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Balanced Return Air, Duct Airtightness, and Combustion/Dilution Air 
Code Compliance in 40 Central Florida Homes 
James B. Cummings 
Chuck Withers 
 
 
This report has been extracted from a larger report titled “Florida Building Code – 
Enhance Florida’s Building to Next-Generation Energy & Mechanical Codes and Enrich 
Compliance”, FSEC-CR-1678-06, November 29, 2006, which can be found at 
http://www.fsec.ucf.edu/en/publications/pdf/FSEC-CR-1678-06.pdf 
 
 
Background and Project Description 
 
Per the project scope of work, 40 houses were to be tested to investigate the degree to 
which specific elements of the Florida Building Code were being implemented, and the 
degree to which that implementation was achieving a successful outcome. Three specific 
codes issues were studied: 

1. the balanced return air requirements of the Florida Mechanical Code 
2. the degree to which duct systems are being built to be substantially airtight 
3. the degree to which combustion/ dilution air is being provided for combustion 

equipment. 
 
Test houses were obtained from four counties (# houses in parentheses); Brevard (16), 
Martin (6), Flagler (6), and Polk (3). The method of obtaining those houses is described 
in the following.  
 
To obtain volunteer homes built since March 1, 2002 (when the return air requirements of 
the code went into effect), lists of homes constructed since that date were obtained from 
building departments in four counties. Letters were sent to 605 homes in four counties 
(Brevard 200, Martin 141 Flagler 109, Polk 151). Name and address information for each 
candidate home was obtained over the internet from building departments and on-line tax 
roles. A business reply post card accompanied the letter. When cards were received back 
from respondents, they were contacted to find out details about their house. Some 
screening was done; seeking houses generally between 1000 square feet and 3300 square 
feet, having one AC system, and with no registers higher than 12 feet. We also limited 
mailings so that we would not test more than five homes by one AC contractor or one 
builder. Coordination of field-testing scheduling was maintained using FileMaker Pro 
database on the FSEC intranet.  
 
Two types of tests were performed.  
 

• 20 of the 40 homes had the shorter test, which includes house airtightness, system 
airflows, pressure pan test, pressure mapping, and characterization of the location 
and dimensions of the return air systems.  



• The other 20 homes had the extended test that includes all of the testing and 
inspection from the shorter test plus a duct system airtightness test and a tracer 
gas decay infiltration test. 

 
Financial incentives were paid to the homeowners; $40 to those with the shorter test and 
$60 to those with the longer test. 
 
Field test data was assembled into a spreadsheet file. A copy of this database is included 
on a separate CD which is included with this final report. 
 
 
RESEARCH FINDINGS – House Characteristics 
 
Following are some descriptive details about the 40 houses. 
 
House size. The average house size was 2014 ft2. A distribution of house size is shown in 
Figure 1. 

Figure 1. Distribution of house size. 
 
 
Age of house.  

• 6 houses were built (completed) in 2002.  
• 15 houses were built (completed) in 2003.   
• 19 houses were built (completed) in 2004.  
• None of the houses were built (completed) in 2005 or 2006. 

 
AHU location.  

• 22 AHUs were in garage.  
• 14 AHUs were indoors.  
• 4 AHUs were in the attic. 
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Number of stories.  
• 34 houses were one-story.  
• 6 houses were two-story. 

 
AC system size. The average AC system size was 3.54 tons, or 1.79 tons per 1000 ft2.  
 
 
Airtightness. Blower door tests were performed on all 40 homes. The average house 
airtightness was 5.2 ACH50. (ACH50 is the air changes per hour leakage when the house 
is depressurized or pressurized to 50 pascals with respect to outdoors.) The leakiest house 
had an ACH50 of 7.8, still moderately tight.  The tightest house had an ACH50 of 1.6, or 
very airtight. A distribution of airtightness is shown in Figure 2.  
 
 

Figure 2. Distribution of house airtightness. 
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RESEARCH FINDINGS – Balanced Return Air 
 
Code Requirements. 
 
40 houses were tested in this project to determine the extent to which they were in 
compliance with Section 601.4 of the Mechanical Code (2004), “Balanced Return Air”, 
which reads as follows -- 
 
601.4 Balanced return air.  
 
Restricted return air occurs in buildings when returns are located in central zones and 
closed interior doors impede air flow to the return grill or when ceiling spaces are used 
as return plenums and fire walls restrict air movement from one portion of the return 
plenum to another. Provisions shall be made in both residential and commercial 
buildings to avoid unbalanced air flows and pressure differentials caused by restricted 
return air . Pressure differentials across closed doors where returns are centrally located 
shall be limited to 0.01 inch WC (2.5 pascals) or less. Pressure differentials across fire 
walls in ceiling space plenums shall be limited to 0.01 inch WC (2.5 pascals) by 
providing air duct pathways or air transfer pathways from the high pressure zone to the 
low zone.  
Exceptions:  

1.     Transfer ducts may achieve this by increasing the return transfer one and 
one-half times the cross-sectional area (square inches) of the supply duct entering 
the room or space it is serving and the door having at least an unrestricted 1-inch 
(25 mm) undercut to achieve proper return air balance.  
2.     Transfer grilles shall use 50 square inches (.03 m 2 ) (of grille area) to 100 
cfm (.05 m 3 /s) (of supply air ) for sizing through-the-wall transfer grilles and 
using an unrestricted 1-inch (25 mm) undercutting of doors to achieve proper 
return air balance.  
3.     Habitable rooms only shall be required to meet these requirements for 
proper balanced return air excluding bathrooms, closets, storage rooms and 
laundry rooms, except that all supply air into the master suite shall be included. 

 
 
Compliance with the Balanced Return Air Requirements 
 
In an earlier study of 70 Central Florida homes (testing done in 1989 but houses were five 
years or less old), it was found that the pressure differential across closed interior doors 
(with all interior doors closed at once) averaged 9.1 pascals1. In the 40 homes of this 
study, the comparable pressure averaged 2.6 pascals. This indicates a 71% reduction in 
pressure differential across the closed doors.  
 
There are a couple of factors that have changed in homes. Because of the Balanced 
Return Air requirements of the code, most homes built since March 1, 2002 have return 
                                                 
1 James B. Cummings and Charles R. Withers, Jr.. "Unbalanced Return Air in Residences: Causes, 
Consequences, and Solutions". ASHRAE Transactions Vol 112, Part 1, January 2006. 



ducts or return transfers to most rooms. This tends to relieve pressure. Additionally, 
houses have become considerably more airtight. The average ACH50 for the 1989 testing 
was 7.2 ACH50, whereas the 40 homes in this study have an average envelope 
airtightness of 5.2 ACH50. The tighter the envelope of a vessel, the greater the pressure 
differential that will result when exposed to unbalanced air flows. 
 
According to Section 601.4 of the Florida Mechanical Code, return pathways (return air 
ducts or return air transfers) are required only for habitable rooms. Bathrooms, storage 
rooms, mechanical rooms, closets, and utility rooms do not require return air. The 
exception is that all supply air into the master suite (whether going to closets, bathrooms, 
etc.) shall be considered when providing return air to the master suite. In 38 of the 40 
houses, the number of rooms that required return air pathways (whether ducted or 
transfers) was either 3, 4, or 5. One home required 6 return pathways, and it had two AC 
systems. One home required only 2 return pathways.  
 
For rooms that require return air pathways, there are three ways that Section 601.4 can be 
satisfied.  

1. The pressure differential across the closed door can be 2.5 pascals or less. 
2. Provide a return transfer from the closed room to the central zone equal in size to 

1.5 times the cross-sectional area of the supply duct or ducts that serve that room. 
3. A through-the-wall transfer can be sized to 50 square inches (grill area) per 100 

cfm of supply air (to that room) plus an unrestricted 1-inch door uncut. 
 
For the entire sample of 40 homes, 147 rooms were required to meet Section 601.4 of the 
Mechanical code. In total, 87 of those 147 rooms (or 59%) were in compliance. 60 of the 
147 rooms (or 41%) were not in compliance. Of the 40 homes, a total of 11 were in full 
compliance, meaning that all rooms requiring return air pathways met the 2.5 pascal 
requirement or one of the exceptions. In 6 of the 40 homes, none of the rooms were in 
compliance with the code. In 4 of the 40 homes, no return pathways were provided (as if 
the builder was unaware of the code requirement). Note that some of the rooms that met 
the 2.5 pascals requirement did not have designated return air pathways (either ducted 
returns or return transfers).  
 
The Importance of Equipment Sizing – Comparison of Two Houses  
 
Airflow rates are very important in achieving balanced return air. Consider a comparison 
of Houses 1 and 5 (Table 1). In both houses four rooms were subject to the balanced 
return air requirements. 
 
In House 1, two rooms (Master Bedroom and Office) had ducted returns. Two other 
bedrooms had no return pathways but still met the code requirement because pressure 
drop across the closed doors was only 1.4 pascals in each case. 
 
In House 5, all 4 rooms had transfer ducts. Pressure differentials across the closed doors 
ranged from 2.8 to 7.0 pascals, with an average of 4.6 pascals. None of the transfer ducts 
were large enough to meet the sizing requirements of Exception 1 which calls for a return 



transfer with a cross-sectional area at least 1.5 times the cross-sectional area of the supply 
duct or ducts that serve that space. The cumulative cross-sectional area of the supply 
ducts (to all four rooms) was 110 in2.  The return transfers had a total cumulative return 
transfer duct size of 135 in2, or 123% of the size required. In terms of the door undercut, 
two rooms had 1.0 inch undercut, one had a 7/8th inch undercut, and one had a 3/4th inch 
undercut. Overall, the return air requirements of the code were very nearly complied 
with, and yet the pressure differentials were much higher at this house compared to 
House 1. 
 
What can account for the dramatic difference between Houses 1 and 5? Specifically, in 
House 1, two bedrooms had no return pathways and yet had pressure differentials of only 
1.4 pascals. Furthermore, door undercuts were only 1/4th inch for each of these two 
rooms. In House 5, all four rooms had return transfers that were not greatly undersized 
and had door undercuts of nearly 1 inch. So again, what accounts for the difference? The 
answer lies with the AC system airflow rate (Table 1). 
 
 
Table 1. Comparison of house, AC system, and airflow sizing characteristics of two 
residences. 
 

 House 1 House 5 
Floor area (ft2) 2115 1960 
AC tons 3.3 4.0 
AC tons/1000 ft2 1.56 2.04 
AC cfm 872 1718 
AC cfm/100 ft2 41.2 87.7 
AC cfm/ton 265 430 
Average closed door dP (Pa) 0.75 4.58 
Average door undercut (in) 0.233 0.906 
House ACH50 4.9 4.2 

 
 

• House 1 AC system is sized at 1.56 tons per 1000 ft2 while House 5 has 2.04 tons 
per 1000 ft2. The average size is 1.75 tons per 1000 ft2 for the 40-house sample. 

• House 1 cfm/ton is 265 per ton while House 5 cfm/ton is 430. So not only is the 
AC system capacity for House 5 (most likely) oversized, the cfm/ton is oversized 
as well. Note that while the outdoor AC unit for House 5 is 4 tons, the air handler 
unit is rated for 5 tons. 

• AC system cfm/ton at House 1 is 38% lower than at House 5. 
• AC system cfm/100 ft2 at House 1 is 53% lower than at House 5. 
• Lower airflow rates into closed rooms yield reduced pressure differential. 
• While the airflow rate at House 1 is too low (typically much below 300 cfm/ton is 

considered risky), the airflow rate at House 5 is too high. An excessive airflow 
rate leads to a warmer cooling coil temperature and less indoor RH control. It also 
leads to higher pressure differentials across closed interior doors. 



• This points to the importance of not over-sizing AC systems and not over-sizing 
air handlers. 

  
Summary of House Pressure Differentials 
 
When the air handlers were OFF and interior doors were open, house pressure averaged –
0.35 pascals with reference to (wrt) outdoors. Pressures will be wrt outdoors unless stated 
otherwise. When the AHUs were turned ON, house pressure went to –0.18 pascals. While 
this value is negative, the impact created a slight  pressurization compared to AHU OFF. 
When the AHUs were turned ON and all interior doors were closed, house pressure (in 
the central zone) went to –1.53 pascals, on average. 
 
Pressure in the closed rooms averaged +2.45 pascals wrt the central zone. A distribution 
of closed room pressure differentials is shown in Figure 3.  
 

Figure 3. Distribution of average pressure differential across closed interior doors for 40 
houses. 
 
 
 
Provision of return pathways, whether ducted returns or return transfers, yields 
substantial reduction in closed-door pressure differentials (Table 2). For houses with 0 to 
20% of rooms in compliance with the code, average pressure differential (dP) was 5.5 
pascals. For those with 41% to 60% of rooms in compliance, average dP was 2.7 pascals.   
For those with 81% to 100% of rooms in compliance, average dP was 0.7 pascals. There 
is a systematic trend of decreasing pressure differential with greater compliance with the 
code. Clearly 100% successful implementation of the code almost completely eliminates 
the closed-door pressure differentials. 
 
The degree of house central-zone depressurization is also directly controlled by the 
degree of compliance with the balanced return air requirements of the code (Table 2). 
The same can be said for house infiltration rate, however, with somewhat weaker 
correlation. The amount of increase in house infiltration rate resulting from closure of 
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interior doors shows a general decline as compliance with the code requirements 
increases (Table 2). 
 
 
Table 2. Closed-door pressure differential versus the percent of rooms in compliance with 
the code. 
 

For Each House, % of 
Rooms in Code 
Compliance 

Average dP Across 
Closed Doors (Pa) 

House (Central 
Zone) Pressure wrt 
Out 

Increase in House 
Infiltration with Doors 
Closed (ach) 

0% – 20% 5.50 -4.0 0.12 
21% – 40% 4.67 -2.9 0.18 
41% – 60% 2.68 -0.97 0.09 
61% – 80% 1.65 -0.80 0.05 
81% - 100% 0.71 -0.53 0.02 

ALL 2.45 -1.38 0.06 
 
 
37 of the 147 rooms requiring return pathways (from the 40 houses) were provided with 
ducted returns, meaning that ductwork ran from the closed room back to the return side of 
the air handler. 
 
39 of the 147 rooms requiring return pathways (from the 40 houses) were provided with  
no return pathway other than door undercut. 
 
71 of the 147 rooms requiring return pathways (from the 40 houses) were provided with 
return transfers (either ducted above the ceiling or a through-the-wall transfer). Of those 
71 rooms, 28 experienced pressure differential greater than 2.5 pascals with the door 
closed (transfer open). When the return transfer was sealed (using masking material on 
one end of the transfer), the number of rooms that experienced pressure differential 
greater than 2.5 pascals increased to 61. Pressure drop across the closed doors of those 71 
rooms averaged 2.42 pascals. When those return transfers were temporarily sealed, the 
pressure differential across the closed doors went to an average 6.53 pascals.  
 
The closed door pressure differential is strongly related to the size of the return transfer. 
In Figure 4, one can see a rather strong relationship between pressure drop across closed 
doors and the transfer cross-sectional area per 100 cfm of supply air. 



 
Figure 4. Pressure drop across closed interior doors versus the size of return transfer 
pathways. 
 
Tracer Gas Assessment of Unbalanced Return Air 
 
In 20 houses, tracer gas decay testing was used to characterize the house infiltration rate, 
which is the exchange rate of air between indoors and outdoors, expressed as air changes 
per hour (ach). An air change rate of 1 (ach = 1.0) means that during 1 hour, the amount 
of air that leaves the house and is replaced by air from outdoors (or from a house buffer 
zone) is equal to the house air volume.  
 
A small quantity of tracer gas (nitrous oxide or sulfur hexafluoride) was injected into the 
return grill and allowed to mix in the house for about 20 minutes. A target concentration 
of 15 to 40 ppm (parts per million) was typical. Upon mixing, room tracer gas 
concentrations were measured at 10 to 15 minute time steps typically for a period of 60 to 
90 minutes. The rate of decay of the tracer gas concentration was used to calculate the 
infiltration rate using the following formula. 
 
ach = (60/N) * ln (Ci/Cf) 
 
where 
 N is the number of minutes of the test 
 ln is natural log 
 Ci is the initial concentration of tracer gas (ppm) 
 Cf is the final concentration of tracer gas (ppm). 
 
The tracer gas decay test was performed twice; 1) once with the air handler running 
continuously with interior doors open and 2) once with the air handler running 
continuously with interior doors closed. 
 
On average, the infiltration rate of the house with the air handler running was 0.326 ach 
(Table 3). On average, the infiltration rate of the house with the air handler running and 
interior doors closed was 0.385 ach, or 18% higher than with the doors open. The 
expectation is that door closure would increase the infiltration rate because door closure 
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increases pressure differentials across the building envelope. In 15 of the 20 houses the 
infiltration rate is higher with the doors closed. In 5 cases the infiltration rate is higher 
with the doors open. In 4 of those 5 cases, the differential is very nearly zero, so we can 
conclude that there is essentially no change in infiltration rate as a function of door 
closure in those rooms. The only exception is House 37. After examining the weather 
data (wind and temperature), we can gain no further insight into why the infiltration rate 
was 43% higher with the doors open, the reverse of the normal pattern. 
 
If House 37 is excluded from the analysis, the infiltration rate of the house with the air 
handler running (doors open) declined to 0.310 ach. On average, the infiltration rate of 
the house with the air handler running and interior doors closed declined to 0.382 ach, or 
23% higher than with the doors open.  
 
By contrast, in a study done in 1989 in 50 homes, the average infiltration rate increased 
from 0.46 ach to 0.60 when interior doors were closed (AHU ON in both tests)2. For 
these 50 homes, door closure increased the infiltration rate by 30%. Note that the 
infiltration rate with the air handler operating (doors open) was 48% higher in the houses 
tested in 1989 compared to the current study (0.46 ach versus 0.31 ach). (Note that the 
houses in the 1989 were 0 to 5 years old at the time of testing.) On average, these homes 
were built in 1987. We can conclude that houses built in the past few years have less duct 
leakage (at least leakage to outdoors) and that the infiltration caused by door closure has 
declined substantially, from an infiltration increment of 0.14 to 0.07 ach. The reduced 
infiltration increase caused by closed doors would seem to be the result of both reduced 
pressure differentials across closed doors (as a result of the Balanced Return Air 
requirements of the code that went into effect March 1, 2002) and tighter building 
envelopes (ACH50 was 7.2 in 1989 study and 5.1 in the current study). 
 
 
Table 3. House infiltration rate with interior doors open and closed. 
 

House # Infiltration Rate (ach) [with AHU ON] 
 Doors open Doors closed Delta-ach 

1 0.202 0.201 -0.002 
2 0.578 0.598 0.020 
3 0.453 0.503 0.050 
4 0.254 0.310 0.056 
6 0.157 0.173 0.016 
7 0.350 0.289 -0.061 

10 0.320 0.300 -0.019 
18 0.170 0.230 0.059 
20 0.198 0.389 0.190 
22 0.356 0.539 0.183 
24 0.241 0.362 0.121 
27 0.408 0.408 0.000 
28 0.332 0.324 -0.008 
29 0.309 0.369 0.060 

                                                 
2 Cummings, J.B., Moyer, N., and Tooley, J.J., "Radon Pressure Differential Project, Phase II: Infiltration," 
FSEC-CR-370-90, Florida Solar Energy Center, Cocoa, FL, November 1990. 



30 0.217 0.369 0.152 
31 0.406 0.571 0.164 
33 0.409 0.509 0.100 
34 0.289 0.562 0.273 
37 0.639 0.446 -0.194 
40 0.238 0.244 0.006 

AVG 0.326 0.385 0.058 
 
 
House airtightness also, in part, explains the infiltration rates with AHU operating and 
doors closed. R2 is 0.39, indicating that about 39% of the variation in the house 
infiltration rate is explained by the house envelope airtightness alone (Figure 5). When 
the doors are open and the AHU is ON, about 25% of the variation in house infiltration is 
explained by the house envelope airtightness (Figure 6). 

Figure 5. House infiltration rate (ach) with AHU ON and interior doors closed. 
Y=0.082*X-0.06     R2=0.385 
 

Figure 6. House infiltration rate (ach) with AHU ON and interior doors open. 
Y=0.066*X-0.03     R2=0.249 
 
 
 
RESEARCH FINDINGS – Duct Leakage 
 
 
Duct system airtightness and air leakage was characterized in 20 of the 40 homes. This 
testing was designed to determine the degree to which duct systems in new Florida homes 
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are achieving airtight construction. The Florida Mechanical Code does not specify an 
acceptable air leakage amount. Rather it provides proscriptive measures. 
 
Following in italics is language from the Florida Mechanical Code (2004) regarding the 
airtightness of duct systems. This is not all language regarding that topic, but represents 
the majority of all of the material addressing the airtightness of ductwork. 
 
Florida Mechanical Code (2004) Language 
 
All enclosures which form the primary air containment passageways for air distribution 
systems shall be considered ducts or plenum chambers and shall be constructed and 
sealed in accordance with the applicable criteria of this section.  
 
603.1.1 Mechanical fastening.  
All joints between sections of air ducts and plenums, between intermediate and terminal 
fittings and other components of air distribution systems, and between subsections of 
these components shall be mechanically fastened to secure the sections independently of 
the closure system(s).  
 
603.1.2 Sealing.  
Air distribution system components shall be sealed with approved closure systems. 
 

603.1.7 Approved closure systems.  
Closure system materials, including adhesives when used, shall have a flame spread 
rating not over 25 without evidence of continued progressive combustion and a 
smoke-developed rating not over 50 when tested in accordance with the ASTM E 84. 
The following closure systems and materials are approved for air distribution 
construction and sealing for the applications and pressure classes prescribed in 
Sections 603.2 through 603.10 :  

1.     Metal Closures.  

a.     Welds applied continuously along metal seams or joints through which air could 
leak.  

b.     Snaplock seams, and grooved, standing, double-corner, and Pittsburgh-lock 
seams as defined by SMACNA, as well as all other rolled mechanical seams. All 
seams shall be rolled or crimped.  

2.     Gasketing, which achieves a 25/50 flame spread, smoke density development 
rating under ASTM E 84 or UL 723, provided that it is used only between mated 
surfaces which are mechanically fastened with sufficient force to compress the gasket 
and to fill all voids and cracks through which air leakage would otherwise occur.  

3.     Mastic Closures. Mastic shall be placed over the entire joint between mated 
surfaces. Mastics shall not be diluted. Approved mastics include the following:  



a.     Mastic or mastic plus embedded fabric systems applied to fibrous glass 
ductboard that are listed and labeled in accordance with the UL 181A, Part III.  

b.     Mastic or mastic plus embedded fabric systems applied to nonmetal flexible duct 
that are listed and labeled in accordance with the UL 181B, Part II.  

c.     Mastic ribbons, which achieve a 25/50 flame spread, smoke density development 
rating under ASTM E 84 or UL 723, provided that they may be used only in flange-
joints and lap-joints, such that the mastic resides between two parallel surfaces of the 
air barrier and that those surfaces are mechanically fastened.  

4.     Tapes. Tapes shall be applied such that they extend not less than 1 inch (25 mm) 
onto each of the mated surfaces and shall totally cover the joint. When used on 
rectangular ducts, tapes shall be used only on joints between parallel rigid surfaces 
and on right angle joints. Approved tapes include the following:  

a.     Pressure-sensitive tapes.  

1)     Pressure-sensitive tapes applied to fibrous glass ductboard that are listed and 
labeled in accordance with the UL 181A, Part I.  

2)     Pressure-sensitive tapes applied to nonmetal flexible duct that are listed and 
labeled in accordance with the UL 181B, Part I.  

b.     Heat-activated tapes applied to fibrous glass ductboard that are listed and 
labeled in accordance with the UL 181A, Part II.  

5.     Aerosol Sealant. Such sealants shall be installed by manufacturer-certified 
installers following manufacturer instructions and shall achieve 25/50 flame 
spread/smoke density development ratings under ASTM E 84 or UL 723.  

603.5.6.2 Duct core to duct fitting, approved closure systems.  
The reinforced lining shall be sealed to the duct fitting using one of the following 
sealing materials which conforms to the approved closure and mechanical 
attachment requirements of Section 603.1 :  

1.     Gasketing.  

2.     Mastic, mastic-plus-embedded fabric, or mastic ribbons.  

3.     Pressure-sensitive tape.  

4.     Aerosol sealants, provided that their use is consistent with UL 181.  

 

603.5.6.3 Duct outer jacket to duct collar fitting.  

The outer jacket of a flexible duct section shall be secured at the juncture of the air 
distribution system component and intermediate or terminal fitting in such a way as 
to prevent excess condensation. The outer jacket of a flexible duct section shall not be 



interposed between the flange of the duct fitting and the flexible duct, rigid fibrous 
glass duct board, or sheet metal to which it is mated. 

 

603.7 Air-handling units.  
All air-handling units shall be mechanically attached to other air distribution system 
components. Air-handling units located outside the conditioned space shall be sealed 
using approved closure systems conforming to the approved closure and mechanical 
application requirements of Section 603.3 .  

603.8 Cavities of the building structure.  
Cavities in framed spaces, such as dropped soffits and walls, shall not be used to 
deliver air from or return air to the conditioning system unless they contain an air 
duct insert which is insulated in accordance with Table 13-410.1.ABC.2.2 or Table 
13-610.1.ABC.2.1 of Chapter 13 of the Florida Building Code , Building and 
constructed and sealed in accordance with the requirements of Section 603.1 
appropriate for the duct materials used.  

Exception: Return air plenums.  

Cavities designed for air transport such as mechanical closets, chases, air 
shafts, etc. shall be lined with an air barrier and sealed in accordance with 
Section 603.9 and shall be insulated in accordance with Table 13-410.1.ABC.2.2 
or Table 13-610.1.ABC.2.1 of Chapter 13 of the Florida Building Code, Building.  

Building cavities which will be used as return air plenums shall be lined with 
a continuous air barrier made of durable non-porous materials. All penetrations 
of the air barrier shall be sealed with a suitable long-life mastic material.  

Exception : Surfaces between the plenum and conditioned spaces from which 
the return/mixed air is drawn.  

Building cavities beneath a roof deck that will be used as return air plenums 
shall have an insulated roof with the insulation having an R-value of at least R-
19.  

603.9 Mechanical closets .  

The interior surfaces of mechanical closets shall be sheathed with a continuous air 
barrier as specified in Section 603.9.1 and shall be sealed with approved closure 
systems as specified in Section 603.9.2 . All joints shall be sealed between air barrier 
segments and between the air barriers of walls and those of the ceiling, floor and 
door framing. All penetrations of the air barrier including, but not limited to, those by 
air ducts, plenums, pipes, service lines, refrigerant lines, electrical wiring, and 
condensate drain lines shall be sealed to the air barrier and approved closure 
systems.  

Exception: Air passageways into the closet from conditioned space that are 
specifically designed for return air flow.  



Through-wall, through-floor and through-ceiling air passageways into the 
closet shall be framed and sealed to form an airtight passageway using approved 
air duct materials and approved closure systems.  

Duct penetrations through any part of the ceiling, walls or floor of a mechanical 
closet shall have sufficient space between surrounding ceiling, walls or floor and any 
duct or plenum penetration to allow for sealing of the penetration and inspection of 
the seal.  

Clothes washers, clothes dryers, combustion water heaters and atmospheric 
combustion furnaces shall not be located in mechanical closets used as return air 
plenums.  

 
603.9.1 Approved air barriers.  

The following air barriers are approved for use in mechanical closets:  

1.     One-half-inch-thick (12.7 mm) or greater gypsum wallboard, taped and sealed.  

2.     Other panelized materials having inward facing surfaces with an air porosity no 
greater than that of a duct product meeting Section 22 of UL 181 which are sealed on 
all interior surfaces to create a continuous air barrier.  

 

603.9.2 Approved closure systems.  

The following closure systems are approved for use in mechanical closets:  

1.     Gypsum wallboard joint compound over taped joints between gypsum wallboard 
panels.  

2.     Sealants complying with the product and application standards of Section 
603.4.2.1 for fibrous glass ductboard;  

3.     A suitable long-life caulk or mastic compliant with the locally adopted 
mechanical code for all applications.  

 

603.10 Enclosed support platforms.  

Enclosed support platforms located between the return air inlet(s) from conditioned 
space and the inlet of the air handling unit or furnace, shall contain a duct section 
constructed entirely of rigid metal, rigid fibrous glass duct board, or flexible duct 
which is constructed and sealed according to the respective requirements of Section 
603.1 and insulated according to the requirements of Section 13-410.1.ABC.2.2 and 
13-610.1.ABC.2.1 of Chapter 13 of the Florida Building Code, Building .  



The duct section shall be designed and constructed so that no portion of the building 
structure, including adjoining walls, floors and ceilings, shall be in contact with the 
return air stream or function as a component of this duct section.  

The duct section shall not be penetrated by a refrigerant line chase, refrigerant 
line, wiring, pipe or any object other than a component of the air distribution 
system.  

Through-wall, through-floor and through-ceiling penetrations into the duct 
section shall contain a branch duct which is fabricated of rigid fibrous glass duct 
board or rigid metal and which extends to and is sealed to both the duct section 
and the grille side wall surface. The branch duct shall be fabricated and attached 
to the duct insert in accordance with Section 603.3 or Section 603.4.2 , respective 
to the duct type used.  

 
Duct System Testing 
 
Three types of tests were performed to provide measurement or approximate 
measurement of the leakage characteristics of the duct system. 
 

• Duct system airtightness test 
• Return leak fraction test 
• Pressure pan test 

 
Duct Airtightness Test 
 
To perform this test, the air handler was turned OFF. Masking material was placed over 
the return and supply grills. Two calibrated fans (Duct Blasters) were connected to the 
return and supply sides of the system. Each testing fan was then turned ON, and the two 
sides of the system were depressurized to –25 pascals wrt the house. A digital manometer 
with resolution to 1/10th pascal was used to determine that there was no pressure 
differential between the return and supply sides of the system. The air flow rate through 
the two Duct Blasters was then recorded. The test result is called Q25, total (duct leakage 
of the duct system to both indoors and outdoors). The test also provides Q25,r and Q25,s, 
leakage on the return and supply sides of the system. 
 
The test was then repeated with the house also depressurized to –25 pascals. In this test 
circumstance, with both the ductwork and the house at –25 pascals wrt outdoors, the 
pressure difference between the house and the ductwork was then 0.0 pascals. The test 
result is called Q25 (duct leakage of the duct system to outdoors). Q25 is more relevant to 
the air infiltration and energy consequences of duct leakage than Q25,total. The definitions 
of Q25 and Q25,total, and the duct system test methods, are found in ASHRAE Standard 
1523. 
                                                 
3 American Society of Heating, Refrigerating, and Air Conditioning Engineers, ASHRAE Standard 152-
2004, “Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal 
Distribution Systems”, January 2004. 



 
Note that Q25 is duct air leakage at the (test) pressure of 25 pascals. Actual duct air 
leakage will be different because actual duct operating pressure in the ductwork will be 
different than 25 pascals. Furthermore, duct system (or more accurately “air distribution 
system”) pressure varies throughout the system with the greatest pressures occurring near 
the blower.  In a typical system, actual operating pressures might be –30 at return grille, -
40 at return plenum, -140 at the air handler, +50 at supply plenum, +30 at supply main, 
+25 at supply junction boxes, +15 at supply branches, and only about+5 pascals at supply 
boots. Therefore, the amount of actual duct leakage that occurs depends upon where in 
the system the leaks actually occur and what the operating pressure differentials are at 
those locations. In some respects, Q25 is not a particularly good predictor of actual air 
distribution system air leakage. It is, however, a good method for measuring the 
equivalent hole size of all of the leak sites in the ductwork. In other words, Q25 is an 
indication of the (cumulative) size of the holes in the duct system. Actual duct leakage 
(Q) is a function of the hole size (Q25) and the driving force across that hole (pressure 
differential). 
 
ASHRAE Standard 152 provides a method for calculating actual leakage based on Q25 
and duct operating pressure. The equation is  
 
Q = Q25 x (dPa/25)0.60 
 
Where Q is the actual airflow rate of the duct leak and dPa is the actual duct operating 
pressure.  
 
This calculation of Q yields a more realistic duct system air leakage amount. However, it 
is, in practice, very difficult to characterize the duct system operating pressure (dPa) since 
to do so requires measuring duct system pressures at multiple locations and requires 
knowledge of what proportion of the duct leak “holes” are located at which locations. 
This knowledge is rarely obtained for a specific duct system. Consider that if the duct 
leakage (Q25) is located primarily in the air handler, which might be operating at -140 
pascals, the leakage may be five times greater than if the leaks are primarily at the 
connection of branch duct to supply boot. 
 
Summary of Q25 Testing Results  
 
The Florida Mechanical Code has no specific duct system airtightness requirement for 
Florida residences. However, every new home must have an energy rating based on the 
Florida Energy Code. To pass, each home must achieve a rating score of 100 points or 
less. One measure that can be used to meet the rating target is a tight duct system. 
Specifically, a “substantially airtight duct system” must have a Q25 value less than or 
equal to 3% of house floor area (ft2) and Q25,total less than or equal to 9% of house floor 
area. There are other factors that can reduce the energy score such as the location of the 
ductwork, the location of the air handler, and a tight air handler credit (cabinet leakage of 
2% or less of system flow at 250 pascals), but we will not go into those here. 
 



Looking at Table 4, one can see that Q25/sf (sf = square foot) is less than or equal to 3% 
in only 3 of 20 houses. In each of those three cases, Q25,total/sf is less than or equal to 9%, 
which means that these three houses would qualify for the “substantially airtight duct 
system” credit. This also means that 17 of the 20 houses would not qualify for the 
“substantially airtight duct system” credit. 
 
While 3% is considered the cut-off for a “substantially airtight duct system” (based on 
Q25), the average of these 20 homes has leakage of 5.7% of house floor area (ft2), or 
nearly twice the standard. In two cases, duct leakage (to out) was greater than 11.5% of 
house floor area. 
 
 
Table 4. Duct system airtightness testing results expressed in cfm, including total leakage 
(Q25,total) and leakage to out (Q25). Note that “sf” is square feet of house floor area. 
 

House 
# Q25,r total Q25,s total Q25,total Q25,total /sf Q25,r Q25,s Q25 Q25/sf 

Q25 
/ton 

1 145 257 402 19.0% 63 107 170 8.0% 51.7 
2 164 132 296 17.2% 131 68 199 11.6% 61.2 
3 28 230 258 10.8% 22 120 142 5.9% 28.5 
4 38 130 168 12.3% 16 30 46 3.4% 23.2 
6 64 141 205 10.1% 16 80 96 4.7% 29.5 
7 38 200 238 11.7% 29 87 116 5.7% 34.8 

10 NA 267 267 11.5% NA 139 139 6.0% 34.8 
18 108 15 123 6.4% 12 24 36 1.9% 12.7 
20 111 104 215 10.2% 30 49 79 3.8% 20.6 
22 668 146 814 42.6% 57 108 165 8.6% 45.0 
24 30 142 172 7.4% 5 49 54 2.3% 15.4 
27 10 116 126 5.2% 10 63 73 3.0% 14.2 
28 41 84 125 9.6% 21 53 74 5.7% 40.4 
29 52 161 213 10.6% 25 81 106 5.3% 30.3 
30 24 153 177 9.9% 3 89 92 5.1% 32.1 
31 217 246 463 16.6% 132 193 325 11.7% 69.0 
33 80 215 295 11.0% 45 114 159 5.9% 31.8 
34 NA 86 86 3.9% NA 27 27 1.2% 14.0 
37 67 229 296 13.0% 41 129 170 7.5% 35.5 
40 54 141 195 12.8% 16 87 103 6.7% 43.8 

AVG 107.7 159.7 267.4 12.6% 37.4 84.8 118.5 5.70% 34.5 
 
 
Duct leakage had also been examined in an earlier study of 20 (primarily central) Florida 
homes that had been built during 2001 or 20024. Q25 in that set of 20 homes was 97 cfm, 
compared to the 119 cfm for this current project’s 20 homes that were built between 
March 2002 and December 2004. However, when Q25 is normalized to floor area and 
tons of AC capacity, the more recently built houses have duct airtightness as tight or 
tighter than the 2001-2002 group (Table 5).  
 
 
                                                 
4 Cummings, James B., Chuck Withers, Janet McIlvaine, Jeff Sonne, and Matt Lombardi.  “Field Testing 
and Computer Modeling to Characterize the Energy Impacts of Air Handler Leakage; Final Report”, FSEC-
CR-1357-02, Florida Solar Energy Center, Cocoa, FL, August 2002. 



 
Table 5. Duct system airtightness testing results expressed in cfm, cfm/ft2, and cfm/ton 
from two studies; houses built in 2001 and 2002 and houses built in 2002-2005 (current 
study). 
 
 Floor area served by 

tested AC system (ft2) 
Q25 Q25/ft2 Q25/ton 

20  2001-02 houses 1696 97 0.064 31.6 
20  2002-05 houses (current study) 1979 119 0.057 31.5 
 
 
From the same 2001-2002 study, actual duct system operating pressures were examined. 
Based on the measured air distribution pressures and careful examination of the 
distribution (location) of the leakage sites, estimates of actual duct leakage were made. 
On average, actual duct leakage (Q) was found to be 54% greater than the leakage at 25 
pascals (Q25).  If we use the same relationship between Q25 and, then Q, system leakage 
to/from outdoors (Q) is estimated to be 182 cfm or15.2% of total system airflow for the 
20 houses of the current study. 
 
From this analysis, we can conclude that duct systems are still not being built with 
appropriate airtightness. The relatively high levels of duct leakage have consequences for 
house infiltration rates, house heating cooling energy use, and potential IAQ issues 
(transported contaminants from the garage or attic, and elevated indoor RH).  
 
Tracer Gas Assessment of Duct Leakage 
 
Tracer gas decay testing also sheds light on duct leakage. The natural infiltration rate 
(when all HVAC is turned OFF) was not measured by tracer gas. However, past research 
has demonstrated that the natural infiltration rate of a Florida home can be predicted 
based on the blower door test. Two separate studies, one of 70 homes and another of 100 
homes found that dividing ACH50 by 40 yields good prediction of natural infiltration, on 
average56. ACH50 and predicted natural infiltration are shown in columns 2 and 3 of 
Table 6. Column 4 is the measured infiltration rate with the AHU ON continuously with 
interior doors open. Duct leakage, therefore, is indicated to increase the house infiltration 
rate by 142%, from 0.135 to 0.326. 
 
 
Table 6. House airtightness and infiltration rates, and duct leakage measurements in 20 
homes. Note that ach with AHU OFF is calculated based on ACH50/40. 
 

House 
# ACH50 AHU OFF AHU ON Q25,r Q25,r Return Leak 

                                                 
5 Cummings, J.B., Moyer, N., and Tooley, J.J., "Radon Pressure Differential Project, Phase II: Infiltration," 
FSEC-CR-370-90, Florida Solar Energy Center, Cocoa, FL, November 1990c. 
6 Cummings, J.B., Tooley, J.J., and Moyer, N., "Investigation of Air Distribution System Leakage and Its 
Impact in Central Florida Homes," FSEC-CR-397-91, Florida Solar Energy Center, Cocoa, FL, January 
1991. 



  acha ach cfm % rated 
flow* 

% of actual air  
flow 

1 4.87 0.122 0.202 63 4.8% NA 
2 6.57 0.164 0.578 131 10.1% 13.2% 
3 5.47 0.137 0.453 22 1.1% 7.9% 
4 5.48 0.137 0.254 16 2.0% 1.0% 
6 4.40 0.110 0.157 16 1.2% 1.2% 
7 4.07 0.102 0.350 29 2.2% 2.6% 

10 6.03 0.151 0.320 NA NA 3.8% 
18 3.46 0.087 0.170 12 1.0% 0.7% 
20 4.74 0.119 0.198 30 2.0% 1.9% 
22 4.85 0.121 0.356 57 3.9% 6.3% 
24 5.21 0.130 0.241 5 0.4% 0.2% 
27 6.10 0.152 0.408 10 0.5% 4.9% 
28 6.55 0.164 0.332 21 2.9% 4.0% 
29 5.36 0.134 0.309 25 1.8% 2.8% 
30 4.97 0.124 0.217 3 0.3% 1.5% 
31 7.48 0.187 0.406 132 7.0% 9.4% 
33 5.03 0.126 0.409 45 2.3% 1.0% 
34 6.89 0.172 0.289 NA NA 0.5% 
37 5.68 0.142 0.639 41 2.1% 4.3% 
40 4.91 0.123 0.238 16 1.7% 1.7% 

AVG 5.41 0.135 0.326 37.4 2.6% 3.6% 
* rated flow is based on a nominal 400 cfm per ton. 
a predicted natural infiltration rate based on ACH50/40 
 
 
 
Figure 7 shows significant correlation between the house infiltration rate (ach) and duct 
system airtightness, with the AHU running continuously. R2 is 0.31, suggesting that 31% 
of the variation in house infiltration rate (with AHU ON) is explained by the size of the 
holes in the ductwork (note that Q25 can be thought of as a measure of the cumulative 
hole size of the duct leaks). 

Figure 7. House infiltration rate (ach) with AHU ON versus dominant Q25 (normalized to 
floor area of 1000 ft2). Y=0.004*X+0.14     R2=0.312 
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During the tracer gas decay test, a return leak fraction (RLF) test was also performed. In 
this test, the concentration of tracer gas was sampled at the return(s) and a supply 
register. The RLF is calculated as follows. 
 
RLF = (A – B)/(A – C) 
 
Where 
 A is the concentration of tracer gas (ppm) at entering the return grill 
 B is the concentration of tracer gas (ppm) discharging from a supply grill 
 C is the concentration of tracer gas (ppm) at the return leak location (attic, 

outdoors, etc.) 
 
RLF is shown in the right-most column of Table 6. On average, 3.6% of the air entering 
the return side of the AHU is originating from outdoors or a non-conditioned buffer zone 
of the house. The amount of return leakage is probably underestimate somewhat because 
the tracer gas concentration at C was not measured at 16 of 19 houses, but rather assumed 
to be zero. To the extent that there was some tracer gas in the air entering the return leaks, 
these RLF values are underestimating the leakage. 
 
By way of comparison, Q25,r is also shown in Table 6. It is shown as a percentage of rated 
system airflow. The average Q25,r is 2.6% of the rated system air flow. This is not fully 
comparable to the RLF for two reasons. 1) The rated airflow rate is higher than the actual 
system air flow rate. 2) The Q25 leakage is at 25 pascals, whereas the actual RLF is at 
whatever operating pressure happens to exist where the return leak openings (holes) are 
located. Figure 8 shows that there is a rather high correlation (r2 = 0.67) between the RLF 
and the Q25,r. Figure 9 also shows a substantial correlation between the house infiltration 
rate (AHU ON) and the return leak fraction (r2 = 0.45). 

Figure 8. Correlation between Q25,r per rated cfm and RLF.  Y=0.622*X+0     R2=0.670 
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Figure 9. Correlation between house infiltration rate (AHU ON) and RLF. 
Y=2.53*X+0.23     R2=0.451 
 
Some duct operating pressures were measured. The average return plenum operating 
pressure in the 40 homes was –71 pascals, or 2.84 times the 25 pascal test pressure. 
However, the return portion of the AHU was operating at –140 pascals (between blower 
intake and cooling coil). Other portions of the return ducting would be at lower pressures.  
 
In a study of 70 (0 to 5 year old) Florida homes from 1989, the return leak fraction was 
found to be 9.1% of system airflow. In a study of 160 (mixed-age) Florida homes from 
1990, the return leak fraction was found to be 10.7% of system airflow. In both of these 
field studies, the testing took into account the tracer gas concentration at C (the leak 
location). Subsequently, the Florida Mechanical Code was modified in 1993 to disallow 
use of the AHU support platform as a return plenum, because so much leakage was 
occurring to the adjacent wall cavities and space. The new code required a duct from the 
return grill to the bottom of the AHU. This change in the code would appear to be the 
cause of the large reduction in RLF, from about 10% prior to 1990 to 3.6% in this current 
study. 
 
 
Summary of Pressure Pan Testing Results 
 
A pressure pan test was performed in 39 of the 40 homes. This is a test that can put a 
quantitative number to leakage and also provide indication of where the largest leaks may 
exist in the ductwork.  
 
The test is carried out in the following manner. The AHU is turned OFF. The house is 
depressurized (or pressurized) to 50 pascals by a blower door. A cake-pan (or similar) is 
placed on a pole, and the pan (with gasket on lip of pan) is placed over each supply 
register and return grill, one at a time. A tube running from a pressure tap in the pan is 
attached to a digital manometer (0.1 pascal resolution). The pressure inside the pan 
(which is also the pressure inside the duct) is measured. Typical values for normal duct 
construction are 0.2 to 3.0 pascals, indicating slight to considerable duct leakage. The 
maximum possible reading is 50 pascals, where a duct is completely disconnected (e.g., 
you can look up through the supply grill and see the attic). The average pressure pan 
reading was 0.64 pascals, indicating slight to moderate duct leakage, on average.   
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Figures 10 and 11 show pressure pan readings for all 534 supply registers and all 78 
return grills, respectively.  

• Supply. In the 39 houses in which pressure pan testing was performed, there were 
524 supply registers. 147 registers (28.1%) had readings of 0.0 to 0.2 pascal, 
meaning that there was essentially no significant leakage in the adjacent portion 
of the duct system.  279 registers (53.2%) had readings of 0.3 to 1.0 pascal, 
meaning that there was slight-to-moderate leakage in the adjacent portion of the 
duct system. 76 registers (14.5%) had readings of 1.1 to 2.0 pascals, meaning that 
there was significant leakage in the adjacent portion of the duct system. 17 
registers (3.2%) had readings of 2.1 to 4.0 pascals, meaning that there was 
substantial leakage in the adjacent portion of the duct system. 5 registers (1.0%) 
had readings of 4.1 pascals and higher, meaning that there was large leakage in 
the adjacent portion of the duct system.  

Figure 10. Distribution of supply pressure pan readings arranged for different ranges of 
pressure. 
 

• Return. In the 39 houses in which pressure pan testing was performed, there were 
78 return grills. 20 grills (26%) had readings of 0.0 to 0.2 pascal, meaning that 
there was essentially no leakage in the adjacent portion of the duct system.  35 
grills (45%) had readings of 0.3 to 1.0 pascal, meaning that there was slight-to-
moderate leakage in the adjacent portion of the duct system. 17 grills (22%) had 
readings of 1.1 to 2.0 pascals, meaning that there was significant leakage in the 
adjacent portion of the duct system. 4 grills (5%) had readings of 2.1 to 4.0 
pascals, meaning that there was substantial leakage in the adjacent portion of the 
duct system. 2 grills (2.6%) had readings of 4.1 pascals and higher, meaning that 
there was large leakage in the adjacent portion of the duct system.  
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Figure 11. Distribution of return pressure pan readings arranged for different ranges of 
pressure. 
 
The average supply pressure pan reading (PPs) was 0.63. By comparison, the average 
return pressure pan readings (PPr)was considerably higher, with PPr = 1.15.  
 
Examining the data in Table 7 (with bins by PPr), one can observe that both Q25,r/ton and 
RLF correlate rather strongly with PPr. Higher PPr indicates higher both Q25,r/ton and 
RLF. (Note that PPr and PPs are the average pressure pan readings for the returns and 
supplies for each house, respectively.) Figure 12 shows a reasonably strong correlation (r2 
= 0.40) between Q25,s (normalized to house floor area) and PPs. Figure 13 shows a 
relatively weak correlation (r2 = 0.18) between Q25,r (normalized to house floor area) and 
PPr. 
 

Figure 12. Plot of supply duct airtightness versus supply pressure pan readings. 
Y=23.73*X+26.30     R2=0.397 
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Figure 13. Plot of return duct airtightness versus return pressure pan readings. 
Y=5.30*X+12.62     R2=0.178 
 
 
 
Examining the data in Table 8 (with bins by PPs), one can observe that there is only a 
weak correlation between PPs and Q25,s/ton. There is also little correlation between the 
house infiltration rate (with AHU ON, interior doors open) and either PPr or PPs. In 
general, however, we can say that houses with PPr < 0.51 pascals and PPs < 0.31 pascals 
have substantially lower infiltration (about 0.25 ach) compared to all others (about 0.36 
ach). Note also that there is a significant correlation between PPr and PPs. 
 
 
Table 7. Pressure pan, Q25/ton, RLF, and infiltration rate with AHU ON (interior doors 
open) for PPr bins. 
PPr bin (Pa) # of houses PPr,ave (Pa) Q25,r/ton RLF PPs,ave (Pa) Q25,s/ton ach on 
0 – 0.50 8 0.235 4.978 2.1% 0.371 22.006 0.245 
0.51 – 1.0 3 0.647 8.510 3.6% 0.505 23.459 0.412 
1.0 – 2.0 4 1.469 18.913 5.6% 0.811 24.843 0.375 
2.1 + 2 4.925 19.745 6.7% 1.307 34.950 0.369 
ALL 17 1.15 10.970 3.6% 0.608 24.453 0.320 
 
Table 8. Pressure pan, Q25, RLF, and infiltration rate with AHU ON (interior doors open) 
for PPs bins. 
PPs bin (Pa) # of houses PPr,ave (Pa) Q25,r/ton RLF PPs,ave (Pa) Q25,s/ton ach on 
0 – 0.30 4 0.258 4.792 2.0% 0.205 15.111 0.247 
0.31 – 0.60 6 0.618 6.093 1.9% 0.426 22.275 0.343 
0.61 – 1.0 6 1.513 16.252 5.3% 0.771 29.033 0.356 
1.1 + 3 3.175 23.618 5.0% 1.321 29.154 0.299 
ALL 19 1.15 10.836 3.4% 0.630 23.987 0.320 
 
 
 
RESEARCH FINDINGS – Combustion/dilution air 
 
 
The Florida Mechanical Code (2004) requires combustion and dilution air when vented 
combustion vented devices are located in homes. Much of the language pertaining to 
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combustion/dilution air in residences is contained in the following sections shown in 
italics. 
 

701.1 General.  
Air for combustion, ventilation and dilution of flue gases for gas utilization equipment 
installed in buildings shall be provided by application of one of the methods 
prescribed in Sections 702 through 705 . Where the requirements of Section 702 are 
not met, outdoor air shall be introduced in accordance with one of the methods 
prescribed in Sections 703 through 705 . Direct-vent appliances, gas appliances of 
other than natural draft design and vented gas appliances other than Category I shall 
be provided with combustion, ventilation and dilution air in accordance with the 
equipment manufacturer’s instructions.  

Exception: Type 1 clothes dryers that are provided with makeup air with an 
opening having an area of not less than 100 square inches (645 mm 2 ) in the 
closet enclosure, or by other approved means.  

702.1 Indoor combustion air.  
The required volume of indoor air shall be determined in accordance with Section 
702.1.1 or 702.1.2 , except that where the air infiltration rate is known to be less than 
0.40 air changes per hour (ACH), Section 702.1.2 shall be used. The total required 
volume shall be the sum of the required volume calculated for all appliances located 
within the space. Rooms communicating directly with the space in which the 
appliances are installed through openings not furnished with doors, and through 
combustion air openings sized and located in accordance with Section 702.1.3 , are 
considered to be part of the required volume.  

702.1.1 Standard method.  

The minimum required volume shall be 50 cubic feet per 1,000 Btu/h (4.8 m 3 /kW) of 
the appliance input rating.  

702.1.2 Known air-infiltration-rate method.  

Where the air infiltration rate of a structure is known, the minimum required volume 
shall be determined as follows:  

For appliances other than fan-assisted, calculate volume using Equation 7-1.  

    (Equation 7-1)  

For fan-assisted appliances, calculate volume using Equation 7-2.  

    (Equation 7-2)  



where:  

I other     =     All appliances other than fan assisted (input in Btu/h).  

I fan     =     Fan-assisted appliance (input in Btu/h).  

ACH     =     Air change per hour (percent of volume of space exchanged per 
hour, expressed as a decimal).  

For purposes of this calculation, an infiltration rate greater than 0.60 ACH shall not 
be used in Equations 7-1 and 7-2.  

702.1.3 Indoor opening size and location.  

Openings used to connect indoor spaces shall be sized and located in accordance 
with Sections 702.1.3.1 and 702.1.3.2 (see Figure 702.1.3 ).  

 

FIGURE 702.1.3  
ALL AIR FROM INSIDE THE BUILDING  
(See Section 702.1.3 )  

 

 

 

702.1.3.1 Combining spaces on the same story.  



Each opening shall have a minimum free area of 1 square inch per 1,000 Btu/h 
(2,200 mm 2 /kW) of the total input rating of all gas utilization equipment in the 
space, but not less than 100 square inches (0.06 m 2 ). One opening shall commence 
within 12 inches (305 mm) of the top and one opening shall commence within 12 
inches (305 mm) of the bottom of the enclosure. The minimum dimension of air 
openings shall be not less than 3 inches (76 mm).  

702.1.3.2 Combining spaces in different stories.  

The volumes of spaces in different stories shall be considered as communicating 
spaces where such spaces are connected by one or more openings in doors or floors 
having a total minimum free area of 2 square inches per 1,000 Btu/h (4402 mm 2 
/kW) of total input rating of all gas utilization equipment.  

703.1 Outdoor combustion air. 

Outdoor combustion air shall be provided through opening(s) to the outdoors in 
accordance with Section 703.1.1 or 703.1.2 . The minimum dimension of air openings 
shall be not less than 3 inches (76 mm).  

703.1.1 Two-permanent-openings method.  

Two permanent openings, one commencing within 12 inches (305 mm) of the top and 
one commencing within 12 inches (305 mm) of the bottom of the enclosure, shall be 
provided. The openings shall communicate directly, or by ducts, with the outdoors or 
spaces that freely communicate with the outdoors. Where directly communicating 
with the outdoors, or where communicating with the outdoors through vertical ducts, 
each opening shall have a minimum free area of 1 square inch per 4,000 Btu/h (550 
mm 2 /kW) of total input rating of all equipment in the enclosure [see Figures 
703.1.1(1) and 703.1.1(2) ].  

Where communicating with the outdoors through horizontal ducts, each opening shall 
have a minimum free area of not less than 1 square inch per 2,000 Btu/h (1,100 mm 2 
/kW) of total input rating of all equipment in the enclosure [see Figure 703.1.1(3) ].  

 

 

 

 



FIGURE 703.1.1(1)  
ALL AIR FROM OUTDOORS—INLET AIR FROM VENTILATED  

CRAWL SPACE AND OUTLET AIR TO VENTILATED ATTIC  
(See Section 703.1.1 )  

 

FIGURE 703.1.1(2)  
ALL AIR FROM OUTDOORS THROUGH VENTILATED ATTIC  

(See Section 703.1.1 )  

 



FIGURE 703.1.1(3)  
ALL AIR FROM OUTDOORS  

(See Section 703.1.1 ) 

 

 
 FIGURE 703.1.2  

SINGLE COMBUSTION AIR OPENING  
ALL AIR FROM OUTDOORS  

(See Section 703.1.2 ) 

 

 



703.1.2 One-permanent-opening method.  

One permanent opening, commencing within 12 inches (305 mm) of the top of the 
enclosure, shall be provided. The equipment shall have clearances of at least 1 inch (25 
mm) from the sides and back and 6 inches (152 mm) from the front of the appliance. The 
opening shall directly communicate with the outdoors or through a vertical or horizontal 
duct to the outdoors or spaces that freely communicate with the outdoors (see Figure 
703.1.2 ) and shall have a minimum free area of 1 square inch per 3,000 Btu/h (734 mm 
2 /kW) of the total input rating of all equipment located in the enclosure, and not less 
than the sum of the areas of all vent connectors in the space. 
 

704.1 Combination indoor and outdoor combustion air.  
The use of a combination of indoor and outdoor combustion air shall be in 
accordance with Sections 704.1.1 through 704.1.3 .  

704.1.1 Indoor openings.  

Where used, openings connecting the interior spaces shall comply with Section 
702.1.3 .  

704.1.2 Outdoor opening location.  

Outdoor opening(s) shall be located in accordance with Section 703.1 .  

704.1.3 Outdoor opening(s) size.  

The outdoor opening(s) size shall be calculated in accordance with the following:  

1.     The ratio of interior spaces shall be the available volume of all communicating 
spaces divided by the required volume.  

2.     The outdoor size reduction factor shall be 1.0 minus the ratio of interior spaces.  

3.     The minimum size of outdoor opening(s) shall be the full size of outdoor 
opening(s) calculated in accordance with Section 703.1 , multiplied by the reduction 
factor. The minimum dimension of air openings shall be not less than 3 inches (76 
mm).  

 



Combustion/dilution Air Findings from 40 Homes 
 
Vented combustion devices were found in 8 of the 40 homes. A total of 13 vented, 
combustion devices were found in these homes (Table 9). 
 
 
Table 9. A total of 13 combustion appliances were found in 8 homes. 
 

House # Furnace (gas) Water heater (gas) Clothes Dryer Fireplace (vented) 
2 x x   
7 x x x  
9  x   
15  x   
21  x x  
25    x 
33  x x  
38    x 
SUM 2 6 3 2 

 
 
None of the 8 homes had combustion/dilution air openings in a combustion appliance 
zone. As an alternative to providing combustion/dilution air vents, the combustion/ 
dilution air requirements can be met by the volume of the space in which the combustion 
appliance is located. The required volume of the combustion appliance zone (CAZ) is 
based upon the gas input capacity.  
 
Table 10 lists the input capacity of atmospherically vented combustion devices (except 
fireplaces) and the combustion/dilution air requirements. Six houses had atmospherically 
vented combustion appliances (Table 10). None, however, had combustion/dilution vent 
openings. However, four of the houses could meet their combustion/dilution air 
requirements based on the volume of the CAZ zone.  
 
The two houses that were not in compliance were Houses 2 and 7. Because they had both 
a furnace and a gas water heater, with total gas input of 120 kBtu/hr and 128 kBtu/hr, 
respectively, they would require a larger CAZ volume. House 2 had a volume 
requirement of 6000 ft3 but had a CAZ volume of only 3600 ft3. House 7 had a volume 
requirement of 6400 ft3 but had a CAZ volume of only 3747 ft3. Therefore, these houses 
would be required to have combustion/dilution vents, sized at 40 in2 and 42.7 in2 (or 
larger), respectively. 
 
 



Table 10. Gas input, required volume, available volume, and vent grill size required for 
combustion/dilution air. 
 

House # Furnace 
(kBtu/hr) 

Water heater 
(kBtu/hr) 

Clothes 
dryer 2 
(kBtu/hr)

Required 
volume (ft3)

Available 
volume 
(ft3) 

Vent opening 
required (in2) 

Is house in 
code 
compliance? 

2 88 32  6000 3600 40 NO 
7 88 40 35 6400 3747 42.7 NO 
9  40  2000 3320 Not necessary4 YES 
15  40  2000 3360 Not necessary4 YES 
21  401 35 2000 33603 Not necessary4 YES 
33  401 35 2000 33603 Not necessary4 YES 

1 Water heater capacity unknown.; 40,000 Btu/hr capacity assumed. 
2 Dryer gas input estimated (typical value). Dryer gas input is not considered for calculation of required 
volume, because in all cases the clothes dryer was not located in the same CAZ as the furnace and water 
heater. 
3 Volume of garage is estimated. 
4 Vent opening not necessary because combustion/dilution air requirement can be met by space volume. 
 
 
It was a surprise to the research team that there were relatively few combustion 
appliances in this sample of 40 homes. Even more surprising was that none of the CAZs 
of the 7 homes with furnace, gas DHW, or gas clothes dryer had combustion/dilution air 
openings.  
 
In previous field-testing, project staff had observed combustion/dilution vents in new 
homes. In some cases, the vents were grills in the ceiling of the laundry room with a short 
duct open directly into the attic space. In some cases, the combustion/dilution vent (to the 
attic) was provided even though the clothes dryer actually installed had electric heating 
(gas stub-out was provided).  
 
One of the 40 houses in this study had an identical situation. While none of the 
combustion appliance zones in these 40 homes had combustion/dilution air vents, one 
laundry room (with no combustion devices) had a combustion/dilution vent (in House 
#2). This laundry room had both gas and electric dryer service, but in this instance the 
installed dryer was electric. The vent was in the ceiling of the small laundry room and 
consisted of a 4” x 8” register (supply register type) with a boot with 4” round collar at 
the top. A piece of batt insulation had been positioned on top of the collar, so that if you 
looked up through the register you would see the Kraft backing of the batt (apparently 
someone placed the batt over the vent because the dryer was not a combustion device). 
 
If a typical 35,000 Btu/hr input gas clothes dryer (Table 5.4.2.1 in National Fuel Gas 
Code 2002 lists 35,000 Btu/hr as the typical dryer) had been installed instead of the 
electric unit, would the ceiling vent have been sufficient to meet code? For this ceiling 
vent location, the size requirement is 1 in2 per 3000 Btu/hr input. Dividing 35 (kBtu/hr) 
by 3 yields 11.7 in2 vent area. The 4” round collar at the top of the boot has a cross-
sectional area of 12.6 in2, or just greater than the vent size requirement. The answer is 
YES, it would be large enough for a gas clothes dryer.  
 



 
Summary and Conclusions 
 
In Florida houses constructed after March 1, 2002, there has been a substantial reduction 
in pressure differentials created by closure of interior doors and unbalanced return air. 
With all interior doors closed, the central zone pressure went to –1.4 pascals in these 40 
homes. By comparison, 70 homes built in the period 1985 – 1989 had a central zone 
pressure of –2.9 pascals with all interior doors closed. The house infiltration rate with 
interior doors closed was 23% greater than with doors open (air handler operating in each 
case; excluding the unusual results from House 37). By contrast, those built in the period 
1985-1989 showed a 30% higher infiltration rate with interior doors closed (air handler 
operating in each case). 
 
Florida homes continue to show a trend of becoming more airtight. In 70 houses built in 
1985-1989, house envelope airtightness was 7.1 ACH50. In a study of 20 houses built in 
2001-2002, ACH50 had declined to 6.1. In the current sample of 40 homes, ACH50 had 
fallen to 5.2 ACH50. 
 
Duct leakage has declined since the 1980’s. The house infiltration rate for a sample of 70 
houses built in the period 1985-1989 was 0.46 ach (AHU running continuously). By 
comparison, 20 houses in this study had an infiltration rate of 0.31 ach with AHU running 
continuously. Some of the infiltration may be related to the tighter house envelope. 
Nevertheless, the dramatic reduction from 0.46 to 0.31 ach strongly suggests that duct 
leakage has declined.  
 
The decline, however, has been mostly on the return side of the system, with return leak 
declining from about 10%  in houses built before 1990 to current 3.6% of system air 
flow. This decline in return leakage is likely the result of 1993 code change which 
required a return duct section to connect the return grill to the bottom of the air handler 
even inside of a support platforms. 
 
More recently, duct leakage has shown some improvement. Qn in 20 houses built in 
2001-2002 was 0.064 cfm/ft2, while Qn in 20 houses built in the current study (2002-
2005) was 0.057 cfm/ft2. Therefore, duct leakage shows about 11% improvement on a per 
unit of floor area basis. Q25/ton remains essentially unchanged, however, at 35.6 cfm/ton 
for the 2001-2002 sample and 35.5 cfm/ton for the 2002-2005 sample 
 
Combustion/dilution air requirements were in compliance in 4 of 6 homes where the code 
requires action. In one laundry room, which contained only an electric clothes dryer (and 
no combustion appliances), a combustion/dilution vent was installed in the case that a gas 
dryer would be installed. If a gas dryer had been installed, the combustion/dilution vent 
provided would have met the code requirement. 
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