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ABSTRACT

Biomimetic scale-covered systems offer immense potential and applications, particularly in soft

robotics, protective armors, wearable materials, and multifunctional aerospace structures. A typi-

cal system consists of stiff rectangular plate like scales embedded in a softer media and arranged

periodically. Experimentally, these systems indicate pronounced nonlinear strain stiffening behav-

ior even when the underlying substrate strains are small. However, capturing these behaviors using

commercial finite element (FE) codes has proved difficult due to multiple sliding contacts between

the scales after engagement. Therefore, accurate and reliable analytical models of architecture-

property-relationships are needed for analysis and design. This thesis investigates the contact

kinematics and mechanics of biomimetic scale-covered plates subjected to bi-directional bending.

Both synclastic and anti-clastic deformations of the plate are considered. The mechanical moment-

curvature relationships are derived using the work-energy balance principle. The results show that

when a plate is bent to a certain curvature, a quasi-rigid locked emerges for both synclastic and

anticlastic curvature. Interestingly, while for anticlastic bending, the curvature at locking is nearly

the same curvature as a beam with equivalent geometry and configuration, for synclastic bending,

locking occurs significantly earlier due to cross-curvature effects. The moment-curvature relation-

ships indicate strongly anisotropic behavior of the plate. The anisotropy itself was not constant,

being strongly influenced by the state of deformation. The effect of scale arrangement parameters

(lattice geometry) directly influenced the nonlinear behavior including the locked state. The ana-

lytical models developed are compared with equivalent FE analysis for validation for select cases

and excellent agreements have been found. The outcome of this work would enhance the under-

standing of the nonlinear and anisotropic behavior of scale-covered plate systems, paving the way

for systematic design and integration tailored for specific applications.
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CHAPTER 1: INTRODUCTION

Scales found in fish, reptiles, and some mammals serve various essential functions in nature. These

functions include aiding in swimming and locomotion, providing camouflage, regulating thermal

conditions, and offering robust protection against predators [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14]. The mechanical benefits of these scales are not merely due to their role as a protective layer;

they largely arise from the complex interactions and sliding motions between the scales and the

substrate beneath them. Factors such as arrangement, engagement, overlap, orientation, and distri-

bution are critical in determining the mechanical performance of these scales [15, 16, 17]. Initial

theoretical models demonstrated that the periodic or locally periodic arrangement of scales facil-

itates coordinated sliding, which enhances the system’s nonlinearity, leading to substantial strain

stiffening and eventually a quasi-rigid locked state [18, 19, 20]. Further studies expanded this

understanding by showing that these contact nonlinearities result in various complex mechanical

behaviors. These behaviors include nonlinear elasticity during twisting [20], increased resistance

to puncture [21, 22, 23, 24], greater fracture resistance [25, 26], dual frictional properties [27], and

emergent damping viscosity [28]. These unique mechanical properties offer several advantages

over traditional composites, such as creating substrates with adjustable mechanical properties, in-

cluding variable stiffness and flexibility [29], and designing structures highly resistant to buckling

[30], making them suitable for a wide range of engineering applications.

Extensive studies in early literature examined the role of nonlinear contact kinematics in develop-

ing nonlinear elasticity in 1D structures, particularly in beams covered with scales. These studies

often assumed that scales were either rigid or slightly flexible. Key discoveries indicated that

bending [19] and twisting [20] of a 1D scale-covered substrate induce reversible nonlinear strain

stiffening and jamming behavior even at small strains. Additionally, the combination of bending

and twisting [31] has been shown to produce unique effects distinct from individual loading sce-
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Figure 1.1: (a) A natural fish showing the tightly interlocked arrangement of its scales that pro-
vides flexibility and protection. (b) An artificially fabricated 3D fish scale structure designed to
mimic natural fish scales, with the scales arranged in a staggered manner. (c) Synclastic bending
deformation of the scale-covered plate, showing bending with a positive curvature in both principal
directions. (d) Anticlastic bending deformation of the scale-covered plate, showing bending with
opposite curvatures along two principal directions.

narios, primarily due to the complex, often non-commutative engagement patterns between the

scales. Although friction can enhance these effects, it does not fundamentally change the underly-

ing contact kinematics [27, 32]. The overall engagement patterns remain relatively consistent even

when periodicity conditions are relaxed [33, 34] or other non-ideal effects are introduced [35],

with models that incorporate these factors showing better alignment with numerical simulations.

Analytical models remain essential due to the limitations of commercial FE-based computational
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codes. To overcome these limitations, recent research has utilized the discrete element method

(DEM) for computational analysis of scale-covered 1D substrates [36, 30]. This method has proven

effective in addressing computational challenges and has been extended to study granular crys-

tals [37], demonstrating tunable mechanical properties. The interface-enhanced discrete element

model (I-DEM) [38] further advances DEM by incorporating interfacial interlocking and failure

mechanisms, enabling accurate modeling of bio-inspired flexible protective structures. Despite

significant progress in understanding the mechanics of beam-like substrates, 2D plate and shell-

type systems present unique challenges due to their complex cross-curvature couplings, emergent

anisotropy, and intricate scale sliding kinematics.

However, the study of plate-like systems (Figure 1(b)) is less advanced, with significant gaps in

analytical modeling. Recently, there has been an increased focus on these systems, including the

development of novel computational frameworks that address existing limitations in simulation ca-

pabilities and provide new insights into anisotropic behavior [39]. Computational studies utilizing

conventional Lagrangian FE [29] have also highlighted unique anisotropic engagement patterns

based on the scale arrangement and applied loads, aligning well with experimental observations

reported in literature [40]. Advances in fabrication techniques, such as 3D printing for optimized

geometries [21, 41] and vibration-driven assembly for creating topologically interlocked panels

from polyhedral building blocks [42], have opened new possibilities. Additionally, hybrid armor

designs incorporating polymeric and fluid-filled layers have demonstrated enhanced impact resis-

tance [43]. These fabrication innovations pave the way for novel applications, including instability

suppression [44] and combining flexibility with strength [45].

Research on 2D biomimetic structures has revealed behaviors distinct from 1D counterparts, par-

ticularly regarding biaxial asymmetries and cross-curvature couplings, which become more pro-

nounced with plate-like bending. This thesis aims to address these challenges by developing an

analytical model that examines the coupling effects of bending loads along two in-plane axes in
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a biomimetic scale-covered elastic plate. By extending the mechanics from 1D to 2D structures,

this study seeks to enhance the understanding of the nonlinear and anisotropic behavior of scale-

covered systems. However, there is a significant gap due to the absence of accurate and reliable an-

alytical models for 2D systems. This thesis introduces an analytical model for the 2D scale-covered

plate, exploring its impact on the nonlinear elasticity of the substrate under bending deformation.

The model assumes rigid scales and the kinematics and mechanics of the plate are developed for

both synclastic (Figure 1(c)) and anticlastic (Figure 1(d)) deformation modes. The kinematic for-

mulation is extended to analyze locking behavior along both longitudinal and lateral directions of

the plate. The model confirms theoretical results with finite-element comparison while providing

new insights into the anisotropy and non-linearity of 2D scale-covered plates under bi-directional

bending. This advancement will facilitate systematic design and analysis of scale-covered plate for

specific applications in fields such as soft robotics, architected structural metamaterials, protective

armor, wearable technology, and aerospace structures.
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CHAPTER 2: LOCKING BEHAVIOUR OF THE PLATE

In Figure 2.1, the schematic diagram of bio-mimetic scale-covered plate subjected to both syn-

clastic and anti-clastic bending deformation is shown. The length and width of the substrate are

considered as LB and WB, respectively, when the thickness of the plate is considered as 2t. The

exposed length of scale is assumed to be l, with width 2b, and lateral distance between scales

is assumed to be 2a. The scales are inclined at an initial angle of θ0. The plate is subjected to

longitudinal bending Mz, and lateral bending Mx, along the longitudinal and lateral directions,

respectively. Two different load cases: synclastic and anti-clastic bending modes as shown in Fig-

ures 2.1 are considered for analysis. Recently, [46] developed the kinematic relation of this 2D

plate bending for both synclastic and anti-clastic deformation. In this thesis, the locking behavior

of the bi-directionally bent plate has been analyzed extending the kinematic developed in [46]. The

kinematic equation of a 2D plate with synclastic and anticlastic being is as follows, respectively

[46]:

η sinψ − sin θ − cos θ
(ψ
2
+
(β + δ

2

)
ω − β sinω

)
= 0. (2.1)

η sinψ − sin θ − cos θ
(ψ
2
+
(β + δ

2

)
ω − δ tanω

)
= 0. (2.2)

Equation (2.1) is the kinematic equation for synclastic bending, and Equation (2.2) is the kinematic

equation for anti-clastic bending. Here, η = l/d, β = b/d, and δ = a/d. The bending curvatures in

the x-axis are called κ, which can be defined as κ = ψ/d. Also, the bending curvatures in the z-axis

are τ , which is τ = ω/(a+ b). Here, ψ, and ω are the local longitudinal and transverse bending an-

gles, respectively. In Figures 2.2, the details of the bending curvatures at the representative volume
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Figure 2.1: Scale-covered plate with the defined geometrical parameters under two loading cases:
(a) Synclastic deformation: both curvatures are upward (κ > 0 and τ > 0). (b) Anticlastic
deformation: longitudinal curvature is upward (κ > 0), and transverse curvature is downward
(τ < 0). [46]

element (RVE) level are given for synclastic bending deformation [46]. In synclastic deformation,

both curvatures are considered upward (κ > 0 and τ > 0), and in anti-clastic deformation, the

longitudinal curvature is kept upward (κ > 0) and the transverse curvature is downward (τ < 0).

In the case of 1D beam [46], we saw when the beam is substantially bent it will reach a kinemat-

ically locked state from where no further bending is possible. A similar locking also happens for

plate bending. When the plate is substantially bent it will reach a kinematically locked state. In

case of 2-D plate, along with longitudinal locking, lateral locking will also take place and cross-

curvature should significantly affect both the longitudinal and lateral locking of the plate. Now, to

analyze the longitudinal locking response of the plate for synclastic bending deformation, we took
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Figure 2.2: The schematic of the RVE geometrical configuration with both curvatures are upward
(κ > 0 and τ > 0), which means both local bending angles are positive (ψ > 0 and ω > 0). [46]

the derivative of Equation (2.1) which is:

∂ψ

∂θ
=

sin θ(ψ
2
+
(
β+δ
2

)
ω − β sinω)− cos θ

1
2
cos θ − η cosψ

. (2.3)

The locking curvature in the longitudinal direction of the plate is obtained by making ∂ψ
∂θ

= 0,

sin θ(
ψ

2
+
(β + δ

2

)
ω − β sinω)− cos θ = 0. (2.4)

Using Equation (2.4), the rigid region of longitudinal bending is found. Similarly, for anti-clastic
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bending the rigid region is found taking the derivative of Equation (2.2) with respect to θ and

making ∂ψ
∂θ

= 0.

In case of lateral bending, locking will happen when in the lateral direction, two scales touch each

other. Therefore, lateral locking is only feasible in synclastic bending, in anti-clastic bending no

such lateral locking is possible. To analyze lateral locking more comprehensively, in Figure 2.2,

the representative volume element of synclastic bending is shown [46]. As we see in Figure 2.1,

lateral locking will happen when the top left corner of the scale shown in Figure 2.2 lies over the

x-axis. At that position, the z-coordinate of that point will be zero:

l sin(θ − ψ) sinω − (b+ a) + b cosω = 0 (2.5)

Now, deriving θ from the above equation in terms of non-dimensional parameters:

θ = sin−1

(
δ + (1− cosω)β

η sinω

)
+ ψ (2.6)

Substituting this expression of θ into Equation (2.1) will result the following equation:

η sinψ − sin

{
sin−1

(
δ + (1− cosω)β

η sinω

)
+ ψ

}
− cos

{
sin−1

(
δ + (1− cosω)β

η sinω

)
+ ψ

}
{
ψ

2
+

(
β + δ

2

)
ω − β sinω

}
= 0

(2.7)

The above highly non-linear equation integrates longitudinal and lateral locking of the synclasti-

cally bent plate.

In anti-clastic bending, no lateral locking will take place in the abovementioned way, since scales
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don’t touch each other in lateral directions. But similar to 1D beam or synclastic longitudinal

locking, here in the case of anti-clastic bending also, longitudinal locking takes place. To analyze

the locking response of the plate, we took the derivative of Equation (2.2) which is:

∂ψ

∂θ
=

sin θ(ψ
2
+ β+δ

2
ω − δ tanω)− cos θ

1
2
cos θ − η cosψ

. (2.8)

For locking region ∂ψ
∂θ

= 0,

sin θ
(ψ
2
+
β + δ

2
ω − δ tanω

)
− cos θ = 0. (2.9)

Now, using the above Equation (2.9), the longitudinally locked curvature of the plate in case of

anti-clastic bending is derived.
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CHAPTER 3: MECHANICS OF THE PLATE

The moment-curvature relationship of the plain plate can be written in the form of stiffness matrix

as:

Mx

Mz

 = D

1 ν

ν 1


τκ

 (3.1)

Here, D = Eh3

12(1−ν2) is the bending rigidity of the plain plate, E is the elastic modulus, and ν is the

Poisson’s ratio. The scales on the substrate have an embedded part that increases the stiffness of the

substrate even before engagement is achieved. This is the so-called inclusion effect, which in this

case of plate changes the isotropic substrate into a composite structure. The increase in bending

rigidity due to these inclusions can be modeled empirically by assuming two inclusion correction

factors Cf,x, and Cf,z, similar to previous works on 1D substrates [20]. The scale-embedded plate

can be modeled as a short-fiber orthotropic composite plate and thus the correction factors then

lead to a new modified moment-curvature relationship:

Mx

Mz

 = D

Cf,x ν

ν Cf,z


τκ

 (3.2)

Due to the bi-directional bending of the plate, the strain energy on the plate according to classical

plate theory is:

∆U =
1

2
(Mxτ +Mzκ)LBWB (3.3)
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With expressions of Mx and Mz from Equation (3.2):

∆U =
D

2
(Cf,xκ

2 + 2ντκ+ Cf,zτ
2)LBWB. (3.4)

The work done due to bending in the longitudinal and transverse directions of a plate is represented

by WB

∫ κ
0
Mz dκ and LB

∫ τ
0
Mx dτ , respectively. This work is stored as strain energy in the plate,

which is expressed as D
2
(Cf,xκ

2 + 2ντκ + Cf,zτ
2)LBWB. Additionally, the energy due to the

rotation of scales upon engagement is given by 1
2
NxNzK

∗
θ (θ − θ0)

2, where Nx and Nz are the

numbers of scales along the x and z directions, respectively. After scales engagement, each scale

starts to rotate due to contact with other scales, and the rotation of the scale is resisted by the elastic

substrate. Likewise 1-D bending and twisting cases [19, 20], the substrate resistance is modeled

as rotational springs, and the rotational spring constant K∗
θ is considered to account this effect

[19, 20]. By equating the work and energy of the plate:

WB

∫ κ

0

Mz dκ+ LB

∫ τ

0

Mx dτ

=
D

2
(Cf,xκ

2 + 2νκτ + Cf,zτ
2)LBWB +

1

2
NxNzK

∗
θ (θ − θ0)

2H(θ − θe).

(3.5)

Here, θe is the engagement angle of scales. To obtain the moment-curvature relationship along

longitudinal direction (x-axis) of the plate, we differentiate Equation (3.5) with respect to κ:

WBMz = D(Cf,xκ+ ντ)LBWB +K∗
θNxNz(θ − θ0)

∂θ

∂κ
H(θ − θe). (3.6)

Now, non-dimensionalizing Equation (3.6) by dividing DWB and substituting the expression of

Nz =
WB

2(a+b)
:
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M̄z = (Cf,xκ+ ντ)LB +
K∗
θ

D

Nx

2(a+ b)
(θ − θ0)

∂θ

∂κ
H(θ − θe). (3.7)

Similarly, to obtain the moment-curvature relationship along the transverse direction (z-axis), we

differentiate Equation (3.5) with respect to τ , and, then non-dimensionalize it by diving DLB and

substituting Nx =
LB

d
:

M̄x = (Cf,zτ + νκ)WB +
K∗
θ

D

Nz

d
(θ − θ0)

∂θ

∂τ
H(θ − θe). (3.8)

Here, Equation (3.7) and Equation (3.8) are used to solve the moment-curvature response along x

and z-axis, respectively.

To determine the values of Cf,x and Cf,z, extensive finite-element simulations are conducted with

varying embedded parameters, L, ts, and b. The plate is considered to be with only rigid inclusions,

which means, the exposed length of the scales is assumed to be 0 (so, l = 0, and therefore η = 0).

In the absence of any embedded scale in the plate Cf,x and Cf,z are equal to 1. But for a plate with

embedded rigid scale, both Cf,x and Cf,z should be ≥ 1. Therefore, for Cf,x and Cf,z, two different

equations as a function of four dimensionless parameters, ζ(= L/d), β(= b/d), γ(=
√
ts/d), and

δ(= a/d) are considered as follows:

Cf,x = Cf,x1 + Cf,x2
(
ζβγ

)
h(θo), (3.9)

Cf,z = Cf,z1 + Cf,z2ln
(ζβγ
δ

)
h(θo). (3.10)

The constantsCf,x1, Cf,x2, Cf,z1, andCf,z2 are determined using finite-element simulations as illus-
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trated in Figure 3.1. These constants are derived by fitting simulation data to the best-fit equations,

resulting in Cf,x1 = 0.98, Cf,x2 = 3.72, Cf,z1 = 3.27, and Cf,z2 = 0.49. The dimensionless

angular function h(θ0) is approximately 1, indicating that the initial scale inclination angle θ0 does

not significantly affect the inclusion correction factors. Also, between synclastic and anticlastic

bending no variation of Cf,x and Cf,z are found. These equations are then utilized in the analyt-

ical expressions derived in Equation (3.7) and Equation (3.8) to determine the moment-curvature

relationship of the scale-covered plate.
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Figure 3.1: Dimensionless inclusion correction factors (a) Cf,x, (b) Cf,z as a function of dimen-
sionless geometrical variable group.

For rotational springs constantK∗
θ , the scale width 2b is considered here with previously developed

scaling law Kθ [19, 33]. Thus the final expression of K∗
θ will be:

K∗
θ = (2b)Kθ = (2b)EBt

2
sCb(

L

ts
)nf(θ0). (3.11)
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Here, Cb = 0.66 and n = 1.75 are dimensionless constant obtained from [19]. This equation of K∗
θ

differs from the 1-D case ofKθ [19] in that when we consider scale as a rigid thin plate, scale width

2b also needs to be considered. And dimensionless angular function f(θ0)≈ 1 indicates negligible

angular dependency in case of 2-D plate.
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CHAPTER 4: FINITE ELEMENT FORMULATION

An FE model is developed to compare the numerical results with those derived from the an-

alytical model. The FE simulations are performed using the commercially available software

ABAQUS/CAE (Dassault Systèmes), with dimensions and loading conditions matching those

specified in the analytical model. In this model, the scales and substrate are treated as 3D de-

formable solids. A square plate substrate with dimensions WB = LB = 64 mm is used, which

ensures periodicity and minimizes edge effects.

The specific parameters used in the model include an embedded length L = 1 mm, a half-scale

width b = 7 mm, an exposed length l = 15 mm, a scale thickness ts = 0.05 mm, and a clearance

between scales a = 0.5 mm. These parameters yield dimensionless ratios of η = 3, β = 1.4,

δ = 0.1, and L/ts = 20. The model consists of a staggered arrangement of 59 scales partially

embedded on the substrate’s top surface. The scales are oriented at an inclination angle θ0 = 5◦

relative to the substrate’s top surface in the longitudinal direction. The scales are assumed to be

rigid, while the substrate is modeled as a linear elastic material with an elastic modulus EB = 2.5

MPa and a Poisson’s ratio ν = 0.42.

To accurately represent the rigid nature of the scales in contrast to the deformable substrate, rigid

body constraints are applied to the geometry of the scales. A frictionless surface-to-surface con-

tact interaction is defined for the surfaces of the scales. A mesh convergence study varying the

approximate global size of the mesh is conducted in Figure 4.1 to determine the appropriate mesh

size and density for different regions of the model, ensuring reliable numerical results. As we

see in Figure 4.1, with the varying approximate global size, the strain energy distribution is well

converged verifying the mesh sensitivity of FE analysis. The final mesh with approximate global

size = 0.52, consists of approximately 304,000 elements, incorporating both linear tetrahedral el-

ements (C3D4) and linear hexahedral elements (C3D8). The complex geometry of the top layer

15



of the substrate, which includes scale inclusions, is meshed with tetrahedral elements, while the

simpler regions are meshed with hexahedral elements. Quasi-static bending loads are applied to

the system in two sequential static steps. The relationship between the scales’ inclination angle θ

and the longitudinal bending angle ψ is investigated while maintaining a fixed transverse bending

angle ω, and vice versa. In the first step, transverse rotational boundary conditions are applied to

both lateral sides of the substrate in opposite directions, linearly increasing from zero to the desired

value. During the second step, these transverse rotational boundary conditions are kept constant,

and longitudinal rotational boundary conditions are then applied to the front and back sides of the

substrate, also increasing linearly from zero.

This approach allows for a comprehensive analysis of the bending mechanics of the scale-covered

plate, providing insights into the interplay between scale inclination and bending angles in both

longitudinal and transverse directions. By comparing the FE model results with those from the

analytical model, the study ensures the robustness and accuracy of the developed formulations.
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Figure 4.1: Variation of total strain energy with different FE approximate global size when ψ/π =
0.02 and ω/π < 0. Here, LB = WB = 64 mm, θ0 = 5◦, η = 3, and β = 1.4.
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CHAPTER 5: RESULTS AND DISCUSSION

5.1. Locking Kinematics of the scale-covered plate

In this section, the kinematic formulation is developed in [46] is extended to analyze the locking

behavior of the scale-covered plate. As mentioned in Chapter 2, along the longitudinal direction,

scales locking will also happen in the transverse directions of the plate. To analyze longitudinal

locking of the plate in the presence of transverse bending, in Figure 5.1, (θ − θ0)/π distribution is

plotted as a function of ψ/π with different values of η. The plate is initially assumed to be subjected

to a bending curvature ω/π, then (θ− θ0)/π is plotted for ψ/π > 0. Three different values of ω/π

is considered, where Figure 5.1 (a) is plotted for ω/π = 0, and Figures 5.1 (b)-(c) are plotted for

ω/π = 0.08, -0.08, respectively. With Figures 5.1 (a)-(c), the longitudinal locking behavior of

the plate is presented for all three deformation shapes of the plate: monoclastic, synclastic, and

anticlastic, respectively. Three distinct kinematic regimes of the plate are illustrated in these plots:

a linear regime before scale engagement, a nonlinear regime after scale engagement, and a locking

regime where the plate behaves like a rigid body. The scale starts to engage with each other when

the scale rotation angle θ is equal to θ0, and afterward, the non-linear zone starts which continues

till the rigid region. The black dashed lines in these figures represent the rigid region. To obtain

the rigid region of the scale rotation, we solved ∂ψ
∂θ

= 0 of Equations (2.1) and (2.2). The details

of this derivation are given in Chapter 2 for both synclastic and anticlastic deformation. In Figure

5.1, the corresponding ψlock/π value at the locking point is also illustrated for some particular

values of η to demonstrate the exact locking curvature of the plate. As we see in Figures 5.1 (a)-

(c), locking curvature is found to decrease with the increase of ω/π. The decrement is relatively

noticeable for smaller η, but for higher values of η no significant variation of locking curvature with

ω/π is observed even when ω/π is significantly large as 0.08. For anticlastic deformation shape

with negative ω/π in Figure 5.1 (c), surprisingly no significant variation in the locking behavior is
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observed compared to positive ω/π of equal magnitude.

To analyze the effect of δ on the longitudinal locking of the plate, in Figures 5.2 (a) and (b),

longitudinal locking curvature ψlock/π is plotted with η and δ in the form of contour plots for two

different values of ω/π. From Figure 5.2 (a), when ω/π = 0, it is clear that the variation of δ doesn’t

have any effect on the longitudinal locking curvature ψlock/π of the plate. However, even with a

sufficiently large ω/π = 0.08, the δ effect doesn’t appear to be very significant on ψlock/π. Like

synclastic bending, for anticlastic bending of the plate with negative ω/π, no significant variation

of locking curvature with δ and η is observed so we omitted it to avoid overcrowding figures. Thus,

from the analyses of Figure 5.1 and Figure 5.2, it can be concluded that lateral bending as well as

lateral distance between scales don’t have a noticeable effect on the longitudinal locking of the

plate.
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Figure 5.1: (θ− θ0)/π vs ψ/π variation with η when (a) ω/π = 0, (b) ω/π = 0.08, (c) ω/π = -0.08
with ψ/π > 0. Here, θ0 = 5◦, and β = 1.4.

In the presence of lateral bending, the plate structure will also be laterally locked. In this thesis, the

lateral locking of the plate is considered to happen at the moment scales contact with each other in

the lateral direction of the plate. Therefore, lateral locking is only feasible for synclastic deforma-

tion of the plate. The detail of lateral locking for synclastic deformation is illustrated in Equation

2.7 of Chapter 2. Figure 5.3 shows the variation in scale rotation, (θ− θ0)/π, with local transverse
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Figure 5.2: 2D image plots showing the effect of η and δ on ψlock/π, initially considering the local
transverse bending angle of (a) ω/π = 0, and (b) ω/π = 0.08.

bending curvature, ω/π, across different values of longitudinal bending curvature, ψ/π. Initially

the plate is subjected to a longitudinal curvature, ψ/π, which is then held constant while transverse

curvatures ω/π (positive for synclastic and negative for anticlastic curvature) are applied. Four val-

ues of ψ/π are considered, ranging from 0 to 0.06. In both synclastic and anticlastic cases (Figures

5.3 (a) and 5.3 (b)), increasing longitudinal curvature increases scale rotation without significantly

altering the slope of the (θ − θ0)/π vs ω/π relationship. The (θ − θ0)/π vs ω/π curves exhibit

a linear dependence on longitudinal curvature for both deformation modes. Notably, transverse

bending alone (ψ/π = 0) does not cause scale engagement. However, even minimal longitudinal

bending facilitates scale engagement during transverse bending. In synclastic deformation (Figure

5.3 (a)), the transverse locking curvature decreases with increasing longitudinal curvature ψ/π,

suggesting that imposed cross-curvature accelerates transverse locking. The dotted lines represent

finite element (FE) results, demonstrating excellent agreement with the analytical model for both

synclastic and anticlastic deformations. For a detailed illustration of the lateral locking response

of the scale-covered plate, in Figures 5.4 (a)-(c), (θ− θ0)/π distribution is plotted with η for mon-

oclastic, synclastic, and anticlastic deformation shapes, respectively. Figure 5.4 (a) is plotted for
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ψ/π = 0 and ω/π > 0, and Figures 5.4 (b) and (c) are plotted for ψ/π = 0.02 and ω/π > 0, and

ψ/π = 0.02 and ω < 0, respectively. The exposed length of the scales l is varied keeping d constant

to vary the values of η. As we see in Figure 5.4 (a), when ψ/π = 0, η doesn’t have any effect on

(θ − θ0)/π distribution of scales, but as η increases, lateral locking curvature decreases. In the

presence of longitudinal bending curvature of ψ/π = 0.02, the lateral locking curvature of the plate

decreases, and the decrement rate is very significant for higher values of η. Moreover, lateral lock-

ing of the plate is significantly influenced by the exposed length of the scales. With the increase of

η, locking curvature drastically reduces and the presence of longitudinal bending accelerates this

reduction greatly. The rigid region in Figure 5.4 (b) indicates the lateral locking curvature with

η. And, as mentioned earlier, the (θ − θ0)/π distribution with η in Figure 5.4 (c) for anticlastic

deformation has no lateral locking region.
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Figure 5.3: (θ − θ0)/π vs ω/π variation with ψ/π for (a) synclastic, and (b) anti-clastic bending
deformation with the given values of θ0 = 5◦, η = 3, and β = 1.4. Colored dot lines represent FE
results for corresponding ψ. (×) indicates the lateral locking curvature of the plate.

In Figure 5.5, the lateral locking curvature ωlock/π of the synclastically deformed plate is illustrated

in the form of colored images with varying η and δ. Initially, the plate is assumed to be subjected to
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Figure 5.4: (θ − θ0)/π vs ω/π plot with η when (a) ψ/π = 0 and ω/π > 0, (b) ψ/π = 0.02 and
ω/π > 0, (c) ψ/π = 0.02 and ω/π < 0. (×) represents the lateral locking curvature of the plate.
Here, θ0 = 5◦, and β = 1.4.

a longitudinal curvature with three different values of ψ/π = 0, 0.03, and 0.05, and corresponding

results are plotted for ω/π > 0 in Figures 5.5 (a)-(c), respectively. As we see in Figure 5.5, for a

fixed value of η, with the increase of δ, locking curvature increases, and the increment rate slows

down with the increase of ψ/π. When ψ/π = 0, for small η and large δ, as we see in the top

left corner of Figure 5.5 (a), the plate doesn’t undergo any lateral locking, but in the presence of

ψ/π > 0, that zone also starts to be laterally locked. In Figure 5.5 (c), we can see that when

η = 8, the plate doesn’t experience lateral locking because, with ψ/π = 0.05, the plate becomes

longitudinally locked before any locking in the lateral direction. Observing all these figures, it

can be concluded that, though lateral bending curvature doesn’t have any significant effect on the

longitudinal locking of the plate, longitudinal curvature significantly reduces the lateral locking

curvature. Similarly, the lateral distance between scales doesn’t have any noticeable effect on

longitudinal locking but lateral locking is highly sensitive to the distance between scales in the

lateral direction.

21



(a) (b) (c)
𝜔𝑙𝑜𝑐𝑘/𝜋 𝜔𝑙𝑜𝑐𝑘/𝜋 𝜔𝑙𝑜𝑐𝑘/𝜋

Figure 5.5: 2D image plots showing the locking curvature ωlock/π with η and δ when: (a) ψ/π =
0, (b) ψ/π = 0.03, and (c) ψ/π = 0.05.

5.2. Strain energy of the Plate

To verify the work-energy balance equation of Equation 3.5, a comparison of strain energy obtained

by the analytical solution using Equation 3.5 is made with FE solution in Figure 5.6. In Figures

5.6 (a) and (b), FE comparison is made with ψ/π = 0.02 for ω/π > 0 and < 0, respectively.

As the results show, for both synclastic and anti-clastic bending modes, analytical results show

excellent agreement with FE results strongly verifying the work-energy balance equation. The

excellent matching of strain energy distribution also strongly verifies the accuracy and reliability

of the kinematics modeling of scale-covered plate. To illustrate the anisotropic behavior of the

scale-covered plate on the strain energy distribution of the 2D scale-covered plate, the total strain

energy of the plate is plotted in Figure 5.7 in a competitive way with the plain plate, plate with rigid

scale inclusions (η = 0), and scale-covered plate with η = 3. The total strain energy is calculated

using Equation 3.5 for the scale-covered plate. For plain plate and plate with rigid inclusion, the

Heaviside part of Equation 3.5 is omitted. For plain plate without any scale, Cf,x and Cf,z values

are considered as 1. As we see in Figure 5.7 (a), for the plain plate, the distribution of strain energy

is symmetric diagonally, and the symmetricity is broken in the presence of scales as illustrated in

Fig 5.7 (b) and (c). Also, the presence of exposed scales significantly increases the strain energy
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distribution with curvature.
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Figure 5.6: Analytical and FE results comparison for total strain energy with bending curvature
of the plate when: (a) ψ/π = 0.02 and ω/π > 0, and (b) ψ/π = 0.02 and ω/π < 0. Here, θ0 = 5◦,
η = 3, and β = 1.4. (×) in Figure 5.6(a) indicates the lateral locking position of the plate.

(a) (b) (c)

Figure 5.7: Strain energy distribution with longitudinal and transverse curvature for: (a) plain
plate, (b) plate with rigid inclusion (η = 0), and (c) scale-covered plate with η = 3. Here, LB =
WB = 64 (mm), β = 1.4, and θ0 = 5◦.
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5.3. Mechanics of the Plate

In this section, the mechanics of the scale-covered plate is presented for both synclastic and an-

ticlastic deformation shapes with the derivation shown in Chapter 3. Figures 5.8 (a) and (b), re-

spectively, illustrate the moment-curvature response along x-axis of the plate for synclastic and

anticlastic deformation (η = 3) with four different initial values of ω/π. To analyze the effect of

scale inclusion and scale engagement, a comparison with a plain plate and scale-embedded plate

with η = 0 is also presented. From the moment-curvature distribution of the plain plate and plate

with η = 0 (Figures 5.8 (a)), we can see that the stiffness gain only due to the presence of embedded

rigid scales in the plain plate is not very significant in the longitudinal direction of the plate. But

when η = 3, the engagement of rigid scales drastically increases the longitudinal moment. As ω/π

increases, the engagement curvature decreases with an overall increase of moment distribution.

When ω/π = 0, initial moment in x-direction is zero, but for ω/π > 0, there is a positive initial

moment present in x-direction due to the presence of applied bending moment in z-directions and

for high value of ω/π, this initial moment becomes very significant. The initial moment found in

x-direction due to the bending in z-direction is because of the Poission’s effect of bending. Sim-

ilarly, in Figure 5.8 (b) for anticlastic deformation, when the plate is bent with negative ω/π, the

initial moment due to Poisson’s effect in x-direction is found to be negative. In case of anticlastic

deformation, unlike synclastic bending, the effect of ω/π is very significant as we see in Figures

5.8 (a) and (b). For synclastic bending, as the slope in the moment-curvature plot with ω/π remains

almost identical, ω/π doesn’t show any noticeable effect on the longitudinal bending rigidity of

the plate, but for anti-clastic bending ω/π drastically increases the bending rigidity of the plate in

the longitudinal direction. The red dotted lines shown in Figure 5.8 (a) and (b) are obtained from

finite-element simulation for ω/π = 0.03 and ω/π = -0.03, respectively. As plotted in both figures,

FE result shows great agreement with the analytical results of Equation (3.7) which verifies the

proper modeling of the mechanics of the plate.
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In Figures 5.9 (a) and (b), the moment-curvature response along z-direction of the plate is shown

for both synclastic and anticlastic deformation, respectively. Results are plotted for η = 3 initially

keeping the plate fixed with four different ψ/π. In case of synclastic deformation (Figure 5.9 (a)),

the moment-cuvarture distribution is plotted up to the lateral locking curvature of the plate. To

analyze the effect of rigid scale inclusion, here again, results are compared with plain plate, and

plate with η = 0. From the distribution of plain plate and plate with η = 0, we can see that, unlike

the longitudinal moment of the plate, the presence of rigid scales is found to be very significant in

the case of transverse directional moment of the plate. In absence of longitudinal bending (ψ/π =

0), η doesn’t have any effect on the transverse moment distribution, and with the increase of ψ/π

the nearly linear distribution of moment increases keeping the slope almost identical. Moment-

curvature distribution in Figure 5.9 (a) is plotted up to lateral locking curvature of the plate for

η = 3, but for η = 0, there will be no lateral locking in the plate. In the presence of longitudinal

bending, the stiffness gain due to the exposed length of the scale is also clear from η = 3 and η =

0 distribution. In contrast to synclastic bending, the anticlastic deformation of the plate exhibits a

negligible effect of ψ/π on the lateral moment distribution. The FE results plotted for η = 3 also

show good agreement with analytical results for both loading conditions. From Figures 5.8 and

5.9, the anisotropic behavior of the plate in the presence of rigid scales is clearly reflected. As we

see in Figures 5.8 (a) and 5.9 (a), Mz and Mx distribution is identical in case of plain plate since

the plate is of square shape. However, the presence of scales is significantly altering the moment-

curvature distribution in both directions of the square plate. Moreover, the anisotropic effect is also

strongly observed in the synclastic and anticlastic deformation nature of the plate.

5.4. Effect of η and δ on the Mechanics of the Plate

Figures 5.10 (a) and (b) illustrate the effect of overlap ratio η on the moment-curvature responses

of the scale-covered plate in both the x and z-directions, respectively. Five different values of η
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Figure 5.8: M̄z vs ψ/π response with ω/π for (a) synclastic, and (b) anti-clastic bending defor-
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are considered from η = 2 - 4, wherein the exposed length of the scale l is varied while keeping

d constant. These results are plotted only for synclastic bending deformation where the applied

moments in both in-plane directions are positive. In Figure 5.10 (a), initially the plate is kept fixed

at ω/π = 0.03, then the moment along x-axis is plotted for increasing ψ. Similarly, in Figure

5.10 (b), z-directional moment is plotted for increasing positive ω/π while keeping the longitudi-

nal curvature ψ/π = 0.02 fixed. As we see in Figure 5.10 (a), the emergent stiffness gain after

scales engagement along x-axis of the plate is highly sensitive on η, and a small variation in η

significantly increases the non-linear moment-curvature distribution. For z-directional moment

distribution plotted in Figure 5.10 (b), the increasing η has hardly any influential effect on the

lateral moment distribution of the plate, which is completely in contrast with the corresponding

high η-sensitive characteristic of the longitudinal moment. It is worth mentioning that, in anticlas-

tic loading conditions, the moment-curvature distributions for both the longitudinal and transverse

directions exhibit a similar nature as observed in the synclastic case. Although we did not ex-

plicitly illustrate it in this discussion to avoid overcrowding the figures, it is important to note the

consistency of the moment-curvature responses between the two loading conditions.

Figures 5.11 (a) and (b) demonstrate the effect of dimensionless clearance ratio δ on the moment-

curvature distribution of the plate in both the x and z-directions for synclastic deformation shape.

The half of the transverse distance between the scales a is varied while keeping d constant to

analyze the effect of varying δ. Likewise, in the previous η study, in this δ analysis as well, the

plate is initially kept fixed at transverse curvature ω/π = 0.03, then the moment along x-axis

is plotted for increasing ψ/π (Figure 5.11 (a)). Similarly, in Figure 5.11 (b), moment-curvature

distribution along z-axis is plotted for increasing positive ω/π while longitudinal direction initially

held fixed at ψ/π = 0.02. An analysis of gradually increasing δ of the plate from 0.05 to 0.4 shows

that the moment-curvature distribution of the plate along both in-plane directions are strongly

influenced with the change in δ, and a decreasing nature in the moment-curvature distribution is

observed with the increase in δ. It is also noticeable from Figures 5.11 (a) and (b) that δ variation
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Figure 5.10: M̄z vs ψ/π and M̄x vs ω/π distribution with η for synclastic curvature along: (a)
x-axis with ω/π = 0.03 and ψ/π > 0, (b) z-axis with ψ/π = 0.02 and ω/π > 0. Here, θ0 = 5◦,
β = 1.4, and δ = 0.1.
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Figure 5.11: M̄z vs ψ/π and M̄x vs ω/π distribution with δ for synclastic curvature along: (a)
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is more significant in transverse directional moment distribution in comparison to the longitudinal

direction of the plate. Thus it can be said that with the increase of δ, which corresponds to a

decrease in β, the plate structures experience a significant reduction in stiffness, particularly in the

z-direction when contrasted with the x-direction of the plate. In anticlastic deformation, the effect

of δ on the moment-curvature distribution of the plate is almost the same as the one observed in

the synclastic deformation case.
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CHAPTER 6: CONCLUSION

In this research, we have developed an analytical model to explore the interaction of two different

bending loads along in-plane axes within a biomimetic scale-covered elastic plate system. The

model considers scales as rigid rectangular plates, partially embedded at an angle on the elastic

substrate’s surface. These scales are arranged in a staggered configuration along two in-plane

directions. We observed highly complex effects of scale engagement on the system’s kinematics

and mechanics, notably the nonlinear stiffening effect on the bending-curvature response. These

effects were quantified using analytical expressions derived from classical plate theory or Kirchhoff

plate theory. Verification was achieved through comparisons with finite-element simulations using

commercially available software. The model’s result, which is calculated considering the absence

of transverse bending loads, align with previous pure 1D bending models.

The kinematic locking analysis of the plate reveals that the presence of transverse bending will de-

crease the scale engagement as well as the longitudinal locking curvature of the plate. Though the

effect of transverse bending in longitudinal locking is not very significant for high η, it becomes no-

ticeable when η is low. It is also clear from the kinematic results that in the absence of longitudinal

bending load, with only transverse bending there will be no engagement of scales. Furthermore, a

details analysis of locking behavior with various η and δ of the plate showed no significant vari-

ation between positive (synclastic) and negative (anti-clastic) transverse bending curvature on the

longitudinal locking behavior of the plate. Unlike longitudinal locking, cross-curvature has a very

strong effect on the lateral locking of synclastic bending. As longitudinal curvature increases,

both lateral locking curvature and lock-free zone in the η vs δ plot decrease. From the moment-

curvature response of the plate, the anisotropic behavior of the plate is clearly observed. Even

the presence of rigid inclusions breaks the diagonal symmetry of the strain energy-contour plot

which becomes more evident in the presence of scale engagement. But as scale engages, both
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longitudinal and transverse directions bending rigidity has significantly been affected indicating a

strong cross-curvature effect for both synclastic and anti-clastic bending modes. It is also observed

that likewise 1D case of bending, the overlap ratio has very strong sensitivity on the longitudinal

moment distribution of the plate, but this effect is not very prominent in the transverse direction.

Dimensionless clearance ratio is also found to play a significant role in the moment-curvature

distribution of the plate, especially in z-direction. With the increase of clearance ratio, bending

rigidity both in longitudinal and transverse directions is found to be significantly reduced.

This study marks a significant advancement in the understanding and application of biomimetic

scale-covered structures, transitioning from simplistic 1D models to more complex and realistic

2D frameworks, which is crucial in real-world practical applications including soft robotics, ar-

chitectured structural metamaterials, protective armors, and aerospace structures such as mesh re-

flectors and booms. We, therefore, anticipate that the developed kinematics and mechanics model

of 2D plate can further be implemented for analyzing scale-covered 2D plate structures including

friction, and fluid structures interactions as well as the nonlinear dynamics problems of the 2D

plate.
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