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ABSTRACT

As demands for memory-intensive applications continue to grow, the memory capacity of each

computing node is expected to grow at a similar pace. In high-performance computing (HPC) sys-

tems, the memory capacity per compute node is decided upon the most demanding application that

would likely run on such a system, and hence the average capacity per node in future HPC systems

is expected to grow significantly. However, diverse applications run on HPC systems with dif-

ferent memory requirements and memory utilization can fluctuate widely from one application to

another. Since memory modules are private for a corresponding computing node, a large percent-

age of the overall memory capacity will likely be underutilized, especially when there are many

jobs with small memory footprints. Thus, as HPC systems are moving towards the exascale era,

better utilization of memory is strongly desired. Moreover, as new memory technologies come

on the market, the flexibility of upgrading memory and system updates becomes a major concern

since memory modules are tightly coupled with the computing nodes.

To address these issues, vendors are exploring fabric-attached memories (FAM) systems. In this

type of system, resources are decoupled and are maintained independently. Such a design has

driven technology providers to develop new protocols, such as cache-coherent interconnects and

memory semantic fabrics, to connect various discrete resources and help users leverage advances

in-memory technologies to satisfy growing memory and storage demands. Using these new proto-

cols, FAM can be directly attached to a system interconnect and be easily integrated with a variety

of processing elements (PEs). Moreover, systems that support FAM can be smoothly upgraded and

allow multiple PEs to share the FAM memory pools using well-defined protocols. The sharing of

FAM between PEs allows efficient data sharing, improves memory utilization, reduces cost by al-

lowing flexible integration of different PEs and memory modules from several vendors, and makes

it easier to upgrade the system.
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However, adopting FAM in HPC systems brings in new challenges. Since memory is disaggre-

gated and is accessed through fabric networks, latency in accessing memory (efficiency) is a cru-

cial concern. In addition, quality of service, security from neighbor nodes, coherency, and address

translation overhead to access FAM are some of the problems that require rethinking for FAM

systems. To this end, we study and discuss various challenges that need to be addressed in FAM

systems. Firstly, we developed a simulating environment to mimic and analyze FAM systems. Fur-

ther, we showcase our work in addressing the challenges to improve the performance and increase

the feasibility of such systems; enforcing quality of service, providing page migration support, and

enhancing security from malicious neighbor nodes.
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CHAPTER 1: INTRODUCTION

This chapter discusses the drawbacks of HPC systems with tightly coupled in-node memories (re-

sources) and emphasizes on the need for fabric-attached memory (FAM) systems for HPC work-

loads.

With the ever increasing demand for larger memory capacities, many high-performance computing

(HPC) systems nowadays have their nodes equipped with hundreds of gigabytes of memories. For

instance, Oak Ridge National Lab’s Summit supercomputer has 512GB of DRAM and 96GB of

HBM2 per compute node. The catalyst for increased memory capacity needs per compute node is

increasing memory requirements for current new age and emerging workloads like data analytics,

graph analytics, machine learning, artificial intelligence et al. However, maintaining such huge

memory within a node leads to following drawbacks. Most HPC systems typically run many dif-

ferent applications from a variety of domains, each of which will have its own unique resource

requirements; some applications may use the whole memory in the node while others may only

use a few gigabytes. Nevertheless, most current HPC schedulers allocate resources at the node

granularity, and applications with extremely low memory demands can end up reserving nodes

with large memories. Unfortunately, the current approach to choose the size of memory per node

is based on the maximum footprint (per node) of the applications of interest, which can lead to

significant under-utilization of the memory system. Perhaps more importantly, because the mem-

ory subsystem is typically constructed with DRAM, each node can incur very high cooling costs

in addition to significant power consumption [1, 2, 3, 4, 5, 6, 7, 8]. A recent study shows that

about 80% of the jobs on HPC systems overestimate their memory requirements [9]; thus, HPC

systems under-utilize memory slots by dedicating them to specific jobs. Moreover, applications

that are not able to fit their memory needs into one node incur additional communication over-

head because their computation must be split across nodes. Ideally, compute nodes should have
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direct access to memories that meet their demands without the need to incur expensive software

stack overhead due to message passing libraries. As asserted since memory subsystem is mostly

constructed with DRAM, considering its fast access rates, power consumption is high. In addition

to the under-utilization and sharing overheads of the systems that couple memory with computing

nodes, upgrading memory can be challenging. To take advantage of the fast-evolving memories

and adapt to the new requirements of applications, system memory should have the ability to be

augmented with evolving memory technologies. In systems that deploy petabytes of storage, it is

important to be able to flexibly extend the data stores and ensure their robustness. Further, mi-

grating jobs is one of the crucial requirements for hybrid cloud systems [10] and with the existing

memory arrangement it is complicated since the data pertaining to the job, which is to be migrated

to the target system (node), has to be moved completely.

The emergence of workloads that process huge shared files or large graphs makes private memory

for a node less attractive. These workloads are expected to become more common in the future,

[11, 12], pushing future computing systems to become memory-centric. Hence, to mitigate the

scalability challenges and data sharing complexities of coupled memory systems, a new memory

design direction, decoupled memory systems in which memory is decoupled from the compute en-

gines, is evolving as a result of memory-driven applications [13]. To support such systems, recent

standards (consortium’s), such as Gen-Z[14], Compute Express Lanes (CXL)[15] and Cache Co-

herent Interconnect for Accelerators (CCIX)[16], define protocols and interface requirements for

accessing memory modules attached to the fast system interconnect. Memory modules that imple-

ment memory-semantic protocols and can be readily integrated with the system fabric are typically

referred to as FAMs. Protocols defining how to integrate FAMs are being developed through a

consortium of major vendors, such as Intel, HPE, AMD, IBM, Lenovo, and VMware[15, 14, 16].

FAMs promise a new HPC architecture where compute nodes can potentially access shared physi-

cal memory pools through fast interconnects. In particular, there has been recent industrial interest

2



in architectures where memory modules can be disaggregated from compute nodes, and hence, al-

lows nodes to scale up its memory allocation to the requirements of the workloads run on the node.

Such architectures are typically referred to as memory-centric architectures. Memory-centric ar-

chitectures leverage memory semantic protocols to communicate with FAM pools over high-speed

interconnects. Owing to memory disaggregation, they promise efficiency, flexibility, and reduced

costs. Examples of architectures that resemble memory-centric systems include Facebook’s Dis-

aggregated Rack[17], HPE Labs’ The Machine[13], and Intel’s Rack Scale Architecture[18].

Interconnecting Network

Memory
Memory
Memory

C C C C
C C C C

C C C C
C C C C

C C C C
C C C C

GPU
GPU
GPU

GPU
FPGA
FPGA

Disaggregated
Storage

Disaggregated
Memory

Nodes

Disaggregated
Specialized Hardware

Figure 1.1: Disaggregated memory system

As shown in Figure 1.1, FAM decouples memory from computing nodes (FPGAs, GPUs or system-

on-chips (SoCs)). In such systems, the applications can use traditional shared memory interfaces

to operate on shared data by utilizing the large shared memory space. Most importantly, the shared

memory space can be accessed by traditional load/store operations instead of explicitly communi-

cating between computing nodes. Moreover, applications that access shared large files or data-sets

concurrently can benefit from having these files resident in the globally accessible shared memory.

Such a trend becomes more compelling with emerging Non-volatile memories (NVM) [19, 20].
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NVMs, e.g., Intel’s and Micron’s 3D XPoint[21, 22, 23] are considered among the best candidates

for building FAM systems for several reasons. First, with NVMs expected to have capacities in

terabytes per processor socket [24, 25, 26, 27], the under-utilization problem becomes more severe

if a processor-centric approach is adopted. Second, NVMs can be used to host directly-accessible

filesystems, e.g., Linux’s Direct Access for Files (DAX) support [28]. Having NVM modules

shared across computing units allows for more efficient operation on shared files. Third, due to the

slow and limited endurance of NVM writes, they are expected to be used as an additional layer in

the memory hierarchy; having small DRAM-based local memory within nodes while NVM used

as a lower-tier memory/storage, attached over fabrics, is a more natural design point [29]. Fourth,

when scaling up the total memory capacity of data centers to petabytes, idle power becomes a ma-

jor concern, and thus DRAM becomes a less practical solution given its significant refresh power

and hence high cooling and operational costs.

Memory is maintained in a rack-scaled manner and can be accessed by scores of the compute

nodes. Several nodes are connected to the shared memory through a high speed interconnect fabric,

e.g., Gen-Z, CXL, and CCIX, [30, 31, 15, 32], are key enablers for disaggregated memory systems,

in addition to scalable, dense and ultra-low power memory devices such as emerging NVMs. For

instance, Gen-Z[30], is a new interconnect standard that defines a new memory semantic where

memory units are directly attached to a system interconnect. In such design, memory becomes the

center of the system, where other components, such as accelerators, processor nodes, and SoCs

are integrated into the system by interfacing them with a shared interconnect that is attached to the

memory.

While accessing memory traditionally, data is copied at multiple locations before storing in mem-

ory. For instance, as shown in Figure 1.2(a) data is copied at three places; file system, input output

buffers and drivers. Such data copies are not necessary while accessing FAM. This is due to the

direct connection between compute nodes to storage class memory with universal memory con-
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trollers. This saves both power and also time while maintaining data at multiple locations. Further,

with the intervention of software stack in traditional memory access approach, the number of in-

structions issued by applications is significantly greater than the actual (useful) instructions. Since,

PEs can be directly connected to the storage class memory, the number of instructions that are re-

quired to access memory now is drastically reduced to only useful instructions [33]. Although,

PEs can access memory directly, to connect to the fabric network, PEs, currently, need to under-

stand the underlying protocols provided by the fabric providers to access fabric attached storage

class memory. To make PEs or applications oblivious of the underlying protocols, Symmetrical

Hierarchical Memory (SHMEM), a PGAS library is used. SHMEM is a point-to-point, one-sided

communicative library. Sandia OpenSHMEM (SOS) [34], OpenSHMEM [35] and CraySHMEM

[36] are different implementations of SHMEM to communicate with the underlying communica-

tive primitives. OpenFabrics Interfaces (OFI) [37] is a framework which is aimed at exporting

fabric communication services or primitives to the upper layers (applications) through SHMEM

interface. Libfabric [38] and unified communication X (UCX) [39] are two different framework

variants of OFI. These frameworks export user-space application interfaces of the fabric interface

to connect to the fabric provider hardware unit.

'N'
Instructions

Application

a. Traditional Memory Access Software Stack

File System/ IO Buffers/ Drivers

Operating System

Memory

'M'
Instructions

Application

b. Fabric Attached Memory Access Software Stack

FAM Media
Controller

Fabric Attached
Memory

Figure 1.2: Memory access approach in FAM and tranditional memory
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Such memory-centric systems promise scalable shared memory applications and significantly re-

duce communication overhead by relying on shared memory and accessing memory directly with

almost zero data copies instead of message passing interfaces between compute nodes and multiple

data copies with interference from software stack as discussed. Moreover, disaggregated memory

enables fluid division of the shared memory resource among all nodes resulting in a highly scal-

able system, yet cost efficient. Finally, upgrading and migrating the memory system would require

much less efforts. Considering the advantages, many major vendors are considering system designs

that utilize FAM, which can be accessed by a large number of processing nodes.

While FAM systems are a promising direction for designing future computing systems, adopting

such systems requires rethinking to address various challenges raised with such systems. The

drawbacks or challenges while adopting FAM systems are

• High memory access latency: Memory is accessed via fabric network interface and hence,

memory access latency also includes fabric network latency apart from latency due to various

memory types (DRAM or NVM).

• Security: FAM (centralized memory) is accessed by number of nodes and without proper

memory protection mechanisms, data can be leaked to the neighbour nodes.

• Fairness: FAMs are expected to be used in multi-tenant environments and hence, multiple

applications from different nodes access FAM. To this end, critical applications need to be

prioritized to avoid starvation from applications running in the neighbour nodes .

• Data coherency: FAM allows for data sharing between the nodes and hence, data needs to be

synchronized between the nodes. Data coherency should be scaled at node-level to achieve

data synchronized between the nodes.

• Memory management: Remote FAM pages are allocated with the help of global memory
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manager[40]. The global memory manager keeps track of the status of the remote memory,

for instance, free and allocated pages. However, accessing remote memory manager require

modifications to the operating systems (OSes).

Thesis statement: Our thesis thrives to study a promising use-case for FAMs, which is adopting

FAMs in High-Performance Compute (HPC) systems, where the underutilization of memory is

a major challenge. For such a use-case, drawbacks like increased memory access latency and

security from the neighbour nodes should be addressed. Hence, we address these drawbacks and

provide solutions to improve the performance and feasibility of adopting FAMs in HPC systems.

The summary of our contributions are as follows:

1.1 Fabric-Attached Memory Simulation Setup

To study the impact of decoupling memory and maintaining centralized memory we need a proper

simulating environment. FAM system is explored using QEMU [41] by HP laboratories [42].

However, scaling the simulation setup to study number of nodes accessing FAM with QEMU is

not practical or takes non-realistic time. Hence, first we design a simulation model for evaluating

disaggregated memory architectures using a publicly available simulator, Structural Simulation

Toolkit (SST). SST is a cycle-level architectural simulator that is widely used, based on open-

source licensing and is publicly available. SST has been proven to be one of the most reliable

simulators for large-scale systems due to the scalability and modular design of its components.

This makes SST the perfect candidate for simulating disaggregated memory systems at scale. To

this end, we developed a new evaluating platform to explore FAM architectures and we explored

various memory allocation policies for FAMs. Further details are explained in detailed in chapter

2.
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1.2 Investigating Performance by Enforcing Fairness with Hierarchical Priority

As asserted, FAMs are expected to be used in multi-tenant environments, e.g., cloud systems or

data centers. Contention can become a significant problem due to competition for the shared global

(centralized) memory. As the number of compute nodes that share the global FAM increase, the

more likely the average global memory access time will increase. Additionally, the worst-case

access latency becomes much higher and mainly depends on the access patterns of other nodes

and their memory intensity. This potential slowdown can certainly affect the adoption of such

systems in environments where users and applications are guaranteed some level of quality assur-

ance through Service-Level Agreements (SLAs), such as in cloud systems. To this end, ensuring

Quality-of-Service (QoS), is essential for designing and using FAMs.

We investigate the impact of QoS on application performance when running on FAM architec-

tures. Specifically, we propose a hierarchical dynamic priority-based approach to support QoS in

disaggregated NVM systems. Two levels of priorities are maintained - static and dynamic. Static

priority is fixed at run-time. Dynamic priority is adjusted over the lifetime of the application. We

divide the shared memory into memory pools to improve performance and study the effect of our

approach. To the best of our knowledge, our work is the first to investigate QoS on DMS and to

propose novel solutions to ensure QoS is enforced. Our simulation results show that by employ-

ing proposed hierarchical priority based QoS techniques, a speed up of 55% in accessing FAM is

achieved. Hierarchical priority approach and necessary optimizations are discussed in chapter 3

1.3 Page Migration Support

For disaggregated memory systems, it is expected that each computing node would have a small

local memory that is based on either HBM or DRAM, whereas a large shared NVM memory would
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be accessible by all nodes [29]. However, given the contention that results from memory sharing

among nodes, proper management of the shared memory resource is a key design requirement.

Managing such systems with global and local memory requires a novel hardware/software co-

design.

Because off-node memory accesses are expensive, page migration will become a frequent op-

eration on heterogeneous and disaggregated memory systems [43, 44]. During page swapping,

physical addresses assigned to the virtual addresses can change, hence page table entry (PTE) up-

date is required. The core initiating a PTE update needs to send Inter-Processor Interrupt (IPI) to

other cores to force them to invalidate any copies from the updated PTE on their Translation Look-

aside Buffers (TLBs). This process is called TLB shootdown [45]. To reduce the costs of such an

interruption, several TLB shootdown optimization algorithms have been proposed [46, 44] Before

these systems can be deployed, it will be important to analyze the impact the page migration will

have on disaggregated memories. To this extent we provide a detailed page migration support to

initiate page migration between global and local memory to maximize performance while enabling

access to huge shared memory. Further we investigate such memory management aspects and the

major system-level aspects that can affect design decisions in disaggregated NVM systems. Hence,

monitoring memory accesses at the shared memory level would require careful design and imple-

mentation due to its direct impact on overall system performance. Triggering page migrations

between shared memory and local memory would require special handling to ensure invalidating

the affected and possibly cached memory mappings on each node. Moreover, identifying when

and how often to migrate pages from global memory to local memory is challenging due to many

aspects: temporal reuse of page, cost of page migration, network latency and shared memory la-

tency. All of these aspects together should be considered to determine if page migration is useful

or not for FAM architectures.

Hence we systematically analyze the impact of various memory management aspects including

9



TLB shootdowns, page migration latencies, page migration frequency and initiation mechanisms,

and global memory latency, on the overall system performance for several applications. Counter-

intuitively, we observe that for some applications, accessing remote memory instead of migrating

pages to local memory would lead to a better performance. We identify what system configura-

tions and parameters would make page migration more useful. Finally, we propose a novel page

migration mechanism that relies on minimal hardware changes to track hot pages at the global

memory, where such information can be periodically accessed by system software to initiate page

migrations at defined epoch boundaries.

Our evaluation results reveal that for a system with unoptimized TLB shootdown costs, page mi-

gration latency, and memory-centric latency, applications do not benefits from page migration,

since migrating pages to the relatively fast local memories is amortized by the costs of page mi-

gration and TLB shootdown. To mitigate this, we first investigate the impact of optimized TLB

shootdown latency to understand to what level TLB shootdown cost is acceptable in disaggregated

memory systems, i.e., the point on which such migrations no longer burden memory management.

Later, we vary page migration latency and global memory latency to understand their impact on the

effectiveness of memory management. Based on these investigations, we propose a novel mecha-

nism that removes much of these overheads from the critical path. Chapter 4 provides a detailed

analysis about page migration support in FAM systems.

1.4 Architecture-Aware Virtual Memory Support For Fabric Attached Memory Systems

Since memory-centric architectures leverage FAMs as physically shared memory pools, multiple

compute nodes, potentially running applications from different users, can access pages in the same

FAM memory modules. This access model is different from conventional HPC architectures where

each compute node has its own memory modules and applications’ memory accesses are limited to

10



its own nodes, unless explicitly requested from other nodes through software interface. Therefore,

a new question arises: who is responsible for access control of FAMs? Without strict access control

mechanisms, malicious OSes, applications, and PEs can potentially compromise the entire system

by accessing the data of other users in the shared FAMs. Note that in this system architecture, there

could be compute nodes containing PEs from different vendors. Even if not malicious, these PEs

could contain bugs in their internal virtual memory implementation, which can compromise the

whole system. Obviously, with such a wide attack surface, accesses to shared FAM modules need

to be vetted externally, at the system-level, and not rely solely on internal access control within

PEs. Pages in shared FAM pools can be managed in two different ways. The first approach is

through transparently allocating FAM pages to nodes on-demand, i.e., each compute node has the

illusion that it has a contiguous large physical space [47]. Such an approach is similar in spirit to

how hypervisors give virtual machines (VMs) the illusion that each VM has a contiguous guest

physical memory, which eventually gets translated into the real system physical address through

the hypervisor. In this case, a memory broker node is dedicated to set up such translations for

each node at the system level. The second approach is to expose each node to the real physical

addresses (FAM addresses) and modify the OS kernel running on each node to communicate with

the external memory broker to allocate FAM pages [47, 48].

Transparent management of FAMs’ pages eliminates the need to modify the OS kernel and, most

importantly, allows system-level vetting of accesses to FAMs through a second level of memory

translation, from the node guest address to the FAM physical address. However, while this is

similar to two-level translation in virtualized environments, flexibility, transparency, and security

come at the cost of significant performance overheads due to the additional level of translation. In

conventional x86 systems, each memory access can require up to four memory accesses for trans-

lation, however, when a second level is added, the number of memory accesses can be up to 24

[49]. We observe that significant performance overheads can be incurred when naively implement-
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ing state-of-the-art implementations of two-level translation in the context of FAM architectures.

Hence, in this paper, we focus on optimizing the implementation of virtual memory support for

memory-centric systems.

To minimize the performance overheads of transparent access control and management support for

shared FAM pools, we propose an efficient and secure architecture aware virtual memory manage-

ment support for FAM systems. Chapter 5 studies the existing memory management schemes and

discusses out proposed novel memory management approach for FAM systems.
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CHAPTER 2: FABRIC-ATTACHED MEMORY SIMULATION

In this chapter, we discuss the implementation of FAM simulation setup in SST. A FAM manager

is developed which maintains the status of the global FAM. This FAM manager is used to connect

multiple nodes to the global memory.

2.1 Background

Disaggregated memory performance can be emulated on the real systems using device drivers and

dividing physical memory to evaluate the remote memory [50, 51, 52]. In this setup, remote mem-

ory latency is emulated through a device driver. Unfortunately, relying on real-system emulation

restricts the design space exploration to a narrow space that is constrained by the real-system con-

figurations. Trace-driven simulations [53, 54] oversimplify the impact of system-level operations

and the out-of-order nature of processing cores and memory systems. They are rarely scalable

beyond a few cores, even with very simple memory and processor models. Moreover, it is difficult

to model disaggregated memory as it requires multiple nodes to be simulated at the same time.

Real-system prototyping takes a significant amount of time and limits the conclusions to the avail-

able hardware and software stack, which reduces the flexibility of design exploration. FAM system

is explored using QEMU [41] by HP laboratories [42]. However, scaling the simulation setup to

study number of nodes accessing FAM with QEMU is not practical (simple) or takes non-realistic

time. To the best of our knowledge there is currently no simulation platform that can properly

simulate and model disaggregated memory systems. Thus, to facilitate research efforts in disag-

gregated memory systems, we develop a disaggregated memory emulation environment that takes

into consideration many important system-level aspects.
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We choose SST to implement FAM system since, SST [55] has been proven to be one of the most

reliable simulators for large-scale systems due to the scalability and modular design of its compo-

nents. Further, SST is a discrete-event simulation model that is modular and easy to customize.

This makes SST the perfect candidate for simulating disaggregated memory systems at scale. Im-

plementing a disaggregated memory system design in SST opens up opportunities to explore and

examine many challenges. One of the current limitations of SST is the lack of a centralized mem-

ory management entity that correctly models page faults and requests for physical frames from

the simulated machine. Such a limitation becomes more relevant when there are a large num-

ber of shared resources (pools). Thus as an initial step we implemented a centralized memory

management entity for disaggregated memory, Opal [56]. Opal is developed to investigate mem-

ory allocation policies, page placement, page migration, the impact of TLB shootdown, and other

important aspects that are related to managing disaggregated memory systems.

2.2 Opal: A Centralized Memory Manager

Disaggregated memory systems require global memory managers to handle the system shared

memory, initiate and broadcast TLB shootdown requests, implement page migration and allow

for sharing memory between nodes. To model these aspects of the system, we propose Opal, a

centralized memory manager that is implemented as a part of SST to help researchers in studying

the functionalities, bottlenecks and optimizations for managing disaggregated memory systems.

For the rest of this section, we describe the Opal framework and how it can be utilized to investigate

disaggregated memory systems.

Opal can be thought of as the OS memory manager and, in the case of a disaggregated memory

system, the system memory allocator/manager. In conventional systems with a single level mem-

ory, once a process tries to access a virtual address, a translation is triggered to map the virtual
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address to a physical address. If a translation is not found, and the hardware realizes that either

there is no mapping to that virtual address or the access permissions would be violated, it triggers

a page fault that is handled by the OS. The page fault handler maps the virtual page to a physical

page that is chosen from a list of free frames (physical pages). Once a physical page is selected,

its address is inserted in the page table along with the corresponding access permissions. Any

successive accesses to that virtual address will result in a translation process that concludes with

obtaining the physical address of the selected page. Since SST aims for fast simulation of HPC

systems, it does not model the OS aspects of this sequence of events. However, the memory allo-

cation process will have a major impact on performance for heterogeneous memory systems and

disaggregated memory, simply because of the many allocation policies that an OS can select from.

Moreover, allocation policies are not well understood on disaggregated memory systems, making

it important to investigate them to discover the best algorithm or heuristics to be employed for both

performance and energy efficiency. Opal is proposed to fill this role; facilitating fast investigation

and exploration of allocation policies in heterogeneous and disaggregated memory systems.

Each component in SST typically represents a subsystem in a real system. SST models a wide

range of components such as cores, MMU units, memory hierarchy, routers, and different memory

models like DRAM and NVM. Components are ticked according to the component clock frequency

set up during configuration. Links are used to communicate between components. Each link can

be configured with a latency. We used the Ariel, Samba [57], Messier [58] and Merlin components

in SST to simulate CPU cores, MMU unit, NVM memory and network respectively to implement

disaggregated memory system design with the help of Opal component.

As shown in Figure 2.1, Opal and the external memory are maintained remotely and each node

is connected to Opal and external memory through external links. Processing cores and memory

management units are connected to global memory manager, Opal. In our design, we maintained

an internal router that helps in communicating between cache and memory components. Likewise,
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an external router is maintained to connect the internal router with external memory through a

network bridge that has its latency modelled after GenZ [30]. This way, communication between

nodes and external memory takes place though internal and external routers. To make it realistic,

links to external memory is configured with high latency and links to internal memory is configured

with low latency.

Processing cores are connected to Opal to pass hints about memory allocations. For instance, calls

to malloc or mmap do not immediately allocate physical pages, but are allocated at the time of

mapping, during a page fault. Opal can use hints sent from cores to decide where to allocate the

physical page. This is similar to libNUMA malloc hints, which will be recorded and used later

by the kernel at the time of on-demand paging. CPU cores can trigger TLB shootdown events to

all the other cores, including cores on other nodes. It is cumbersome to create links between each

core to send events like TLB shootdown. Hence, we facilitate a communication medium between

nodes through Opal. CPU cores communicate with Opal, sending TLB shootdowns events, using

a core to Opal link.

The hardware MMU units have links to Opal, so that once a TLB miss and page table walk con-

clude with a page fault request (unmapped virtual address), a request for physical frame allocation

is sent to Opal. Allocation requests come from the page table walker when the accessed virtual

page has never been mapped, which resembles the minor page fault and on-demand paging on the

first access to virtual pages in real systems. Opal searches for any hints associated with the page

fault. If the hints are available, memory is allocated according to the hints from a specific memory

region, if not, Opal checks for free frames according to the allocation policies, described in Section

2.2.2, and allocates a frame to the corresponding memory request. Apart from this, during TLB

shootdown, Opal sends invalid addresses to all the MMU’s through the MMU unit to Opal link and

the MMU unit responds with an acknowledge event to Opal after invalidating the addresses.
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Figure 2.1: A simulated system that uses Opal for centralized memory management.

Hence, Opal must be connected to both a MMU unit, such as Samba, for receiving page fault

requests and a processing element, such as Ariel. To allow this, Ariel cores and Samba units should

connect to their respective ports in Opal, coreLink_n and mmuLink_n. For example, coreLink_0

port of Opal can be connected to the opal_link_0 port of an Ariel core and mmuLink_0 port of

Opal can be connected to the ptw_to_opal0 port of Samba.

Before diving into the details of Opal, we will start with discussing different ways of managing

disaggregated memory systems:
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2.2.0.1 Exposing External Memory Directly to Local Nodes

In this approach a local node OS (or Virtual Machine) sees both the local memory and external

memory, however, it needs to request physical frames from a central memory manager to be able

to access external memory legitimately. To enforce access permission, and to achieve isolation

between data belonging to different nodes/users, the system must provide a mechanism to validate

the mappings and the validity of physical addresses being accessed by each node. To better un-

derstand the challenges of this scheme, Figure 2.1 depicts different options to implement access

control on shared resources in such management scheme.

As shown in the Figure 2.1, Option 1 would be to check if the requesting node is eligible to access

the requested address at the memory module level. This implementation requires a bookkeeping

mechanism at the memory module level (or in the memory blade) to check the permission of every

access. If the access is valid, then the request will be forwarded to the memory, otherwise either

random data is returned or an error packet (access violation) is sent back to the requesting core.

Since the external memory is shared between nodes, the system memory manager must have a

consistent view of allocated pages and their owning nodes. One way to implement this is through

a device driver (part of the local nodes’ OS) that can be used to communicate, either through the

network or predefined memory regions, with the external memory manager. Option 2 is similar but

instead of relegating the permission check to the memory module, the router will have mechanisms

to check if the accessed physical addresses are granted to the requesting node. In both options,

nodes will not have direct access or modification privileges for permission tables, only the system

memory manager will have such access. Such a guarantee can be implemented by encrypting

requests with some integrity and freshness verification mechanisms. There are many benefits of

these schemes, such as: page table walking process is not modified and it is much faster than

virtualized environments (4 steps vs. 26 steps). Also, node-level memory manager optimizations
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and page migrations are feasible (unlike virtualized environments). But the operating system must

be patched with a device driver to communicate with external memory manager and the centralized

memory manager becomes a bottleneck if not scalable.

2.2.0.2 Virtualizing External Memory

In this approach, each node has an illusion that it owns all of the system memory. In fact, in

this scheme, the OS does not need to be aware of the current state of the actual system physical

memory. Figure 2.1 depicts the virtualized system memory scheme.

As shown in Figure 2.1, the system translation unit (STU) must be added to support translation

from the node physical address to the system physical address. The STU can be implemented as

an ASIC-based or FPGA-based unit that takes a physical address from the node and translate it

into the corresponding system physical address. In case the address has never been accessed, an

on-demand request mechanism is initiated by the STU to request system physical page. The STU

might need to do a full system page table walk to obtain the node to system translation. Most

importantly, the STU can be updated only through the system memory manager. This scheme is

better if OS does not need to be changed. But the STU will need to walk the system level page

table in addition to walking the node’s page table at the node level. Also, there is no guarantee of

where the system physical pages that back up the node physical pages exist.

2.2.1 Opal Configuration

Opal should be configured with the component-specific, node-specific and shared memory-specific

information as shown in Table 2.1. Component-specific information includes clock frequency,

maximum instructions per cycle, etc. Node-specific information includes number of nodes, num-
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ber of cores per node, clock frequency per node, per node network latency to access the Opal

component, node memory allocation policy as explained in section 2.2.2 and local memory infor-

mation. Shared memory-specific information includes the number of memory pools that shared

memory is divided into and the respective memory pool parameters. Both per-node local memory

and per-shared memory pool parameters are related to memory and they are explained separately

in Table 2.2. Each of these parameters should be appended with memory related parameters as

shown in Table 2.1. Table 2.2 describes the memory pool-specific parameters. Each memory

pool, whether shared or local, needs a starting address, pool size, frame or page size, and memory

technology.

Table 2.1: Opal Parameters

Parameter Description

clock frequency of Opal component
max_inst maximum instructions processed in a cycle.
num_nodes number of nodes.
node_i_cores number of cores per node.
node_i_clock frequency of each node.
node_i_latency latency to access Opal component per node.
node_i_allocation_policy memory allocation policy per node.

node_i_memory. local memory-specific information per node. These come
under memory parameters and are shown in Table 2.2

shared_mempools number of shared memory pools to maintain shared mem-
ory.

shared_mem.mempool_i. global memory-specific information per shared memory
pool. These come under memory parameters and are shown
in Table 2.2

We show a basic configuration used to test a disaggregated memory system with Opal in Figure 2.2.

According to the example configuration, the system has 4 nodes (”num_nodes” : 4) with a private

memory each and shared global memory is divided into 4 memory pools (”shared_mempools” :

4). The private memory uses DRAM (”node0.memory.mem_tech” : 0) technology with a size of
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Table 2.2: Memory Pool Parameters

Parameter Description

start starting address of the memory pool.
size size of the memory pool in KB’s.
frame_size frame size of each frame in memory pool in KB’s. This is

equivalent to page size.
mem_tech memory pool technology (0 : DRAM,1 : NV M).
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Figure 2.2: Example configuration

16MB (”node0.memory.size” : 16384), a starting address of 0 (”node0.memory.start” : 0). The

total global or shared memory is 16GB, which is divided into 4 memory pools each of 4GB

(”shared_mem.memp ool0.size” : 4194304). The starting address of shared memory pool 0 is

001000000 (”shared_mem.mempool0.start” : 001000000) which is equivalent to local memory

(16MB) + 1; the starting address of memory pool 1 is 101000000 (”shared_ mem.mempool1.start” :

101000000), which is equal to the starting address of shared memory pool 0 + shared memory pool

0 size. Figure 2.2 shows the starting address of each memory pool, from which the size of each
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memory pool can be deduced. Each shared memory pool is of NV M type (”shared_mem.mempool0

.mem_type” : 1). Frame size or page size in both DRAM and NVM is 4KB (”node0.memory. f rame

_size” : 4 ”shared_mem.mempool0. f rame_size” : 4). Memory allocation policy can be configured

using ”node0.allocation_policy” parameter, which is explained in the Section 2.2.2. The network

latency to communicate with Opal can be configured with ”node3.latency” parameter. In our case

we used 2 micro seconds latency to communicate with Opal.

2.2.2 Memory Allocation Policies

Multiple memory allocation policies are implemented in our design, which are described below.

2.2.2.1 Local Memory First Policy:

Local memory is given more priority than shared memory, that is, memory is searched in local

memory and if local memory is full then shared memory is searched for memory. If shared memory

is spread into different memory pools, then a shared memory pool is chosen randomly among

different memory pools until some space is found. If none of the memory pools are available, that

is total memory is full, then an error message is thrown. This memory allocation policy can be

chosen by setting ”allocation_policy” parameter of a node to 0.

2.2.2.2 Alternate Memory Allocation Policy:

For every two memory requests, one frame is allocated from local memory and the other from

shared memory. For example, if two shared memory pools are maintained, first page is allocated

from the local memory, second page is allocated from shared memory pool one, third page is

allocated from the local memory, fourth page is allocated from the shared memory pool two and
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so on. This memory allocation policy can be chosen by setting ”allocation_policy” parameter of

a node to one.

2.2.2.3 Round Robin Memory Allocation Policy:

Memory frames are scheduled to be allocated from shared and local memory based on the total

number of memory pools, which includes local memory pool of a node and total shared memory

pools in a round robin fashion. If two shared memory pools are maintained, then for the 1st

memory request, memory is allocated from local memory, for the 2nd memory request, memory

is allocated from shared memory pool 1, for the 3rd memory request, memory is allocated from

shared memory pool 2, for the 4th memory request, memory is allocated from local memory and

so on. This memory allocation policy can be chosen by setting ”allocation_policy” parameter of

a node to 2.

2.2.2.4 Proportional Memory Allocation Policy:

The proportion at which memory frames are allocated from shared and local memory is based on

the fraction of local memory size to total shared memory size. For example, if the local memory

size is 2GB and shared memory size is of 16GB, then, for the 1st memory allocation request,

memory is allocated from local memory while the next 8 memory requests are allocated from

shared memory in sequential order. For the next memory request, which is the 10th memory

request, memory is allocated from local memory and so forth. This memory allocation policy can

be chosen by setting ”allocation_policy” parameter of a node to 3.
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2.2.3 Communication Between Nodes

Opal also allows nodes to communicate directly with one another by sending hints with the same

f ileID to Opal using Ariel ariel_mmap_mlm and ariel_mlm_malloc calls. Opal checks if the

received f ileID is registered with any memory. If it is, then the specific page index is sent to the

requesting node. If the f ileID is not registered with any memory page, then memory is allocated

based on the requested size. The allocated memory region is now registered with the requester

f ileID. Nodes can share information just by writing information to the specific pages. This reduces

costly OpenMPI calls to share information between nodes.

2.3 Evaluation

We validated our design by calculating the performance of the system in-terms of instructions per

cycle (IPC). We vary the number of nodes, number of shared memory pools and memory allocation

policies. The average number of instructions per cycle is taken into consideration. Simulation

parameters and applications that we used along with application parameters are shown in Tables

5.2 and 2.4 respectively.

Table 5.2 depicts simulation parameters for our experiments. According to this, each node has 8

cores and each core can serve up to 2 instructions per cycle. The clock frequency of the cores is

2GHz. Each core is configured to service up to 100 million instructions. Three levels of cache are

used, L1, L2, and L3, with sizes of 32KB, 256KB and 16MB respectively and each are of non-

inclusive type. Local memory size is 2GB and is of DRAM type. External memory is of NVM

type with 16GB size. Network latency is critical in disaggregated memory system. For the external

network latency, we use 20ns for input and 20ns for output buffer latency (in total 40ns latency)

which has been modelled after the GenZ network latency.
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Table 2.3: Exploring Allocation Policies Simulation Parameters

Element Parameters
CPU 8 Out-of-Order cores, 2GHz, 2 issues/cycles, 32 max. out-

standing requests
L1 private, 64B blocks, 32KB, LRU
L2 private, 64B blocks, 256KB, LRU
L3 shared, 64B blocks ,16MB, LRU
Local memory 2GB, DDR4-based DRAM
Global memory 16GB, NVM-based DIMM (PCM), 128 max. outstanding

requests, 16 banks
300ns Read Latency, 1000ns Write Latency

External network latency 20ns input and 20ns output latency[59]

Table 2.4: Applications used to Exploring Allocation Policies

Application Value
XSBench [60] -s large -t 8
Lulesh [61] -s 120
SimpleMoC [62] -t 8 -s
Pennant [63] leblancbig.pnt
miniFE [64] -nx 140 -ny 140 -nz 140
NAS:IS [65, 66] class C

Since our focus is on HPC applications we evaluated our design using 6 HPC mini applications.

XSBench [60], a mini-app representing a key computational kernel of the Monte Carlo neutronics

application, OpenMC. Lulesh [61], a mini-app for hydrodynamics. Pennant [63] is an unstructured

mesh physics mini-app designed for advanced architecture research. SimpleMOC [62], mini-app

is to demonstrate the performance characteristics and viability of the Method of Characteristics

(MOC) for 3D neutron transport calculations in the context of full scale light water reactor simula-

tion. NASA IS [65, 66] mimics the computation and data movement characteristics of large scale

computational fluid dynamics (CFD) applications; IS is an integer sort kernel which performs

a sorting operation. MiniFE [64] is a proxy application for unstructured implicit finite element
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codes. Applications and their parameters are shown in Table 2.4. We decided upon these specific

applications as these are memory intensive.
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Figure 2.3: Performance in instructions per cycle of disaggregated memory system with different
memory allocation policies. N indicates number of nodes. SM indicates number of shared memory
pools. LMF , ALT , RR and PROP indicate local memory first, alternate memory, round robin and
proportional memory allocation policies.

2.3.1 Opal Memory Allocation Policies

If more memory is allocated from shared memory, the performance of the system worsens as

the delay in accessing shared memory is high. Memory allocation policies, explained in section
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2.2.2, control allocation of local and shared memory. Contention at shared memory is one of the

key factors that contributes to the performance in disaggregated memory systems. The more the

contention at the memory, the more will be the delay in accessing memory. Contention at memory

is higher if more nodes are accessing memory at a given time. Accordingly, we observed the

following traits for each memory allocation policy.

2.3.1.1 Local Memory First (LMF) Policy:

According to the local memory first allocation policy, memory is allocated in private memory first

and if there is no space in private memory then memory is allocated from global memory. The

benchmark applications that we used occupy a maximum of approximately 500MB of memory to

generate 100 million instructions. Because each node has its private memory of 2GB, all of the

memory pages should be allocated form local memory and the performance of the nodes should

be same as there is no contention at local memory due to other nodes. Our results in Figure 2.3(a)

reflect this. Irrespective of the number of nodes and number of shared memory pools the perfor-

mance of each node, i.e., number of instructions per cycle is equal. We show this to understand

the memory intensity of the benchmarks. According to Figure 2.3(a), the IPC of XSBench and

MiniFE is around 0.6. Lulesh, Pennant and NAS:IS have an IPC of around 1.1. Wherein the IPC

of SimpleMoC is 1.6. From this it can be understood that XSBench and MiniFE are more memory

intensive, SimpleMoC is less memory intensive, and Lulesh and Pennant are moderately memory

intensive among the set of benchmarks that we experimented with.

2.3.1.2 Alternate (ALT) Policy:

In this memory allocation policy, for every other page fault, a page is allocated from the shared

memory. Accordingly, almost half of the pages are from the shared memory, i.e., among 500MB of
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memory that the applications use, 230MB of memory is from shared memory. From Figure 2.3(a)

the IPC of Lulesh is 1.1 while Figure 2.3(b) shows an IPC of 0.2. The performance decreases

by 81% when shared memory is used. It further decreases if there are a greater number of nodes

accessing the shared memory. For the same benchmark, the IPC is 0.05 when 4 nodes share the

external memory. As the number of nodes making use of the shared memory increases, contention

at the shared memory increases and the individual node performance decreases. Contention can be

reduced by dividing the shared memory into number of memory pools and hence the performance

of the system increases. From Figure 2.3(b) it can be seen that for Pennant, the IPC is 0.12 and 0.34

with 1 node when shared memory is maintained in 1 shared memory pool and 4 shared memory

pools respectively. With 4 nodes, the IPC is 0.1 when shared memory is maintained in 4 shared

memory pools, which is almost equivalent to the performance of the system with 1 node when

shared memory is maintained in only 1 shared memory pool.

2.3.1.3 Round Robin (RR) Policy:

Memory is allocated based on the number of shared and local memory pools. The more the number

of shared memory pools, the more memory addresses are allocated from the shared memory and

the performance decreases. Figure 2.3 shows that, for the 4 node SimpleMoC benchmark with

4 shared memory pools, the IPC is 0.15 for the RR policy and 0.25 for the ALT policy. This is

due to more memory is allocated from shared memory in the RR memory allocation policy with 4

shared memory pools. When shared memory is maintained only in 1 memory pool, RR memory

allocation policy is same as ALT memory allocation policy. From Figure 2.3(c) it can also be

observed that, for some applications, when shared memory is maintained in more shared memory

pools, the performance decreases due to more memory being allocated from shared memory. For

instance, the IPC of XSBench drops from 0.28 to 0.23 when shared memory is divided into 4

shared memory pools compared to when shared memory is maintained in 1 shared memory pool.
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2.3.1.4 Proportional (PROP) Policy:

Memory allocation in based on the proportion of local and shared memory. From the configuration

that we used, 16GB of shared memory and 2GB local memory, the proportion at which shared

and local memory are allocated is 8:1, i.e., for every 9 memory allocations 8 memory allocations

are from shared memory and 1 memory allocation is from local memory. According to this, more

memory is allocated from shared memory in comparison with RR and ALT allocation policies.

From Figure 2.3(d) it can be clearly observed that, for miniFE, the IPC is 0.06 with 1 node and

when shared memory is maintained in only 1 shared memory pool. This is less than the IPC of

ALT memory allocation policy and RR memory allocation policy which is around 0.11 each, from

Figures 2.3(b) and 2.3(c). As the nodes increased from 1 to 4, the IPC of the system further de-

creased from 0.06 to 0.02. When shared memory is divided into 4 shared memory pools the IPC

of the system increased to 0.06.

We observe that dividing shared memory into more shared memory pools does not always im-

prove the performance of the system. The performance depends on the application characteristics

as wellFrom Figure 2.3 it can be seen that for NAS:IS benchmark, for several memory allocation

policies, the IPC, when shared memory is maintained in 2 shared memory pools, is more when

compared with IPC of the system when shared memory is maintained in 4 shared memory pools

with 1 node in the system. We suspect that NAS:IS is latency sensitive and performs better when

local memory is used even though it has limited memory-level parallelism. When shared mem-

ory is divided into 2 shared memory pools, this can lead to a increase in the number of memory

accesses serviced by global memory as in round-robin allocation policy, however, this can also im-

prove the bandwidth and memory-level parallelism. Meanwhile, increasing the number of pools to

4 can lead to performance degradation as the increase in memory access latency due to accessing

global memory is no longer amortized by the increase in bandwidth.
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2.4 Conclusion

While FAM systems are a useful system design, before fully adopting such architectures, there

are a lot of challenging design parameters that must be fully understood such as latency, memory

management policies,virtual to physical address translation, page migration, and quality of service.

To this end, we proposed a new FAM system simulating model to examine and explore various as-

pects related to such an architecture. Specifically, we implemented a centralized memory manager

in SST which has capability to manage memory in disaggregated memory systems.
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CHAPTER 3: INVESTIGATING PERFORMANCE IMPROVEMENTS BY

ENFORCING FAIRNESS IN FABRIC-ATTACHED MEMORY SYSTEMS

FAM systems opens a path for designing future computing systems. However, as asserted, memory

access latency is a concern in such systems. One of the reasons for the latency is, the global

memory is accessed by various applications from a number of nodes. This leads to contention

at the global memory not just from the applications from within the node, but from applications

from a number of nodes accessing FAM. Using the FAM simulation setup that is explained in

chapter 2, Figure 3.1 shows the delay (observed by the core) in accessing memory per request in

disaggregated memory systems when the FAM is dedicated to a single node and is shared between

four nodes. These results are with respect to system configuration shown in Table 3.1. More details

about the methodology and benchmarks are discussed in section 3.3 in detail.
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Figure 3.1: Average memory access delay per request observed by the core in dedicated single
node FAM system (FAM is accessed by only one node) and shared four node FAM system (FAM
is shared by four nodes).

As expected, there is a significant increase in the average memory response time when increasing

the number of nodes running on disaggregated memory system. Such slowdowns mainly depend
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on the memory-intensity of the applications running on the compute nodes and the sensitivity

of the applications to memory latency. Surprisingly, we observe that this contention can lead to a

multi-x increase in global memory access latency. Pennant benchmark, due to its memory intensity

and streaming access pattern, incurs more than 3x increase in access latency when there are four

nodes sharing the same memory; from ≈380ns up to ≈1400ns. Note that row buffer locality

can be severely impacted and the chances of a row buffer hit decreases with increasing numbers

of memory requests from other nodes. Hence, to improve the response time (overall memory

access delay), in this chapter, we enforce fairness (QoS) to the applications from different nodes

by modifying the global memory manager. Precisely, we explore novel hierarchical, static and

dynamic priority schemes as QoS assurance mechanisms on FAM systems.

3.1 Quality of Service

The more compute units deployed in a system, the more contention there will be in the memory

subsystem (shared resource). Contention on memory banks and shared request queues become

more aggressive as the number of compute nodes accessing the shared (global) memory increases.

However, many modern applications are memory-driven; computing components accessing the

same memory units are more common. Different memory scheduling schemes are implemented in

memory controllers to enforce QoS. Zhou et al. [67] implemented a fine-grained QoS scheduling

for PCM memory using pre-emption methodologies at the cost of performance. Subramanian et

al. [68] worked on designing a model to accurately estimate memory-interference-induced slow-

downs. They also proposed a memory scheduler that meets hardware accelerator deadlines while

maximizing CPU performance [69]. Jeong et al. [70] proposed a QoS-aware memory controller

which can dynamically balance bandwidth between CPUs and GPUs. Zhao et al. [71] proposed

a memory control scheme called FIRM, which can fairly run persistent and non-persistent appli-
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cations. While all of the above-mentioned schemes work for their respective systems, they need

to be carefully studied for FAM systems as the contention at the shared memory controller can be

quite high. We explore possible solutions that can enhance QoS and study the possible outcomes

to improve the performance of disaggregated non-volatile memory system.

3.2 Fairness in Fabric-Attached Memory Systems

In this section, we discuss our proposed QoS support for disaggregated memory systems. Our

scheme, hierarchical priority, implements two levels of priorities - static (defined before run-time)

and dynamic (changes based on memory intensity).

3.2.1 Hierarchical Priority

In this section, we focus on explaining how a hierarchical priority scheme works in disaggregated

memory systems. Hereinafter, the systems discussed consist of multiple nodes that run simulta-

neously and share a global memory that is accessible through a fast interconnect. Moreover, each

node runs a single application.

3.2.1.1 Static Priority

This is a fixed priority for each node, which is configured during the initialization phase of the

application1. The memory controller maintains a queue for each static priority level. However, to

keep the number of queues practical, we limit this to a maximum of 8 static priority levels. Re-

quests from applications with similar static priorities are placed in the same queue. Note that this is,

1Assigning static priorities to nodes is in accordance with service level agreement (SLA).
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Figure 3.2: Hierarchical priority based QoS implementation in Local and External memory con-
trollers

to some extent, similar to the state-of-the-art storage protocol, NVM Express [72], where multiple

I/O submission queues are configured with different priorities but in the context of disaggregated

memory systems.

Figure 3.2 depicts the implementation of static priorities. The disaggregated memory system has

two types of memories: shared memory and local memory. Based on our design, the shared

memory controller is required to maintain a priority queue for each static priority supported in our

system. Each local memory controller maintains only one priority queue that can perform dynamic

priority, as explained in section 3.2.1.2, if the node executes multiple applications. Request batches

are pulled from priority queues based on their static priority levels. For instance, if we consider

4 static priority levels, for every batch of requests the memory controller serves up to 16 requests
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from the node with static priority of 0, up to 8 requests from the node with static priority of 1 and

so on. So if we assume p as the number of static priority levels and i as the static priority of the

node then number of requests addressed by memory controller in a batch can be represented as:

Rbatch/node = 2p−i (3.1)

3.2.1.2 Dynamic Priority

In general, applications can be categorized into memory-bound and compute-bound applications.

Memory-bound applications are prone to read and write data to memory frequently and require

more memory bandwidth. Compute-bound applications are dependent on the computation power

of the system and are less prone to memory accesses.

Irrespective of the type, applications need to compete for the limited bandwidth and because of the

wide gap between computing power and memory capacity, memory bandwidth is limited for the

applications. Due to this scenario, compute-bound applications need to wait for the memory band-

width to fetch a small amount of information. This wait can be costly and may severely affect the

performance of the applications. Memory-bound applications are less memory sensitive and can

be delayed for memory accesses. By taking the variance in memory sensitivity into consideration,

we define the dynamic priority based on the characteristics of the applications running in the nodes

with a specific static priority. Applications with few memory requests should have higher priority

and applications with more memory requests can have less priority. Therefore, dynamic priority

can be expressed as:

P =
Rnode

ARstaticpriority
(3.2)
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P is the dynamic priority of the node, Rnode is number of requests per node and ARstaticpriority is

average number of requests per static priority which is represented as:

ARstaticpriority =
T Rstaticpriority

Nstaticpriority
(3.3)

where T Rstaticpriority is total number of requests from a specific static priority and Nstaticpriority is

number of nodes with the same static priority.

According to Equation 3.2, low priority applications can starve if dominated by high priority ap-

plications. Thus, we use the request rate per period (epoch) for each node to calculate its dynamic

priority. If the application has a smaller number of requests in the prior period, the dynamic pri-

ority of application will be higher and its requests will not get pre-empted by memory-intensive

applications with the same static priority. The dynamic priority can be expressed as:

P =
Rnode ∗RRnode

ARstaticpriority
(3.4)

where RRnode is the rate of requests per node which is calculated per epoch (time interval).

Once the dynamic priority is calculated, the requests are prioritized within same static priority and

then they are added to the request queue in accordance with the static priority. On each clock

cycle, the memory controller serves requests relative to the priority. The combination of dynamic

and static priorities meets the requirements of disaggregated memory system architectures and

promises to enforce QoS by allocating more bandwidth to high priority applications while meeting

the requirements of low priority applications, however, also ensuring fairness across applications

with similar priority levels.
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3.2.2 Splitting Shared Memory

Contention at the shared memory increases exponentially with the number of compute units sharing

it. Also, it is very unlikely and inefficient to maintain the entire shared memory in a single huge

memory pool. Considering this, we explore the option of dividing the shared memory into multiple

memory pools. By doing so, we can dedicate shared memory pools to high priority nodes. In other

words, high priority nodes can have a dedicated memory pool that cannot be accessed by low

priority nodes or any other high priority nodes. In this scenario, the memory bandwidth of each

dedicated pool is devoted to the corresponding node running a high-priority application, which

might lead to better performance. In contrast, memory pages of low static priority nodes can be

allocated from a range of memory pools that are classified as low priority shared memory pools,

i.e., not dedicated but rather shared between all nodes, including high static priority nodes. An

example is illustrated in Figure 3.3. It can be seen that the shared memory is divided into a number

of memory pools and nodes with high static priority have dedicated shared memory pools. Also,

a chunk of the low priority pools is marked for high priority static nodes, which indicates that the

low priority pools are accessed between all the nodes irrespective of their priorities. This way, we

assume to achieve better QoS along with improving performance.

If there are more nodes with high static priority, then it would be difficult to divide shared memory

into an appropriate number of memory pools. We address this by dividing shared memory propor-

tionally. That is, some of the low priority memory pools are converted to high priority memory

pools and high static priority nodes can share dedicated memory pools. The downside of this ap-

proach is that each node will have a portion of shared memory rather than entire shared memory.

For high priority nodes, this can be managed by allocating memory from low priority shared mem-

ory pools or free shared memory pools when the dedicated remote memory pool is full. But for

low priority nodes, this option is narrow and can lead to starvation.
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A centralized manager can allocate shared pages from a single shared memory pool to the appli-

cations sharing data. Pages of the applications that are not shared with other applications can be

assigned from different memory pools to avoid contention. With this approach, we enable appli-

cations to share data with less contention from applications that do not share data.
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Node 3:
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Figure 3.3: Dedicating shared memory pools for high priority nodes.

3.3 Evaluation

To evaluate our QoS support for disaggregated memory systems, we extend SST [55]. We have

created an external memory with its respective memory controllers and connected it to compute

nodes through a fast network modeled after GenZ [30], as described in [56]. As the local memory
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Table 3.1: System Simulation Parameters used to Examine Hierarchical Priority Approach

Element Parameters
CPU 8 Out-of-Order cores, 2GHz, 2 issues/cycles, 32 max. out-

standing requests
L1 private, 64B blocks, 32KB, LRU, inclusive
L2 private, 64B blocks, 256KB, LRU, inclusive
L3 shared, 64B blocks ,16MB, LRU, inclusive
Local memory 2GB, DDR4-based DRAM
Global memory 16GB, NVM-based DIMM (PCM), 128 max. outstanding

requests, 16 banks, 300ns Read Latency, 1000ns Write La-
tency

External network latency 40ns[59]

is expected to be very small in such systems [13], we deploy an alternating memory allocation

policy [56], where memory is allocated alternatively from shared and local memory. The modules

that we used to simulate disaggregated memory system are described in [56].

Table 3.1 lists the simulation parameters used to evaluate the design. L1, L2 and L3 caches are non-

inclusive and are of sizes 32KB, 256KB and 16MB respectively. We used NVM as shared memory

and, considering the density of NVM, held the NVM size to be twice the size of the local memory,

per node. We understand that NVM density is much higher when compared to DRAM. Future

disaggregated systems with higher densities can also benefit from our QoS approach. As explained

in section 3.3.2, 4 nodes are simulated to study our approach. Hence, we used 16GB (4nodes∗2∗

localmemorysize) of shared NVM. A maximum of 100 million instructions are executed in each

core.

For the simulation model, we use the alternate memory allocation policy in which memory is

allocated alternatively from shared and local memories. If shared memory is divided into pools,

then every time a page is to be allocated from shared memory, it is allocated from a different shared

memory pool, ensuring that the shared memory is evenly allocated. Note that this a state-of-the-art
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model to demonstrate the advantages of dividing shared memory into multiple pools. We assume

that each shared memory pool should have memory more than local memory (2GB). Since we

are using a global memory of 16GB and if it is divided into 4 shared memory pools, each pool

will have 4GB of memory, which is greater than local memory size. Hence, we are confined to

maximum of 4 memory pools.

Considering that our focus is on HPC applications in disaggregated memory environment, we

chose 5 memory intensive HPC proxy applications to evaluate our design. Lulesh [61], a mini-app

for hydrodynamics. Pennant [63] is an unstructured mesh physics mini-app designed for advanced

architecture research. SimpleMOC [62], mini-app is to demonstrate the performance characteris-

tics and viability of the Method of Characteristics (MOC) for 3D neutron transport calculations in

the context of full scale light water reactor simulation. NASA IS [65, 66] mimic the computation

and data movement characteristics of large scale computational fluid dynamics (CFD) applications.

IS is an integer sort kernel that performs a sorting operation, which is important in particle method

codes. MiniFE [64] is a proxy application for unstructured implicit finite element codes.

For the rest of the evaluation, N indicates the number of nodes. SM indicates a node has local and

shared memory and includes an identifier representing the number of memory pools. For example,

N2 with SM2 indicates 2 nodes with a local memory each and 2 shared memory pools are available

for the nodes to utilize. Mixes are a combination of applications running in each node which are

explained in Table 3.2. noqos indicates experiments without any QoS. hp indicates experiments

with hierarchical priority. Applications running in each node is expressed as a− n wherein n

indicates node number.
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Table 3.2: Applications-Mixes used to Examine Hierarchical Priority Approach

Name Description
mix-1 miniFE-SimpleMoC-lulesh-pennant
mix-2 SimpleMoC-lulesh-pennant-NAS:IS
mix-3 lulesh-pennant-NAS:IS-miniFE
mix-4 pennant-NAS:IS-miniFE-SimpleMoC

3.3.1 The Impact of Number of Shared Memory Pools

In a disaggregated memory architecture, as the number of nodes in a system increases, the con-

tention at memory increases exponentially, and thus the response time from the shared memory

is expected to be slower with increase in the number of sharing nodes. Such delays affect the

performance of individual nodes in addition to the overall system throughput. We calculate the

performance of each node in terms of relative response time per memory request (RRT). An aver-

age of all the nodes is taken into consideration. RRT is relative to running the application in a node

on the same system but without any applications running on the other nodes.

Figure 3.4 shows the impact of using multiple shared memory pools along with the resulting per-

formance degradation under the multiple nodes scenario without any priority. For instance, for

Pennant, RRT is 3x times with 4 nodes due to heavy contention at the single shared memory pool

from other nodes, Figure 3.4.

Note that memory concurrency is limited by the number of banks at the memory. Hence, when the

entire shared memory is maintained in one shared memory pool, the parallelism is limited to 16

banks, according to our configuration. When multiple shared memory pools are used, the level of

parallelism is higher due to the increase in the number of banks, 4∗16 banks for 4 shared memory

pools. It can be also observed that, for the same application, Pennant, when shared memory is

maintained in 4 memory pools, RRT is almost equal to the RRT when only one node is running
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Figure 3.4: Relative response time per memory request of disaggregated memory system model.

in the system with one shared memory pool. Therefore, contention due to multiple nodes can be

reduced with multiple shared memory pools.

It should also be noted for the same application, Pennant, if multiple shared memory pools are

used with only one node in the system, the performance increases immensely (0.4x times RRT).

This is due to huge memory concurrency and no contention at shared memory from other nodes as

the system has only one node. Also, RRT of the system decreases as the number of shared memory

pools increases due to less contention at each shared memory pool.

3.3.2 QoS using Hierarchical Priority

As the focus is to provide a proof-of-concept and due to the constraints of simulation time, we

limit our evaluation to only 4 nodes with nodes 1 and 2 as high priority nodes and nodes 3 and

4 as low priority nodes. For every mixed workload, as shown in Table 3.2, the first 2 mentioned
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benchmark applications would be running in high priority nodes, nodes 1 and 2, and the remaining

2 benchmark applications run in the last 2 nodes, nodes 3 and 4, with low priority. The request

frequency is calculated for each epoch period - every 1 million cycles (we varied the epoch size

and empirically found that 1 million gives the most suitable epoch length).
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Figure 3.5: Relative response time per request wherein global memory is divided into shared
memory pools in disaggregated memory system.

Figure 3.5 depicts the performance of disaggregated memory systems under the hierarchical pri-

ority based QoS method and without QoS. It can be seen that in every mix the 2 nodes with high

static priority modeled in hierarchical priority out performs the no QoS model. For example, in

mix-2 the RRT for nodes 1 and 2, when shared memory is not divided into multiple pools SM1,

is reduced to around 0.6x each, as observed from Figure 3.5. We observed a maximum of 55%

improvement in RRT (node 2 mix-1) with a single shared memory pool.

For low priority nodes, the RRT is reduced for some mixes and it increases for some other mixes.

This is due to less contention at shared memory from high priority nodes as they are addressed

as soon as possible and different memory footprints of the applications. For instance, in mix-2,
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RRT of nodes 3 and 4 is reduced to 0.8x and 0.7x respectively using hierarchical priority with one

shared memory pool SM1. At the same time for mix-3, RRT for node 3 increases to 1.4x.
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Figure 3.6: Overall relative response time per request of disaggregated memory system using no
QoS and hierarchical priority based QoS.

We evaluated our design by dividing shared memory into 2 and 4 shared memory pools, shown in

Figure 3.5. We observed a similar pattern as when using multiple shared memory pools but, due to

more bank parallelism, the performance of the system is better, as shown in Figure 3.4. An RRT

improvement of up to 50% (node 2 in mix-1) for 2 shared memory pools and up to 28% (node 2

mix-1) for 4 shared memory pools can be observed in Figure 3.5.

The overall system performance in terms of RRT per memory request is shown in Figure 3.6. We

could observe an overall maximum performance improvement of 30% using single shared memory

with mix-2.
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3.4 Conclusion

Considering that the memory access latency is impacted by the applications running in the neigh-

bour nodes sharing the same FAM, in this chapter, we study potential improvements that can be

achieved by enforcing fairness (QoS) to the nodes. We observe that QoS is a crucial aspect in

FAM systems and is inversely proportional to the number of nodes sharing FAM. To this end, we

proposed hierarchical priority, a combination of static and dynamic priority-based QoS for FAM

systems. We determined that assigning priorities to nodes and modifying priorities at run time can

greatly improve the performance of the system. To improve the performance further, we propose

dividing the shared memory into pools and dedicate FAM pools for specific nodes. However, ded-

icating shared memory pools to specific nodes reduces the overall memory per node and does not

show the anticipated performance gains due to less contention at memory. Our conclusion opens

up a new research direction to explore more aspects related to disaggregated memory systems. We

would like to extend this work by simulating more number of nodes and dividing shared memory

into feasible number of pools.
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CHAPTER 4: PAGE MIGRATION SUPPORT FOR FABRIC-ATTACHED

MEMORY SYSTEMS

As discussed in chapter 2, many major vendors are considering FAM system designs by retaining

a portion of memory on the node instead of full memory disaggregation for fast processing [29].

This leaves us an opportunity to migrate memory pages from FAM to the local memory to improve

overall memory access latency. Hence, in this chapter we provide page migration support and

analyze the performance improvements with page migrations.

4.1 Motivation: Impact of Number of Nodes Accessing FAM on Performance

Figure 4.1 shows performance of individual nodes in disaggregated memory systems and tradi-

tional systems, with NVM as memory for a range of HPC-relevant benchmarks (see Section 4.4

for additional discussion). As the number of nodes accessing global memory increase, the per-

formance of the applications decreases due to more contention at global memory. We consider

performance when global memory is not shared among multiple nodes (Disag-NVM-N1) as the

optimal case (no contention) in disaggregated systems. As expected, the performance worsens

when the number of nodes sharing global memory increases, e.g., 4 and 8 nodes. For instance,

for a memory intensive workload like Lulesh, we can notice a decrease in the performance by

83.8% with 8 nodes normalized to no contention case. Meanwhile, some other workloads, which

are less memory sensitive, e.g., NAS IS, encounter 39% slowdown when moving from 1 node to

8 nodes sharing the same memory module. As shown in Figure 4.1, the memory response time

increases differently for each workload, mainly due to the variable levels of memory request rate

and contention.
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Figure 4.1: Average performance of traditional (non-FAM) memory system and disaggregated
memory systems with one to eight nodes accessing a single FAM module.

4.2 Page Migration

Moving frequently accessed pages from global memory to local memory would benefit both node

and system overall performance, due to the reduced contention at the global memory and the fast

response time of local memory. However, as system-level management deals with each node’s

physical page mappings, it is an obvious task for system-level management to dynamically mi-

grate hot pages to the local memories accessing them more frequently. While naively we can

assume such pages can be identified at the start time of application and then migrated to local

memory, the reality is that many challenges and application behaviors typically render such simple

solutions ineffective. In particular, the dynamic nature and time-variable pages popularity (access

frequency) render static solutions irrelevant. Moreover, given the limited capacity of local mem-

ory, an accurate and dynamic profiling of page behavior is needed, otherwise more popular pages
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may get evicted from local memory.

4.2.1 Translation Look-Aside Buffer (TLB) Shootdown:

TLBs are fast caches that hold page table translations within each core. However, TLB coherence

with the full system page table must be maintained explicitly through inter-core interrupts and

explicit invalidation commands. When performing page migration, processor cores have to be

stalled to invalidate page table entries in respective TLB structures [73, 45, 46]. The process

of clearing stable page entries is called TLB shootdown [44, 74] and can become an expensive

operation.

Centralized
memory
manager

Core

Core

Core

Core

TLB

TLB

TLB

TLB

Page Table
Entry (PTE)

21

34

5

6

Figure 4.2: TLB shootdown process

Figure 4.2 shows the process of TLB shootdown in disaggregated memory systems. The core,

which invalidates the addresses, will update the PTE (1) and send a TLB shootdown request to

the centralized memory manager (2). Centralized memory manager stalls all the other cores (3)

and the stalled cores invalidate the copies of page table entry in their respective TLBs (4). After

invalidating the TLB entries, the stalled cores send an acknowledgement request to the centralized

memory manager and resume (5). When the centralized memory manager receives shootdown
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acknowledgements from all the cores, it resumes the shootdown of the initiating core (6). The

entire TLB shootdown procedure consumes around 8us, on an average, in 8 core computing system

[75].

4.2.2 Literature

A large body of prior art has investigated page migration in hybrid memory systems which pro-

poses efficient way to migrate pages. Ramos et al. [76] proposed a multi-queue based approach to

define the hotness and coldness of the pages. Wang [77] managed NVM at a super-page granular-

ity by using a lightweight page migration. Wang also considered the utility of the migrating page.

Yoon et al. [78] devised a policy that enables DRAM to cache pages which has high frequency

of row buffer misses in NVM memory. CAMEO [79], PoM [80], Mempod [81] and BATMAN

[82] discuses about the granularity and relaxations possible while swapping pages to maximize

overall memory bandwidth. Other approaches [83, 84] involve both hardware and software. OS is

utilized to identify hotness of the page. Page migration is explored in NUMA architectures [85].

These approaches depend on either compiler support or Linux kernel and leverage on counters

for number of pages accesses. Lim et al. [86] proposed software-based prototype by extending

the Xen hypervisor to emulate a disaggregated memory design wherein remote pages are swapped

with local memory on-demand upon access, first touch policy. They also explored round-robin,

clock and content based page placement policies to effectively manage the memory. Specifically

content-based approach can be effectively utilized for page sharing.

Given the contention that results from memory sharing among nodes, proper management of the

shared memory resource is a key design requirement. Unfortunately, the current literature lacks

any detailed study that investigates the system-level aspects and memory management impact on

disaggregated memory systems. Further, most of the previous schemes perform page swapping
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at a predefined time intervals and does not take time interval variation into consideration. Also,

Lim et al. [86, 47] implemented disaggregated memory design on Xen hypervisor. Thus, we fo-

cus on devising innovating page migrating mechanisms that enable efficient memory management

schemes in disaggregated memory systems to improve the overall performance. The major differ-

ence between prior work and our work is that in disaggregated memory systems, memory man-

agement decisions should occur at the system level and account for fabric network latency, global

memory contentions, global memory latency and the necessary updates of system-level memory

mappings. Such considerations pose a challenge on where and how to implement the memory

management. For instance, should memory placement be handled by a global memory controller?

How aggressively should we perform page migrations? How many pages should be migrated dur-

ing each epoch, and, what page migration costs would still render page migration useful? While

the objective is the same in any heterogeneous memory system work: migrate hot pages to the

faster memory, the design aspects and usefulness of page migration strictly depend on the system

architecture, memory architecture and memory technologies. Thus, designing and implementing

memory management in disaggregated memory systems has its own unique challenges, conclu-

sions and design guidelines. Moreover, most of the prior work either conclude their results based

on trace-driven or analytical models [43, 44], or use real-system profiling where additional latency

is added on each page fault [87], and, hence, are inapplicable to systems where global memory is

directly accessible, i.e., not like a swap device. In contrast we use and provide a detailed cycle-level

simulation model, which has been integrated with a best-of-class open-source simulation frame-

work and is able to replicate the significant detail associated with the major system-level aspects

that affect memory-management decisions.
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4.3 Page Migration in FAM systems

In this section, we discuss our proposed memory management support for disaggregated NVM

memory systems. Our scheme relies on page migration as a mechanism to enable more efficient

page locality and data proximity to their most-accessing compute nodes. To design our memory

management support, we start with identifying the answers for the following questions: (1) Which

pages to migrate to local memory? (2) Which pages to select as victim pages, i.e., be evicted from

local memory?

4.3.1 Detecting Hot and Victim Pages

Pages that needs to be migrated between the two levels of memory should be chosen carefully.

Wrong selection of pages would degrade the performance of the application intensely. For instance,

if a page in the local memory is accessed frequently and is migrated to the global memory, during

the page migration process, the number of cycles to fetch the data of that page would be more.

Apart from increasing the number of cycles to access frequently accessed data, a number of cycles

would be wasted due to TLB shootdown. Hence efficient page selection algorithms to migrate

pages are required to improve the overall performance of the system. For detecting hot pages, we

leverage a counter-based scheme, however, we use clock-based replacement policy to select victim

pages, as discussed below.

Page Insertion: Page insertion techniques are used to detect hot pages in the global memory and

migrate them to the local memory. We leverage on counter-based scheme to select the pages to

insert in the local memory since counter based scheme is simple and accurate. In this scheme

every page access is accounted and during the process of page migration, the page counters are

traversed to find out the most frequently accessed pages. Page accesses are stored in page access
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count table (PACT) as shown in Figure 4.3. This policy, as it seems, is simple, but there are two

important overheads that should be considered. Hardware Requirements: As each page requires

a separate counter, the number of counters needed would be more for systems that has significant

amount of memory, specifically in disaggregated memory systems. This needs tremendous amount

of additional hardware. A solution to overcome this is to maintain a cache of counters in the global

memory controller and a counter is fetched from the memory during the cache miss. Traversal

Delay: The page counters, either maintained as hardware counters or as a cache has to be traversed

to find out the most and least frequently accessed pages. The number of entries in PACT will

be significantly high for the systems with huge memory and a moderate page size (4KB). If the

number of entries in PACT is huge, it takes a while to traverse the table to find out the most

frequently accessed pages. Although page accounting and page selection process for migration

can be performed at the background, while the data is fetched from the memory, eventually it

is a costly operation to traverse PACT. We address these two concerns by fixing the PACT size

and replacing the least frequently accessed page with in PACT to make space for the new page

and storing the least frequently accessed page counter data in the memory. This eliminates huge

hardware requirements and reduces the delay in traversing PACT.

In disaggregated memory systems, multiple nodes access the global memory. Hence global mem-

ory should have the ability to distinguish requests from different nodes. The memory controller

achieves this by extracting the node number from the request packet. In Figure 4.3, B is termed as

hot page detector. Hot page detection is performed in three steps: 1) During serving a request the

page number is extracted from the base address and the page count is incremented in PACT if the

page entry is found. If the page entry is not found in PACT, an entry is created and is then incre-

mented. 2) If the page counter is higher than the page migration threshold limit the page is copied

to the pages to be migrated table per node (PMTn). Global memory controller has to maintain

PMT for every node since each node will have different pages to migrate.
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Page Eviction: Page eviction technique is used to detect victim pages to be migrated to the global

memory from the local memory. Counter based eviction policy is widely used as a page replace-

ment policy to migrate pages between main memory and the secondary memory. Least recently

used pages are selected and are moved to the secondary memory. We extend this scheme for select-

ing least recently used local pages (victim pages) to be migrated to the global memory. In clock

based page selection policy each page is referenced, A in Figure 4.3. But unlike counter based

method, this policy maintains per page reference bit in the page table rather than a counter which

requires 32 or 64 bits per page. If the reference bit of the page is set then it is considered as a page

which is accessed recently and vise verse. Initially all the page references are reset and for every

page access the reference bit is set to indicate that it is accessed recently. A reference pointer is

utilized to traverse the page table to select the victim pages by verifying the page reference bit.

The reference pointer traverses the page reference table until it finds a page that is not accessed

recently. While traversing the page table, the page reference which is set is reset by the reference

pointer and the traversal continues. To lessen the delay in finding out the victim page the page table

is traversed until specific entries (200 in our case) and once it is reached, the victim page is chosen

as the page pointed out by the reference pointer by default. Selecting victim pages is triggered by

victim page eviction handler, D from Figure 4.3, during page migration epoch.

4.3.2 Performing Page Migration

Centralized memory manager is required to maintain and allocate decoupled centralized memory.

We used Opal [56] from SST[55] as a centralized memory manager. Opal is responsible for allo-

cating memory to all the nodes without any conflicts. We extend Opal to perform page migration.

For every page_migration_epoch, Opal communicates with the global memory controller and in-

dividual nodes to fetch pages that needs to migrate. Hot page insertion handler, C in Figure 4.3,

fetches addresses of hot pages from the global memory controller. The global memory controller
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Figure 4.3: Page migration in disaggregated memory systems. LM: Local Memory, PMTn: Pages
to Migrate Table per node, PACT: Page Access Count Table

which already segregated pages to be migrated during hot page detection, sends the respective

page addresses (page numbers), if any, to Opal after sorting the PMTn table to migrate the most

frequently accessed pages first and then clears PACT and PMT to collect page counts for the next

epoch interval. Victim page eviction handler, D from Figure 4.3, fetches local memory pages to

be moved to the global memory, with the help of clock based eviction method. Once both hot and

victim pages are fetched by Opal, TLB invalidation and TLB shootdown events along with pages

addresses to be remapped are sent to the respective nodes involved in page migration, E from Fig-

ure 4.3. Nodes which does not have any pages to migrate are not interrupted. The page contents

are swapped by Direct Memory Access (DMA), F from Figure 4.3, during TLB shootdown.
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4.3.3 Sequence of Events

The sequence of events are as follows: a) For every memory request pages are referenced at either

the local node or at the global memory controller. If the memory request is to the local memory

then the respective page is referenced in the page table of the local memory manager (A from

Figure 4.3). If the memory request is to the global memory then the page access is counted at the

global memory controller and hot pages are detected and stored in PMTn (B from Figure 4.3). b)

Centralized memory manager, Opal, for every specific time interval, for instance 1M clock cycles,

triggers the global memory and individual nodes to fetch hot and cold pages (C and D from Figure

4.3). c) Once Opal receives page addresses that has to be migrated, it triggers DMA to swap pages

between global and local memory while TLB shootdown and TLB invalidation events are initiated

to only those nodes which are involved in page migration (E and F from Figure 4.3).

Page migration does not always better the system. This depends on factors like frequency of page

migration, number of pages migrating at a time, page migration threshold, TLB shootdown latency

and page swapping delay.

It is also crucial to interpret at what frequency the page migration process should be performed. If

the page migration is performed too often then most of the cycles would be wasted in migrating

pages and TLB shootdowns. If the page migration is performed rarely then the advantage in

migrating pages is lost since most frequently accessed pages would be migrated to local memory

rarely during the lifetime of the application. Conventionally, various page migration schemes

for different architectures talk about migrating one page during page migration process, while it

is possible to migrate multiple pages at a time. The delay in migrating multiple pages is less

compared to migrating single page. For instance, if we consider a 1us delay to swap contents of

one page and if we assume a delay of 8us to invalidate TLB entries and update page table entry, the

total delay to migrate one page is 9us. If pages are migrated one at a time then every time a single
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page is migrated, the computing units have to wait for 9us. If more pages are migrated at a time

then only the page swapping delay (1us) per page will be added, which is effective. Page migration

threshold is an other factor which has an impact on pages to migrate. If the migration threshold is

less then the pages with very less accesses to global memory would be eligible to migrate. Also

if the migration threshold is pretty high then the pages with very high accesses to global memory

would not be eligible to migrate, which results in less page migrations. During TLB shootdown

and page swapping, computing units are stalled and are not allowed to proceed util all the pages

are swapped and all the TLB levels are invalidated. Hence it must be understood that it is vital to

study the impact of these factors on page migration in disaggregated memory systems.

4.3.4 Overheads

There are mainly three overheads associated with our design: 1) Hardware overhead: Global mem-

ory controller requires additional hardware for PACT and PMT. This overhead is minimal since

PACT and PMT are fixed based on the number of pages to migrate. If we assume 100 pages to

migrate at a time then each PMT (PMTn) should have a minimum of 100 entries and PACT should

store a minimum of 800 entries, considering 8 nodes system. 2) Accounting overhead: Each page

has to be accounted at the global memory whenever the page is accessed, which is in the critical

path. This can be avoided from the critical path by performing such accounting in the background.

3) Page address transfer overhead: During the page migration, metadata like page addresses, are

exchanged between centralized memory manager and global memory controller or local memory

management units. This overhead is minimal since statistical data transfer would happen only dur-

ing the page migration epoch and if the page migration epoch interval is high then the statistical

data transfer would be minimum.
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4.4 Evaluation

To study page migration aspects in disaggregated memory, we used a model of a disaggregated

system developed in SST [55]. SST has been proven to be one of the most reliable simulators

for large-scale systems due to the scalability and modular design of its components. SST includes

multiple (swappable) simulation modules for various components. A module called Opal [56] has

been developed in SST to simulate centralized memory manager for disaggregated memory model.

Table 4.1: System Simulation Parameters to Analyse Page Migration Support for FAM Architec-
tures

Element Parameters
CPU 2 Out-of-Order cores, 2GHz, 2 issues/cycles, 32 max. out-

standing requests
L1 private, 64B blocks, 32KB, LRU
L2 private, 64B blocks, 256KB, LRU
L3 shared, 64B blocks ,16MB, LRU
Local memory 256MB, DDR4-based DRAM
Global memory 16GB, NVM-based DIMM (PCM), 128 max. outstanding

requests, 16 banks
300ns Read Latency, 1000ns Write Latency

External network latency 40ns

Table 4.2: Applications used Analyse Page Migration Support for FAM Architectures

Application Value
Lulesh [61] -s 120
SimpleMoC [62] -t 2 -s
Pennant [63] leblancbig.pnt
miniFE [64] -nx 140 -ny 140 -nz 140
NAS:IS [65] class C
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We simulated disaggregated memory system with 8 nodes. All the nodes run simultaneously with

each node hosting a benchmark. Simulation parameters of our simulation environment are shown

in Table 4.1. According to the table, 2 cores are used for each node and each core can serve up

to 2 instructions per cycle. The clock frequency of the cores is 2GHz, with each core configured

to serve up to 100 million instructions of application execution during its HPC-relevant kernels.

Three levels of cache are used, L1, L2, and L3, with sizes 32KB, 256KB and 16MB respectively

and cache type is non-inclusive. Local memory is 256MB of DRAM memory on each node.

Centralized memory is of an NVM type and configured to be 16GB, based on density compared

to DRAM and number of nodes. Network latency is critical in disaggregated memory system.

External network latency is 40ns, which has been modelled after public projections for a GenZ-

enabled network.

Since our focus is on HPC applications we evaluated our design using 5 HPC-relevant mini-

applications and benchmarks. Lulesh [61], a mini-app for unstructured hydrodynamics, Pen-

nant [63] is an unstructured mesh physics mini-app designed for advanced architecture research,

SimpleMoC [62] is a mini-app to demonstrate the performance characteristics and viability of the

Method of Characteristics (MOC) in 3D neutron transport calculations in the context of full scale

light water reactor simulation. The IS benchmark from the NASA Parallel Benchmark collec-

tion [65] is an integer sort kernel which performs efficient large-scale sorting operations. Finally,

MiniFE [64] is a proxy application for unstructured implicit finite element codes. Applications

along with their parameters are shown in Table 4.2. We decided upon these specific applications as

these are known to provide memory accesses that are characteristic of larger codes. In most cases,

their access patterns are memory-access intensive although the range of these accesses which is

satisfied by caching, or accesses to memory, will vary by each kernel. Note that for our discussion

of the following experiments, N indicates number of compute nodes.
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Figure 4.4: Performance improvement (normalized to no page migration) in disaggregated mem-
ory system when page migration parameters migration epoch length, number of pages to migrate
and page migration threshold are varied. Shootdown latency is maintained at 8us and per page mi-
gration delay(cost) is 1us. MPM indicates Maximum pages to Migrate per epoch. MEI indicates
Migration Epoch Interval
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4.4.1 Effect of Page Migration Parameters

We modelled a combination of a threshold based method and clock based approach to migrate

pages from between centralized and private memory. As mentioned in Section 4.3, performance

gains of using page migration is dependent on migration frequency (page migration epoch), the

number of pages to migrate at a time and page migration threshold to detect a page requiring mi-

gration. Hence we vary these parameters and study the effect of them. Figure 4.4 shows normalized

performance (IPC) results with respect to disaggregated memory system without page migration.

The x-axis of each sub-graph indicates PMT at global memory which decides if the page is a hot

page or not. For instance, an x-axis of 50 in each graph indicates that when a shared page is ac-

cessed more than 50 times in the current epoch, then that specific page is marked as a page to be

migrated to the private memory and might get migrated to the local memory during the migration

interval. We varied PMT from 10 to 100 accesses. Graphs in each row show results for a specific

migration epoch. For example, the migration interval of graphs in each column of row 1 is 10K

cycles. While rows 2, 3, 4 and 5 indicate results for migration epoch of 100K, 1M, 10M, 100M cy-

cles respectively. Each column represents the maximum pages that can be migrated. For instance,

results in column 1 are configured to migrate a maximum of 1 page for every migration epoch and

columns 2, 3, 4 and 5 migrate a maximum of 10, 50, 100, 500 pages per epoch respectively. The

top most frequently accessed pages are chosen if the number of pages to be migrated exceeded

maximum pages to be migrated per epoch.

We make the following observations by varying these parameters from Figure 4.4. If PMT is high,

pages should be accessed frequently to count them as hot pages. On the other side if PMT is low,

most of the pages would be counted as hot pages and there would be a pool of hot pages to choose

from for migrating to local memory. Hence PMT decides the hotness of the pages. Therefore

we divide our explanation into two parts: (1) High PMT (Pages are counted as hot pages if the
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frequency of page accesses is very high), and, (2) Low PMT (Pages are counted as hot pages if

they are accessed less number of times).

High PMT: If PMT is high, a page should be accessed frequently to be counted as a hot page. In

our results we observed that when the epoch size is small, 10K and 100K cycles (row 1 and 2),

all the applications that we simulated, do not improve the performance when the page migration

threshold is set to 50 accesses or beyond. This is because when the epoch length is small, the

number of global memory pages getting accessed more than 50 times in that epoch is very narrow

and hence none of the pages would reach the required PMT, resulting in no page migration. Hence

when the epoch size is small, 50 accesses is defined as high PMT irrespective of the number of

maximum pages to migrate. When the epoch size is larger – 1M and 10M cycles – MiniFE benefits

from page migration even if the PMT is beyond 50 accesses (1.46x, 1.33x, 1.45x and 1.44x for 10,

50, 100 and 500 maximum pages to migrate respectively with a migration epoch of 1M cycles).

And the performance is normalized to 1 when PMT is set at 100 accesses. Therefore for MiniFE,

a high PMT is defined as 50 accesses if epoch size is less and 100 accesses if epoch size is more.

Low PMT: If PMT is low, most of the pages, if accessed regularly, are eligible to be counted as

hot pages, hence many hot pages would be moved to local memory and improve the performance.

It can be seen that apart from when only 1 page is allowed to migrate per epoch and when epoch

interval is too high (100M cycles), we can observe performance improvement. If only one page

is allowed to migrate per epoch, the cost of page migration, explained in 4.4.2, outweighs the

benefits. Also if page migration epoch interval is too high, page migration frequency is very low

which leads to no page migration. Hence there is no improvement in performance (row 5). There

is improvement if the number of pages to migrate is 500, since even though the frequency is less,

there are a higher number of pages able to be migrated. Although migrating 500 pages at a time is

not practical, or at least is likely to present a significant migration cost, we show these results to see

the variation in performance improvement. When the migration epoch size is less, 10K and 100K
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cycles, the benefits of page migration is nullified by page migration cost (row 1). Hence there is

no improvement in performance for MiniFE. But for SimpleMoC and Pennant applications, the

improvement is around 1.4x, 1.3x for 10, 50, 100 and 500 pages to migrate at maximum per epoch

and is around 1.85x and 1.58x more for 10, 50, 100 and 500 pages to migrate at maximum per

epoch with PMT of 10 and migration epoch of 10K and 100K cycles. For applications like NAS-

IS the impact of page migration cost severely affects the performance. Performance degrades

by 30% and 28% when PMT is at 10 and 30 accesses. As the epoch size increases from 10K

to 100M the effect of page migration costs decreases as the frequency at which page migrations

are performed is less. Hence the performance of the NAS-IS application is normalized to 1. As

the epoch size is more 1M and 10M cycles the performance gain for SimpleMoC and Pennant

applications diminishes. SimpleMoC achieves peak performance improvement of 2.08x, when

migration epoch is 1M cycles and a maximum of 50 pages to migrate with a PMT of 10. MiniFE

also benefits from page migration if the migration epoch is maintained at 1M and 10M cycles (1.4x

more with PMT of 10, 30 and 50). The peak performance improvement can be noted when epoch

interval is 10M cycles and a maximum of 500 pages to migrate with a PMT of either 10, 30 or 50

accesses (1.6x) but migrating 500 pages at once is not advisable. Due to space constraints, moving

forward, we will only show the best possible cases for all the applications- PMT of 10 (low), 50

pages to migrate and the migration epoch interval of 10K, 100K and 1M cycles.

4.4.2 Page Migrations Costs

From the above observations it should be understood that intensive page migration leads to severe

page migration costs. Page migration costs can be classified into three categories: (a) Invalidating

TLB units - TLB shootdown latency: TLB shootdown latency can be reduced by using schemes like

self-invalidating TLB’s [44]. (b) Swapping page content delay: While the pages are undergoing

swapping, computing units might operate on yet to be swapped page. Since a batch of pages are
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Figure 4.5: Performance improvement (normalized to no page migration) in disaggregated memory
system with best possible cases. Migration epoch interval is 10K, 100K and 1M cycles with PMT
of 10 accesses, 8us TLB shootdown latency, a maximum of 50 pages to migrate per epoch and per
page migration delay(cost) of 1us per page.

undergoing swapping computing units which operate on these pages should halt. We call this

page swapping delay. Usually pages are swapped with the help of DMA engines. To account for

page swapping operation, we add an additional 1us latency in our experiments. Accordingly, page

swapping cost increases by 1us for every page that gets migrated from central memory to local

memory. If there are 50 pages to migrate then page swapping cost is 50us. This can be reduced

by intuitively recording pending pages that will undergo swapping and performing page swapping

atomically. That is, MMU units of each node decides if the address translation should proceed or
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not by checking if the page associated with the address is marked as a pending pages to swap. If

the page is not marked, MMU would proceed with the address translation. If the page is marked

and if the status of the page indicates that the page is undergoing swapping, the MMU waits till the

swapping is done. If the page is not undergoing swapping but in the pending pages to be swapped

list, MMU would proceed with the addresses translation without waiting. With this approach and

with the help of atomic page swapping, page swapping delay can be completely nullified. (c) Cost

to find pages to migrate: This is minimal since most of the work has been done while accounting

for the page accesses in the background.

Leveraging on reducing page migration cost schemes, we intuitively evaluated page migration in

disaggregated memory systems by varying TLB shootdown latency. Figure 4.5 shows the results

for the best case configuration according to Figure 4.4, column with maximum number of page

migrations at a time is 50 (column 3) and a PMT of 10 accesses, with varying TLB shootdown

latency (8us to 1us) as shown on the x-axis. We optimistically choose a batch of 50 page to migrate

at a time and nullified page swapping cost, since we believe that during TLB shootdown, DMA

engine would have swapped 50 pages between global and local memory. With low TLB shootdown

cost (1us), applications like NAS:IS whose performance was degrading with TLB shootdown cost

of 8us, 0.8x, could improve its performance by 1.52x (with migration epoch of 10K). As the epoch

size increases, the improvement due to page migration is reduced. 1.05x and 1.0x for NAS:IS

application when TLB shootdwon delay is 1us with 100K and 1M migration epoch intervals. For

Lulesh application the improvement is 1.75x, 1.7x and 1.61x for 1us, 4us and 8us TLB shootdown

delay respectively. For other applications the improvement is marginal.
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Figure 4.6: Performance improvement in disaggregated memory system with respect to conven-
tional memory system with different NVM read/write latency. PMT is 10 accesses with a maxi-
mum of 50 pages to migrate, TLB shootdown latency of 8us and per page migration delay(cost) is
1us per page. Page migration is performed for every 1M cycles.

4.4.3 Sensitivity to NVM’s Read/Write Latency

Centralized memory in disaggregated memory systems must meet several requirements. One of

them is the ability to allocate memory to all nodes accessing it. NVM memory technology is a

perfect candidate to fullfil such requirement as the density of NVM is higher than DRAM. On the

other hand, NVMs are notorious for the high write latency compared to DRAM. And although that

NVM’s read latency is much better than its write latency counterpart, it is still slower than the read
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latency of a typical DDR generation. We believe that read/write latency are crucial in the migration

of pages to/from centralized memory. To this end, we studied page migration benefits by varying

NVM read/write latency. We categorize NVM into 5 categories - very fast (read and write latency

is 100 and 200ns), fast (read and write latency is 200 and 400ns), moderate (read and write latency

is 300 and 600ns), slow (read and write latency is 400 and 800ns) and very slow (read and write

latency is 500 and 1000ns).

We can intuitively expect that if the global memory is "fast", then baseline scheme would perform

just well without any page migration. On the other hand, if the global memory is "slow", we expect

page migration to optimize performance significantly versus the baseline of no page migration, as

we reduce the number of "slow" memory accesses. To showcase this, and since the improvement

due to page migration is evident for all applications when pages are migrated every 1M cycles, we

use this as our migration epoch.

In Figure 4.6, ’r’ indicates read latency and ’w’ indicates write latency. For example (r:100,w:200)

indicates NVM read latency of 100ns and write latency of 200ns. As the type of the NVM varies

from very fast to very slow, the benefits of page migration is more clear. For instance performance

gains due to page migration for SimpleMoC with very fast global memory is 1.78x and with very

slow global memory the performance gain is 2.3x. For MiniFE and Pennant the improvement

is around 1.25x to 1.48x when the global memory is varied from very fast to very slow. The

improvement due to page migration for Lulesh application with very fast NVM as global memory

is hardly 3%, however, when the global memory is very slow the performance gain reaches up to

18%
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4.5 Conclusion

To improve the performance of disaggregated memory systems, we have proposed a novel memory

management scheme. As disaggregated memory systems support both local and shared memory,

we identify hot pages in global memory and provide migration capabilities to local memory using

a combination of threshold based and clock based policies. We provide insights into the impact

of migrating pages at regular intervals, showing that the benefit of page migration is dependent

on factors like page migration epoch, the maximum of number of pages to migrate at each epoch,

whether a page migration threshold can be used to differentiate hot and cold pages as well as the

costs associated with TLB shootdowns and page swapping delays. We evaluated 5 HPC-relevant

applications and benchmarks to study the effect of these factors on page migration. We showed that

NVM is a feasible memory type to construct disaggregated memory model, and hence we studied

the effect of NVM read/write latency on page migration in disaggregated memory systems. We

show the best case improvement of up to 2.3x when page migration is applied on a disaggregated

memory system with slow NVM as main memory.
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CHAPTER 5: ARCHITECTURE-AWARE VIRTUAL MEMORY

SUPPORT FOR FABRIC-ATTACHED MEMORY SYSTEMS

Since memory-centric architectures leverage FAMs as physically shared memory pools, multiple

compute nodes, potentially running applications from different users, can access pages in the same

FAM memory modules. This access model is different from conventional HPC architectures where

each compute node has its own memory modules and applications’ memory accesses are limited to

its own nodes, unless explicitly requested from other nodes through software interface. Therefore,

a new question arises: who is responsible for access control of FAMs? In this chapter, we discuss

the existing memory management approaches for FAM systems and explain the advantages and

disadvantages of each scheme. Further, we propose a secure and efficient memory management

scheme for FAM systems.

5.1 FAM Management Approaches

Based on the previous work, we identified two ways to manage pages in shared FAM pools -

exposing FAM and indirect access to FAM.

5.1.1 Exposed FAM (E-FAM)

The first approach is to expose each node to the real physical addresses (FAM addresses) and

modify the OS kernel running on each node to communicate with the external memory broker

to allocate FAM pages, Figure 5.1(a). OSes need to be patched to communicate with the global

memory manager node (e.g., through MPI interface) to coordinate memory management with other

nodes [47, 48]. Additionally, in this approach, without strict access control mechanisms, malicious
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OSes, applications, and PEs (e.g., accelerators, SoCs, etc.) can potentially compromise the entire

system by accessing the data of other users in the shared FAMs. Note that in this system architec-

ture, there could be compute nodes containing PEs from different vendors. Even if not malicious,

these PEs could contain bugs in their internal virtual memory implementation, which can compro-

mise the whole system. However, E-FAM approach requires only single-stage address translation

compared to two-stage address tranation for indirect access to FAM approach. This leads to lesser

memory accesses for address translations, section 5.2.

5.1.2 Indirect Access to FAM (I-FAM)

Externally vetting accesses to shared FAM modules, at the system-level, and not rely solely on

internal access control within PEs is the second approach. In this approach FAM pages are trans-

parently allocated to the nodes on-demand, i.e., each compute node has the illusion that it has a

contiguous large physical space [47]. Such an approach is similar in spirit to how hypervisors give

virtual machines (VMs) the illusion that each VM has a contiguous guest physical memory, which

eventually gets translated into the real system physical address through the hypervisor. Adding

a translation layer at the system-level allows running unmodified OSes on nodes and enforcing

access control, but incurs significant performance overheads due to two-stage address translations,

section 5.2. Lim et al. [47] explored a two-stage address translation system for disaggregated

memories. We call such a scheme Indirect FAM, since FAM is accessed indirectly. In I-FAM, a

simple system translation unit (STU), similar in spirit to Gen-Z memory management unit (ZMMU)

[88], can be implemented in a router connected directly to the node, in the memory blade or as an

independent network element, as shown in Figure 5.1(b). STU is responsible for caching system-

level translations, i.e., node address to FAM address, and access permissions. Moreover, STU is

capable of sending address translation service requests (similar to PCIe’s [89]) or request physical

pages from the system-level memory broker (in case of unmapped addresses). Note that STU is
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Figure 5.1: Two ways of managing memory in FAM systems.

similar in spirit to the ZMMU [88].

5.2 Hierarchical Page Tables

Hierarchical (multi-tier) page tables are commonly used for address translations in modern servers

due to their performance, dynamic growth, and scalability. In such settings, a virtual address is

provided as an input to the translation process, then the offsets (derived from virtual address) are

used to index each level to obtain the address of the next level. Finally, the last level, typically

called PTE level, has the actual translation entry, i.e., the corresponding physical address and

the access permissions. However, to reduce translation overheads, hardware-support for memory

management, typically implemented as the Memory Management Unit (MMU) and maintained by

the OS, is provided. The MMU is responsible for caching the translations, i.e., PTEs, in TLBs.

Moreover, MMU can also cache the contents of different levels of the page table in what is called

page table walking (PTW) caches [49]. Finally, MMU is responsible for walking the page table in

case of TLB miss to complete the translation process.

As shown in Figure 5.2(a), for every TLB miss, the page table is walked. In x86-64 systems, a

4-level page is typically used, and the levels are called PGD, PUD, PMD and, PTE, respectively.

Therefore, each memory access needs additional four memory requests to walk the page table. The
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Figure 5.2: Page table walking in (a) x86 and (b) virtualized systems.

root of the page table of the process currently executing on the core is loaded in Control Register

3 (CR3) in the core. In each virtual address, the bits beyond the page offset (typically 12 bits) are

divided into multiple sections (9 bits each) where each section is used to index a specific level in

the page table. Finally, the last-level page (PTE) has the actual page mapping. Hence, for every

TLB miss, the entire page table is walked which will incur an additional four memory accesses.

In virtualized systems, hypervisors like Xen[90] are responsible for maintaining multiple guest

systems and managing their memory. For such systems, nested paging is one approach in which

two page tables are maintained: one to convert virtual address to guest address and the other is a

nested page table to convert guest address to system physical address. Each level of the guest page

table has to walk the nested page table which requires four more memory accesses per guest page

table level, Figure 5.2(b). Hence, 24 memory accesses are required to fetch the translation. This

leads to huge overhead and hence, Bhargava et al. [49] proposed PTW caches, nested TLBs, and
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nested PTW caches to reduce the number of memory accesses to translate an address. PTW cache

unit caches the intermediate level address translations and helps in reducing the average number of

PTW steps.

5.2.1 Exposed FAM vs Indirect Access to FAM

While E-FAM provides translation overheads as low as native systems, it requires modifying OS

[48] and enormously enlarges the attack surface; any malicious node/OS can map its address space

into any location in global memory, hence leaks data from other nodes. Although, I-FAM provides

security without any modifications to the OSes, it is not performance friendly. Figure 5.3 shows

slowdown in I-FAM compared to insecure E-FAM wherein no indirection is needed. We observe

a performance degradation of 20.6x for sssp benchmark (details about the methodology and the

benchmarks are discussed in Section 5.4). The slowdown is attributed to the increased address

translation requests observed at FAM due to indirection at the system-level, Figure 5.4. For in-

stance, the percentage of address translation requests for canl benchmark is 44.36% in E-FAM,

however, this increases to 84.13% in I-FAM. Also, we note that benchmarks that are not sensitive

to address translations become highly sensitive to address translations in I-FAM. Address trans-

lation requests increase from 1.81% to 53.69% for cactus benchmark. Clearly, I-FAM brings in

significant performance overheads.

5.2.2 Threat Model

In our threat model, we assume that compute nodes themselves can have bugs that can be exploited

by malicious applications or OSes. Such threats are common and evidenced by the recent vulnera-

bilities in Intel’s processors (e.g., Meltdown [91] and Spectre[92]). Our threat model assumes that

a malicious application or OS runs on a specific node that tries to illegitimately access memory
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pages of other nodes and users in the shared FAMs. Note that we assume a compute node, at any

point in time, is owned by a single user (i.e., a user allocated the node to run an application). By

exploiting a bug in virtual memory implementation within a compute node or a vulnerability in

OS, the attackers can directly map its own virtual space to any physical page in the shared FAM

and hence, be able to access it freely. Therefore, to minimize the attack surface, an additional level

of access control needs to vet accesses that come from compute nodes to ensure that they are for

pages belonging to the node. Thus, any pages in FAM that are considered exclusive to a node, must

be protected from any access by other nodes as long as such pages are allocated. Attacks such as

timing side-channel, covert-channel and physical attacks are beyond the scope of this paper and
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can be addressed with many available solutions based on the system nature. Similar to most HPC

systems, we disallow co-locating resource allocations on the same node, which minimizes the risk

of information leakage (within a node). In summary, we mainly focus on enforcing access control

on shared FAMs, to limit the impact of vulnerabilities within compute nodes on other compute

nodes’ data. Such protection is analogous to security guarantees provided by virtual memory for

applications running on a native system, but at the node level. Our threat model trusts the memory

and fabric, i.e., memory provides nodes with the requested data and does not try to give them data

from other locations. Similarly, the fabric will not change the address in a request after it has been

vetted by access control.

5.3 Decoupled Access Control and Address Translation (DeACT) Scheme

To minimize the performance overheads of transparent access control and management support

for shared FAM pools, we propose decoupled access control and address translation. DeACT

leverages the architecture layout of memory-centric architectures and the ability to decouple access

control from translation. Specifically, DeACT allows unverified caching of translations in the

small local memories within compute nodes but enforces access control at the system level. By

decoupling access control and translation and leveraging part of the local memories in compute

nodes as unverified caches, DeACT exploits the high spatial locality of access control metadata

(ACM) for each node. By doing this, DeACT brings in significant performance improvements and

reduces the number of translation requests significantly, while strictly enforcing access control.

The goal of DeACT is to design a FAM architecture with better performance, without sacrificing

security and with minimum or no changes to the OS. A comparison of baseline FAM management

approaches and our proposed DeACT FAM approach is shown in Table 5.1.
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Table 5.1: FAM Architectures Comparison.

ArchitecturePerformanceAvoid OS
Changes

Security

E-FAM X 7 7

I-FAM 7 X X
DeACT X X X

5.3.1 Overview

When designing support for virtual memory, we aim at abstracting away the details of the global

memory from nodes’ OSes, however, while enforcing isolation and minimizing translation over-

heads. To do so, we adopt a two-layer approach where each node’s OS manages an imaginary flat

node physical memory. The node physical memory range can be thought of as a range of two dif-

ferent NUMA zones, one zone (low addresses) corresponds to the local DRAM and the other zone

(high addresses) corresponds to the FAM. With such a design, each node’s OS manages its mem-

ory allocations oblivious to the actual status of FAM. While such an approach abstracts away the

complexity of managing a shared resource (memory), it adds significant performance overheads

due to two levels of indirection. Therefore, we need novel mechanisms to improve the performance

of such a design without compromising security.

One major observation we make is that access control can be decoupled from the translation pro-

cess. In particular, the translation from node address to FAM address can be sped up significantly

by caching the translations at node-level memory. Later, if the translation of a specific node ad-

dress exists locally in the node, the global memory request is forwarded to the FAM, with the

obtained/cached FAM addresses. In other words, the node can provide the final FAM addresses

it needs to access. As the reader can expect, the access control is offloaded to the off-the node

components, e.g., STU units. Since the access permissions need to be checked for the specific
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FAM address provided by the node, we dedicate specific parts in the FAM to store ACM of FAM.

Such parts are known for STUs and the addresses of the ACM of any FAM page can be derived

merely from the FAM address. For instance, assume we want to keep a 16-bit ACM for each 4KB

page and assume the metadata starts at address MTAdd in FAM. To read ACM of FAM address

X, we read the 64-byte block at address MTAdd + X
4096×32 (division by 32 is needed to get the

base address of 64-byte block for 16-bit ACM). For simplicity, the metadata of each 4KB page

is the node ID of the node that owns that page and read/write permissions. Read and write fields

consume two bits and the rest of the bits (14) are allocated for the node ID. Nodes can choose to

execute pages read from the FAM. However, while executing instructions, the access permissions

of the executable pages are verified by TLBs, within the node. FAM pages could also get shared

between the nodes. Thus, we use all the node ID bits of the page metadata set to 1 to indicate a

shared page. Hence, we can have up to 16383 nodes supported in the system.

Since pages can be shared by a subset of nodes, just indicating a page is shared is insufficient.

Therefore, we use a bitmap-like scheme to indicate which nodes are allowed to access a specific

page. However, since having a bitmap for each 4KB can introduce significant overheads, we limit

shared pages to 1GB physical pages. For each 1GB physical page in global memory, we have a

corresponding 16K bits bitmap (2KB) in the metadata region. Since such overhead is negligible

(less than 0.0001%), and to enable easier indexing of metadata, we dedicate a bitmap for each

1GB physical region regardless of being used as a shared page or not. Therefore, when ACM is

accessed, if the node ID bits of the metadata indicates a shared page, we immediately fetch the

corresponding parts of the bitmap to check if the node has access permissions. In contrast, if the

node ID bits do not indicate a shared page, we simply compare its value (owner node ID) with the

ID of the requesting node, to verify the legitimacy of the access. Note that when a shared page is

allocated (or becomes shared), all of its node ID bits in the metadata fields correspond to its 4KB

chunks (sub-pages) are set to shared, i.e., 0xfffd. When the page is shared, the last two bits of the
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metadata field indicate read and write permissions assigned to the node. This enables enforcing

mixed access permissions for nodes sharing a page. For instance, a specific subset of nodes is

allowed to read and write to the shared page and the rest of them can only read the shared page.

One obvious optimization to reduce the overheads of obtaining such ACM is to cache them. How-

ever, since such metadata must be enforced by FAM managers, not the node, such metadata should

be only cached outside the nodes and inaccessible by the nodes or their own OSes. Therefore,

we opt for caching such metadata in STUs. Such STUs can potentially have a small lookup table,

similar to TLBs. As mentioned earlier, such STUs can be added to the global memory blade or

simply at the first router/switch that connects a node to the system fabric. It is also important to

note that such metadata has very high spatial locality, a single 64B block covers 32 4KB pages,

i.e., 128KB region for a 16-bit ACM. Therefore, even a very small TLB-like cache can save a

significant number of reads to access control metadata. While beyond the scope of this paper,

in encrypted memories, if each node uses a unique memory encryption key, we could allow read
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requests without checking access control; writes can tamper with data but reads are useless if the

node has a different unique key, and thus, no need for enforcing access control for reads.

As we now understand how our decoupled access control works, we will discuss how we accelerate

the translation process. To speed up the translation process, we (a) propose node-level unverified

caching of system-level translations: We notice that a very small portion of local memory can be

used to cache system-level translations, which will be later sent for verification at system-level, (b)

efficiently cache ACM in STU.

5.3.2 System Overview

Figure 5.6 shows a schematic overview of our proposed design. Decoupling the metadata from

page mapping enables the system-level translations to be cached in the local memory. Hence, we

maintain a FAM translation cache in the DRAM. We add a FAM translator 1 in the memory

controller to map node addresses to FAM addresses by accessing the FAM translation cache 2 .

Although node addresses are mapped to FAM addresses by the FAM translator unit it is still a

partial translation since accesses have to be verified. To complete the mapping, the FAM accesses

are verified by the STU 3 . Hence, unlike I-FAM, DeACT requires two steps to translate a node

address and verify the access.

For a translation miss, the FAM page table has to be walked. In our design we let the walking

to be done by the STU since we observe that the overhead of including FAM PTW inside the

node is costlier than the benefits. Firstly, due to security reasons, we aim at a clean separation of

address translations and ACM, if the fabric translations are cached inside the node. Hence, if the

intermediate translations are also cached within the node, the ACM for intermediate page tables

should also be decoupled. However, the two-step process required to complete the mapping, delays

address translations significantly, considering four memory accesses during PTW. That is, at every
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Figure 5.6: DeACT FAM schematic.

intermediate level, the ACM should also be fetched from the memory incurring additional memory

accesses. Secondly, since FAM translation cache size in local memory is significantly higher than

the STU cache size, we observe a hit rate of more than 90% in FAM translation cache in the

local memory. Hence, walking the FAM page table within the node would unnecessarily increase

the complexity without many benefits. Also, it would increase the complexity of the memory

controller. Thus, we apply DeACT only to the last level of the page table (PTE). Therefore, during

a FAM translation miss, the FAM translator forwards the request to the STU, which walks the FAM

page table and fetches the entry on behalf of the FAM translator 4 . After receiving the missed

translation, the FAM translator maps the pending requests and then updates the FAM translation

cache in the local memory 5 .
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5.3.3 FAM Translator

The idea of the FAM translator in the local memory controller is to translate node addresses to FAM

addresses without verifying memory accesses. Functionalities of FAM translator are: (a) fetching

the translation from the FAM translation cache (b) matching the tag (c) handling translation hits

and misses (d) handling off-the node responses and (e) updating FAM translation cache in the local

memory.

Accessing DRAM for Translation: To fetch the translation from the local memory, a in Figure

5.7, the FAM translator calculates the local memory address by adding starting address of FAM

translation cache to the offset, Figure 5.6. Offset is dependent on the type of the FAM translation

cache in the local memory. For simplicity, we use a four-way associative cache. This is because

memory access granularity is 64-bytes and each mapping entry requires 104 bits; 52 bits for tag

(node page address) and 52 bits for value (FAM page address), for a page size of 4KB. Single

memory access fetches four entries. Thus, offset is obtained by performing a modulus operation

on node page number with the number of FAM translation cache sets.

Tag Matching: After fetching the translations from the local memory, FAM translator matches

address tags using comparators, b in Figure 5.7. We add four comparators and a multiplexer to

perform tag matching concurrently. If none of the tags match, the output of the multiplexer is

set to 0. This takes just one cycle to match the tag but the number of comparators required is 4x

more compared to using just one comparator when four tags are matched serially in four cycles.

However, these additional comparators add up minutely to the overall hardware cost and area.

Handling Translation Hits: When any of the tags, fetched from the FAM translation cache, match

with the required node page address the multiplexer outputs the respective FAM address. FAM

translator replaces the node address with the FAM address and forwards the request. However,
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before forwarding the request to STU, the FAM translator identifies if the request is expecting any

response back from the FAM. If so the FAM address to node address mapping is stored in the

outstanding mapping list, c in Figure 5.7. This is because FAM responses contain data tagged

with FAM addresses and nodes only deal with node addresses. Outstanding mapping list is used to

convert the FAM address to node address during FAM response. Since the number of outstanding

requests is limited (128 requests in our evaluation setup, Section 5.4) the number of entries in

outstanding mapping list is also limited. In I-FAM this list is maintained in STU. But since the

FAM translations are performed within the node and STU does not understand node addresses in

DeACT, this list is maintained within the node.

Handling Translation Misses: A translation is identified as a miss if the output of the multiplexer

is zero, d in Figure 5.7. During a miss, FAM translator forwards the request to the STU to walk
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the page table. FAM PTW unit of STU retrieves the node address from the missed request and

walks the page table. After the page table is walked, the STU translates the node address to the

FAM address and then verifies the access to forward the missed request to the FAM. Also, the

STU sends the page mapping to the FAM translator for updating the FAM translation cache and to

register the mapping in the outstanding mapping list if needed.

STU receives two types of requests from a node, mapped and not mapped requests. Mapped

requests are those whose node address is translated to FAM address by FAM translator. For such

requests, STU verifies FAM access permissions. On the other hand, STU walks the page table

for not mapped requests using the node address from the request address field. To make STU

distinguish between the two types of requests we add a verification (’V’) flag to the request packet.

This flag is set by the FAM translator unit if the mapping is successful and is reset for a missed

translation. Using the ’V’ flag STU either forwards the request to the verification unit or to the

PTW unit.

Handling off-the node memory responses: FAM translator segregates responses into two types

(a) memory response and (b) mapping response. Memory responses are forwarded to the last

level cache by fetching the node address from the outstanding mapping list. Mapping responses

are received from the STU PTW unit. FAM translator updates the FAM translation cache during

mapping response.

Updating FAM Translation Cache: Since the granularity of memory access is 64 bytes each

access to FAM translator operates on four FAM mappings. To update the FAM translation cache,

the FAM translator has to write to one of the four mappings fetched. Hence, during a translation

cache update, the FAM translator reads 64 bytes from the local memory, updates one of the entries,

and writes back 64 bytes. For simplicity, we randomly selected one of the four entries to replace. It

is possible to implement different cache replacement policies but such policies require additional
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DRAM space; to store mapping status, and additional writes to the DRAM; to update mapping

replacement status for every FAM access.

5.3.4 FAM Access Verification

Memory accesses verification is performed by the STU in DeACT. STU verifies the memory access

by a) checking if the page being accessed is assigned to the node, using node ID in the metadata

and b) checking the read and write permissions from the metadata. However, the metadata is

not provided by the node since we maintain the page metadata in the memory off-the node to

provide security, Section 5.3.1. Hence, for STU to verify the FAM access it needs to fetch the page

metadata from the memory, Figure 5.5.

Since STU is off-the node, it can be used to cache ACM. STU in I-FAM caches both FAM page

mapping and ACM together, Figure 5.8(a) (52 bits for the tag (node page address) and 52 bits for

FAM page address and 16 bits for ACM). However, STU in DeACT caches only ACM. Although
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Figure 5.9: Access control metadata hit rate.

DeACT reduces the frequency at which the page table is walked by leveraging local memory to

store FAM mappings, it introduces additional memory access for the ACM. Hence, to reduce the

number of accesses to FAM for ACM, we explore organizing ACM in the available space, after

decoupling the page mapping from the STU cache in DeACT.

Way-level contiguous organization (DeACT-W): This is a simple organization wherein the space

available in each cache way, after removing the address mapping, is used to cache ACM of con-

tiguous pages, Figure 5.8(b). Since ACM is 16 bits and the space available is 52 bits (FAM page

address), four contiguous pages ACM is stored in one cache way. For instance, ACM for pages

from 0 to 3 are stored in one cache way and 4 to 7 are stored in a different cache way. Hence,

caching of ACM increases by four times.

Non-contiguous organization (DeACT-N): With DeACT-W we observe ACM hit rate of almost

90% for most of the benchmarks, Figure 5.9. However, ACM hit rate for benchmarks like canl,

sssp and cactus, which are sensitive to address translations, is less than 60%. This is because STU

in DeACT-W achieves a higher hit rate when spatial locality, while accessing memory, is higher.

However, since FAM is shared by multiple nodes, memory allocation is random and hence, has

poor spatial locality while accessing memory. Thus, instead of organizing STU ACM cache to

cache contiguous pages ACM, we organize STU ACM cache to cache ACM of non-contiguous
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pages i.e., the free space is used to store tag and ACM pair of another page which is either con-

tiguous or non-contiguous, Figure 5.8(c).

Since each tag and ACM pair needs 68 bits; 52 bits for the tag and 16 bits for the ACM, the

available free space, 52 bits, is not sufficient to store an additional pair. Thus, to fit ACM for two

different pages within the same way of a set (within the available space) we confine the number

of tag bit to 44. With 44 tag bits STU can cover up to 8 tera pages metadata1 and hence, each

node can access 32 petabytes of memory unlike 16384 petabytes with DeACT-W. However, 32

petabytes is also significantly higher for a node. Thus, each cache way is subdivided into two sub-

ways (way_00 and way_01 for way 0) and each sub-way has a tag and ACM. This increases the

total number of ways for a set and matching the tags of sub-ways is similar to matching the tags of

different ways in a cache. Organizing ACM in STU cache in this manner doubles the caching of

ACM and unlike DeACT-W, DeACT-N stores non-contiguous pages ACM.

The non-contiguous organization of ACM in the STU cache increases the hit rate from 90% to

almost 99% for most of the applications. Also, the hit rate for address translation sensitive bench-

mark, for instance, cactus, increases from less than 55% to almost 76%. The improvement com-

pared to DeACT-W is due to random accesses to FAM (see Section 5.4).

5.4 Methodology and Results

To evaluate our design we used a decoupled memory model implemented in SST [55]. SST is an

event-based cycle-level simulator that has been proven to be one of the most reliable simulators

for large-scale systems due to the scalability and modular design of its components. SST includes

multiple simulation modules for various components. To evaluate FAM architectures a FAM man-

1Note that these numbers are based on the tag and data bits assumed in the STU cache of I-FAM as shown in Figure
5.8(a)
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Table 5.2: System Configuration

Node
CPU 4 Out-of-Order cores, 2GHz, 2 issues/cycles, 32 max. outstanding

requests
TLB 2 levels, L1 size: 32 entries, L2 size: 256 entries
L1 Private, 64B blocks, 32KB, LRU
L2 Private, 64B blocks, 256KB, LRU
L3 Shared, 64B blocks, 1MB, LRU
Local memory DRAM, Size: 1GB

STU
Cache Size: 1024 entries, associativity: 8

Fabric Network
Latency 500ns

Fabric Attached Memory (NVM)
Capacity 16GB
Latnecy Read 60ns, Write 150ns
Banks 32
Outstanding requests 128

ager (memory broker), Opal [56], was developed in SST. We modified SST memory management

unit, Samba [57] and Opal [56] modules to model our design. We modeled an STU component

in SST to translate node addresses to fabric addresses and to verify FAM accesses. As our ap-

proach focuses on accelerating the address translations, we validate our approach by calculating

the performance of the system in terms of instructions per cycle.

Table 5.2 shows system simulation parameters. We simulated 4 cores and each core can serve up to

two instructions per cycle with a frequency of 2GHz. Each core is configured to execute a minimum

of 100 million instructions of an application execution during its HPC-relevant kernels. L1, L2,

and L3, caches are inclusive with sizes 32KB, 256KB, and 1MB respectively. Local memory, is

1GB DRAM[48]. For FAM, as projected by many system vendors (e.g., as in The Machine of HP

Labs [13]), we use emerging NVM due to its high-density, ultra-low idle power mixture of storage
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and memory characteristics[93, 87, 94, 44, 95]. Our assumed FAM is 16GB NVM2. We simulated

a fabric network to connect to NVM memory with a network latency of 500ns, modeled after recent

research and public projections for fabric interconnects [48, 96, 97]. Two levels of TLBs, each of

which is simulated with 32 and 256 entries within the node. Since STU is an external hardware per

node, we have restrictions over adding additional hardware. Hence, to avoid significant hardware

overhead, we implemented STU to cache 1024 page table entries with 128 sets and associativity

of 8, similar to Haswell Xeon L2 TLB design[98]. However, we also evaluated DeACT by varying

STU cache size. For optimization proposed by Bhargava et al. [49] we used 32 PTW cache entries.

The proposed FAM translation cache size in DRAM is 1MB.

Since our focus is on HPC applications we evaluated benchmarks from different benchmark suits,

as shown in Table 5.3. Our selection of benchmarks from these benchmark suits are based on

(a) the benchmark should have a minimum of 5 misses per kilo instructions (MPKI) (b) should

be compatible with the simulation setup (c) the performance degradation with I-FAM should be

more than 15% compared to E-FAM since we observe application which does not get impacted

much by introducing indirection degrades it performance with DeACT, explained in Section 5.4.

Considering these criteria we have evaluated 29 benchmarks and zeroed in on 14 benchmarks

that are meeting the requirements. Selected benchmarks with their respective MPKI are shown

in Table 5.3. We used short forms to represent applications. The short forms are next to the

application names in Table 5.3. Connected components graph analytic benchmark has 2 variants

cc; which uses Afforest sub-graph sampling algorithm [99], and ccsv; which uses Shiloach-Vishkin

algorithm [100].

The goal of DeACT is to provide security from other tenants in FAM systems without significantly

2In reality local memory is in GBs and global memory is in TBs or PBs. However, given slow simulation speeds,
we scale down the memory sizes and among the total application’s memory (average of 309MB during the simulation
period), 20% is allocated from the local memory and 80% is allocated from the FAM.
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Table 5.3: Applications

Benchmark Suite Application MPKI

SPEC CPU 2006 [101]
Mcf 73
Cactus 60
Astar 9

PARSEC [102, 103]
Freqmine (frqm) 16
Canneal (canl) 57

Intel GAP [104]
Betweenness Centrality (bc) 113
Connected Components (cc, ccsv) 56, 130
Single-Source Shortest Paths (sssp) 144

Mantevo [105] Path Finder (pf) 41

NAS [65]
DC 49
LU 111
MG 99
SP 141

impacting the performance. Hence, we compare DeACT with two baselines, E-FAM and I-FAM.

E-FAM is not secure but has better performance. I-FAM is secure but performs poorly (remember

that I-FAM is similar to the optimization proposed by [49]).

5.4.1 FAM Address Translation Hit Rate

Figure 5.10 depicts address translation hit rate while accessing FAM in I-FAM and DeACT. The hit

rate corresponds to the number of mapping entries that are cached in I-FAM and DeACT. DeACT

has a significantly higher hit rate (more than 90%) because the FAM translation cache in local

memory can cache a significantly higher number of mapping entries than limited entries that can

be cached in I-FAM using STU cache. For instance, the hit rate for canl benchmark is as low as

46.44% in I-FAM. However, with DeACT the hit rate is improved to almost 95.88%. Hence, only

4.12% of the FAM accesses require page table to be walked.
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Figure 5.10: Address translation hit rate in I-FAM and DeACT

5.4.2 Address Translation Requests at FAM

Although the frequency at which PTW is reduced with DeACT, it introduces additional memory

access for ACM. ACM is cached at STU cache and address translation is cached in the local

memory. Hence, in DeACT, address translation and ACM has different hit rates. As shown in

Figure 5.9, ACM hit rate in DeACT-W is not improved compared to I-FAM due to poor spatial

locality. Hence, the reduced number of address translation requests observed at FAM in DeACT-

W, Figure 5.11, is only due to reduced frequency of walking the page table and it also includes

additional memory access for ACM. However, ACM hit rate is improved in DeACT-N due to the

non-contiguous caching of ACM. For mcf benchmark, address translation requests sent by the

node to the FAM are reduced from 23.97% to 11.82% with DeACT-W, and this further reduces to

1.77% with DeACT-N.

5.4.3 Impact of DeACT on Performance

In this section, we show how DeACT performs compared to E-FAM and I-FAM. E-FAM performs

better than I-FAM and DeACT, hence, we show our results with respect to E-FAM in Figure 5.12.

As mentioned in Section 5.2.1, I-FAM slows down the system performance significantly. Our ex-
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Figure 5.11: Percentage of address translation requests at FAM.

periments demonstrate that DeACT can potentially bridge the gap between E-FAM and I-FAM. For

instance, mcf slows down by 0.39x in I-FAM compared to E-FAM. DeACT-W performance is 0.7x

wrt E-FAM, improving the performance by 1.79x compared to I-FAM. Further with DeACT-N the

performance is improved by 2.55x and is just 0.92x times slower than E-FAM. This improvement

is attributed to the increased FAM address translation hits, using local DRAM and increased ACM

hits in STU, leading to decreased accesses to FAM for page table requests by the node, as shown

in Figure 5.11. The inequality between performance improvement and reduction in the observed

percentage of address translation requests at FAM is because the local memory is accessed for

every FAM access for the translation. In Figure 5.12, DeACT-A indicates the performance im-

provement achieved by only caching address translations in the local memory and not modifying

STU to store ACM of multiple pages per entry as with DeACT-W and DeACT-N. We observe the

performance improvement of DeACT-A and DeACT-W is almost the same since FAM pages are

allocated randomly. DeACT-W performs better when the spatial locality is higher while accessing

memory. However, with random FAM allocation, the benchmarks have poor spatial locality while

accessing memory. The additional improvement achieved by DeACT-N compared to DeACT-A is

due to caching ACM of two non-contiguous pages within an entry in the STU.

For canl, ccsv and sssp benchmarks, we observe a significant percentage of FAM address transla-
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Figure 5.12: Normalized performance with respect to E-FAM.

tion misses in I-FAM, and hence, we observe an increase in the percentage of address translation

requests to FAM. The performance for such benchmarks even with DeACT-N is slower compared

to E-FAM, 0.14x for canl. However, compared to I-FAM, DeACT-N achieves a speedup by 2.7x

for these benchmarks.

DeACT-N achieves a maximum performance improvement of 4.6x for cactus benchmark. How-

ever, DeACT either does not improve or degrades the performance for bc, lu, mg and sp bench-

marks. Because these benchmarks are very less sensitive to indirection in I-FAM, Figure 5.11, as

they have better address translation hit rate, Figure 5.10. However, in DeACT the DRAM has to be

accessed for address translations, which is costlier than accessing the STU cache. Also, the bench-

marks have to go through two serial steps for address translation and access verification, unlike a

single step for the same in I-FAM. Hence, DeACT is better suitable for benchmarks which have a

significant impact on performance with I-FAM. In total, we observe an average performance drop

of 69.7% with I-FAM and with our proposed mechanism the performance degradation is 35.3%

compared to E-FAM. Hence, DeACT improves I-FAM by 80%.
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5.4.4 Sensitivity Analysis

The impact of performance in FAM systems is dependent on various factors. In this section, we

show how DeACT behaves under various system configurations. The default system parameters are

as shown in Table 5.2. Note that for sensitivity results we show the geometric mean of the evaluated

SPEC CPU 2006, PARSEC, and GAP benchmarks separately. Also, among NPB benchmarks, we

observed dc is the only benchmark that has a significant performance impact in I-FAM even under

various circumstances. Hence, going forward we show sensitivity results only for dc benchmark

among NPB benchmarks. Also, since DeACT-N improves the performance more than DeACT-W,

we focus on DeACT-N scheme.

5.4.4.1 STU Cache Size and Associativity

One of the main factors which impact the performance of I-FAM is the size of the STU cache.

STU is hardware maintained outside the node to enforce system access control and page mapping.

The number of entries STU can cache is limited, since we are proposing STU per node and is

implemented in the routers connected to the nodes. Adding more entries indicates adding more

hardware which increases the hardware budget and complicates routers. In our experiments, STU

caches 1024 entries. However, we study DeACT by varying STU cache size from 256 entries to

4096 entries. Figure 5.13 shows performance speedup compared to I-FAM by varying STU cache

size. As STU cache size decrease the speedup with DeACT is significantly high, 4.68x with 256

entries for dc benchmark. However, as the cache size increase, the performance improvement is

confined which is obvious. The speedup reduces from 3.45x to 1.75x when STU cache size is

varied from 256 entries to 4096 entries for PARSEC benchmarks. Higher STU cache size has a

higher hit rate and hence, less address translation requests to FAM. However, higher cache size

leads to more hardware overhead.
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Figure 5.13: Performance improvement wrt STU cache size.

Although we do not show here, we also evaluated DeACT by varying STU cache associativity. We

observed that as the associativity increases, the performance improvement with DeACT decreases

and gets saturated. When associativity is four the performance improvement is 3.26x for dc bench-

mark and is 2.66x when associativity is 32. The speedup is 2.5x when associativity is greater than

32 for the same benchmark. Similarly for PARSEC benchmarks the speedup is 2.18x, 1.83x, and

1.81x when associativity is 4, 32, and greater than 32.

5.4.4.2 Access Control Metadata Size

ACM size is a key design aspect of DeACT as the number of nodes supported by FAM systems is

dependent on metadata size, refer to Section 5.3.1. With 16-bit metadata size FAM systems can

host a total of 16383 nodes and with 8-bit metadata 8191 nodes are supported. When ACM is 8

bits STU in DeACT-W can cache metadata of eight consecutive pages, with 16-bit metadata STU

can cache metadata of four consecutive pages, and with 32-bit metadata STU can cache metadata

of two consecutive pages, increasing the amount of metadata cached by 8x, 4x and 2x respectively

compared to I-FAM. However, we observe that the performance improvement is almost the same

for these three scenarios, Figure 5.14. This is because, as asserted, although caching of ACM

increases in DeACT-W, it caches only ACM of contiguous pages and since the allocation of FAM
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is random excess caching of ACM is not leveraged.
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Figure 5.14: Metadata size effect on performance.

When ACM size is 8 bits, tag and metadata pair in DeACT-N requires 52 bits (44 bits for tag and

8 bits for ACM, see Section 5.3.4). Hence, in a single way, STU cache can store two tag and ACM

pairs, similar to when ACM is 16 bits. However, the amount of memory required to store ACM of

all the pages is reduced to half. As an experimental model, we further reduce the size of the tag to

allocate three pairs of tag and ACM per STU cache way, when ACM is 8 bits. When ACM is 32

bits STU can cache only one tag and ACM pair in DeACT-N. We observe that as caching of tag

and ACM pairs in the STU cache way increase, from one to three, the performance improvement

with DeACT-N also improves. For instance. the system performance improves by 2.62x, 2.52x,

and 1.85x when three, two, and one pairs of tag and ACM are cached in each STU cache way, for

SPEC CPU 2006 benchmark. It is interesting to note that when only one pair of tag and ACM is

stored in the STU cache way the performance improvement is less than or equal to DeACT-W. This

is because when only one pair of tag and ACM is cached in each STU cache way the performance

improvement is only due to increased address translation hits in FAM translation cache and ACM

hit rate is same as I-FAM in DeACT-N.
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5.4.4.3 Fabric Latency
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Figure 5.15: The impact of fabric latency on performance.

We propose DeACT for FAM architectures specifically and hence, one of the crucial parameter to

consider for such architectures is fabric network latency. In our approach we considered 500ns as

fabric latency. However, fabric networks are being explored intensively by various fabric providers

[?, 15, 16, 106]. Previous approaches considered various fabric network latencies [96, 48, 107,

108]. Thus, we evaluated DeACT under the influence of various fabric latencies, Figure 5.15.

An obvious observation is that when fabric network latency is less, the performance improvement

with DeACT is also less and when the network latency is high, the performance improvement with

DeACT is more. This is because when the fabric network latency is less, performance degradation

in I-FAM itself is less, compared to E-FAM. This goes inversely when fabric latency is high. We

see that even when fabric network latency is less, 100ns, DeACT achieves an improvement of

1.79x wrt to I-FAM. In contrast, when the network latency is 6us, DeACT speeds up I-FAM by

3.3x for pf benchmark.

5.4.4.4 Number of Nodes

The interconnecting fabric connects multiple PEs to the decoupled FAM modules. A single FAM

module is expected to be part of a single memory pool. FAM architectures are constructed with
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Figure 5.16: Impact of increasing the number of nodes on performance.

multiple such memory pools and PEs. The performance of FAM architectures depends on the num-

ber of PEs and the number of memory pools. We maintained memory pools directly proportional

to the number of nodes and each node has four PEs. For instance, an eight node system consists

of 32 PEs and eight FAM modules. Each of the PEs accesses any of the memory pools. Memory

pools and the PEs are connected through a common fabric network. The delay in accessing FAM

depends on the number of nodes sharing the fabric interface and memory. Although scalability is

beyond the scope of this paper we evaluated our approach when multiple nodes (up to 8) share the

fabric. As the number of PEs sharing the fabric increase, we observe that the slowdown due to

I-FAM is higher. This is due to more cycles are consumed to fetch FAM page table entries since,

the fabric network and memory are shared by the nodes. As a result, the performance improvement

with DeACT is more since, DeACT avoids accessing FAM for page table entries for most of the

time. When the fabric network and memory are allocated to only one node the performance im-

provement with DeACT is 2.92x for dc benchmark and it increases to 3.26x when fabric network

and memory are shared between 8 nodes.
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5.5 Related Work

Recently, disaggregating memory from PEs has been explored as an alternative memory architec-

ture to overcome various operational and scalability challenges of in-node memory architectures

[48, 107, 109, 47, 86, 108]. Works such as [52, ?, 16, 110] discuss and explore fast interconnect

to enable decoupling memory. However, there has been limited work discussing virtual memory

and security for such systems. Lim et al. [47] discussed two stage address translations for FAM

systems, but their approach is limited to using remote memory merely as a swap space. Lim et al.

[47] also proposed fine-grained remote memory accesses, which is similar to E-FAM and is not

secure as discussed. Shan et al. [48] proposed decoupled OS for FAM systems and the address

translations are performed by the FAM modules. However, for such a scheme to work the caches

must be virtually indexed and virtually tagged which is not adopted and is not a practical design.

Also, it requires significant changes to the OS. Aguilera et al. [107] invalidated virtual memory

paging for such huge memory designs. Aguilera et al. also proposed fixed virtual address regions

for the nodes [109]. However, this requires modifications to applications’ binaries. In this pa-

per, we discuss virtual memory support for FAM architectures with two stage address translations

(I-FAM) and propose DeACT scheme to accelerate address translations.

Decoupling access control and address mappings have been explored previously. Alam et al. [111]

discussed decoupled address control from address mapping allowing applications to perform ad-

dress translations by itself. Olson et al. [112] proposed an approach to sandbox accelerators

by providing them with flat address space. DeACT uniquely leverages the architecture layout

of FAM architectures when decoupling access control from translation; it allows fast caching of

translations in local nodes’ main memories and maintains access control in the trusted area (i.e., at

system-level). Additionally, DeACT supports data sharing across nodes and leverages system-level

translation units at the fabric.
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Although virtual machine guests are different from nodes in FAM systems, in both cases virtual

addresses are translated at two stages to access memory. A significant amount of work has been

done to improve the performance of virtualized conventional machines. Bhargava et al. [49] accel-

erate 2D PTW by studying reuse of page entry references and extend PTW caches to temporarily

cache nested dimension. Ahn et al. [113] revisited hardware-assisted page walks by speculative

shadow paging mechanism, called speculative inverted shadow paging, which is backed by non-

speculative flat nested page tables. The speculative mechanism provides a direct translation with

a single memory reference for common cases and eliminates the page table synchronization over-

heads. Agile paging is proposed by Gandhi et al. [114]. Agile paging allows a virtualized page

walk to start with the shadow paging for stable upper levels of the page table and allows switching

in the same page walk to nested paging for lower levels of the page table which receive frequent

updates. This way agile paging makes use of both shadow paging and nested paging. While these

approaches improve the system performance, these are proposed for virtual machines and our ap-

proach is orthogonal to these schemes.

5.6 Conclusion

In this work, we study memory management aspects in FAM systems and comprehend that mem-

ory access latency and security are two crucial concerns with the existing management schemes for

such architectures. Hence, we discuss virtual memory management in disaggregated memory sys-

tems and propose solutions to speed up address translations and provide security for such systems.

While approaches like [113, 114] reduce the number of memory accesses to fetch address mapping

in virtualized systems, they target native virtualized systems. Due to the hierarchical nature of the

memory, disaggregated memory systems have their own challenges supporting virtual memory.

We show that exposing global memory to the nodes needs OS alterations and compromise security
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from neighbor nodes. The virtual memory approach for disaggregated memory (indirect memory

access) does not ask for OS modifications and provides security from neighbor nodes, but per-

forms poorly. Although virtual memory support is discussed for disaggregated memory systems in

[47, 48, 109, 107], in such approaches remote memory is merely used as swap space and required

application and OS changes. We proposed a decoupled address translation and ACM approach

to improving the performance of I-FAM. We show that an improved spatial locality of system-

level translations by decoupling the system-level address translations from system-level ACM and

caching the decoupled FAM translations in the local memory. We also explore ACM caching in

STU cache to improve the performance. Overall, we achieved a performance improvement of up

to 4.59x (1.8x on average).
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