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ABSTRACT

In the rapidly advancing field of computer vision, deep learning has driven significant technologi-

cal transformations. However, the widespread deployment of these technologies often encounters

efficiency challenges, such as high memory usage, demanding computational resources, and exten-

sive communication overhead. Efficiency has become crucial for both centralized and distributed

applications of deep learning, ensuring scalability, real-world applicability, and broad accessibil-

ity. In distributed settings, federated learning (FL) enables collaborative model training across

multiple clients while maintaining data privacy. Despite its promise, FL faces challenges due to

clients’ constraints in memory, computational power, and bandwidth. Centralized training systems

also require high efficiency, where optimizing compute resources during training and inference, as

well as label efficiency, can significantly impact the performance and practicality of such models.

Addressing these efficiency challenges in both federated learning and centralized training systems

promises to provide significant advancements, enabling more extensive and effective deployment

of machine learning models across various domains.

To this end, this dissertation addresses many key challenges. First, in federated learning, a novel

method is introduced to optimize local model performance while reducing memory and compu-

tational demands. Additionally, a novel approach is presented to reduce communication costs

by minimizing model update frequency across clients through the use of generative models. In

the centralized domain, this dissertation further develops a novel training paradigm for geospa-

tial foundation models using a multi-objective continual pretraining strategy. This improves label

efficiency and significantly reduces computational requirements for training large-scale models.

Overall, this dissertation advances deep learning efficiency by improving memory utilization, com-

putational demands, and communication efficiency, essential for scalable and effective application

of deep learning in both distributed and centralized environments.
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CHAPTER 1: INTRODUCTION

In recent years, the application of deep learning in computer vision has brought about profound

changes to the global technological landscape. The advent of AlexNet marked a turning point,

catalyzing a rapid expansion in the adoption and utilization of computer vision technologies in

a plethora of industries. However, as deep learning methodologies have become more prevalent

and diversified in their applications, there has been a corresponding escalation in the complexity

and resource requirements of these approaches. This includes the proliferation of larger model

architectures, the demand for increased volumes of training data, and the necessity for heightened

computational power to effectively train and deploy these models.

Therefore, efficiency has emerged as a crucial factor for both centralized and distributed applica-

tions of deep learning technologies. This is essential for ensuring scalability, real-world applica-

bility, and ultimately facilitating its democratization and widespread accessibility. For example, in

distributed settings, federated learning (FL) presents a powerful strategy by enabling collaborative

model training across multiple clients while upholding the privacy of their data. This approach,

while promising, underscores pivotal challenges due to each client’s operation under significant

constraints, including limited memory, computational power, and bandwidth. These constraints

become particularly severe in large-scale FL systems where communication overhead escalates

into a critical bottleneck, underscoring the necessity for enhanced efficiency in memory, compu-

tation, and communication to render distributed paradigms like federated learning both viable and

effective. Conversely, centralized training systems also demand high efficiency, particularly focus-

ing on optimizing compute resources during training or inference phases. In specialized fields such

as remote sensing, where labels are often scarce for downstream tasks, label efficiency is critical for

success. Enhancing both compute and label efficiency can significantly influence the performance

and practicality of centralized training models. Addressing these efficiency challenges holistically

1



in both federated learning and centralized training systems can lead to significant advancements,

supporting more extensive and effective application of machine learning models across varied do-

mains.

In this dissertation, we endeavor to enhance efficiency across multiple dimensions. We begin by

refining efficiency in distributed training, addressing inherent challenges by proposing effective so-

lutions. Subsequently, we extend our investigation to the centralized paradigm, addressing training

and labeling costs. The subsequent sections will introduce these settings and research motivations,

leading to the presentation of novel methods for efficient deep learning in computer vision.

1.1 Challenges in Federated Learning

Federated learning (FL) is a distributed machine learning technique that enables multiple clients to

participate in the training process in a privacy-preserving manner. In FL, each client trains a local

model on its own data and sends the model to a central server. The server combines these updates

to improve the global model, which is then sent back to the clients. This approach ensures that the

clients’ data is kept private while enabling the central server to learn from the collective knowl-

edge of all participating users [45]. However, FL poses significant challenges in terms compute,

memory, communication cost and optimization speed. We will discuss the factors that contribute

to these challenges in the following subsections.

1.1.1 Efficient Solutions for Data Heterogeneity in Federated Learning

In the FL setting, participating clients are typically deployed in a variety of environments or owned

by a diverse set of users. Therefore, the distribution of each client’s local data can vary consid-

erably (i.e., data heterogeneity). This non-IID data distribution among participating devices in

2



FL makes optimization particularly challenging. As each client trains locally on their own data,

they step towards their respective local minimum. However, this local convergence point may not

be well aligned with the objective of the global model (that is, the model being learned though

aggregation at the central server). Therefore, the client model often drifts away from the ideal

global optimization point and overfits to its local objective. When such client drifting occurs, the

performance of the central aggregated model is hindered [46, 56].

One straight-forward solution to this phenomenon is to simply limit the number of local training

epochs performed between central aggregation steps. However, this severely hinders the conver-

gence speed of the FL system, and many communication rounds are required to achieve adequate

performance. The time to convergence and immense communication overhead incurred by such

an approach are often not tolerable for real-world distributed systems. Therefore, effectively ad-

dressing data heterogeneity is of paramount concern in federated learning.

Many algorithmic solutions to this problem have been proposed in the literature [81, 58, 49, 3].

These strategies typically focus on mitigating the effects of data heterogeneity across clients by

introducing a variety of proximal terms to restrain local updates with respect to the global model.

However, by restraining the drift, they also inherently limit the local convergence potential; less

novel information is gathered per communication round. Consequently, many current FL algo-

rithms do not provide stable performance improvements across different non-IID settings in com-

parison to classic baselines [56, 58], especially on vision tasks beyond the difficulty of MNIST

[54]. Furthermore, existing methods have paid little attention to the resource constraints of the

client, typically scarce for deployed FL edge devices, and in some cases incur considerable com-

pute and/or memory overheads on the client in their effort to alleviate client drift. For example,

the state-of-the-art (SOTA) method MOON performs well on federated image tasks, but to do so

incurs a ∼3x overhead in both memory and compute compared to the standard FedAvg baseline

[67].
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1.1.1.1 Motivation for Efficient Solutions

In the centralized training paradigm, network generalization capability has been well studied to

combat overfitting. Even in standard settings where the training and test data are drawn from a

similar distribution, models still overfit on the training data if no precautions are taken. This effect

is further intensified when the training and test data are of different distributions. Various reg-

ularization techniques are introduced to enforce learning generality during training and preserve

suitable test performance. Similarly, overfitting to the local training data of each device in FL

is detrimental to overall network performance, as the client drifting effect creates conflicting ob-

jectives among local models. Thus, a focus on improving model generality should be of primary

concern in the presence of data heterogeneity. Improving local learning generality during training

would inherently position the objective of the clients closer to the overall global objective. How-

ever, despite its intuitive motivations, this perspective has been overlooked by the bulk of current

FL literature.

Therefore, in this paper, we propose rethinking approaches to data heterogeneity in terms of lo-

cal learning generality rather than proximal restriction. Specifically, we carefully analyze the

effectiveness of various data and structural regularization methods at reducing client drift and

improving FL performance (Section 3.1). Utilizing second-order information and insights from

out-of-distribution generality literature [76, 72], we identify theoretical indicators for successful

FL optimization, and evaluate across a variety of FL settings for empirical validation.

Although some of the regularization methods perform well at mitigating client drift, significant re-

source overheads are still incurred to achieve the best performance (see Section 3.2). Therefore, we

propose FedAlign, a distillation-based regularization method that promotes local learning general-

ity while maintaining excellent resource efficiency. Specifically, FedAlign focuses on regularizing

the Lipschitz constants of the final block in a network with respect to its representations. By fo-
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cusing solely on the last block, we effectively regularize the portion of the network most prone

to overfitting and keep additional resource needs to a minimum. Therefore, FedAlign achieves

state-of-the-art accuracy on multiple datasets across a variety of FL settings, while requiring sig-

nificantly less computation and memory overhead in comparison to other state-of-the-art methods.

In this dissertation, we fundamentally approach one of the most troublesome FL challenges (i.e.

client drift caused by data heterogeneity) from a unique angle than any other previous work. Partic-

ularly, we do not focus on reparameterization tricks to maintain closeness to the central model, or

adjust the aggregation scheme to mitigate the effects of non-IID data distributions. Rather, we pro-

pose the rethinking of this problem from fundamental machine learning training principles. In this

way, we analyze the performance of standard regularization methods on FL and their effectiveness

against data heterogeneity. Not only do we empirically analyze the performance of regularization

methods in FL, we also propose to take a deeper look. Specifically, we inform our analysis with

theoretical indicators of learning generality to provide insight into which methods are best and

why. We find that Hessian eigenvalue/trace measurements and Hessian matching across clients to

be meaningful indicators for optimal FL methods. Additionally, we perform a thorough ablation

study across a variety of FL settings to understand the empirical effects of different methods. Our

aim is to provide this valuable knowledge to the FL community to inspire new, productive research

directions. Informed by our analysis and examining the pitfalls of previous methods, we propose

FedAlign, which achieves competitive state-of-the-art accuracy while maintaining memory and

computational efficiency.

1.1.2 Efficient Solutions for Communication in Federated Learning

Communication cost is a major bottleneck in FL systems, as clients need to communicate fre-

quently with the server over multiple rounds during the training process [45, 81, 3]. This leads
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to a high communication overhead, making the process slow or simply infeasible. To overcome

this challenge, one-shot federated learning has recently gained traction in the research commu-

nity [29, 109, 112, 82]. In this setting, clients only communicate once with the server during the

training process, significantly reducing the communication requirements. This approach not only

improves the efficiency of the training process but also provides a better framework for privacy

and application. Specifically, one-shot FL provides better security against eavesdropping attacks,

where adversaries attempt to steal or tamper with the information being sent between clients and

the server [60]. By only requiring one round of communication, one-shot FL significantly reduces

the likelihood of such attacks. Furthermore, traditional multi-round training may not be a practical

option in some cases, such as that of model markets [57]. In these scenarios, models are trained to

convergence by a participating user, and simply made available as a pretrained model to potential

buyers, without any option for iterative communication.

However, the significant challenge in federated learning still remains, and that is, the data hetero-

geneity problem as discussed previously [68, 49, 58, 45]. In FL, clients often have very different

data distributions, making optimization particularly challenging across the federated system. In

the one-shot setting, this is especially detrimental to performance. Without the luxury of multi-

ple communication rounds, the resulting models will be significantly biased towards their narrow

data distribution and difficult to reconcile into a global model. Knowledge distillation-based ap-

proaches have been studied in the literature in an attempt to address these problems [29, 57, 109].

Nonetheless, these methods still struggle immensely under high heterogeneity, resulting in large

drops in performance.

Yet, another class of model is potentially well-suited for such heterogeneous distributions at the

clients. Rather than simply employing discriminative models to train on the clients, one could

instead leverage generative models. These generative models can then be gathered from the clients

and inferenced on the server to form a dataset for global model training, eliminating the need
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for the challenging reconciliation process required for discriminative models. [37] conducted a

preliminary study of such a framework with conditional variational autoencoders (CVAEs) [85]

for one-shot FL, but there is still much to investigate in this paradigm. Specifically, we consider

two primary research questions (RQ) in this work.

RQ1. First, we explore the utility of diffusion models in federated learning and their potential

for improving the performance of the one-shot FL process. Diffusion models [38] have recently

emerged as prominent approaches for image generation, inspiring our investigation. We suggest

that specific traits of diffusion models could provide advantages for one-shot FL, as discussed

in Section 4.1. We then validate this hypothesis through comprehensive experiments with our

approach, FedDiff, across various settings.

RQ2. Second, we investigate one-shot FL methods under provable privacy budgets with differential

privacy (DP), as this aspect is not addressed by existing state-of-the-art (SOTA) one-shot FL works.

Safeguarding model privacy is critical in this setting, as the client models obtained in one-shot FL

can be reused multiple times or even traded in a model market. Furthermore, in light of recent

work [9], we examine the potential memorization of diffusion models within our FedDiff approach

and the effectiveness of DP as a mitigation strategy.

After studying these research questions, we further explore a simple technique for improving the

performance of our FedDiff method under DP settings. We observe that the quality of generated

samples may deteriorate under DP constraints, rendering some samples counterproductive to the

training of the global model. To improve the quality and consistency of the synthetic data, we

propose a straightforward filtering approach, termed Fourier Magnitude Filtering (FMF). FMF

leverages sample magnitudes derived from the Fourier transform to guide the selection of valuable

samples. The resulting filtered dataset substantially improves the utility of the generated data,

particularly in challenging conditions, as detailed in Section 4.3.3.
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In this dissertation, we contribute to the FL literature with the first study exploring diffusion mod-

els in one-shot federated learning. Our comprehensive investigation unveils the unique advantages

inherent to diffusion models, which enhances the overall performance of one-shot FL while also

addressing the significant challenges of data heterogeneity. We therefore establish a novel ap-

proach, FedDiff, that not only ensures superior model performance but also aligns with the core

requirements of one-shot FL. We further study the privacy and utility of both discriminative and

generative-based SOTA one-shot FL methods with DP guarantees under heterogeneous settings.

We find that our FedDiff approach outperforms all other methods by a significant margin (from

∼5% to ∼20% across many datasets and settings), even when differential privacy is employed.

Furthermore, while FedDiff performs very well, we note that sample quality is affected under DP.

Therefore, to improve performance in such conditions, we propose a simple Fourier Magnitude Fil-

tering (FMF) approach, which improves the effectiveness of the generated data for global model

training by removing low-quality samples.

1.2 Challenges in Centralized Settings

In the domain of centralized training systems and neural networks, computational efficiency is

of paramount importance for the practical application of deep learning technologies. The ability

to process vast amounts of data quickly and effectively without excessive computational cost is

critical, as it directly influences the scalability, accessibility, and sustainability of machine learning

solutions. Furthermore, label efficiency emerges as a crucial aspect in domains where acquiring

labeled data is inherently difficult or expensive. In such scenarios, the ability to train models with

fewer labels without compromising the performance is invaluable. Techniques that enhance label

efficiency, such as self-supervised learning and continual pretraining, are therefore instrumental in

maximizing the utility of available data, reducing the cost and effort involved in dataset curation,
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and facilitating the rapid adaptation of models to new tasks or environments. These efficiencies not

only accelerate the advancement of neural network capabilities but also significantly mitigate the

barriers to their adoption in new areas, ensuring that deep learning can deliver its transformative

potential across industries.

1.2.1 Geospatial Continual Pretraining

In centralized systems, particularly within the geospatial and remote sensing sector, optimizing

computational and label efficiency is paramount. Geospatial technologies play crucial roles in

diverse fields such as agriculture, urban planning, and disaster management by enhancing our

understanding and interaction with Earth’s systems. Progress in this domain can substantially im-

prove our ability to understand the earth and how we interact with it. With the rising popularity of

foundation models in vision and natural language, researchers have begun to investigate applying

such principles to the geospatial domain in order to enhance the suitability and label efficiency of

deep learning models in downstream tasks [69, 66, 17, 7]. In the literature, various works have

explored two prominent approaches for introducing pretrained foundation models in geospatial

applications. The first obvious approach is to leverage existing foundation models from the natural

image domain, like those trained on the large-scale ImageNet-22k dataset [19]. In practice, this

is done by directly finetuning publicly-available ImageNet pretrained models on the downstream

tasks. This approach has the advantage of being straight-forward, as ImageNet models can be sim-

ply downloaded from many open-source model zoos, and has been shown to be effective [69, 70].

However, due to the domain gap between natural images and remote sensing, this approach is not

optimal for geospatial data, and still leaves performance gains on the table.

In recent years, a second approach has gained significant traction, where researchers aim to pre-

trained models specific to the geospatial domain [66, 7, 17, 89]. These methods typically train a
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network from scratch on a large corpus of remote sensing imagery to learn in-domain represen-

tations transferable to downstream tasks. Unfortunately, this can require a significant amount of

data and training time to achieve good performance, especially when employing large state-of-the-

art (SOTA) transformer models. For instance, the current SOTA in geospatial foundation models,

SatMAE [17], requires 768 hours on a V100 GPU for training a vision transformer [23]. This has

substantial cost associated with producing the model, not just in terms of time and computation

but also environmentally, with a total estimated carbon footprint of 109.44 kg CO2 equivalent.

Additionally, the final performance of such models are not consistently better across various tasks

than simply utilizing publicly-available ImageNet pretrained models (Section 5.4), despite the high

resource expense.

In this work, we propose to investigate a different paradigm for producing more effective geospa-

tial foundation models with substantially less resource costs. First, we begin with a discussion on

pretraining data selection, and ultimately construct a concise yet diverse collection of data from

various sources to promote feature diversity and effective pretraining. Second, rather than follow-

ing the aforementioned typical approaches, we investigate the potential of continual pretraining

for the geospatial domain from readily-available ImageNet models. Continual pretraining has

been practiced in the NLP domain with success in various works [30, 32, 63]. In this paradigm,

existing foundation models are further improved for a specific domain or task through a secondary

pretraining stage. This new single model can now be fine-tuned on the various downstream tasks

in that domain. In principle, we reason that such a paradigm has the potential to boost perfor-

mance by utilizing large-scale ImageNet representations as a base on which stronger geospatial

foundation models can be built. Furthermore, such natural image models are constantly being im-

proved and released by the general computer vision community, providing a consistent source of

better baseline models. Therefore, an approach that could enable the geospatial domain to leverage

these improvements with minimal resource needs and carbon footprint paves the way for continual,
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sustainable benefits for the geospatial community.

However, when we initially experiment with the standard continual pretraining formulation, we

find it provides only marginal benefits (Section 5.2). Instead, we discover that utilizing Ima-

geNet representations as an auxiliary distillation objective during pretraining leads to a stronger

geospatial foundation model. Building upon this principle, we propose a multi-objective continual

pretraining paradigm that significantly enhances performance while requiring minimal resources.

Our approach leverages ImageNet’s powerful representations to facilitate and expedite learning,

while also enabling the acquisition of valuable in-domain features via self-supervised learning on

geospatial data. Furthermore, our proposed Geospatial Foundation Model (GFM) exhibits strong

performance, surpassing previous state-of-the-art (SOTA) methods across a diverse range of down-

stream tasks (Section 5.4).

In this dissertation, we therefore investigate a novel paradigm for creating highly effective geospa-

tial models with minimal resource costs. Our methodology begins with data selection and con-

struction of a compact yet diverse dataset from multiple sources to promote feature diversity and

enhance pretraining effectiveness, which we term GeoPile. We further explore the potential of

continual pretraining from ImageNet models, but find it is not satisfactory in its standard formu-

lation. To achieve better performance with minimal resource needs, we propose a multi-objective

continual pretraining paradigm. Our design is surprisingly simple yet effective, constructed as a

teacher-student strategy with both a distillation objective and self-supervised masked image mod-

eling. This approach allows GFM to leverage the strong representations of ImageNet to guide

and quicken learning, while simultaneously providing the freedom to learn valuable in-domain

features. Furthremore, we evaluate our GFM approach, as well as several baseline and SOTA

methods, on 7 datasets covering important geospatial applications such as change detection, clas-

sification, multi-label classification, semantic segmentation, and super-resolution. Overall, our

GFM performs favorably over previous methods (as shown in Figure 5.3).
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1.3 Overview

By fostering improvements in efficiency within these frameworks, both federated and centralized

training models can be significantly refined, offering more sustainable, effective, and adaptable

solutions for the application of machine learning across diverse environments. This strategic focus

on efficiency not only aligns with technological advancement but also with environmental sustain-

ability and economic viability, marking a critical step forward in the evolution of machine learning

applications. In this dissertation, we provide a comprehensive literature review on related work and

relevant background. In Chapter 3, we propose a novel method, FedAlign, for improving federated

learning performance with memory and computational efficiency. In Chapter 4, we introduce a

one-shot federated learning paradigm with diffusion models to achieve strong performance in FL

settings with a single communication round, thereby significantly reducing communication over-

heads. In Chapter 5, we further investigate efficiency for centralized applications, and introduce a

novel training paradigm for geospatial foundation models that minimized resource and label needs

for effective downstream performance.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we provide a comprehensive literature review on related work and relevant back-

ground to this dissertation. We begin in the decentralized setting, with a formal description of

federated learning (FL). We discuss fundamental FL strategies, such as Federated Averaging, and

explore enhancements aimed at minimizing client drift through modifications like FedProx and

MOON. Furthermore, the review covers one-shot federated learning, proposing solutions to re-

duce the number of communication rounds required for model convergence. It also discusses the

integration of diffusion probabilistic models to address the challenges of model training under

privacy constraints. Subsequent sections investigate the centralized setting, particularly for pre-

training approaches such as masked image modeling, continual pretraining, and how pretraining is

leveraged in the geospatial domain. Each section not only outlines the current methodologies and

their advancements but also critically assesses their effectiveness and areas for improvement.

2.1 Federated Learning

In general, federated learning algorithms aim to obtain a collective model which minimizes the

training loss across all clients. This objective can be expressed as

min
w
F (w) =

C∑
c=1

αcFc(w), (2.1)

where Fc(w) is the local loss of device c, and αc is an arbitrary weight parameter with
∑C

c=1 αc = 1.

One of the earliest algorithms proposed in FL is Federated Averaging, or FedAvg [67]. This

approach simply optimizes the local training loss with standard SGD training, and aggregates

using a weighted average approach with ac = nc

n
, where nc is equal to the number of training
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samples on client c, with a total of n training samples partitioned across all C clients.

Recent works attempt to improve over this baseline with two distinct focuses: improvements to

the local training at the client, or improvements to the global aggregation process at the server. In

this work, we focus on local training and client drift, and therefore we will first discuss methods of

this nature. To mitigate data heterogeneity complications, a common approach is to introduce

proximal terms to the local training loss. For instance, FedProx [81] adds the proximal term

µ
2
∥w − wt∥2, where µ is a hyperparameter, w is the current local model weights, and wt is the

global model weights from round t. The goal of this reparameterization is to minimize client

drift by limiting the impact of local updates from becoming extreme. More recently, MOON

[58] proposes a similar reparameterization idea inspired by contrastive learning. Specifically, the

authors form a local model constrastive loss comparing representations of three models: the global

model, the current local model, and a copy of the local model from the previous round. The goals

of this term are similar to that of FedProx but in feature representation space; to push the current

local representation closer to the global representation. At the same time, the current local model is

being pushed away from the representations of the local model copy of the previous round. Other

methods [3, 49] follow similar ideas; they aim to limit the impact of the local update or shift the

update with a correction term.

However, these approaches have two main downsides. First, by restraining the drift, they also

inherently limit the local convergence potential. With this, not as much new information is gathered

per communication round. Second, many of these methods incur substantial overheads in memory

and/or computation. For instance, because of its model constrastive loss, MOON [58] requires the

storage of three full-size models in memory simultaneously during training, and forward passing

through each of these every iteration. This requires a great deal of additional resources, which are

often already scarce in FL client settings.
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Other works focus on the server side of the system, aiming to improve the aggregation algorithm.

[105] propose a Bayesian nonparametric method for matching neurons across local models at ag-

gregation rather than naively averaging. However, the presented framework is limited in applica-

tion to fully-connected networks, and therefore [90] extend it to CNNs and LSTMs. FedNova [91]

presents a normalized averaging method as an alternative to the simple FedAvg update. As we fo-

cus on the local training, these works are orthogonal to our work. A few approaches [102, 71, 84]

propose federated schemes inspired by the data augmentation method Mixup, using similar aver-

aging techniques on the local data and sharing the augmented data with the global model or other

devices. However, even though the data is augmented in some way prior to distribution, the shar-

ing of private data from the client is less than ideal for privacy preservation. Furthermore, sharing

additional data worsens the communication burden on the system, which is a principal concern in

FL.

2.2 Learning Generality

In traditional centralized training, the practice of regularization of various forms is common prac-

tice for improving generality. Data-level regularization, including basic data augmentations and

other more advanced techniques [108, 104], are known to be quite effective. Other methods in-

troduce a level of noise to the training process via structural modification; for instance, random or

deliberate modifications to the network connectivity [40, 27, 87]. [98] proposes a hybrid approach

that introduces self-guided gradient perturbation to the training process through the use of sub-

network representations, knowledge distillation, and input transformations. As part of this work,

we employ a variety of regularization methods in many FL settings and analyze their performance

in comparison to state-of-the-art FL algorithms.
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2.3 One-shot Federated Learning

Federated learning (FL) has emerged as a promising paradigm for collaborative machine learning

across decentralized devices while preserving data privacy. The seminal work by McMahan et al.

[67] introduced the concept of FL, where model updates are computed locally on user devices and

aggregated on a central server. However, in the standard FL process, many iterative communication

rounds are required for convergence. One-shot FL, therefore, studies how to effectively learn in this

distributed setting in a single round, thereby mitigating the need for many communication rounds.

Several approaches have been proposed to tackle the unique characteristics of one-shot FL. [29]

introduce the one-shot federated learning framework and study several baseline approaches. In

[29] and [57], distillation approaches are studied using the ensemble of client models to the global

model, and assume a public dataset for this purpose. However, such an assumption is limited, as

public data related to the domain of interest is often not available. A data-free method within the

distillation methodology was proposed by [109], where a generative adversarial network (GAN)

is trained at the server level to generate the data for distillation, and iteratively optimized between

distilling to the server model and training the GAN with the ensemble of client models.

Nonetheless, these methods still struggle with heterogeneous environments, as we find in Section

4.1. Generative models on the client are well-suited for better undertaking in such settings, as

they can focus on the narrow client distributions and simply generate data at the central location.

[37] introduce the use of CVAEs in highly heterogeneous one-shot FL. However, CVAEs exhibit

suboptimal sample quality, a limitation that becomes markedly exacerbated with more complex

datasets and when subjected to the constraints of DP, which are not explicitly addressed in the

study by [37]. In this work, we investigate diffusion models in one-shot FL and leverage their

unique characteristics for the task, illustrating their potential in a variety of difficult FL settings

and privacy guarantees.
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2.4 Diffusion Probabilistic Models

Diffusion probabilistic models [38, 21], or simply diffusion models as they are now commonly

referenced (DM), have gained traction for application in generative vision tasks. Simply put, DMs

aim to learn the backward process that can iteratively denoise an image corrupted with Gaussian

noise back to the original. Specifically, as detailed in [38], noise is introduced to a given sample

via a Markovian chain forward process

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), (2.2)

where T is the total number of iterations (or timesteps) applied, and q(xt|xt−1) is parameterized

by N (xt;
√
1− βtxt−1, βtI). β is a value between (0,1), and increases with timestep t, essentially

making the final q(xT |x0) approximately a simple Gaussian N (0, I). This forward process is

fixed, and the goal of the diffusion model is to learn the reverse process. During training, we

simply optimize for predicting the noise ρ from an arbitrary step t in the forward process, forming

a loss function [38]

L = Et,x0,ρ

[
∥ρ− ρθ (xt, t)∥

2] . (2.3)

The process can also be conditioned on another variable y in ρθ (xt, y, t). For example, the dif-

fusion model can be class conditioned [39], with y being a variable representing the class of the

sample from a classification dataset. We utilize the class-conditioning approach of [39] in our

diffusion models for FL.
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2.5 Differential Privacy

Differential privacy (DP) [25, 26, 24] is a framework for ensuring that the output of a computation,

such as machine learning model training, does not reveal sensitive information about any individual

data point in the training dataset. A computation is said to be differentially private if the probability

of obtaining a particular output is roughly the same whether a particular individual’s data sample

is included in the computation or not. Formally [26],

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ, (2.4)

whereA is a randomized algorithm,D andD′ are a pair of datasets that differ in at most one record,

and S is any subset of the output space of A. (ϵ, δ) control the level of privacy protection provided

by the algorithm, essentially determining the maximum allowable amount of information that can

be harnessed from the data. Larger values of (ϵ, δ) correspond to weaker privacy guarantees, while

smaller values of (ϵ, δ) correspond to stronger guarantees.

To train deep learning models with such guarantees, differentially private stochastic gradient de-

scent (DPSGD) is typically employed [1]. In DPSGD, two main mechanisms are used to protect

the privacy of individual data points: per-sample gradient clipping and the addition of random

noise to the clipped gradients. Per-sample gradient clipping involves setting a maximum threshold

on the norm of the gradient computed for each data point, so that if the norm of a gradient exceeds

the threshold, it is rescaled. This step is necessary to limit the sensitivity of the loss function,

which measures how much the loss function changes when a single data point is removed from

the training dataset. After the gradients have been clipped, random noise is added to them before

they are used to update the model parameters. The amount of noise added is calibrated based on

privacy budget parameters (ϵ, δ).
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2.6 Geospatial Pretraining

Various works have experimented with employing supervised or self-supervised pretraining paradigms

in the geospatial domain. The classical work of [69], and more recent paper [89], investigate super-

vised pretraining on individual datasets of various sizes. Interestingly, these still often found the

ImageNet pretrained models to perform very well, particularly with vision transformers [23, 62].

Other works have explored self-supervised learning paradigms for remote sensing, primarily fo-

cused on contrastive methods. [66] and [7] employ a MoCo [15] style objective using spatially

aligned but temporally different images as the positive pairs. [48] and [42] also utilize a MoCo-

inspired objective, but specify a cropping procedure to generate positives and negatives within and

across images. [88] employs a colorization objective on Sentinel-2 imagery utilizing the various

spectral bands. Most recently, SatMAE [17] explores the use of masked image modeling to train

a large ViT model. This work is similar in some respect to ours, as we also train a transformer

model with an MIM objective. However, we find that SatMAE often does not perform better than

the off-the-shelf ImageNet-22k pretrained ViT (Section 5.4). This indicates both the difficulty of

building strong geospatial pretrained models from scratch and highlights the potential usefulness

of leveraging continual pretraining instead, as we investigate in this work.

2.7 Masked Image Modeling

Masked image modeling (MIM) has been proposed in various forms in recent years, and has re-

cently been found to be particularly effective in the natural image domain, surpassing many con-

trastive works and being shown to be friendlier to downstream optimization [96, 35, 110, 8, 95] In

general, the goal is to learn from data in a self-supervised manner by asking the model to generate

pixel values for intentionally-withheld regions in an image. [74] is an early work with an aim of
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learning strong visual representations through inpainting masked regions. In [13], Chen et. al train

a large transformer to predict pixels autoregressively. After the introduction of vision transformers

(ViT) [23], many works continued to improve various MIM variants. [8] and [110] take inspira-

tion from BERT [20] in natural language processing, and tokenize the image patches with either

a pretrained model or jointly trained online tokenizer, with the objective being to reconstruct at a

token-level rather than raw pixels. Recently, [96] and [35] show that a masked image modeling

task of simply regressing directly on the image pixels is sufficient and effective. In this work, we

leverage the framework from [96], as it is compatible with hierarchical transformer architectures

[62].

In this work, we develop our pretraining objective based on a masked image modeling approach

like [96, 35]. Exploration of the masked image modeling framework in geospatial applications is

still in its early stages, and could help alleviate some concerns with contrastive approaches in this

domain. Particularly, the choice of augmentations with contrastive methods can be quite difficult,

as common selections such as greyscale, color jitter and others that heavily affect the intensity of

the image can instill undesirable invariances [69]. On the other hand, MIM objectives like [96, 35]

rely only on simple spatial augmentations such as flipping and cropping. Furthermore, a common

remote sensing application is that of change detection, which requires a model to detect changes

in two images from the same location but at different times. In order to still be effective on this

task, works that use contrastive approaches on temporal positives introduce various design choices.

For instance, SeCo [66] creates multiple feature subspaces during pretraining, each one invariant

to a separate form of augmentation. [6] also employs temporal positives, but instead chooses the

sampling locations for the pretraining data to ensure that image pairs contain primarily natural

illumination and viewing angle variant, without major changes such as new urban developments.
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2.8 Continual Pretraining

Continual pretraining has been primarily introduced in the natural language domain [30, 32, 63],

in order to improve large language models (LLM). [30] illustrates the viability of two additional

stages of pretraining, using in-domain data (domain-adaptive), and then even further using task-

specific data (task-adaptive). [32] proposes a continual training paradigm for enabling temporal

reasoning abilities to pretrained language models. [63] focus on using continual pretraining to en-

able mixed language neural machine translation. In the vision domain, [47] employs a BYOL [28]

style continual pretraining paradigm for 2D medical image segmentation. [77] explores a hierar-

chical pretraining approach for task adaptation. However, they primarily focus on adapting to a

specific downstream task at a time, employing three training stages on top of an existing pretrained

model for each task individually. In contrast, we employ one efficient in-domain pretraining setting

that can generalize to many downstream tasks, as illustrated in Section 5.4. Furthermore, rather

than directly loading the pretrained weights from existing models as initialization, we find instead

that leveraging the representations as an auxiliary distillation objective during the pretraining pro-

cess enables learning stronger representations.
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CHAPTER 3: RESOURCE EFFICIENT FEDERATED LEARNING

The work in this chapter has been published in the following paper:

Local Learning Matters: Rethinking Data Heterogeneity in Federated Learning. Matias Mendieta,

Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, Chen Chen. IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2022. Oral. Best Paper Finalist.

Prior approaches addressing the challenge of data heterogeneity in federated learning have incurred

notable memory and computational overhead. In contrast, our objective is to devise a simpler and

more resource-efficient solution. To commence our investigation, we undertake an empirical study

aimed at gaining deeper insights into the heterogeneity problem.

3.1 Empirical Study

We wish to assess the data heterogeneity challenge of FL from a simple yet unique perspective

of local learning generality. Specifically, we first study the effectiveness of standard regulariza-

tion techniques as solutions to this FL challenge in comparison to state-of-the-art methods.

3.1.1 Preliminaries

We employ three FL algorithms, namely FedAvg, FedProx, and MOON. These works represent

both classic baselines and current state-of-the-art, and are described in Section 2. For comparison,

we employ three state-of-the-art regularization methods: Mixup [108], Stochastic Depth [40], and
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GradAug [98]. Specifically, these regularization methods are applied to the local optimization

within a standard FedAvg setup, and their operations are described as follows.

Mixup is a data-level augmentation technique that performs linear interpolation between two

samples. Specifically, given two sample-label pairs (xi, yi) and (xj, yj), they are combined as

x̃ = βxi + (1− β)xj and ỹ = βyi + (1− β)yj , where β ∼ Beta(γ, γ).

Stochastic depth (StochDepth) is a structural-based method that drops layers during training, thereby

creating an implicit network ensemble of different effective lengths. Specifically, the output of

layer (or residual block) ℓ is given by ζℓ = σ (λFθℓ (ζℓ−1) + I (ζℓ−1)), where λ is a Bernoulli ran-

dom variable, Fθℓ is the operation within the network with parameter θ at layer ℓ, I is the identity

mapping operation of residual connections, and σ is a non-linear activation function. The keep

probability is defined as ρ = P (λ = 1), where in practice each layer has its own keep probability

set with a linear decay rule ρℓ = 1 − ℓ
L
(1 − ρL), with L denoting the total number of layers (or

blocks) in the network.

GradAug is a recent regularization approach that combines data-level and structural techniques in

a distillation-based framework. Its training loss is defined as

LGA = LCE(Fθ(x), y) + µ

n∑
i=1

LKD

(
Fθωi

(
T i(x)

)
,Fθ(x)

)
, (3.1)

where Fθωi denotes a slimmed sub-network of fractional width ωi, T i is a transformation performed

on the input (e.g. resolution scaling), and µ is a balancing parameter between the cross-entropy

loss LCE and the summed Kullback–Leibler divergence (LKD) loss on n sub-networks. The ωi

fractional width for each sub-network is sampled from a uniform distribution between a lower

bound ωb and 1.0 (full-width).
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3.1.2 Experimental Setup

To begin our analysis, we test the accuracy of several state-of-the-art FL algorithms with sev-

eral regularization methods in a common FL setting. We perform experiments using CIFAR-100

[52], an image recognition dataset with 50,000 training images across 100 categories, and employ

ResNet56 [36] (as implemented in FedML [33] with PyTorch [73]) as the model. As common

in the literature [58, 3, 33], the dataset is partitioned into K unbalanced subsets using a Dirichlet

distribution (Dir(α)), with the default being α = 0.5. With this data partitioning scheme, it is

possible for a client to have no samples for one or multiple classes (see Figure 3.1). Therefore,

many clients will only see a portion of the total class instances. This makes the setting more realis-

tic and challenging. For all methods and experiments we use an SGD optimizer with momentum,

and a fixed learning rate of 0.01. In our basic setting, training is conducted for 25 rounds, with 16

clients and 20 local epochs per round. Any modifications to this setting in subsequent results will

be stated clearly.

We compare the previously described FL algorithms and regularization methods. FedProx, MOON,

and GradAug all have a hyperparameter µ to balance their additional loss terms. We report all re-

sults with the optimal µ for all approaches, being 0.0001, 1.0, and 1.75 for FedProx, MOON, and

GradAug respectively. For Mixup and Stochastic Depth, γ and ρL are set to 0.1 and 0.9 respec-

tively. For GradAug specifically, the number of sub-networks n = 2, ωb = 0.8, and the applied

transformation T is random resolution scaling. A two-layer projection layer is added to the model

for MOON and the default temperature parameter τ = 0.5 as specified in the original paper. Basic

data augmentations (random crop, horizontal flip, and normalization) are kept consistent across all

methods.

24



0 3 6 9 12 15
Client

19

39

59

79

99

Cl
as

s

0

50

100

150

200

250

300

(a) CIFAR-100, α = 0.5

0 3 6 9 12 15
Client

19

39

59

79

99

Cl
as

s

0

100

200

300

400

(b) CIFAR-100, α = 0.1

0 3 6 9 12 15
Client

1

3

5

7

9

Cl
as

s

0

500

1000

1500

2000

2500

3000

3500

4000

(c) CIFAR-10, α = 0.5
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(d) ImageNet-200, α = 0.5

Figure 3.1: Data distribution visualization for Dir(α) and C = 16 across multiple datasets. Each
column shows the number of samples per class allocated to a client.

3.1.3 Results Comparison

The accuracy results are shown in Table 3.1. Within the current state-of-the-art FL algorithms

(upper portion of Table 3.1), MOON achieves the best accuracy. This is expected, as MOON is the

most intricate of the FL methods, requiring the usage of three individual models for its contrastive

learning technique. However, when we compare with standard regularization techniques (Mixup,
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Table 3.1: Results for accuracy (%) on CIFAR-100 and second-order metrics indicating the
smoothness of the loss space (λmax, HT ) and cross-client consistency (HN , HD) for each method.

Method Acc. ↑ λmax↓ HT↓ HN↓ HD↑
FedAvg 52.9 297 6240 11360 0.98
FedProx 53.0 270 6132 6522 0.98
MOON 55.3 252 5520 5712 0.97
Mixup 54.0 216 5468 15434 0.99

StochDepth 55.5 215 3970 8267 0.97
GradAug 57.1 167 2597 2924 0.96

StochDepth and GradAug in the lower portion of Table 3.1), we see that these perform similarly

or substantially better. GradAug particularly stands out, achieving an accuracy ∼2% higher than

MOON and ∼4% higher than FedAvg and FedProx. StochDepth also achieves similar accuracy

to MOON. Furthermore, these regularization methods bring the same or better performance than

MOON, with less memory and/or compute requirements. We find that regularization methods

appear to have an advantage in this situation; however, we wish to further investigate why this

could be the case. Next, we present our in-depth analysis based on second-order information in

Section 3.1.4.

3.1.4 Algorithm Analysis based on Second-order Information

Recent works in the Neural Architecture Search domain [14, 106], as well as in network general-

ization [50, 101, 44], have noted the importance of the top Hessian eigenvalue (λmax) and Hessian

trace (HT ) as a predictor of performance and indicator of network generality. Having a lower

λmax and HT typically yields a network that is less sensitive to small perturbations in the networks

weights. This has the beneficial effects of smoothing the loss space during training, reaching a

flatter minima, and easing convergence. These properties are particularly advantageous in feder-

ated learning, where extreme non-IID distributions and limited local data often make convergence
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Figure 3.2: Visualization of the parametric loss landscape with Hessian eigenvectors ϵ0 and ϵ1 for
each resulting global model.

difficult.

Motivated by these insights, we analyze the top Hessian eigenvalue and Hessian trace of the global

models trained with each FL scheme to provide insight into the effectiveness of each method. As

described in [100], the top Hessian eigenvalues can be approximated with the Power Iteration [101]

method using a simple inner product and standard backpropagation. Furthermore, [100] also find a

similar approximation for the trace utilizing the Hutchinson method [41]. We conduct our analysis

with the top Hessian eigenvalues and trace of the final averaged models using these methods.

In Table 3.1, we include the results of the Hessian analysis. First, we find that FedAvg has the

highest λmax and HT . FedProx and MOON each result in lower values, indicating some degree

of improved generalization. However, interestingly, we find that regularization methods are most

effective at reducing the λmax and HT , with GradAug having by far the lowest in both values. We

visualize the effect of this reduction in λmax andHT in Fig. 3.2, where it can be seen that GradAug

is able to smooth out the loss landscape considerably in comparison to FedAvg.
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In the separate field of out-of-distribution (O.O.D.) generalization for centralized training, second-

order information is being found quite useful as a theoretical indicator. Recent works [72, 76] find

that forming representations that are “hard to vary” seem to result in better O.O.D. performance.

More specifically, they show that the resulting loss landscapes across domains for the learned

model should be consistent with each other. In terms of theoretical indicators, this translates to

matching domain-level Hessians, as the Hessian provides an approximation of local curvature.

Similarly, in federated learning, each client is essentially a separate domain. Therefore, match-

ing Hessians in norm and direction across clients reveals additional detail and reasoning behind

the effectiveness of each method. In light of these findings in O.O.D. literature, we analyze the

difference in Hessian norm (HN ) and the Hessian direction across clients (HD), where

Hk,j
N =

(
∥Diag (Hk)∥F − ∥Diag (Hj)∥F

)2 and (3.2)

Hk,j
D =

Diag (Hk)⊙Diag (Hj)

∥Diag (Hk)∥F · ∥Diag (Hj)∥F
. (3.3)

Here, ⊙ is the dot product, Hk and Hj are the Hessian matrices of clients k and j, and ∥·∥F is

the Frobenius norm. Hk,j
N and Hk,j

D are averaged across all pairs of clients and reported as simply

HN and HD in Table 3.1. For these Hessian matching criteria, a lower HN (less difference) and a

higher HD (essentially the cosine similarity) are desired.

As seen on the right side of Table 3.1, HD is fairly consistent across all methods. In terms of λmax,

HT , and HD, most methods seem to correlate decently well between these values and perfor-

mance. However, there are a few cases which require more information. First, Mixup has a similar

HT value as MOON, but lower accuracy. HN provides another detail; the Hessian norms of Mixup

are not nearly as similar across clients as those of MOON. Between MOON and StochDepth, we

see that MOON has both a higher λmax and HT , but StochDepth has a higher HN . In the end,

MOON and StochDepth result in similar performance, with perhaps a slight edge towards the
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latter.

Key Insight. It appears that both the eigenvalue/trace analysis and Hessian matching criteria can

serve as a guiding indicator for optimal FL methods. Particularly, they provide insight into the

facilitation of convergence and aggregation thorough landscape smoothness and consistency. To

understand how these differences will play out empirically, we conduct a variety of ablations in

Section 3.1.5.

3.1.5 Ablation Study under Various FL Settings

3.1.5.1 Data Heterogeneity

Federated systems can be deployed with many different setups and diverse environments. We

conduct further analysis across a variety of FL settings to ensure the generality of our findings.

First, we examine the effect of varying the degree of heterogeneity in the client data distributions.

The results are shown in Table 3.2. We report the mean accuracy ± the standard deviation across

three runs. All other settings are maintained from Section 3.1.2; only the data distribution Dir(α)

is varied. A lower α value indicates a more heterogeneous distribution.

Table 3.2: Ablation results for varying degrees of data heterogeneity.

Method α = 0.1 α = 0.5 α = 2.5 homog
FedAvg 45.0±0.2 52.9±0.1 54.4±0.2 54.9±0.4
FedProx 45.2±0.3 53.1±0.3 54.5±0.3 54.8±0.5
MOON 46.5±0.5 55.0±0.5 56.3±0.6 56.3±0.5
Mixup 44.3±0.1 54.0±0.1 55.5±0.4 56.7±0.4

StochDepth 48.2±0.3 55.5±0.2 57.6±0.2 58.1±0.6
GradAug 48.6±0.4 57.0±0.1 59.6±0.2 60.5±0.2

As the degree of data heterogeneity decreases, the effect of client drift should become less signifi-
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Table 3.3: Ablation results for number of local training epochs.

Method E = 10 E = 20 E = 30

FedAvg 50.6±0.1 52.9±0.1 53.2±0.3
FedProx 50.7±0.5 53.1±0.3 52.8±0.1
MOON 50.7±0.4 55.0±0.5 55.2±0.4
Mixup 50.5±0.4 54.0±0.1 54.4±0.3

StochDepth 50.9±0.6 55.5±0.2 56.4±0.3
GradAug 53.5±0.3 57.0±0.1 57.7±0.3

cant. Therefore, we expect that the accuracy for each method will increase, with peak performance

in the homogeneous setting. All regularization methods, as well as FedAvg, perform as expected,

and find consistent improvement across the degrees of data distribution. However, we see that the

accuracy improvement of FedProx and MOON slows as the data approaches homogeneity, with

accuracy in the purely homogeneous setting (“homog” in Table 3.2) remaining quite low. In their

attempt to mitigate client drift and keep local updates close to the global model, it appears that they

also hinder their ability to fully learn on minorly heterogeneous or even homogeneous data. This

is not ideal for deployable FL systems, as the degree of heterogeneity is not known ahead of time.

Moreover, even in the most heterogeneous cases, the structural regularization methods perform

better than the standard FL algorithms. For instance, StochDepth achieves a ∼1.7% improvement

over MOON at α = 0.1, while also having improvement in more homogeneous situations. In all

settings, GradAug performs the best.

3.1.5.2 Number of Local Training Epochs

The main purpose for adequately handling data heterogeneity is to allow for more productive train-

ing on the client each round, therefore reducing the time to convergence and required communi-

cation cost. Therefore, to examine the training productivity of each method, we examine their
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accuracy with various allotted local training epochs per round (E) in Table 3.3.

Ideally methods should continue to improve in accuracy with more allotted local training epochs.

In Table 3.3, we see that all methods steadily improve from 10 epochs per round to 20. However,

from 20 to 30, the trends vary considerably. As a baseline, FedAvg slightly improves by ∼0.3%.

Surprisingly, FedProx and MOON stay relatively stagnant from 20 to 30 epochs. Meanwhile, the

standard (particularly structural) regularization methods continue to increase in accuracy. There-

fore, these methods illustrate the ability to maintain productive training, even across a wide range

of allotted local epochs.

3.1.5.3 Number of Clients

In real-world FL settings, the number of participating clients can vary widely. Moreover, only

a portion of clients are potentially sampled per round, whether for connectivity reasons or other

capacity restrictions of the central system. Therefore, it is crucial that an FL method can converge

under such conditions. We study the affect of client number and client sampling in Table 3.4.

C = 64× 0.25 indicates that there are 64 total clients in the system, but only a fraction (0.25) are

sampled each round. The rest of the presented results in Table 3.4 sample all K clients each round.

C = 64× 0.25 (100) is run for 100 rounds, and all other settings for the default 25 rounds.

The trends of most methods are similar with increasing clients. However, FedProx struggles to

keep up with the FedAvg baseline, especially in the client sampling cases. These scenarios are par-

ticularly important; when a small percentage of clients are sampled, only a portion of the dataset

is effectively trained on each round. Therefore, learning efficiency becomes paramount for main-

taining suitable convergence. The standard regularization methods maintain better accuracy than

FedAvg in all settings, often by a significant margin, and even in the client sampling scenario.

Overall, GradAug performs the best in all cases. Therefore, even though these regularization
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Table 3.4: Ablation results for varying number of clients C in synchronous and client sampling
cases.

Method C = 16 C = 32 C = 64 C = 64× 0.25 C = 64× 0.25 (100)
FedAvg 52.9±0.1 44.5±0.3 34.6±0.2 32.7±0.5 46.5±0.6
FedProx 53.1±0.3 44.5±0.6 34.8±0.2 32.5±0.4 46.2±0.1
MOON 55.0±0.5 45.8±0.3 35.2±0.8 34.2±0.2 49.5±0.7
Mixup 54.0±0.1 46.0±0.1 36.0±0.2 33.6±0.6 49.1±0.2

StochDepth 55.5±0.2 47.5±0.2 35.5±0.6 34.6±0.1 51.4±0.1
GradAug 57.0±0.1 50.4±0.1 40.2±0.1 38.1±0.3 53.3±0.5

methods were not designed for the FL setting and partial client sampling, they still perform on par

with or improve over current state-of-the-art FL algorithms.

3.2 Proposed Method – FedAlign

Overall, we find that GradAug is particularly effective in the FL setting, having the highest accu-

racy in all tested scenarios along with the lowest λmax, HT , and HN . However, while this method

is quite memory efficient in comparison to many FL methods (only requires a single stored model

during training), it does incur a substantial increase in training time and local computation over

the FedAvg baseline. This is because GradAug requires multiple forward passes through slimmed

sub-networks for the distillation loss. It is possible to reduce the computation burden to some

extent by using a smaller number of sub-networks during the knowledge distillation process, as

seen in Table 3.5. Here, the µ in GradAug is adjusted to 2.0, 1.5, and 1.25 for n = 1, 3, and 4,

respectively. Nonetheless, a considerable gap still remains between GradAug and vanilla FedAvg

in local compute requirements and subsequent wall-clock time. Therefore, the question is, can

we devise a method which provides similar effect and performance as GradAug in FL, but

with substantially less computational overhead? This is particularly important in the FL setting,

where clients are typically deployed devices with minimal memory and computational resources.
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Table 3.5: Analysis of local compute, stored parameters, and wall-clock time. FLOPs are cal-
culated for the compute needs for the forward pass of the training process. Parameters include
the total number of stored parameters needed for each method during training. Wall-clock time
is measured as a per-round average on CIFAR-100 with C=16 and E=20 across 4 RTX-2080Ti
GPUs.

Method Acc (%) ↑ MFLOPs ↓ Param (M) ↓ Time (s)
FedAvg 52.9±0.1 87.3 0.61 137.2
FedProx 53.1±0.3 87.3 1.21 161.9
MOON 55.0±0.5 262.2 2.21 414.2
Mixup 54.0±0.1 87.3 0.61 137.8

StochDepth 55.5±0.2 82.4 0.61 136.7
GradAug (n = 1) 56.7±0.3 133.9 0.61 229.2
GradAug (n = 2) 57.0±0.1 170.7 0.61 323.9
GradAug (n = 3) 56.8±0.3 217.4 0.61 417.7
GradAug (n = 4) 56.9±0.3 264.1 0.61 514.4

FedAlign 56.8±0.3 89.1 0.61 166.2

To do so, we first take note of the following insights gathered during our analysis: 1) Second-order

information is insightful for understanding the learning generality of neural networks. Particularly,

we find that flatness and consistency in this realm are desirable traits. 2) In practice, we find

that structural regularization, and especially distillation-based like GradAug, is quite effective.

Furthermore, the weight sharing mechanisms of such approaches are memory efficient compared

to other methods that rely on global model or previous model storage. Therefore, we combine

these insights into a novel algorithm to optimize for performance and resource needs in FL.

We propose FedAlign, a distillation-based regularization method that aligns the Lipschitz con-

stants (i.e. top Hessian eigenvalues) of the most critical network components through the use of

slimmed sub-blocks. Fig. 3.3 shows an overview of FedAlign, whose design is based on two key

principles. First, motivated by the insights of Section 3.1.4, we internally regularize the Liptschitz

constants of network blocks to promote smooth optimization and consistency within the model. Re-

cent work [83] presents a quick approximation of the Lipschitz constants for neural network layers
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Figure 3.3: The proposed FedAlign for local client training in FL. Features fθL−1
are run through

Block L as normal. The only additional inference in FedAlign is through Block L at a reduced
width (i.e. sub-block), reusing features fθL−1

as input. The channels throughout the layers in the
sub-block are a ωS fraction of the original number. This is accomplished via temporary uniform
pruning of Block L.

in a differentiable manner. This enables the use of second-order information in the distillation pro-

cess, traditionally between a fully trained teacher and a learning student. We adapt this technique

for distillation-based regularization with a single untrained network in place of the traditional logit-

based loss. Second, in order to reduce computation in a purposeful manner, we take note of certain

network properties. Particularly, it has been shown that the final layers of a neural network are

most prone to overfit to the client distribution [65]. Therefore, we design FedAlign with a focus

on these critical points in the network. The question we raise is, when aiming to concentrate our
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regularization efforts on the final layers, why should we run all sub-networks for distillation from

start to finish? Instead, we propose to reuse the intermediate features of the full network as input to

just the final block at a reduced width, and therefore significantly reduce computation. In this way,

we harness the benefits of distillation-based regularization in performance and memory footprint,

while effectively mitigating computational overhead.

Combining these two key principles, we form the FedAlign local objective as

LFA = LCE(Fθ(x), y) + µLLip (KS,KF ) , (3.4)

where µ is a balancing constant, LCE is the cross-entropy loss, and LLip is the mean squared

error between the approximated Liptschitz constant vectors KS and KF for the reduced width

(i.e. sub-block) and full width block L, respectively. Specifically, the Lipschitz approximations

are calculated via the spectral norm of a transmitting matrix using feature maps as in [83], which

bypasses the need for singular value decomposition. Therefore, we use the intermediate features

for these transmitting matrices XF and XS , where

XF =
(
fθL−1

)⊤
fθL , and (3.5)

XS =
(
fθL−1

)⊤
fθωS

L
. (3.6)

fθL and fθL−1
are the feature maps outputted by the last and prior-to-last blocks of the full network

Fθ(x); fθωS
L

is the output feature map of the final block L at reduced width ωS (see Fig. 3.3).

Finally, the spectral norm (SN ) of XF and XS are approximated using the Power Iteration method

[101], and therefore KF = ∥XF∥SN and KS = ∥XS∥SN . A pseudocode implementation of

FedAlign in presented in Alg. 1. Looking back to Eq. 3.4, one could view LLip as a correction

term; however, there is a key distinction between this form of regularization and that of traditional
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Algorithm 1 FedAlign
SERVER OPERATIONS
Inputs: Round number R, Set of clients S
Output: Final global model weights θRglobal
Initialize model weights θ0global
for r = 0, 1, . . . , R− 1 do

Sample available clients C from S
for client c ∈ C in parallel do

θrc ← CLIENTOPERATIONS(θrglobal)
end for
θr+1
global ←

∑C
c=1

nc
n
θrc

end for
CLIENT OPERATIONS
Input: Model weights θglobal
Output: Updated local model weights θ
Load received weights θglobal to local model Fθ

for epoch e = 0, 1 . . . , E − 1 do
for batch {x, y} ∈ D do ▷ Local dataset D

fθL−1
, fθL , pred = Fθ(x)

f
θ
ωS
L

= F
θ
ωS
L

(fθL−1
)

XS ,XF = TM(f
θ
ωS
L

, fθL−1
, fθL ) ▷ Eqs. 3.5, 3.6

KS ,KF = ∥XS∥SN , ∥XF ∥SN
LFA = LCE(pred, y) + µLLip (KS ,KF )
θ ← update(θ,LFA) ▷ Gradient descent

end for
end for
Send updated local model weights θ to server

FL algorithms. Our correction term promotes the local client models to learn well-generalized

representations based on their own data, instead of forcing the local models to be close to the

global model.

Table 3.6: FedAlign ablation results on CIFAR-100.

Method α = 0.1 α = 2.5 homog E = 10 E = 30 C = 32 C = 64 C = 64× 0.25 C = 64× 0.25 (100)

FedAlign 48.7±0.2 57.6±0.6 58.2±0.1 51.2±0.3 57.9±0.6 47.8±0.3 36.5±0.1 34.9±0.6 50.9±0.5

Table 3.7: CIFAR-10 and ImageNet-200 results for all methods.

CIFAR-10 ImageNet-200
Method C = 16 C = 64× 0.25 (100) MFLOPs ↓ Param (M) ↓ C = 16 C = 32× 0.125 (50) GFLOPs ↓ Param (M) ↓
FedAvg 81.9±0.6 78.9±0.3 87.3 0.61 60.7±0.4 52.7±0.2 18.1 11.22
FedProx 81.9±0.2 78.9±0.7 87.3 1.21 61.0±0.4 52.5±0.3 18.1 22.42
MOON 82.9±0.4 79.4±0.5 262.2 2.21 61.1±0.2 54.3±0.2 54.4 19.96

Mixup 80.3±0.4 80.5±0.5 87.3 0.61 61.0±0.3 52.3±0.3 18.1 11.22
StochDepth 82.2±0.2 80.8±0.7 82.4 0.61 60.5±0.2 52.9±0.2 17.3 11.22

GradAug (n = 2) 84.6±0.6 83.8±0.3 170.7 0.61 63.5±0.4 55.6±0.1 34.4 11.22
GradAug (n = 1) 84.0±0.2 82.3±0.5 133.9 0.61 62.8±0.3 54.4±0.4 25.3 11.22

FedAlign 82.3±0.3 82.3±0.3 89.1 0.61 62.0±0.1 55.1±0.5 19.3 11.22
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As seen in Table 3.5, FedAlign achieves state-of-the-art accuracy in a resource-efficient manner.

With just a 1.02x difference in FLOPs, FedAlign realizes a significant ∼3.9% accuracy improve-

ment over the FedAvg baseline. For the FL algorithms FedProx and MOON, they not only have

much lower accuracy than FedAlign, but also require substantially more compute and/or memory.

Particularly, FedAlign achieves a ∼1.8% accuracy improvement over MOON, while reducing the

local compute overhead by over 65% and the memory requirements by over 70%. Furthermore,

FedAlign realizes a critical ∼47% and ∼33% reduction in compute needs compared to GradAug

with (n = 2) and (n = 1), without sacrificing accuracy.

3.2.1 FedAlign Experiments

We further verify the effectiveness of our method across various settings and datasets. In Table

3.6, we examine the performance of FedAlign with the same ablations as in Section 3.1.5, where

FedAlign exhibits strong performance in many settings. We also investigate FedAlign and all

other methods across two additional datasets: CIFAR-10 and ImageNet-200. For ImageNet-200,

we randomly sample 200 classes from the classic ImageNet-1k [80] dataset. We employ ResNet56

and ResNet18 [36] as our models on CIFAR-10 and ImageNet-200, respectively. For FedAlign,

ωS = 0.25 and µ = 0.45 in all results. Hyperparameters for all other methods are those described

in Section 3.1.2 (with µ = 2.0 for GradAug (n = 1) as in Table 3.5).

For CIFAR-10, we ran a 16 client synchronous and 64 client case with sampling in Table 3.7.

We note similar trends to CIFAR-100; regularization methods perform well, particularly in the

more realistic client sampling case. On ImageNet-200, we also ran synchronous and sampling

settings. Here, both GradAug and FedAlign maintain higher performance than other methods.

FedAlign provides competitive accuracy with GradAug (n = 1) and even (n = 2) in the sampling

case, while reducing computational needs by a significant margin. Interestingly, StochDepth does
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not perform as well in the ImageNet-200 cases. As mentioned in the original paper [40], Stochastic

Depth performs better with deeper networks. However, with ResNet18, the overall depth of the

network is reduced compared to that in the CIFAR cases. Therefore, as most deployable networks

favor width over depth, regularizing with respect to the width of a network is more applicable to the

FL setting. This highlights an additional benefit of FedAlign, which operates using width reduction

in the final block and maintains relatively high accuracy despite low resource needs.

3.3 Summary and Discussion

In this chapter, we study the data heterogeneity challenge of FL from a simple yet unique perspec-

tive of local learning generality. To this end, we present a thorough study of various methods in FL

settings, and further propose FedAlign, which achieves competitive SOTA accuracy with excellent

resource efficiency. One limitation of our study is that we only focused on image tasks and models

for the experiments. Natural language processing applications of FL are also a common setting,

and therefore could be explored in future work. Nonetheless, we note that FedAlign can easily be

applied to language applications, as it operates in the feature space and does not have a fundamen-

tal reliance on the input type. On the other hand, GradAug is primarily designed for vision data,

employing a random transformation and applying it to the input of sub-networks.

While no one presented regularization method is perfect in all respects, we emphasis that local

learning is extremely important in federated settings. Furthermore, methods that particularly focus

on promoting learning generality inherently improve global FL aggregation and optimization to a

surprising degree. By introducing methods like GradAug in FL, we propose a rethinking of fed-

erated optimization and how to tackle its challenges. As a step further in this direction, FedAlign

provides strong improvement over classic baselines and state-of-the-art FL methods while address-

ing the local computational restraints of an FL system.
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CHAPTER 4: COMMUNICATION EFFICIENT FEDERATED

LEARNING

The work in this chapter has been submitted as a conference paper:

Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models,

Matı́as Mendieta, Guangyu Sun, Chen Chen.

A significant bottleneck in federated learning pertains to communication. Typically, communica-

tion with the server is necessitated in each round and across multiple rounds. In order to alleviate

this bottleneck, we explore the one-shot federated learning paradigm, developing a framework with

diffusion models to concurrently address the challenge of data heterogeneity while mitigating com-

munication overheads. Within this investigation, we formulate two primary research questions:

RQ1. Initially, we inquire into the efficacy of diffusion models within the framework of feder-

ated learning and their potential for enhancing the performance of the one-shot federated learning

process. The emergence of diffusion models [38] as prominent techniques for image generation

inspires our inquiry. We posit that distinctive attributes of diffusion models may confer advan-

tages for one-shot federated learning, as elucidated in Section 4.1. Subsequently, we substantiate

this hypothesis through comprehensive experimentation with our proposed approach, denoted as

FedDiff, across diverse experimental settings.

RQ2. Secondly, we dive into the realm of one-shot federated learning methodologies under prov-

able privacy constraints, leveraging differential privacy (DP). This aspect remains largely unad-

dressed in existing state-of-the-art one-shot federated learning literature. Given the criticality of
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safeguarding model privacy, particularly in scenarios where client models obtained through one-

shot federated learning may be subject to multiple reuses or potential trading in a model market-

place, we examine the efficacy of DP as a privacy-preserving mechanism. Moreover, drawing upon

recent advancements [9], we investigate potential memorization issues within the context of dif-

fusion models utilized in our FedDiffapproach, and assess the effectiveness of DP as a mitigation

strategy.

Diffusion model training

Client C

Client 0

Local data

…Client 2

Single round 
communication …

Server

Noise inputs
Noise inputs

Generate synthetic data from client models Server training with generated samples

Server classifier

Gather , …, 
to form 

Figure 4.1: Our one-shot FL approach, FedDiff. We first train a class-conditioned diffusion model
on local data x at the clients. After completing training, the local diffusion models D0, D1, ..., Dc

are gathered by the server, where they are used to generate data z0, z0, ..., zc, which are combined
to form the global training data G. The global model is then trained on this synthetic dataset G.

4.1 Diffusion Models for Federated Learning

Before delving into the underlying motivation for our research questions RQ1 and RQ2, it is essen-

tial to provide a brief exposition of the one-shot FL process when integrating generative models.

The core premise of this approach departs from the traditional method of client-side discriminative

model training. Instead, it advocates for the training of generative models on the client devices.

These client-side generative models are aggregated and used offline on the server side to synthesize

data, which, in turn, facilitates the training of a global discriminative model. Within the scope of

our study, we undertake an investigation into the viability of leveraging diffusion models in this

paradigm.
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Why diffusion models? In [94], a generative learning trilemma is shown with model types, trad-

ing off sample quality, diversity, and fast sampling. CVAEs (as employed in [37]) are typically

identified to excel in diversity and fast sampling, but lacking in sample quality. However, for one-

shot federated learning, fast sampling is not a concern, as the sampling can be done offline at the

server (Figure 4.1). Therefore, high sample quality and diversity are more valuable properties in

one-shot FL, as these will positively impact the performance of the trained global model with the

synthetic data. In this trilemma, diffusion models excel in sample quality and diversity [94], but

are not as quick to sample. This motivated us to investigate the potential of DMs in this setting, as

the inherit strengths of DMs align with the needs of one-shot FL.

Furthermore, while CVAEs and diffusion models share a common origin in terms of their objec-

tive, they differ in their approach to achieving this objective. The optimization task of the diffusion

model is simplified to learning a Markov process to reverse a fixed forward process. The training

is structured such that the model only needs to learn how to denoise a small step in the genera-

tion process, breaking down the problem. In contrast, CVAEs must simultaneously learn both the

forward process to encode the image to a latent space, and the decoding process from that latent

vector. We reason that the simplified objective of DMs helps achieve superior performance when

dealing with complex data within the challenging FL environment (data heterogeneity, class im-

balance, and limited sample sizes). Moreover, in the FL setting, privacy is of critical importance.

To ensure privacy, training is done with DP, which introduces noise to the training process and in-

creases the difficulty of optimization. In these settings, the simpler training paradigm of diffusion

models is potentially advantageous.

Overview. To provide a contextual foundation for our research inquiries, we start by laying out

the settings of our study and approach in Section 4.1.1. With this groundwork, we investigate RQ1

in Section 4.2, where we dive into the effectiveness of diffusion models in one-shot FL with our

FedDiff approach. In Section 4.3, we address RQ2 through a systematic exploration of one-shot
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FL methods within provable privacy budgets. Specifically, we evaluate FedDiff and other SOTA

approaches under DP constraints, as well as investigate the viability of DP in mitigating mem-

orization. In Section 4.3.3, we also introduce our Fourier Magnitude Filtering approach, aimed

at enhancing the efficacy of generated data for global model training by selectively eliminating

low-quality samples.

4.1.1 FedDiff and Experimental Setup

The basis of our approach, FedDiff, is illustrated in Figure 4.1. We begin by training class-

conditioned diffusion models using the local data x on the clients. After training, the server collects

these local models, denoted as D0, D1, ..., Dc, which are then used to generate data z0, z1, ..., zc.

The label distributions from the clients are used to condition the generative models during gener-

ation, as in [37]. The combination of these synthesized samples forms our global training dataset,

G. Subsequently, the global model is trained on the synthetic dataset G and evaluated in our

experiments.

4.1.1.1 Comparison Methods.

We compare with key baselines and the most recent state-of-the-art one-shot FL methods through-

out our investigation.

FedAvg [67] is a standard baseline, which simply trains discriminative classifiers at the clients and

averages their parameters, typically weighted by the number of samples at each client, to form a

single server model.

DENSE [109] is a one-shot FL approach that first trains the discriminative classifiers on the clients

to convergence. Once the client models are collected, it performs two stages of training in an
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interactive manner, switching between training a GAN-based network for generating synthetic

data and using the synthetic data to distill the ensemble of client models to a single server model.

OneShot-Ens. We also include an idealized variant of DENSE, where rather than attempt to distill

the ensemble of client models to a single server model, we simply employ the ensemble as the final

model, as shown in [29] and similarly compared to in [37]. We term this approach OneShot-Ens

throughout the paper.

FedCVAE [37]. This recently proposed method employs conditional variational autoencoders

(CVAEs) for one-shot federated learning. Their approach has two variants, FedCVAE-KD and

FedCVAE-Ens, which differ in how they operate at the server level. FedCVAE-KD distills all gen-

erative models from the clients to a single CVAE, and then generates data for training the global

model. On the other hand, FedCVAE-Ens employs each client model to generate data, contribut-

ing to the final dataset for training the server model. The latter variant always shows significantly

better performance than the other in their paper; therefore, we compare with this FedCVAE-Ens

variant and refer to it as FedCVAE in the rest of the paper.

4.1.1.2 Datasets.

We employ three datasets, FashionMNIST [92], PathMNIST [97], and CIFAR-10 [51], which

provide a range of domains and complexities. For our experiments, we divide the training set

amongC clients with a Dirichlet distributionDir(α), as commonly done in FL literature [68, 4, 34,

37]. This partitioning approach creates imbalanced subsets, where some clients may not have any

samples for certain classes. As a result, a significant number of clients will only encounter a small

subset (or potentially only one) of the available class instances. We visualize data distributions

with Dir(0.1) and Dir(0.001) across 10 clients in Figure 4.2.
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4.1.1.3 Federated Learning Settings.

We reproduce DENSE and FedCVAE for our settings with their respective official code reposi-

tories. For all experiments, we perform 3 independent runs with different seeds and report the

mean and standard deviation. For all approaches, we train client models for 200 local epochs, as in

[109]. For DENSE, FedCVAE, and FedDiff, we train the final global model for 50 epochs. For the

generator of FedCVAE, we employ their CVAE variant with residual blocks, which has approxi-

mately 5.9M parameters. For our diffusion model, we employ a basic U-Net structure with residual

blocks [38, 78] and class-conditioning, with similar parameters to FedCVAE (∼5.8M). We employ

a ResNet16 architecture for the discriminative models with approximately 6.4M parameters. For

experiments with differential privacy, we employ the Opacus [103] library in PyTorch [73] to track

privacy budgets.

4.1.1.4 Additional Training Details

The FashionMNIST dataset is an alternative to the original MNIST dataset, providing a more chal-

lenging task by replacing the handwritten digits with grayscale images of various fashion items.

The dataset consists of 60,000 training images and 10,000 test images. The PathMNIST dataset

is a medical dataset of colon pathology images in RGB, with a training set of 89,996 images and

a test set containing 7,180 images with 9 classes. The CIFAR-10 dataset consists of 60,000 color

images equally distributed into ten different classes. The dataset is composed of a training set

containing 50,000 images and a test set comprising of 10,000 images. CIFAR-10 is natively sized

at 32×32 pixels. We upsample FashionMNIST and PathMNIST from 28×28 to 32×32.

We train with a batch size of 128 for all methods and use the AdamW optimizer. For local (and

global training were applicable), we searched learning rates from [3e−3, 1e−3, 3e−4, 1e−4] for
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(a) α = 0.1 (b) α = 0.001

Figure 4.2: Dir(α) data partitioning for 10 clients on CIFAR-10. We show moderate (α = 0.1)
to severe (α = 0.01) data heterogeneity levels. Data heterogeneity poses a significant challenge
for many one-shot FL methods, as reconciling various models trained on widely different distri-
butions is non-trivial. Our FedDiff approach rather trains diffusion models on the simple client
distributions, which can then generate useful synthetic data for training global models.

each method using the CIFAR-10 dataset to find the optimal settings. For DP experiments, we set

the max gradient norm clipping threshold to 1.0 for all experiments and methods. In accordance

with the recommendations of the Opacus [103] library, we employ their Poisson batch sampling to

ensure privacy guarantees.

As mentioned in Section 3.1 of the main paper, our diffusion model is a basic U-Net structure

with residual blocks [38, 78] and class-conditioning. For sampling at the server, we perform 1000

iterations as in [38] to generate each batch. The total number of generated samples is set equal to

the size of the original dataset.
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Table 4.1: Data heterogeneity results with various Dir(α) partitions. Smaller alpha values indi-
cate higher levels of heterogeneity. Typical approaches leveraging discriminative models rapidly
degrade in performance as heterogeneity increases. However, generative approaches are more ro-
bust to such conditions. Our FedDiff shows superior performance to all, particularly in the
most challenging scenarios (CIFAR-10, high heterogeneity).

Method α = 0.1 α = 0.01 α = 0.001

FashionMNIST

FedAvg 57.11±3.64 29.50±10.6 25.89±4.78
DENSE 65.20±3.55 28.92±17.3 27.68±4.08

OneShot-Ens 67.35±1.19 33.79±17.9 32.01±3.35
FedCVAE 78.08±2.69 78.81±3.25 81.53±0.23
FedDiff 87.21±0.74 86.81±0.54 86.59±0.69

PathMNIST

FedAvg 28.10±4.60 22.05±8.20 21.92±4.95
DENSE 50.97±3.19 29.26±10.7 27.69±4.52

OneShot-Ens 34.62±3.61 34.94±9.32 34.49±5.30
FedCVAE 41.60±0.82 44.81±1.41 47.35±3.21
FedDiff 74.58±1.02 70.61±1.37 69.43±1.30

CIFAR-10

FedAvg 19.64±2.39 19.01±3.76 18.16±5.49
DENSE 36.04±7.75 21.40±2.73 17.91±3.18

OneShot-Ens 39.38±7.53 23.38±3.62 20.15±9.11
FedCVAE 34.40±1.04 36.06±3.27 36.92±1.38
FedDiff 57.69±2.07 56.57±2.42 55.75±1.55

4.2 RQ1: FedDiff for One-Shot FL

We investigate RQ1 by exploring the efficacy of our FedDiff approach and other SOTA one-shot

FL methods across important FL scenarios, including different data heterogeneity levels, number

of clients, and resource requirements.
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(a) FedCVAE (b) FedDiff (ours)

Figure 4.3: Random sets of generated samples from FedCVAE and our FedDiff approach. By
leveraging the intrinsic properties of diffusion models (DMs), which are well-aligned with the
requirements of one-shot FL, we achieve substantial benefits in sample quality and subsequent
global model performance.

4.2.1 Data Heterogeneity

Data heterogeneity is a critical challenge in FL, particularly with one-shot settings. Even in the

standard FL scenario of multiple communication rounds, client models often fit to very different

distributions, and effectively reconciling their learnings is daunting. This is exacerbated in the

one-shot setting, as we no longer have the luxury of getting many iterations to progressively steer

the learning process towards an ideal encompassing representation.

In Table 4.1, we analyze the performance of all methods under moderate (Dir(0.1)) to extreme

(Dir(0.001) heterogeneity. Interestingly, FedDiff outperforms all other methods by a significant

margin, from ∼5% to up to ∼20% in different scenarios. In the case of CIFAR-10, which is the

most complex of the datasets, we find that FedDiff provides the most improvement. As discussed

in our initial motivations (Section 4.1), we reason that the focus on sample quality and diversity

that is provided by the DM objective enables much improved performance. Intuitively, this be-

comes increasingly evident in more complex settings. To verify this observation, we conduct a
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Table 4.2: Results with varying number of clients C with Dir(0.01). As a fixed-size dataset is
used in all experiments, increasing the number of clients also decreases the number of samples per
client. We find that the SOTA discriminative approaches quickly degrade as the data is distributed
across more clients. On the contrary, our FedDiff maintains strong performance in all settings.

Method C = 5 C = 10 C = 20

FashionMNIST

FedAvg 43.73±2.37 29.50±10.6 28.38±3.17
DENSE 48.24±6.25 28.92±17.3 20.72±9.82

OneShot-Ens 49.53±6.08 33.79±17.9 31.36±8.01
FedCVAE 78.45±2.44 78.81±3.25 78.33±2.45
FedDiff 86.89±0.34 86.81±0.54 87.24±0.57

PathAMNIST

FedAvg 29.18±3.54 22.05±8.20 19.83±3.16
DENSE 33.39±6.14 29.26±10.7 20.79±5.77

OneShot-Ens 36.95±5.30 34.94±9.32 24.59±6.19
FedCVAE 46.16±1.17 44.81±1.41 41.25±1.68
FedDiff 72.74±0.63 70.61±1.37 69.11±0.99

CIFAR-10

FedAvg 29.14±5.15 19.24±3.77 15.79±2.64
DENSE 30.48±2.30 21.40±2.73 12.60±2.33

OneShot-Ens 36.17±3.21 23.38±3.62 13.23±2.96
FedCVAE 32.34±2.59 36.06±3.27 37.63±1.87
FedDiff 57.68±1.86 56.57±2.42 58.45±0.73

comparative analysis of generated samples produced by FedCVAE and our FedDiff approach, il-

lustrated in Figure 4.3. The discernible disparity is evident, with the samples generated by our

method exhibiting significantly enhanced sharpness and overall quality.

4.2.2 Number of Clients

Deepening our investigation, we also study the effect of the number of clients C in Table 4.2. Note

that, as we employ the same total number of samples in all experiments, the number of samples

per client will increase with smaller C, and decrease with larger C. This allows us to observe the

effect of increasing the distributed nature of the data across the client network.
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One question arising from the adoption of generative models in FL settings pertains to their ability

to maintain satisfactory performance when trained on a limited number of samples. Interestingly,

when analyzing the results, we find that FedDiff is capable of handling a much smaller number

of client training samples with little to no performance degradation. On the other hand, the dis-

criminative model approaches quickly experience a collapse in performance when expanding to

20 clients. In the heterogeneous environment of federated learning, the local optimization of a

discriminative model on a highly-imbalanced and small dataset proves challenging. Rather than

being an overwelming burden, such a situation is handled well by FedDiff, as its sole focus is to

capture the subsequently smaller distribution. Furthermore, we again find that FedDiff outperforms

FedCVAE in all settings, further illustrating the potential for diffusion models in one-shot FL.

4.2.3 Resource Requirements

To further explore the efficacy of our method, we also examine resource factors, including FLOPs

and parameter count, for each method deployed on a single client. Notably, our FedDiff approach

consistently delivers superior accuracy with comparable computational resources to other meth-

ods. We extend this assessment to a reduced model size (FedDiffs in Table 4.3), reaffirming its

strong performance relative to alternative methods. This analysis underscores the effectiveness of

FedDiff, even when deployed on hardware with modest computational capabilities.

It is pertinent to emphasize that training diffusion models within the FedDiff framework is no more

intricate than conventional methodologies and remains highly viable for FL. The computational

complexity aligns with training a conventional CNN model with a modest number of parameters,

and we employ the same number of local epochs as previous work with CNNs [109]. Importantly,

the training process entails selecting random steps in the diffusion process at any given training

iteration, eliminating the necessity for sequential steps during training. During inference, the gen-
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Table 4.3: Accuracy versus FLOPs and parameter count (Params) for each method on a single
client. Our FedDiff approach consistently attains heightened accuracy levels while maintaining
very reasonable resource demands on par with other methodologies. We also evaluate our method
with a scaled-down model variant (FedDiffs), further confirming its performance relative to alter-
native approaches. This analysis underscores the realistic feasibility of our FedDiff framework.

Resources Accuracy

Method MFLOPs ↓ Params ↓ FashionMNIST PathMNIST CIFAR-10

FedAvg 479.92 6.44M 29.50±10.6 22.05±8.20 19.24±3.77
DENSE 479.92 6.44M 28.92±17.3 29.26±10.7 21.40±2.73

OneShot-Ens 479.92 6.44M 33.79±17.9 34.94±9.32 23.38±3.62
FedCVAE 79.00 5.97M 78.81±3.25 44.81±1.41 36.06±3.27
FedDiff 301.14 5.81M 86.81±0.54 70.61±1.37 56.57±2.42
FedDiffs 77.43 1.46M 85.90±0.92 70.53±5.61 50.08±1.87

eration process involves sequential denoising steps; however, this poses no issue for the clients,

as generation occurs at the server in FedDiff. Therefore, FedDiff is an effective and practical

approach for providing strong performance.

4.3 RQ2: Privacy Considerations

Privacy holds paramount importance in one-shot FL. The trained client model may be repeatedly

utilized, or even exchanged in a model market context, and therefore safeguarding the privacy

of the model before it leaves the client is imperative. However, other SOTA works have not ex-

perimented with DP constraints, nor have they thoroughly explored this aspect, often leaving pri-

vacy discussions simply as a possibility for future work [109, 37]. In the subsequent sections,

we meticulously investigate privacy from various perspectives and dive into our research question

RQ2.
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4.3.1 Differential Privacy

Differential privacy is the widely accepted standard for ensuring privacy of a model, as it offers

a provable guarantee of privacy [1, 25, 26, 24, 31]. Utilizing (ϵ, δ) differential privacy during

model training guarantees comprehensive privacy protection, encompassing not only the model’s

parameters and activations, but also extending to all subsequent downstream operations such as

inferences, fine-tuning, and distillation. It is important to note that a model trained under (ϵ, δ)

DP safeguards the privacy of every training sample, regardless of its qualities or uniqueness

[103]. Specifically, we train all approaches under (ϵ, δ) DP at the clients for various privacy levels

of ϵ = 50, 25, and 10, with δ = 10e−5, C = 10, and α = 0.01. Lower ϵ values correspond to

a tighter privacy budget, and the stated budget is for the entire training of each local model. We

employ the Opacus [103] library for implementing DP. We present the results for all approaches in

Table 4.4.

As expected, all methods experience a drop in performance when trained under DP settings.

Nonetheless, FedDiff still stands out, outperforming all other methods by a significant margin.

Particularly for FashionMNIST, FedDiff experiences comparatively less accuracy drop under DP

than FedCVAE. As articulated in our initial motivations outlined in Section 4.1, DP training in-

troduces noise into the training process, exacerbating the complexity of optimization. In such

scenarios, the simplicity of the training paradigm employed by diffusion models becomes notably

advantageous. Overall, we show that FedDiff is a strong approach even when DP is employed.

4.3.2 Addressing Memorization

In a recent study, [9] explored diffusion models and identified their ability to memorize samples un-

der certain conditions. They acknowledge differential privacy as the gold standard defense strategy,
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Table 4.4: Differential privacy (DP) results under various ϵ budgets. We set C = 10 and α = 0.01
as the default setting. Even under DP constraints, FedDiff is a particularly viable approach,
outperforming all other SOTA one-shot FL methods.

Method ϵ = 50 ϵ = 25 ϵ = 10

FashionMNIST

FedAvg 21.04±12.1 20.82±12.3 20.39±12.6
DENSE 26.34±9.03 26.29±9.81 24.29±15.6

OneShot-Ens 31.27±10.9 31.32±10.1 29.99±16.7
FedCVAE 44.40±1.70 43.89±2.53 41.65±3.19
FedDiff 75.92±1.86 75.08±2.13 73.43±1.50

PathMNIST

FedAvg 16.98±8.93 15.30±6.44 14.85±4.19
DENSE 20.56±6.59 19.19±3.76 18.41±1.86

OneShot-Ens 24.59±7.63 23.38±2.60 22.23±2.02
FedCVAE 24.06±1.57 22.15±2.68 20.51±1.29
FedDiff 54.98±2.04 51.51±1.85 47.85±3.68

CIFAR-10

FedAvg 16.35±1.52 15.39±1.87 15.07±2.12
DENSE 16.97±2.35 15.68±2.27 14.98±1.25

OneShot-Ens 17.73±2.71 17.34±2.35 15.72±1.34
FedCVAE 16.29±1.55 16.08±2.19 15.86±2.83
FedDiff 32.93±1.93 31.76±2.68 27.78±1.66

but did not provide completed experiments to this end. Therefore, we evaluate the effectiveness

of DP to this end, assessing memorization within our DP-trained models to investigate whether

inadvertent reproduction of the training data can be eliminated.

To conduct this study, we adopt the evaluation methodology established by [9] to scrutinize the

occurrence of memorization. Specifically, from each DP-trained diffusion model, we generate a

vast number of samples (five times the size of the training set). Subsequently, for each gener-

ated image, we assess potential memorization compared to the original training samples using the

adaptive distance metric introduced by [9],

ℓ (x̂, x;Sx̂) =
ℓ2(x̂, x)

α · Ey∈Sx̂ [ℓ2(x̂, y)]
. (4.1)
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Here, Sx̂ denotes the set comprising the n nearest elements from the training dataset to the example

x̂. The resulting distance metric yields a small value if the extracted image x exhibits significantly

closer proximity to the training image x̂ compared to the n closest neighbors of x̂ within the

training set. The idea is to find generated images that are unusually close to an original training

image as indication of memorization. We set α = 0.5 and n = 50 as in [9].

[9] did not define the specific threshold for Equation 4.1 for marking when a sample is considered

memorized. Therefore, we consider the intuitive threshold to be less than 1, as this would indicate

that the distance from the extracted image to the training image is less than half of the average

distance to the closest n neighbors. Upon conducting this assessment, we do not find any instances

of memorized samples for all datasets under such definition, even at an elevated privacy parameter

of ϵ = 50, with the closest distance values being ∼1.3. We show the histogram of scores for all

samples on each dataset in Figure 4.4.

(a) FashionMNIST (b) PathMNIST (c) CIFAR-10

Figure 4.4: Histogram of distance scores for all generated samples at ϵ = 50 to corresponding
closest training image by Eq. 4.1 on each dataset. Note that the y-axis in in log scale, as there are
very few samples with lower scores.

Because the threshold definition for memorization could vary, we also qualitatively show the sam-

ples with the lowest distances for all datasets at ϵ = 50 in Figure 4.5. Notably, the training versus
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the generated samples have discernible differences, in contrast to the nearly identical samples un-

covered in [9] when training large diffusion models without DP. Also, given the nature of FL, the

choice of diffusion model size will typically be small (for example, ours is ∼5.8M parameters), and

therefore will be less likely to memorize compared to the larger DMs evaluated in [9]. As DP al-

gorithms improve, we anticipate that even better final accuracy can be achieved while maintaining

guaranteed privacy in the future with FedDiff.

(a) FashionMNIST (b) PathMNIST (c) CIFAR-10

Figure 4.5: Qualitative comparison of original training samples and generated samples at ϵ = 50.
We show the closest 30 samples via the similarity metric in Equation 4.1. In each stacked row, the
original samples are on top, with the corresponding nearest generated image immediately below.
Even under the loosest privacy guarantee of ϵ = 50, we do not see blatant memorization.

4.3.3 Fourier Magnitude Filtering

While FedDiff performs comparatively well against other SOTA one-shot FL methods under DP

constraints, we further investigate a simple approach to improve our method, particularly for com-

plex data most affected by DP. As shown in Figure 4.5, we note that the generated samples under

DP can lack details, exhibiting reduced structure. Therefore, it may be advantageous to sort out and

remove such poor quality samples from the final synthetic dataset prior to conducting the training

of the global model.

In order to understand the impact of prioritizing data quality on performance, we conducted an
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initial experiment. For the CIFAR-10 dataset, we leverage a centralized pretrained classifier as

an oracle to discern high and low quality samples. Specifically, we selectively retain samples

for which the oracle accurately classifies and discarded those it misclassifies. This provides a

way to filter out samples that are likely irrelevant or misleading for training a model. We then

train the global model exclusively on the curated dataset of accurate samples and evaluate. This

investigation yields a discernible improvement ranging from approximately 2% to 4% in final

global model accuracy compared to training with all generated data, verifying an importance for

data quality. Therefore, a critical question arises from this observation: how can we conduct

sample filtration in the absence of an oracle?

To do so, we look to the Fourier domain for a potential source of information. As inspiration,

we note that the use of the magnitude of local client images has been utilized in FL to assist

in domain generalization across clients by providing low-level “style” information without the

high-level semantics encoded in the phase [61]. In our case, we propose to leverage the Fourier

magnitude information as a potential referenceable indicator to guide the sample filtering process.

Furthermore, we are able to do so under very tight DP guarantees.

Specifically, on the client, we take the Fourier transform of the local samples and extract the mag-

nitude information. For each client c, we gather the average sample magnitude with

M̄c =
1

nc

nc∑
i=1

|ψ(xi)|, (4.2)

where ψ is the 2D Fourier transform operation, xi is a sample, and nc is the total number of samples

in client c. M̄ is bundled with the model and transmitted by the client to the relevant global party.

As in our standard global training procedure, samples are generated with the client-trained dif-

fusion models to form a synthetic set. Prior to conducting global training, we calculate a sample
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score s for the generated data z from each diffusion model from the clients, szic = ∥|ψ(zic)|−M̄c∥2.

We can then leverage this information to guide the removal of irrelevant samples, forming the final

training set G by removing γ percent of the generated data with the highest s (larger magnitude

difference). To continually ensure privacy guarantees, we apply DP in the FMF calculation. We do

so by employing the DP bounded mean [55] from PyDP1 to calculate the average magnitude M̄c at

each client. This allows us to precisely manage any degree of privacy leakage for M̄c and include

it in the overall privacy budget.

(a) FashionMNIST (b) PathMNSIT (c) CIFAR-10

Figure 4.6: Results with our Fourier Magnitude Filtering under DP. FedDiff is in green and Fed-
Diff+FMF in orange. Our FMF approach provides a simple way to boost accuracy, especially
in more challenging scenarios such as lower ϵ budgets and more complex datasets. We plot the
mean across three runs with different seeds for each setting. Additional γ ablations are provided
in Figure 4.7

In Figure 4.6, we show the results of applying our FMF approach with FedDiff for the same overall

DP budgets as Table 4.4. FMF is particularly effective in the most difficult scenarios, helping to

mitigate the performance drop in harsh FL environments. For example, FMF provides over 3.5%

and 2% improvements with PathMNIST and CIFAR-10 in the challenging ϵ = 10 setting. Overall,

FMF is a simple way to boost performance in one-shot FL under DP.

1https://github.com/OpenMined/PyDP
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(a) FashionMNIST (b) PathMNSIT (c) CIFAR-10

Figure 4.7: Ablation study of γ in FMF under the ϵ = 10 setting. The accuracy of FedDiff is in
green and FedDiff+FMF for various γ in blue. Generally, data filtering within the range of 1%
to 10% produces positive outcomes, resulting in improved performance, with approximately 5%
serving as an effective default choice. We plot the mean across three runs with different seeds for
each setting.

4.3.4 FMF γ Ablation

In Figure 4.7, we present the outcomes obtained using FedDiff+FMF under ϵ = 10 across a range

of γ values, encompassing data filtering percentages spanning from 1% to 12%. Our findings indi-

cate that, in general, data filtering within the 1% to 10% range yields favorable results and leads to

performance enhancements, with around 5% being a great default. Interestingly, the the degree of

improvement provided by FMF becomes more pronounced and consistent as the dataset becomes

more challenging. This phenomenon aligns with the anticipated trends, as more intricate datasets

inherently pose a greater challenge, making it less likely for the generators to consistently produce

high-quality samples. Consequently, the need for data filtering becomes more pronounced in such

scenarios to enhance sample quality. This trend is also favorable since it addresses the specific

need for improvement, especially in cases where performance is suboptimal and the challenges are

more pronounced.
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4.3.5 Additional ϵ Experiment

Table 4.5: Differ-
ential privacy re-
sults under ϵ = 1.

Privacy ϵ = 1 FedDiff

FashionMNIST 65.53±0.70

PathMNIST 44.38±3.35

CIFAR-10 21.48±1.53

To demonstrate the feasibility of FedDiff under more stringent budget con-

straints, we conduct an experiment with an even tighter privacy budget of

ϵ = 1 in Table 4.5. Despite facing such stringent privacy constraints, Fed-

Diff maintains a higher level of performance at ϵ = 1 than all other methods

in Table 4 of the main paper at ϵ = 50.

4.3.6 Discussions, Limitations and Broader Impact

Model Heterogeneity. In real FL systems, model heterogeneity may often occur [109, 37]. For

instance, some clients may have architecture variations in their models or have smaller or larger

models depending on their computing capabilities. Therefore, clients may have different architec-

tures of similar generation capability, or even differing capabilities depending on the requirements

of each client. Our approach allows for flexibility to accommodate such system diversity across

clients. In FedDiff, we generate data from the client models and employ that synthetic data for

global training, and therefore can leverage varying models without the worry of reconciling the

weights themselves.

Limitations and Broader Impact. One downside of our method is that the generated data, partic-

ularly under DP constraints, still lacks in quality and effectiveness for global model training versus

using true data. For instance, with DP on CIFAR-10 as shown in Figure 4 in the main paper, the

data loses a substantial amount of structure. An interesting direction for future work would be to

study how to further improve the quality of the generated data and its usefulness for global model

training while maintaining privacy.

Looking at the broader impact of our work, FL depends on the diversity of data contributed by dif-
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ferent participants. If biases exist in the local datasets, they can be propagated and amplified during

the model training process. This could lead to unintended algorithmic biases and discrimination

in the resulting models. Ensuring diversity and fairness in the data used for FL is an important

research direction to mitigate this risk and promote equitable outcomes [2], particularly in the

highly data heterogeneous environments explored in this work. Furthermore, as we have discussed

throughout our paper, the privacy of client data is important in FL. To mitigate risks in this regard,

we take many precautions to preserve privacy of the clients participated in the FL process though

the use of DP, and operating within the one-shot setting to reduce the chance of eavesdropping.

4.4 Summary

In summary, this chapter addresses two valuable research questions in one-shot FL. Firstly, we in-

vestigate the potential of diffusion models for one-shot FL, and present the pioneering effort in this

direction. In our investigation, we unveil the unique advantages that DMs offer, showcasing their

potential to enhance the overall performance and tackle heterogeneity across diverse settings with

our proposed approach, FedDiff. Secondly, we study privacy in SOTA one-shot FL and contribute

a thorough investigation under provable privacy budgets, as well as address memorization con-

cerns. Furthermore, to enhance performance under harsh DP conditions, we propose a novel and

pragmatic solution, Fourier Magnitude Filtering, to boost the efficacy of generated data for global

model training by eliminating low-quality samples. We hope our work will inspire the community

and foster further research in this direction to improve communication-efficient one-shot FL with

generative models.
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CHAPTER 5: RESOURCE EFFICIENT CONTINUAL PRETRAINING

FOR GEOSPATIAL FOUNDATION MODELS

The work in this chapter has been published in the following paper:

Towards Geospatial Foundation Models via Continual Pretraining. Matias Mendieta, Boran Han,

Xingjian Shi, Yi Zhu, Chen Chen. International Conference on Computer Vision (ICCV), 2023

Centralized training systems require high efficiency, particularly emphasizing the optimization of

computational resources across training and inference phases. In specialized domains like remote

sensing, where annotated data is often scarce for downstream tasks, labeling efficiency becomes

crucial for achieving favorable outcomes. Enhancing both computational and labeling efficiency

holds significant potential to enhance the effectiveness and practicality of centralized training mod-

els. Consequently, we propose to tackle resource and label efficiency in the centralized setting

through a continuous pretraining approach for geospatial foundation models, a domain critical for

advancing earth understanding and monitoring. In the following sections, we discuss the pretrain-

ing data selection (Sec, 5.1), investigate vanilla continual pretraining (Sec. 5.2), and present our

GFM method (Sec. 5.3).

5.1 Pre-training Data Selection

A particularly common choice of source data among geospatial contrastive pretraining works is

Sentinel-2 imagery [66, 6, 88] due to its large corpus of available data and ease of access. There-

fore, to begin our study, we first gather a pretraining dataset of 1.3 million Sentinel-2 images using
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the sampling technique from [66]. After gathering the Sentinel-2 data, we employ it to pretrain a

Swin-B [62] model with the masked image modeling (MIM) objective from [96]. We then finetune

and evaluate this model on a wide variety of downstream datasets to get a broad understanding of

its performance potential in many tasks (see Section 5.4 for task details). For a comparison, we

finetune the ImageNet-22k pretrained Swin-B from the official Swin Transformer repository [62]

on all downstream tasks as a baseline. In order to compare these models across all tasks, we in-

troduce an average relative performance metric (ARP) in which we take the relative difference on

each task with respect to the ImageNet-22k baseline, and then average that difference:

ARP(M) =
1

N

N∑
i=1

score(M, taski)− score(baseline, taski)

score(baseline, taski)
. (5.1)

Here “baseline” is the Swin-B model pretrained on ImageNet-22k, as mentioned above. M de-

notes the model for performance evaluation, and N is the number of tasks. There are 7 tasks used

in Section 5.4 covering important geospatial applications such as classification, multi-label classi-

fication, semantic segmentation, change detection, and super-resolution. The reported ARP value

is scaled by 100 to show as a percentage.

We compare these two models in Table 5.1. Interestingly, we find that the Sentinel-2 model per-

forms poorly on downstream tasks compared to the ImageNet-22k baseline. To investigate further,

we visualize multiple samples from Sentinel-2 in the left columns of Figure 5.1. Upon inspec-

tion, we note that the feature diversity within a single image and across images of Sentinel-2 is

perceivably low. To further quantify this suspicion, we calculate the average image entropy over

a randomly sampled set of 3000 images from the collected Sentinel-2 data as well as the typi-

cal ImageNet dataset as a baseline. Overall, the Sentinel images have an average entropy of 3.9

compared to 5.1 of ImageNet. Such an evaluation provides insights into the potential pitfalls of

Sentinel-2 data in pretraining transformers. For MIM objectives, training data with a substantially
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Figure 5.1: We visualize some example images from the pretraining datasets with Sentinel-2 (left)
and GeoPile (right). Sentinel-2 has noticeably much lower feature diversity within a single image
and across images than that of our GeoPile pretraining dataset.

lower entropy can make for an easier reconstruction task, since masked regions may be more sim-

ilar to their neighbors. Therefore, the network does not have to work as hard to fill in the blanks,

limiting the learning potential. Overall, these result indicate that the noticeably narrow scope of

features and limited per-sample information in Sentinel-2 data may be limiting the potential of the

pretrained model.

Therefore, we set out to collect a diverse geospatial pretraining dataset. Sourcing from both labeled

and unlabelled data, we form a new pretraining dataset which we term GeoPile. The breakdown of

GeoPile is shown in Table 5.2. For textural detail, we ensure a variety of ground sample distances

(GSD), including images with much higher resolution than Sentinel-2 (which has a GSD of 10m).

Furthermore, the selected labeled datasets encompass a wide variety of classes from general remote

sensing scenes, ensuring visual diversity across samples. We calculate the average entropy of our
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Table 5.1: Dataset Analysis. To evaluate each method, we finetune the pretrained model on seven
different tasks, outlined in Section 5.4 and report the ARP metric defined in Equation 5.1. We
also report the training time in hours on a V100 GPU, as well as the carbon impact estimations1 in
kg CO2 equivalent [53]. Overall, our collected GeoPile pretraining dataset significantly improves
downstream performance. † indicates the vanilla continual pretraining approach of initializing
the model with ImageNet-22k weights prior to conducting MIM training on GeoPile. To further
improve the performance in an efficient manner, we introduce our continuous pretraining paradigm
GFM.

Method # Images Epochs ARP ↑ Time ↓ CO2 ↓
ImageNet-22k Sup. 14M - 0.0 - -

Sentinel-2 [66] 1.3M 100 -5.83 155.6 22.2
GeoPile 600k 200 0.92 133.3 19.0
GeoPile† 600k 200 1.24 133.3 19.0
GeoPile† 600k 800 1.45 533.2 76.0

GFM 600k 100 3.31 93.3 13.3

Table 5.2: Breakdown of datasets in the GeoPile. We gather approximately 600k samples from a
combination of labeled and unlabeled satellite imagery with various ground sample distances and
scenes.

Dataset # Images GSD # Classes

NAIP [5] 300,000 1m n/a
RSD46-WHU [64] 116,893 0.5m - 2m 46

MLRSNet [75] 109,161 0.1m - 10m 60
RESISC45 [16] 31,500 0.2m - 30m 45
PatternNet [111] 30,400 0.1m - 0.8m 38

GeoPile dataset, and find it to be 4.6, much higher than that of Sentinel-2. Furthermore, the textural

and visual diversity is qualitatively evident in Figure 5.1. In Table 5.1, the enhancing effect of the

data selection is clearly shown by the substantial performance increase.

1CO2 estimations were completed with mlco2.github.io from [53].
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Figure 5.2: Our GFM continual pretraining pipeline, which leverages publicly-available large-scale
models in concert with our compiled geospatial dataset and pretraining objective. First, we select
a concise set of data from various sources, which we term GeoPile (Section 5.1). Next, we train
GFM with our multi-objective continual pretraining approach. Our GFM framework is constructed
as a teacher-student paradigm, with two parallel model branches. The teacher FT is initialized
with ImageNet-22k weights (top) and frozen during training. The student FS is initialized from
random initialization (bottom), and is trained to serve as the final geospatial foundation model. In a
continual pretraining fashion, we leverage the intermediate features of an ImageNet-22k pretrained
model to guide and quicken learning. Furthermore, we build in an MIM objective on the student
branch to learn valuable in-domain features directly from the geospatial data.

5.2 Vanilla Continual Pretraining

Next, after establishing our pretraining data selection, we investigate an alternate pretraining paradigm

that bridges the gap between the two common approaches mentioned in Section 1.2.1. Specifically,

we investigate the potential of continual pretraining in the context of geospatial pretrained models.

To do so, we first employ the vanilla continual pretraining approach; that is, using the ImageNet-

22k weights as initialization prior to beginning the pretraining step with GeoPile. We find this to

be helpful in improving performance over starting from scratch. This validates the possibility of

continual pretraining as a beneficial paradigm to provide performance gain without additional re-

source costs. Nonetheless, the improvement is still limited, with ∼0.3% ARP increase over starting

from scratch and ∼1.24% ARP over the baseline.
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To further improve the performance of our pretrained model in comparison to the ImageNet-22k

baseline, we increase the number of pretraining epochs in the next row of Table 5.1. While we are

able to make improvements, this comes at the cost of substantially more computational cost and

carbon footprint for marginal gain. Therefore, we ask the question: how can we significantly im-

prove the performance further while maintaining minimal compute and carbon footprint overhead?

To this end, we propose a simple and efficient approach for building geospatial pretrained models

capable of strong downstream performance.

5.3 GFM Pretraining

A significant number of geospatial foundation model studies disregard the existing large-scale

model representations. This is far from ideal, particularly for large transformer models known to

require a vast amount of data and compute power to train. Instead, we reason that the valuable

knowledge available in models like those trained on ImageNet-22k should be leveraged to produce

strong performance with minimized overhead. To this end, we propose an unsupervised multi-

objective training paradigm for effective and efficient pretraining of geospatial models, illustrated

in Figure 5.2.

There are two main components in our framework. First, we randomly initialize an encoder FS

and decoder D set up for MIM as in [96]. During training, the input is randomly masked, and the

network attempts to reconstruct the image at the output. This MIM objective is enforced with an

L1 loss [96]:

LMIM =
∥Oκ −Gκ∥1

N
, (5.2)

where Oκ are the original pixel values from κ masked regions, Gκ are the generated reconstruc-

tions for those regions, and N is the total number of masked pixels.
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For the continual pretraining of our framework, we initialize a second encoder branch FT up to a

chosen stage L and load the ImageNet-22k pretrained weights. This branch behaves as a form of

teacher during the training process to the student branch (FS), which will serve as our final model.

For the ImageNet teacher, we freeze the weights, to both ensure that the structured representa-

tions are maintained during the training process, and also reduce the computation required during

optimization.

Rather than using the masked input as in the student branch, the teacher receives the unmasked

image as input, and provides a feature output fT
L at stage L. This feature has access to the full

context of the input, enabling it to capture informative representations. We utilize this feature to

guide the representations of the student, and form a secondary objective with the cosine similarity

between branch features:

Lfeat = − P (fS
L )

∥P (fS
L )∥2

· fT
L

∥fT
L ∥2

, (5.3)

where fS
L and fT

L are the intermediate features of the student and teacher branches at stage L, and

P is an linear projection layer. Therefore, the final loss during training is simply the summation of

these objectives:

L = LMIM + Lfeat. (5.4)

This training paradigm enables an ideal two-fold optimization. Distillation from the intermediate

features of the teacher ensure that the student can benefit from the teacher’s diverse knowledge,

learning more in less time. Furthermore, the student is simultaneously given freedom to adapt to in-

domain data through its own pretraining objective, gathering new features to improve performance.

We analyze the ARP and resource cost of this approach in Table 5.1. Notably, our GFM is able
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to achieve better overall performance with substantially less computation and emissions impact

compared to vanilla continual pretraining with the same dataset, illustrating that our multi-objective

continual pretraining paradigm is an effective method for training these models. Comparatively,

the SOTA geospatial pretrained method SatMAE [17] requires 768 hours on a V100 GPU and

109.44 kg equivalent CO2 according to their reported results. Therefore, GFM enables more than

8× reduction in total training time and carbon impact. Moreover, we find that the performance

of SatMAE is often not superior to the off-the-shelf ImageNet-22k pretrained ViT (Section 5.4).

This implies that building powerful geospatial pretrained models from scratch is challenging and

further underscores the benefits of utilizing continual pretraining instead. We show an overview of

these results in Figure 5.3, and detail them in the following section.

5.4 Experiments

To verify the effectiveness of our model in detail, we conduct experiments on seven geospatial

datasets of various tasks including change detection (Section 5.4.3), classification (Section 5.4.4),

segmentation (Section 5.4.5), and super-resolution (Section 5.4.6).

For pretraining, we employ 8 NVIDIA V100 GPUs with a batch size of 2048 (128 per GPU) and

the image size of 192×192. All pretraining settings are the same as in [96]. For downstream tasks,

4 NVIDIA A10G GPUs are employed. During the pretraining stage, we utilize RGB bands as they

are most commonly available among data sources and tasks. For downstream tasks with additional

band inputs, we initialize the RGB patch embeddings with the pretrained weights and randomly

initialize the remaining channels. Potentially improving performance even further though the em-

ployment of additional data modalities will be an intriguing avenue for future research.
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Figure 5.3: Our geospatial foundation model (GFM) achieves favorable performance on a broad set
of tasks in comparison to other state-of-the-art geospatial pretraining methods (SeCo [66], SatMAE
[17]) and ImageNet supervised pretraining baselines. Legend is as follows. Cyan: ImageNet-
1k Supervised (ResNet50), Blue: SeCo [66], Purple: ImageNet-22k Supervised (ViT), Orange:
SatMAE [17], Gray: ImageNet-22k Supervised (Swin), Green: GFM (ours).

5.4.1 Training Details

We provide the training details for the various stages and tasks in our evaluation. Code, model

weights, and GeoPile dataset are publicly available at https://github.com/mmendiet/

GFM.
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5.4.1.1 Change Detection

We modify the MMsegmentation [18] framework to conduct our change detection experiments.

For OSCD, as the raw image size is large but the number of samples is very small, we tile the

images into 192×192 pixels and train for 4000 iterations. We utilize the RGB bands for OSCD

as in [66]. For DSFIN, we train for 10k iterations with image size 512×512. We employ an SGD

optimizer with a learning rate of 0.01 and weight decay of 5.0e-4, and the default polynomial

scheduler of [18].

5.4.1.2 Classification

On UC Merced, we train with a batch size of 1024 (128 per GPU) at image size 256×256. We

train for 100 epochs with a base learning rate of 1.0e-4. We employ random flip, crop and standard

Mixup [108] augmentation. Optimizer, weight decay, Mixup parameters, and other training set-

tings are the same as in [96]. For BigEarthNet, we slightly upscale the original 120×120 images

to 128×128 for ease of dimensional compatibility with the Swin transformer. We then employ the

same training settings as with UC Merced.

5.4.1.3 Segmentation

We employ the MMsegmentation [18] framework to conduct our segmentation experiments. For

both datasets, we train for 40k iterations with an image size of 512×512. All other training

settings are the same as the default configuration in [18] for the respective backbones (Swin,

ViT, ResNet50) and compatible decoders (UperNet [93] for transformers and Deeplabv3 [12] for

ResNets).
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5.4.1.4 Super-resolution

On the SpaceNet2 super-resolution tasks, we train with a batch size of 64 (16 per GPU) with input

image size 160×160 and target size 640×640. We train for 100 epochs with a base learning rate of

1.25e-5. Optimizer, weight decay, and other training settings are the same as in [96], but with no

random augmentations. We employ the standard decoder from [96] to produce the original input

size from the encoder features, and then upscale using a convolution-based upsampling block based

on the image reconstruction module for classic super-resolution employed in [59].

5.4.2 Training Time and Carbon Calculations

To calculate the CO2 impact of training various models, we employ the ML CO2 Impact estimator

at https://mlco2.github.io/impact from [53]. The total impact is dependent on the

hardware type, GPU provider, region, and total time used. Our pretraining experiments were

conducted in the AWS US East (Ohio) region, which has a carbon efficiency of 0.57 kg eq. CO2

per kWh. For our GFM, just 93.3 V100 GPU hours are needed for training, resulting in a total

carbon impact of 13.3 kg eq. CO2. This is significantly lower than the previous state-of-the-art

geospatial model, SatMAE [17]. According to the reported carbon impact in their paper [17],

SatMAE requires 768 V100 GPU hours and 109.44 kg eq. CO2 on the Google Cloud Platform

us-central1 region, which has a carbon efficiency of 0.57 kg eq. CO2 per kWh (same as AWS US

East Ohio). Therefore, GFM enables more than 8× reduction in total training time and carbon

impact in comparison to SatMAE.
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Table 5.3: Onera Satellite Change Detection Results

Method Precision ↑ Recall ↑ F1 ↑
ResNet50 (ImageNet-1k) [36] 70.42 25.12 36.20

SeCo [66] 65.47 38.06 46.94
MATTER [6] 61.80 57.13 59.37

ViT (ImageNet-22k) [23] 48.34 22.52 30.73
SatMAE [17] 48.19 42.24 45.02

Swin (random)[62] 51.80 47.69 49.66
Swin (ImageNet-22k)[62] 46.88 59.28 52.35

GFM 58.07 61.67 59.82

Figure 5.4: Qualitative results of downstream performance on OSCD comparing our GFM with
ImageNet-22k and randomly initialized baselines. White, green, red colors show true positive,
false positive, and false negative respectively.
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Table 5.4: DSFIN Change Detection Results

Method Precision ↑ Recall ↑ F1 ↑
ResNet50 (ImageNet-1k) [36] 28.74 92.07 43.80

SeCo [66] 39.68 81.02 53.27
ViT (ImageNet-22k) [23] 70.77 66.34 68.49

SatMAE [17] 70.45 60.29 64.98
Swin (random)[62] 57.97 62.06 59.94

Swin (ImageNet-22k)[62] 67.11 72.33 69.62

GFM 74.83 67.98 71.24

5.4.3 Change Detection

Change detection is a particularly important remote sensing task, helping us understand how hu-

mans interact with our planet over time, and natural phenomena that change our planet’s landscape.

We conduct experiments on both the Onera Satellite Change Detection (OSCD [10]) in Table 5.3

and DSIFN [107] in Table 5.4.

OSCD consists of 14 image pairs extracted from various regions around the world within a three

year period of 2015 to 2018. The images are taken from Sentinel-2 with GSDs ranging from 10m to

60m, and split into 14 images for training and 10 for evaluation. The annotations indicate whether

the change has occurred on a pixel level, and focus primarily on urban developments. Similarly,

we also test our method on DSIFN dataset. This dataset contains high-resolution imagery, such as

WorldView-3 and GeoEys-1 [107]. This dataset contains 3490 high resolution samples for training

and 48 images for evaluation respectively. Every pair of images from a given location at two

different timestamps will be fed into the swin encoder [62] for feature extraction. The difference

between the features from each pair is computed and fed into an UPerNet [93] to generate the final

binary segmentation masks [66, 11]. The encoder is initialized with the pretrained weights.
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For both datasets, we report the precision, recall, and F1 score on the “change” class. As the

results presented from OSCD (Table 5.3 and Figure 5.4) and DSIFN (Table 5.4), GFM shows a

consistent improvement over the ImageNet-22k baseline across both datasets. Notably, SatMAE

is able to improve over its ImageNet-22k baseline on OSCD, but lags behind on DSIFN. This

further highlights the difficulty of training large vision transformers from scratch that can perform

consistently across different GSDs.

5.4.4 Classification

Another common remote sensing application is that of classification. We evaluate two datasets

common in the literature [66, 6]: UC Merced Land Use Dataset [99] and BigEarthNet [86]. The

UC Merced Land Use Dataset is a classic dataset in the remote sensing field. It contains 21 classes,

each with 100 images at 256x256 pixels and an approximate GSD of 1 foot. We split the data into

train and validation according to [22]. BigEarthNet [86] (BEN) is a large-scale remote sensing

dataset for multi-label classification. The data consist of 12-band Sentinel-2 images with sizes of

120x120, 60x60, and 20x20 pixels for the bands at 10m, 20m, and 60m GSDs, respectively. We

employ the data split and 19 class evaluation as common in the literature [69, 66, 17].

In Table 5.5, we report the classification accuracy on UC Merced (UCM) and mean average pre-

cision results on BigEarthNet (BEN) for all methods. On UC Merced, we note the SeCo [66]

pretrained model performs significantly worse than its ImageNet-1k pretrained counterpart with

ResNet-50. These two datasets are very different in both classes, satellite source, and GSDs, and

therefore having a diverse feature knowledge is imperative to maintaining performance despite

these distinctions. Our model can provide robust performance in both cases by leveraging Ima-

geNet representations and remote sensing data in its learning. Furthermore, one key motivation for

training a geospatial foundation model is to improve the sample efficiency for downstream tasks.
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Table 5.5: UC Merced classification accuracy and BigEarthNet multi-label classification mean
average precision results.

Method UCM BEN 10% BEN 1%

ResNet50 (ImageNet-1k) [36] 98.8 80.0 41.3
SeCo [66] 97.1 82.6 63.6

ViT (ImageNet-22k)[23] 93.1 84.7 73.6
SatMAE [17] 92.6 81.8 68.9

Swin (random)[62] 66.9 80.6 65.7
Swin (ImageNet-22k) [62] 99.0 85.7 79.5

GFM 99.0 86.3 80.7

Notably, we find that our model maintains strong performance on BigEarthNet, even when only

given 1% of the training data.

5.4.5 Segmentation

Segmentation is a popular remote sensing application for enabling automated extraction of build-

ing footprints or land cover mappings over wide regions. We therefore conduct experiments on

this task on two different datasets. Vaihingen [79] is an urban semantic segmentation dataset col-

lected over Vaihingen, Germany at a GSD of 0.9m. We employ the data split implemented in the

MMSegmentation library [18] for our experiments, with 344 training and 398 for validation, all

with an image size of 512x512 pixels. The WHU Aerial building [43] dataset is sampled over

Christchurch, New Zealand at a GSD of 0.3m. Image tiles are provided at 512 × 512 pixels, split

into 4736 for training and 2416 for evaluation.

We report the intersect of union (IoU) segmentation results for all methods in Table 5.6. ImageNet

pretrained models are notably strong performers in all cases. On both datasets, SeCo lags substan-

tially behind its ImageNet counterpart. Interestingly, SatMAE is able to bring improvement over
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Table 5.6: Results on the WHU Aerial and Vaihingen segmentation datasets. We finetune all
methods for 40k iterations, and report the IoU for the building class on WHU and mean IoU
(mIoU) across the 6 classes (impervious surface, building, low vegetation, tree, car, clutter) of
Vaihingen.

Method WHU Aerial Vaihingen

ResNet50 (ImageNet-1k) [36] 88.5 74.0
SeCo [66] 86.7 68.9

ViT (ImageNet-22k) [23] 81.6 72.6
SatMAE [17] 82.5 70.6

Swin (random) [62] 88.2 67.0
Swin (ImageNet-22k) [62] 90.4 74.7

GFM 90.7 75.3

ImageNet-22k on WHU, but fails to do so to a larger degree on Vaihingen. However, our approach

is able to leverage the already strong ImageNet-22k representations and guide them towards the

geospatial domain, resulting in overall improvement.

5.4.6 Super-resolution

In the previous experiments, we evaluated several common high-level tasks. Nonetheless, the

low-level task of super-resolution is also important in the geospatial domain. For this task, we

re-purpose the SpaceNet2 dataset, which contains 10,593 8-band images from four cities: Las

Vegas, Paris, Shanghai, and Khartoum. The data is provided at both a GSD of 1.24m (multi-

spectral, 162x162 pixels) and 0.3m (pan-sharpened multispectral, 650x650 pixels). We formulate

a super-resolution task, taking as input the 1.24m multi-spectral images and generating the 0.3m

pan-sharpened equivalent. We evaluate the super-resolution performance of our model and sev-

eral baselines with the peak signal-to-noise ratio (PSNR) and structural similarity index measure

(SSIM) in Table 5.7. The ViT-L ImageNet-22k model and our model are among the best in terms
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Table 5.7: SpaceNet2 Super-resolution Results. Notably, while SatMAE fails to enhance its base-
line (ViT ImageNet-22k), our method exhibits substantial improvement over its respective baseline
(Swin ImageNet-22k) in both PSNR and SSIM.

Method PSNR ↑ SSIM ↑
ViT (ImageNet-22k)[23] 23.279 0.619

SatMAE [17] 22.742 0.621
Swin (random) [62] 21.825 0.594

Swin (ImageNet-22k) [62] 21.655 0.612

GFM 22.599 0.638

of PSNR and SSIM, respectively. Interestingly, SatMAE is not able to improve over its baseline.

On the other hand, our method improves considerably over its ImageNet-22k baseline.

5.5 Ablation Studies

We perform multiple ablation studies on the choice of distillation stage, student initialization,

training objectives, the pretraining dataset components.

5.5.1 Distillation Stage

When implementing our feature map distillation objective, a natural question is at which point

should the mapping take place. We experiment with different locations by stage in the Swin trans-

former and calculate the corresponding ARP in Figure 5.5. Overall, performing the distillation

after Stage 3 yields the highest ARP. Hence, we employ this scheme for all downstream exper-

iments. This result is also intuitively expected; distilling at Stage 3 gives a large portion of the

model the supervisory signal from the teacher, while still allowing for purely domain-specific fea-

ture learning in the final layers.
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Figure 5.5: a) Distillation stage ablation results. b) Student initialization ablation results. “Both”
indicates that the teacher and student branches are initialized with ImageNet weights prior to
geospatial pretraining. “Teacher” indicates that just the teacher branch is initialized, as described
in Section 5.3.

5.5.2 Student Initialization

In our proposed framework, we maintain the teacher model frozen with ImageNet pretrained

weights, and randomly initialize the student. Another alternative is to initialize the student also

with ImageNet weights prior to beginning the geospatial pretraining process. However, as shown

in Figure 5.5, this is not the most optimal option. Such initialization is unnecessary in our frame-

work, since it already allows for seamless integration of ImageNet representations with valuable

in-domain features. Forcibly doing so likely introduces too much bias towards the natural image

representations. Therefore an unbiased student is most ideal and effective.

5.5.3 GeoPile Pretraining Dataset

To ablate components of the GeoPile, we remove each dataset individually to see its relative im-

portance. Also, we compare using just the labeled data portion and using just the unlabeled NAIP

imagery portion. As expected, using just data from labeled datasets gives better performance with

less images than using just images gathered from just NAIP. The human-curated samples in these
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Table 5.8: GeoPile pretraining dataset ablation. We remove each dataset individually from GeoPile
and report the number of images remaining and resulting ARP. The row “w/o curated datasets”
removes all data other than NAIP imagery.

Data # Images ARP ↑
w/o WHU-RSD46 444,061 1.77

w/o MLRSNet 451,793 2.17
w/o Resisc45 529,454 1.57

w/o PatternNet 557,554 1.79
w/o curated datasets 300,000 0.53

w/o NAIP 260,954 1.50

datasets are more likely to contain relevant objects and features, as they each correspond to a partic-

ular class of interest. Still, unlabeled data like NAIP can be sourced easily and with scale. Further

scaling of both labeled and unlabeled portions could further improve performance; however, it

will also increase the training time and sustainability impact. Therefore, we maintain GeoPile at

approximately 600,000 images.

Table 5.9: Ablation results for the training objectives in GFM. For w/o teacher, we only con-
duct MIM with GeoPile. For w/o MIM, we simply perform the distillation objective from the
ImageNet-22k model to our student model with GeoPile. We abbreviate the following for hor-
izontal space: UC Merced (UCM), BigEarthNet (BEN), WHU Aerial (WHU), Vaihingen (Vai),
SpaceNet2 (SN2).

Method OSCD (F1) DSFIN (F1) UCM BEN 10% BEN 1% WHU Vai. SN2 (PSNR) SN2 (SSIM)

w/o teacher 57.3 67.65 98.8 86.5 80.0 90.5 74.0 22.509 0.631
w/o MIM 59.58 71.86 98.8 86.1 80.2 90.2 72.6 22.069 0.608

GFM 59.82 71.24 99.0 86.3 80.7 90.7 75.3 22.599 0.638
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Table 5.10: Results for employing temporal pairs and datasets from SeCo [66] in our multi-
objective pretraining framework. TP indicates that the teacher receives one image from a temporal
pair, and the student receives the other. SI indicates that the same image is inputted to the teacher
and student.

Dataset Inputs OSCD (F1) DSFIN (F1) UCM BEN 10% BEN 1% WHU Vai. SN2 (PSNR) SN2 (SSIM)

SeCo 100k [66] TP 57.03 62.48 80.0 80.6 68.6 88.3 66.3 22.078 0.572
SeCo 100k [66] SI 58.41 67.92 92.1 83.9 76.5 88.8 68.1 22.439 0.602
SeCo 1M [66] SI 58.87 69.41 95.7 86.2 77.1 89.6 71.0 22.281 0.626

GeoPile SI 59.82 71.24 99.0 86.3 80.7 90.7 75.3 22.599 0.638

5.5.4 Multi-objective Ablation.

To dive deeper into the evaluation of GFM’s performance, we extend our analysis by conducting

experiments in which we exclude the teacher component and MIM component individually, as

detailed in Table 5.9. We find that training with the multi-objective approach is the best performer

overall. This shows that the integrated distillation and MIM objectives within the GFM framework

both contribute to producing a well-balanced mode for downstream tasks, and are important aspects

of efficient and effective geospatial learning.

5.5.5 Temporal Pairs Experiment

Some works employ temporal pairs in the pretraining procedure [66, 7, 6], meaning two satellite

images from the same spatial region but taken at different times. We also experiment with the

use of temporal positives in our training paradigm using the dataset proposed in SeCo [66]. In

this case, the teacher receives one image from a temporal pair, and the student receives the other.

The temporal changes can possibly serve as a form of natural augmentation for the distillation

objective. However, as shown in Table 5.10, we find that using temporal positives (TP) is worse

than simply using the same image (SI) for both branches. Therefore, we simply use the same
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image for both branches for other experiments. We further scale up the data by employing the 1M

sample Sentinel-based dataset from SeCo. Nonetheless, GeoPile proves to be more effective as a

pretraining data source for our GFM.

5.6 Summary and Discussion

In summary, this chapter investigates an alternative paradigm from previous work towards pro-

ducing better geospatial foundation models with substantially less resource cost. To this end, we

first construct a concise yet diverse collection of data from various remote sensing sources for

pretraining. Second, we propose a surprisingly simply yet effective multi-objective continual pre-

training paradigm, in which we leverage the strong representations of ImageNet-22k to guide and

quicken learning, while simultaneously providing the freedom to learn valuable in-domain features

through self-supervised learning on geospatial data. We hope that our GFM approach will serve as

an example to inspire other works in investigating efficient and sustainable methods for developing

geospatial foundation models.

Broader Impact and Limitations. As the geospatial community continues to innovate, the re-

sulting impact promises to positively benefit both the earth and society. Automating the process of

extracting useful information from geospatial data can aid scientists, engineers, and others to make

data-informed decisions on infrastructure advancement, food supply improvements, and natural

disaster response. A potential limitation of our GFM approach is that it may still be somewhat

constrained by the performance of the ImageNet-22k model. If perhaps a model was trained from

scratch on an extremely large corpus of remote sensing data, the performance may eventually

also lead to improved performance over ImageNet baselines. However, this would incur a sub-

stantial amount of training time and CO2 impact. Furthermore, as mentioned in Section 1.2.1,

natural image models are constantly being improved and released by the general computer vision
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community. Therefore, our approach enables the geospatial domain to effectively leverage these

improvements for better in-domain performance with minimal carbon impact. We believe this is a

sustainable way for the geospatial community to continually benefit from the most recent progress

in computer vision, enabling a smarter, safer, and healthier planet.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation presents a comprehensive exploration of decentralized and centralized computer

vision applications, introducing novel methodologies that enhance the efficiency and effectiveness

of these systems.

In Chapter 3, we tackled the challenge of data heterogeneity in FL in an efficient and effective

manner. Unlike previous studies that focus on reparameterization techniques or adjustments to

aggregation schemes to counter non-IID data distributions, we propose a fundamental reevaluation

of this problem through core machine learning training principles. We investigate the performance

of standard regularization methods in FL and their efficacy in handling data heterogeneity. Our

approach goes beyond empirical analysis, identifying Hessian eigenvalue/trace measurements and

Hessian matching across clients as indicators for optimal FL methods. Through comprehensive

ablation studies across diverse FL settings, we gain insights into the empirical impacts of vari-

ous methods. Our findings aim to equip the FL community with valuable knowledge, fostering

innovative and productive research directions. Based on our analysis and an examination of pre-

vious methods’ shortcomings, we introduce FedAlign, which achieves competitive state-of-the-art

accuracy while preserving memory and computational efficiency.

In Chapter 4, we continue to address efficiency by tackling the significant bottleneck of commu-

nication cost in FL systems. To this end, we investigate two important research questions. First,

we explore the potential of diffusion models for one-shot FL, presenting a thorough effort in this

area. Our research reveals the unique benefits of DMs, demonstrating their ability to improve

performance and address heterogeneity across diverse environments with our proposed approach,
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FedDiff. Second, we delve into privacy concerns in SOTA one-shot FL, offering a comprehensive

analysis within provable privacy budgets and addressing issues related to data memorization. To

further enhance performance under stringent DP conditions, we introduce a novel and practical

solution, Fourier Magnitude Filtering. This technique improves the effectiveness of generated data

for global model training by filtering out low-quality samples.

In Chapter 5, we further address compute and label efficiency in the centralized domain. Specif-

ically, we propose a novel approach to developing superior geospatial foundation models while

significantly reducing resource expenditure compared to prior efforts. Initially, we curate a stream-

lined yet varied dataset from multiple remote sensing sources for pretraining purposes. Next,

we introduce an unexpectedly simple yet potent multi-objective continual pretraining method.

This method harnesses the robust representations of ImageNet-22k to expedite the learning pro-

cess, while concurrently allowing for the acquisition of valuable in-domain features through self-

supervised learning on geospatial data.

6.2 Future Work

An interesting direction for future work would be to investigate ways to leverage second-order in-

formation to improve the global aggregation process of the client models in federated learning. For

instance, the weight assigned to each model weight could be determined by the overall smooth-

ness and/or similarity to other client models being aggregated to promote advantageous model

aggregation. Furthermore, while our study and proposed FedAlign in Chapter 3 focus on vision

experiments, neither the insights nor the method are inherently constrained to the vision domain.

Therefore, future work could further adapt and test the effectiveness in other domains such as

language or audio processing in FL settings.

83



In Chapter 4, we conduct an in-depth analysis of the privacy considerations for diffusion models

in FL and introduce our FMF method to enhance performance under differential privacy. Despite

these advancements, performance in the most challenging scenarios remains suboptimal. Future

research could focus on developing methods that continue to improve performance while adhering

to stringent privacy constraints.

The GeoPile dataset presented in Chapter 6 contains a variety of resolutions, locations, and ob-

jects, making it effective for geospatial pretraining. However, in regard to image spectrums, the

dataset is composed of RGB images. A worthwhile avenue for future research would be to ex-

pand the GeoPile to include data paired with additional spectral bands, and apply such data in the

GFM pretraining task.
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Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M., Qi, H., Ramage, D., Raskar, R.,

90

https://arxiv.org/abs/2006.11239
http://arxiv.org/abs/1805.02855
http://arxiv.org/abs/1805.02855
https://openreview.net/forum?id=SJgIPJBFvH


Song, D., Song, W., Stich, S.U., Sun, Z., Suresh, A.T., Tramèr, F., Vepakomma, P., Wang,
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