STOPE Q"DTIEl\'1 IN ME:mRY

QI P1,;"" Q.l'cn'IE::- TO Ol''I'Ptr DEVICE

O'''''P.'''' Uh"E ~D

H. L CSTS 6045H
SeT H, L 10 POIlIT' AT OUEST rHIE FACTOR

MOVE ALL THZ FAC'"'ORS OO',m "'0
~:EXT ':'HS F'AC""C'R 5Lo;

ISIS- II 88BlII88B5 Ifn'O fl5SOf1..ER, vz. B
OUT EfIt IlJTPUT RCliTIt£

LIX: IJlJ

".17' ...,,,
..., IF
.... IF
''''IF
_IF
..., E6Bf

.... "" ... FBI!

"'" ''''''' "'" "" "'" <F
6<C3 ""'"
"" F1
'"" E6Bf
"" ooe
"'" FBI! "'" ..".. 640e C687
6<1)'"

6<1), ""'"

""CO

SIl.RCE STRTeDT

218 JKZ non
W JIP OIFF

"80' 50<
221
222 • 00 CF f't!lli9'I
2Zl

""'.1
22'5 ; oom.rr tf)(IUI3ERS
22f) tEXt: PUSH PSW
227 ...

'" ... "' ... 2l8 ...
231 fWl IFH
232 fill 381
2D 0'1 3fIj

234 JPI Il1f2
.m flll 87H
2lIi CUT2: f'CH C. A
ZIl ou CMr!

218 "" P5II
;m IlfI IFli
248 ff)l lfIi
241 0'1 lfH
242 RI run
m FIH 87H
2+f om : mY C A
245 CR.L 001'1
, .. RET
247 ,..

70

DIFFED PfG: 5

PUSH REGISTER O!< STACK
RIClrr SHIFT 4 TIMES

A GETS A LOGICAL A/!D OFR
A GETS A 1-)OM

CHECX IF A lESS THAN JAH
ADD 7 I F NOT

OUTPlIT MOST SIGNIFICA'"T PART
POP R&:ISTEn OFF :rACK
A CE."TS A LCClCAL AJ'D OMF

I A GETS A +)OH
CHECK I F A 1235 ';HA.!I JAH

ADD 7 IF NO'!"

QT''iFt!'" lEAS":' SIGNIFICAr!T PART
EmD OF SU1!ROtr.n:E

249 ; ItLTlPlYIDIYIDE 9.mlJTlhE

640721eeaa

""" 'Ell
"" " ,."",
6U" £681
&4€B CfE4G4

"" " ... n"
6<E>lF ... ,,'
"" ro _IF

"" 6F

""''' "'" IF ... ,,' ,."".
"" IF

""''' we F1

..-' l1>
6<4f2 C20W

'" 251 1f'W8: LXI H. 9B
252 Iffl R.16
rn 1FY2: PtJSH P5N
Z54 'tf:N floE
25:i 1141 8tH

'" JZ Iffl

"""" 258 1I'V1: f'CH R. H ", ...
2'68 lIlY '" A
261 I(IY II.l

2<2 "" 2g lIlY LA
264 tIN "'D ,.. ""
266 mY 0. R
2Iil lIlY A. E

,.. ""
26'9 f'CH Eo A

'" "'" P5II 271 OCR A
Z72 JKZ !FY2

H, L SET TO ZERO
I A = 16

CHECK IF L3B IS ZERO

ADD B,C TO H,L I~ LSB i ZERO
RIGHT SHIF"I' H, L AIiD D, E

A C8"'SA -l
CC1;-;-!til£ MI'LTIPLY IF A i a

ISIS-II 88B8I8e85 fiR'(] RSSeB..ER. Y2. 8
DIFF EQN. WTPUT RMll£

LOC I)JJ 5[0 SOOIC£ 5TR"","

,.,>C, mil£!

'" WiJ7 2~ DIKl8; 5TC

''''71f "61'"
"'''' m lIlY R.D

"" If " .. ,.
"'''' 279 PIW o,A ,.,'" 288 lIlY fI. E

''''If ,.,,'" ,. 2fI2 t(N E. R

"'E)' 281 DIY01 . 5TC

"" If ""'" "'87, 285 lOY fl.B
""if '" ...
"'''' ,.",,,
"" ., 2S8 I(IY B. II

"'n, 289 PIlY 11. C

""" if '" ...
"" 2f '" "" .. ,., 292 IIJY Co R, m'~B "'" ,,,.,, 294 U<I lue

"" lE11 29'S ""I Fl.17

"'" .. "".,,,
"'" " '1!Jl M : PUSH H

"" " '" .,>0
;,U ""'" "'JCIIY1
6514 E1 '" PO' H
G51~ F5 181 DY1; PIJSIot PSII
6:5167B J82 lIlY It E
6:511 17 383 ... "'. ,. 184 I(N EtR

"" i1I
l8!5 lIN A. D

"" 17
J96 R!L

"" " 187 lIlY D, II

"'"I> l88 lIlY R.l
6:51D 17 ,., ...
'''' 6f

318 ffN L..fI
"if 7t 311 PIlY R. H

"" 17 112 "'-
6521 67 11l PIW H.R
6522 f1 114 f'tJ> PSW

"" JD ill OCR'
~4 C2iF6:5 116

"" " 117 PIlY R. D "" ., liS I1fN B. II

"" 18
119 I(lY R. E " ... , 1211 lOt' C. FI

~ 319888 l21l.XI SP. 888IIl
"";c, m II£!

lZl
l2<
lZl
".00

71

OIFFEQ PAJE 6

EliD Sl'EROUTIliE

CARRY SET
CARRY ClEARED
RIGHT SHIF"" D, E

SE'!' CARRY
CIEAR CARRY
RICff'!' SHIFT A::D l ' S CO:1PUI"E1rr B I C

BGETSB ... 1
H. L St:I' 10 ZERO
A -= 16
SWAP O,E 1I~~ H.L

ADD B, e TO H,t
CP.ECK FOR CARRY BIT
RESTORE OLD H,L IF ::0 CARRY

LE.F'l' SIiIE"!' D. E AIm H. L

A GETS A - 1
COlm:Nt'E DIVISIon IF A -I- 0
PLACE D,E Il' B, e

SE':' STACX POINTER
I Elm SUB:tot"'!'Il1E

72

ISI5-! I 888818885 r«RO ffiSEI'Ill.£R, Y2. 8 OfFfEll PIG 7
DIFF. BIN. WTPUI RWT!t£

"'- Ri'78 "'" Ri'" ... "'" om ,.,., "" "", COO Rill" OffF " ..
OfYDl , W, OfIllO , "" ... , "" DY1 "51' IEX1 ,"'" U.", "'" "'" "'" II'Y! "." II'Y2 , 6<OC ,..",. , ,." IF\\. , .." IPIS , "" '''''' 0011 AF"-
001' , "" run , 6<0, Pl\SS , 6JfJ RER1E "3" "'TE2 ''''' SWTDH 11 6441 SfG2 "383
SfGl , "" 1AIIlE ,- II ... "'<E TIOJT R 6451 TII'1 "." 1lI'l , "" ><IWF , "'"
YCIHF R 6&45 "" , 687C ZXS "."
RSSEltl. Y ctJflETE, <i,."""

1.

2 .

73

REFERENCES

Close I C.M. i DeRus so , P.M . ; and

For Engineers . New York :

Cohen , D., and Simons , F.e ., Jr.

Roy , R.J . State Variables

John Wiley and Sons, 1965.

"An In-Place Algor1 thm for

Computing the Bilinear Transform of Polynomials."

Unpublished research paper, California: University of

Southern California / Information Sciences Institute ,

1978 .

) . Harden, R.C., and Simons, F.O ., Jr . "Differential Equation

Solutions For Up to 10th Order System Theory Models

With H.P . - 67 Compulators . " Unpublished research paper,

Florida : University of Central Florida , 1978 .

4 . INTEL sese Assembly Language Programming Manual. california:

INTEL Corp., 1976.

5. Stanley , W.D. Digital Signal Processing . Virginia:

Reston Publishing Company, Inc . , 1975.

6 . Wavell, R.B. "Microcomputers : An Alternative for Digital

Controllers. II Unpublished Masters thesis , Uni versi ty

of Central Florida , 1979 .

	A Microcomputer Implementation of Real Time, Continuously Programmable Digital Filters
	STARS Citation

	Front Cover
	01_FrontCover.tif

	Abstract
	02_Abstract.tif

	Table of Contents
	03_TableofContents.tif

	List of Tables
	04_ListofTables.tif

	List of Figures
	05_ListofFigures.tif

	Chapter l
	06_01.tif
	07_02.tif
	08_03.tif

	Chapter ll
	09_04.tif
	10_05.tif
	11_06.tif
	12_07.tif
	13_08.tif
	14_09.tif
	15_10.tif
	16_11.tif

	Chapter lll
	17_12.tif
	18_13.tif
	19_14.tif
	20_15.tif
	21_16.tif

	Chapter lV
	22_17.tif
	23_18.tif
	24_19.tif

	Chapter V
	25_20.tif
	26_21.tif
	27_22.tif
	28_23.tif
	29_24.tif
	30_25.tif
	31_26.tif
	32_27.tif
	33_28.tif
	34_29.tif
	35_30.tif
	36_31.tif
	37_32.tif
	38_33.tif
	39_34.tif
	40_35.tif
	41_36.tif
	42_37.tif
	43_38.tif
	44_39.tif
	45_40.tif
	46_41.tif
	47_42.tif

	Chapter Vl
	48_43.tif
	49_44.tif
	50_45.tif
	51_46.tif
	52_47.tif
	53_48.tif
	54_49.tif
	55_50.tif
	56_51.tif
	57_52.tif
	58_53.tif

	Chapter Vll
	59_54.tif
	60_55.tif
	61_56.tif

	Appendix A
	62_57.tif
	63_58.tif
	64_59.tif
	65_60.tif
	66_61.tif
	67_62.tif
	68_63.tif
	69_64.tif
	70_65.tif
	71_66.tif
	72_67.tif
	73_68.tif
	74_69.tif
	75_70.tif
	76_71.tif
	77_72.tif

	References
	78_73.tif

