What Explains Legislator Support for Traditional Public School Education in Florida

Tiffaney M. Green
University of Central Florida

Part of the Education Economics Commons, and the Political Science Commons

Find similar works at: https://stars.library.ucf.edu/honorstheses

University of Central Florida Libraries http://library.ucf.edu

This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation
https://stars.library.ucf.edu/honorstheses/585
WHAT EXPLAINS LEGISLATOR SUPPORT FOR TRADITIONAL PUBLIC SCHOOLS IN FLORIDA

by

TIFFANEY M. GREEN

A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Political Science in the College of Sciences and in The Burnett Honors College at the University of Central Florida

Orlando, Florida
ABSTRACT

This research was conducted to determine what explains legislative support for traditional public education in Florida based on the 2017 and 2018 legislative sessions. Data from the Florida Education Association ratings for each member of the Florida House and Florida Senate for these legislative sessions was used. Information from each legislator and their district was collected and used as independent variables in this research. How does political party, gender, race, ethnicity, age, chamber, family status, leadership, experience, percentage of school age children in the district, region of the district, and population density of the district affect legislator support for traditional public education in Florida? Using SPSS software, two bivariate and two multivariate regression analyses were conducted to determine which of these variables were statistically significant. When analyzing the 2017 legislative session, political party, chamber, legislative experience, and leadership were statistically significant when explaining how a member voted on legislation that effected public education in Florida. When analyzing the 2018 legislative session, political party, chamber, race, age and those legislators from the north region of Florida were found to be statistically significant factors when determining what explains legislator support for public education. Overall, political party affiliation had the greatest impact on support for traditional public education with Democrats much more supportive than Republicans. Chamber was also an important factor, with members of the Senate more supportive of traditional public education than members of the House.
ACKNOWLEDGEMENTS

I would like to thank my thesis chair, Dr. Aubrey Jewett, and committee member Dr. Nathan Ilderton for their support in my pursuit towards completing this research project. Without your continued guidance and through this process I would not have been successful in the completion of this thesis.

Thank you Dr. Ilderton for signing on as a committee member for this thesis. I appreciate your help navigating through the SPSS software and your patience when helping me understand how to use this valuable tool. I appreciate the timely responses to my emails, and signature requests each semester.

A special thank you to Dr. Jewett, not only for giving me the opportunity to pursue an Honors in the Major, but also for helping me through the research process. Although we were not always able to meet in person, I appreciate your guidance through dozens of e-mails, phone calls, and skype meetings. It was a privilege working with you.

In addition, I would like to thank Dr. Nikola Mirilovic for signing off on this research project.

Lastly, I would like to thank my family, my husband, Matthew, and my young sons, Ryland and Chase, for the sacrifices and support that you have given me while I completed this thesis. I know the strain the addition of this research project has taken on our family, but I appreciate so much that you understand what completing this Honors in the Major means to me academically and personally.
TABLE OF CONTENTS

INTRODUCTION .. 1

LITERATURE REVIEW ... 3

THEORIES .. 10

HYPOTHESES .. 13

METHODOLOGY AND MEASUREMENT .. 16

RESEARCH ANALYSIS 2017 ... 21

UNIVARIATE ANALYSIS .. 21

BIVARIATE REGRESSION ANALYSIS ... 23

MULTIVARIATE REGRESSION ANALYSIS ... 29

RESEARCH ANALYSIS 2018 ... 32

UNIVARIATE ANALYSIS .. 32

BIVARIATE REGRESSION ANALYSIS ... 34

MULTIVARIATE REGRESSION ANALYSIS ... 41

CONCLUSION ... 44

REFERENCES ... 48
LIST OF TABLES

TABLE 1: Explaining Legislative Support for Public School Education in Florida 2017 – Univariate Analysis...21

TABLE 2: Explaining Legislative Support for Traditional Public School Education in Florida 2017 – Bivariate Regression Results...23

TABLE 3: Explaining Legislative Support for Traditional Public Education 2017 – Multivariate Regression Results..29

TABLE 4: Explaining Legislative Support for Traditional Public School Education 2018 – Univariate Analysis...32

TABLE 5: Explaining Legislative Support for Traditional Public School Education 2018 – Bivariate Regression Results..34

TABLE 6: Explaining Legislative Support for Traditional Public School Education 2018 – Multivariate Regression Results..41
INTRODUCTION

Support for education and education programs tends to vary by individual. Differing methodology, priorities and values can shape one’s view on how public education should be addressed at the individual, state and federal levels. This analysis aims to explore the variables that may affect how much support legislators give to traditional public school education in Florida through proposed bills in the Florida House of Representatives and the Florida Senate. I will also look at support on a national level through federal programs and legislation that has passed over the decades since Brown v. Board of Education. Several waves of education reform have taken place during this time and the legislation born from these reforms will be used to help analyze the effect these waves had on education policies. In this analysis I will look at support for traditional public education in Florida as represented by the FEA and their scorecard versus support for the new “Florida model” of public education. Traditional public education focuses on increased funding and support for established K-12 schools, teachers and programs with an emphasis on helping these schools, and the existing public school students. The “Florida model” (Albert Shanker Institute 2018) emphasizes standardized testing, accountability, the grading of traditional public schools and teachers, and funding for greater parental student choices in education. The voting patterns of each representative in the Florida House and Senate for the 2017 and 2018 legislative sessions have been compiled by the Florida Education Association (Florida Education Association) Action Center. We will use this information to analyze variables that may contribute to their position and subsequent voting score, including political party affiliation, gender, race, chamber serving in, age, legislative experience, leadership positions, percentage of school-aged children in the legislative district, region of the state and population density of the district. This
information will be used to test our hypothesis and form a conclusion, answering the question of what explains support for public education by legislator.

The Florida Education Association, FEA, is a statewide federation of teachers, education workers and labor unions in the state of Florida. Created in 2000 by merging two existing education associations, Florida Teaching Professions – NEA and FEA/United, the FEA holds the vision of being “the united voice for excellence in public education in Florida” (Florida Education Association 2018). The FEA is part of the American Federation of Teachers, AFT, and the National Education Association, NEA (Florida Education Association 2018). There are currently over 140,000 teachers and school support professionals who are part of the FEA. On their website, the FEA lists its mission, core values and strategic goals, which include setting a standard for excellence in Florida for education, influencing education policy, advocating for public education and empowering local affiliates and members (Florida Education Association 2018). The main focus of the FEA for the purposes of this study will be on the annual score card used by the FEA to determine a grade for each legislator in the Florida House of Representatives and the Florida Senate. Following the conclusion of the legislative session, letter grades, ‘A’ thru ‘F’ and corresponding percentages, are assigned to each legislator based on how they voted on the bills that impacted education. In 2017 and 2018 there were 20 combined bills voted on in the house and senate that the FEA used to determine grades for the session (Florida Education Association 2018). It is the variables that potentially effected these votes that we will be using to explain legislator support for traditional public school education in Florida.
LITERATURE REVIEW

Public education policy in the United States was transformed with the landmark U.S. Supreme Court case, *Brown vs. Board of Education*. This case in 1954 began the long process to desegregate schools across the United States. Reform, however, was slow going, and it was not until the Civil Rights Act of 1964 that the U.S. Office of Education mandated compliance of school districts to comply with desegregation and set the start of the 1967 school year to do so (Borman 2007). Soon after in 1965, the Federal government passed into law The Elementary and Secondary Education Act of 1965, also known as ESEA (Halperin 1975). This began change in the education system of Florida, focusing on providing disadvantaged children with resources to help them keep up with other students who were better off (Halperin 1975). The focus on the individual student and accountability on the part of schools for student success was revolutionary at the time. For the first time, the needs of under achieving students and students with disabilities were considered and policies in government were created reflecting this change in thinking (Halperin 1975). ESEA was the beginning of a snowball effect in education that led to movements throughout the education system across the United States. Additional provisions concerning handicapped students were added to the Act under Title VII as well as bilingual education programs for Hispanic and Indian children (Halperin 1975). Considering the current demographics of Florida’s K – 12 students, these changes brought about by ESEA were significant in the push for education policy focused on equality for all students.

In the years since ESEA was signed into law, the Federal government’s stance on education on a national level has shaped the legislation in individual states, including in Florida. In 1999, Republican Jeb Bush ended Democratic reign over the Florida Governor’s mansion when he was elected Governor of Florida in his first of two terms (Borman 2007). During his first term, between
1999 and 2003, Bush, who had the Republican majority and support of both state Senate and House of Representatives, was able to pass legislation reforming education throughout Florida (Borman 2007). The reforms present in the “A+ Plan” coincided with the federal government enacting President George W. Bush’s education reform policy, No Child Left Behind. Both laws emphasized standardized testing, voucher programs, merit pay for teachers based on student test scores, and Governor Bush’s plan included the end of Affirmative Action in higher education (Borman 2007). Many of these policies have led to further change in the Florida education system that continue to shape legislature.

While state representatives in the house and senate push for these reforms, there are many who oppose the legislation that has been passed. Resistance to these new Republican supported education policies was mostly done by Democratic groups. Borman (2007) describes opposition to the grading of schools by teachers’ unions which they felt led to teaching to the test. The class of 2002 was the last to take the High School Competency Test, HSCT, which was first enacted in 1981 and used until it was replaced by the FCAT in 2003. Bob Graham, the once Democrat Governor of Florida from 1979 to 1987, turned Congressman in the U.S. Senate for Florida from 1987 to 2005, was against the policy change which removed the central oversight board for state universities (Borman 2007). Party politics is evident in implementation of certain education policies.

Through the 2000s and into the 2010s, high stakes testing continued to rise in Florida and throughout the United States. Republican President George W. Bush enacted the No Child Left Behind Act of 2001, which amended Title I of ESEA (Dye 2017). The purpose of this act was to emphasize the importance of testing as a method of accountability for schools in the United States. By breaking down the results of the tests each year based on poverty, race, ethnicity, disability and
limited English proficiency, school districts could theoretically do their part to ensure every student was progressing appropriately and not being “left behind” (Dye 2015). Students were expected to be proficient readers by the time they reached third grade. Each year students from grades 3-10 would be tested and measured in reading and math and were required to show growth from one year to the next. Failing to do so would result in corrective action. The National Education Association, NEA, was against No Child Left Behind citing a need for comprehensive educational preparation for life as opposed to “narrow test taking education” (Dye 2015). In addition, parents were given the option to withdraw their children from consistently failing schools and enroll them in either another better performing public school, or use government issued vouchers to send their child to a charter school or private school.

In 2006 Jeb Bush’s state education policy came under scrutiny. Seven years after Florida enacted the first statewide voucher program, the Supreme Court of Florida ruled that the state’s voucher school program was unconstitutional. In Bush v. Holmes (2006) it was found the Opportunity Scholarship Program, which funded voucher programs, violated the “no aid” provision of the Florida Constitution, undermining state public education by diverting funds that would otherwise be allocated to public schools and instead diverting them to private, for profit schools. This decision was criticized in a Harvard Law Review article which favored school vouchers as a tool to improve education (State Constitutional Law 2006). After this decision on voucher programs the legislature came up with additional voucher programs that were funded through business tax credits rather than direct legislative appropriations (business could decide to donate to the scholarship fund and receive a tax credit for the full amount they donated). These programs were found constitutional and the state now has six voucher programs. The state also began expanding charter schools as another form of school choice. In Florida, current standards
must be met in charter schools the same as public schools which adhere to Florida Sunshine State Standards (Orange County Public Schools 2018); teachers must be certified, and charter schools are accountable to the school district where they reside.

Beginning with Jeb Bush in 1999 and continuing for nearly 20 years, Republicans governors have been elected into office and promoted the republican agenda of education reform. Charlie Crist succeeded Jeb Bush for governor. Under Crist, a bill that would have expanded Florida Virtual School, an online, state-wide charter school, did not make it out of the senate committee (Fang 2011). Also, under Crist the Republican governor vetoed a bill that would have eliminated tenure for teachers, which was a goal of the Republican Party of Florida. Crist also attempted to use the budget to cut aid from the state to virtual school programs (Fang 2011). Crist’s successor, Rick Scott took over governorship and held to a more traditional Republican policy approach to education. After taking office, Scott expanded the Florida Virtual School program for grades K-5 (Fang 2011) and authorized the use of public funds to for-profit schools.

The public opinion of Floridians stresses the general importance of education, but there is a consensus is lacking in how to enact policy that effectively handles the problem of education in the state. At the top of the priority list are increasing teacher pay, accountability, higher standards and test scores and reducing class sizes (McManus, Jewett, Bonanza and Dye 2015). For the past twenty years state officials and local governments have been reforming the education system in Florida to address public concerns and raise achievement levels to compete with other states on a national level. As a result, the policies and legislation reforming education has led to increased importance on standardized testing and graduation requirements. As far as the quality of education provided by the state, McManus, Jewett, Bonanza and Dye (2015) state that 48 percent of Floridians view the education system as “excellent” or “good” while 47 percent rate it as “poor”
or “fair”. Those differences in opinion are likely the result of the type of school a respondent’s child attends. Parents with whose children attend traditional public schools were more likely to have a more favorable outlook on public schools, while parents with children enrolled in private schools or a home-schooling program were more likely to have a less favorable or poor view of traditional public schools (McManus, Jewett, Bonanza and Dye 2015). On average, there are mixed reviews on how effective the education policies are in Florida and varying methods on how to bring Florida education to a more competitive position with the rest of the United States.

The changing attitude toward voucher programs led to changes on the Federal level. Under the leadership of President Barack Obama, Race to the Top was introduced into law as part of the American Recovery and Reinvestment Act of 2009 (U.S. Department of Education 2015). Race to the Top made available $4.65 billion in grant for states that underwent educational reform. States competed against each other for millions in education aid. To qualify, a state applied and then implemented different policies of education reform as outlined in the Act (U.S. Department of Education 2015). Points were awarded per policy enactment and at the end of 2010, schools who reached 500 points for meeting the policy standards were considered for the grants. Florida won 4th place in round 1 and in round 2 was awarded $700 million from Race to the Top (U.S. Department of Education 2015). Race to the Top, in conjunction to President Obama’s Common Core, were part of the next wave of education reform that had started with Governor Bush. In 2012, President Obama began allowing waivers to be issued for states who wanted to opt out of No Child Left Behind. The Common Core replaced President Bush’s education policy. The standards in Common Core outline what students should know at the end of each year regarding reading and mathematics (Dye 2017). Many of the standards of Race to the Top and Common Core were opposed by the teacher’s union of the state; as with the other education reform policies
proceeding The Common Core, these groups opposed “teaching to the test” (Dye 2015, 164). Other opposition to this program includes Republicans who believe that states should be responsible for enacting policies regarding education.

Standards included in The Common Core include vouchers for private or charter schools, which have gained popularity in the past decade. Accountability pressures created by the high-stakes testing of education reform in Florida allowed parents to have the choice to remove their children from failing schools and move to a school rated “C” or better, under Governor Bush, or given a voucher for a private school under President Obama (Rouse 2013). There continues to be a debate on whether taking funding from public schools and giving them to privately run charter schools is the best way to better the education system in Florida and the rest of the United States. Student success is the ultimate goal of these policies, but political ideology plays a role in what standards should be included and how these policies should be implemented.

While determining what explains the differences in support for public education among Florida legislators it is important to look at the Education code in the Florida State Constitution. Current goals of the Florida State Board of Education Strategic Plan (section 1008.31, Florida Statutes 2018) are outlined for the current 2018-2019 school year. Most of the strategies include an emphasis on high-stakes testing, improving the effectiveness of teachers, accountability systems and career preparation for students (section 1008.31, Florida Statutes 2018); Education choice and an overall increase in education quality and services are also included. In the 2017 legislative session 13 house and senate bills were voted on that had a direct effect on education in Florida. Of these, the Florida Education Association supported only two. Similarly, in the 2018 legislative session, seven bills were voted on in the state House and Senate and only one had the support of the Florida Education Association. A look at the voting histories on these bills shows that votes
supporting or opposing the proposed bills were along party lines. Most Republicans in the Florida House and Senate voted ‘yes’ on the bills, while most Democrats in the Florida House and Senate voted ‘no’ (Florida Education Association Action Center 2018). The FEA grades each congressman or congresswoman based on how they voted on education bills, and it is no surprise that most Republicans receive a “D” or “F” grades, while most Democrats receive an “A” or “B” grade (Florida Education Association 2018).

Questions to be Answered:

1. What explains the differences in support for traditional public school education among Florida Legislators?

2. Does party affiliation, gender, or race have an effect on how a legislator votes on bills affecting education?
THEORIES EXPLAINING DIFFERENCES IN SUPPORT FOR TRADITIONAL PUBLIC EDUCATION AMONG FLORIDA LEGISLATORS

What explains differences in support for traditional public school education among Florida legislators? The questions can be examined using four different theories.

Partisanship Theory:

One theory that explains voting in the legislature is partisanship (LeLoup 1976). Political affiliation is important when analyzing the voting patterns of government legislators for several reasons. Often, partisanship groups like-minded people together. Members of the same political party may hold similar view on social issues, religion and/or morals and ideals. These common viewpoints can influence members on education policy, thus directly affecting how they vote. Ideology concerning education policy tends to vary by political party. Partisanship highlights political party priories. Republicans tend to have more conservative views which emphasize state’s rights and less government regulation. Democrats tend to be more liberal in their thinking, opting for greater government support for schools and education programs.

Demographics Theory:

Another theory improved understanding of legislative voting is the demographic of the legislator (Bratton, et al. 1999). Demographics are the characteristics of people who live in a certain area or are part of a particular group. The composition of the Florida Senate and Florida House of Representatives will be analyzed based on race/ethnicity, gender, age and family status. My analysis will determine the influence these variables have on the support these members have regarding public education legislature that passes through the chambers of the Senate and House.
Each of these variables shapes the experiences one may have in life and these experiences influence values, thinking and in a more narrowed perspective, the view on issue that come about for a vote on the House or Senate floors.

Institutional Characteristics Theory

Another theory that explains the support for public education in the Florida legislature, from a professional perspective, involves the institutional characteristics (Declercq 1977). Within this theory are influencing variables such as legislative experience, leadership and whether they serve in the Florida Senate or the Florida House of Representatives. These variables can sway a legislator’s opinion on issues. The experience gained from serving in the House or Senate is unique for each member and over time can ingrain particular standpoints impacting public education. A legislator who has several years or decades as a legislator, or one in a position of authority, potentially has more influence in encouraging others to adopt their perspectives or the majority perspective in order to secure the votes needed to pass bills or kill bills during the legislative session.

District Characteristics Theory

One final theory which will be used to further explain voting in the legislature is the make-up of the district and constituency influence on the legislator (Shapiro, et. al. 1990). There are 40 districts in Florida that are represented by the state senate (Florida Senate 2018). The Florida House of Representatives is made up of 120 districts (Florida House of Representatives 2018). We will explore if the percentage of school age children in the district, the population density of the district and the region of the state the district is located correlates to the way the representative votes on legislature affecting public education. The demographics of the district affects the legislators
elected, thus can affect how a legislator views and votes on bills that have an impact on public education policy.
HYPOTHESIS

Partisanship of the Member:

H1: Democrats in the Florida House and Florida Senate will have higher FEA scores than Republicans. Partisanship highlights political party priorities. Democrats ideology toward public education aligns more with the Florida Education Association (FEA) which correlates to higher scores. Republican members of the Florida House and Florida Senate are more likely to vote in favor of bills which the FEA is opposed to.

Demographics of the Member:

H2: Black legislators will have higher FEA scores than white legislators. The race and/or ethnicity of the Florida legislature member will affect how that members votes on legislation affecting public education. Because of a long history of discrimination, Black children often go to substandard schools and thus black legislator are more likely to favor increased funding and other policies that support traditional public schools. However, there is some tension in the black community on this issue as black children are more likely to use educational choice available in the Florida Model.

H3: Hispanic legislators will have higher FEA scores than members who are not Hispanic. There are many Hispanic legislators who come from districts in South Florida or other areas of the state where there is a higher concentration of more liberal representatives. In addition, these urban schools are often crowded and not as well funded or maintained. On the other hand, many Cuban legislators have been traditionally Republican and Hispanic children are more likely to attend a voucher school in Florida than white Anglo children. Thus, Hispanic legislators may be cross pressedured on this issue.
H4: Females will have higher FEA scores than males. Women state legislators have been more likely to emphasize and support traditional public education.

H5: There is a negative relationship between the age of the legislator and FEA score. As age increases the FEA score decreases. Older legislators may be more likely to experiment with vouchers after seeing traditional reforms failing to produce results.

H6: Those legislators with school-aged children will have higher FEA scores than members without school-aged children. Members who have children in school, many in public school, may want to see more funding and support for traditional public education.

Institutional Characteristics of the Member:

H7: There is a positive relationship between legislative experience and FEA scores. Longer serving members may be more likely to vote in favor of traditional public education while newer members may be more willing to support non-traditional reforms.

H8: Members in leadership positions will have higher FEA scores than regular members. Longer serving Democrats will have the highest scores where longer serving Republicans will have the lowest scores.

H9: Members of the Florida Senate will have higher FEA scores than members of the FL house. Florida senators come from larger more heterogeneous geographic areas and thus tend to be more moderate compared to Florida representatives from smaller more homogenous districts who tend to be more ideologically extreme.

District Characteristics
H10: There is a positive relationship between the percent of school-age children in a district and the member’s FEA score.

H11: Members from South Florida will receive higher FEA scores than members from other parts of the state. South Florida is more liberal than the rest of the state and also has long complained that it has been shortchanged by the legislature when it comes to education funding and therefore its constituents are likely to elect representatives that are more supportive of the FEA positions on education policy.

H12: There is a positive relationship between the population per square mile of a district and the member’s FEA score. Urban districts have more challenges in terms of funding and providing education to large numbers of children and may vote for members that are seeking more support (financial and otherwise) for traditional public education.
METHODOLOGY AND MEASUREMENT

This thesis will seek to answer the research question and test hypotheses using quantitative analysis. Analysis will be done separately for the 2017 and 2018 legislative sessions. Data will be collected and then the descriptive statistics will be explored for each year. After that a series of bivariate regressions will be run to see the effects of each independent variable on the dependent variable. Then multivariate regression models will be estimated to test the statistical significance and strength of each relationship while controlling for each independent variable in the model. Statistical analysis will be done using SPSS software.

Dependent Variable

THE FEA SCORE (EDUCATION RATING)

The score a member receives from the FEA represents the dependent variable in my analysis. Information on the voting history of each member of the Florida House of Representatives and each member of the Florida Senate for both the 2017 and 2018 legislative sessions will be used in my analysis to explain what causes legislator support for public education. A perfect score indicates perfect support for the FEA position - support for public education. Scores are determined by the FEA based on how a legislator votes on the bills that have come up to a vote either on the House floor or the Senate floor. At the end of the annual session the FEA takes the vote history for each of the legislators. The more votes that align with the position the FEA has taken, the higher the percentage score the legislator receives. Scores for the 2017 and 2018 legislative sessions can be found on the FEA action center website.

Independent Variables: Partisanship

POLITICAL PARTY
This variable measures the political party affiliation of the legislator in 2017 and 2018. Each member is either a Republican or a Democrat. Republicans are scored as “0” and Democrats are scored as a “1”. The party information for each legislator can be found both on the FEA report card within the FEA website, and on the Florida Senate website under “Senators” and on the Florida House website under “Representatives.”

Independent Variables: Demographics

RACE

Legislators are grouped by whether they are black or not black as found and recorded using the Florida Senate and Florida House of Representatives websites. Legislators who are not black are given a score of “0” and black are given a score of “1”.

ETHNICITY

Legislators are grouped by whether they are Hispanic or Non-Hispanic as found and recorded using the Florida Senate and Florida House websites. Legislators who are Hispanic are given a score of “1” and non-Hispanic legislators are given a score of “0”.

GENDER

This variable is recorded as whether a legislator is a male or female. Males are scored as “0” and women are scored as “1”. This information was found by looking at the biographical section of the Florida Senate and Florida House websites.

FAMILY STATUS

This variable includes family information for the Senator or Representative. Legislators without school-aged children are given a score of “0” while legislators with school-aged children
are given a score of “1”. The legislator’s family information can be found on the Florida Senate or Florida House websites under biographical information.

AGE

This variable is comprised of the age of the legislator measured in years. The birthdate of the legislator is found and recorded under the biographical information section of the Florida Senate and Florida House websites and converted into years.

Independent Variables: Institutional Characteristics

CHAMBER

This variable indicates the chamber from which the legislator is a member. Members of the Florida Senate are scored as “0” and members of the Florida House of Representatives are scored as “1”. This information can be found on the score card for 2017 and 2018. The information is separated by year and chamber on the FEA action website.

EXPERIENCE

This variable is measured in years and included the total number of years the member has of legislative service in either the Florida House or Florida Senate. This information can be found on the biographical information section of the Senate and House websites.

LEADERSHIP POSITION

This variable indicates any leadership position the member has held while serving in either the Florida House or Florida Senate. Leadership positions can include speaker, president, majority or minority leader, and committee chair. A score of “0” is given to members not in leadership positions and a score of “1” is given to members in leadership positions. This information can be
found under the “Senators” section on the Florida Senate website and the “Representatives” section of the Florida House website by clicking on the legislator’s name.

Independent Variables: District Characteristics

PERCENTAGE OF SCHOOL AGED CHILDREN IN THE DISTRICT

This variable includes children under the age of 19 living in the district of each representative. This number is calculated using the district’s demographic profile for the district each member represents. The demographic profile contains a section for “Total Population by Age” The sections for “Under 5”, “5 to 9”, “10 to 14” and “15 to 19”. These numbers are totaled and this total is then divided by the total district population and multiplied by 100. This information is provided on the demographics section of the House and Senate websites and is provided based on the 2010 census.

REGION OF THE STATE

This variable is determined by where the district is in the state of Florida. It is measured by location; either north, central or south. Information on where each district is can be found on the district maps section of the Florida House or Florida Senate websites. Each region was analyzed separately; for region-central: “0” for north and south and “1” for central, for region-south: “0” for north and central and “1” for south, and for region north: “0” for central and south and “1” and north.

POPULATION DENSITY OF THE DISTRICT

Population density is measured as population per square mile. The population density is calculated by taking the population of each district and dividing it by the size of the district.
Population and square mileage of each district is listed under the demographic section on the Florida House or Florida Senate websites. This will determine if the district is more rural or urban.
RESEARCH ANALYSIS

Explaining Legislator Support for Traditional Public Education in Florida - 2017

UNIVARIATE ANALYSIS 2017

Prior to analyzing the findings from the bivariate and multivariate regressions, an examination of the dependent variable and individual independent variables is needed.

Table 1: Explaining Legislative Support for Traditional Public School Education in Florida 2017 – Univariate Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education Rating</td>
<td>43.633%</td>
<td>41.093%</td>
<td>157</td>
</tr>
<tr>
<td>Party (Democrats)</td>
<td>N/A</td>
<td>N/A</td>
<td>56</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>N/A</td>
<td>N/A</td>
<td>40</td>
</tr>
<tr>
<td>Race (Black)</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
</tr>
<tr>
<td>Ethnicity (Hispanic)</td>
<td>N/A</td>
<td>N/A</td>
<td>22</td>
</tr>
<tr>
<td>Age</td>
<td>50.65</td>
<td>11.573</td>
<td>157</td>
</tr>
<tr>
<td>Chamber (House)</td>
<td>N/A</td>
<td>N/A</td>
<td>120</td>
</tr>
<tr>
<td>Family Status (With Children)</td>
<td>N/A</td>
<td>N/A</td>
<td>129</td>
</tr>
<tr>
<td>Leadership (Yes)</td>
<td>N/A</td>
<td>N/A</td>
<td>44</td>
</tr>
<tr>
<td>Experience</td>
<td>5.86</td>
<td>3.68</td>
<td>157</td>
</tr>
<tr>
<td>% School Age Children in District</td>
<td>37.939</td>
<td>173.701</td>
<td>157</td>
</tr>
</tbody>
</table>
Table 1 displays the descriptive statistics for the variables examined in all 120 Florida house districts and 37 Florida senate districts. Three senate members did not receive education ratings from the Florida Education Association and were not included in the 2017 analysis. Of the 157 legislators, 56 were Democrats and 40 legislators were women. There were 27 black legislators and 22 who were of Hispanic origin. There were 129 legislators who had children. Forty-four legislators held positions of leadership in either the Florida house or Florida senate. Spread out across the state, there were 28 legislators with districts in north Florida, 39 legislators with districts in the central Florida region, and 90 districts in south Florida. The average age in years of the 157 legislators was 50.65 with a standard deviation of 11.57. The mean experience in years of the 157 legislators was 5.86 years with a standard deviation of 3.68. The Percentage of school aged children in the district had a mean of 37.94% with a standard deviation of 173.70%. The average population density of the districts was 1579.14 people per square mile with a standard deviation of 1906.80, meaning the population of each district was more or less about the same across the state of Florida.
BIVARIATE ANALYSIS 2017

Table 2: Explaining Legislative Support for Traditional Public School Education in Florida 2017

– Bivariate Regression Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>Std. Error</th>
<th>R Square</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Party</td>
<td>71.889</td>
<td>3.730</td>
<td>.704</td>
<td>.000***</td>
</tr>
<tr>
<td>Gender</td>
<td>14.288</td>
<td>7.458</td>
<td>.023</td>
<td>.057**</td>
</tr>
<tr>
<td>Race</td>
<td>48.484</td>
<td>7.804</td>
<td>.198</td>
<td>.000***</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>3.967</td>
<td>9.472</td>
<td>.001</td>
<td>.676</td>
</tr>
<tr>
<td>Age</td>
<td>.173</td>
<td>.284</td>
<td>.002</td>
<td>.544</td>
</tr>
<tr>
<td>Chamber</td>
<td>-28.895</td>
<td>7.320</td>
<td>.091</td>
<td>.000***</td>
</tr>
<tr>
<td>Family Status</td>
<td>-18.784</td>
<td>8.341</td>
<td>.031</td>
<td>.026**</td>
</tr>
<tr>
<td>Leadership</td>
<td>-2.741</td>
<td>7.316</td>
<td>.001</td>
<td>.708</td>
</tr>
<tr>
<td>Experience</td>
<td>.960</td>
<td>.892</td>
<td>.007</td>
<td>.284</td>
</tr>
<tr>
<td>% School Age Children in District</td>
<td>.027</td>
<td>.019</td>
<td>.013</td>
<td>.148</td>
</tr>
<tr>
<td>Region-North</td>
<td>-10.295</td>
<td>8.555</td>
<td>.009</td>
<td>.231</td>
</tr>
<tr>
<td>Region-Central</td>
<td>-7.166</td>
<td>7.593</td>
<td>.006</td>
<td>.347</td>
</tr>
<tr>
<td>Region-South</td>
<td>11.635</td>
<td>6.586</td>
<td>.020</td>
<td>.079*</td>
</tr>
<tr>
<td>Population Density</td>
<td>.007</td>
<td>.002</td>
<td>.096</td>
<td>.000*</td>
</tr>
</tbody>
</table>

Significance Levels = ***.01, **.05, *.10
All Constants were significant at the .000 level
Table 2 shows the bivariate regression results for all independent variables hypothesized to have an impact on legislative support for traditional public school education in the state of Florida for 2017. For all 157 legislators in the Florida legislature, the average education rating for 2017 was 43.633% with a standard deviation of 41.093%. Of the 14 independent variables, there were seven that were statistically significant at the .10 level or lower: party, gender, race, chamber, family status, region – south, and population density. When looking at the model summary data for the univariate analysis party has an R-squared of .704. This indicates we have a proportional reduction in error of 70.4%. Or 70.4% of the variance in the dependent variable education rating is accounted for by knowing the independent variable party. This is in line with our hypothesis which states that Democrats in the Florida House of Representatives and Florida Senate would have higher FEA scores than Republicans. Democrats averaged 71.89 points higher (the B value) on their FEA ratings than Republicans.

The next variable with significance in this model was race. The independent variable, race, had the second highest R-Squared of .198 which means 19.8 percent of the variance in the dependent variable education rating is accounted for by knowing whether the legislator is black or non-black. Whether a legislator was black or not black explains 19.8 percent of legislator support for education with black legislators scoring 48.48 points higher on their FEA education rating than non-black legislators.

The chamber of the legislator also affected education rating. When looking at the legislative chambers, this explained 9.1 percent of legislative support for education. Senators scored an average of 28.9 points higher FEA scores than those legislators in the Florida House of Representatives. This result is in line with our initial hypothesis which states members of the Florida Senate will have higher FEA scores than members of the FL house. Senators represent
larger more heterogenous mixtures of the population with greater variance in ideology and demographics than those in House districts.

Compared to legislators with children, legislators without children had higher FEA scores. Family status of the legislator, with children or with no children, explained 3.1 percent of legislator support for traditional public school education. This variable had a significance level of 0.026, which is statistically significant. Legislators with children scored 18.78 points lower on their FEA scores. This was an interesting result that suggests our initial hypothesis is incorrect since we initially hypothesized that members with children would have higher FEA scores. Further research could be useful to determine why this result was shown.

Of the three regions analyzed, the only one that proved to be significant was the southern region of Florida, with a significance level of .079. In this model, neither the north nor central Florida regions proved to be significant in determining legislator support for traditional public school education. According to the bivariate model, two percent of legislator support for education can be explained by the region – south. On average, legislators from the southern region of Florida scored 11.64 points higher on their FEA scores than legislators from the north or central regions of the state. This is in accordance with our initial hypothesis which states that legislators from the southern region of Florida would have higher FEA scores than those of the northern or central regions. Constituents in the south region are likely to elect representatives that are more supportive of the FEA positions on education policy.

When looking at gender, 2.3 percent of legislator support for education can be explained based on whether a legislator is male or female, with females having higher FEA scores than men. This variable is significant at .057, which is in line with our initial hypothesis that females will
have higher FEA scores than males. This model shows that women legislators had, on average, 14.29 points higher FEA scores than male legislators.

Population density had a significance level of .000. This ratio variable demonstrates a small positive relationship between education rating and whether a legislator is from a district that is more rural or more urban. Members from districts with greater population density showed an increase of .007 points to their education rating. The population density of a district explains 9.6 percent of legislator support for education. The higher the population density of a legislator’s districts, the higher their FEA score was. This is in accordance to our initial hypothesis which states that there is a positive relationship between the population per square mile of a district and the member’s FEA score. Urban districts have more challenges in terms of funding and providing education to large numbers of children and may vote for members that are seeking more support for traditional public school education.

A series of bivariate regressions showed that these variables were not significant; ethnicity, age, leadership, experience, percentage school aged children in district, region-north, and region-central were all found to be insignificant with significance levels less than .10 and did not play a significant role in legislator support for public education in Florida.

The ethnicity of a legislator, whether the legislator was Hispanic or non-Hispanic did not have a statistically significant effect on legislator support for traditional public education. Legislators that were Hispanic did not have significantly higher FEA scores than those who were non-Hispanic. This does not support our initial hypothesis; Although there was a positive relationship, it was not at the strength that was expected for this variable.
The age of the legislator did not have a significant effect on the FEA score, or demonstrate a significant relationship between age and legislative support for traditional public school education. This does not support our initial hypothesis. It was hypothesized that as age increases the FEA score would decrease and this was not proven to be true. For each year increase in age, the FEA score increased by a mere .173 points.

The leadership of a legislator did not have a significant effect on the FEA score of the legislator. Those legislators who did not have leadership experience were found to have slightly higher FEA scores than those legislators who had a history of leadership positions. This does not support our initial hypothesis which states members in leadership positions will have higher FEA scores than regular members. Chamber leadership will have an inverse effect on the FEA score given to the legislator.

The experience of the legislator did not have a significant effect on the FEA score given to the legislator. More experience did not translate into a significantly higher score than those legislators with less experience. This does not support our initial hypothesis which states there is a positive relationship between legislative experience and FEA scores. Longer serving members may be more likely to vote in favor of traditional public education and will higher FEA scores, while newer members may be more willing to support non-traditional reforms and will have lower FEA scores. Legislator scores were not significantly different when analyzing experience.

The percentage of school aged children in the legislative district did not have an effect on legislative support for traditional public school education. This does not support our initial hypothesis which states there is a positive relationship between the percent of school-age children in a district and the member’s FEA score. While there was a small positive increase of .027 in the
FEA score based on percentage of school aged children in the district this is not significant in explaining legislator support for education.

The region of the legislator’s district did not have an effect on legislative support for traditional public education for the north and central regions of Florida. Legislators scored 10.3 points lower on their FEA scores from the north region when compared to those in the rest of the state and 7.16 points lower on their FEA scores from the central region when compared to elsewhere in the state.
FULL MODEL – MULTIVARIATE REGRESSION 2017

Table 3 Explaining Legislative Support for Traditional Public Education 2017 – Multivariate Regression Results

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>31.278</td>
<td>9.769</td>
<td></td>
<td>3.202</td>
<td>.002***</td>
</tr>
<tr>
<td>Party</td>
<td>73.803</td>
<td>4.190</td>
<td>.863</td>
<td>17.613</td>
<td>.000***</td>
</tr>
<tr>
<td>Gender</td>
<td>5.166</td>
<td>3.588</td>
<td>.055</td>
<td>1.440</td>
<td>.152</td>
</tr>
<tr>
<td>Race</td>
<td>-.472</td>
<td>5.289</td>
<td>-.004</td>
<td>-.089</td>
<td>.929</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>5.556</td>
<td>4.820</td>
<td>.047</td>
<td>1.153</td>
<td>.251</td>
</tr>
<tr>
<td>Age</td>
<td>-.093</td>
<td>.149</td>
<td>-.026</td>
<td>-.624</td>
<td>.534</td>
</tr>
<tr>
<td>Chamber</td>
<td>-18.272</td>
<td>4.299</td>
<td>-.191</td>
<td>-4.250</td>
<td>.000***</td>
</tr>
<tr>
<td>Family Status</td>
<td>-5.708</td>
<td>4.436</td>
<td>-.054</td>
<td>-1.287</td>
<td>.200</td>
</tr>
<tr>
<td>Leadership</td>
<td>-7.923</td>
<td>3.727</td>
<td>-.087</td>
<td>-2.126</td>
<td>.035**</td>
</tr>
<tr>
<td>Experience</td>
<td>2.104</td>
<td>.526</td>
<td>.189</td>
<td>4.003</td>
<td>.000***</td>
</tr>
<tr>
<td>% School Age Children in District</td>
<td>-.002</td>
<td>.009</td>
<td>-.010</td>
<td>-.269</td>
<td>.789</td>
</tr>
<tr>
<td>Region-North</td>
<td>-1.858</td>
<td>4.885</td>
<td>-.017</td>
<td>-.380</td>
<td>.704</td>
</tr>
<tr>
<td>Region-South</td>
<td>-2.643</td>
<td>3.922</td>
<td>-.032</td>
<td>-.674</td>
<td>.501</td>
</tr>
<tr>
<td>Population Density</td>
<td>-.001</td>
<td>.001</td>
<td>-.027</td>
<td>-.575</td>
<td>.566</td>
</tr>
</tbody>
</table>
Significance Levels = ***.01, **.05, *1.0
All Constants were significant at the .000 level

R Square = .804
F Change = 45.16
Durbin-Watson = 2.079

Table 3 contains the results for the multivariate regression analysis seeking to explain legislative support for traditional public school education in Florida among the 157 elected House and Senate district legislators. When the regression is run in the full model, the full model explains 80.4 percent of the variance in FEA scores used to determine legislative support. The F Change Statistic was 45.159 which shows the full model was statistically significant. The Durbin-Watson was 2.079 which indicates that serial correlation was not a problem for the model. All the variance inflation factors were less than two, which indicates that multicollinearity was not a problem in this model. The constant for this model indicates that with all other variables set to 0 the FEA education rating would be 31.28 percent.

There were four variables which showed to be statistically significant; party, chamber, leadership and experience. Of these five variables, only party and chamber also proved to be statistically significant in the bivariate regression model. According to the standardized coefficient, the variable with the most impact was the party, whose beta was .863. Democrats, on average, scored 73.8% higher than Republicans on the FEA ratings. Chamber had the second largest impact with a beta of -.191. Members of the House scored lower on support for traditional education than members of the Senate (by about 18.3% on average). Experience, with a beta of .189, had only slightly less impact than Chamber. Each additional year of service in the legislature was correlated with a 2.1% higher rank on the FEA scorecard Leadership had a beta value of -.087 which was the smallest impact of the statistically significant variables. Leaders of the Florida House and Senate scored about 8% lower on the FEA ratings compared to rank and file members. It was hypothesized that party would be most significant when explaining legislative support for traditional public
school education and that Democrats would score much higher than Republicans and the results of this regression support that hypothesis. A legislator’s chamber had a statistically significant effect on legislative support for education (which senators scoring higher than house members) which also supports our initial hypothesis. Although, not significant in the bivariate regression model, both leadership and chamber proved to be statistically significant in the full model when controlling for other variables. These results also support our initial hypothesis.

The majority of the variables tested in this model were not significant; gender, race, ethnicity, family status, percent of school children in the district, population density and region – north, central and south. In the bivariate model five of these variables were statistically significant; gender, race, family status, region – south and population density. However once controls were added for other variables, these factors were no longer significant.
Explaining Legislator Support for Traditional Public School Education in Florida - 2018

UNIVARIATE ANALYSIS 2018

As with 2017 data, prior to analyzing the findings from the bivariate and multivariate regressions, an examination of the dependent variable and individual independent variables is needed.

Table 4 Explaining Legislative Support for Traditional Public School Education 2018 – Univariate Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education Rating</td>
<td>44.69%</td>
<td>42.41%</td>
<td>155</td>
</tr>
<tr>
<td>Party (Democrat)</td>
<td>N/A</td>
<td>N/A</td>
<td>56</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>N/A</td>
<td>N/A</td>
<td>42</td>
</tr>
<tr>
<td>Race (Black)</td>
<td>N/A</td>
<td>N/A</td>
<td>27</td>
</tr>
<tr>
<td>Ethnicity (Hispanic)</td>
<td>N/A</td>
<td>N/A</td>
<td>21</td>
</tr>
<tr>
<td>Age</td>
<td>50.65</td>
<td>11.573</td>
<td>155</td>
</tr>
<tr>
<td>Chamber (House)</td>
<td>N/A</td>
<td>N/A</td>
<td>117</td>
</tr>
<tr>
<td>Family Status (With Children)</td>
<td>N/A</td>
<td>N/A</td>
<td>124</td>
</tr>
<tr>
<td>Leadership (Yes)</td>
<td>N/A</td>
<td>N/A</td>
<td>43</td>
</tr>
<tr>
<td>Experience</td>
<td>5.86</td>
<td>3.68</td>
<td>155</td>
</tr>
</tbody>
</table>
Table 1 displays univariate analysis for the variables examined in 117 Florida house districts and 38 Florida senate districts. Five legislative members did not receive education ratings from the Florida Education Association and were not included in the 2018 analysis. Of the 155 legislators, 56 were Democrats and 42 legislators were women. There were 27 black legislators and 22 who were of Hispanic origin. There were 124 legislators who had children. Forty-three legislators held positions of leadership in either the Florida house or Florida senate. Spread out across the state, there were 28 legislators with districts in north Florida, 37 legislators with districts in the central Florida region, and 90 districts in south Florida. The average age in years of the 155 legislators was 50.44 with a standard deviation of 11.65. The mean experience in years of the 155 legislators was 5.85 years with a standard deviation of 3.72. The percentage of school aged children in the district had a mean of 24.12 percent with a standard deviation of 3.73%. The average population density of the districts was 1587.46 with a standard deviation of 1940.5, meaning the population of each district was more or less about the same across the state of Florida.
BIVARIATE ANALYSIS 2018

Table 5 Explaining Legislative Support for Traditional Public School Education 2018 – Bivariate Regression Results

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>Std. Error</th>
<th>R Square</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Party</td>
<td>76.05</td>
<td>3.631</td>
<td>.741</td>
<td>.000***</td>
</tr>
<tr>
<td>Gender</td>
<td>13.213</td>
<td>7.641</td>
<td>.019</td>
<td>.086*</td>
</tr>
<tr>
<td>Race</td>
<td>48.484</td>
<td>7.804</td>
<td>.033</td>
<td>.000***</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>2.415</td>
<td>10.020</td>
<td>.000</td>
<td>.676</td>
</tr>
<tr>
<td>Age</td>
<td>.450</td>
<td>.294</td>
<td>.015</td>
<td>.128</td>
</tr>
<tr>
<td>Chamber</td>
<td>-14.423</td>
<td>7.887</td>
<td>.021</td>
<td>.069*</td>
</tr>
<tr>
<td>Family Status</td>
<td>-19.138</td>
<td>8.434</td>
<td>.033</td>
<td>.025**</td>
</tr>
<tr>
<td>Leadership</td>
<td>-4.236</td>
<td>7.653</td>
<td>.002</td>
<td>.581</td>
</tr>
<tr>
<td>Experience</td>
<td>-.618</td>
<td>.929</td>
<td>.003</td>
<td>.507</td>
</tr>
<tr>
<td>% School Age Children in District</td>
<td>2.695</td>
<td>.870</td>
<td>.059</td>
<td>.002***</td>
</tr>
<tr>
<td>Region-North</td>
<td>-20.674</td>
<td>8.757</td>
<td>.035</td>
<td>.019***</td>
</tr>
<tr>
<td>Region-Central</td>
<td>-.450</td>
<td>8.046</td>
<td>.000</td>
<td>.955</td>
</tr>
<tr>
<td>Region -South</td>
<td>12.903</td>
<td>6.872</td>
<td>.023</td>
<td>.062*</td>
</tr>
<tr>
<td>Population Density</td>
<td>.008</td>
<td>.002</td>
<td>.122</td>
<td>.000***</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>

Significance Levels = ***.01, **.05, *.10
All Constants were significant at the .000 level

Table 5 shows the bivariate regression results for all independent variables hypothesized to have an impact on legislative support for traditional public education in the state of Florida for 2018. For all 155 legislators in the Florida legislature, the average education rating for 2018 was 44.69 percent with a standard deviation of 42.41 percent. Of the 14 independent variables, there were nine that were statistically significant; party, gender, race, chamber, family status, percent school age children in the district, region – north, region – south, and population density all had significance levels under .10. In this model, party explains 74.1 percent of support for public education.

When looking at the model summary data for the bivariate regression analysis, party has an R-squared of .741 which indicates we have a proportional reduction in error of 74.1 percent. Or 74.1 percent of the variance in the dependent variable education rating is accounted for by knowing the independent variable party.

Democrats averaged 76.05 points higher on their FEA ratings than Republicans. This is in line with our hypothesis which states that Democrats in the Florida House of Representatives and Florida Senate would have higher FEA scores than Republicans.

The next variable with significance in this model was race. The independent variable, race, had the second highest R-Squared of .198 which means 19.8 percent of the variance in the dependent variable education rating is accounted for by knowing whether the legislator is black or
non-black. Black legislators scoring 48.48 points higher on their FEA education rating than non-black legislators.

Gender is significant at .086 and has an R Square of .019 percent, which means 1.9 percent of legislator support for education can be explained based on whether a legislator is male or female, with females having higher FEA scores than men. This model shows that women legislators had, on average, 13.213 points higher FEA scores than male legislators which is in line with our initial hypothesis that females will have higher FEA scores than males.

When looking at the legislative chambers, this explained 2.1 percent of legislative support for education. Senators had an average of 14.423 points higher FEA scores than those legislators in the Florida House of Representatives. This result is in line with our initial hypothesis which states members of the Florida Senate will have higher FEA scores than members of the Florida House. Senators represent larger, more heterogenous mixtures of the population with greater variance in ideology and demographics than those in House districts which tend to have more homogenous ideologies.

Compared to legislators with children, legislators without children had higher FEA scores. Family status of the legislator, with children or with no children, explained 3.3 percent of legislator support for education with an R Square of .033. This variable had a significance level of 0.25, which is statistically significant. Legislators without children scored 19.138 points higher on their FEA scores. This was an interesting result that went against our initial hypothesis in both this analysis and the same analysis for the 2017 legislative session. We initially hypothesized that members with children would have higher FEA scores, but this was shown in our model to be false. Further research could be useful to determine why this result was shown.
Of the three regions analyzed, the only one that proved to be significant in 2017 was the southern region of Florida, with a significance level of .079. In this model for 2018, both the districts in the northern and districts in the southern regions showed significance levels. The variable region – north had an R Square of .035 and a significance level of .019. The southern region was once again significant with an R Square of .023 and a significance level of .062. According to the bivariate model, 2.3 percent of legislator support for education can be explained by the region – south, while 3.5 percent of legislator support for traditional public school education can be explained by the legislator’s district being in the norther region. On average, legislators from the southern region of Florida scored 12.90 points higher on their FEA scores than legislators from the north or central regions of the state. This is in accordance with our initial hypothesis which states that legislators from the southern region of Florida would have higher FEA scores than those of the northern or central regions. Constituents in the south region are more liberal and thus more likely to elect representatives that are more supportive of the FEA positions on education policy. However, in this instance, the variable for the region – north was also statistically significant and members representing the Panhandle scored about 20.6% lower in their support for traditional public education. Members from the north are more likely to be conservative, as are a majority of their constituents, and this may help explain the results.

The percentage of school aged children in the legislative district did not have an effect on legislative support for traditional public school education in 2017, however, after running the bivariate analysis on the 2018 data, it achieves a significance level of .002. The percentage of school aged children in the legislative district does have a positive effect on legislative support for traditional public school education: each 1 percent in school age children results in a 2.7% increase in support for traditional public education. This supports our initial hypothesis which states there
is a positive relationship between the percent of school-age children in a district and the member’s FEA score.

Population density has a significance level of .000. This ratio variable demonstrates a weak positive relationship between education rating and whether a legislator is from a district that is more rural or more urban. Each one percent increase in population density translated into an increase of .008 points to their education rating. The population density of a district has an R Square of .122 and explains 12.2 percent of legislator support for traditional public school education. The higher the population density of a legislator’s districts, the higher their FEA score was. This is in accordance to our initial hypothesis which states that there is a positive relationship between the population per square mile of a district and the member’s FEA score. Urban districts have more challenges in terms of funding and providing education to large numbers of children and may vote for members that are seeking more support for traditional public education.

A series of bivariate regressions showed that these variables were not significant: ethnicity, age, leadership, experience, and region – central. These variables all had significance levels greater than .10 and did not play a significant role in legislator support for traditional public school education in Florida.

The ethnicity of a legislator, whether the legislator was Hispanic or non-Hispanic, did not have a statistically significant effect on legislator support for traditional public school education. Legislators that were Hispanic did not have significantly higher FEA scores than those who were non-Hispanic. This does not support our initial hypothesis; although there was a positive relationship, it was not at the strength that was expected for this variable.
The age of the legislator did not have a significant effect on the FEA score, or demonstrate a significant relationship between age and legislative support for traditional public school education. As was the case with the bivariate analysis of the 2017 data, this does not support our initial hypothesis. It was hypothesized that as age increases the FEA score would decrease and this was not proven to be true. For each year increase in age, the FEA score increased by a mere .450 points.

The leadership of a legislator did not have a significant effect on the FEA score of the legislator. Those legislators who did not have leadership experience were found to have slightly higher FEA scores than those legislators who had a history of leadership positions. This does not support our initial hypothesis which states members in leadership positions will have higher FEA scores than regular members. Chamber leadership will have an inverse effect on the FEA score given to the legislator. This variable was not significant in the 2017 bivariate regression analysis either.

The experience of the legislator did not have a significant effect on the FEA score given to the legislator. More experience did not translate into a significantly higher score than those legislators with less experience. This does not support our initial hypothesis which states there is a positive relationship between legislative experience and FEA scores. Longer serving members may be more likely to vote in favor of traditional public education and will higher FEA scores, while newer members may be more willing to support non-traditional reforms and will have lower FEA scores. Legislator scores were not significantly different when analyzing experience. This variable was not significant in the 2017 bivariate regression analysis either.

The region of the legislator’s district did not have an effect on legislative support for traditional public school education for the districts in the central region of Florida. This supports
our initial hypothesis that those legislators whose districts were in the southern region of Florida would have higher FEA scores than those in the north or central regions.
FULL MODEL – MULTIVARIATE REGRESSION 2018

Table 6 Explaining Legislative Support for Traditional Public School Education 2018 –

Multivariate Regression Results

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>10.526</td>
<td>16.710</td>
<td>.630</td>
<td>.530</td>
<td></td>
</tr>
<tr>
<td>Party</td>
<td>69.968</td>
<td>4.576</td>
<td>.791</td>
<td>15.289</td>
<td>.000***</td>
</tr>
<tr>
<td>Gender</td>
<td>1.368</td>
<td>3.868</td>
<td>.014</td>
<td>.354</td>
<td>.724</td>
</tr>
<tr>
<td>Race</td>
<td>12.714</td>
<td>5.978</td>
<td>.113</td>
<td>2.127</td>
<td>.035**</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>3.346</td>
<td>5.381</td>
<td>.027</td>
<td>.622</td>
<td>5.35</td>
</tr>
<tr>
<td>Age</td>
<td>.324</td>
<td>.168</td>
<td>.089</td>
<td>1.927</td>
<td>.056**</td>
</tr>
<tr>
<td>Chamber</td>
<td>-8.447</td>
<td>4.568</td>
<td>-.086</td>
<td>-1.849</td>
<td>.067**</td>
</tr>
<tr>
<td>Family Status</td>
<td>-6.389</td>
<td>4.796</td>
<td>-.060</td>
<td>-1.332</td>
<td>.185</td>
</tr>
<tr>
<td>Leadership</td>
<td>-2.075</td>
<td>4.133</td>
<td>-.022</td>
<td>-.502</td>
<td>.616</td>
</tr>
<tr>
<td>Experience</td>
<td>.467</td>
<td>.578</td>
<td>.041</td>
<td>.808</td>
<td>.421</td>
</tr>
<tr>
<td>% School Age Children in District</td>
<td>.301</td>
<td>.518</td>
<td>.027</td>
<td>.581</td>
<td>.562</td>
</tr>
<tr>
<td>Region-North</td>
<td>-16.021</td>
<td>5.316</td>
<td>-.147</td>
<td>-3.014</td>
<td>.003***</td>
</tr>
<tr>
<td>Region-South</td>
<td>-6.211</td>
<td>4.502</td>
<td>-.073</td>
<td>-1.380</td>
<td>.170</td>
</tr>
<tr>
<td>Population Density</td>
<td>-.001</td>
<td>.001</td>
<td>-.037</td>
<td>-.742</td>
<td>.459</td>
</tr>
</tbody>
</table>

Significance Levels = ***.01, **.05, *.1.0

R Square = .804
F Change = 45.16
Durbin-Watson = 2.079
Table 6 contains the results for the multivariate regression analysis seeking to explain legislative support for public education in Florida among the 155 elected House and Senate district legislators in the 2018 legislative session. When the regression is run in the full model, the full model explains 80.4 percent of the variance in FEA scores used to determine legislative support. The F Change Statistic was 45.16 which shows the full model was statistically significant. The Durbin-Watson was 2.079 which indicates that serial correlation was not a problem for the model. All the variance inflation factors were less than two, which indicates that multicollinearity was not a problem in this model. The constant for this model indicates that with all other variables set to 0 the FEA education rating would be 10.526 percent.

Five variables achieved statistical significance; party, race, age, chamber and region – north. Of these five variables, party, chamber, race and region – north were also statistically significant in the bivariate regression model. According to the standardized coefficient, of these variables with statistical significance, the variable with the most impact was the party, whose beta was .791. On average, Democratic legislators scored about 70% higher on support for traditional public education compared to Republicans. It was hypothesized that party would be most significant when explaining legislative support for public education and the results of this regression support that hypothesis.

Region – North had the second highest impact on FEA scores based on its beta value of -.147. Members from the Panhandle region scored about 16% less on the FEA ratings compared to members from the other regions when controlling for all other factors.

Race had the next strongest impact with a beta value of .113. Black legislators scored 12.7% higher than white and Hispanic legislators. Age had less impact (beta of .89) but still had a statistically significant positive effect with a 1-year increase in a legislator’s age corresponding
to a .324% increase in their FEA rating. Finally, a legislator’s chamber had the weakest relative support (beat equal to -.086) with Florida senators scoring about 8.5% lower than Florida house members on the FEA scorecard.

The majority of the variables tested in this model were not significant; gender, ethnicity, family status, leadership, experience, percent of school children in the district, population density and region – central and south. In the bivariate model five of these variables were statistically significant; gender, family status, percent of school children in the district, region – south and population density.
CONCLUSION

The aim of my research was to explain legislator support for traditional public school education in Florida. Using the information provided by the score card from the Florida Education Association Action Center on legislators in all 120 house and 40 senate districts I was able to breakdown the demographic, institutional, district, and partisan characteristics into variables which we used for our analysis. I stated hypotheses about which variables had a significant impact on how state house and state senate members voted on legislation that affects traditional public education in Florida and which did not have significant impact. I used data from the 2017 and 2018 legislative sessions and the FEA score cards from these sessions for analysis. Two spreadsheets were created, one for 2017 and one for 2018. The data contained in both of these spread sheets included all legislators for the house and senate for the given year. The 2017 legislative session comprised of 157 legislators; 37 from the senate and 120 from the house. The 2018 legislative session comprised of 155 legislators; 38 from the senate and 117 from the house. Using IBM SPSS software, a univariate analysis, bivariate regression analysis, and multivariate regression analysis was performed on both models which provided six data sets of analysis.

The model for 2017 showed that seven variables were statistically significant in the bivariate regression; party, gender, race, chamber, family status, region – south, and population density. Four of the variables were statistically significant in the multivariate regression analysis for the 2017 legislative session; party, chamber, leadership and experience.

The model for 2018 showed that nine of the variables were significant in the bivariate regression analysis; party, gender, race, chamber, family status, percentage of school aged children in the district, region – north, region – south, and population density of the district. Five of the
variables were statistically significant in the multivariate regression analysis for the 2018 legislative session: party, race, age, chamber and region – north.

In the 2017 model, party and chamber were the only two variables shown to be significant in both the bivariate regression and multivariate regression. In the 2018 model, party, chamber, region – north, and race were found to be significant in both the bivariate regression and the multivariate regression.

The 2017 model showed that seven variables were not statistically significant in the bivariate regression; ethnicity, age, leadership, experience, percentage of school age children in the district, region – north, and region – central. Nine variables were not statistically significant in the multivariate regression; gender, race, ethnicity, age, family status, percentage of school age children in the district, region – south, population density, region – central, and region – north.

The 2018 model showed that five variables were not statistically significant in the bivariate regression; ethnicity, age, leadership, experience, and region – central. Nine variables were not statistically significant in the multivariate regression; gender, race, ethnicity, age, family status, percentage of school age children in the district, region south, region – north, and population density.

When looking at the data from all four regression analyses, party and chamber were the only variables found to be significant in all four models. All together, these two variables explain a majority of legislator support for traditional public education. Political parties have become very polarized. The ideologies of the party affect how legislators vote on bills that have an effect on traditional public education, thus other factors do not matter as much. Also, the broad demographic of the senate districts also demonstrates a substantial difference from that of the house districts.
leads to a significant effect on legislator support for traditional public school education. Senator on average are more moderate than their house counterparts and that seems to show up in education votes. In both bivariate regression analyses, ethnicity, age, leadership, experience, and region – central Florida ended up not having a statistical significance on how a legislator voted on bills affecting public education. In both of the multivariate regression analyses, gender, ethnicity, family status, percentage of school age children in the district, population density, and region – south did not matter. All together these results show that party affiliation has the biggest impact on legislative support for traditional public education in Florida.

This researched covered all legislative districts in Florida for the 2017 and 2018 legislative sessions. There were several shortcomings to this research. Only two legislative sessions were analyzed. Expanding the research to cover multiple years may result in different results than those found in this study. Expanding the research to include other states including those that have varying levels of diversity when compared to Florida may result in a different conclusion. This research only measured traditional education; if the legislative impact on other forms of education, such as religious, charter schools or online schools were also included this could result in a different conclusion as well. Also, I used the Florida Education Association score card data on each legislator to determine his or her level of support for legislation that affects traditional education. One could argue that this may not be the best rating and using the rating of other groups could result in a different outcome to the study. Going into more detail of the bills which were voted on in the legislative session, and the breakdown of votes for each bill (including committee votes and votes on amendments) might be helpful to include in the analysis.

Future research could be conducted across different states over many years, across the country to obtain a broader outlook on the subject of support for education, but also different forms
of education. This type of research could be separated by region, such as southern states, west coast states, the mid-west and the east coast. How do the different regions of the United States compare when looking at legislator support for public education? Since political party affiliation was found to explain a majority of legislator support, would the addition of independent legislators have an effect on the data? Also, this research could be expanded to cover the US Senate and US House of Representatives to compare legislator support for education on a federal level. Also, since the chamber the legislator served was found to be statistically significant, future research including the composition of the house and senate respectively could enhance the research and further explain this variable’s significance.

Although it was expected that political party would have a significant effect on legislator support for traditional public school education, it was interesting to discover how big of a factor the political party of a legislator has regarding education. Many factors which I thought would have significance turned out to not have any or only had significance in one regression analysis, but in the full model did not matter. More research should be conducted on this topic to include not only state and region, but also the federal level and can be a useful and valuable resource for educators and school districts across the country.
REFERENCES

