
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Algorithms and Lower Bounds for Ordering Problems on Strings Algorithms and Lower Bounds for Ordering Problems on Strings

Daniel Gibney
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Gibney, Daniel, "Algorithms and Lower Bounds for Ordering Problems on Strings" (2021). Electronic
Theses and Dissertations, 2020-. 507.
https://stars.library.ucf.edu/etd2020/507

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd2020%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/507?utm_source=stars.library.ucf.edu%2Fetd2020%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages

ALGORITHMS AND LOWER BOUNDS FOR ORDERING PROBLEMS ON STRINGS

by

DANIEL GIBNEY
M.S. University of Central Florida, 2018

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2021

Major Professor: Sharma V. Thankachan

© 2021 Daniel Gibney

ii

ABSTRACT

This dissertation presents novel algorithms and conditional lower bounds for a collection of

string and text-compression-related problems. These results are unified under the theme of

ordering constraint satisfaction. Utilizing the connections to ordering constraint satisfac-

tion, we provide hardness results and algorithms for the following: recognizing a type of

labeled graph amenable to text-indexing known as Wheeler graphs, minimizing the number

of maximal unary substrings occurring in the Burrows-Wheeler Transformation of a text,

minimizing the number of factors occurring in the Lyndon factorization of a text, and finding

an optimal reference string for relative Lempel-Ziv encoding.

iii

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . xi

CHAPTER 1: INTRODUCTION . 1

Burrows-Wheeler Transform Runs Minimization 2

Overview . 2

Results . 5

Wheeler Graph Recognition . 6

Overview . 6

Results . 11

Lyndon Factor Minimization . 12

Overview . 12

Results . 15

Optimal Reference for Relative Lempel-Ziv Encoding 15

Overview . 15

Results . 17

iv

CHAPTER 2: BWT-RUNS MINIMIZATION . 19

Preliminaries: L-reductions . 19

Hardness of Alphabet Ordering . 20

Reduction Phase 1 . 21

Reduction Phase 2 . 24

Proof of Corollary 1 . 29

Constrained Alphabet Ordering . 29

Reducing to a Simpler Problem . 29

Solving the Tuple Ordering Problem in Linear Time 31

An Example of the Effectiveness of CAO . 33

CHAPTER 3: WHEELER GRAPH RECOGNITION 34

NP-completeness of Wheeler Graph Recognition 34

The Betweenness Problem . 34

Reduction from Betweenness to Wheeler Graph Recognition 35

NP-completeness of Wheeler Graph Recognition on d-NFAs 37

Wheeler graphs and Queue Number . 42

Queue Number . 42

v

An Exponential Time Algorithm . 44

Optimization Variants to Wheeler Graph Recognition 48

The Wheeler Graph Violation Problem is APX-hard 48

The Reduction of FAS to WGV . 49

The Wheeler Subgraph Problem is in APX 53

A Class of Graphs with Linear Time Solution for Recognition 56

PQ-trees . 58

Detecting One-Queue DAGs . 59

Linear Time Solution . 59

Discussion and Open Problems . 63

CHAPTER 4: LYNDON FACTOR OPTIMIZATION 65

Preliminaries . 65

Hardness of Lyndon Factor Minimization . 69

NP-Completeness of Lyndon Factor Minimization 69

ETH Hardness of Lyndon Factor Minimization 72

Inapproximability of Lyndon Factor Minimization 75

Hardness of Lyndon Factor Maximization . 79

vi

NP-Completeness of Lyndon Factor Maximization 79

Inapproximability of Lyndon Factor Maximization 80

Open Problems . 84

CHAPTER 5: OPTIMAL REFERENCE FOR RELATIVE LEMPEL-ZIV 85

Hardness Results . 85

Warm Up: Polynomially-Sized Alphabets . 85

Hardness Over a Binary Alphabet . 87

Bounds in Terms of the δ-Measure . 91

Open Problems . 93

CHAPTER 6: CONCLUSION . 94

LIST OF REFERENCES . 95

vii

LIST OF FIGURES

Figure 1.1: Column L shows the BWT of mississippi. The number of runs r = 9. 3

Figure 1.2: A Wheeler graph with σ = 3. Ordering on edge labels: red (solid) <

blue (long-dash) < green (short-dash). 9

Figure 1.3: In a proper ordering the above configurations cannot occur with edges

that have the same label. 10

Figure 2.1: The modified incidence matrix for the graph G. Each of the first m rows

is for an edge. The bottom 2` = 8m rows are added as are the outer two

most columns. 22

Figure 2.2: The graph G constructed for the tuple ordering instance (0, 1, 2), (0, 1),

(2), (1, 2, 3). 32

Figure 3.1: An example of the reduction with input list 1, 2, 3, 4, 5, 6 and the triples

(5, 2, 3), (1, 5, 2), (4, 5, 6). 35

Figure 3.2: Vertex Z1 and Z2 could be for clauses (x1, x2, x3), (x2, x3, x4). Each

‘betweenness’ constraint adds a layer. (x4, X, x4) constraint shown. . . 39

Figure 3.3: A k-gadget replacing directed labeled edge (u, v, k). 46

Figure 3.4: A heavy(bold) edge in Figure 3.5 is actually k + 1 subdivided edges. . 50

Figure 3.5: Reduction from FAS to WGV where T = 1, 2, 3, 4, 5, 6 and the inequal-

ities are 5 < 3, 1 < 5, and 6 < 4. 51

viii

Figure 3.6: On the left is an example of a small graph that has full spectrum outputs

and the unique string traversal property, but is not a Wheeler graph. On

the right is an example of a small graph that has both properties and is

a Wheeler graph. 57

Figure 3.7: In the figure, p-nodes are represented by circles and q-nodes by rectan-

gles. The orderings represented by this PQ-Tree are orderings where 1

can be reversed with 2, the leaves 3,4, and 5 can be permuted arbitrarily,

and the order of the sets of leaves 1,2 and 3,4 5, can be swapped. 58

Figure 3.8: An example Wheeler graph that meets the criteria for this section. Red

(solid) edges correspond to edges labeled 1, and blue (dashed) edges

correspond to edges labeled 2. 61

Figure 3.9: The tree resulting from Algorithm 2 applied to the Wheeler graph in

Figure 3.8. An oval in the tree corresponds to a set of vertices in the

Wheeler graph. The labels for these vertices are shown inside each oval.

For each set of vertices inside an oval, the strings obtained by concate-

nating the edge labels on the path from the source is the same. These

strings are shown to the side of each oval within the tree. In the tree, the

edge colors indicated which type of edge was taken at each step along a

path to that set. 62

Figure 5.1: The graph above contains an Eulerian walk. Using reference string

R = v1v2v3v4, we show its corresponding set of texts and their encoding.

Here r + p = 4 + 5 = 2|E|+ 1. 86

ix

Figure 5.2: The graph above does not contain an Eulerian walk. Using reference

string R = v1v2v3v4, we show its corresponding set of texts and their

encoding. Here r + p = 4 + 6 > 2|E|+ 1. Furthermore, r + p > 2|E|+ 1

for any reference string. 87

x

LIST OF TABLES

Table 3.1: Possible relative orderings of ak, bk, ck, Zk, X subject to (ak, Zk, bk) and

(ck, X, Zk). 41

Table 3.2: Orderings implied by all-equal assignment that are impossible while

satisfying constraints. 41

xi

CHAPTER 1: INTRODUCTION

String algorithms and text-indexing have seen a large number of recent breakthroughs. These

breakthroughs are fundamental and range from a newfound understanding of dictionary-

based compression [79, 80, 85, 101, 110, 122] to highly functional text-indexes requiring

space based on repetitiveness, rather than entropy [52, 78, 86, 109, 111]. The new results

also include fine-grained complexity results for several classical string problems [1, 2, 3, 10,

20, 21, 32], helping to justify the lack of improvements on long-standing algorithms.

But with this progress has come many new open questions. Among the most pressing of

these are questions of how to optimize the performance of these new techniques. Doing so

will help make results that stand currently as theoretical more applicable in practice and

likely to find popular implementations. The problems considered in this dissertation are the

result of attempting to answer these questions. Perhaps it is no surprise that many of the

optimization problems are computationally hard. As such, much of this work is devoted

to proving conditional lower bounds. Still, exploring what is required to prove these lower

bounds highlights which facets make these problems intractable. The knowledge gained here

can be leveraged to help design algorithms that either approximate optimal solutions or work

well for a less general set of instances.

We first briefly give some background for each problem, give its formalization, and state our

main results around it. Where it is necessary for understanding the statement of the re-

sults, the needed technical background is presented in this introduction. Additional, specific

technical background needed for proofs is provided in the respective sections.

1

Burrows-Wheeler Transform Runs Minimization

The work presented here first appeared in the 28th Annual European Symposium on Algo-

rithms, ESA 2020 [16].

Overview

The Burrows-Wheeler Transform (BWT) is an essential building block in the fields of text

compression and indexing with a myriad of applications in bioinformatics and information

retrieval [92, 93, 95, 108]. Since it was first published in 1994 [22], it has been utilized to

provide the popular compression algorithm bzip2 and has been adapted to provide power-

ful compressed text indexing data structures, such as the FM-index [46]. The FM-index

is the backbone of many widely used bioinformatics tools like Burrows-Wheeler Aligner

(BWA) [94], SOAP2 [95], Bowtie [92]. Hence, improvements to the algorithmic aspects of

this transformation and related data structures can have a significant impact on the research

community.

The BWT of a text T [1, n], denoted by BWT (T) is a reversible transformation which can be

defined as follows: sort the circular shifts of T in lexicographical order and place the sorted

circular shifts in a matrix. By reading the last column of this matrix from top to bottom we

obtain BWT (T). To make the transformation invertible a new symbol $ (lexicographically

smaller than others) is appended to T prior to sorting the circular shifts. See Figure 1.1 for

an example. Historically, the BWT was introduced for the purpose of text compression [22],

where its effectiveness is based on symbols with shared preceding context forming long runs

(maximal unary substrings).

Recently, the number of runs “r” in the BWT has become of increasing interest. This can be

2

mississipp
$mississip
ppi$missis
ssippi$mis
ssissippi$
ississippi
i$mississi
pi$mississ
ippi$missi
issippi$mi
sippi$miss
sissippi$m

i
p
s
s
m
$
p
i
s
s
i
i

$
i
i
i
i
m
p
p
s
s
s
s

F L

Figure 1.1: Column L shows the BWT of mississippi. The number of runs r = 9.

attributed to the fact that many modern text collections are highly repetitive, which makes

their compression effective via the BWT followed by Run-Length encoding (i.e., in space

proportional to r). This raised an interesting question: can we also index the text in space

propositional to r? Note that the FM-index needs space proportional to n (i.e., ≈ n log σ

bits, where σ is the alphabet size). The data-structure community has made great strides in

making the size of a BWT-based index proportional to r rather than n [11, 18, 51, 81, 88, 115].

The first such index was developed by Mäkinen and Navarro in 2005 [99]. However, it lacked

the ability to efficiently locate the occurrences of a pattern within space Õ(r). After a decade

of related research [100, 51], we now have fully functional suffix trees in space proportional

to r, developed by Gagie et al. [52]. Also note that the recent optimal BWT construction

algorithm for highly repetitive texts is parameterized by r [78]. A technique reducing the

value of this parameter r would have a significant impact on a large body of work.

A natural way to minimize r is to change the lexicographic ordering assigned to symbols of

3

the alphabet. To demonstrate that this can have an impact on r, consider as an example

the text mississippi with the usual ordering $ < i < m < p < s where r = 9, but with

the ordering $ < s < i < p < m we have r = 8. In fact, there exist string families in

which r differs by a factor of Ω(log n) for different orderings. This problem of reordering

the alphabet is clearly fixed-parameter tractable in alphabet size σ and has a trivial O(σ! n)

time solution. This may be adequate when σ is small as in DNA sequences. However, this

is far from satisfactory from a theoretical point of view, or even from a practical point when

the alphabet is slightly larger, such as in protein sequences, natural language texts, etc.

A work in 2018 on block sorting based transformations by Giancarlo et al. gives a theoretical

treatment of alphabet ordering in the context of the Generalized BWT [55]. It was shown

that for any alphabet ordering, r is at most twice the number of runs in the original text,

a result which then holds for the standard BWT as well. Note however that this gives no

lower bound on r, and thus gives no results on the approximability of the run minimization

problem. There have been multiple previous attempts to develop other approaches to al-

phabet ordering. In bioinformatics, the role of ordering on proteins was considered in [126]

with approaches evaluated experimentally. Similar heuristic approaches evaluated through

experiments were done in [4]. Researchers have also considered more restricted versions of

this problem. For example, one can try to order a restricted subset of the alphabet, or

limit wherein the ordering symbols can be placed. On this problem, heuristics have been

utilized. Software tools like BEETL utilize these techniques to handle collections of billions

of reads [33]. Another related work in [23] shows, how to permute a given set of strings

in linear time, such that the number of runs in the BWT of the (long) string obtained by

concatenating the input strings, separated by the same delimiter symbol is minimized.

Even more recently, a work by Giancarlo et al., considered the case where ordering is assigned

to the nodes of a string’s suffix tree, to minimize the number of runs in the BWT [56].

4

Interestingly, this problem can be solved in polynomial time. Although their technique

can potentially minimize the number of runs in the BWT to an even greater extent than

modifying the ordering on the alphabet, it also requires storing the order for each of these

nodes, which can require more space. We leave open the problem of finding a trade-off

between the strategy of ordering the alphabet and ordering the nodes of the suffix tree.

Given the lack of success with attacking the main problem from the upper bound side,

perhaps it is best to approach the problem from the perspective of lower bounds and hardness.

To this end, we show why a provably efficient algorithm has been evasive.

Let Σ denotes the alphabet and σ = |Σ|. A run in a string T is a maximal unary sub-string.

Let ρ(T) be the number of runs in T . The problem we are interested in is defined as follows.

Problem 1 (Alphabet Ordering (AO)). Given a string T [1, n] and an integer t, decide

whether there exists an ordering of the symbols in its alphabet such that ρ(BWT (T)) ≤ t.

Results

The first result is the hardness of the problem.

Theorem 1. The alphabet ordering problem is NP-complete and its corresponding minimiza-

tion problem is APX-hard.

The problem can be solved in n · σ! = n · 2O(σ log σ) time naively. However, any significant

improvement seems unlikely as per the Exponential Time Hypothesis (ETH) [96].

Corollary 1. Under ETH, AO cannot be solved in time poly(n) · 2o(σ).

It is known that ρ(BWT (T)) can be lower bounded by the size of string attractor γ, a recently

proposed compressibility measure [80]. Kempa and Kociumaka showed that ρ(BWT (T)) can

5

be upper bounded by O(γ log2 n) [79]. However, γ is independent of the alphabet ordering

and the following result is immediate.

Corollary 2. Any alphabet ordering is an O(log2 n)-approximation for AO.

We also introduce a specialization of AO, one where we impose more constraints on the

ordering given to alphabet symbols.

Problem 2 (Constrained Alphabet Ordering (CAO)). Given a set of d strings T1, . . . , Td of

total length N , find an ordering π on the symbols $i (1 ≤ i ≤ d) such that $π(1) ≺ $π(2) . . . ≺

$π(d) ≺ 0 . . . ≺ σ − 1 and ρ(BWT (T1$1T2$2 . . . Td$d)) is minimized.

We call $1, $2, . . . , $d special symbols. In Section 2, we provide an example where an optimal

ordering of special symbols removes a factor of Ω(logσ d) in the number of runs, demonstrat-

ing that this can be a worthwhile preprocessing step. We refer to [33] for an immediate use

case in bioinformatics, where the input is a large collection of DNA reads.

Theorem 2. The constrained alphabet ordering problem can be solved in linear time.

Wheeler Graph Recognition

The work presented here first appeared in the 28th Annual European Symposium on Algo-

rithms, ESA 2019 [58].

Overview

Within the last two decades, there has been the development of Burrows-Wheeler Transform

(BWT) [22] based indices for compressing a diverse collection of data structures. This

6

list includes labeled trees [123], certain classes of graphs [45, 114], and sets of multiple

strings [48, 102]. These new techniques have motivated the search for a set of general

conditions under which a structure can be indexed by a BWT based index, which itself led

to the recent introduction of Wheeler graphs by Gagie et al. [50] (also see [8]). A Wheeler

graph is a directed graph that has edge labels and satisfies two simple axioms related to the

ordering of its vertices. Although not general enough to encompass all BWT-based structures

(e.g., [54]), Gagie et al. demonstrated that Wheeler graphs offer a unified way of modeling

several BWT based data structures such as representations of de Bruijn graphs [19, 38],

generalized compressed suffix arrays [123], multi-string BWTs [103], XBWTs [45], wavelet

matrices [31], and certain types of finite automaton [5, 15, 70]. They also showed that there

exists an encoding of a Wheeler graph G = (V,E) which requires only 2(e + n) + e log σ +

σ log e+o(n+e log σ) bits where σ is the size of the edge label alphabet, e = |E|, and n = |V |.

This encoding allows for the efficient traversal of multiple edges while processing characters

in a string, using an algorithm similar to the backward search in the FM-index [47]. This

allows for near optimal time matching of patterns to paths on an indexed Wheeler graph.

Since their introduction, Wheeler graphs have been the subject of significant study. This

includes the study of the languages that are accepted by automata that are also Wheeler

graphs [7], as well as the extension of a technique for compression known as tunneling to the

BWTs of Wheeler graphs [8]. It is important to note, however, that not all directed edge

labeled graphs are Wheeler graphs. In fact, conditional lower bounds show that matching

patterns to paths on DAGs with maximum total degree three and binary alphabets should

require quadratic time, even with arbitrary polynomial preprocessing of the graph [42, 43, 57].

Despite being the subject of an increasing amount of research, it was not clear how to

recognize whether a given graph is a Wheeler graph. This fact made the authors of [50]

explicitly pose the question of how to efficiently detect whether a graph is a Wheeler graph.

7

The question is of both theoretical and practical value, as it might be the first step before

attempting to apply some compression scheme to a given graph. For example, one could use

the existence of a Wheeler subgraph to encode a graph. To do so, one maintains an encoding

of the subgraph using the framework presented in [50] in addition to an adjacency list of the

edges not included in the encoding. Depending on the size of the subgraph, such an encoding

might provide large space savings at the cost of a modest time trade-off while traversing

the graph. This concept also motivates the portion of the paper where we look at two

optimization versions of this problem that seek subgraphs of the given graph that are Wheeler

graphs. These problems turn out to be computationally difficult as well. As a positive result,

we show that, for a constant sized alphabet, the problem of finding a maximum Wheeler

subgraph admits a polynomial-time algorithm that outputs a solution with size within some

constant factor of optimal. We also show that the problem of recognizing Wheeler graphs is

similar to that of identifying the queue number of a graph. This helps to indicate a class of

graphs where the problem becomes computationally tractable.

We first give the definition of a Wheeler graph. The notation (u, v, k) is used for the directed

edge from u to v with label k. We will assume the usual ordering on the edge labels which

come from the alphabet {1, 2, ..., σ}.

Definition 1. A Wheeler graph is a directed graph with edge labels where there exists an

ordering π on the vertices such that for any two edges (u, v, k) and (u′, v′, k′):

1. k < k′ =⇒ v <π v
′;

2. (k = k′) ∧ (u <π u
′) =⇒ v ≤π v′.

Additionally, vertices with in-degree zero must be placed first in the ordering.

8

We consider an ordering of the vertices of the graph a proper ordering if it satisfies the

axioms of the Wheeler graph definition. See Figure 1.2 for an illustration. One critical

property of Wheeler graphs is called path coherence. This property is characterized by the

fact that if you start at any consecutive range of vertices under the proper ordering π, and

traverse the graph by following edge labels matching the characters in a string P , then when

finished processing P the vertices ended on will form a consecutive range. This property is

key to allowing the efficient traversal of multiple edges simultaneously, as well as achieving

a compressed representation of the graph.

Figure 1.2: A Wheeler graph with σ = 3. Ordering on edge labels: red (solid) < blue
(long-dash) < green (short-dash).

The following list of properties of Wheeler graphs can be deduced from Definition 1.

Property 1. All edges inbound to a vertex v have the same edge label.

Property 2. In a proper ordering all vertices with the same inbound edge label are ordered

consecutively.

Property 3. A vertex can have multiple outbound edges with the same label. It is also

possible for a vertex to have more than σ inbound or outbound edges.

Property 4. Two edges with the same label, (u, v, k) and (u′, v′, k), where u < u′ and v′ < v

are called a monochromatic rainbow. No monochromatic rainbows can exist in a proper

ordering (see Figure 1.3).

9

Figure 1.3: In a proper ordering the above configurations cannot occur with edges that have
the same label.

The first question we wish to answer is given a directed graph with edge labels, does there

exist a proper ordering π for its vertices? We define this problem formally as the following.

Problem 3 (Wheeler Graph Recognition). Given a directed edge labeled graph G = (V,E),

decide whether G is a Wheeler graph.

Although we do not demand it here, ideally, a solution to the above problem would also

return a proper ordering.

Next, we define two optimization versions of Problem 3 where we seek to find Wheeler

subgraphs.

Problem 4 (Wheeler Graph Violation (WGV)). Given a directed edge labeled graph G =

(V,E), identify the smallest E ′ ⊆ E such that G′ = (V,E\E ′) is a Wheeler graph.

We also consider the dual of this problem.

Problem 5 (Wheeler Subgraph (WS)). Given a directed edge labeled graph G = (V,E),

identify the largest E ′′ ⊆ E such that G′′ = (V,E ′′) is a Wheeler graph.

10

Results

We show that the problem of recognizing whether a given graph is a Wheeler graph is

NP-complete, even for an edge alphabet of size σ = 2.

Theorem 3. The Wheeler Graph Recognition Problem is NP-complete for any σ ≥ 2.

This result holds even when the input is a directed acyclic graph (DAG) and when the

number of edges leaving a vertex with the same label is at most five.

We also relate the notion of queue number to Wheeler graphs, allowing us to place a bound

on the number of edges of any Wheeler graph.

We provide an exponential time algorithm which solves the recognition problem on a graph

G = (V,E) in time 2O(n+e log σ) where n = |V | and e = |E|. It uses the idea of enumerating

through all possible encodings of Wheeler graphs (of bounded size), and the fact that we can

test whether there exists an isomorphism between two undirected graphs in sub-exponential

time. This technique also gives us exact algorithms with the same time complexity for the

optimization variants discussed here.

Theorem 4. Recognizing whether G = (V,E) is a Wheeler graph can be done in time

2e log σ+O(n+e), where n = |V |, e = |E|, and σ is the size of the edge label alphabet.

We examine the optimization variants of this problem called Wheeler Graph Violation

(WGV) and Wheeler Subgraph (WS). We show via a reduction of the Minimum Feedback

Arc Set problem that the Wheeler Graph Violation problem is APX-hard, and assuming the

Unique Games Conjecture, cannot be approximated within a constant factor. This holds

even when the graph is a DAG. On the other hand, we show that the Wheeler Subgraph

11

problem is in the complexity class APX for σ = O(1). We do so by providing a poly-time

algorithm whose solution size is Ω(1/σ) times the optimal value.

Theorem 5. Conditioned on the Unique Games conjecture, for every constant C ≥ 1, it is

NP-hard to find a C-approximation to WGV, implying WGV is not in APX.

Theorem 6. There exists a linear time Ω(1/σ)-approximation algorithm for WS.

In the final part of this chapter, using PQ-trees and ideas similar to those used in detecting

if the queue number of a DAG is one, we demonstrate a class of graphs where Wheeler graph

recognition can be done in linear time.

Lyndon Factor Minimization

The work presented here first appeared in the 38th International Symposium on Theoretical

Aspects of Computer Science, STACS 2021 [59].

Overview

This chapter establishes several strong hardness results on the problem of finding an ordering

on a string’s alphabet that either minimizes or maximizes the number of factors in that

string’s Lyndon factorization. In doing so, we demonstrate that these ordering problems

are sufficiently complex to model a wide variety of ordering constraint satisfaction problems

(OCSPs). Based on this, we prove that (i) the decision versions of both the minimization and

maximization problems are NP-complete, (ii) for both the minimization and maximization

problems there does not exist a constant approximation algorithm running in polynomial

time under the Unique Game Conjecture and (iii) there does not exist an algorithm to solve

12

the minimization problem in time poly(|T |) · 2o(σ log σ) for a string T over an alphabet of size

σ under the Exponential Time Hypothesis (essentially the brute force approach of trying

every alphabet order is hard to improve significantly).

A Lyndon word is a string that is lexicographically strictly smallest among all of its cyclic

shifts. Letting ◦ denote concatenation, the Lyndon factorization of a string T is the factor-

ization of T into Lyndon words T1, T2, . . ., Tf that are lexicographically non-increasing and

T = T1 ◦T2 ◦ . . .◦Tf . For example, the Lyndon factorization of 0, 1, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2

is (0, 1), (0, 0, 2, 1, 1), (0, 0, 1, 0, 1, 1, 2), assuming the usual ordering, 0 < 1 < 2.

Lyndon words and Lyndon factorization are well-studied, and play an important role in

string algorithms [12, 13, 35, 87, 104, 107], algebra and combinatorics [27, 69, 90], and data

compression [49, 72, 76, 124, 125]. As an example, it was shown in [105] that local suf-

fixes inside each Lyndon factor can be sorted independently and then merged to construct

a string’s suffix array. As another example, Lyndon factorization is used in both the con-

struction of a string’s bijective Burrows-Wheeler transform (BBWT) [60] and in performing

pattern matching on indexes built from the string’s BBWT [14], where the number of steps

used to locate occurrences of a pattern P depends on the number of Lyndon factors within

a particular suffix of P . Because of such applications, it would be beneficial to be able to

control the number of factors in the Lyndon factorization of a string. Unfortunately, the

Lyndon factorization of a string is unique under a fixed ordering of its alphabet [97]. How-

ever, it can vary under different alphabet orderings. For instance, if we change the alphabet

ordering to 2 < 0 < 1 in our example above, we obtain the Lyndon factorization (0, 1), (0),

(0), (2, 1, 1, 0, 0, 1, 0, 1, 1), (2). This leads to the following problems:

Problem 6 (Lyndon Factor Minimization - Decision Version). Given an integer t and text

T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors

13

of T is at most t?

Problem 7 (Lyndon Factor Maximization - Decision Version). Given an integer t and text

T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors

of T is at least t?

We will also consider the optimization variants of these problems. The objective cost of a

solution is the number of factors in its Lyndon factorization. In particular, for the minimiza-

tion problem, a λ-approximation for λ > 1, is a polynomial-time algorithm that outputs

an alphabet ordering where the number of factors is at most λ times the minimum possible

number of factors over all possible alphabet orderings. Similarly, for the maximization prob-

lem, a λ-approximation for λ < 1, is a polynomial-time algorithm that outputs an alphabet

ordering where the number of factors is at least λ times the maximum number of possible

factors over all possible alphabet orderings.

These problems were first considered by Clare and Daykin, who proposed a polynomial-time

greedy algorithm that can be adjusted to provide either a small number of factors or a large

number of factors [29]. Through experiments, the authors showed that the number of factors

can be significantly affected by their algorithm. Another approach that uses evolutionary

algorithms to find alphabet orderings to optimize the number of Lyndon factors was consid-

ered in [30] and in [98]. Again, it was shown that there is often a significant effect on the

number of factors, which can be controlled by the use of different fitness functions within the

evolutionary algorithms. These techniques, although appearing to have a significant impact

on the number of factors, do not provide any approximation guarantee.

Although the Lyndon factors of a string determine the structure of its BBWT, we see no

clear relation between the number of Lyndon factors of a string and the number of maximal

unary substrings occurring in its BWT. Moreover, the techniques applied here seem quite

14

different from those used in Chapter 2.

Results

Theorem 7. The decision version of Lyndon Factor Minimization is NP-complete.

Theorem 8. Under the Exponential Time Hypothesis, the optimization version of Lyndon

Factor Minimization cannot be solved in time poly(|T |) · 2o(|Σ| log |Σ|).

Theorem 9. Under the Unique Games Conjecture, the optimization version of Lyndon

Factor Minimization does not admit a λ-approximation for any constant λ > 1.

Theorem 10. The decision version of Lyndon Factor Maximization is NP-complete.

Theorem 11. Under the Unique Games Conjecture, the optimization version of Lyndon

Factor Maximization does not admit a λ-approximation for any constant λ < 1.

We leave open whether it is possible to have a result similar to Theorem 8 for Lyndon Factor

Maximization.

Optimal Reference for Relative Lempel-Ziv Encoding

Overview

The final technical chapter of this dissertation is different than the previous sections, in that

the problem addressed here is ostensibly not an ordering problem. However, we show that

the problem is hard enough to allow for reductions from hard ordering problems, namely

the Spanning Eulerian Subgraph problem and the Hamiltonian Path problem. Through

15

these reductions, we prove the hardness of this optimization problem arising from text-

compression. The problem is to find an optimal reference for Relative Lempel-Ziv (relative-

LZ) encoding. In addition to these hardness results, we present two positive approximation

results conditioned on a plausible conjecture, and bounds on the cost of an optimal solution

in terms of another important compressibility measure, the δ-measure.

Relative-LZ encodes a collection of strings T = {T1, . . . , Tn} using a reference string R. Each

string in the collection is encoded using a set of ‘pointers’ to R each consisting of a starting

and ending index in the reference. More formally, a relative-LZ encoding of T consists of a

reference string R and an ordered set tuples (x1, y1), (x2, y2), ..., (xp, yp) where we consider

some of the tuples marked to represent the start of a new text. The text Ti ∈ T is equal to

Ti = R[xi′ , yi′] ◦ R[xi′+1, yi′+1] ◦ . . . ◦ R[xj, yj] where (xi′ , yi′) is the ith marked tuple in the

encoding and (xj, yj) precedes the (i+ 1)th marked tuple. We refer to each tuple (xi, yi) as a

single pointer. The typical (and optimal) way these pointers to R are assigned is in a greedy

fashion, extending each substring as far left as possible. As an illustration, if T consists of

texts T1 = abba, T2 = babaa, and the reference string is R = abaa, we encode T1 with the

pointers (1, 2), (2, 3) and T2 with the pointers (2, 3), (2, 4).

Relative-LZ encoding was first formalized in [89], where it was shown to be an effective

method for building compressed indices when the reference string is a well chosen one for

the collection. Further data structures based on relative-LZ encoding were developed in

[39, 112, 120]. As the name suggests, relative-LZ is closely related to other Lempel-Ziv

encodings. The one most relevant here is LZ77 [128]. LZ77 decodes strings from left-to-right

and works by using references to the previously decoded string, with an additional character

for each pointer used to extend each newly added substring by one character. One advantage

over relative-LZ when compared to LZ77 is the working space required by the encoding

algorithm. The most space-efficient algorithm known for LZ77 requires linear space [77],

16

whereas the straight-forward algorithm for creating a relative-LZ encoding requires only

working space proportional to the size of the reference.

Clearly the more representative the reference string R is of the set of the collection the

fewer pointers will be needed. At the same time, a space efficient encoding should consist

of small reference string, as well as a small number of pointers. That is, a good reference

should minimize a sum related to r+ p, where r = |R| and p is the total number of pointers.

This leads to the computational problem of finding the optimal reference string for a give

collection. We formalize this below.

Problem 8 (The Optimal Reference Problem - Decision Version). Given a set of texts

T = {T1, ..., Tn} of total size N =
∑n

i=1 |Ti|, an integer t, and (not necessarily constant)

values α ≥ 1 and β ≥ 1, does there exist a reference string R such that the Relative-LZ

encoding of T using R has αr+βp ≤ t, where r = |R| and p is the total number of pointers?

This problem has been studied previously [53, 71]. In [53] the effectiveness of randomly

sampling from the collection was analyzed. In that work some conditions on the text that

will lead to effective relative-LZ compression were established. Other work based on random

sampling to obtain a reference was done in [71] where performance was evaluated experi-

mentally on large test collections. However, neither of these previous studies seem to give

guidance on how to find an optimal reference string.

Results

Our first result establishes the computational complexity of this problem.

Theorem 12. The Optimal Reference problem is NP-complete, even over binary alphabets.

17

Theorem 13 relates an algorithm that solves the Optimal Reference problem over a single

string to an algorithm that solves the Optimal Reference problem over arbitrarily many

strings.

Theorem 13. An algorithm for the Optimal Reference problem on one string provides a

2-approximation algorithm for the Optimal Reference problem over arbitrarily many strings

having the same time complexity.

Finally, we present some bounds on the optimal cost of a relative-LZ encoding in terms of

the δ-measure. The δ-measure was introduced in [122] and put more into the context of

measuring repetitiveness in [85]. The definition of the δ-measure is as follows. Letting dk

denote the number of distinct substrings of T of length k, δ = maxk
dk
k

. The δ-measure lower

bounds many of the other known measures of compressibility. This includes the size of the

LZ77 parse tree z, that is δ ≤ z [109].

We have the following result.

Theorem 14. max
(
δ, 2
√
αβ
√
N
)
≤ αr∗ + βp∗ = OPT ≤ 2(αδ)

1
3 (βN)

2
3 .

18

CHAPTER 2: BWT-RUNS MINIMIZATION

The work presented here first appeared in the 28th Annual European Symposium on Algo-

rithms, ESA 2020 [16].

Preliminaries: L-reductions

Our inapproximability results use L-reductions [34]. We will be reducing a problem A,

with some known inapproximability results, to a new problem B. We will use the following

notation:

• OPTA(x) denotes the cost of an optimal solution to the instance x of Problem A.

• cA(y) denotes the cost of a solution y to an instance x of Problem A (suppressing the

x in the notation cA(x, y)).

• Since all problems presented here are minimization problems the approximation ratio

can be written as RA(x, y) = cA(y)
OPTA(x)

, which is ≥ 1.

• Let fA(x) = x′ be a mapping of an instance x of Problem A to instance x′ of Problem

B.

• Let y′ be a solution to instance x′ = fA(x) and gB(y′) = y be the mapping of a solution

y′ to a solution y for instance x.

Taking x, y, x′ y′ as above, an L-reduction is defined by the pair of functions (fA, gB),

computable in polynomial time, such that there exist constants α, β > 0, where for all x and

19

y the following two conditions hold:

OPTB(fA(x)) ≤ αOPTA(x) and cA(gB(y′))−OPTA(x) ≤ β
(
cB(y′)−OPTB(fA(x))

)
.

As a result, RB(x′, y′) = 1 + ε implies RA(x, y) ≤ 1 +αβε = 1 +O(ε). L-reductions preserve

APX-hardness [117].

Hardness of Alphabet Ordering

We will demonstrate a sequence of L-reductions from the (1, 2)-TSP Cycle problem, where

the aim is to find a Hamiltonian cycle of minimum weight through an undirected complete

graph on n vertices where all edges have weights either 1 or 2. The (1, 2)-TSP Cycle problem

is APX-hard, even with only Θ(n) edges of weight 1 [118]. The first reduction is to (1, 2)-

TSP Path, where the goal is to find a Hamiltonian path of minimum weight, rather than a

cycle.

Lemma 1. (1,2)-TSP Path is APX-hard, even with only Θ(n) edges of weight 1.

Proof. We will give an approximation preserving reduction from (1, 2)-TSP to (1, 2)-TSP

Path. By the APX-hardness of (1, 2)-TSP Cycle, we obtain Lemma 1.

Let x be the input graph G for (1, 2)-TSP Cycle and let fA map the graph G to an identical

graph G′. Let gB map the (1, 2)-TSP Path y′ given to G′ to the cycle in G obtained by

connecting the end points of the path with an edge of weight at most 2. Hence the cost

cB(y′) is always at most the cost cA(gB(y′)). At the same time, the weight OPTA(x) of an

optimal cycle in G is bound above by the weight OPTB(fA(x)) of an optimal path in G′ plus

20

2. Thus, cB(y′) ≤ cA(gB(y′)) and OPTA(x) ≤ OPTB(fA(x)) + 2. Therefore,

OPTB(fA(x))

cB(y′)
≤ 1 + ε =⇒ OPTA(x)

cA(gB(y′))
≤ OPTB(fA(x)) + 2

cB(y′)
≤ 1 + ε+

2

n
≤ 1 +O(ε).

We proceed to present our reduction which consists of two phases.

Reduction Phase 1

Given a complete graph on n vertices and m = Θ(n) edges of weight 1 as input to (1,2)-TSP

Path, remove all edges of weight 2. We call the resulting graph G. Construct the incidence

matrix for G (a row for each edge, and a column for each vertex, where the two 1’s in a

row indicate which two vertices are incident to the edge for that row). Then add 2` rows

of all 0’s to bottom of the matrix, where ` = 4m. Next, add two additional columns cs

and ct where cs[i] = 1 if i ∈ {m + 2,m + 4, . . . ,m + 2`} and 0 otherwise, and ct[i] = 1 if

i ∈ {m+ 1,m+ 3, . . . ,m+ 2`− 1} and 0 otherwise (see Figure 2.1). We call this matrix M .

We now present an intermediate problem that we call Column Ordering (CO), which is:

given a matrix M constructed as above, find an optimal ordering on the columns so as to

minimize the number of runs in its linearization. We will use Mπ to denote the matrix M

with the ordering π applied to its columns and L(Mπ) to denote the string obtained by

concatenating the rows of Mπ from top to bottom. We call L(Mπ) the linearization of Mπ.

Next, we describe the function which maps solutions of our instance of Column Ordering

back to a solution of (1, 2)-TSP Path. Ignoring the added columns cs and ct, the ordering π

induces a collection of disjoint paths in G, which we call P , where two vertices form an edge

21

Figure 2.1: The modified incidence matrix for the graph G. Each of the first m rows is for
an edge. The bottom 2` = 8m rows are added as are the outer two most columns.

if their columns are adjacent and there exists a row with 1’s in both columns. Given P we

create a (1,2)-TSP Path by connecting the paths in P with |P | − 1 edges of weight 2. Note

that this can be done in linear time.

Lemma 2. If cs and ct are the first and last columns of Mπ respectively, then the cost of

our CO solution is ρ(L(Mπ)) = 2m1 + 4(m−m1) + 2`+ 1 = 4m− 2m1 + 2`+ 1, where m1

is the number of rows whose edges are in the collection of paths P . The corresponding cost

of the solution to (1,2)-TSP Path is m1 + 2(n− 1−m1) = 2(n− 1)−m1.

Proof. Ignoring the first run of L(Mπ) for the moment, every row in Mπ corresponding to

an edge in P contributes two runs to ρ(L(Mπ)) (e.g. 0 . . . 0110 . . . 0). Any row whose edge

is not in P and not in the bottom 2` rows, contributes four (e.g. 0 . . . 010 . . . 010 . . . 0) and

there are m−m1 such (rows) edges. The extra 2` rows in total contribute 2` runs. Adding

the ‘+1’ term for the start of L(Mπ) gives the desired expression. The second statement

follows from the TSP Path having m1 edges of weight 1 and the n− 1 edges in total needed

to form a Hamiltonian path.

22

Lemma 3. If cs and ct are not the first and last columns respectively, then the solution to

CO is sub-optimal.

Proof. If ct is first and cs is last, then one extra run is contributed over cs being first and

ct last, while maintaining the rest of the ordering to be the same. In any configuration

where either cs or ct are not ends of the matrix, the bottom rows will contribute at least 3`

runs. Letting m∗1 denote the optimal number of edges of P , then the optimal ρ(L(Mπ∗)) is

4m−2m∗1 +2`+1 < 4m+2` ≤ 3`. Note that the first inequality is strict since we can always

find at least one edge for P .

It is immediate from Lemmas 2 and 3 that an optimal solution for CO is one which maximizes

m1, and this provides an optimal solution for (1,2)-TSP Path. We now must show that our

reduction is also an L-reduction. Lemmas 4 and 5 consider the two possible cases.

Lemma 4. If cs and ct are the first and last columns respectively in a solution to CO, then

the L-reduction conditions hold.

Proof. By Lemmas 2 and 3, the optimal cost for the instance of CO can be expressed as

4m− 2m∗1 + 2`+ 1 and the optimal cost for the instance of (1,2)-TSP Path as 2(n− 1)−m∗1.

To prove Condition (i), we need to show there exists an α > 0 such that

4m− 2m∗1 + 2`+ 1 ≤ α(2(n− 1)−m∗1)

Since m = Θ(n) there exists a constant C > 1, such that for n large enough m ≤ Cn. The

left hand side can be bounded above by 4Cn − 2m∗1 + 8Cn + 1 = 12Cn − 2m∗1 + 1 (recall

` = 4m). Since m∗1 ≤ n− 1 it is easy to find such an α for n ≥ 2. Below is the inequality for

23

Condition (ii), which is true for β ≥ 1/2.

(2(n− 1)−m1)− (2(n− 1)−m∗1) ≤ β
(

(4m− 2m1 + 2`+ 1)− (4m− 2m∗1 + 2`+ 1)
)

Lemma 5. If cs and ct are not the first and last columns respectively in a solution to CO,

the L-reduction conditions still hold.

Proof. Condition (i) holds since the optimal solution values to the overall problem have not

changed. For Condition (ii), we consider the two scenarios:

• Scenario 1: cs or ct are not at the far ends of Mπ. Then the cost of the solution for

CO, which is at least 3`, exceeds the cost for any solution considered in Lemma 4. Fur-

thermore, any corresponding solution for (1,2)-TSP Path has already been considered

in Lemma 4, where now the right-hand is larger than it was in Lemma 4.

• Scenario 2: ct is the first column of Mπ and cs is the last. Then, again, we have

already considered a solution in Lemma 4 which has solution cost one less for CO and

yet had the same solution cost for (1,2)-TSP Path.

This completes the proof.

Reduction Phase 2

Given the matrix M as constructed in Phase 1 from G, we will now construct a string T

as input to the problem AO. It is easier to describe T in terms of its substrings, which are

created by iterating through the matrix M as follows:

24

• For 1 ≤ j ≤ n+ 2, 1 ≤ i ≤ m+ 2`: if Mi,j = 1 output the substring 10i+12Cj

• For 1 ≤ j ≤ n+ 2: output the substring 0m+2`+22Cj

• Append to each substring created above a unique $i symbol (1 ≤ i ≤ 2m+ 2`+n+ 2).

The string T is the concatenation of these substrings in any order and |T | = O(n2). The

alphabet set Σ is {0, 1, 2} ∪ {C1, C2, . . . , Cn+2} ∪ {$1, $2, . . . , $2m+2`+n+2} and σ = Θ(n).

Given a solution π to this instance of AO we use the relative ordering given to the Ci symbols

as the ordering for the columns of Mπ. For the analysis of why this works, we define some

properties that we would like BWT (T) and π to have. For any symbol a ∈ Σ we will call the

maximal set of indices where the F column of the sorted circular shift matrix has only a’s

as the a-block. Our goal will be to ‘simulate’ the linearization of L(Mπ) within the 0-block

of BWT (T). We let Cs and Ct denote the symbols for columns cs and ct respectively.

The following are the key properties that an optimal solution π∗ will have:

1. For a fixed j, all Cj symbols are placed adjacently in BWT (T);

2. All 2 symbols are placed adjacently in BWT (T);

3. The symbol 2 is adjacent to the symbol 0 in the ordering;

4. The $i symbols are ordered in such a way as to minimize the number of runs of 1 in

the 0-block of BWT (T).

5. The symbols Cs and Ct are both positioned at the beginning and end respectively of

the alphabet ordering given to the Ci symbols.

25

The 0-block of BWT (T) will consist of 0’s, 1’s, and $i symbols. All $i symbols will be

adjacent within the 0-block. This is since the $i symbols succeeded by 0, are all succeeded

by the substring 0m+2`+22 and every occurrence of 0m+2`+22 preceded by a $i symbol (when

T is viewed as a circular string). Let r0 denote the number of runs created in the 0-block of

BWT (T), minus the number of $i symbols in the 0-block of BWT (T).

Lemma 6. Unless all of the above properties hold, the solution to AO is suboptimal.

Proof. If any of Properties 1-3 are violated, we can exchange our solution with one which

maintains the value r0 but reduces the runs created in other blocks. This is since the alphabet

ordering can be modified to have these properties, while at the same time maintaining the

relative orderings of symbols within the 0-block. In the case of Property 4, given that

Properties 1-3 hold, modifying the solution so that the property holds can only decrease r0,

while it maintains the number of runs created in other blocks. Assuming properties 1-4 hold,

there are two possibilities, either Cs and Ct are extremal or they are not.

• In the case of being extremal, if Cs < Ct, then by Property 4, the 2` = 8m instances of

1’s in the bottom 2` rows of Mπ shall correspond to 4m runs of two consecutive 1’s in

the 0-block of BWT (T). The upper rows of Mπ shall correspond to at most 2m runs

of 1’s in the 0-block of BWT (T). Hence, in the 0-block there are at most 6m+ 1 runs

of 1’s making at most 6m+ 2 runs of zeros to surround them, so that r0 ≤ 12m+ 3. In

the case where Ct < Cs, one additional run of 1’s is created over the same configuration

where the positions of Cs and Ct are swapped.

• In the case of them not being extremal, considering only the last 2` rows of Mπ, there

are 8m runs of lonely 1’s in the 0-block of BWT (T), and at least 8m + 1 runs of 0’s

to surround them, leading to r0 ≥ 16m+ 1.

26

This completes the proof.

As mentioned earlier, we aim to have a substring of BWT (T) within the 0-block which is

the same as L(Mπ) except for the lengths of its runs, i.e., the number of runs will be the

same. We will call this substring the simulation of L(Mπ).

Lemma 7. If all Properties 1-5 hold, then r0 = ρ(L(Mπ))−1 and ρ(BWT (T)) = r0 +σ−1.

Proof. We will first show that when Properties 1-5 hold, r0 = ρ(L(Mπ)) − 1, i.e., that the

simulation works. Within the 0-block of BWT (T), row i is simulated by the characters

preceding each substring 0i+12. Note that they all appear consecutively in the 0-block.

Within the simulation of the ith row, if the value of the jth column of Mπ is 0, then the

characters preceding substrings of the form 0i+12Cj are all 0. If the value of the jth column

of M is 1, then there exists a single substring of the form 0i+12Cj preceded by a 1, and the

remaining substrings of the form 0i+12Cj are all preceded by 0. Note that all characters

preceding 0i+12Cj are consecutive within the ith row, however, the unique $’s following each

substring allow the characters following each 0i+12Cj to have their orders swapped. Because

of Property 5, in the column ordering of Mπ there will never be a run of more than two

consecutive 1’s in L(Mπ). Hence, when Property 4 is applied, we know that 1’s which would

are adjacent in L(Mπ) are adjacent in the 0-block. Combining all these observations gives

us that L(Mπ) is successfully simulated within the 0-block. The ‘−1’ term in the expression

for r0 arises due to Property 2. This is since the 0 symbol in 0-block of BWT (T) that is

adjacent to the 2-block does not contribute a run. We have shown r0 = L(Mπ)− 1.

Finally, the fact that ρ(BWT (T)) = r0 +σ−1 follows from Properties 1-3 which cause every

symbol except 1 to contribute exactly one run to ρ(BWT (T)) outside of the simulation (1’s

first appearance is within the simulation).

27

Lemma 8. If all Properties 1-5 hold, the L-reduction conditions are satisfied.

Proof. By Lemma’s 6 and 7 we have the optimal cost for AO being r∗0 + σ − 1 and optimal

cost for CO as r∗0 + 1. For Condition (i) note that σ = Θ(n) and because there are at most

5 runs created by each row, m + 2` ≤ r∗0 ≤ 5(m + 2`), so that r∗0 = Θ(n). Hence, we can

find an α such that r∗0 + σ− 1 ≤ α(r∗0 + 1). For Condition (ii), we have (r0 + 1)− (r∗0 + 1) ≤

β((r0 + σ − 1)− (r∗0 + σ − 1)) with β = 1.

Lemma 9. If any of Properties 1-5 are violated, the L-reduction conditions are satisfied.

Proof. Condition (i) is satisfied since optimal values for the overall problem are unchanged.

For Condition (ii), if any of the first four properties are violated, we have already shown in

Lemma 8 that the inequality holds in the harder case where ρ(L(Mπ)) has the same value

but the overall number of runs in BWT (T) is less. If the first four properties hold and the

fifth property does not hold, there are two cases. In the first case, if Ct is ordered first and

Cs last, then swapping Cs and Ct modifies both sides of the inequality for Condition (ii) by

the same amount. In the second case, if either Cs or Ct are not ordered first or last, the left

hand side of the inequality in Condition (ii), that is
(
ρ(L(Mπ))− ρ(L(Mπ∗))

)
, will be large,

as this corresponds to the columns cs and ct not being first or last. However, the right-hand

side
(

(r0 +σ−1)− (r∗0 +σ−1)
)

will be large as well, perhaps even larger as there may exist

runs of three of four 1’s in L(Mπ) that cannot be simulated in the 0-block of BWT (T). In

particular, r0 ≥ ρ(L(Mπ))− 1 and ρ(L(Mπ∗)) = r∗0 + 1, so that with β = 1

ρ(L(Mπ))− ρ(L(Mπ∗)) ≤ (r0 + 1)− ρ(L(Mπ∗)) ≤ β
(

(r0 + σ − 1)− (r∗0 + σ − 1)
)
.

28

We have shown an L-reduction from (1,2)-TSP Path to AO. This combined with Lemma 1

completes the proof for Theorem 1.

Proof of Corollary 1

Assuming ETH, there exists no 2o(n) time algorithm for Hamiltonian Path Problem [36]. Our

reduction allows us to determine the minimum number of paths in G needed to cover all the

vertices and can hence solve Hamiltonian Path. This can be done by first constructing an

incidence matrix for G and then applying the rest of the reduction as in Section 2. Since

the alphabet size σ is linear in n and |T | = Θ(n2), an |T |O(1) · 2o(σ) time algorithm for AO

would imply an 2o(n) time algorithm for Hamiltonian Path, a contradiction.

Constrained Alphabet Ordering

Reducing to a Simpler Problem

Recall that we wish to find an ordering on the special symbols $1, . . . , $d such that the number

of runs in the BWT of T = T1$1 . . . Td$d is minimized and the $ symbols are lexicographically

before other symbols. We will consider our alphabet to be over integers that are bounded

by NO(1), where N = |T |. Let s be an arbitrary substring of T without $ symbols. The

symbols in T which are followed by s$i will form a contiguous portion of BWT (T). However,

their ordering within that contiguous portion is determined by the relative ordering given

to $i symbols. Hence, we can arrange the symbols within this portion of BWT (T) so that

identical symbols are placed adjacently.

For example, let c1s$1, c2s$2,, cts$t be substrings of T . The symbols c1, c2, ... ct will

29

be contiguous in BWT (T) in some order. Now, suppose that c2 = c4 = c7. By rearranging

the $2, $4, and $7 to be adjacent within the relative ordering of the $ symbols, we can make

c2, c4, and c7 appear consecutively. Taking this one step further, we can also change the

relative ordering of $2, $4, and $7, so that if the substrings αc2s$2, βc4$4, and αs$7 occur in

T , then the two α’s will be adjacent in the contiguous portion of BWT (T) corresponding to

the substrings c2s$2, c4s$4, and c7s$7.

Hence, the set of symbols Bs = {x | xs$i is a substring of T for some i ∈ [1, d]} can be

modeled as a tuple where each symbol appears only once within the tuple. Along with each

symbol x in Bs, we will maintain a set ∆x
s = {$i | xs$i is a substring of T}. We will arrange

all non-empty tuples Bs in the lexicographic ordering of s. As such, these tuples can be

constructed by first assigning any ordering to the $ symbols (where they are lexicographically

first in the alphabet) and then using the longest common prefix (LCP) between consecutive

suffixes in lexicographic order. These values are obtained directly from the longest common

prefix array. The suffix array and longest common prefix array can both be constructed in

linear time assuming an integer alphabet of size NO(1) [44]. We will define the problem of

ordering the symbols within these tuples as a new problem.

Problem 9 (Tuple Ordering (TO)). Given a list of tuples t1, . . . , tq in a fixed order, each

containing a subset of symbols from Σ, order the symbols in each tuple such that the total

number of runs in the string formed by their concatenation t1 · t2 · . . . · tq is minimized (not

considering ‘(’, ‘)’ and commas, of course).

We will show that TO can be solved in linear time. To map solutions of TO back to solutions

of CAO, a tuple for Bs needs to maintain pointers to each tuple Bxs, where x is a symbol.

Then given a solution to TO, we start with the tuple for Bε. The ordering given to symbols

within this tuple provides us with a partial ordering on the $ symbols. The symbols in

30

∆x
ε associated with the first symbol x within the tuple are ordered before the symbols ∆y

ε

associated with the second symbol y, etc. Then for a symbol x, the tuple for Bx provides

a refinement of this partial ordering. In particular, it provides a partial ordering on ∆x
ε .

To recover the total ordering on $ symbols, we recursively refine the partial ordering at our

current tuple by examining all of the tuples which the current tuple points to. Note that this

works since for a given tuple for Bs, the sets ∆x
s are disjoint. The time required to recover

this solution is proportional to N .

Solving the Tuple Ordering Problem in Linear Time

We show how to reduce the TO problem to the single-source shortest path problem on a

DAG G, which is constructed as follows. For each tuple ti, create two sets of vertices Li and

Ri, both of size |ti|, such that for each symbol c ∈ ti, there exists a vertex with label c in Li

as well as in Ri. Between each pair of vertices u ∈ Li and v ∈ Ri, where the label of u is

not equal to the label of v, create a directed edge of weight 1 from u to v. If |ti| = 1, then

create a directed edge of weight 1 from the unique vertex in Li to the unique vertex in Ri.

For each Ri and Li+1 (1 ≤ i ≤ q − 1), and each pair u ∈ Ri and v ∈ Li+1, create a directed

edge from u to v, with weight 1 if they have the same label, and weight 2 otherwise. Finally,

create a start vertex s and directed edges of weight 1 from s to each vertex in L1, and an

end vertex e with directed edges of weight 1 from each vertex in Rq to e. See Figure 2.2 for

an illustration.

Clearly, the shortest path from s to e is the one with the fewest edges of weight 2, and this

path gives us a tuple ordering which minimizes the number of runs created by the tuples.

To obtain this ordering, for a tuple ti, place as the left-most symbol the label of the vertex

used in Li within the shortest path, and the right-most symbol the label of the vertex used

31

0

1

2

L1

0

1

2

R1

0

1

L2

0

1

R2

2

L3

2

R3

1

2

3

1

2

3

L4 R4

s

e

1

1

2 1

2

1 1

2 1

1

1

(0, 1, 2) (0, 1) (2) (1, 2, 3)

Figure 2.2: The graph G constructed for the tuple ordering instance (0, 1, 2), (0, 1), (2),
(1, 2, 3).

in Ri within the shortest path. The other symbols can be ordered arbitrarily. Because G a

DAG, this shortest path can be found in time proportional to the number of edges, which is

O(σ2q). Next, we show how to solve this in time proportional to the number of vertices in

the graph G.

Rather than constructing the edges in G, we can work from left-to-right maintaining the

shortest path from s to the vertices in our current level of G, either Li or Ri. Suppose our

current level is Li and we wish to extend the solution to the level Ri. Assuming |ti| ≥ 2,

we identify the vertices v1 and v2 in Li with the first and second shortest paths (they may

have the same length) from s, respectively. For each vertex u in Ri, if the label of u is not

the same as the label for v1, we make the shortest path to u the path from s to v1, then the

edge from v1 to u, otherwise we make it the path from s to v2, then the edge from v2 to u.

If |ti| = 1, we make the shortest path from s to u the path from s to the unique vertex v in

Li, then the edge from v to the unique vertex u. To extend a solution from Ri to Li+1, we

32

first identify the vertex v1 in Ri with the shortest path from s. For each vertex u in Li+1, if

a vertex with matching label vu exists in Ri, we take as the shortest path to u the shorter of

the following two paths: (i) the path from s to v1, then from v1 to u, or (ii) the path from

s to vu, then from vu to u. If no such vertex with matching label exists in Ri, take as the

shortest path from s to u the path from s to v1, then from v1 to u.

An Example of the Effectiveness of CAO

Lastly, we provide an example where the $ symbol ordering greatly reduces the number

of runs in the BWT. Let d be the number of strings and n the length of the strings.

It is possible for a set of special symbols to be ordered such that the number of runs is

Ω(nd). Let σ = 2 and d = σn. Consider the d distinct binary strings concatenated with

special symbols in lexicographic order. Under the ordering $1 < $2 ... < $d, the string

BWT (T) alternates between the $’s, 0’s, and 1’s, yielding Ω(nd) runs. On the other hand,

for this same case, arranging the $’s in the optimal ordering will give O(d) runs in to-

tal. This is since for any substring s of T , the contiguous section of BWT (T) containing

the characters preceding s$i for i ∈ [1, d] contains at most the start of two runs. For

example, with n = 3, we would have T = 000$1001$2010$3011$4100$5101$6110$7111$8.

The number of runs in BWT (T) under the naive ordering $1 < $2 < . . . < $8, is 32

with BWT (T) = 01010101010101$8$101$2$3010101$4$501$6$7. The number of runs using

an optimal ordering $3 < $5 < $2 < $7 < $4 < $6 < $1 < $8 is 19 with BWT (T) =

00001111110001$8$101$2$3001110$4$501$6$7.

33

CHAPTER 3: WHEELER GRAPH RECOGNITION

The work presented here first appeared in the 28th Annual European Symposium on Algo-

rithms, ESA 2019 [58].

NP-completeness of Wheeler Graph Recognition

We first show a simple reduction from the Betweenness problem to Wheeler Graph Recog-

nition. Although straightforward, it requires graphs with either O(n) sources or O(n) edges

with the same label leaving a single vertex. In Section 3, by expanding on the techniques

used in the first reduction we show that even if these quantities are limited to at most five

the recognition problem remains NP-complete.

The Betweenness Problem

The Betweenness problem is an ordering constraint satisification problem first established as

NP-complete by Opatrný in 1979 [116]. Like our problem, it deals with finding a total order-

ing on a set of elements. The input to the Betweenness problem is a list of distinct elements

T = t1, . . . , tn and a collection of k < n3 ordered triples of (t11, t
1
2, t

1
3), (t21, t

2
2, t

2
3), . . . (tk1, t

k
2, t

k
3)

where every element in a triple is in T . The elements in the list T should be ordered so that

the middle element in each triple appears somewhere between the other two elements in that

triple. The elements in each triple are not required to be consecutive in the ordering. The

decision problem is determining whether such an ordering exists.

As an example, consider the input T = 1, 2, 3, 4, 5, 6, and triples (5, 2, 3), (1, 5, 2), (4, 5, 6),

34

(4, 6, 2). An ordering that satisfies the given triples is 1, 4, 5, 6, 2, 3. An ordering that does

not satisfy the given triples is 1, 2, 3, 4, 5, 6 since it violates the triples (5, 2, 3), (1, 5, 2),

and (4, 6, 2).

Reduction from Betweenness to Wheeler Graph Recognition

Figure 3.1: An example of the reduction with input list 1, 2, 3, 4, 5, 6 and the triples
(5, 2, 3), (1, 5, 2), (4, 5, 6).

Suppose we are given as input to the Betweenness problem the list t1, t2, . . . , tn, and triples

(t11, t
1
2, t

1
3), (t21, t

2
2, t

2
3), . . . , (tk1, t

k
2, t

k
3). We construct a DAG of size O(nk) as follows:

• Create a source vertex v0 and vertices vji for 1 ≤ i ≤ n and 1 ≤ j ≤ k.

• For each triple (tj1, t
j
2, t

j
3), create a vertex for each element of the triple, we call them

wj1, wj2, and wj3 respectively.

35

• Create the edges (v0, v
1
i , 1) and edges (vji , v

j+1
i , 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1.

• Create the following edges for 1 ≤ i ≤ n, 1 ≤ j ≤ k:

– (vji , w
j
1, 2) and (vji , w

j
2, 2) if ti = tj1;

– (vji , w
j
2, 2) if ti = tj2;

– (vji , w
j
3, 2) and (vji , w

j
2, 2) if ti = tj3.

The intuition is that the vertices with inbound red (solid) edges labeled 1 represent the

permutation of the elements in T . The vertices with the inbound blue (dashed) edges labeled

2 represent the elements in each triple. Consider the graph formed by the reduction as laid

out in the same fashion as shown in Figure 3.1. The ordering is obtained from the layout

as follows: vertices with inbound red edges are ordered from bottom-to-top, followed by

the vertices with inbound blue edges also ordered from bottom-to-top. In the layout, any

red edges crossing red edges, or blue edges crossing blue edges, correspond to forbidden

configurations. Hence, in a proper ordering, these crossings should not occur.

Lemma 10. An instance of the Betweenness problem has an ordering satisfying all of the

constraints iff the graph constructed as above is a Wheeler graph.

Proof. The edges labeled 1 force the ordering given to v1
i to be repeated k times, once for

each constraint. Otherwise, the second inequality in the Wheeler graph axioms is violated.

Similarly, the edges with label 2 enforce that the only valid orderings of the vertices repre-

senting elements in T are orderings that satisfy the betweenness constraints. In particular,

a monochromatic rainbow of edges with label 2 is avoided iff for the jth constraint (tj1, t
j
2, t

j
3),

the given vertex ordering has vji2 ordered between vji1 and vji3 , where ti1 = tj1, ti2 = tj2, and

ti3 = tj3.

36

The last statement in the proof can be observed in Figure 3.1 where the top-most betweenness

constraint gadget has the vertices for 4, 5, and 6 in a constraint satisfying order. One can

easily check that reversing the positions of the vertices for 4 and 6 will avoid dashed blue

edges crossing dashed blue edges, avoiding a monochromatic rainbow when the bottom-to-

top ordering described earlier is applied. However, any order where 5 is not between 4 and

6 will not satisfy this property. Theorem 3 then follows directly from Lemma 10.

NP-completeness of Wheeler Graph Recognition on d-NFAs

Now we restrict the number of edges with the same label that can leave a single vertex.

We adopt the terminology used by Alanko et al., and consider the problem of recognizing

whether a d-NFA is also a Wheeler graph [6]. A d-NFA is defined as follows:

Definition 2. A d-NFA G is an NFA where the number of edges with the same character

leaving a vertex is at most d. We refer to the value d as the non-determinism of G.

Here an NFA contains a single start state, from which we assume each vertex is reachable.

The results in this section are in contrast to the recent work of Alanko et al., who showed

that it can be recognized in polynomial time whether a 2-NFA is a Wheeler graph [6]. Their

result coupled with the observation that the reduction in Section 3 requires a nΘ(1)-NFA

suggests an interesting question about what role non-determinism plays in the tractability

of Wheeler graph recognition. To this end, we prove Theorem 15.

Theorem 15. The Wheeler Graph Recognition Problem is NP-complete for d-NFA’s, d ≥ 5.

The strategy of the proof will be to reduce the NP-complete problem 4-NAESAT to Wheeler

Graph Recognition. In 4-NAESAT each clause is of length 4, and an instance is satisfiable iff

37

there exists a truth assignment such that each clause contains both a true literal and a false

literal. We start with 4-NAESAT to obtain a 3-NAESAT instance with the special property

highlighted by Lemma 11.

Lemma 11. An instance φ of 4-NAESAT can be reduced in poly-time to an instance φ′ of

3-NAESAT where a variable occurring in the middle of a clause appears at most twice in φ′.

Proof. Convert the 4-NAESAT instance φ to a 3-NAESAT instance φ′ by converting each

clause (ak, bk, ck, dk) into the clauses (ak, wk, bk) and (ck, wk, dk) where wk is a new variable.

One can quickly check that both clauses have a satisfying not-all-equal assignment iff it is

not the case that ak = bk = ck = dk. We also note that the variable used in the middle of

the clauses, wk, is used only twice in all of φ′.

For convenience, we define the set of 3-NAESAT instances where any variable occurring in

the middle of a clause occurs at most twice in the whole Boolean expression as 3-NAESAT∗.

We next describe the construction of a one source DAG from an instance of 3-NAESAT∗.

Suppose we are given an instance φ of 3-NAESAT∗ with variables x1, x2, . . . , xn and the

clauses (ak, bk, ck) where we assume ak, bk, ck can represent either a Boolean variable or its

negation. We create a single source DAG G based on φ. The first step creates a menorah

like structure which allows for the vertices representing xi and xi to swap places in G, but

otherwise fixes the positions of the vertices. We begin by adding the vertices which represent

our variables, x1, . . . , xn, X, x1, . . . , xn; (the role of X will become clear). Next, we add the

structure to constrain their possible positions (see Figure 3.2 for an example).

Add to G the vertices:

• s0
1 . . . , s

0
n;

38

Figure 3.2: Vertex Z1 and Z2 could be for clauses (x1, x2, x3), (x2, x3, x4). Each ‘betweenness’
constraint adds a layer. (x4, X, x4) constraint shown.

• For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− i: sji and sji ;

Add to G the red (solid) edges:

• (s0
1, s

0
2, 1), . . . (s0

n, X, 1);

• For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− i: (sj−1
i , sji , 1) and (sj−1

i , sji , 1);

• For 1 ≤ i ≤ n: (sn−ii , xi, 1) and (sn−ii , xi, 1);

For clause k, denoted (ak, bk, ck), we add a vertex Zk. Suppose the middle variable of the

clause, bk, is xh (positive or negated), then we add the vertices zjk for 1 ≤ j ≤ n − h, and

red edges (s0
h, z

1
k, 1), (z1

k, z
2
k, 1) . . . (zn−hk , Zk, 1).

39

Now we wish add a set of betweenness type constraints on any proper ordering given of

the vertices L0 = {x1, . . . , X, xn . . . x1, Z1, Z2, . . .}. Given a constraint (y1, y2, y3) we insist y2

be between y1 and y3 in the ordering. This can be done by adding a layer of new vertices

L1 = {x1
1, . . . , X

1, x1
n . . . x

1
1, Z

1
1 , Z

1
2 , . . .} with red(solid) edges labeled 1 from vertices in layer

L0 to their corresponding vertices in L1. We use the same gadget that was used in Section 3.

Consider adding a betweenness constraint on the vertices y1, y2, y3 in L1. Add the vertices

w1
1, w1

2, and w1
3 and the blue(dash) edges (y1

1, w
1
1, 2), (y1

2, w
1
2, 2), (y1

3, w
1
3, 2), (y1

1, w
1
2, 2) and

(y1
3, w

1
2, 2). Additional betweenness constraints can be similarly enforced by adding a new

layer L2 on top of L1 with a new gadget. We add the betweenness constraints (xi, X, xi) for

1 ≤ i ≤ n fixing X, and then betweenness constraints (ak, Zk, bk) and (ck, X, Zk) for every

clause (ak, bk, ck).

Before proving the correctness of the reduction, we make the observation that because any

variable occurring in the middle of a clause occurs as most twice in the whole expression,

the maximum number of edges leaving a vertex s0
i is bounded by 3 + 2 = 5. All of the other

vertices have at most three edges with the same label leaving them.

Lemma 12. The leveled graph G constructed as above from an instance φ of 3-NAESAT∗

is a Wheeler graph iff φ is satisfiable.

Proof. Given a truth assignment that satisfies the 3-NAESAT∗ instance φ, put the vertices

in L0 whose variables are assigned the value T on the left side of X (as in Figure 3.2), and

the vertices whose variables are assigned F on the right side of X. For example, if x1 = T

and x2 = F , the two left-most vertex on level L0 would be x1 followed by x2. For all of the

possible not-all-equal arrangements of the variables for ak, bk, and ck, relative to X, we will

always be able to find a place in ordering for Zk that respects the betweenness constraints. For

instance, if the variable for bk is xh, this is possible because Zk is able to ‘freely pivot’ around

40

Table 3.1: Possible relative orderings of ak, bk, ck, Zk, X subject to (ak, Zk, bk) and
(ck, X, Zk).

Possible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j
FFT ck . . . X . . . bk, Zk . . . ak ck . . . X . . . bk, Zk . . . ak
FTF bk, Zk . . . X . . . ck . . . ak bk, Zk . . . X . . . ak . . . ck
TFF ak . . . bk, Zk . . . X . . . bk . . . ck ak . . . bk, Zk . . . X . . . bk . . . ck
FTT ck . . . bk . . . X . . . bk, Zk . . . ak ck . . . bk . . . X . . . bk, Zk . . . ak
TFT ak . . . ck . . . X . . . Zk, bk ck . . . ak . . . X . . . Zk, bk
TTF ak . . . Zk, bk . . . X . . . ck ak . . . Zk, bk . . . X . . . ck

Table 3.2: Orderings implied by all-equal assignment that are impossible while satisfying
constraints.

Impossible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j
TTT ak . . . bk . . . ck . . . X ck . . . bk . . . ak . . . X
FFF X . . . ck . . . bk . . . ak X . . . ak . . . bk . . . ck

the vertex sh in the spine of menorah structure to find betweenness constraint respecting

position immediately to left or right of xh or xh. This can be confirmed by examining all

possible cases, as is shown in Table 3.1. That is, for clause (ak, bk, ck) Table 3.1 shows all

possible not-all-equal truth assignments, and the corresponding relative orderings of L0 that

we can apply to the vertices to satisfy the Wheeler graph axioms.

In the other direction, assume G is a Wheeler graph so we have a proper ordering on the

vertices of G. The proper ordering of the menorah structure is fixed with the exception

of zji vertices and the ordering duplicated across layers L0,L1, We will show that in a

proper ordering of the vertices the ordering given to L0 must have every clause in φ getting

a not-all-equal assignment when we apply the following map: vertices for variable on the left

of X in L0 map back to T assignment for that variable, and vertices for a variable to the

41

right of X in L0 map back to an F assignment for that variable.

Suppose to the contrary that this mapping did not provide a valid not-all-equal assignment.

Then L0 was given an ordering where either the variables for ak, bk, and ck are all on the

left or the right side of X. The possible arrangements for this are presented in Table 3.2. In

contrast to the cases listed in Table 3.1, for all cases listed in Table 3.2, placing Zk between

ak and bk violates the constraint (ck, X, Zk), which by our reduction implies it violates a

Wheeler graph constraint as well. This contradicts our assumption that we have a proper

ordering on the vertices. We conclude that a proper ordering of the vertices of G must map

back to a truth assignment that gives each clause in φ a not-all-equal assignment.

This leaves open the complexity of the recognition problem for 3-NFA’s and 4-NFA’s.

Wheeler graphs and Queue Number

Queue Number

The concept of queue number and queue layout were introduced by Heath and Rosenberg

originally for undirected graphs in [68] and later expanded to directed graphs in [67]. Con-

sider the vertices of the graph given a total ordering. We will say that we can process the

edges using k queues if we can iterate through the vertices in the given ordering, and every

time the tail of an edge is encountered that edge is enqueued in one of the queues, and when

the head of that same edge is encountered that edge is then dequeued. Over all possible

orderings of the vertices, there is some ordering that requires the minimum number of queues

to perform this processing. That minimum number of queues is called the queue number of

the graph. The problem of detecting whether a graph is a one-queue DAG was shown to be

42

solvable in linear time by Heath and Pemmaraju [66, 67, 68]. Using a few additional steps,

we can extend their techniques to a specific subset of Wheeler graphs.

Theorem 16. The Wheeler graph recognition problem can be solved in linear time for an

edge alphabet of size σ = 1 on graphs without self-loops.

Proof. When σ = 1 and the graph has no self-loops, any proper Wheeler ordering is either a

topological ordering or a reversed topological ordering. Hence, the problem of finding a one-

queue ordering and a proper Wheeler ordering are almost equivalent. The only difference is

that for a proper Wheeler ordering all of the vertices with in-degree zero must be placed first.

We can overcome this difference and reduce our problem to detecting one-queue DAGs. Let

V0 ⊂ V represent all vertices in V with in-degree zero. Create a new vertex u with in-degree

zero and add an edge from u to each vertex in V0. Since a valid one-queue ordering is a

topological ordering, v0 must be first in the one-queue ordering. Moreover, any vertices in

the V − V0 must be in the one-queue ordering after the last position given to a vertex in V0,

otherwise a rainbow is created. Thus, the above modification ensures that only one-queue

orderings on V place the vertices in V0 before any vertices in V − V0, so that we also obtain

a proper Wheeler ordering.

We can use results on the queue number of undirected simple graphs to obtain an upper

bound on the number of edges which can be in a Wheeler graph. An undirected simple graph

has queue number q if there exists an ordering on the vertices where we can process them

with q queues so that when an edge is first encountered it is enqueued, and when that edge

is encountered again it is dequeued, i.e., no rainbows for edges in the same queue.

Theorem 17. The number of edges in a Wheeler graph is at most 3σn− σ(2σ + 1).

Proof. The number of edges in a undirected graph with queue number q is at most 2qn −

43

q(2q+1) [40]. By removing self-loops and the edge orientations, the Wheeler graph becomes

an undirected graph with queue number at most σ. Each label adds at most n self-loops,

contributing in total at most σn additional edges.

An Exponential Time Algorithm

We can apply the encoding introduced by Gagie et al. [50] to develop exponential time

algorithms to solve all of the problems presented in this paper. The idea is to enumerate

over all possible encodings of Wheeler graphs with the proper number of vertices, edges, and

labels, checking whether the encoding is isomorphic with the given graph. This idea exploits

the fact that having such a space-efficient encoding also implies having a limited search

space of Wheeler graphs, and that graph isomorphism can be checked in sub-exponential

time. This proves Theorem 4.

Before describing the algorithm that proves Theorem 4 we need to describe the encoding

of a Wheeler graph given in [50]. A Wheeler graph can be completely specified by three

bit vectors. Two bit vectors I and O both of length e + n and a bit vector L of length

e log σ. We assume that the vertices of the Wheeler graph G are listed in a proper ordering

x1 <π x2 <π . . . <π xn. The array I is of the form 0`110`21 . . . 0`n1 and O is of the form

0k110k21 . . . 0kn1. Here `i is the out-degree of xi whereas ki is the in-degree of xi. The array

L indicates which character symbol is assigned to each edge. Specifically, the ith character

in L gives us the label of the edge corresponding to the ith zero in O. In [50] an additional

C array is added, and these arrays are equipped with additional rank and select structures

to allow for efficient traversal as is done in the FM-index [47]. For our purposes, however,

the arrays O, I, and L are adequate.

44

The outline of the algorithm is given below as Algorithm 1. It essentially enumerates all bit

vectors of a given length, checks whether or not the bit vector encodes a valid Wheeler graph,

and if so then checks whether the encoding matches our given graph G. Let S represent the

set of all possible encodings we wish to check. Note that |S| ≤ 22(e+n)+e log σ.

Algorithm 1 IdentifyWheelerGraph(G)

for all (O, I, L) ∈ S do
if (O, I, L) defines a valid wheeler graph G′ then

convert G to undirected graph α(G)
convert G′ to undirected graph α(G′)
if α(G) and α(G′) are isomorphic then

return “Wheeler Graph”
end if

end if
end for
return “Not a Wheeler Graph”

The Wheeler graph corresponding to the encoding can be extracted by working from right

to left reading the array I. For each zero in I, we know which symbol should be on the

inbound edge going into the corresponding vertex. We only need to decide where the edge’s

tail was. Let k be the edge label and j be the index of the label k in L that is furthest to the

right in L and yet to be used. If no such j exists we reject the encoding. When assigning

the tail for an edge, take as the tail the vertex xi where i = rank1(O, select0(O, j)). We call

the graph constructed in this way G′.

We now wish to check whether G′ and G are the same graphs, only with a reordering of

the vertices, that is G′ is the result of applying an isomorphism to G. Unlike the typical

isomorphism for labeled graphs, where a bijection between the symbols on the edge alphabet

is all that is required, here we wish for the adjacency and the label on the edge to be preserved

in the mapping between G and G′. Specifically, we wish to know if there exists a bijective

function f : V (G)→ V (G′), such that if u, v ∈ V (G) are adjacent via an edge (u, v, k) with

45

Figure 3.3: A k-gadget replacing directed labeled edge (u, v, k).

label k in G, then f(u) and f(v) are also adjacent via an edge (f(u), f(v), k) with label k in

G′. Using ideas similar to those presented by Miller in [106], this problem can be reduced in

polynomial time to checking whether two undirected graphs are isomorphic.

Lemma 13. Checking whether the direct edge labeled graph G′ is edge label preserving iso-

morphic to G can be reduced in polynomial time to checking if two undirected graphs are

isomorphic.

Proof. Define the transformation α from directed edge labeled graph G to undirected graph

α(G) as follows: For every directed edge (u, v, k) replace it with the k-gadget in Figure 3.3.

Assume that there exists an edge label preserving isomorphism f from V (G) to V (G′).

This implies that when α is applied to G′ the same gadget is used to replace the edge

(f(u), f(v), k) as the gadget used to replace the edge (u, v, k) in G. Therefore, the function

f can be naturally extended to an isomorphism f̃ on the vertices of α(G) providing an

isomorphism between α(G) and α(G′). Now, consider the case where g is an isomorphism

between α(G) and α(G′). We wish to show that G and G′ must be related by an isomorphism

preserving edge labels. We define a n-tuple of numbers for each vertex v ∈ V (α(G)), β(v) =

46

(a1, a2, . . . , an) where ai is the number of vertices with graph distance (the number of edges)

i from v. In Figure 3.3, β(x) = (1, 1, . . . , 1, 2, . . .) where the leading 1’s are repeated k + 1

times. Notice first that β(v) = β(g(v)), that is β(v) is invariant under g. Also, β(y) =

(1, 1, . . . , 1, 2, . . .) where the leading 1’s are repeated σ + 1 times. For example, when k = 1,

we have β(y) = (1, 1, 2, . . .). Observe that for any vertex u ∈ V (G) of degree d we have

that β(α(u)) = (d, 2d, . . .). It follows that any vertex which is an x vertex of a k-gadget

is mapped by g onto an x vertex of a k-gadget. Similarly, any vertex which is a y vertex

of a k-gadget is mapped by g onto a y vertex of a k-gadget. Hence, k-gadgets are mapped

by g onto k-gadgets. This also implies that vertices in V (α(G)) originally in G are mapped

by g onto vertices in V (α(G′)) which were originally in V (G′). If we restrict g to only the

vertices originally in V (G), then g provides us with an isomorphism between G and G′. The

reduction clearly takes polynomial time.

The final step in this algorithm is to check whether α(G) and α(G′) are isomorphic. Using

well established techniques this can be done in time 2
√
n′+O(1) where n′ is the number of

vertices in α(G) [9]. The total time complexity of Algorithm 1 is the number of bit strings

tested, multiplied by the time it takes to (1) validate whether the bit string encodes a Wheeler

graph G′ and decode it, (2) convert G and G′ to undirected graphs α(G) and α(G′), and

(3) test whether α(G) and α(G′) are isomorphic. This yields an overall time complexity of

|S|nO(1)2
√
n+2e(σ+1)+O(1), i.e., 2e log σ+O(n+e) for Algorithm 1.

47

Optimization Variants to Wheeler Graph Recognition

The Wheeler Graph Violation Problem is APX-hard

In this section, we show that obtaining an approximate solution to the WGV problem that

comes within some constant factor of the optimal solution is NP-hard. We do this through

a reduction that shows that WGV is at least as hard as solving the Minimum Feedback Arc

Set problem (FAS). FAS in its original formulation is phrased in terms of a directed graph

where the objective is to find the minimum number of edges that need to be removed in

order to make the directed graph a DAG. A slightly different formulation proves more useful

for us. Letting Fπ = {(vi, vj) ∈ E | π(vi) > π(vj)} we have the following:

Lemma 14 (Younger [127]). Determining a minimum feedback arc set for G = (V,E) is

equivalent to finding an ordering π on V for which |Fπ| is minimized.

From this, we can present the equivalent formulation of FAS.

Definition 3 (Minimum Feedback Arc Set (FAS)). The input is a list T = t1t2 . . . tn of n

numbers and a set of k inequalities of the form ti < tj. This task is to compute an ordering

π on T so that the number of inequalities violated is minimized.

Interestingly, we could not have used FAS for proving that the Wheeler graph recognition

problem is NP-complete, as FAS is fixed-parameter tractable in terms of the size of the

feedback arc set [26]. Indeed, setting the size of the feedback arc-set to zero is equivalent to

checking if the given graph is a DAG and the problem becomes solvable in linear time.

On the other hand, it has been shown that FAS is APX-hard, meaning that every problem

in APX is reducible to it [75]. It also implies, assuming NP 6= P, that there is a constant

48

C ≥ 1 such that there is no polynomial time algorithm which provides a C-approximation.

The reduction provided in this section implies:

Theorem 18. The WGV problem is APX-hard.

In addition, Guruswami et al. demonstrated that assuming the Unique Games Conjecture

holds, and NP 6= P, there is no constant C ≥ 1 such that a polynomial-time algorithm’s

approximate solution to FAS is always a factor C from the optimal solution. We state this

as a lemma.

Lemma 15 (Guruswami et al. [62]). Conditioned on the Unique Games Conjecture, for

every C ≥ 1, it is NP-hard to find a C-approximation to FAS.

An approximation preserving reduction from FAS to WGV combined with Lemma 15 proves

the other main result of this section, Theorem 5.

The Reduction of FAS to WGV

Let T = t1, t2, . . . , tn and inequalities t11 < t12, t
2
1 < t22, . . . , t

k
1 < tk2 be the input to FAS.

We define a heavy edge between the vertices u and v with label ` as k + 1 subdivided edges

between u and v each with label `. That is, a heavy edge between u and v with label ` consists

of the edges (u,wi, `) and (wi, v, `) for 1 ≤ i ≤ k + 1. See Figure 3.4 for an illustration. We

use the following steps to create a graph (which is a DAG):

• Create a vertex v0 and vertices vji for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ k.

• For each inequality tj1 < tj2 create a vertex for both tj1 and tj2, labeled wj1 and wj2,

respectively.

49

Figure 3.4: A heavy(bold) edge in Figure 3.5 is actually k + 1 subdivided edges.

• Create heavy edges (v0, v
1
i , 1) for 1 ≤ i ≤ n + 1 and heavy edges (vji , v

j+1
i , 1) for

1 ≤ i ≤ n+ 1, 1 ≤ j ≤ k − 1.

• Create heavy edges (v0, w
1
1, 2), and heavy edges (vjn+1, w

j
2, 2) and

(vjn+1, w
j+1
1 , 2) for 1 ≤ j ≤ k − 1, and heavy edge (vkn+1, w

k
2 , 2).

• Add the regular (not heavy) edges (vji , w
j
1, 2) if ti = tj1, and (vji , w

j
2, 2) if ti = tj2 for

1 ≤ i ≤ n, 1 ≤ j ≤ k.

An example of the reduction is given in Figure 3.5. The intuition is that the vertices with

an inbound heavy edge labeled 1 represent the permutation of the elements in T . The heavy

edges labeled 1 force the permutation to be duplicated k times, once for each constraint.

The vertices with the inbound edge label 2 represent the elements in each inequality. We

will show that this is an approximation preserving reduction.

Let E ′ be an optimal solution to WGV and G′ = (V,E\E ′). Let π represent a proper

ordering on the vertices of G′. Lemma 16 indicates that, other than permuting the ordering

found on the vertices vji for 1 ≤ i ≤ n (with the ordering duplicated for 1 ≤ j ≤ k), the

ordering for the vertices in Figure 3.5 is fixed.

We say an edge (u, v, k) violates a Wheeler graph axiom if any the following hold:

50

Figure 3.5: Reduction from FAS to WGV where T = 1, 2, 3, 4, 5, 6 and the inequalities are
5 < 3, 1 < 5, and 6 < 4.

1. there exists an edge (u′, v′, k′) with k < k′ and v ≥π v′;

2. there exists an edge (u′, v′, k′) with k = k′ and u <π u
′ and v′ < v;

3. the in-degree of u is zero and there exist w ∈ V with in-degree one or greater and

w <π u.

Lemma 16. Let φ represent a permutation of the set [n+1]. Any ordering π which provides

a solution to the constructed instance of WGV with at most k edges violating the axioms is

of the form

v0, v
1
φ(1), v

1
φ(2), . . . v

1
φ(n+1), . . . v

k
φ(1), v

k
φ(2), . . . v

k
φ(n+1), w

1
1, w

1
2, w

2
1, w

2
2, . . . w

k
1 , w

k
2 .

51

Proof. The ordering given in Figure 3.5 causes at most k edges to violate, so we know that

|E ′| ≤ k. If any of the w vertices is placed before a v vertex in π that causes k + 1 edges to

violate (1), implying |E ′| ≥ k + 1, a contradiction. Similarly, v0 must be placed first in the

ordering.

For the v vertices, a vj vertex must precede a vj+1 vertex in π, for j ≥ 1. Suppose otherwise

for the sake of contradiction. Take the lowest ordered such vj+1
i that is preceding a vj vertex.

If vjt follows vj+1
i in the ordering, then the heavy edge (vji , v

j+1
i , 1) violates (2) due to the

edge (vj−1
t , vjt , 1) when j ≥ 2 and (v0, v

j
t , 1) when j = 1, since vj−1

t <π v
j
i and vj+1

i <π v
j
t .

This causes k + 1 violations, a contradiction. The same ordering that was found on the

vertices vj1, v
j
2, . . . v

j
n+1 must be duplicated across the vertices vj+1

1 , vj+1
2 , . . . vj+1

n+1. Again for

the sake of contradiction, suppose otherwise and take the lowest ordered vertex vj+1
i in the

second group which violates the ordering of the first. Supposing, vjt is element preceding vji

in the ordering, then the heavy edge (vjt , v
j+1
t , 1) violates (2) due to edge (vji , v

j+1
i , 1) since

vjt <π v
j
i and vj+1

i <π v
j+1
t . This creates k + 1 violations.

For the w vertices, the vertex w1
1 must be ordered first in the w block, else (v0, w

1
1, 2) and

(v1
n+1, w

1
2, 2) cause k + 1 violations. The vertex w1

2 must precede w2
1, else the heavy edge

(v1
n+1, w

1
2, 2) and edge (v2

i1
, w2

1, 2) where ti1 = t21 cause k + 1 violations since v1
n+1 <π v

2
i1

but

w2
1 <π w

1
2. The vertex v1

n+1 must proceed the vertex v1
i2

where ti2 = t12. Otherwise the edges

(v1
n+1, w

2
1, 2) and (v1

i2
, w1

2, 2) cause k + 1 violations since v1
n+1 <π v1

i2
but w1

2 <π w2
1. We

inductively proceed up to wk1 and wk2 .

Let f(x) refer to the reduction described above applied to an instance x of FAS, creating an

instance f(x) of WGV. We also refer to the solution to either of these problems as OPT(·),

and val(·) as the cost of a solution. For FAS, val(·) is the number of violated inequalities.

For WGV, val(·) is the number of violating edges.

52

Lemma 17. Given an instance x of FAS, a solution to the instance f(x) of WGV that has

` ≤ k axiom violating edges yields a solution to x with ` violated inequalities.

Proof. Suppose we have a solution to y′ for WGV instance f(x) with val(y′) = ` ≤ k. By

Lemma 16 the ordering of the vertices only differs from the expected ordering by the ordering

given to vj1, . . . , v
j
n, v

j
n+1. Ignore the vertex vjn+1 and apply the remaining ordering to T . Any

edge that has to be removed is one of the two edges (vji1 , w
j
1, 2) and (vji2 , w

j
2, 2), where ti1 = tj1

and ti2 = tj2, and where vji2 <π v
j
i1

and wj1 <π w
j
2. This implies for our solution to x the jth

inequality has ti2 < ti1 , so we do not satisfy the inequality ti1 < ti2 . On the other hand, if

it holds for the edges (vji1 , w
j
1, 2) and (vji2 , w

j
2, 2) that vji1 <π v

j
i2

, this implies the inequality is

satisfied.

The next lemma is an immediate consequence of Lemma 17.

Lemma 18. Given an instance x of FAS, a C-approximation to the solution OPT(f(x))

yields a C-approximation to the solution OPT(x).

Theorem 18 follows from Lemma 18 and Theorem 5 follows from Lemma 15 and Lemma 18.

The Wheeler Subgraph Problem is in APX

The dual problem to WGV is the problem of finding the largest subgraph of G which is a

Wheeler graph. This problem is called Wheeler Subgraph problem, abbreviated WS. Unlike

WGV, this problem yields a Θ(1)-approximate solution for constant σ.

We first prove the result for σ = 1. We then apply this result to get an approximation for

σ > 1. The proof for σ = 1 uses a branching of a directed graph. A branching is a set of

53

arborescence where an arborescence is a directed, rooted tree with all maximal paths starting

at the root. A branching is called spanning if every vertex in V is included in exactly one

arborescence in the branching.

Lemma 19. There exists a linear time Θ(1)-approximation algorithm for WS when the

alphabet size σ is one.

Proof. Remove all singleton vertex (vertex with in-degree and out-degree zero), and let n′

be the number of remaining vertex. By doing this we know that the number of edges in the

remaining graph is at least n′ − 1. Next, remove any edges that are self-loops. Then let V0

be set of vertices with out-degree greater than zero. There are three cases:

Case: |V0| ≤ n′/2: Take a branching F such that each vertex with in-degree greater than

zero is included in some arborescence whose root is in V0. This is always possible, as can be

shown by induction on the number of vertices not in V0. In particular, if you take a vertex u

not in V0, since there are no singleton vertex, u has in-degree greater than zero. Removing

u and applying the claim as an inductive hypothesis to the remaining graph G − {u}, you

get that u has some edge from a vertex in G − {u}, which can be used to add u to an

arborescence whose root is in V0. Let |F| denote the total number of arborescences in F .

Since |V0| ≤ n′/2, it follows that |F| ≤ n′/2 as well.

We create a planar leveling (L0, L1, . . .) of F by aligning all roots of the branching on level

L0 in an arbitrary order. Then set Li to be all of the vertices which are distance i from some

root in L0. Because these are trees, we can order the vertices in levels in such a way that

the leveling is planar. For our purposes say the levels increase from left to right. We claim

that F is a Wheeler graph and that we can obtain a proper ordering π for the vertices of F

from this leveling. This is since, starting with V0, we can read the order the vertices on each

level from the bottom to top before proceeding right to the next level.

54

The number of edges in F , denoted e(F), is equal to n′−|F|. And since |F| ≤ n′/2, we have

that e(F) ≥ n′/2. At the same time, by Theorem 17 the optimal number of edges, denoted

|E∗| (including the O(n′) self-loops we removed earlier) is O(n′). This makes the ratio of

the optimal solution value over the branching solution value is bounded. In particular,

|E∗|/e(F) ≤ O(n′)/(n′/2) = O(1). The construction of the branching, the planar leveling,

and the extracting π can all be done in linear time.

Case |V0| > n′/2: Take one outbound edge from each vertex in V0. This is possible by the

definition of V0. We obtain a Wheeler graph with |V0| > n′/2 edges. This gives us a solution

with an approximation ratio of |E∗|/|V0| < O(n′)/(n′/2) = O(1). In either case, we have an

approximate solution with Θ(|E∗|) edges.

Next, we consider when σ > 1. Suppose G∗ = (V,E∗) is the optimal solution for G. Then

E∗ = E∗1 ∪E∗2 . . . E∗σ where E∗k = {(u, v, k) ∈ E∗}. Let Gk = (V,Ek) where Ek = {(u, v, k) ∈

E} and let G′k = (V,E ′k) be the optimal solution for Gk. Then, since |E∗k | ≤ |E ′k| we have

|E∗| =
σ∑
k=1

|E∗k | ≤ σ ·max
k
|E∗k | ≤ σ ·max

k
|E ′k|.

Applying the result for σ = 1 (Lemma 19), we can approximate maxk |E ′k| with a solution

having α ·maxk |E ′k| edges for some constant α ≤ 1. Therefore,

α

σ
|E∗| ≤ αmax

k
|E ′k| ≤ max

k
|E ′k| ≤ |E∗|.

So the solution provides Ω(1/σ)-approximation for G as well.

We close this section by noting that the algorithm presented in Section 3 also provides us

with an exponential time solution to the two optimization problems defined in Section 3. The

55

solution is to iterate over all possible subsets of edges in E, take the corresponding induced

subgraph, and apply Algorithm 1 to identify if the induced subgraph is isomorphic to a

Wheeler graph. For both the WGV and WS problems the optimal solution is the encoding

with the fewest edges removed. The resulting time complexity is the same as in Theorem 4

with the addition of one e term in the exponent. We have shown the following:

A Class of Graphs with Linear Time Solution for Recognition

As mentioned before, in [6] it was shown by Alanko et al. that that exists an algorithm

that solves the recognition problem on 2-NFA’s using linear time. This works by reducing

the recognition problem to a 2-SAT instance that can then be efficiently solved. The most

immediate modification to the reduction that allows for higher non-determinism fails to

ensure that a solution obtained from the 2-SAT instance is a proper ordering. Here we

allow for arbitrary levels of non-determinism but place two rather stringent conditions on

the graphs so that our techniques will work. It is also important to note that the motivation

of pattern matching on graphs is not particularly well suited for this class of graphs (one of

the main motivations of the work of Alanko et al.). We will see that these the graphs can

be easily converted into equivalent (from the pattern matching perspective) DFA’s which

are trees and hence also Wheeler graphs. Instead, we take the view point that these are

ordering problems, where the edges of the graph form a type of constraint and the vertices

need to be ordered in a way as to satisfy these constraints. The below characteristics make

this ordering problem solvable in polynomial time.

First, our graph G must have at least one vertex with in-degree zero. We let W0 denote

the set of vertices with in-degree zero. Next, we make two definitions which describe the

characteristics we require in order to solve the problem efficiently.

56

Figure 3.6: On the left is an example of a small graph that has full spectrum outputs and
the unique string traversal property, but is not a Wheeler graph. On the right is an example
of a small graph that has both properties and is a Wheeler graph.

Definition 4. We consider a graph G to have full spectrum outputs if for every vertex v of

out-degree greater than zero, every label appears on an edge leaving from v.

Definition 5. A graph G has the unique string traversal property if for every vertex v, all

paths from W0 to v form the same string when the path’s edge labels are concatenated.

In Figure 3.6 we see a simple example of two graphs that satisfy both of the given defini-

tions, however one is a Wheeler graph and the other is not. Further, it can be seen from the

reductions used in this work that even when graphs satisfy the unique string traversal prop-

erty, the problem remains NP-hard. We leave open whether the problem is NP-hard when

restricted to instances that have full spectrum outputs but not the unique string traversal

property.

These two characteristics make this problem tractable using techniques similar to those used

to detect one-queue DAGs. Based on this, we provide a linear time solution for this special

case. Before presenting the solution, we introduce an essential data structure, and the process

by which it is used detect whether a DAG has queue number one.

57

Figure 3.7: In the figure, p-nodes are represented by circles and q-nodes by rectangles. The
orderings represented by this PQ-Tree are orderings where 1 can be reversed with 2, the
leaves 3,4, and 5 can be permuted arbitrarily, and the order of the sets of leaves 1,2 and 3,4
5, can be swapped.

PQ-trees

PQ-trees were introduced by Booth and Lueker for the purpose of solving the consecutive

ones problem [17], and have since found applications in a wide range of problems including

planarity detection, detecting interval graphs, and graph embedding [17, 28, 64, 74, 91].

PQ-trees represent a set of possible orderings of the leaves which are subject to certain

constraints. These constraints specify that some subset of the leaves must be contiguous in

the ordering. The trees are made up of three types of nodes, p-nodes, q-nodes, and leaves.

The p-nodes allow for arbitrary permutations of their child nodes, whereas q-nodes only

allow for the reversal of their child nodes. The leaves represent the actual elements whose

ordering we are interested in. See Figure 3.7 for an example.

A universal PQ-tree is a p-node v where all of the leaves are v’s children. The ε-tree, Tε is a

special tree which represents the empty set of orderings. We can take the intersection of two

PQ-trees in time proportional to the sum of the two tree sizes [17]. The resulting PQ-tree

represents the intersection of the orderings represented by each PQ-tree. Deletion of a leaf

58

can be done in constant time.

Detecting One-Queue DAGs

The problem of detecting whether a directed graph has queue number one can be solved

in linear time, but the solution is non-trivial. We give a rough idea of how the algorithm

works here. Details of the algorithm are given in [66, 67]. It begins by taking a leveling

V1, . . . , Vk of the vertices in the DAG. Starting with a universal PQ-tree whose leaves are

the vertices in V1, it then makes the leaves of the PQ-tree to be the vertices in V2 according

to adjacency, with possible duplicates. Then the leaves that should be in correspondence

(duplicate leaves) in V2 are merged into the same leaf. If at any point the merging step fails,

we obtain the ε-tree and conclude that the DAG does not have queue number one. If we get

to the final level without a merging step returning the ε-tree, the DAG has queue number

one. For convenience, we will call the combined steps of transforming the leaves and merging

the leaves from one level to the next pushing. The intuition behind this procedure is that

when the level-k has been pushed to, the PQ-tree captures all possible orderings of Vk such

that a one queue layout of levels one through k is possible. This interpretation of the process

is very useful for understanding the algorithm presented next.

Linear Time Solution

The basic approach to solving this problem is to use a depth-first search, treating sets of

vertices as a single vertex. These vertex sets will have PQ-trees pushed across them in

a similar fashion as was done in solution described above. The situation is slightly more

complicated here as we have multiple edge types. This results in a tree structure, rather

than a path of vertex sets. We will label the vertices representing vertex sets with capital

59

letters and label the PQ-tree for a vertex set W ⊂ V as TW .

We split the algorithm into two parts. The first part is to create a tree where vertex sets

play the role of vertices. It is a depth-first search using the edges between neighborhoods

as connecting edges. The pseudocode is given in Algorithm 2. Nk(W) denotes the set of

neighbors of the set W connected by an edge with label k. The function createVertex

takes a set of vertices and creates a new instance of a vertex class that can maintain pointers

to its parent, children, internal vertices, and a string. Lemma 20 can be proven by applying

induction to the number of edge labels, σ.

Algorithm 2 CreateNeighborhoodGraph

Require: Vertex set W with adjacency information
1: function CreateNeighborhoodGraph(W):
2: for all k ∈ [σ] do
3: if Nk(W) 6= ∅ then
4: Wk ← createVertex(Nk(W))
5: Wk.parent← W
6: Wk.string ← k ◦ W.string . Concatenate
7: W.children.add(CreateNeighborhoodGraph(Wk))
8: end if
9: end for
10: return W
11: end function

Lemma 20. If the given graph G is a Wheeler graph, in a proper ordering, the vertex sets

obtained as above are ordered by the lexicographical ordering of their strings.

An example of a tree obtained from Algorithm 2 is shown in Figure 3.9. The vertex sets

are disjoint due to the unique string traversal property. During Algorithm 2 we can identify

if the graph satisfies the unique string traversal property by checking that vertex in V gets

included into exactly one vertex set.

Moving forward, the next portion of the algorithm is a recursive procedure that starts with

60

Figure 3.8: An example Wheeler graph that meets the criteria for this section. Red (solid)
edges correspond to edges labeled 1, and blue (dashed) edges correspond to edges labeled 2.

the set of vertices having in-degree zero. Pseudocode is given in Algorithm 3. The first step

removes vertices in W with out-degree zero. This is necessary since when we push a PQ-tree

back up to W , these vertices will not be leaves in the resulting PQ-tree, making computing

the intersection in future steps impossible. Hence, from here we consider W as containing

no out-degree zero vertex.

We next demonstrates how Algorithm 3 works. Let V ′ be the vertices processed prior to

reaching W and assume inductively that the PQ-tree TW represents all orderings of W such

that if we fixed any one of these orderings there still exists a proper ordering of the vertices

in V ′. Then after performing the first line of the for-loop, the PQ-tree TW1 represents all

orderings of W1 such that if we fixed any one of these orderings there still exists a proper

ordering of the vertices in V ′ ∪W . After performing the second line in the for-loop, TW1

now represents all orderings of W1 such that if we fixed any one of these orderings there

still exists a proper ordering of the vertices in V ′ ∪W and vertices that are descendants of

W1. After completing the third line in the loop, TW represents all orderings of W such that

if we fixed any one of them there still exists a proper ordering of the vertices in V ′ ∪W1

61

Figure 3.9: The tree resulting from Algorithm 2 applied to the Wheeler graph in Figure
3.8. An oval in the tree corresponds to a set of vertices in the Wheeler graph. The labels
for these vertices are shown inside each oval. For each set of vertices inside an oval, the
strings obtained by concatenating the edge labels on the path from the source is the same.
These strings are shown to the side of each oval within the tree. In the tree, the edge colors
indicated which type of edge was taken at each step along a path to that set.

and any descendants of W1. We repeat this process for each of W ’s children. When finally

returned, TW represents all orderings of W such that there exists working orderings on V ′

and all descendants of W . The pseudocode for the whole algorithm is given in Algorithm 4.

The full spectrum output condition is necessary to apply this algorithm. We need that every

vertex in W maps onto some vertex in each of W ’s children. Thanks to this property when

the PQ-tree TWi
gets pushed back from a child Wi and the new PQ-tree TW is created, all

the vertices in W are also leaves in TW , and we can take the intersection with the previous

PQ-tree for W .

Time Complexity: Each set of edges between two vertex sets has PQ-trees pushed across

it twice. These pushes can be done in time proportional to the number of edges. In addition,

all intersections can be done in time proportional to the number of vertices. As a result of

these two facts, the overall algorithm can be performed in linear time. We have demonstrated

62

Algorithm 3 Propagating PQ-Trees

Require: PQ-Tree TW and corresponding vertex set W .
1: function PropagatePQTrees(TW ,W):
2: Remove out-degree zero vertex from W and corresponding leaves in TW
3: for all Wi ∈ W.children do
4: TWi

← push(TW ,Wi) . Push PQ-Tree down to child.
5: TWi

← PropagatePQTrees(TWi
,Wi) . Recursively apply to children

6: TW ← TW ∩ push(TWi
,W) . Push PQ-tree up from child and take intersection

7: end for
8: return TW
9: end function

Algorithm 4 Detecting Wheeler graphs

Require: Full spectrum graph G = (V,E) with unique string traversal property.
1: function DetectWheelerGraph(G):
2: Let W0 denote the set of all in-degree zero vertex in G
3: W0 ← createVertex(W0)
4: W0 ← createNeighborhoodGraph(W0)
5: W0.string ← “ε”
6: Construct TW0 , the universal tree with leaves W0

7: if propagatePQTrees(W0, TW0) 6= Tε then
8: return ”Wheeler graph”
9: else
10: return ”Not a Wheeler graph”
11: end if
12: end function

the following:

Theorem 19. It can be determined in linear time if a directed edge labeled graph with full

spectrum outputs and the unique string traversal property is a Wheeler graph.

Discussion and Open Problems

We have shown that recognizing Wheeler graphs is indeed a hard problem in general. We have

also shown a special case where the recognition problem can be performed efficiently. The

most important directions to expand this research appear to be in identifying more classes

63

of graphs where this can be done in polynomial time. We can also ask for improvements on

the algorithms presented here. Specifically, we ask:

• Is the Wheeler graph recognition problem NP-complete for 3-NFA and 4-NFA?

• For which other classes of graphs can Wheeler graph recognition be done efficiently?

• Is there a fixed parameter tractable exponential time algorithm for any of the hard

problems given in this paper?

• Can we provide a better approximation algorithm for the optimization variants?

Constructive answers to these questions will contribute to our knowledge on finding vertex

orderings ”close” to that required for a Wheeler graph. It will aid in our ability to apply

BWT based indices to various structures, as well as our ability to find useful compressible

subgraphs.

64

CHAPTER 4: LYNDON FACTOR OPTIMIZATION

The work presented here first appeared in the 38th International Symposium on Theoretical

Aspects of Computer Science, STACS 2021 [59].

Our main line of attack here is to model a more abstract class of ordering constraint satis-

faction problems (OCSPs), a subject of extensive research in its own right [24, 25, 63, 65,

113, 121]. Our work shows that a solver for these Lyndon factorization problems would be

powerful enough to solve difficult OCSP instances. Our results make use of strings that allow

us to model different constraint satisfaction problems and thus prove our hardness results.

Preliminaries

We again denote the concatenation of the strings u and v using the ‘◦’ symbol, writing their

concatenation as u ◦ v. However, we omit ‘◦’ where the concatenation is clear from context.

Throughout this chapter, we will use ‘<’ and ‘>’ to refer to alphabet order between symbols,

the lexicographic order between strings, and the usual ordering between real numbers. Again,

context will make it clear which type of order is meant. A suffix of a string T is a string v

such that T = u ◦ v for some string u. The suffix array of a string T [1, n] is a length n array

where the ith element is equal to the starting index of the ith lexicographically smallest suffix

of T . The inverse suffix array is defined as the length n array such that ith element is the

position of T [i, n] in the suffix array, i.e., the lexicographic rank of T [i, n].

The Lyndon factorization (defined in Chapter 1) of a string can be computed in linear time.

This can be done using the well known Duval’s algorithm [41], or by using the inverse suffix

array, which can be constructed in linear time [83]. Lemma 21 makes it clear why the latter

65

technique works.

Lemma 21 (Theorem 2.2 [105]). The starting index, i, of a suffix in T that is lexicograph-

ically smaller than any suffix starting at index j < i is an index where a Lyndon factor

begins.

In other words, as we scan the inverse suffix array from left-to-right, an index i where the

inverse suffix array value is smaller than any seen thus far marks the start of a Lyndon

factor. Moreover, if a Lyndon factor starts at index i in T , the next Lyndon word must be

this factor. We aim to use this to construct strings where the number of Lyndon factors

tells us something about the number of constraints satisfied within an OCSP. The definition

of an OCSP used here is less general than the one given in [61], but still sufficient for our

purposes.

Definition 6. An OCSP of arity k is specified by a set Λ ⊆ Sk where Sk is the set of

permutations of {1, 2, ..., k}. An instance of such an OCSP consists of a set of variables,

V = {x1, . . . , xn}, and m constraints, C1, . . ., Cm, each of which is an ordered k-tuple of

V . The objective is to find a global ordering σ of V that maximizes
∑m

i=1 χΛ(σ|Ci
), where

σ|Ci
∈ Sk is the ordering of the k elements of Ci induced by the global ordering σ, and

χΛ(σ|Ci
) = 1 if σ|Ci

∈ Λ and 0 otherwise. If χΛ(σ|Ci
) = 1, we say that Ci is satisfied.

Note that m ≤ n!/(n− k)! ≤ nk. Additionally, we will only consider OCSP instances where

each variable appears in at least two constraints. Under this last assumption, we can relate

the number of variables, n, to the number of clauses, m.

Lemma 22. For OCSPs with arity k constraints, n variables, and m constraints, where

every variable appears in at least two clauses, n ≤ k
2
m.

66

Proof. Since every variable appears in at least two constraints,

2n ≤
n∑
i=1

(the number of times variable xi appears in total) = km.

One of the simplest OCSPs is the Maximum Acyclic Subgraph Problem (MAS), where k = 2,

making constraints of the form (xi, xj), and where Λ = {(1 2
1 2)} (using two-line permutation

notation). That is, Λ contains only the identity permutation that orders xi < xj. For

example, an instance of MAS could be V = {x1, x2, x3, x4, x5} and C1 = (x1, x3), C2 =

(x5, x2), C3 = (x3, x4), C4 = (x2, x1). An ordering σ that puts the variables in the order

x4 < x5 < x3 < x2 < x1 would yield χΛ(σ|C1) = χΛ ((1 2
2 1)) = 0, χΛ(σ|C2) = χΛ ((1 2

1 2)) = 1,

χΛ(σ|C3) = χΛ ((1 2
2 1)) = 0, χΛ(σ|C4) = χΛ ((1 2

1 2)) = 1, making its objective value 2.

The dual minimization problem of MAS is the Feedback Arc Set (FAS). Recall the aim of

FAS is to minimize the objective value of a solution, which is defined as the number of

constraints being violated, i.e., m−
∑m

i=1 χΛ(σ|Ci
). The problem is otherwise identical. The

following hardness result for FAS is used when proving Theorem 9.

Recall from Lemma 15 that conditioned on the Unique Games Conjecture [82], for every

constant C > 1, it is NP-hard to find a C-approximation for FAS. We will use the term

Unique-Games-hard here to refer to problems that, conditioned on the Unique Games con-

jecture, are NP-hard.

We can always assume that at least half of the constraints in an instance of MAS can be

satisfied. To see this, take an arbitrary ordering of the variables. Either this ordering

or its reversal must satisfy at least m/2 constraints. This is just a specific instance of a

more general result. We can always assume our optimal solution satisfies at least |Λ|m/k!

67

constraints. Since the expected number of constraints satisfied by a random ordering on the

variables is |Λ|m/k!, we know the maximum number of constraints satisfied by any ordering

is bounded below by this quantity. It turns out, however, that finding a solution that does

better than this expected value is computationally difficult. We give a simplified statement

of the main result in [61], maintaining only the pertinent details for our problem.

Theorem 20 ([61]). For an OCSP with arity k, for every constant ε > 0, it is Unique-

Games-hard to find an ordering for the variables that achieves a ratio of satisfied constraints

over total constraints that is at least |Λ|/k! + ε.

Our results also make use of the Betweenness Problem. Using this new formalization, in

this problem k = 3 and Λ = {(1 2 3
1 2 3) , (1 2 3

3 2 1)}. Recall that for a constraint (xi, xj, xk) to be

satisfied either xi < xj < xk or xk < xj < xi. For example, the ordering x4 < x5 < x3 <

x2 < x1 satisfies the constraint (x1, x2, x5), but not the constraint (x4, x2, x5). By applying

Theorem 20 to the Betweenness problem, we obtain that it is Unique-Games-hard to achieve

a ratio of satisfied constraints to total constraints better than 2/3! = 1/3.

For hardness under the Exponential Time Hypothesis (ETH) [73], we will use a result by

Kim and Gonçalves appearing in [84]. An Arity k Permutation CSP as defined in [84] is a

OCSP where Λ consists of the identity permutations, Λ = {(1
1) , (1 2

1 2) , . . . , (1 2 ... k
1 2 ... k)}, and

constraints up to arity k are allowed. This is different from our definition of OCSPs, where

all constraints are of exactly arity k. The differences between these two definitions are

accommodated for whenever Lemma 23 is used. In [84] the authors prove the following.

Lemma 23 ([84]). Assuming ETH, there is no 2o(n logn)-algorithm for Arity 4 Permutation

CSP (and thus for Arity k Permutation CSP, k ≥ 4).

68

Hardness of Lyndon Factor Minimization

The first reduction is from the Betweenness problem to the Lyndon Factor Minimization

Problem. It is used to demonstrate NP-completeness. An alternative proof can be done with

a reduction from MAS. Our reasoning for choosing one over the other is we believe that the

Betweenness problem provides a good initial illustration of the power of a hypothetical solver

to these Lyndon factorization problems. It also provides a warm-up for the techniques used

in Section 4. Moreover, we will use a reduction from MAS as a short proof to illustrate NP-

completeness for the maximization problem, before introducing a more involved reduction

to prove an inapproximability result.

NP-Completeness of Lyndon Factor Minimization

Suppose we are given as input an instance φ of the Betweenness problem consisting of n

variables x1, x2, . . ., xn and m constraints C1, C2, . . ., Cm. Let F (T) denote the number

of Lyndon factors of a string T under the alphabet ordering currently under consideration.

We will use FT (T1) to denote the number of Lyndon factors of T starting within the first

occurrence of the substring T1 of T . The subscript T is to remind us that the factors starting

in T1 are sensitive to the other symbols in T . By a run of a symbol, we mean a maximal

unary substring containing that symbol.

Lemma 24. Let T be any string of the form T = T1 ◦ (x0)α ◦ (xγ1 xγ2 . . . xγn)β where T1

is over the alphabet {x0, . . . , xn}, α is greater than the length of any run of x0 in T1, γ is

greater than the length of any run of any symbol other than x0 in T1, and β > 1. If x0 is the

smallest symbol in the ordering, then F (T) ≤ FT (T1) + 1.

Proof. If T1 does not end with an x0, then the first x0 in the (x0)α marks the start of a new

69

Lyndon factor in T since (x0)α is lexicographically smaller than any preceding suffix. Then

this factor includes the remaining suffix of T . In this case F (T) = FT (T1) + 1. If T1 contains

a suffix consisting of only x0’s, then a new Lyndon factor must start at the first of these x0’s,

and again this factor contains the remaining suffix of T . In this case, F (T) = FT (T1).

Lemma 25. Let T be defined as in Lemma 24. If x0 is not the smallest symbol in the

ordering, F (T) ≥ β − 1.

Proof. In this case, the smallest symbol must be one of x1, . . . , xn. Suppose the smallest is

xi. Then the first symbol in the first xγi marks the beginning of a Lyndon factor. This factor

is of the form xγi x
γ
i+1 . . . xγn x

γ
1 . . . xγi−1 and is repeated at least β − 1 times. In particular,

the suffix xγi+1 . . . x
γ
n is preceded by β−1 factors of the form xγi x

γ
i+1 . . . x

γ
n x

γ
1 . . . xγi−1.

Lemmas 24 and 25 will be useful in proving that x0 must be smallest in an optimal ordering.

We now introduce our constraint gadgets.

Lemma 26. Let x0 be the smallest symbol in T . For i, j, k > 0, consider the first instance

of a substring S of T where

S = xη0 xj x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj

and η is larger than the length of any run of x0 preceding S in T , and S is immediately fol-

lowed by the run xη+1
0 . The symbols in this first instance of S make up three complete Lyndon

factors if xj is ordered between xi and xk, and four complete Lyndon factors otherwise.

Proof. Since the number of times x0 is repeated is more than the length of any previous run,

it must be the case that a new factor begins at the start of S. The six possible cases and

their corresponding factorizations are:

70

x0 < xi < xj < xk : (xη0 xj), (x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk), (x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

x0 < xi < xk < xj : (xη0 xj), (x
η
0 xi x

η
0 xj), (x

η
0 xi x

η
0 xk), (x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

x0 < xj < xi < xk : (xη0 xj x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk x

η
0 xi x

η
0 xi), (x

η
0 xj), (x

η
0 xj), (x

η
0 xj)

x0 < xk < xi < xj : (xη0 xj), (x
η
0 xi x

η
0 xj), (x

η
0 xi), (x

η
0 xk x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

x0 < xj < xk < xi : (xη0 xj x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk x

η
0 xi x

η
0 xi), (x

η
0 xj), (x

η
0 xj), (x

η
0 xj)

x0 < xk < xj < xi : (xη0 xj x
η
0 xi), (x

η
0 xj x

η
0 xi), (x

η
0 xk x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

Notice that only in the first and last orderings where the constraint is satisfied are there

three factors. The other cases have four.

For each constraint Ct = (xi, xj, xk) in the instance φ of the Betweenness problem, where

1 ≤ t ≤ m, we construct the gadget from Lemma 26,

S(Ct) := xt0 xj x
t
0 xi x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xi x

t
0 xj x

t
0 xj x

t
0 xj.

We next define S(φ) := S(C1)◦S(C2)◦. . .◦S(Cm)◦(x0)m+1◦(x2
1 x

2
2 . . . x

2
n)β where β = 3m+3.

Lemma 27. The string S(φ) has an alphabet ordering yielding at most 3m + 1 Lyndon

factors iff there exists a variable ordering satisfying all constraints in φ.

Proof. Assuming there exists a constraint satisfying variable ordering for φ, make x0 the

smallest symbol and order the remaining symbols x1, . . . , xn according to the variable order-

ing. By Lemma 26, each of the substrings S(Ct) for 1 ≤ t ≤ m contributes three factors, and

by the analysis in Lemma 24 the remaining suffix contributes one additional factor. This

creates 3m+ 1 factors in total.

Conversely, assume that no variable ordering exists that satisfies the constraints. If x0 is

71

the smallest symbol, then at least one S(Ct) gadget contributes four factors while the others

contribute at least three. The remaining suffix contributes one factor making the number of

factors at least 4 + 3(m− 1) + 1 = 3m+ 2. If x0 is not the smallest symbol, then by Lemma

25, the number of factors is at least β − 1 = (3m+ 3)− 1 = 3m+ 2.

Since determining if there exists a variable ordering satisfying all constraints in an instance

of the Betweenness problem is NP-hard [116], determining whether there exists an alphabet

order where there are at most 3m + 1 Lyndon factors is NP-hard as well. With a symbol

ordering as a polynomial sized certificate, the problem is clearly in NP, proving Theorem 7.

ETH Hardness of Lyndon Factor Minimization

Here we reduce Arity 4 Permutation CSP to Lyndon Factor Minimization. Assume for the

moment that x0 is the smallest symbol, and that each substring S(Ct) (yet to be defined) is

followed by a run of x0 longer than any run of x0 that precedes it.

For an arity 2 constraint Ct = (xi, xj), we construct a string using the symbols x0, xi,

and xj that has either 3 or 4 factors depending on the ordering on the variables. We

will demonstrate which orderings create which factorizations. The string we construct is

S(Ct) = xt0 xi x
t
0 xi x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xi, which has the factorizations for different

orderings,

Ordering Factorization # factors

xi < xj : (xt0 xi x
t
0 xi x

t
0 xi x

t
0 xj)(x

t
0 xi)(x

t
0 xi) 3

xj < xi : (xt0 xi)(x
t
0 xi)(x

t
0 xi)(x

t
0 xj x

t
0 xi x

t
0 xi) 4

Slightly more involved are the strings to model arity 3 constraints Ct = (xi, xj, xk),

72

S(Ct) = xt0 xi x
t
0 xi x

t
0 xj x

t
0 xi x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xi., where

Ordering Factorization # factors

xi < xj < xk : (xt0 xi x
t
0 xi x

t
0 xj x

t
0 xi x

t
0 xi x

t
0 xk xt0 xi x

t
0 xj)(x

t
0 xi)(x

t
0 xi) 3

xi < xk < xj : (xt0 xi x
t
0 xi x

t
0 xj)(x

t
0 xi x

t
0 xi x

t
0 xk xt0 xi x

t
0 xj)(x

t
0 xi)(x

t
0 xi) 4

xj < xi < xk : (xt0 xi)(x
t
0 xi)(x

t
0 xj x

t
0 xi x

t
0 xi x

t
0 xk xt0 xi)(x

t
0 xj x

t
0 xi x

t
0 xi) 4

xk < xi < xj : (xt0 xi x
t
0 xi x

t
0 xj)(x

t
0 xi)(x

t
0 xi)(x

t
0 xk xt0 xi x

t
0 xj x

t
0 xi x

t
0 xi) 4

xj < xk < xi : (xt0 xi)(x
t
0 xi)(x

t
0 xj x

t
0 xi x

t
0 xi x

t
0 xk xt0 xi)(x

t
0 xj x

t
0 xi x

t
0 xi) 4

xk < xj < xi : (xt0 xi)(x
t
0 xi)(x

t
0 xj x

t
0 xi x

t
0 xi)(x

t
0 xk xt0 xi x

t
0 xj x

t
0 xi x

t
0 xi) 4

The most involved is the gadget for an arity 4 constraint Ct = (xi, xj, xk, xh),

S(Ct) = xt0 xi x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi

which has the following factorizations depending on the ordering given to its symbols:

73

Ordering (‘<’ omitted) Factorization #

xi, xj, xk, xh : (xt0 xi x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk)(x

t
0 xi x

t
0 xj)(x

t
0 xi) 3

xi, xj, xh, xk : (xt0 xi x
t
0 xj x

t
0 xi x

t
0 xk)(x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk)(x

t
0 xi x

t
0 xj)(x

t
0 xi) 4

xi, xk, xj, xh : (xt0 xi x
t
0 xj)(x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj)(x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj)(x

t
0 xi) 4

xi, xh, xj, xk : (xt0 xi x
t
0 xj x

t
0 xi x

t
0 xk)(x

t
0 xi x

t
0 xj)(x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj)(x

t
0 xi) 4

xi, xk, xh, xj : (xt0 xi x
t
0 xj)(x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj)(x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj)(x

t
0 xi) 4

xi, xh, xk, xj : (xt0 xi x
t
0 xj)(x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj)(x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj)(x

t
0 xi) 4

xj, xi, xk, xh : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh)(x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi) 4

xj, xi, xh, xk : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi) 4

xk, xi, xj, xh : (xt0 xi x
t
0 xj)(x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xh, xi, xj, xk : (xt0 xi x
t
0 xj x

t
0 xi x

t
0 xk)(x

t
0 xi x

t
0 xj)(x

t
0 xi)(x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xk, xi, xh, xj : (xt0 xi x
t
0 xj)(x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xh, xi, xk, xj : (xt0 xi x
t
0 xj)(x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj)(x

t
0 xi)(x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xj, xk, xi, xh : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh)(x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi) 4

xj, xh, xi, xk : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi) 4

xk, xj, xi, xh : (xt0 xi)(x
t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xh, xj, xi, xk : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi)(x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xk, xh, xi, xj : (xt0 xi x
t
0 xj)(x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xh, xk, xi, xj : (xt0 xi x
t
0 xj)(x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi)(x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xj, xk, xh, xi : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh)(x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi) 4

xj, xh, xk, xi : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi) 4

xk, xj, xh, xi : (xt0 xi)(x
t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xh, xj, xk, xi : (xt0 xi)(x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi)(x

t
0 xj x

t
0 xi)(x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xk, xh, xj, xi : (xt0 xi)(x
t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

xh, xk, xj, xi : (xt0 xi)(x
t
0 xj x

t
0 xi)(x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi)(x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi) 4

74

The string construction for the overall reduction is almost identical to the one for φ in

Section 4. We only need to select β to be slightly different. We let β = 4m + 3. This

is enough to ensure that in an optimal solution x0 must be the smallest symbol. If x0 is

smallest, in the worst-case, when all constraints are not satisfied, there are at most 4m + 1

Lyndon factors. If x0 is not smallest, as shown in Lemma 25, the number of factors is at

least β − 1 = 4m + 2. Then, with x0 as the minimum, each ordering on x1, . . ., xn gives

us 3s + 4(m − s) + 1 = 4m + 1 − s factors, where s is the number of satisfied constraints

when using the corresponding variable ordering in φ. Therefore, an optimal ordering for the

n variables of φ is obtained by an order on the (n+ 1) symbols which minimizes the number

of Lyndon factors in the string. This combined with Lemma 23 proves Theorem 8.

Inapproximability of Lyndon Factor Minimization

We will perform an approximation preserving reduction from FAS to Lyndon Factor Mini-

mization. Recall that for FAS the arity k of the constraints is 2, so that constraints are of

the form (xi, xj) and Λ consists of the identity permutation. In other words, the constraint is

only satisfied if xi < xj. The cost of the solution will be the number of violated constraints,

which we wish to minimize. Our gadget for constraint Ct = (xi, xj) will be

S(Ct) = (xt0 xi) ◦ (xt0 xj)
α−1

where α > 1 will be chosen later. The whole string for our reduction will be

T = S(φ) = S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m+1 ◦ (x2
1 x

2
2 . . . x2

n)β

75

where β = αm + 3. By Lemma 25, if x0 is not smallest, then F (T) ≥ β − 1. We consider

next what happens in our constraint gadgets when x0 is smallest.

Lemma 28. If x0 is smallest and xi < xj then FT (S(Ct)) = 1.

Proof. Since xt0 is the longest run of x0 seen so far, the start of S(Ct) marks the smallest

suffix seen so far when traversing T from left to right. Then, since xj > xi, the start of all

substrings of the form xt0 xj do not mark the start of the smallest suffix seen so far.

Lemma 29. If x0 is smallest and xj < xi then FT (S(Ct)) = α.

Proof. Again, since xt0 is the longest run of x0 seen so far, the start of S(Ct) marks the

smallest suffix seen so far when traversing T from left to right. However, now the start of

each substring of the form xt0 xj marks the start of the smallest suffix seen so far (recall after

the last xt0 xj there will be a longer run of x0 than has been seen before). Hence, there are

α− 1 additional factors created.

Lemma 30. Any alphabet ordering where x0 is smallest has fewer factors than an alphabet

ordering where x0 is not the smallest.

Proof. If x0 is smallest, F (T) = s+α(m−s)+1 where s is the number of satisfied constraints

and the +1 arises from the last factor, (x0)m+1 ◦ (x2
1 x

2
2 . . . x2

n)β. Because α > 1, this is

upper bounded by the case when s = 0 so that F (T) ≤ αm+ 1. On the other hand, if x0 is

not smallest F (T) ≥ β − 1 = αm+ 2.

Henceforth, we only need to worry about the case when x0 is the smallest. Our aim is to

show that a constant approximation algorithm for Lyndon Factor Minimization allows us to

construct a constant approximation algorithm for FAS. If our hypothetical approximation

76

algorithm for Lyndon Factor Minimization ever returned a solution where x0 is not smallest,

we add the additional step of replacing that solution with any solution where x0 is smallest,

obtaining a solution that performs even better. Then our modified algorithm maintains

being an approximation algorithm for Lyndon Factor Minimization (perhaps with an even

smaller approximation factor).

Let s∗F denote the number of constraints satisfied in an optimal solution of φ for FAS and

let s∗L denote the number of constraints in φ satisfied by the variable ordering obtained from

our optimal, factor minimizing, alphabet order for the corresponding instance of Lyndon

Factor Minimization. Also, let s denote the actual number of constraints satisfied by the

variable ordering obtained from our approximate factor minimizing alphabet order for the

corresponding instance of Lyndon Factor Minimization. A λ-approximation for Lyndon

Factor Minimization with λ > 1 gives the following set of inequalities:

s∗L + α(m− s∗L) + 1 ≤ s+ α(m− s) + 1 ≤ λ(s∗L + α(m− s∗L) + 1).

Which can be equivalently written as

(m− s∗L) +
s∗L + 1

α
≤ (m− s) +

s+ 1

α
≤ λ(m− s∗L) + λ

s∗L + 1

α
. (4.1)

We will show that by taking α large enough we can ensure s∗L = s∗F .

Lemma 31. With α = 2(m+ 1) + 1, we have that s∗L = s∗F .

Proof. The cost of an optimal solution of φ is m − s∗F . The solution for φ we get from

mapping our solution for Lyndon factorization back to φ must have at least as many violated

constraints as the optimal solution for φ, i.e., m − s∗L ≥ m − s∗F , and so s∗F ≥ s∗L. Let us

suppose for the sake of contradiction that s∗F ≥ s∗L + 1. This implies m− s∗L− (m− s∗F) ≥ 1.

77

Then, using in addition that
s∗F +1

α
≤ m+1

α
≤ 1

2
, we obtain

s∗F + 1

α
− s∗L + 1

α
≤ 1

2
< 1 ≤ m− s∗L − (m− s∗F),

which implies that

m− s∗F +
s∗F + 1

α
< m− s∗L +

s∗L + 1

α
.

Or, written more naturally as the cost of a Lyndon Factor Minimization Problem’s solution,

s∗F + α(m− s∗F) + 1 < s∗L + α(m− s∗L) + 1.

But then this implies that the ordering on x1, . . . , xn that is used to obtain the optimal

solution for φ creates fewer Lyndon factors than our supposedly optimal solution for Lyndon

Factor Minimization, a contradiction.

Let us now upper bound m− s (our approximate solution cost when the solution is mapped

back to FAS) in terms of λ(m − s∗F). Combining the inequalities in (4.1) with Lemma 31,

and the fact that s∗F = s∗L ≤ m when α = 2(m+ 1) + 1, we get that

m− s ≤ m− s+
s+ 1

α
≤ λ(m− s∗L) + λ

s∗L + 1

α
≤ λ

(
m− s∗F +

1

2

)
.

The case where m = s∗F can easily be solved in polynomial time, so we can consider that

check added to our hypothetical solution as well. Hence, we assume m− s∗F ≥ 1 > 1/2 and,

m− s∗F ≤ m− s ≤ λ

(
m− s∗F +

1

2

)
< λ(m− s∗F +m− s∗F) = 2λ(m− s∗F).

We have shown that a λ approximation for Lyndon Factor Minimization allows us to obtain,

at worst, a 2λ approximation for FAS. Moreover, the α value we need to do this is polynomial

78

in m so that the whole reduction is done in polynomial time. This polynomial time constant

approximation algorithm is better then what is allowed by Lemma 15 under the Unique

Games Conjecture. This completes the proof of Theorem 9.

Hardness of Lyndon Factor Maximization

Our approach will be similar to the one taken for minimization. First, we introduce some

gadgetry for the NP-completeness proof that is later expanded upon to create an inapprox-

imability result. As of now, we have not yet found gadgets to establish the same ETH

hardness for the maximization problem.

NP-Completeness of Lyndon Factor Maximization

We perform a reduction from the dual of FAS, the Maximum Acyclic Subgraph Problem

(MAS). Recall MAS is identical to FAS except for the cost of a solution now being the

number of constraints satisfied, which we wish to maximize. For constraint Ct = (xi, xj), we

define our constraint gadget as S(Ct) = xt+1
0 xj x

t+1
0 xi (note the reversal of i and j). The

entire string formed by our instance φ of FAS is

T = S(φ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m.

Lemma 32. If x0 is not the smallest symbol in the ordering, then F (T) ≤ n+m.

Proof. Suppose xi 6= x0 is the smallest symbol. Then the first Lyndon factor starting with

xi occurs in the prefix (x0 x1 . . . xn). Subsequent Lyndon factors must begin with xi. The

prefix contributes at most n factors and there are at most m remaining occurrences of xi.

79

Lemma 33. In an ordering where x0 is smallest, F (T) = 2s+ (m− s) + 1 +m, where s is

the number of constraints satisfied in MAS by the ordering given to x1, . . ., xn.

Proof. For a substring S(Ct), if Ct = (xi, xj) is not satisfied (i.e., xi > xj) then FT (S(Ct)) =

1. If it is satisfied (i.e., xi < xj) then FT (S(Ct)) = 2. The prefix x0 x1 x2 . . . xn contributes

exactly one additional factor. The suffix (x0)m contributes m factors.

Lemma 34. Any ordering where x0 is the smallest has more factors than an ordering where

x0 is not the smallest.

Proof. By Lemma 22, we can assume that n ≤ m. Then by Lemma 32, we have that if

x0 is not smallest, F (T) ≤ n + m ≤ 2m. By Lemma 33, if x0 is smallest then F (T) =

2s+ (m− s) + 1 +m = s+ 2m+ 1 > 2m.

The value F (T) is maximized by an alphabet order which has the largest possible number

of satisfied constraints, say s∗. This gives (s∗ + 2m + 1) Lyndon factors. Clearly, this

solution also provides an ordering satisfying the maximum number of constraints in our

MAS instance. Since MAS is NP-hard, we have shown Lyndon Factor Maximization is NP-

hard as well. The decision problem is in NP using the ordering on x1 . . . xn as a polynomial

sized certificate, and this remains NP-hard as it could be used to solve the optimization

problem. This completes the proof of Theorem 10.

Inapproximability of Lyndon Factor Maximization

First, let us describe the OCSP from which we are reducing. Let k > 1 be the arity of the

constraints, which we will specify later. Each constraint will be satisfied iff the variables

in that constraint have one of the (k − 1)! orderings where the last variable is ordered

80

first, i.e., for constraint (xi1 , xi2 , . . . , xik−1
, xik), the ordering over those variables will have

xik < xij for j ∈ [1, k − 1]. More formally, Λ = {
(

1 2 ... k−1 k
z1 z2 ... zk−1 1

)
| ∪k−1

i=1 {zi} = {2, . . . , k}}.

According to Theorem 20, it is Unique-Games-Hard to find an approximation which beats

|Λ|m/k! = (k − 1)!m/k! = m/k constraints being satisfied.

Our constraint gadget is of the form

S(Ct) = (xt+1
0 xi1) ◦ (xt+1

0 xi2) ◦ . . . ◦ (xt+1
0 xik−1

) ◦ (xt+1
0 xik)α

and our overall string constructed from our instance φ of OCSP is

T := S(φ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0), where α = mn.

Lemma 35. If x0 is not smallest then F (T) ≤ n+m.

Proof. Let xi 6= x0 be the smallest symbol instead. Then the prefix (x0 x1 x2 . . . xn)

contributes at most n factors, and each remaining factor must begin with xi. We will show

that there is at most 1 factor starting in each constraint gadget. For a given constraint

containing xi, if xi 6= xik this is immediate. On the other hand, if xi = xik then only its

first occurrence can form a smaller suffix of T than those preceding it. In more detail, since

x0 > xi = xik , we have xik (xt0 xik)α−1x0 < xik (xt0 xik)α−2x0 < xik (xt0 xik)α−3x0 < Note

that this is the reason for the final x0 appended to T .

Lemma 36. If x0 is smallest, and in constraint Ct = (xi1 , . . . , xik) the symbol xik is smallest

among xi1 . . . xik , then FT (S(Ct)) ≥ α.

Proof. Since xt+1
0 xik < xt+1

0 xij for j ∈ [1, k − 1], and the substring following S(Ct) is either

xt+2
0 (or the final x0 of T), the start of each run of x0 in the substring (xt+1

0 xik)α marks the

81

start of a suffix smaller than any of those preceding it.

Lemma 37. If x0 is the smallest in the ordering, then F (T) ≥ αs+ 1 where s is the number

of clauses in φ satisfied by the ordering given to x1, . . ., xn. This is larger than the number

of factors from any ordering where x0 is not the smallest.

Proof. By Lemma 36, when x0 is the smallest each of the satisfied constraint gadgets con-

tributes at least α factors. In addition, the lone x0 symbol at the end of T forms its own

factor. For the second statement, we can always assume our approximate solution satisfies

at least 1 constraint, hence s ≥ 1 and αs+ 1 ≥ mn+ 1 > m+ n, which by Lemma 35 is an

upper bound on the number of factors when x0 is not smallest.

From here we only need to consider when x0 is smallest, for the same reasoning as given

in Section 4. Now, suppose we have a λ-approximation with λ < 1 for Lyndon Factor

Maximization. Let s∗L be the number of constraint gadgets satisfied from our optimal solution

of Lyndon factor maximization, and s the number from the approximate solution. Then,

λ(αs∗L + 1 + y∗L) ≤ αs+ 1 + y ≤ αs∗L + 1 + y∗L

where y∗L represents the number of additional factors contributed beyond αs∗L + 1 and y

represents the number of factors beyond αs + 1 for our approximate solution. We can

equivalently write the above expression as

λs∗L

(
1 +

1

αs∗L
+

y∗L
αs∗L

)
≤ s

(
1 +

1

αs
+

y

αs

)
≤ s∗L

(
1 +

1

αs∗L
+

y∗L
αs∗L

)
. (4.2)

82

Lemma 38. For all s ∈ [1,m], and for the corresponding y value as described above,

1 ≤
(

1 +
1

αs
+

y

αs

)
≤ 3.

Proof. We first bound y from above. Any factor in a constraint gadget begins at the start of

a run x0. In a satisfied constraint gadget, there are k− 1 such runs outside of the (xt+1
0 xik)α

substring. Hence, each satisfied constraint gadget contributes at most k−1 additional factors

beyond α. A constraint gadget that is not satisfied, i.e., has xij < xik for some j 6= k, has

the gadget’s last factor beginning at the start of the substring (xt+1
0 xij). This implies the

substring (xt+1
0 xik)α does not split into different factors. Therefore, an unsatisfied constraint

gadget again contributes at most k − 1 factors. Because of this, the m constraint gadgets

contribute at most k − 1 additional factors in total and y ≤ m(k − 1). Finally, α = mn,

hence

y

αs
≤ y

α
≤ m(k − 1)

α
≤ mn

α
= 1 and

1

αs
≤ 1

α
=

1

nm
≤ 1.

Let s∗C be the number of constraints satisfied in an optimal solution to φ. Like in Section 4,

we know that s ≤ s∗C and s∗L ≤ s∗C , Using Lemma 38 we can easily make them differ by at

most a constant factor.

Lemma 39. Using the definitions above, it holds that s∗C ≤ 3s∗L.

Proof. For the sake of contradiction, assume instead that s∗C > 3s∗L. Applying the ordering

given by the optimal solution of φ to the symbols x1, . . . , xn, and letting y∗C be defined as

above but for s∗C , we have

s∗C

(
1 +

1

αs∗C
+

y∗C
αs∗C

)
> s∗C > 3s∗L ≥ s∗L

(
1 +

1

αs∗L
+

y∗L
αs∗L

)
83

However, this implies αs∗C + 1 + y∗C > αs∗L + 1 + y∗L. Thus, s∗L couldn’t have been the number

of constraints satisfied in an optimal solution to our Lyndon Factor Maximization instance,

since using whichever ordering was used for the solution to φ would have given us more

factors, a contradiction.

By Lemma 39, we have 1
3
s∗C ≤ s∗L. Multiplying both sides by λ/3, we obtain λ

9
s∗C ≤ λ

3
s∗L. By

Lemma 38 and our starting inequality in (4.2) we also have that

λs∗L ≤ λs∗L

(
1 +

1

αs∗L
+

y∗L
αs∗L

)
≤ s

(
1 +

1

αs
+

y

αs

)
≤ 3s.

From which we obtain λ
3
s∗L ≤ s. Combining these inequalities with the fact that s ≤ s∗C , we

get λ
9
s∗C ≤ s ≤ s∗C . That is, a λ-approximation algorithm for Lyndon Factor Maximization

provides at least a λ/9 -approximation algorithm for this set of OCSP problems.

To finish the proof of Theorem 11, suppose for the sake of contradiction there exists a λ-

approximation algorithm for Lyndon factor maximization for some constant λ < 1. Consider

the set of OCSPs problems described in beginning of Section 4 with arity k such that 1/k <

λ/9. With our reduction, we obtain a polynomial-time algorithm that can find a solution

with approximation ratio better than |Λ|/k! = 1/k, proving the Unique Games Conjecture

false by Theorem 20.

Open Problems

We leave open the problem of establishing similar ETH hardness results for the maximization

problem. We also leave open the problem of finding a (non-constant factor) approximation

algorithm for either the minimization or maximization problem.

84

CHAPTER 5: OPTIMAL REFERENCE FOR RELATIVE

LEMPEL-ZIV

Hardness Results

As a warm up, we begin with a simple reduction for the case where the alphabet is polynomially-

sized and α = β = 1. Here we reduce the Eulerian Walk problem described below to the

Optimal Reference problem. These ideas are then expanded on in a reduction with a more

complicated proof from the Hamiltonian path problem to the Optimal Reference problem

over a binary alphabet.

Warm Up: Polynomially-Sized Alphabets

The problem of determining whether a directed graph G = (V,E) has a subset of edges

E ′ ⊆ E such that G′ = (V,E ′) has a spanning Eulerian walk, i.e., one that includes every

vertex and traverses every edge in E ′ exactly once (vertices can be visited multiple times)

is NP-complete. This is through a trivial reduction from the same problem for Eulerian

circuits, proven NP-complete in [37].

Reduction: To reduce from the Eulerian Walk Problem to Optimal Reference we add a string

Ti,j = vivj to T for every directed edge (vi, vj) ∈ E. The following two lemmas prove the

reduction’s correctness.

Lemma 40. For all reference strings R, we have r + p ≥ 2|E|+ 1.

Proof. If vivj is a substring of R then Ti,j requires only one pointer. If vivj is not a substring

85

in R, then Ti,j requires two pointers. It follows that p = 2|E| − a where a is the number

of substrings vivj in R corresponding to edges in G. At the same time, a ≤ r − 1, making

r + p = r + 2|E| − a ≥ 2|E|+ 1.

Lemma 41. There exists a reference string R such that r + p = 2|E|+ 1 iff G has a subset

of edges E ′ ⊆ E where G′ = (V,E ′) has a spanning Eulerian walk.

Proof. If there exists such a set of edges E ′, we can make a = r− 1 by listing the vertices in

the order given by the Eulerian walk. This makes r + p = r + 2|E| − a = 2|E|+ 1.

Conversely, if there exists an R such that r + p = 2|E| + 1, then r + 2|E| − a = 2|E| + 1,

implies a = r − 1. Hence, all substrings of length two in R correspond to a distinct string

Ti,j, and therefore to a distinct edge (vi, vj) ∈ E. Moreover, since every symbol vi has to

appear in R, the trail obtained from R has to encounter all vertices in V , making it the

desired spanning Eulerian walk.

See Figures 5.1 and 5.2 for examples.

v1 v2 String Encoding
v1v2 (1, 2)
v2v3 (2, 3)
v3v4 (3, 4)
v4v2 (4, 4), (2, 2)v3 v4

Figure 5.1: The graph above contains an Eulerian walk. Using reference string R = v1v2v3v4,
we show its corresponding set of texts and their encoding. Here r + p = 4 + 5 = 2|E|+ 1.

86

v1 v2

v3 v4

String Encoding
v1v2 (1, 2)
v3v2 (3, 3)(2, 2)
v3v4 (3, 4)
v4v2 (4, 4), (2, 2)

Figure 5.2: The graph above does not contain an Eulerian walk. Using reference string
R = v1v2v3v4, we show its corresponding set of texts and their encoding. Here r + p =
4 + 6 > 2|E|+ 1. Furthermore, r + p > 2|E|+ 1 for any reference string.

Hardness Over a Binary Alphabet

In this section we obtain a stronger hardness result via a reduction from the Hamiltonian

Path problem on a directed graph G = (V,E) where each vertex has a total degree of at

most four. This problem is proven NP-complete in [119].

Recall the cost function αr + βp. The problem is clearly trivial if α = 0 or β = 0. We will

show that the problem is NP-complete for any α and β where 1 ≤ α ≤ β, i.e., a pointer

is more expensive than a new symbol in the reference. Let x ≥ 2 be a positive integer to

be fixed later. For i ∈ [1, |V |], let B(i) be the encoding of i obtained by taking a binary

encoding of i on dlog |V |e bits, inserting x−1 number of 0’s before every bit in the encoding,

then padding both sides with “11”. Let K = xdlog |V |e+ 4, the length of the encoding.

We construct the input T to the Optimal Reference problem as follows: Create an empty

text collection T . Then for all s, t ∈ [1, K], i ∈ [1, |V |], add 0sB(i)0t to T . Also, for all

(vi, vj) ∈ E, add 0KB(i)0KB(j)0K to T .

Lemma 42. For all i ∈ [1, |V |], the string B(i) is a substring of any optimal reference R∗.

Proof. If B(i) is not a substring of R∗ then the texts 0sB(i)0t for s, t ∈ [1, K] each require

87

at least two pointers, contributing 2K2 to p. However, by appending 0KB(i)0K to R∗ we

increase r by 2K + |B(i)| = 3K and decrease p by at least K2. This is due to the texts

0sB(i)0t for s, t ∈ [1, K] now each requiring only one pointer. Since βK2 > 3αK, this

reduces the cost, contradicting the optimality of R∗.

Lemma 43. There exists an optimal reference R∗ such that for all i ∈ [1, |V |] the string

0KB(i)0K is a substring of R∗.

Proof. Let R̃ be an optimal reference not containing 0KB(i)0K . By Lemma 42, we know

that B(i) is a substring of R̃. Let s, t ∈ [0, K] be such that s+ t is maximized and 0sB(i)0t

is a substring of R̃. We assume WLOG that s = min(s, t) < K. Inserting K − s number

of 0’s immediately before 0sB(i)0t in R̃ and K − t number of 0’s immediately after 0sB(i)0t

in R̃ increases r by 2K − s − t. The number of texts that change from requiring at least

two pointers to only one is at least K(K − s). We have 2K − s − t ≤ 2K − 2s. Since

βK(K − s) ≥ α(2K − 2s), therefore inserting these 0’s in R lowers the overall cost.

Lemma 44. There exists an optimal reference R∗ such that for all i ∈ [1, |V |], the string

0KB(i)0K occurs in R∗ exactly once.

Proof. By Lemma 43, an optimal reference R∗ contains at least one 0KB(i)0K for every

i ∈ [1, |V |]. We will show that deleting any additional instances of the substring 0KB(i)0K

will not increase αr + βp.

Removing an additional instance of 0KB(i)0K from R∗ will not change the number of pointers

needed for the texts of the form 0sB(i)0t, since they require only one pointer from a single

instance of 0KB(i)0K in R∗.

We next show that the minimum number of pointers needed for a text 0KB(j)0KB(h)0K

where i 6= j and h 6= i will not change either. If the whole of the extra instance of 0KB(i)0K

88

is being referred to, then since 0KB(i)0K is not a substring of 0KB(j)0KB(h)0K , at least

two pointers are being used. We can instead use the substrings 0KB(j) and 0KB(h)0K as

pointers, which by Lemma 43 are substrings of R∗.

For a text 0KB(i)0KB(j)0K or 0KB(j)0KB(i)0K , removing the additional 0KB(i)0K sub-

string from R∗ may increase the number of pointers needed from one to two. However,

the number of such texts is bound by the total-degree of vi. Hence, by completely deleting

from R∗ the substring B(i) contained in the extra instance of 0KB(i)0K , we increase p by

at most the total-degree of vi. Recall that this is bounded by four. The deletion therefore

contributes an additional cost of at most 4β to the objective value. At the same time, it

decreases r by |B(i)| = K. To contradict the optimality of R∗ we need that αK > 4β, which

is accomplished by letting x = max(2, d(4β
α
− 3)/ log |V |e) in K = xdlog |V |e+ 4.

Lemma 45. Consider an optimal reference R∗ of the form S1◦0KB(π(1))0K◦S2◦0KB(π(2))0K◦

S3 ◦ . . . ◦S|V | ◦ 0KB(π(|V |))0K ◦S|V |+1 for some permutation π over 1, ..., |V |, where Sh’s are

arbitary strings and we allow the substrings 0K to be merged when Sh is the empty string.

Then all substrings Sh for h ∈ [1, |V |+ 1] can be removed without increasing αr + βp.

Proof. Suppose the substring Sh is needed to decrease the number of pointers to a text

0KB(i)0KB(j)0K from two to one. However, unless one of the following cases applies, the

text 0KB(i)0KB(j)0K will still require at least two pointers:

• Sh has the substring 0kB(i)0KB(j)0K ;

• Sh has the suffix B(i) and is followed by 0KB(π(h))0K where π(h) = j;

• Sh has the prefix B(j) and is preceded by 0KB(π(h− 1))0K where π(h− 1) = i.

However, by Lemma 44, we can assumeR∗ only contains one copy of 0KB(i)0K and 0KB(j)0K .

89

Hence, none of the above cases can apply. This implies Sh can be deleted from R∗, decreasing

r while leaving p unaltered, a contradiction.

Lemma 45 allows us to assume that the optimal reference R∗ for our collection is of the

form 0KB(π(1))0KB(π(2))0K . . . 0KB(π(|V |))0K for some permutation π over 1, . . ., |V |.

To complete the proof of Theorem 12, let λ be the number of substrings of R∗ of the form

0KB(i)0KB(j)0K for some (vi, vj) ∈ E. Then the number of pointers p = K2|V | + λ +

2(|E| − λ), the length of the reference r = 2K|V |+K, and the total cost

αr + βp = α(2K|V |+K) + β(K2|V |+ 2|E| − λ).

This is clearly minimized when λ is maximized. Moreover, G has a Hamiltonian path iff there

exists a permutation π where every substring of R∗ of the form 0KB(π(i))0KB(π(j))0K

corresponds with an edge (vπ(i), vπ(j)) ∈ E, making λ = |V | − 1 and the objective cost

α(2K|V |+K) + β(K2|V |+ 2|E| − |V |+ 1). This completes the proof of Theorem 12.

The following Lemma directly proves Theorem 13 and relates the problem on a collection of

strings to the problem on a single string.

Lemma 46. Let T = T1 ◦ . . . ◦ Tn, i.e, the concatenation of all strings in T . Then, an

optimal reference R◦ for T provides a 2-approximation of the optimal reference R∗ for T .

Proof. Let OPT ∗ be the optimal cost for encoding T using R∗, and OPT ◦ be the optimal cost

for encoding T usingR◦. We haveOPT ◦ ≤ OPT ∗ since the reference stringR∗ can be used on

T with at most as many pointers as was needed for T . At the same time, OPT ∗ ≤ βn+OPT ◦

since the encoding used for T can be used for T while only adding at most n more pointers,

one for the beginning of each text. Finally, observing that βn ≤ βp∗ ≤ OPT ∗ we obtain

OPT ∗ ≤ βn+OPT ◦ ≤ βn+OPT ∗ ≤ 2OPT ∗.

90

Bounds in Terms of the δ-Measure

We first establish straight forward lower bounds on the cost of an optimal relative-LZ en-

coding.

Lemma 47. αr∗ + βp∗ = OPT ≥ 2
√
αβ
√
N.

Proof. The optimization problem minr,p αr + βp s.t. rp ≥ N can be solved using standard

techniques, e.g. Lagrange multipliers. Doing so, one finds r∗ =
√

β
α

√
N and p∗ =

√
α
β

√
N .

Lemma 48. For a single text T , δ(T) ≤ αr∗ + βp∗.

Proof. Let T be the concatenation of the texts in T . For any string S we use LZ77(S) to

denote the number of phrases in the LZ77 encoding of S.

Consider decoding the LZ77 encoding of R∗◦T where R∗ is the optimal relative-LZ reference

for T . The substring T is decoded using pointers to the prefix R∗ in addition to pointers to

the already decoded prefix of T . From this we can infer that p∗ must be at most the number

of pointers used by LZ77 to encode T and LZ77(R∗ ◦ T) ≤ LZ77(R∗) + p∗. Combined with

properties of the δ-measure [109] we have,

δ(T) ≤ δ(R∗ ◦ T) ≤ LZ77(R∗ ◦ T) ≤ LZ77(R∗) + p∗ ≤ αr∗ + βp∗.

Lemma 49. For a single text T , αr∗ + βp∗ ≤ 2(αδ(T))
1
3 (βN)

2
3 .

Proof. Let δk = dk
k

where dk is the number of distinct substrings of T of length k. Note that

91

δ = maxk δk. For any k, by choosing R to be the concatenation of all distinct substrings of

T of length k we have r = kdk and p ≤ N
k

. Next,

αr∗ + βp∗ ≤ αr + βp ≤ αkdk + β
N

k
= αk2δk + β

N

k

Setting k =
(
βN
αδ

) 1
3 and using that δk ≤ δ,

αk2δk + β
N

k
= α

1
3
δk

δ
2
3

(βN)
2
3 + (αδk)

1
3 (βN)

2
3 ≤ 2(αδ)

1
3 (βN)

2
3 .

This bounds the cost of an optimal relative-LZ encoding and proves Theorem 14.

The above inequality is tight to within logarithmic factors on an average input in the following

sense.

Lemma 50. For a random binary string T , E[δ] = Ω(N
logN

).

Proof. Let k = 2 logN , Xij be 1 if T [i..i+ k − 1] = T [j..j + k − 1] and 0 otherwise, and Xi

be the number of times T [i..i + k − 1] occurs in T . Then, Xi =
∑N−k+1

j=1 Xij. Hence, the

expected number of times a string Xi occurs in T is E[Xi] =
∑N−k+1

j=1 E[Xij]. Using that

P(Xij = 1) = 2−k for j 6= i and 1 for j = i,

E[Xi] = 1 +
N − k

2k
= 1 +

N − k
N2

.

Using Markov’s inequality,

P(Xi ≥ 2) ≤ 1

2
+

1

2N
− k

2N2
≤ 1

2
+

1

2N
.

92

Let Yi be 1 if T [i..i+ k − 1] occurs only once in T and 0 otherwise. Then,

P(Yi = 1) = 1− P(Xi ≥ 2) ≥ 1

2
− 1

2N
.

Since the number of distinct substrings of length k is at least the number substrings of length

k occuring only once, dk ≥
∑N−k+1

i=1 Yi and

E[δ] ≥ E[δk] =
E[dk]

k
≥ 1

k

N−k+1∑
i=1

E[Yi] ≥
N − k + 1

k

(
1

2
− 1

2N

)
= Ω

(
N

k

)
.

At the same time δ = O(N) since there are at most N distinct substrings of T for any length.

Plugging into the inequality in Theorem 14 the lower bound on the expected value of δ, for

the case with α = 1, β = log r, we have OPT ∈ Ω(N
logN

) ∩O(N log
2
3 r). That is, on random

binary strings the inequality is tight to within logarithmic factors.

Open Problems

The main problem that this work leaves open is whether the Optimal Reference problem can

be solved in polynomial time on a single string. Thanks to Theorem 13 a positive answer to

this question would indicate a polynomial time 2-approximation algorithm for the general

problem.

93

CHAPTER 6: CONCLUSION

This work has demonstrated that several novel problems arising from string algorithms

and text compression are closely related to ordering constraint satisfaction problems. This

was either explicitly in their formulation, or implicitly through reductions. Using these

connections, we were able to establish strong hardness results for each problem.

After establishing these hardness results, we were able to derive several algorithms. In

particular, for many of these problems, by restricting the set of possible inputs, adding

constraints, or making reasonable conjectures, we provided polynomial time solutions or

approximation algorithms.

We leave open for future research:

• For BWT-runs minimization, lifting the constraint that the $ symbols be ordered first

in the constrained alphabet ordering problem while maintaining a polynomial-time

algorithm;

• Finding whether Wheeler graph recognition is NP-complete for degree-three and degree-

four DAGs (3-NFAs and 4-NFAs);

• Finding a wider class of graphs where Wheeler graph recognition can be performed in

polynomial time;

• Establishing ETH hardness results for minimizing the number of Lyndon factors via

alphabet ordering;

• Finding a polynomial time algorithm for the Optimal Reference problem on a single

string.

94

LIST OF REFERENCES

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness

results for LCS and other sequence similarity measures. In IEEE 56th Annual Sym-

posium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20

October, 2015, pages 59–78, 2015. doi:10.1109/FOCS.2015.14.

[2] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan

Williams. Simulating branching programs with edit distance and friends: or: a polylog

shaved is a lower bound made. In Proceedings of the 48th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-

21, 2016, pages 375–388, 2016. doi:10.1145/2897518.2897653.

[3] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of

faster alignment of sequences. In Automata, Languages, and Programming - 41st In-

ternational Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Pro-

ceedings, Part I, pages 39–51, 2014. doi:10.1007/978-3-662-43948-7_4.

[4] Jürgen Abel. Post BWT stages of the burrows-wheeler compression algorithm. Softw.,

Pract. Exper., 40(9):751–777, 2010. doi:10.1002/spe.982.

[5] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to biblio-

graphic search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.

[6] Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular

languages meet prefix sorting. In Proceedings of the 2020 ACM-SIAM Symposium on

Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages

911–930, 2020. doi:10.1137/1.9781611975994.55.

95

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1002/spe.982
https://doi.org/10.1145/360825.360855
https://doi.org/10.1137/1.9781611975994.55

[7] Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Wheeler lan-

guages. CoRR, abs/2002.10303, 2020. URL: https://arxiv.org/abs/2002.10303,

arXiv:2002.10303.

[8] Jarno N. Alanko, Travis Gagie, Gonzalo Navarro, and Louisa Seelbach Benkner. Tun-

neling on wheeler graphs. In Data Compression Conference, DCC 2019, Snowbird,

UT, USA, March 26-29, 2019, pages 122–131, 2019. doi:10.1109/DCC.2019.00020.

[9] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the

15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,

Massachusetts, USA, pages 171–183, 1983. doi:10.1145/800061.808746.

[10] Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?

In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,

9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457–466,

2016. doi:10.1109/FOCS.2016.56.

[11] Hideo Bannai, Travis Gagie, et al. Online lz77 parsing and matching statistics with rlb-

wts. In Annual Symposium on Combinatorial Pattern Matching (CPM 2018). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[12] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda,

and Kazuya Tsuruta. The ”runs” theorem. SIAM J. Comput., 46(5):1501–1514, 2017.

doi:10.1137/15M1011032.

[13] Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Construct-

ing the bijective BWT. CoRR, abs/1911.06985, 2019. URL: http://arxiv.org/abs/

1911.06985, arXiv:1911.06985.

96

https://arxiv.org/abs/2002.10303
http://arxiv.org/abs/2002.10303
https://doi.org/10.1109/DCC.2019.00020
https://doi.org/10.1145/800061.808746
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1137/15M1011032
http://arxiv.org/abs/1911.06985
http://arxiv.org/abs/1911.06985
http://arxiv.org/abs/1911.06985

[14] Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Indexing

the bijective BWT. In 30th Annual Symposium on Combinatorial Pattern Matching,

CPM 2019, June 18-20, 2019, Pisa, Italy, pages 17:1–17:14, 2019. doi:10.4230/

LIPIcs.CPM.2019.17.

[15] Djamal Belazzougui. Succinct dictionary matching with no slowdown. In Com-

binatorial Pattern Matching, 21st Annual Symposium, CPM 2010, New York,

NY, USA, June 21-23, 2010. Proceedings, pages 88–100, 2010. doi:10.1007/

978-3-642-13509-5_9.

[16] Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan. On the complexity of

bwt-runs minimization via alphabet reordering. In 28th Annual European Symposium

on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), pages

15:1–15:13, 2020. doi:10.4230/LIPIcs.ESA.2020.15.

[17] Kellogg Speed Booth. Pq-tree algorithms. Technical report, California Univ., Liver-

more (USA). Lawrence Livermore Lab., 1975.

[18] Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini,

and Taher Mun. Prefix-free parsing for building big bwts. Algorithms for Molecular

Biology, 14(1):13, 2019.

[19] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de

bruijn graphs. In Algorithms in Bioinformatics - 12th International Workshop, WABI

2012, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, pages 225–235, 2012.

doi:10.1007/978-3-642-33122-0_18.

[20] Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit

distance cannot be computed in strongly subcubic time (unless APSP can). ACM

Trans. Algorithms, 16(4):48:1–48:22, 2020. doi:10.1145/3381878.

97

https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://doi.org/10.1007/978-3-642-13509-5_9
https://doi.org/10.1007/978-3-642-13509-5_9
https://doi.org/10.4230/LIPIcs.ESA.2020.15
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1145/3381878

[21] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for

string problems and dynamic time warping. In IEEE 56th Annual Symposium on

Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,

2015, pages 79–97, 2015. doi:10.1109/FOCS.2015.15.

[22] Michael Burrows and David J Wheeler. A block-sorting lossless data compression

algorithm. SRC Research Report, 1994.

[23] Bastien Cazaux and Eric Rivals. Linking BWT and XBW via aho-corasick automaton:

Applications to run-length encoding. In Nadia Pisanti and Solon P. Pissis, editors,

30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20,

2019, Pisa, Italy, volume 128 of LIPIcs, pages 24:1–24:20. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CPM.2019.24.

[24] Moses Charikar, Venkatesan Guruswami, and Rajsekar Manokaran. Every permutation

CSP of arity 3 is approximation resistant. In Proceedings of the 24th Annual IEEE

Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009,

pages 62–73, 2009. doi:10.1109/CCC.2009.29.

[25] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. On the advantage

over random for maximum acyclic subgraph. In 48th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence,

RI, USA, Proceedings, pages 625–633, 2007. doi:10.1109/FOCS.2007.47.

[26] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-

parameter algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–

21:19, 2008. doi:10.1145/1411509.1411511.

[27] Kuo Tsai Chen, Ralph H Fox, and Roger C Lyndon. Free differential calculus, iv. the

quotient groups of the lower central series. Annals of Mathematics, pages 81–95, 1958.

98

https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.CPM.2019.24
https://doi.org/10.1109/CCC.2009.29
https://doi.org/10.1109/FOCS.2007.47
https://doi.org/10.1145/1411509.1411511

[28] Norishige Chiba, Takao Nishizeki, Shigenobu Abe, and Takao Ozawa. A linear algo-

rithm for embedding planar graphs using pq-trees. J. Comput. Syst. Sci., 30(1):54–76,

1985. doi:10.1016/0022-0000(85)90004-2.

[29] Amanda Clare and Jacqueline W. Daykin. Enhanced string factoring from alphabet

orderings. Inf. Process. Lett., 143:4–7, 2019. doi:10.1016/j.ipl.2018.10.011.

[30] Amanda Clare, Jacqueline W. Daykin, Thomas Mills, and Christine Zarges. Evolu-

tionary search techniques for the lyndon factorization of biosequences. In Proceed-

ings of the Genetic and Evolutionary Computation Conference Companion, GECCO

2019, Prague, Czech Republic, July 13-17, 2019, pages 1543–1550, 2019. doi:

10.1145/3319619.3326872.

[31] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. The wavelet matrix:

An efficient wavelet tree for large alphabets. Inf. Syst., 47:15–32, 2015. doi:10.1016/

j.is.2014.06.002.

[32] Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya.

Upper and lower bounds for dynamic data structures on strings. In 35th Symposium

on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3,

2018, Caen, France, pages 22:1–22:14, 2018. doi:10.4230/LIPIcs.STACS.2018.22.

[33] Anthony J. Cox, Markus J. Bauer, Tobias Jakobi, and Giovanna Rosone. Large-

scale compression of genomic sequence databases with the Burrows–Wheeler transform.

Bioinformatics, 28(11):1415–1419, 05 2012. doi:10.1093/bioinformatics/bts173.

[34] Pierluigi Crescenzi. A short guide to approximation preserving reductions. In Proceed-

ings of Computational Complexity. Twelfth Annual IEEE Conference, pages 262–273.

IEEE, 1997.

99

https://doi.org/10.1016/0022-0000(85)90004-2
https://doi.org/10.1016/j.ipl.2018.10.011
https://doi.org/10.1145/3319619.3326872
https://doi.org/10.1145/3319619.3326872
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.4230/LIPIcs.STACS.2018.22
https://doi.org/10.1093/bioinformatics/bts173

[35] Maxime Crochemore and Dominique Perrin. Two-way string matching. J. ACM,

38(3):651–675, 1991. doi:10.1145/116825.116845.

[36] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Lower bounds based on the

exponential-time hypothesis. In Parameterized Algorithms, pages 467–521. Springer,

2015.

[37] Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlotter.

Parameterized complexity of eulerian deletion problems. Algorithmica, 68(1):41–61,

2014. doi:10.1007/s00453-012-9667-x.

[38] Nicolaas Govert De Bruijn. A combinatorial problem. Koninklijke Nederlandse

Akademie v. Wetenschappen, 49(49):758–764, 1946.

[39] Huy Hoang Do, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Fast relative

lempel-ziv self-index for similar sequences. Theor. Comput. Sci., 532:14–30, 2014.

doi:10.1016/j.tcs.2013.07.024.

[40] Vida Dujmovic and David R. Wood. On linear layouts of graphs. Discrete Mathe-

matics & Theoretical Computer Science, 6(2):339–358, 2004. URL: http://dmtcs.

episciences.org/317.

[41] Jean-Pierre Duval. Génération d’une section des classes de conjugaison et arbre des

mots de lyndon de longueur bornée. Theor. Comput. Sci., 60:255–283, 1988. doi:

10.1016/0304-3975(88)90113-2.

[42] Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu. On the com-

plexity of string matching for graphs. In Christel Baier, Ioannis Chatzigiannakis, Paola

Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,

100

https://doi.org/10.1145/116825.116845
https://doi.org/10.1007/s00453-012-9667-x
https://doi.org/10.1016/j.tcs.2013.07.024
http://dmtcs.episciences.org/317
http://dmtcs.episciences.org/317
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.1016/0304-3975(88)90113-2

Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume

132 of LIPIcs, pages 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2019. doi:10.4230/LIPIcs.ICALP.2019.55.

[43] Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be indexed

in polynomial time for sub-quadratic time string matching, unless SETH fails. In

SOFSEM 2021: Theory and Practice of Computer Science - 47th International Con-

ference on Current Trends in Theory and Practice of Computer Science, SOFSEM

2021, Bolzano-Bozen, Italy, January 25-29, 2021, Proceedings, pages 608–622, 2021.

doi:10.1007/978-3-030-67731-2_44.

[44] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-

complexity of suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/

355541.355547.

[45] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Com-

pressing and indexing labeled trees, with applications. J. ACM, 57(1):4:1–4:33, 2009.

doi:10.1145/1613676.1613680.

[46] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with appli-

cations. In 41st Annual Symposium on Foundations of Computer Science, FOCS

2000, 12-14 November 2000, Redondo Beach, California, USA, pages 390–398, 2000.

doi:10.1109/SFCS.2000.892127.

[47] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–

581, 2005. doi:10.1145/1082036.1082039.

[48] Paolo Ferragina and Rossano Venturini. The compressed permuterm index. ACM

Trans. Algorithms, 7(1):10:1–10:21, 2010. doi:10.1145/1868237.1868248.

101

https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1007/978-3-030-67731-2_44
https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1868237.1868248

[49] Isamu Furuya, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and

Masayuki Takeda. Lyndon factorization of grammar compressed texts revisited. In

Gonzalo Navarro, David Sankoff, and Binhai Zhu, editors, Annual Symposium on Com-

binatorial Pattern Matching, CPM 2018, July 2-4, 2018 - Qingdao, China, volume 105

of LIPIcs, pages 24:1–24:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

doi:10.4230/LIPIcs.CPM.2018.24.

[50] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for

bwt-based data structures. Theor. Comput. Sci., 698:67–78, 2017. doi:10.1016/j.

tcs.2017.06.016.

[51] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in

bwt-runs bounded space. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January

7-10, 2018, pages 1459–1477, 2018. doi:10.1137/1.9781611975031.96.

[52] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and

optimal text searching in bwt-runs bounded space. J. ACM, 67(1), January 2020.

doi:10.1145/3375890.

[53] Travis Gagie, Simon J. Puglisi, and Daniel Valenzuela. Analyzing relative lempel-ziv

reference construction. In String Processing and Information Retrieval - 23rd Inter-

national Symposium, SPIRE 2016, Beppu, Japan, October 18-20, 2016, Proceedings,

pages 160–165, 2016. doi:10.1007/978-3-319-46049-9_16.

[54] Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pbwt: Achieving succinct

data structures for parameterized pattern matching and related problems. In Proceed-

ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,

102

https://doi.org/10.4230/LIPIcs.CPM.2018.24
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-319-46049-9_16

SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 397–407, 2017.

doi:10.1137/1.9781611974782.25.

[55] Raffaele Giancarlo, Giovanni Manzini, Antonio Restivo, Giovanna Rosone, and

Marinella Sciortino. Block sorting-based transformations on words: Beyond the

magic BWT. In Developments in Language Theory - 22nd International Confer-

ence, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings, pages 1–17, 2018.

doi:10.1007/978-3-319-98654-8_1.

[56] Raffaele Giancarlo, Giovanni Manzini, Giovanna Rosone, and Marinella Sciortino. A

new class of searchable and provably highly compressible string transformations. In

30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20,

2019, Pisa, Italy, pages 12:1–12:12, 2019. doi:10.4230/LIPIcs.CPM.2019.12.

[57] Daniel Gibney, Gary Hoppenworth, and Sharma V. Thankachan. Simple reductions

from formula-sat to pattern matching on labeled graphs and subtree isomorphism. In

4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January

11-12, 2021, pages 232–242, 2021. doi:10.1137/1.9781611976496.26.

[58] Daniel Gibney and Sharma V. Thankachan. On the hardness and inapproximability of

recognizing wheeler graphs. In 27th Annual European Symposium on Algorithms, ESA

2019, September 9-11, 2019, Munich/Garching, Germany, pages 51:1–51:16, 2019.

doi:10.4230/LIPIcs.ESA.2019.51.

[59] Daniel Gibney and Sharma V. Thankachan. Finding an optimal alphabet ordering for

lyndon factorization is hard. In 38th International Symposium on Theoretical Aspects of

Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual

Conference), pages 35:1–35:15, 2021. doi:10.4230/LIPIcs.STACS.2021.35.

103

https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1007/978-3-319-98654-8_1
https://doi.org/10.4230/LIPIcs.CPM.2019.12
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.4230/LIPIcs.STACS.2021.35

[60] Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. CoRR,

abs/1201.3077, 2012. URL: http://arxiv.org/abs/1201.3077, arXiv:1201.3077.

[61] Venkatesan Guruswami, Johan H̊astad, Rajsekar Manokaran, Prasad Raghavendra,

and Moses Charikar. Beating the random ordering is hard: Every ordering CSP

is approximation resistant. SIAM J. Comput., 40(3):878–914, 2011. doi:10.1137/

090756144.

[62] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the

random ordering is hard: Inapproximability of maximum acyclic subgraph. In 49th

Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October

25-28, 2008, Philadelphia, PA, USA, pages 573–582, 2008. doi:10.1109/FOCS.2008.

51.

[63] Venkatesan Guruswami and Yuan Zhou. Approximating bounded occurrence ordering

csps. In Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques - 15th International Workshop, APPROX 2012, and 16th International

Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings,

pages 158–169, 2012. doi:10.1007/978-3-642-32512-0_14.

[64] Bernhard Haeupler and Robert Endre Tarjan. Planarity algorithms via pq-trees

(extended abstract). Electronic Notes in Discrete Mathematics, 31:143–149, 2008.

doi:10.1016/j.endm.2008.06.029.

[65] Johan H̊astad. Some optimal inapproximability results. In Proceedings of the Twenty-

Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA,

May 4-6, 1997, pages 1–10, 1997. doi:10.1145/258533.258536.

104

http://arxiv.org/abs/1201.3077
http://arxiv.org/abs/1201.3077
https://doi.org/10.1137/090756144
https://doi.org/10.1137/090756144
https://doi.org/10.1109/FOCS.2008.51
https://doi.org/10.1109/FOCS.2008.51
https://doi.org/10.1007/978-3-642-32512-0_14
https://doi.org/10.1016/j.endm.2008.06.029
https://doi.org/10.1145/258533.258536

[66] Lenwood S. Heath and Sriram V. Pemmaraju. Stack and queue layouts of directed

acyclic graphs: Part II. SIAM J. Comput., 28(5):1588–1626, 1999. doi:10.1137/

S0097539795291550.

[67] Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and queue layouts

of directed acyclic graphs: Part I. SIAM J. Comput., 28(4):1510–1539, 1999. doi:

10.1137/S0097539795280287.

[68] Lenwood S. Heath and Arnold L. Rosenberg. Laying out graphs using queues. SIAM

J. Comput., 21(5):927–958, 1992. doi:10.1137/0221055.

[69] Christophe Hohlweg and Christophe Reutenauer. Lyndon words, permutations and

trees. Theor. Comput. Sci., 307(1):173–178, 2003. doi:10.1016/S0304-3975(03)

00099-9.

[70] Wing-Kai Hon, Tsung-Han Ku, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott

Vitter. Faster compressed dictionary matching. Theor. Comput. Sci., 475:113–119,

2013. doi:10.1016/j.tcs.2012.10.050.

[71] Christopher Hoobin, Simon J. Puglisi, and Justin Zobel. Relative lempel-ziv factoriza-

tion for efficient storage and retrieval of web collections. Proc. VLDB Endow., 5(3):265–

273, 2011. URL: http://www.vldb.org/pvldb/vol5/p265_christopherhoobin_

vldb2012.pdf, doi:10.14778/2078331.2078341.

[72] Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.

Faster lyndon factorization algorithms for SLP and LZ78 compressed text. Theor.

Comput. Sci., 656:215–224, 2016. doi:10.1016/j.tcs.2016.03.005.

[73] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput.

Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

105

https://doi.org/10.1137/S0097539795291550
https://doi.org/10.1137/S0097539795291550
https://doi.org/10.1137/S0097539795280287
https://doi.org/10.1137/S0097539795280287
https://doi.org/10.1137/0221055
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1016/j.tcs.2012.10.050
http://www.vldb.org/pvldb/vol5/p265_christopherhoobin_vldb2012.pdf
http://www.vldb.org/pvldb/vol5/p265_christopherhoobin_vldb2012.pdf
https://doi.org/10.14778/2078331.2078341
https://doi.org/10.1016/j.tcs.2016.03.005
https://doi.org/10.1006/jcss.2000.1727

[74] Haitao Jiang, Cédric Chauve, and Binhai Zhu. Breakpoint distance and pq-trees. In

Combinatorial Pattern Matching, 21st Annual Symposium, CPM 2010, New York,

NY, USA, June 21-23, 2010. Proceedings, pages 112–124, 2010. doi:10.1007/

978-3-642-13509-5_11.

[75] Viggo Kann. On the approximability of NP-complete optimization problems. PhD

thesis, Royal Institute of Technology Stockholm, 1992.

[76] Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, and Arseny M.

Shur. On the size of lempel-ziv and lyndon factorizations. In Heribert Vollmer and

Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science,

STACS 2017, March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages

45:1–45:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/

LIPIcs.STACS.2017.45.

[77] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time lempel-ziv

factorization: Simple, fast, small. In Combinatorial Pattern Matching, 24th Annual

Symposium, CPM 2013, Bad Herrenalb, Germany, June 17-19, 2013. Proceedings,

pages 189–200, 2013. doi:10.1007/978-3-642-38905-4_19.

[78] Dominik Kempa. Optimal construction of compressed indexes for highly repetitive

texts. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1344–

1357, 2019. doi:10.1137/1.9781611975482.82.

[79] Dominik Kempa and Tomasz Kociumaka. Resolution of the burrows-wheeler transform

conjecture. In 61st IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1002–1013, 2020. doi:

10.1109/FOCS46700.2020.00097.

106

https://doi.org/10.1007/978-3-642-13509-5_11
https://doi.org/10.1007/978-3-642-13509-5_11
https://doi.org/10.4230/LIPIcs.STACS.2017.45
https://doi.org/10.4230/LIPIcs.STACS.2017.45
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1137/1.9781611975482.82
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1109/FOCS46700.2020.00097

[80] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string

attractors. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Pro-

ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 827–840. ACM, 2018.

doi:10.1145/3188745.3188814.

[81] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string

attractors. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 827–840,

2018. doi:10.1145/3188745.3188814.

[82] Subhash Khot. On the unique games conjecture. In 46th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA,

USA, Proceedings, page 3, 2005. doi:10.1109/SFCS.2005.61.

[83] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time con-

struction of suffix arrays. In Combinatorial Pattern Matching, 14th Annual Sympo-

sium, CPM 2003, Morelia, Michocán, Mexico, June 25-27, 2003, Proceedings, pages

186–199, 2003. doi:10.1007/3-540-44888-8_14.

[84] Eun Jung Kim and Daniel Gonçalves. On exact algorithms for the permutation CSP.

Theor. Comput. Sci., 511:109–116, 2013. doi:10.1016/j.tcs.2012.10.035.

[85] Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure

of repetitiveness. In LATIN 2020: Theoretical Informatics - 14th Latin American

Symposium, São Paulo, Brazil, January 5-8, 2021, Proceedings, pages 207–219, 2020.

doi:10.1007/978-3-030-61792-9_17.

[86] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive se-

quences. Theor. Comput. Sci., 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

107

https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1109/SFCS.2005.61
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1016/j.tcs.2012.10.035
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1016/j.tcs.2012.02.006

[87] Manfred Kufleitner. On bijective variants of the burrows-wheeler transform. In Pro-

ceedings of the Prague Stringology Conference 2009, Prague, Czech Republic, August

31 - September 2, 2009, pages 65–79, 2009. URL: http://www.stringology.org/

event/2009/p07.html.

[88] Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Gio-

vanni Manzini. Efficient construction of a complete index for pan-genomics read align-

ment. In Research in Computational Molecular Biology - 23rd Annual International

Conference, RECOMB 2019, Washington, DC, USA, May 5-8, 2019, Proceedings,

pages 158–173, 2019. doi:10.1007/978-3-030-17083-7_10.

[89] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative lempel-ziv compression

of genomes for large-scale storage and retrieval. In String Processing and Information

Retrieval - 17th International Symposium, SPIRE 2010, Los Cabos, Mexico, October

11-13, 2010. Proceedings, pages 201–206, 2010. doi:10.1007/978-3-642-16321-0\

_20.

[90] Pierre Lalonde and Arun Ram. Standard lyndon bases of lie algebras and enveloping

algebras. Transactions of the American Mathematical Society, 347(5):1821–1830, 1995.

[91] Gad M. Landau, Laxmi Parida, and Oren Weimann. Gene proximity analysis across

whole genomes via PQ trees1. Journal of Computational Biology, 12(10):1289–1306,

2005. doi:10.1089/cmb.2005.12.1289.

[92] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and

memory-efficient alignment of short dna sequences to the human genome. Genome

biology, 10(3):R25, 2009.

[93] Heng Li and Richard Durbin. Fast and accurate long-read alignment with burrows–

wheeler transform. Bioinformatics, 26(5):589–595, 2010.

108

http://www.stringology.org/event/2009/p07.html
http://www.stringology.org/event/2009/p07.html
https://doi.org/10.1007/978-3-030-17083-7_10
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1089/cmb.2005.12.1289

[94] Heng Li and Richard Durbin. Fast and accurate long-read alignment with

burrows-wheeler transform. Bioinformatics, 26(5):589–595, 2010. doi:10.1093/

bioinformatics/btp698.

[95] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen,

and Jun Wang. Soap2: an improved ultrafast tool for short read alignment. Bioinfor-

matics, 25(15):1966–1967, 2009.

[96] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the

exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http:

//eatcs.org/beatcs/index.php/beatcs/article/view/92.

[97] M. Lothaire. Combinatorics on words, volume 17. Cambridge university press, 1997.

[98] Lily Major, Amanda Clare, Jacqueline W. Daykin, Benjamin Mora, Leonel Jose Peña

Gamboa, and Christine Zarges. Evaluation of a permutation-based evolutionary frame-

work for lyndon factorizations. In Parallel Problem Solving from Nature - PPSN XVI -

16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9,

2020, Proceedings, Part I, pages 390–403, 2020. doi:10.1007/978-3-030-58112-1\

_27.

[99] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length en-

coding. In Combinatorial Pattern Matching, 16th Annual Symposium, CPM 2005,

Jeju Island, Korea, June 19-22, 2005, Proceedings, pages 45–56, 2005. doi:10.1007/

11496656_5.

[100] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval

of individual genomes. In Research in Computational Molecular Biology, 13th Annual

International Conference, RECOMB 2009, Tucson, AZ, USA, May 18-21, 2009. Pro-

ceedings, pages 121–137, 2009. doi:10.1007/978-3-642-02008-7_9.

109

https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1007/978-3-030-58112-1_27
https://doi.org/10.1007/978-3-030-58112-1_27
https://doi.org/10.1007/11496656_5
https://doi.org/10.1007/11496656_5
https://doi.org/10.1007/978-3-642-02008-7_9

[101] Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone, and

Marinella Sciortino. A combinatorial view on string attractors. Theor. Comput. Sci.,

850:236–248, 2021. doi:10.1016/j.tcs.2020.11.006.

[102] Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An

extension of the burrows wheeler transform and applications to sequence comparison

and data compression. In Combinatorial Pattern Matching, 16th Annual Symposium,

CPM 2005, Jeju Island, Korea, June 19-22, 2005, Proceedings, pages 178–189, 2005.

doi:10.1007/11496656_16.

[103] Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An

extension of the burrows-wheeler transform. Theor. Comput. Sci., 387(3):298–312,

2007. doi:10.1016/j.tcs.2007.07.014.

[104] Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Sorting

suffixes of a text via its lyndon factorization. In Jan Holub and Jan Zdárek, edi-

tors, Proceedings of the Prague Stringology Conference 2013, Prague, Czech Republic,

September 2-4, 2013, pages 119–127. Department of Theoretical Computer Science,

Faculty of Information Technology, Czech Technical University in Prague, 2013. URL:

http://www.stringology.org/event/2013/p11.html.

[105] Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Suffix

array and lyndon factorization of a text. J. Discrete Algorithms, 28:2–8, 2014. doi:

10.1016/j.jda.2014.06.001.

[106] Gary L. Miller. Graph isomorphism, general remarks. J. Comput. Syst. Sci., 18(2):128–

142, 1979. doi:10.1016/0022-0000(79)90043-6.

[107] Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the Twenty-

Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New

110

https://doi.org/10.1016/j.tcs.2020.11.006
https://doi.org/10.1007/11496656_16
https://doi.org/10.1016/j.tcs.2007.07.014
http://www.stringology.org/event/2013/p11.html
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1016/0022-0000(79)90043-6

Orleans, Louisiana, USA, January 6-8, 2013, pages 958–972, 2013. doi:10.1137/1.

9781611973105.69.

[108] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge Univer-

sity Press, 2016.

[109] Gonzalo Navarro. Indexing highly repetitive string collections. CoRR, abs/2004.02781,

2020. URL: https://arxiv.org/abs/2004.02781, arXiv:2004.02781.

[110] Gonzalo Navarro, Carlos Ochoa, and Nicola Prezza. On the approximation ratio of

ordered parsings. IEEE Trans. Inf. Theory, 67(2):1008–1026, 2021. doi:10.1109/

TIT.2020.3042746.

[111] Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theor.

Comput. Sci., 762:41–50, 2019. doi:10.1016/j.tcs.2018.09.007.

[112] Gonzalo Navarro and Victor Sepulveda. Practical indexing of repetitive collections

using relative lempel-ziv. In Data Compression Conference, DCC 2019, Snowbird,

UT, USA, March 26-29, 2019, pages 201–210, 2019. doi:10.1109/DCC.2019.00028.

[113] Alantha Newman. Cuts and orderings: On semidefinite relaxations for the lin-

ear ordering problem. In Approximation, Randomization, and Combinatorial Opti-

mization, Algorithms and Techniques, 7th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems, APPROX 2004, and 8th In-

ternational Workshop on Randomization and Computation, RANDOM 2004, Cam-

bridge, MA, USA, August 22-24, 2004, Proceedings, pages 195–206, 2004. doi:

10.1007/978-3-540-27821-4_18.

111

https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.1137/1.9781611973105.69
https://arxiv.org/abs/2004.02781
http://arxiv.org/abs/2004.02781
https://doi.org/10.1109/TIT.2020.3042746
https://doi.org/10.1109/TIT.2020.3042746
https://doi.org/10.1016/j.tcs.2018.09.007
https://doi.org/10.1109/DCC.2019.00028
https://doi.org/10.1007/978-3-540-27821-4_18
https://doi.org/10.1007/978-3-540-27821-4_18

[114] Adam M. Novak, Erik Garrison, and Benedict Paten. A graph extension of the posi-

tional burrows-wheeler transform and its applications. Algorithms for Molecular Biol-

ogy, 12(1):18:1–18:12, 2017. doi:10.1186/s13015-017-0109-9.

[115] Tatsuya Ohno, Kensuke Sakai, Yoshimasa Takabatake, I Tomohiro, and Hiroshi

Sakamoto. A faster implementation of online rlbwt and its application to lz77 parsing.

Journal of Discrete Algorithms, 52:18–28, 2018.

[116] Jaroslav Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111–114, 1979.

doi:10.1137/0208008.

[117] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation,

and complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. doi:10.1016/

0022-0000(91)90023-X.

[118] Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem

with distances one and two. Math. Oper. Res., 18(1):1–11, 1993. doi:10.1287/moor.

18.1.1.

[119] Ján Plesńık. The np-completeness of the hamiltonian cycle problem in planar di-

graphs with degree bound two. Inf. Process. Lett., 8(4):199–201, 1979. doi:10.1016/

0020-0190(79)90023-1.

[120] Simon J. Puglisi and Bella Zhukova. Relative lempel-ziv compression of suffix arrays. In

String Processing and Information Retrieval - 27th International Symposium, SPIRE

2020, Orlando, FL, USA, October 13-15, 2020, Proceedings, pages 89–96, 2020. doi:

10.1007/978-3-030-59212-7_7.

[121] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp?

In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,

112

https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1137/0208008
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1007/978-3-030-59212-7_7
https://doi.org/10.1007/978-3-030-59212-7_7

British Columbia, Canada, May 17-20, 2008, pages 245–254, 2008. doi:10.1145/

1374376.1374414.

[122] Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear al-

gorithms for approximating string compressibility. Algorithmica, 65(3):685–709, 2013.

doi:10.1007/s00453-012-9618-6.

[123] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with

applications in genome research. IEEE/ACM Transactions on Computational Biology

and Bioinformatics (TCBB), 11(2):375–388, 2014.

[124] Kazuya Tsuruta, Dominik Köppl, Yuto Nakashima, Shunsuke Inenaga, Hideo Ban-

nai, and Masayuki Takeda. Grammar-compressed self-index with lyndon words.

CoRR, abs/2004.05309, 2020. URL: https://arxiv.org/abs/2004.05309, arXiv:

2004.05309.

[125] Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.

On the size of overlapping lempel-ziv and lyndon factorizations. In Nadia Pisanti and

Solon P. Pissis, editors, 30th Annual Symposium on Combinatorial Pattern Matching,

CPM 2019, June 18-20, 2019, Pisa, Italy, volume 128 of LIPIcs, pages 29:1–29:11.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CPM.

2019.29.

[126] Lianping Yang, Guisong Chang, Xiangde Zhang, and Tianming Wang. Use of the

burrows–wheeler similarity distribution to the comparison of the proteins. Amino

acids, 39(3):887–898, 2010.

[127] D Younger. Minimum feedback arc sets for a directed graph. IEEE Transactions on

Circuit Theory, 10(2):238–245, 1963.

113

https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1007/s00453-012-9618-6
https://arxiv.org/abs/2004.05309
http://arxiv.org/abs/2004.05309
http://arxiv.org/abs/2004.05309
https://doi.org/10.4230/LIPIcs.CPM.2019.29
https://doi.org/10.4230/LIPIcs.CPM.2019.29

[128] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-

pression. IEEE Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.

1055714.

114

https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714

	Algorithms and Lower Bounds for Ordering Problems on Strings
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Burrows-Wheeler Transform Runs Minimization
	Overview
	Results

	Wheeler Graph Recognition
	Overview
	Results

	Lyndon Factor Minimization
	Overview
	Results

	Optimal Reference for Relative Lempel-Ziv Encoding
	Overview
	Results

	CHAPTER 2: BWT-RUNS MINIMIZATION
	Preliminaries: L-reductions
	Hardness of Alphabet Ordering
	Reduction Phase 1
	Reduction Phase 2
	Proof of Corollary 1

	Constrained Alphabet Ordering
	Reducing to a Simpler Problem
	Solving the Tuple Ordering Problem in Linear Time
	An Example of the Effectiveness of CAO

	CHAPTER 3: WHEELER GRAPH RECOGNITION
	NP-completeness of Wheeler Graph Recognition
	The Betweenness Problem
	Reduction from Betweenness to Wheeler Graph Recognition
	NP-completeness of Wheeler Graph Recognition on d-NFAs

	Wheeler graphs and Queue Number
	Queue Number

	An Exponential Time Algorithm
	Optimization Variants to Wheeler Graph Recognition
	The Wheeler Graph Violation Problem is APX-hard
	The Reduction of FAS to WGV
	The Wheeler Subgraph Problem is in APX

	A Class of Graphs with Linear Time Solution for Recognition
	PQ-trees
	Detecting One-Queue DAGs
	Linear Time Solution

	Discussion and Open Problems

	CHAPTER 4: LYNDON FACTOR OPTIMIZATION
	Preliminaries
	Hardness of Lyndon Factor Minimization
	NP-Completeness of Lyndon Factor Minimization
	ETH Hardness of Lyndon Factor Minimization
	Inapproximability of Lyndon Factor Minimization

	Hardness of Lyndon Factor Maximization
	NP-Completeness of Lyndon Factor Maximization
	Inapproximability of Lyndon Factor Maximization

	Open Problems

	CHAPTER 5: OPTIMAL REFERENCE FOR RELATIVE LEMPEL-ZIV
	Hardness Results
	Warm Up: Polynomially-Sized Alphabets
	Hardness Over a Binary Alphabet

	Bounds in Terms of the Delta-Measure
	Open Problems

	CHAPTER 6: CONCLUSION
	LIST OF REFERENCES

