
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Analyzing the Blockchain Attack Surface: A Top-down Approach Analyzing the Blockchain Attack Surface: A Top-down Approach

Muhammad Saad
University of Central Florida

 Part of the Software Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Saad, Muhammad, "Analyzing the Blockchain Attack Surface: A Top-down Approach" (2021). Electronic
Theses and Dissertations, 2020-. 554.
https://stars.library.ucf.edu/etd2020/554

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/150?utm_source=stars.library.ucf.edu%2Fetd2020%2F554&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/554?utm_source=stars.library.ucf.edu%2Fetd2020%2F554&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYZING THE BLOCKCHAIN ATTACK SURFACE:
A TOP-DOWN APPROACH

by

MUHAMMAD SAAD
B.E. Electrical Engineering, National University of Science and Technology, Pakistan, 2014

M.S. Electrical Engineering, Lahore University of Management Sciences, Pakistan, 2017

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2021

Major Professor: David Mohaisen

© 2021 Muhammad Saad

ii

ABSTRACT

Blockchains enable secure asset exchange in a distributed system, thereby facilitating innovative

applications such as cryptocurrencies and smart contracts. Although the cryptographic constructs

of blockchains are highly secure, however, their practical deployments are vulnerable to various

attacks due to their application-specific policies, and their peer-to-peer (P2P) network intricacies.

In this work, we take a top-down approach towards exploring those attacks, starting with the

application-specific abuse of blockchain-based cryptocurrencies and concluding with the network

conditions that violate the blockchain consistency.

In the top-down approach, we first analyze the application-specific abuse of blockchain-based cryp-

tocurrencies by uncovering (1) covert cryptocurrency mining in the web browsers, and (2) artifi-

cially inflating the transaction fee by attacking the blockchain memory pools. For both attacks, we

show how the application policies are exploited to affect the benign users.

After exploring the application-specific attacks, we proceed towards a systematic analysis of in-

consistencies in the blockchain P2P network. For this analysis, we focus on Bitcoin which is the

most dominant blockchain system. Our analysis reveals that the biased distribution of resources in

the Bitcoin network can be exploited to launch various partitioning attacks. Furthermore, through

a root cause analysis, we discover that (1) the Bitcoin network is asynchronous in the real world,

and (2) its security model does not embrace the risks associated with network churn.

The last two components in the dissertation consolidate our attack surface analysis by analyzing

the impact of network asynchrony and network churn on the blockchain consistency property. We

conduct theoretical analysis and measurements to show how various network characteristics can

be exploited to reduce the cost of launching notable attacks that violate consistency.

Our top-down approach uncovers various novel attacks that have not been studied in the prior

works. For each attack, we also propose countermeasures to harden the blockchain security.

iii

To my grandparents Abdul Aziz, Khurshid Bibi, Muhammad Saleem, Qayyum Akhtar, and

Shareefan Bibi

iv

ACKNOWLEDGMENTS

This work would not have been possible without the support of many individuals to whom I am

grateful. Foremost, I am thankful to my parents (Shagufta and Zulfiqar) and my siblings (Ameer,

Nida, and Zaid) for their continuous support and love.

I would like to thank my advisor and doctoral committee chair, Dr. David Mohaisen, for being my

inspiration and helping me grow as a researcher. I am extremely proud to be your student. I also

thank my dissertation committee members for their support: Dr. Murat Yuksel, Dr. Sung Choi

Yoo, and Dr. Changchun Zou.

Gratitude to my collaborators for their valuable contributions and feedback: Charles Kamhoua (US

Army Research Lab), DaeHun Nyang (Ewha Womans University), Laurent Njilla (US. Air Force

Research Lab), Mihai Christodorescu (Visa Research), My T. Thai (University of Florida), Murat

Yuksel (University of Central Florida), Mahdi Zamani (Visa Research), Ranjit Kumaresan (Visa

Research), Songqin Chen (George Mason University), Srivatsan Ravi (University of Southern Cal-

ifornia), and Sachin Shetty (Old Dominion University). I am also grateful to my team members at

SEAL, particularly Afsah, Ahmed, Ashar, Hisham, Jeman, Mo, and Rhongho for their support.

My research career was initially nurtured by Dr. Fareed Zaffar, Dr. Ijaz Naqvi, Dr. Tariq Jadoon,

Dr. Zartash Uzmi, Dr. Ihsan Qazi, Saloo Durrani, and Ahmad Javed. You are still my guiding

light. I am also grateful to my cousin Dr. Zubair Shafiq for being my strength in challenging times.

Gratitude to my friends Abdullah, Amin, Aubrey, Aysha, Cameron, Emily, Imran, Jafar, Mehboob,

Mervat, Mohsin, Olga, Shahzaib, Seher, Shehzad, Soha, Tulha, and Zainab for their care.

Finally, I want to thank my girlfriend Mehar Khan who stood by my side through thick and thin.

You are the most important “Related Work” in my life.

This work was supported by the Air Force Material Command under FA8750-16-03011, the Na-

tional Research Foundation under Grant NRF-2016K1A1A2912757 and NSF under Grant CNS-

1809000. All opinions in this work are of the authors and do not reflect those of the sponsors.

v

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xx

CHAPTER 1: INTRODUCTION . 1

1.1 Motivation . 3

1.2 Research Statement and Dissertation Organization 4

1.2.1 Application-Specific Attacks . 5

1.2.2 Network Layer Attacks . 6

CHAPTER 2: LITERATURE REVIEW . 9

2.1 Application-specific Attacks . 9

2.2 Network Layer Attacks . 10

CHAPTER 3: STATIC AND DYNAMIC ANALYSIS OF IN-BROWSER CRYPTOJACK-

ING . 13

3.1 Contributions . 13

3.2 Preliminaries and Data Collections . 14

3.3 Static Analysis . 15

3.3.1 Content and Currency-based Categorization 15

3.3.2 Code-based Analysis . 15

3.3.3 Fuzzy C-Means Clustering . 17

vi

3.4 Dynamic Analysis . 19

3.4.1 CPU Usage . 20

3.4.2 Network Usage and Profiling . 22

3.5 Countermeasures . 22

3.6 Summary . 24

CHAPTER 4: COUNTERING DDOS ATTACKS ON BLOCKCHAIN MEMORY POOLS 25

4.1 Contributions . 25

4.2 Background and Preliminaries . 26

4.3 Threat Model . 27

4.3.1 Attack Procedure . 28

4.3.2 Attack Cost . 29

4.4 Countering The Mempool Attack . 30

4.4.1 Fee-based Mempool Design . 30

4.4.2 Age-based Mempool Design . 33

4.5 Summary . 35

CHAPTER 5: PARTITIONING ATTACKS ON THE BITCOIN NETWORK 36

5.1 Contributions . 36

5.2 The Bitcoin Network Structure . 37

5.2.1 Threat Model . 38

5.2.2 Data Collection . 39

5.2.3 Methodology . 40

vii

5.3 Partitioning Attacks . 40

5.3.1 Spatial Partitioning . 41

5.3.2 Temporal Partitioning . 45

5.3.3 Spatio-temporal Partitioning . 49

5.4 Countermeasures . 51

5.5 Summary . 52

CHAPTER 6: ROOT CAUSE ANALYSIS FOR BITCOIN NETWORK SYNCHRONIZA-

TION . 53

6.1 Background and Motivation . 54

6.2 Data Collection Methodology and Overview . 57

6.2.1 Collecting Reachable Bitcoin Node Addresses 57

6.2.2 Collecting Unreachable Addresses . 60

6.2.3 Discovering Responsive Unreachable Addresses 60

6.3 Analysis and Results . 62

6.3.1 Unreachable Nodes . 62

6.3.2 Addressing Protocol . 64

6.3.3 Information Relaying Protocol . 67

6.3.4 Network Churn . 71

6.4 Improving Bitcoin Network Synchronization . 75

6.5 Summary . 77

CHAPTER 7: HASHSPLIT: EXPLOITING ASYNCHRONY TO VIOLATE BLOCKCHAIN

viii

CONSISTENCY AND CHAIN QUALITY 78

7.1 Contributions . 78

7.2 The Bitcoin Ideal World Functionality . 79

7.3 Data Collection . 83

7.3.1 Bitcoin Peer-to-Peer Network . 83

7.4 Identifying the Mining Nodes . 86

7.5 Network Synchronization . 90

7.5.1 Bitcoin Network Asynchrony . 91

7.6 The HashSplit Attack . 94

7.6.1 Threat Model and Attack Objectives . 95

7.6.2 Attack Procedure . 97

7.6.2.1 Identifying Vulnerable Nodes 97

7.6.2.2 Blockchain Splitting . 97

7.6.2.3 Block Race . 99

7.7 Simulations and Results . 105

7.8 Attack Countermeasures . 107

7.9 Summary . 109

CHAPTER 8: SYNCATTACK: DOUBLE-SPENDING IN BITCOIN WITHOUT MINING

POWER . 110

8.1 Motivation . 110

8.2 Ideal Functionality for Bitcoin Network Synchronization 112

8.3 Bitcoin Network Measurement . 117

ix

8.3.1 Bitcoin Network Synchronization . 117

8.3.1.1 Bitcoin Forks . 119

8.3.1.2 Network Outdegree . 120

8.3.2 Bitcoin Network Churn . 122

8.3.2.1 Measurement Results . 122

8.4 The SyncAttack . 127

8.4.1 Threat Model . 127

8.4.2 Attack Procedure . 129

8.4.2.1 Double-spending in the SyncAttack 133

8.4.3 Ongoing Attacks . 135

8.4.4 SyncAttack Countermeasures . 136

8.5 Summary . 138

CHAPTER 9: CONCLUSION . 139

LIST OF REFERENCES . 152

x

LIST OF FIGURES

3.1 Website categorization based on the main topic. Note that most websites

belong to Entertainment, Business, and Education. A sizable chunk (12%)

belonged to the Adult category. 14

3.2 Clustering of the cryptojacking, malicious, and benign scripts using FCM. . . 19

3.3 Malicious JavaScript code that links to Coinhive. 20

3.4 Processor usage by four cryptojacking websites with JavaScript enabled and

disabled. 21

3.5 CPU usage on devices. As the throttling parameter decreases, the CPU usage

increases. 21

3.6 Circumventing detection by relaying WebSocket requests through a proxy

server. 23

4.1 Relationship between the mempool size and the mining fee paid by the users.

Notice that as the mempool size grows, the mining fee increases accordingly.

The spikes during May, September, and November 2017 indicate spam at-

tacks. 26

4.2 Fee-based design analysis. As the mining fee increases, the mempool size re-

duces. However this also affects legitimate transactions thereby reducing the

detection accuracy. An optimum fee cut-off can be selected from Fig. 4.2(c)

based on the accuracy and size ratio trade-off. 32

xi

4.3 Analysis of the age-based Design. Notice that with age-based design, the ac-

curacy, precision, and size ratio are comparatively higher than the fee-based

design. Therefore, the age-based design is more effective in rejecting the

unconfirmed transactions generated by the attacker. 33

5.1 The Bitcoin network illustration showing full nodes and lightweight nodes

(also called SPV clients). Lightweight nodes only have the view that their

associated full nodes provide. Full nodes F1, F2, and F5 have updated views

while F3 and F4 are 1-2 blocks behind. 38

5.2 Network topology consisting of organizations, ASes and full nodes. Organi-

zations D and E can launch BGP attacks against F and B respectively. 41

5.3 CDF of the Bitcoin full nodes in ASes and organizations. 43

5.4 CDF of top 5 ASes vulnerable to BGP attacks. The key shows total BGP pre-

fixes announced by AS. For 8 ASes, 80% nodes can be isolated by hijacking

20 BGP prefixes. 44

5.5 An illustration of the temporal attack. The attacker establishes connections

with nodes and identifies vulnerable nodes that have an outdated view. Vul-

nerable nodes have have not been provided new blocks by surrounding peers,

which shows their weak relationship/connectivity. We annotate this weak

relationship with dotted lines. The attacker feeds his copy of blocks to vul-

nerable nodes, thereby partitioning the network into two conflicting chains.

. 45

xii

5.6 Temporal consensus in Bitcoin network. Y-axis denotes number of nodes in

1000. In each figure, green region denotes the up-to-date blocks. Yellow

region denotes 1 block behind. Purple, blue, and magenta regions represent

nodes that are 2–4, 5–10, and ≥ 10 blocks behind respectively. Fig. 5.6(a)

shows the overall network, Fig. 5.6(b), shows a day (March 25) that offers

greater attack opportunity, and Fig. 5.6(c) shows consensus pruning during

10 minutes. 46

5.7 Simulation of temporal attack. Fig. 5.7(a) shows fork B emerging at node

[7,7]. Compare the color distribution to the peaks of Fig. 5.6(c) above.

Two blocks later in Fig. 5.7(b) fork B has control of 1/6 of the nodes. In

Fig. 5.7(c) the longer chain A overwhelms fork B but has lost synchroniza-

tion so cannot prevent emergence of a new fork C. 48

5.8 Spatial and temporal distribution of nodes for the day defined in Fig. 5.6(b).

For the synced nodes in Fig. 5.8(a), we outline their distribution across top

five ASes in Fig. 5.8(b) and Fig. 5.8(c). On average, AS4134 hosts most of

the nodes. 49

6.1 Bitcoin network synchronization in 2019 and 2020. Synchronization is deter-

mined by the percentage of nodes with the up-to-date blockchain. In 2019,

the mean and median network synchronization were 72.02% and 80.38%,

respectively. In 2020, the mean and median network synchronization de-

creased to 61.91% and 65.47%, respectively. The kernel density shape also

shows that the Bitcoin network synchronization decreased in 2020. 54

xiii

6.2 Data collection workflow. The “Address Crawler” collected IP addresses of

reachable nodes from DNS database and Bitnodes, removed blacklisted ad-

dresses, and forwarded them to the “Network Crawler and Scanner” which

operated our Bitcoin node that sent GETADDR messages. After collecting

IP addresses of unreachable nodes, it sent them a VER message using Scapy.

Unreachable nodes that responded to the VER message were labeled as re-

sponsive nodes. 57

6.3 Preliminary experiment results. On average, from Bitnodes and DNS server

database, we collected 10,114 and 6,637 IP addresses, respectively. Among

them, 439 and 342 addresses belonged to the critical infrastructure. Our Bit-

coin node connected with 8,270 nodes on average. 59

6.4 Longitudinal analysis of unreachable addresses collected from the network.

The black line shows the unique IP addresses collected in each experiment

and the red line shows the cumulative number of unique IP addresses col-

lected in 60 days. The gap between the two lines shows that in each ex-

periment, new IP addresses appeared in the network. Overall, we collected

≈694K unique IP addresses of unreachable nodes. 62

6.5 Unique IP addresses of responsive nodes collected in each experiment as

well as cumulative. The cumulative number of responsive addresses follow

the same trend as the unreachable addresses. Initially, due to an error, the

experiment on responsive nodes was delayed by two weeks. On average, we

collected ≈54K responsive addresses in each experiment. 63

6.6 Results from the experiment conducted to analyze the stability of outgoing

connections. The experiment was conducted for 260 seconds and we ob-

served that the outgoing connections are highly unstable. The number of

connections varied between 2–10 connections at any time. 65

xiv

6.7 Results from the experiment conducted to analyze the success rate of out-

going connections. On average, only 11.2% attempts result in successful

outgoing connections. For the second experiment, the number of successful

connections appear to be 15. This is due the fact some connections were

dropped after which the node made new successful connections. 66

6.8 Message handling workflow. The SocketHandler thread loops over each

peer and reads incoming messages into the vProcessMsg queue. It also

sends outgoing messages from vSendMessage queue. The message han-

dler thread reads messages from vProcessMsg queue and sends the output

to vSendMessage queue. 68

6.9 Delay between the time of receiving block and the time at which the block

is relayed to the last connection. On average, it takes 1.39 seconds to relay

blocks to all connections . 70

6.10 Delay between the time of receiving the transaction and the time at which

the transaction is relayed to the last connection. The average delay is ≈0.45

seconds. 70

6.11 Binary matrix plot. Value 1 is marked 1 while value 0 is marked white. For

a given IP address, end-to-end horizontal line shows that the address was

connected in each experiment. 73

6.12 The difference between the number of nodes that leave the network and the

new nodes that join. Overall, the arrival rate and the departure rate of nodes

is roughly constant. 73

xv

7.1 he Bitcoin ideal world functionality, closely modeled on the practical im-

plementation of Bitcoin as we largely see it. Only mining nodes Pi ∈ M

participate in the block race. The communication model follows the primi-

tive specifications of [76, 44]. We also distinctly characterize the behavior of

mining (Pi ∈M) and non-mining (Pi /∈M) nodes when they receive blocks. 80

7.2 An illustration of our data collection system contextualized in the Bitcoin

framework. Mining pools can have reachable (Mining Pool A), unreachable

(Mining Pool C), or both (Mining Pool B) types of nodes. Note that unreach-

able nodes cannot connect with each other. Therefore, a block must appear

in the reachable space to reach other miners. Our crawlers directly connect

with all the reachable nodes to receive their blocks directly. 84

7.3 A sample JSON output when a block is received by our crawler from a peer.

Here, “addr” is the IP address of the peer to which the crawler is connected

to, “synced headers” is the height of blockchain header at which the crawler

has synchronized with the node, and “inflight” is the block that the node is

transmitting to the crawler. 86

7.4 Locality-inference experiment result. The histograms show the percentage

of blocks contributed by the top IP addresses. We mask thelast two octets to

preserve privacy. Inside the plot, there is a CDF showing the distribution of

IP addresses with respect to the total blocks produced. 88

7.5 Full-scale experiment result. The histograms show the percentage of blocks

contributed by top IP addresses. We mask the last two octets to preserve pri-

vacy. Inside the plot, there is a CDF showing the distribution of IP addresses

with respect to the total blocks produced. 88

xvi

7.6 CDF of synchronized nodes reported from our measurements. Our results

show that in ≈9.98 minutes on average, only 39.43% nodes have the latest

block. The results are far from the ideal world specifications, indicating a

block high propagation delay. 91

7.7 Block propagation of two miners, sampled at one second interval. Note that

Miner A’s block reaches |M |/2, |M |, |N|/2, and |N| at 2, 6, 30, and 76

seconds, respectively. In contrast, Miner B’s block reaches the same set of

nodes at 52, 58, 90, and 140 seconds respectively. Miner A has a significant

advantage over Miner B in terms of block propagation. 93

7.8 Generalized illustration of Fig. 7.7. For simplicity of modelling, we assume

a uniform hashing power distribution in M (i.e. M1 ≈ |M |/2 ≈ 51% hash

rate and i.e. M2 ≈ |M |/2 ≈ 49% hash rate). Am is well connected compared

to Hm. If Hm and Am concurrently produce a block, Am wins race due to

Hm’s propagation delay. Here ta,1, ta,2, ta,3 and ta,4 are times when Am’s

block reaches 50% miners, 100% miners, 50% network, and 100% network.

Accordingly, th,1...th,4 are the corresponding values forHm. 95

7.9 Block race after the adversary executes algorithm 6. For each event, we show

the event probability and the adversary’s strategy for the next round. 100

7.10 State machine representation of a block race. Transition probabilities are p00,

p01, p10, and p11 are P[X = F], P[X = R], P[X = F], and P[X = R],

respectively. 101

7.11 Simulations of the HashSplit attack. In each round (except 5th), the adversary

with 26% hash rate is the first to produce a block and follows algorithm 6.

In the 5th round, the adversary manages to produce the block before th,2.

Adversary releases the chain after 8th block 107

xvii

7.12 Performance evaluation of our Bitcoin Core version deployed on a full node.

In less than 100 seconds, our node connected with over 6K reachable nodes

while maintaining the bandwidth overhead under 6Mbps. 108

8.1 Ideal functionality for the Bitcoin network synchronization. The two con-

ditions specified in the ideal functionality ensure that all reachable nodes in

Bitcoin eventually receive a block and the maximum block propagation de-

lay among the reachable nodes is bounded by a delay threshold parameter to

prevent forks with a high probability . 113

8.2 Relationship between |Nr| and deg+
min(Nr) required for a connected topol-

ogy. In the current network size of ≈11K nodes [23], deg+
min(Nr) must be

greater than 4.47. 114

8.3 Fork probability due to block propagation delay kt. At kt=416 seconds, the

fork probability becomes greater than 0.5. Therefore, we set the delay thresh-

old T=416 seconds. 114

8.4 Results obtained by applying Heuristic 1 on our dataset. Our results show a

weak synchronization in the real world. On average, only 52.2% nodes had

an up-to-date blockchain. 118

8.5 Network synchronization pattern of a node obtained from algorithm 7. When

the node was synchronized, the corresponding value in the list was marked

1 (synchronization indicator). Therefore, the shaded region shows all the

blocks for which the node remained synchronized. 120

8.6 Cumulative number of reachable nodes and the average number of reachable

nodes present in the Bitcoin network at any time. The gap between the two

lines indicates a high network churn caused by the permissionless network. . 122

xviii

8.7 The number of arriving and departing nodes in the Bitcoin network. On av-

erage, in two months, 952 nodes joined and 946 nodes departed from the

network every day. 123

8.8 The number of persistent nodes Rp in the Bitcoin network. Note that over

time, the curve flattens and we find 2,890 nodes that stayed persistently in

the network. 124

8.9 Network lifetime of synchronized nodes. Among the total 18,007 nodes,

72% nodes did not stay in the network for more than two days. Moreover,

the maximum lifetime of a synchronized node was found to be ≈11 days.

The results clearly show that all mining nodes experience churn. 126

8.10 SyncAttack illustration showing how A occupies all the connections of the

arriving nodes Ni and the outgoing slots of Ne, left opened by the departure

of an existing node. 132

8.11 Due to churn, the size of Ne decreases and the size of Ni increases with time. 132

8.12 Double-spending in the SyncAttack where A orchestrates mining on two

blockchain branches and generates conflicting transactions on each branch.

When A receives the reward for each transaction, A releases the longest

branch to diffuse the fork. Note that despite diffusing the fork,A still controls

Ni and can always re-launch the attack. 134

8.13 Number of incoming connections from the same IP address recorded on our

reachable nodes. We observed instances where the node received up to 33

connections from the same IP address, indicating an attempt to target our

node. 135

8.14 The change in deg+(Ne) as |Ne| decreases from 11K to 2,890. 137

xix

LIST OF TABLES

3.1 Currency-based analysis results. 1 The abbreviation No CJ means No cryp-

tojacking. 16

3.2 Features values for cryptojacking, malicious, and benign samples. 18

3.3 Confusion matrix and evaluation metrics of the cryptojacking (CJ), mali-

cious, and benign scripts’ clustering results based on FCM clustering algo-

rithm. (1) Evaluation metrics’ names are abbreviated. FPR= False Positive

Rate, FNR= False Negative Rate, and AR=Accuracy Rate. 18

3.4 Messages exchanged between the client and the server in a WebSocket con-

nection. 23

4.1 Confusion Matrix and Evaluation Parameters 32

5.1 Top 10 ASes and Organizations that host Bitcoin nodes as of February 28th

2018. Note that the network is more centralized with respect to organizations

than ASes, and AS24940 host the maximum number of Bitcoin nodes. 42

5.2 Top 5 mining pools per hash rate, ASes, and organizations. 65.7% mining

data goes through only three organizations. Alibaba intercepts at least 60%

of the mining data. We exclude the remaining 12 mining pools from the study

as their contribution to the hash rate is minimal. 43

5.3 Top 5 ASes that hosted all the synchronized nodes in Fig. 5.6(b) for 24 hours. 50

xx

CHAPTER 1: INTRODUCTION

Blockchain technology has significantly advanced the field of distributed systems by enabling

novel applications including cryptocurrencies and smart contracts. A blockchain system is ac-

tuated by nodes that exchange transactions in network and those transactions are recorded in an

append-only blockchain ledger. To maintain consistency, nodes execute a consensus protocol that

specifies the rules of a valid blockchain. In blockchain systems, Proof-of-Work (PoW) is the most

prevalent consensus protocol and it guarantees consistency if an honest majority possesses more

than 50% mining power required to mine blocks.1 The blockchain security is provisioned by the

strong cryptographic constructs of the blockchain data structure and the consensus protocol.

However, blockchain security does not completely rely on strong cryptographic primitives alone.

In fact, blockchain security also depends upon application-specific design choices and various P2P

network intricacies. For instance, Bitcoin restricts the block size at 1MB and the average inter-

arrival time between two blocks at 10 minutes. Moreover, Bitcoin assumes a lock-step synchronous

overlay network in which a block is concurrently relayed to all the network nodes, incurring neg-

ligible delay. As such, the security assumptions about the honest majority are only valid as long as

the Bitcoin network conforms to the aforementioned rules. Logically, a deviation from those rules

creates an attack surface that can be exploited to harm the system.

Moreover, attacks related the blockchain applications are not limited to the blockchain system

itself. In practice, blockchain systems can also be used as a standalone attack vector to affect

other critical systems such as the cloud infrastructure. For example, PoW-based cryptocurrencies

such as Bitcoin, Ethereum, and Monero require resource-intensive hashing (also called mining) to

compute a valid block. Since a valid block is rewarded with money, therefore, it motivates attackers

to compromise the capable infrastructure and covertly mine those blocks. Although such activities

do not affect the blockchain systems in principle, they occur due to blockchain application policies,

1In PoW-based blockchain systems, mining power is also called the hash rate possessed by the miner.

1

thereby causing a general security concern in the community.

Given these security concerns, the blockchain attack surface has various components associated

with the application-specific design choices and the P2P network dynamics. We categorize them

as the application-specific attacks and the network layer attacks. To elaborate on each attack cat-

egory, consider the Bitcoin blockchain that specifies a block size limit of 1MB. To launch an

application-specific attack, an adversary can exploit the block size limit to flood blocks with dust

transactions and delay the confirmation of other high-value transactions [7]. The attack is feasi-

ble in applications that specify a smaller block size limit (i.e. 1MB in Bitcoin compared to 8MB

in Bitcoin Cash). An application-specific attack example can be found in [7], which shows that

Bitcoin blocks have been frequently targeted with dust transactions.

To launch a network layer attack, an adversary can exploit the physical network characteristics

(i.e. latency) to prevent a group of nodes from timely receiving a block. In cryptocurrencies, block

propagation delay leads to the mining power reduction [34]. An adversary can delay the block

propagation by controlling either the overlay topology among the blockchain nodes [55], or the

physical network resources (i.e. BGP routers [5]). A network layer attack example can be found

in [5], which shows that by exploiting the biased distribution of Bitcoin nodes across Autonomous

Systems (ASes), an adversary can reduce the network’s mining power by more than 60%.

In keeping with the distinct nature of each attack category, in this dissertation, we take a top-down

approach towards the blockchain attack surface analysis, starting with the application-specific at-

tacks including cryptojacking and memory pool denial-of-service attack. We then proceed towards

the network layer attacks including partitioning attacks resulting from the inconsistencies in the

Bitcoin network. Finally, we consolidate our attack surface analysis by combining the application-

specific policies with the network layer inconsistencies to present novel attacks that feasibly violate

the fundamental blockchain properties.

2

1.1 Motivation

In the above, we elaborated on various concepts in the advance of blockchain security that require

a comprehensive attack surface analysis to expose the vulnerabilities in the blockchain systems.

Towards that goal, this dissertation is of significant importance for the following reasons.

First, blockchain-based cryptocurrencies have a high financial value which makes them lucrative

attack avenues for financial gains. Currently, the market capitalization of all cryptocurrencies is

≈$1.5 Trillion [16]. Second, notable companies (i.e. Paypal) are now provisioning cryptocurrency

services to their users by enabling cryptocurrency trading on their legacy platforms. Given the

increasing adoption of cryptocurrencies and their high financial value, we foresee an increase in

the attacks on those cryptocurrencies that can result in significant financial losses. Foreseeing

and preventing such attacks is significantly important since cryptocurrencies are decentralized and

pseudonymous by design. Therefore, if an attack is launched, the resulting damages cannot be

easily recovered. A recent example can be found in the infamous Mt. Gox incident where attackers

stole $460 Million worth of bitcoins from the cryptocurrency exchange [42].

In the wake of such threats, this dissertation uncovers various novel attacks that can be feasibly

launched to target blockchain systems or other legacy systems. In particular, we highlight that

the current blockchain systems are not designed with the security-first approach, making them an

easier target due to application-specific policies or network layer inconsistencies. For example,

in 2017, a group of attackers exploited the gap between the Bitcoin block size and the memory

pool size to stop the confirmation of 115K transactions worth more than $700 Million [73]. Since

there was no memory pool policy in effect to prevent the attack, it was frequently launched on the

Bitcoin users to prevent transaction confirmation and increase the transaction fee.

Similarly, if we survey the cryptocurrency network intricacies, we find that the Nakamoto consen-

sus only provides strong security guarantees in a lock-step synchronous network which assumes a

completely connected topology. Therefore, the real world blockchain systems must follow a lock-

step synchronous network to meet the required security specifications. However, no prior study

3

has empirically determined if the current networks follow those specifications. Our measurements

reveal that the Bitcoin network is asynchronous in practice, thus incapable of meeting the secu-

rity requirements. An effect of asynchrony has been recently observed in Bitcoin where a fork

invalidated $319K worth of Bitcoin transactions [15].

Another research gap in the literature is that the application-specific vulnerabilities and the network

layer inconsistencies have not been jointly analyzed to fully characterize the blockchain attack

surface. As a result, the existing attack models only preset limited attack strategies, often requiring

strong adversaries that control a significant mining power or a large number of IP addresses. In

contrast, our joint analysis of the two attack categories reveals interesting insights, allowing an

adversary to mount various new attack strategies to violate the blockchain consistency. We show

that by acquiring only 28 IP addresses with a total cost of under $1000, an adversary can paralyze

the entire Bitcoin network and double-spend without using any mining power.

In summary, our motivation is to build on the research gaps in prior works and draw attention

to various security vulnerabilities in blockchain systems. Predominantly, we take a data-driven

approach to empirically demonstrate that the current blockchain systems do not fully meet the

security requirements in practice. Therefore, with the expansion of the cryptocurrency ecosystem,

there is an imperative need to put security as a preference. Through this dissertation, we contribute

towards that goal by providing a comprehensive overview of the blockchain attack surface.

1.2 Research Statement and Dissertation Organization

Based on the research gaps mentioned in the §1.1, we take a top-down approach towards the attack

surface analysis. In Chapter 3 and Chapter 4, we cover the application-specific attacks, while

in Chapter 5–Chapter 8, we discuss the network layer attacks. In the following, we succinctly

summarize the research problems identified in each chapter along techniques used to address them.

4

1.2.1 Application-Specific Attacks

In the application-specific attacks, we study how the blockchain application policies can be abused

to affect benign users within and outside the blockchain system. We start by analyzing in-browser

cryptojacking that hijacks the resources of website users to covertly mine cryptocurrencies.

In-browser Cryptojacking (Chapter 3). In 2017, a new attack emerged in the web ecosystem in

which adversaries embedded JavaScript codes in websites to hijack the processing power of web-

site visitors and covertly mine PoW-based cryptocurrencies. Particularly, the adversaries selected

blockchain applications that had a lower PoW target threshold in order to feasibly mine them by

using resources of website users (i.e. commodity computers or smart phones). Since in-browser

cryptojacking was a new attack in 2017, therefore, there was a limited understanding about its

operations and impacts. To address the research gap, we collected a dataset of more than 5,700

cryptojacking websites and conducted static and dynamic analyses to study various characteris-

tics of in-browser cryptojacking and its impact on users. Our static analysis unveiled unique code

complexity characteristics of cryptojacking scripts which we then used to train machine learning

models for detection. Our dynamic analysis revealed the negative impacts of cryptojacking on de-

vices that visited cryptojacking infected websites. By further capitalizing on our dynamic analysis,

we presented simple and effective methods to counter cryptojacking.

Mempool DDoS Attacks (Chapter 4). In the same year (2017), we observed an increase in the

Bitcoin transaction fee and a delay in the transaction confirmation time. By taking a closer look

at the Bitcoin blockchain, we found a parallel increase in the Bitcoin memory pool (also called

mempool) size which stores the unconfirmed transactions. After conducting initial measurements,

we discovered a high correlation between the mempool size and the transaction fee. We noticed

that malicious users can exploit the gap between the block size and the mempool size to spam the

mempool with dust transactions, resulting in a high transaction fee and an increased confirmation

time. Capitalizing on our observations and preliminary analysis, we formally analyzed the mem-

pool DDoS attack and proposed fee-based and age-based countermeasures that limit the attacker’s

5

strategies without affecting benign users.

The main difference between Chapter 3 and Chapter 4 is that Chapter 3 shows how the application-

specific policy (i.e. PoW consensus protocol) can be exploited to attack users in the web ecosystem,

while Chapter 3 shows how the application policies (i.e. block size limit) can be exploited to target

users within the blockchain system. The clear similarity between both chapters is the study of

application-specific policies that can be abused to affect benign users.

1.2.2 Network Layer Attacks

In the network layer attacks, we take a data-driven approach to study the irregularities in the

blockchain P2P networks and use them to construct novel and feasible attacks. Following the

motivation in §1.1, our network layer analysis focuses on the problems that reveal gaps between

theoretical constructs of blockchain networks and their deployments in practice.

Bitcoin Partitioning Attacks (Chapter 5). In Chapter 5, we conduct a measurement study to

map the Bitcoin overlay topology on the physical network. Our results revealed that the Bitcoin

nodes are highly centralized across ASes, making them vulnerable to BGP hijacks. Moreover,

contrary to a common assumption that the Bitcoin network can feasibly scale up to thousands of

nodes [80], our measurements revealed that the increasing network size also increases the block

propagation delay which then leads to weak network synchronization. To demonstrate the effect of

weak synchronization, we proposed and simulated the temporal partitioning attack which allows

malicious miners to subvert nodes that experience weak synchronization.

Root Cause Analysis (Chapter 6). After observing weak synchronization and the lack of it being

reported in prior works, we conducted a root cause analysis to uncover the hidden network intri-

cacies that influence network synchronization. Continuing our data-driven approach, we explored

the impact of the unreachable nodes, the message relaying protocols, and network churn on the

Bitcoin network synchronization. Our analysis exposed several weaknesses in the current Bitcoin

network which can be exploited to deteriorate network synchronization and optimize the partition-

6

ing attacks. The root cause analysis also revealed two novel insights about the Bitcoin network

that were not observed previously. First, we observed that the Bitcoin network is asynchronous

in practice, and therefore, incapable of meeting the desirable security specifications outlined by

Nakamoto [76]. Second, we found that Bitcoin does not incorporate network synchronization in

the security model, thus ignoring the security risks associated with it.

Exploiting Bitcoin Network Asynchrony (Chapter 7). After empirically studying the network

asynchrony in Chapter 6, we combined it with application-specific mining policies to present novel

network layer attack called HashSplit . Towards that, we first formulated the Bitcoin ideal func-

tionality which distinctly characterized the behavior of mining and non-mining nodes. We then

deployed crawlers in the Bitcoin network to identify the mining nodes and analyze blockchain

propagation among them. We discovered that miners give time-based precedence to blocks that

they choose to mine. Using that knowledge, we proposed the HashSplit attack which allows an

adversary to orchestrate concurrent mining on two branches of the public chain and violate the

blockchain consistency with a high probability. HashSplit is the first attack in this dissertation that

combines vulnerabilities exposed by application policies and network inconsistencies.

Exploiting Network Synchronization (Chapter 8). The last chapter in this dissertation concludes

the attack surface analysis by presenting the SyncAttack, an attack that exploits network churn

to deteriorate synchronization and violate the blockchain consistency. For the SyncAttack con-

struction, we incorporated network synchronization in the Bitcoin security model and conducted

measurements to analyze its robustness in practice. Our analysis revealed partitioning attack pos-

sibilities created by the network churn. Additionally, by examining the Bitcoin source code, we

found a major vulnerability in Bitcoin application that allows an adversary to violate network syn-

chronization and launch a double-spend attack with a cost of ≈$1000.

To summarize, in light of our motivation and objectives in §1.1, we identify problems related to

the application-specific policies and the network layer inconsistencies in blockchain systems. For

each set of problems, we use theoretical analysis and measurement techniques to examine their

7

security implications in adversarial settings. Furthermore, we also suggest and deploy the attack

countermeasures to harden the blockchain systems security.

Dissertation Contents. The dissertation uses contents from three papers published and three pa-

pers in submission by the author. Chapter 3 incorporates material from Reference [93] which

presents the static and dynamic analysis of in-browser cryptojacking. Chapter 4 is based on Refer-

ence [95] which counters DDoS attacks on blockchain memory pools. Chapter 5 is based on Ref-

erence [92] which presents the partitioning attacks on the Bitcoin network. Finally, Chapters 6, 7,

and 8 are based on three manuscripts that are currently in submission.

8

CHAPTER 2: LITERATURE REVIEW

In the following, we discuss the notable related works relevant to this dissertation. In keep with the

structure, we first discuss the attacks related to the blockchain application rules (§2.1), followed

by the attacks related to the network layer (§2.2).

2.1 Application-specific Attacks

In this section, we discuss the prior works related to cryptojacking and DDoS attacks on blockchain

systems. These works are related to §3 and §4 in this dissertation.

In-browser Cryptojacking. The first notable work on in-browser cryptojacking was conducted

by Eskandari et al. [38] who looked into the prevalence of cryptojacking, showing the use of

Coinhive as the most popular platform. Concurrently, Rüth et al. [90] studied the prevalence of

cryptojacking by analyzing blacklisted sites from the No Coin web extension. They mapped those

sites on a large corpus of websites obtained from the Alexa Top 1M list, and found 1,491 suspect

websites involved in cryptojacking. However, they did not perform static or dynamic analysis

of cryptojacking scripts to study the intricacies such covert mining practices. A more systematic

treatment of in-browser cryptojacking was performed by by Hong et al. [56] and Konoth et al. [65].

Hong et al. performed static analysis on 2,770 cryptojacking websites and developed a machine

learning tool called CMTracker that detects and prevents cryptojacking. Concurrently, Konoth et

al. [65] performed a code-based analysis on 13 cryptojacking platforms to analyze various features

in cryptojacking JavaScript code and develop countermeasures for it. Later, Kharraz et al. [62]

presented Outguard; a cryptojacking detection tool that uses supervised learning to accurately

detect covert mining operations with ≈97% accuracy. However, they did not perform dynamic

analysis of cryptojacking scripts to analyze their effect on the user devices.

In the domain of dynamic analysis, Tahir et al. [105] presented a tool called MineGuard, that per-

formed a real-time detection of covert mining operations in the cloud. MineGuard used hardware-

9

assisted profiling to create discernible signatures for mining algorithms and later use it for detec-

tion. Extending their analysis to the in-browser cryptojacking [105], they developed a browser

extension that used fine-grained micro-architectural footprint to detect cryptojacking. In our dy-

namic analysis, we take a different approach to perform a resource profiling and analyze the effect

of cryptojacking on user devices. We further look into the semantics of traffic exchange during

mining operations and use them to develop effective countermeasures for the real-time detection.

DDoS Attacks. Distributed denial-of-service (DDoS) attacks have been quite prevalent [107].

DDoS attacks are repeatedly launched against the mining pools, the legitimate users, and the cur-

rency exchanges. Johnson et al. [59] performed a game-theoretic analysis of DDoS attacks against

Bitcoin mining pools. Vasek et al. [107] empirically illustrated the denial-of-service attacks on the

Bitcoin system. Prior to its release on November 12, 2017, Bitcoin Gold suffered from a massive

DDoS attack [73]. Cryptocurrency exchanges have also been frequently targeted to prevent coin

tradings, and no clear nor specific mitigation techniques to those attacks have been proposed.

Another form of DDoS attack on blockchain includes spamming the network with low valued dust

transactions. This attack is also called the penny-flooding attack. Baqer et al. [7] performed Bitcoin

stress testing to analyze this attack and proposed its countermeasures.

2.2 Network Layer Attacks

In this section, we discuss prior works that are related to our work in §5, §6, and §7. Note that

some of these attacks are intrinsic to the blockchain systems in general. Our work shows how the

network inconsistencies can be exploited to amortize the cost of these attacks.

The 51% Attack. The 51% attack is a classical weakness in blockchains where an adversary

acquires a majority of the network’s hash rate to gain control over the blockchain [39, 37]. The

51% attack primarily relies on the ability to generate the “longest chain” in the long run [8], using

which the adversary can also perform selfish mining and double-spending, discussed below.

10

Selfish Mining. Selfish mining is a form of block withholding attack, in which the adversary

computes a block and does not publish it [88]. Instead, it keeps on extending its private chain

in hopes to attain a longer chain than the competing public chain. When the adversary achieves

that, it releases its longer private chain. In Bitcoin, nodes switch to the chain with the longer

prefix, thereby invalidating the public chain computed by the honest miners. If the adversary has

51% hash rate, its private chain will eventually be longer than the rest of the network, therefore

guaranteeing a successful attack. The problem of selfish mining has been addressed by Eyal and

Sirer [99], Sapirshtein et al. [99], and Solat and Potop-Butucaru [103].

Double-spending. Double-spending or equivocation is when an attacker spends their cryptocur-

rency token twice [58]. The double-spending attack is launched in various ways. One possible

method is that the attacker sends the transaction to a receiver and the receiver delivers a product

before the transaction is confirmed. The attacker then sends the other transaction to himself. Both

transactions are received by a miner, who can only accept one of them. Therefore, with 0.5 proba-

bility the recipient could be tricked. The other strategy could be that the attacker transacts with the

recipient and the transaction gets confirmed in the public blockchain. The attacker then generates

the other transaction, adds it to the private blockchain, and launches a selfish mining attack. If the

selfish mining succeeds (with probability 1 if the attacker has 51% hash rate), then the recipient’s

transaction will be invalidated along with the public blockchain.

Please note that the assumption about the 51% hash rate is only valid in a lock-step synchronous or

non-lock-step synchronous network in which a block experiences negligible propagation delay [44,

83]. If the network exhibits asynhrony or the block propagation delay becomes significant, then all

the attacks asscoiated with the 51% hash rate can be amortized.

Block Withholding Attack. Block Withholding Attack was presented by Rosenfeld [87] in which

miners in a pool choose to submit partial proof of work, instead of the full proof. As a result, they

get rewarded for participating in the pool although the pool suffers a loss due to partial solutions.

Kwon et al. [67] studied a new attack on blockchains called “Fork After Withholding” (FAW)

11

attack that guarantees higher rewards than block withholding attacks.

Since §5, §6, §7 include Bitcoin network measurements, it is therefore important to mention prior

notable measurement studies that were conducted along the same lines.

Bitcoin Network Measurements. Notable works on the Bitcoin network measurements have

focused on (1) analyzing Bitcoin nodes distribution across autonomous systems (ASes) [5, 45],

(2) discovering influential nodes in mining pools [35, 5], and (3) measuring the Bitcoin block

propagation[34]. In 2013, Decker et al. [34] conducted the first measurement study to analyze the

information propagation in the Bitcoin network. They concluded that the block size is the dominant

factor in block propagation delay. In their measurements, they connected to ≈3K IP addresses and

observed that ≈90% of the nodes in the network receive the newly published block within 12.6

seconds on average. In §5–§7, we will further elaborate on these measurement studies.

12

CHAPTER 3: STATIC AND DYNAMIC ANALYSIS OF

IN-BROWSER CRYPTOJACKING1

Notable blockchain-based cryptocurrencies use the Proof-of-Work (PoW) consensus protocol to

mine blocks through extensive hash operations. Since mining is a resource-intensive task, there-

fore, it incurs a significant cost. One way to circumvent the cost is by hijacking machines of

other users and use them for mining. This technique is called cryptojacking, where a target de-

vice is used to mine the cryptocurrency on behalf of an adversary. A recent form of cryptojacking

is called in-browser cryptojacking in which JavaScript code is used to compute PoW in a web

browser and transmit the PoW to a remote server controlled by the adversary [102]. Since the

cryptojacking scripts are executed in the browser, therefore, they are not detected by the antivirus

scanners. The existing countermeasures of in-browser cryptojacking include using a blacklisting

approach to block websites that use the cryptojacking scripts. However, blacklisting can easily be

circumvented by using proxy servers, therefore creating a need for more robust countermeasures.

3.1 Contributions

In this work, we conduct static and dynamic analyses of in-browser cryptojacking to understand its

operations and impacts. By using insights from our analyses, we propose robust countermeasures

that outperform the existing methods. Our key contributions are summarized below.

1. Using more than 5,700 websites with cryptojacking scripts, we conduct static analysis to

identify the distribution of cryptocurrencies used in cryptojacking, and study code complex-

ity features of cryptojacking scripts (§3.3). Using those features, we build an unsupervised

clustering system that automatically identifies cryptojacking, malicious, and benign scripts

with ≈96% accuracy. (§3.3.3).

1This content was reproduced from the following article: M. Saad, A. Khormali, and D. Mohaisen. Dine and
Dash: Static, Dynamic, and Economic Analysis of In-browser Cryptojacking. In APWG Symposium on Electronic
Crime Research, pages 1–12, 2019.

13

23% 12% 6%2%9% 2%21%1% 19%

Entertainment Adult Illegal ContentMedia

5%

Info.Tech ShoppingUncategorized BusinessSports Education

Figure 3.1: Website categorization based on the main topic. Note that most websites belong to
Entertainment, Business, and Education. A sizable chunk (12%) belonged to the Adult category.

2. We perform dynamic analysis to observe CPU usage and network usage during cryptojack-

ing (§3.4). Using insights from the network usage (WebSocket communication), we propose

simple and effective techniques to counter cryptojacking in the web browser (§3.5).

3.2 Preliminaries and Data Collections

In-browser cryptojacking is done by injecting a JavaScript code in a website, allowing it to hijack

the processing power of a visitor’s device. Generally, JavaScript is automatically executed when

a website is loaded. Upon visiting a website with cryptojacking code, the visiting host starts a

mining activity, by becoming part of a cryptojacking mining pool. A key feature of in-browser

cryptojacking is being platform-independent: it can be executed on any host, PC, mobile phone,

tablet, etc., as long as the web browser running on this host has JavaScript enabled in it.

For our static analysis, we assembled a data set of cryptojacking websites published by Pix-

alate [70] and Netlab 360 [112]. Pixalate is a network analytics company that provides data solu-

tions for digital advertising and research. In Nov. 2017, they published a list of 5000 cryptojacking

websites that were actively stealing their visitor’s processing power to mine cryptocurrency. Netlab

360 (Network Security Research Lab at 360) is a data research platform that provides a wide range

of datasets spanning Domain Name Servers (DNS) and Distributed Denial-of-Service (DDoS) at-

tacks. From Netlab 360, we obtained 700 cryptojacking websites.

14

3.3 Static Analysis

In static analysis, we pursue three directions: content-, currency-, and code-based analysis. Content-

based categorization provides insights into the nature of websites used for cryptojacking, while the

currency-based categorization shows platforms used for it. The code-based analysis provides in-

sight into the complexity of the cryptojacking scripts, using code complexity measures.

3.3.1 Content and Currency-based Categorization

We categorized the websites based on their contents into various categories using the WebShrinker

website URL categorization API. WebShrinker assigns categories to websites based on the content

present in those websites. The results are presented in Fig. 3.1, showing that miners have utilized a

wide range of categories for in-browser cryptocurrency mining, including education, business,

entertainment, etc.. Notice that 19% websites were categorized as “Education” which can be

attributed to the exploitation of trust by adversaries behind cryptojacking [113].

By analyzing our dataset, we found eight platforms providing templates to mine two types of

cryptocurrencies: Monero and JSEcoin. Table 3.1 provides details of those platforms. We found

that a large percentage of the websites (≈81.57%) used Coinhive [13] to mine Monero cryptocur-

rency [28]. Additionally, ≈2.61% websites used the JSEcoin platform [27], which is mines the

JSEcoin cryptocurrency. Therefore, we detected two cryptocurrencies used in cryptojacking.

3.3.2 Code-based Analysis

For code-based analysis, we gathered cryptojacking scripts from all the major cryptojacking ser-

vice providers found in our dataset, such as Coinhive, JSEcoin, Crypto-Loot, Hashing, deepMiner,

Freecontent, Miner, and Authedmine. We observed that all the service providers had unique codes,

specific to their own platform. In other words, the websites using Coinhive’s services had the same

JavaScript code template across all of them. Therefore, ≈81.57% of the websites in our dataset

15

Table 3.1: Currency-based analysis results. 1 The abbreviation No CJ means No cryptojacking.

Platform
Websites

Cryptocurrency
Websites

% # %
Coinhive 4652 81.57

Monero 4926 86.37

Hashing 67 1.17
deepMiner 56 0.98
Freecontent 39 0.68
Cryptoloot 38 0.67
Miner 38 0.67
Authedmine 35 0.61
JSEcoin 149 2.61 JSEcoin 149 2.61
No CJ 628 11.01 — 628 11.01
Total 5703 100.00 — 5703 100.00

were using the same JavaScript template for cryptojacking. Similarly, all the websites using JSEc-

oin used the same standard template for their mining. However, the code template of each service

provider was different from one another, which led us to believe that each script had unique static

features. With this in mind, we performed the code-based analysis on the cryptojacking websites

and compared the results with other standard JavaScript for a baseline comparison.

Data Attributes. We prepared our dataset for static analysis by collecting all of the popular cryp-

tojacking scripts from our list of websites. As a control experiment, we collected an equal number

of malicious and benign JavaScript codes to design a clustering algorithm. Our aim was to obtain

a set of features that were unique only to the cryptojacking scripts, and aid in their detection.

To avoid bias towards a certain class, we were limited to include equal size of malicious and benign

JavaScript samples for the static analysis. Although there are many samples of malicious and

benign JavaScript in the wild [32], only eight cryptojacking scripts are available in comparison.

Since our work is focused on distinguishing cryptojacking scripts from both malicious and benign

JavaScript, we had to balance the size of each class. While the number of scripts might seem as a

limitation of our work, we believe the promise of this work is substantial: as more currencies and

platforms start to use cryptojacking, more samples will be available for a broader study.

In lieu, we used the existing data of the cryptojacking websites (§3.2) and online resources from

16

GitHub for malicious JavaScript sample [111] . For benign JavaScript, we used the set of non-

cryptojacking websites and parsed their HTML code to extract benign JavaScript code [104]. In

summary, we had 8c̃j JavaScript samples, spanning all the websites. Accordingly, we selected 10

malicious and 10 benign scripts for our clustering analysis.

Feature Extraction. We use various features that provide insights into the code structure and

its maintainability. The features that we extracted include (1) cyclomatic complexity M [110],

(2) Control Flow Gaph (CFG) features including number of nodes N , edges E, and connected

components Q, (3) cyclomatic complexity density Md [43], (4) total number of lines of code cl,

(5) Halstead complexity measures including vocabulary η, program length n, calculated program

length nc, volume V , effortE, delivered bugsB, time T , difficultyD, distinct operators η1, distinct

operands η2, number of operator n1, number of operands n2, Halstead volume V , source lines of

code sloc, and maintainability score Ms. We extracted these features using Plato, a JavaScript

static analysis tool [6]. We report results in Table 3.2 where it can be observed that certain features,

such as M , Md, V , and T , are clearly discriminative among all the categories.

3.3.3 Fuzzy C-Means Clustering

In this section, we build a classification system that automatically recognizes cryptojacking scripts

from malicious and benign scripts based on the code complexity features alone, which could be

easily extracted from the cryptojacking scripts and are common among a large number of crypto-

jacking websites. It is desirable for our classification system to classify scripts even with minimal

information regarding the labels of the scripts. Therefore, we utilized the Fuzzy C-Means (FCM)

clustering algorithm [9], which has the advantage of being an unsupervised learning algorithm.

In the other words, in comparison with supervised classification algorithms, such as the Support

Vector Machine (SVM) and Random Forest (RF), which require labels of the dataset in the training

phase, FCM has the advantage of performing well on the unlabeled dataset.

We utilized the FCM clustering algorithm to group the scripts to cryptojacking, malicious, and

benign clusters. In order to evaluate the performance of the clustering experiment, we used stan-

17

Table 3.2: Features values for cryptojacking, malicious, and benign samples.

Cat. Platforms M Md B D E cl T η V η1 n1 η2 n2 params sloc physical Ms

C
ryptojacking

deepMiner 184 44.2 14.1 113.0 4,810,434 4,667 267,246 554 42,533 47 2,440 507 2,227 75 416 499 67.8
Authedmine 168 26.5 19.7 82.8 4,912,255 6,096 272,903 844 59,259 41 3,247 803 2,849 73 633 784 62.8
Hashing 138 29.1 7.2 94.6 2,185,379 2,794 124,138 342 24,393 38 1,469 315 1,415 37 412 505 68.2
Miner 133 27.7 9.3 90.5 2,537,930 3,239 140,996 403 28,032 39 1,690 364 1,549 49 479 617 64.1
Coinhive 131 27.5 9.1 94.8 2,608,021 3,226 144,890 368 274,970 37 1,697 331 1,529 48 476 594 63.7
Crypto-loot 128 39.7 11.4 88.1 3,034,935 3,788 168,607 546 34,443 45 1,962 501 1,826 62 322 389 70.3
Freecontent 117 28.3 8.1 89.4 2,180,394 2,884 121,133 350 24,373 38 1,469 312 1,415 37 412 505 62.7
JSEcoin 64 17.2 10.2 62.9 1,945,165 3,257 108,064 716 30,888 45 1,878 671 1,379 49 372 412 64.7
Mean (µ) 130.3 29.9 11.3 88.9 3,026,191 3,755.1 168,121 516.4 33,925 41.3 1,981.5 475.1 1,773.6 53.8 440.3 538.1 64.9
SD. (σ) 35.9 8.4 3.9 13.8 1,180,403 1,109.9 65,577 185.1 11,856 3.9 599.3 182.8 519.3 14.8 93.2 126.3 2.8

M
alicious

20160209 92 21.5 5.6 25.1 423,925 1,833 23,551 580 16,826 27 1,032 553 801 22 427 503 44.4
20161126 62 15.3 4.2 24.6 315,735 1,563 17,540 292 12,800 17 798 275 765 0 403 481 90.5
20170110 14 4.4 15.0 26.7 1,211,305 4,704 67,294 782 45,210 15 2,740 767 1,964 232 313 564 93.6
20170507 6 24.0 5.9 11.1 199,917 1,864 11,106 777 17,897 18 942 759 922 1 25 890 71.7
20160927 3 1.4 4.0 32.5 393,555 1,575 21,864 204 12,084 13 957 191 618 0 213 98 23.2
20170322 2 18.1 11.8 7.1 253,442 3,514 14,080 1,123 35,607 9 1,762 1,114 1,752 3 11 1,738 90.9
20170303 2 8.6 0.2 9.4 8,338 147 463 63 878 13 73 50 74 4 23 55 78.7
20160407 1 33.3 0.1 2.7 207 19 11 16 76 5 12 11 7 0 3 3 78.9
20170501 1 0.9 2.1 3.3 21,464 758 1,192 322 6,314 5 431 317 327 0 105 105 35.9
20160810 1 12.5 0.5 11.9 20,148 275 1,119 70 1,685 6 255 64 20 0 8 13 60.4
Mean (µ) 18.4 14 4.9 15.5 284,803.7 1,625.2 15,822 422.9 14,938 12.8 900.2 410.1 725 26.2 153.1 445 66.9
SD. (σ) 31.9 10.5 5 10.8 364,470.8 1,508.9 20,248 374.8 15,045 6.9 834.7 372.5 686.6 72.6 171.9 543.5 24.9

B
enign

The Boat 2,135 69.3 110.8 392.0 130,285,522 31,916 7,238,084 1,364 332,361 59 17,341 1,305 14,575 852 3,084 3,349 66.7
IBM Design 2,119 68.3 110.9 397.1 132,237,213 32,018 7,346,511 1,351 332,981 59 17,393 1,292 1,4625 853 3,103 3,372 66.7
Histography 1,743 40.7 95.2 249.5 71,325,242 26,627 3,962,513 1,704 285,833 55 14,963 1,649 11,663 803 4,278 5,043 59.4
Know Lupus 1,006 28.1 92.9 170.4 47,474,425 25,120 2,637,468 2,181 278,600 54 13,424 2,127 11,696 615 3,583 4,288 65.2
tota11y 815 38.8 59.4 227.7 40,563,065 17,486 2,253,503 1,167 178,157 52 9,764 1,115 7,722 412 2,099 2,336 62.9
Masi Tupungato 784 58.2 47.1 185.0 26,199,193 14,296 1,455,510 958 141,585 43 7,875 915 6,421 238 1,347 1,470 67.2
Fillipo 703 42.9 43.1 194.3 25,139,766 12,900 1,396,653 1,045 129,377 54 7,132 991 5,768 269 1,637 1,770 61.5
Leg Work 412 75.7 34.0 241.3 24,651,056 11,100 1,369,503 589 102,143 45 5,835 544 5,265 66 544 633 65.9
Code Conf 409 27.8 41.1 197.1 24,336,420 12,500 1,352,023 939 123,437 49 7,162 890 5,338 315 1,469 1,753 64.9
Louis Browns 368 35.6 21.2 106.7 6,792,400 6,529 377,355 862 63,667 51 3,393 811 3,136 68 1,034 1,357 53.3
Mean (µ) 1,049.4 48.5 65.6 236.1 52,900,430 19,049.2 2,938,912 1,216 196,814 52.1 10,428.2 1,163.9 8,621 449.1 2,217.8 2,537.1 63.4
SD. (σ) 694 17.8 33.6 92.8 44,755,377 9,151.2 2,486,409 459.8 100,856 5.3 4,999 456.7 4,165 310.3 1,225.4 1,418.2 4.3

Table 3.3: Confusion matrix and evaluation metrics of the cryptojacking (CJ), malicious, and be-
nign scripts’ clustering results based on FCM clustering algorithm. (1) Evaluation metrics’ names
are abbreviated. FPR= False Positive Rate, FNR= False Negative Rate, and AR=Accuracy Rate.

Class Benign Malicious CJ FPR%(1) FNR%(1) AR%(1)

Benign 9 0 1 10 0 90
Malicious 0 10 0 0 0 100
CJ 0 0 8 0 11.1 100
Total 9 10 9 3.3 3.7 96.42

dard evaluation metrics; the confusion matrix, Accuracy Rate (AR), False Positive Rate (FPR), and

False Negative Rate (FNR), reported in Table 3.3. As shown in Table 3.3, the clustering algorithm

is able to classify the scripts with high performance: AR of ≈96.4%, FPR of 3.3%, and FNR of

3.7%. In addition, we have visualized these clusters based on two major principal components of

their features, which in Fig. 3.2, clearly show a natural separation between the clusters.

18

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

C
o
m

p
o
n
e

n
t
2

Component 1

Malicious
Cryptojacking

Benign
Malicious Center

Cryptojacking Center
Benign Center

Figure 3.2: Clustering of the cryptojacking, malicious, and benign scripts using FCM.

3.4 Dynamic Analysis

Despite the clear benefits of the static analysis outlined above, it is limited, and subject to circum-

vention through JavaScript code obfuscation. To this end, we conduct dynamic analysis that looks

into the impact of cryptojacking on CPU and Network usage.

Settings and Measurements Environment. We noticed that in each cryptojacking website, a

JavaScript snippet encodes a key belonging to the code owner and a link to a server to which the

PoW is ultimately sent. Fig. 3.3 provides a script found in websites that use Coinhive for mining.

The source (src) refers to the actual JavaScript file that is executed after a browser loads the script

tag. In this script, we also noticed a throttling parameter, which is used as a mean of controlling

how much resources a cryptojacking script uses on the host. We use such a throttling parameter, α

as an additional variable in our experiment. We experiment with α = {0.1, 0.5, 0.9}.

To understand the impact of cryptojacking on resources usage in different platforms, we use ma-

chines running Microsoft Windows, Linux, and Android operating systems (OSes). For our exper-

iments, we selected three laptops, each with one of those OSes. The Windows laptop was Asus

V502U, with Intel Core i7-6500U processor operating at 3.16 GHz. The Linux laptop was Lenovo

G50, with Intel Core i5-5200U processor (4 cores) running at 2.20 GHz, and the Android phone

19

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

C
o

m
p

o
n

e
n

t
2

Component 1

Malicious
Cryptojacking

Benign
Malicious Center

Cryptojacking Center
Benign Center

Figure 2: Clustering of the cryptojacking, malicious, and be-
nign scripts using FCM clustering algorithm.

Table 4 shows that the clustering algorithm is able to identify the
scripts with high performance: AR of ≈96.4%, FPR of 3.3%, and FNR
of 3.7%. Moreover, we visualized these clusters based on two major
principal components of their features in Fig. 2, which clearly show
natural separation between the clusters using those features.

5 DYNAMIC ANALYSIS
Static analysis is subject to circumvention through JavaScript code
obfuscation. To this end, we conduct dynamic analysis that looks
into profiling the usage of cryptojacking JavaScript code of various
host resources: CPU, and battery. We then look into the character-
istics of cryptojacking in their use of network resources.

5.1 Resource Consumption Profiling
5.1.1 Settings and Measurements Environment. We noticed that

in each cryptojacking website, a JavaScript snippet encodes a key
belonging to the code owner and a link to a server to which the
PoW is ultimately sent. Listing 1 provides a script found in websites
that use Coinhive for mining. The source (src) refers to the actual
JavaScript file that is executed after a browser loads the script tag. In
this script, we also noticed a throttling parameter, which is used as a
mean of controlling howmuch resources a cryptojacking script uses
on the host. We use such a throttling parameter, α as an additional
variable in our experiment. We experiment with α = {0.1, 0.5, 0.9}.

To understand the impact of cryptojacking on resources usage
in different platforms, we use battery-powered machines running
Microsoft Windows, Linux, and Android operating systems (OSes).
For our experiments, we selected three laptops, each with one
of those OSes. The Windows laptop used in the experiment was
Asus V502U, with Intel Core i7-6500U processor operating at 3.16
GHz. The Linux laptop was Lenovo G50, with Intel Core i5-5200U
processor (4 cores) running at 2.20 GHz, and the Android phone
was Samsung Galaxy J5, with Android version of 6.0.1.

For our cryptojacking script construction, using the various
parameters learned above, we set up an account on Coinhive to
obtain a key that links our “experiment website” to the server.
Next, we set up a test website and embedded the code in Listing 1
within the HTML tags of the website. Finally, to measure the usage
of resources while running cryptojacking websites, we set up a
Selenium-based web browser automation and run cryptojacking
websites, for various evaluations. Selenium is a portable web-testing
software that mimics actual web browsers [25, 26].

Listing 1: Coinhive code found in cryptojacking sites.

<script src="./ Welcome_files/coinhive.min.js"></script>
<script>

var miner = new coinhive.Anonymous("owner key",
{throttle: 0.1});

miner.start ();
</script>

5.1.2 CPU Usage. First, we baseline our study to highlight CPU
usage as a fingerprint across multiple websites that employ crypto-
jacking using the aforementioned configurations and measurement
environment. We study the usage of CPU with and without crypto-
jacking in place. For this experiment, we select four cryptojacking
websites. To measure the impact of cryptojacking on CPU usage,
we ran those websites in our Selenium environment, for 30 seconds,
with JavaScript enabled (thus running the cryptojacking scripts)
and disabled (baseline; not running the cryptojacking scripts). We
use this test experiment as our control.
Results. We obtained two sets of results for each website, with and
without cryptojacking. In Fig. 3, we plot four test samples obtained
from our experiment to demonstrate the behavior of websites with
and without cryptojacking. From those results, we observe that
when a website is loaded initially it consumes a significant CPU
power (shaded region), in both cases. Once the website is loaded, the
CPU consumption decays if the JavaScript is disabled, indicating no
cryptojacking. When JavaScript is enabled, the CPU consumption
is high, indicating cryptojacking. It can also be observed in Fig. 3,
that the CPU usage varied across the websites, indicating the usage
of the throttling parameter highlighted above. The same behav-
ior as with JavaScript disabled is exhibited when loading a page
with JavaScript that is either benign or of other types of malicious-
ness than cryptojacking. Through this experiment, we found that
cryptojacking consumes anywhere between 10 and 20 times the
processing power compared to when not using cryptojacking on
the same host. To further understand the impact of throttling on
CPU usage in different platforms, we conduct another measure-
ment where we used α = {0.1, 0.5, 0.9} with the different testing
machines. We found a consistent pattern, whereby the relationship
between α and the CPU usage is linear (plots are omitted).

5.1.3 Battery Usage. Clearly, high CPUusage translates to higher
power consumption, and quicker battery drainage. To further in-
vestigate how cryptojacking affects battery drainage, we carried
out several experiments using various α values for the various plat-
forms. Here we are interested in the order of battery drainage from
a baseline, rather than comparing various platforms. The batteries
of the different machines are as follows: 65 watt-hour for Windows,
41 watt-hour for Linux and ≈9.88% watt-hour for Android.
Results. For each α ∈ {0.1, 0.5, 0.9}, and using the different de-
vices, we ran the JavaScript script on a fully charged battery. We
logged the battery level every 30 seconds, as the script ran on each
device with the given α value, starting from a fully-charged battery.
Finally, we measure the baseline by running our script without the
cryptojacking code. The results are shown in Fig. 4. As expected,
with α = 0.1, corresponding to the lowest throttling and highest
CPU usage, the battery drained very quickly, to ≈10% of its capac-
ity within 80 minutes, compared to ≈85% within the same time
when not using cryptojacking. The same result is demonstrated

6

Figure 3.3: Malicious JavaScript code that links to Coinhive.

was Samsung Galaxy J5, with android version of 6.0.1.

For our cryptojacking script construction, using the various parameters learned above, we set up an

account on Coinhive to obtain a key that links our “experiment website” to the server. Next, we set

up a test website and embedded the code in Fig. 3.3 within the HTML tags of the website. Finally,

to measure the usage of resources while running cryptojacking websites, we set up a Selenium-

based web browser automation and run cryptojacking websites, for various evaluations. Selenium

is a portable web-testing software that mimics actual web browsers [11, 29].

3.4.1 CPU Usage

First, we baseline our study to highlight CPU usage as a fingerprint across multiple websites that

employ cryptojacking using the aforementioned configurations and measurement environment. We

study the CPU usage with and without cryptojacking in place. For this experiment, we select four

cryptojacking websites. To measure the impact of cryptojacking on CPU usage, we ran those web-

sites in our Selenium environment, for 30 seconds, with JavaScript enabled and disabled (baseline;

not running the cryptojacking scripts). We use this experiment as our control.

Results. We obtained two sets of results for each website, with and without cryptojacking. In Fig. 3.4,

we plot four test samples obtained from our experiment to demonstrate the behavior of websites

with and without cryptojacking. From those results, we observe that when a website is loaded

initially it consumes a significant CPU power (shaded region), in both cases. Once the website

is loaded, the CPU consumption decays if the JavaScript is disabled, indicating no cryptojacking.

20

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
 C

PU
 U

sa
ge

Seconds

browar.bz
seriesfree.to

megapastes.com
legendaoficial.net

(a) JavaScript enabled

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

%
 C

PU
 U

sa
ge

Seconds

browar.bz
seriesfree.to

megapastes.com
legendaoficial.net

(b) JavaScript disabled

Figure 3.4: Processor usage by four cryptojacking websites with JavaScript enabled and disabled.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70 80

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(a) Windows CPU usage

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(b) Linux CPU Usage

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 20 40 60 80 100 120 140 160

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(c) Android CPU usage

Figure 3.5: CPU usage on devices. As the throttling parameter decreases, the CPU usage increases.

When JavaScript is enabled, the CPU consumption is high, indicating cryptojacking. It can also

be observed in Fig. 3.4, that the CPU usage varied across the websites, indicating the usage of the

throttling parameter highlighted above. The same behavior as with JavaScript disabled is exhib-

ited when loading a page with JavaScript that is either benign or of other types of maliciousness

than cryptojacking. We found that cryptojacking consumes anywhere between 10 and 20 times

compared to when not using cryptojacking on the same host.

To understand the impact of throttling on CPU usage in different platforms, we conduct another

experiment where we used α = {0.1, 0.5, 0.9} with the different testing machines. We found a

consistent pattern, whereby the relationship between α and the CPU usage is linear(Fig. 3.5).

21

3.4.2 Network Usage and Profiling

Dynamic network-based artifacts are essential in analyzing cryptojacking scripts, especially when

those scripts are obfuscated. To this end, we also explore the network-level artifacts to reconstruct

the operation of cryptojacking services.

We observed that during cryptojacking website execution, the JavaScript code establishes a Web-

Socket connection with a remote server and preforms a bidirectional data transfer. When a Web-

Socket request is initiated, the client sends an auth message to the server along with the user in-

formation, including sitekey, type, and user. The length of auth message is 112 bytes. The sitekey

parameter is used by the server to identify the actual user who owns the key of the JavaScript and

adds balance of hashes to the user’s account. The server then authenticates the request parameters

and responds back with authed message. The authed message length is 50 Bytes and it includes

a token and the total number of hashes received so far from the client’s machine. In the authed

message, the total number of hashes is 0, since the client has not sent any hashes yet. Then, the

server sends job message to the client. The job message has a length of 234 Bytes with a job id,

blob, and target. The target is a function of the current difficulty in the cryptocurrency to be mined.

The client then computes hashes on the nonce and sends a submit message back to the server, with

job id, nonce, and the resulting hash. The submit message has a payload length of 156 Bytes. In

response to the submit message, the server sends hash accept message with an acknowledgement

and the total number of hashes received during the session. The hash accept message is 48 Bytes

long. Table 3.4, provides details about the WebSocket connection during cryptojacking.

3.5 Countermeasures

Existing Countermeasures. At the browser level, existing countermeasures include web exten-

sions such as No Coin, Anti Miner, and No Mining [61]. Each of these web extensions maintains a

list of uniform resource locators (URLs) to block while surfing websites. If a user visits a website

22

Table 3.4: Messages exchanged between the client and the server in a WebSocket connection.

Message Source Sink Length
(Bytes) Parameters

auth client server 112 sitekey, type, user
authed server client 50 token, hashes
job server client 234 job id, blob, target
submit client server 156 job id, result
hash accept server client 48 hashes

wss:// *.coinhive

wss:// *.coinhive

wss:// *.coinhivewss:// *.ABC

Figure 3.6: Circumventing detection by relaying WebSocket requests through a proxy server.

that is blacklisted by the extension, the user is notified about cryptojacking. However, we show

that blacklisting is not effective to counter cryptojacking since an adaptive attacker can circumvent

detection by creating new links that are not found in the public list of blacklisted URLs.

Evading Detection. An attacker can evade detection by setting his own third party server to relay

data to and from cryptojacking server. In Fig. 3.6, we show how the current countermeasures

for cryptojacking can be circumvented. To practically demonstrate that, we set up a test website

using Coinhive script and installed a local relay server. We installed four chrome extensions that

block the in-browser cryptojacking: No Coin, Anti Miner, No Mining, and Mining Blocker. In

the first phase, we installed the Coinhive script and ran the website. Each extension detected the

WebSocket request and blocked it. We then configured our relay server to act as a proxy. In the

Coinhive script, we modified the code and replaced the Coinhive socket address with our server

address. Next, when we visited the website, it started cryptojacking on the client machine.

23

Robust Countermeasures. Instead of blocking specific URLs, the extensions can monitor the

messages exchanged between the user and the server during cryptojacking session. If the mes-

sages follow the sequence of web frames illustrated in Table 3.4, the extension can flag them as

cryptojacking. This will prevent cryptojacking even if WebSocket requests are relayed through a

proxy. We developed a chrome web extension that detects the strings of web frames shown in Ta-

ble 3.4, and notifies the user when the website starts cryptojacking. To test our extension against

the existing countermeasures, we deployed a proxy server that relayed the data between our test

website to the dropzone server as shown in Fig. 3.6. Our web extension immediately flagged

cryptojacking upon reading the data exchanged between the browser and the relay server.

3.6 Summary

This work demonstrates how the PoW implementation can be exploited to abuse resources of on-

line users through in-browser cryptojacking. Towards that, we systematically analyzes in-browser

cryptojacking through the lenses of static and dynamic analyses. Our static analysis unveils unique

code complexity characteristics and can be used to detect cryptojacking code from malicious and

benign code samples with ≈96% accuracy. Our dynamic analysis shows the CPU usage in cryp-

tojacking and we use that knowledge to reconstruct the operation of cryptojacking scripts. Finally,

by surveying prior countermeasures and examining their limitations, we show simple and effective

methods to counter cryptojacking, capitalizing on the insights from our dynamic analysis.

This is to be noted that in-browser cryptojacking is enabled by resource intensive PoW protocol

which is an application design choice made by the cryptocurrency creators. If Monero or JSEcoin

were using the Proof-of-Stake (PoS) protocol, then the in-browser cryptojacking would not have

been resource-intensive. Therefore, the design choice for a cryptocurrency application has security

implications for other users, which we have thoroughly investigated in this chapter.

24

CHAPTER 4: COUNTERING DDOS ATTACKS ON BLOCKCHAIN

MEMORY POOLS1

In this chapter, we identify and counter a new DDoS attack on the blockchain memory pools that

increase the transaction mining fee. Blockchain-based cryptocurrencies set application-specific

policies for transaction processing [1]. In Bitcoin, for example, the block size is limited to 1MB

and the average block time is set to 10 minutes. As a result, Bitcoin can only process up to 7 trans-

actions per second. Moreover, in blockchain-based cryptocurrencies, a memory pool (mempool)

is a repository for unconfirmed transactions where transactions stay before being mined in a block.

At the mempool, if the rate of incoming transactions exceeds the network throughput, a transac-

tion backlog develops which causes users to pay a higher mining fee to prioritize their transactions.

We note that this behavior can be exploited to launch a denial-of-service attack against users by

flooding the mempool with dust transactions and forcing them to pay a higher mining fee. Current

blockchain-based cryptocurrencies do not apply any mechanism to prevent such an attack.

4.1 Contributions

In this chapter, we continue our analysis on attacks related to application-specific policies. To-

wards that, we identify a mempool DDoS attack that forces benign users to pay higher mining

fee. We propose two attack countermeasures and evaluate their performance using discrete-event

simulations. Our key contributions are summarized below.

1. We identify the effect of mempool flooding on benign users, leading up to a DoS attack.

2. We present a threat model and associated attack procedure whereby an attacker can exploit

the current Bitcoin protocol to achieve his goals.

1This content was reproduced from the following article: M. Saad, L. Njilla, C. A. Kamhoua, J. Kim, D. Nyang,
and A. Mohaisen. Mempool Optimization for Defending Against DDoS Attacks in PoW-based Blockchain Systems.
In IEEE International Conference on Blockchain and Cryptocurrency, pages 285–292, 2019

25

 0

 0.2

 0.4

 0.6

 0.8

 1

07
/0

1/
16

09
/0

1/
16

11
/0

1/
16

01
/0

1/
17

03
/0

1/
17

05
/0

1/
17

07
/0

1/
17

09
/0

1/
17

11
/0

1/
17

01
/0

1/
18

03
/0

1/
18

05
/0

1/
18

 N
o
rm

a
liz

e
d

 V
a
lu

e

Dates (mm/dd/yy)

Mempool
Miner’s Revenue

Figure 4.1: Relationship between the mempool size and the mining fee paid by the users. Notice
that as the mempool size grows, the mining fee increases accordingly. The spikes during May,
September, and November 2017 indicate spam attacks.

3. To counter the attack, we propose fee-based and age-based countermeasures. We examine

the performance of our proposed countermeasures through discrete-event simulations and

evaluate their performance under varying attack conditions.

4.2 Background and Preliminaries

UTXO. In Bitcoin, a user generates a transaction by using spendable balance in his wallet. Spend-

able balance comprises of confirmed “Unspent Transaction Outputs” (UTXO’s) [94, 97] that are

previously mined in the blockchain.

Relay Fee and Mining Fee. In Bitcoin, relay fee is the minimum fee paid for a transaction to be

included in a mempool. If a transaction does not pay the relay fee, peers do not relay it to other

nodes. Mining fee is the fee paid to a miner as an incentive to include the transaction into a block

[20]. Miners tend to prioritize the transactions that pay higher mining fee.

Confirmation. Transaction confirmation means that a transaction has been mined into a block and

its parent UTXO’s are valid and spendable in receiver’s wallet [20]. A confirmation score, also

known as the age of a transaction, is the difference between the block number in which it was

mined and the most recent block. A confirmation score of 0 means that the transaction is in the

mempool, and not yet mined. Such a transactions is also called an “unconfirmed transaction.”

26

Memory Pool. In cryptocurrencies, a memory pool (mempool) is a cache of unconfirmed transac-

tions [20]. The mempool is a bottleneck in the system, and if the transaction arrival rate exceeds

the mining rate, the mempool size starts to grow and the verification process gets delayed.

Dust Transactions. In cryptocurrencies, transactions with small input values are known as “dust

transactions” [66]. Dust transactions contribute very little to the exchange volume of Bitcoin but

consume as much space in the block as a high valued transaction. Spam attacks to exhaust the

block space are carried out using these transactions [7].

DDoS Attack on Mempools. The DDoS attack presented in this work targets the blockchain

mempools by flooding them with unconfirmed transactions. Although, these transactions may

eventually be rejected by miners, but their presence in the mempool creates another major problem.

The mempool size determines the fee paid to the miners. If the mempool size is big, miners have a

limited choice of mining the transactions, and the users try to prioritize their transactions by paying

higher mining fee. Therefore, by mempool flooding, the attacker might trap the users into paying

high fee. Fig. 4.1, shows the relationship between the mempool size and the fee paid to the miners.

Data Collection. To observe the relationship between the mempool size and the mining fee, we

used the public dataset provided by the company called “Blockchain” [17]. In Fig. 4.1, we plot

the results obtained from the dataset and we use the min-max normalization to scale our dataset in

the range [0–1]. Our data shows that Bitcoin mempool has been attacked three times in 2017, and

each time it resulted in an increased mining fee, supporting the attack premise.

4.3 Threat Model

For our threat model, we assume an attacker with spendable balance in this wallet. The attacker

controls a group of sybil accounts, each with multiple public addresses, intended to be used during

the attack. Furthermore, the attacker and sybils have client side software and scripts, which enable

them to initiate a flood of “raw transactions” [20], higher rate than the network throughput [31].

27

Additionally, the attacker is also constrained by a fixed “budget.” Since each transaction requires

a minimum relay fee, it limits the number of transactions that the attacker can generate.

Attack Objectives. The attacker’s objective is to flood mempools with unconfirmed dust trans-

actions. At mempools, the arrival rate corresponds to the flow of incoming transactions and the

departure rate corresponds to the rate of transaction mining. The departure rate is fixed, because the

average block computation time and the size of the block are fixed. When the arrival rate increases

due to a flood of transactions, it results in transactions backlog. Overwhelming the mempool size

alarms the legitimate users, who naturally start paying higher mining fee to prioritize their trans-

actions. The secondary objective of the attacker will be to reduce the attack cost by getting his

transactions rejected. For the attacker, mining will result into losing balance to miners. However,

if the transactions get rejected, the attacker will have another chance to repeat the attack.

4.3.1 Attack Procedure

To reduce the attack cost, the attacker will design his transactions in a way that they are less likely

to be prioritized by miners. At the same time, the attacker would want his transactions to stay in

mempools for as long as possible. To this end, we envision that this attack can be carried out in

two phases: the distribution phase and the attack phase.

The Distribution Phase. In the distribution phase, the attacker estimates the minimum relay fee of

the network, divides his spendable bitcoins (“UTXO’s”) into various transactions and sends them

to the sybil accounts. The attacker generates a series of outputs to all the addresses of sybil nodes

with one or more transactions per address. Transactions made in the distribution phase will have

input “UTXO’s”, which will be previously mined in the blockchain. Hence, these transactions will

have greater-than-zero age, and will be capable of paying the relay fee and the mining fee.

The Attack Phase. In the attack phase, sybils will carry out “raw transactions” [20] from the

balance received in the distribution phase. Sybils will generate dust transactions and exchange

them with each other. The rate of exchange of transactions will be much higher than the network

throughput. As a result, the arrival rate of the transactions at mempools will be higher than the

28

departure rate of mined transactions. This will increase the transaction backlog and the mempool

size. Transactions made in the attack phase will have transactions of distribution phase as input

“UTXO’s”. These inputs will still be awaiting confirmation in the blockchain. Due to that, their

confirmation factor or age score will be zero.

4.3.2 Attack Cost

To reduce the attack cost, the attacker requires transactions to be part of the mempool but not the

blockchain. This can be achieved by adding the minimum relay fee (Rf) to each transaction but

not the minimum mining fee (Mf). The relay fee is necessary for a transaction to propagate in the

network and be accepted by the mempool. If the attacker adds the mining fee, his transactions will

attain priority from a miner and might get mined. To avoid that, sybils only pay the relay fee. If a

transaction has i inputs, each contributing a size of k Bytes, and o outputs, each contributing a size

of l Bytes, then the total transaction size S and its cost C(BTC) are determined by (4.1).

S(Bytes) = (i× k) + (o× l) + i, C = Rf ×
S

1024
(4.1)

Assuming that the attacker is limited by a budget B (BTC) and minimum transferable value set

by the network as Tmin, then the total number of transactions Ta that the attacker can generate can

be computed in (4.2).

Ta =
B × 1024

Rf × Tmin × [(i× k) + (o× l) + i]
(4.2)

On the other hand, a legitimate user who intends to get his transaction mined, pays relay fee for

transaction broadcast and mining fee as an incentive to the miner. For such a user, contributing a

total T transactions, the cost incurred per transactions and the total cost of all transactions Tl is:

C = [Rf +Mf]×
S

1024
, Tl = T× [Rf +Mf]×

S

1024
(4.3)

29

Under these settings, the maximum loss an attacker can incur would happen if all his transactions

possibly get mined. The cost in such a case will be the product of the total number of transactions

and the relay fee (Ta × Rf). The attacker can re-launch the same attack with a new balance of

B − (Ta × Rf). If a portion of the attacker’s total transactions ta gets mined, where ta ≤ Ta, then

the attacker would be able to re-launch the attack with new balance of B − (ta ×Rf).

4.4 Countering The Mempool Attack

To counter DDoS on Bitcoin’s mempool, we propose fee-based and age-based countermeasures.

In the following, we provide a detailed description of both designs along with experimental results.

4.4.1 Fee-based Mempool Design

For fee-based mempool design, we assume that the mempool is initially empty when transactions

begin to arrive. We fix a baseline threshold beyond which the mempool starts spam filtering.

Initially, when the transactions arrive at the mempool, for each transaction, the mempool checks

if the transaction pays a minimum relay fee. If the transaction pays the minimum relay fee, it

is accepted and the mempool size is updated. When the mempool size reaches the threshold, it

starts applying the fee-based policy. Now, if the incoming transaction pays both the relay fee and

the mining fee, only then it is accepted. As a result, we filter spam transactions to optimize the

mempool size. If the new size is less than the baseline threshold then the mempool proceeds its

operation from relay fee check. Otherwise, it continues with the fee-based design.

Analysis of Fee-based Mempool Design. In the following, we analyze the workings of fee-based

design and its utility in the light of our threat model. We will limit the number of transactions an

attacker can generate within his budget by increasing the mining fee threshold. We also observe

how this design affects legitimate users in the network.

30

In the current settings, if mempools employ the fee-based design, the attacker will add mining fee

to each transaction. Given a budget B, adding mining fee to each transaction reduces the total

number of attacker’s transactions Ta, and the (4.2) will change to:

Ta =
1024×B

[(i× k) + (o× l) + i]× [Rf +Mf]× Tmin

(4.4)

From (4.4), we can observe that the number of transactions the attacker can generate has an inverse

relationship with the total fee paid per transactions. Using that relationship, we can adjust the fee

parameter and investigate how it limits the attacker’s capabilities. To do that, we simulate the affect

of increasing the mining fee on the volume of transactions that the mempool accepts. We allocate

a fixed budget to the attacker and select thresholds of minimum mining fee and maximum mining

fee. Using (4.2), we select a suitable budget for attacker that results into 1,000 transactions with

a minimum mining fee. Then, we generate 1,000 legitimate transactions, each with a mining fee

normally distributed over the range of the minimum and maximum mining fee. Using discrete-

event simulations, we increase the mining fee and monitor its affect on the transactions generated

by the attacker and the legitimate users in the network.

Evaluation Results. We plot the results in Fig. 4.2, and use the confusion matrix in Table 4.1, and

evaluation parameters Table 4.1 to observe the effect of the fee-based design on the mempool. The

results in Fig. 4.2(a) show that with the increase in the mining fee threshold, the mempool size

(TP+FP), malicious transactions (FP) and legitimate transactions (TP) decrease. The trend of (FP)

is explained by (4.4). With a fixed budget, increasing the mining fee decreases the total transactions

Ta. Accordingly, the size of the mempool also decreases due to fewer spam transactions (FP).

However, increasing mining fee also limits the budget of legitimate users, which explains the

trend of decreasing (TP). Fig. 4.2(b), shows that the accuracy increases with the mining fee to a

maximum value and then decreases. Using that, we found a minimum fee cutoff corresponding

to the maximum accuracy. In Fig. 4.2(c), we plot accuracy and size ratio; the size ratio is the

fraction of mempool transactions out of the total number of incoming transactions. Lower size

ratio indicates higher size optimization. The results show that at a fee threshold of 13, we achieve

31

Table 4.1: Confusion Matrix and Evaluation Parameters

Actual Transaction
Legitimate Malicious

Mempool Legitimate TP FP
Transaction Malicious FN TN

Precision TP
TP+FP

Recall TP
TP+FN

F1
2×precsion×recall
precision+recall

Accuracy TP+TN
TP+TN+FP+FN

Negative Rate TN
TN+FN

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f
T

ra
n
s
a
c
ti
o
n
s

Mining Fee

TP
TN
FP
FN

Mempool Size

(a) Confusion Matrix

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

R
a
n
g
e

Mining Fee

Precision
Recall

Negative Rate
F1-Score
Accuracy

(b) Evaluation Parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

R
a
n
g
e

Mining Fee

Accuracy
Size Ratio
Precision

(c) Accuracy, Precision, and Size

Figure 4.2: Fee-based design analysis. As the mining fee increases, the mempool size reduces.
However this also affects legitimate transactions thereby reducing the detection accuracy. An
optimum fee cut-off can be selected from Fig. 4.2(c) based on the accuracy and size ratio trade-off.

60% accuracy, 70% size optimization, and 78% precision. Increasing the fee parameter further,

increases the size optimization but decreases the accuracy. Therefore, the fee-based design presents

a trade-off between the size efficiency and the accurate detection of malicious transactions.

Limitations of Fee-based Mempool Design. The attacker can circumvent the fee-based design

by using a transaction generation technique called “Child Pays For Parent” (CPFP) [20]. For

transactions generated in the attack phase, their parent transactions in the distribution phase need

to be verified and mined. The attacker can minimize the probability of transaction acceptance

in the first phase by reducing their priority factor; e.g. by paying a minimum relay fee and no

mining fee. Once the parent transactions have lower probability of acceptance in the first phase,

the child transactions can increase their priority factor by adding higher relay fee and mining fee.

In such a situation, and when the mempools apply the countermeasures, spam transactions of

the attack phase will get into the mempool. One way to address this problem is to prioritize the

incoming transactions on the basis of the mining fee. However, this will also affect the legitimate

transactions. To address these limitations we propose the age-based countermeasures.

32

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

N
u
m

b
e
r

o
f
T

ra
n
s
a
c
ti
o
n
s

Average Age

TP
TN
FP
FN

Mempool Size

(a) Confusion Matrix

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

R
a
n
g
e

Average Age

Recall
Precision

Negative Rate
F1-Score
Accuracy

(b) Evaluation Parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

R
a
n
g
e

Average Age

Accuracy
Size Ratio
Precision

(c) Accuracy, Precision, and Size

Figure 4.3: Analysis of the age-based Design. Notice that with age-based design, the accuracy,
precision, and size ratio are comparatively higher than the fee-based design. Therefore, the age-
based design is more effective in rejecting the unconfirmed transactions generated by the attacker.

4.4.2 Age-based Mempool Design

To limit attacker’s chances, we propose the “Age-based Mempool Design” that addresses the lim-

itations of our previous model. We leverage the confirmation factor or “age” of a transaction to

distinguish between legitimate and malicious transactions. The age of a transaction determines

how many confirmations it has achieved over time (§4.2).

For this design, we assume that the baseline size threshold of the mempool has been reached, and

the mempool is only accepting transactions which are paying the relay fee as well as the mining

fee. Now, for each incoming transaction, we count the number of inputs or parent transactions.

We initialize a variable “average age” and set its value to 0. Next, we calculate the average age

of the transaction by adding the age of each parent transaction and dividing by the total number

of parent transactions. This gives an estimate of confirmation score of the incoming transaction.

Then, we apply a “minimum age limit” filter on the mempool. The “minimum age limit” can take

any arbitrary value greater than 0. Only if the transaction’s mean age value fulfills the criteria of

age limit, then the mempool accepts the transaction.

A transaction in Bitcoin has an input pointer pointing to the spendable transaction that it has pre-

viously received. In this design, we apply the check on the age of the incoming transactions. In

the attack phase (§4.3.1), the spam transactions will have input pointers of a parent transaction

that will not be confirmed in any block. The age of of all those parent transactions, made in the

33

distribution phase (§4.3.1), will be 0. Using this knowledge, we compute the average age of all the

input pointers (parent transactions); minimum age value of 1 means that all transactions coming

into the pool are confirmed in at least the most recent block. Once this design is implemented, if a

user tries to spend his coins, he needs to have at least one valid confirmation backing up his trans-

action. This gives advantage to the legitimate users who typically wait for at least 6 confirmations

in Bitcoin. Therefore, this design suits the legitimate users and penalizes the adversary.

Analysis of Age-based Mempool Design. Now, we analyze the working of “Age-based Mempool

Design” and how it helps in countering DDoS attack. For this design, we establish that the attacker

has the capability of circumventing the “Fee-based Design” and is willing to pay the relay fee

and the mining fee for all transactions. Also, the attacker knows that its transactions will not be

verified, so it pays higher relay and mining fee than the legitimate users.

To analyze the effectiveness of age-based countermeasures, we set a minimum age limit and a

maximum age limit as thresholds for the incoming transactions. For the attacker, the only set of

transactions with age value greater than 1 are generated in the distribution phase. Child transactions

made in the attack phase were assigned 0 age value due to unconfirmed parent transactions. To

capture that, we normally distribute the average age value of all malicious transactions from 0 to

the minimum age limit. The average age value of all legitimate transactions was set from 0 to the

maximum age limit. A total of 2,000 transactions were generated with half of them being malicious

and half being legitimate. Then we applied the age-based design on all the incoming transactions

at the mempool. We increased the age requirement for the incoming transactions and evaluated the

accuracy of detection and the state of mempool for each transaction.

Evaluation Results. For evaluation of this design, we used the same confusion matrix in Table 4.1

and evaluation parameters in Table 4.1. The results in Fig. 4.3 show that upon increasing the

average age the malicious transactions, (FP) decreases sharply. The mempool size decreases to a

point where there are only legitimate transactions left in the mempool. Due to low (FP) and higher

(TP), the precision reaches a close to 1 in Fig. 4.3(b). In Fig. 4.3(c), it can be observed that at an

34

average age value of 100 we achieve 60% accuracy, 80% size optimization and 80% precision. As

we increase the age parameter to 200, the accuracy does not decrease as of the fee-based design,

while the size ratio increases up to 90% and the precision increases up to 98%. This shows that the

age-based design prevents a majority of malicious transactions from the mempool.

In these settings, if the attacker intends to spam the network, he needs to have majority of his

transactions confirmed in the blockchain. However, in our attack model, we have described that

confirmation is undesirable for the attacker since it results in losing budget in mining and relay

fee. Moreover, using the results from Fig. 4.3(c), the attacker will have to wait a minimum of 100

blocks to relaunch the attack. With average block computation time of 10 minutes, 100 blocks lead

to 16 hours of delay. Even if the attacker still plans to carry out the attack after waiting and paying

all the fee, he will not be able to flood the mempool.

4.5 Summary

In this work, we identify a DDoS attack on blockchain mempools that traps users into paying

higher mining fee. We note that this attack results from the application-specific policies (i.e. the

throughput limit) in the blockchain system. In Bitcoin, this attack is more feasible due to Bitcoin’s

low throughput. However, in Ethereum, this attack can be costly due to high throughput. To

counter the attack, we propose fee-based and age-based countermeasures and evaluate them using

discrete-event simulations. Our simulation results show that the fee-based design achieves higher

size optimization while the age-based design achieves a higher spam detection accuracy.

Note that in this attack, we assumed that the adversary’s transactions are swiftly relayed in the

network. In ideal conditions, as envisioned by Nakamoto [76], this is a fair assumption since

Nakamoto assumed a completely connected P2P topology in which information propagation is fast.

However, in the real world settings, if the network topology is sparse and transactions are delayed,

the attack may not be highly successful. This shows that the characteristics of the P2P network

influence the information propagation and the network security. Realizing that, we proceed towards

the security analysis of blockchain network layer, presented in the following chapters.

35

CHAPTER 5: PARTITIONING ATTACKS ON THE BITCOIN

NETWORK1

In the last two chapters, we focused on the attacks related to the application-specific policies in the

blockchain systems. In this chapter, we proceed towards the network layer security problems by

uncovering three forms of partitioning attacks on the Bitcoin network.

Bitcoin nodes form an overlay P2P network which is build on top of a physical network of Au-

tonomous Systems (ASes) [76, 89]. Originally, Bitcoin was conceived as a democratic network

in which nodes and the physical network did not affect the overlay network [76]. However, since

2009, the Bitcoin network has significantly scaled up and deviated from its ideal configuration.

In the current network, the mining power is centralized among a few nodes, and those nodes are

clustered across few ASes. We note that the centrality across ASes has a high risk of routing at-

tacks due to the weak trust model of the “Border Gateway Protocol” (BGP). Moreover, the routing

in the physical network adds block propagation delay which can lead to inconsistent blockchain

views among nodes. Such inconsistencies can be exploited by malicious miners to partition the

vulnerable nodes and force them to follow a counterfeit blockchain.

5.1 Contributions

In this work, we conduct a data-driven study to uncover the increasing centralization of Bitcoin

nodes over the Internet and the non-uniform consensus among peers. Using that knowledge, we

present spatial, temporal, and spatio-temporal partitioning attacks, summarized below.

1. We found that only 8 ASes host 30% of Bitcoin nodes and 24 ASes host 50% of Bitcoin

nodes. At the organization-level, we found that only 13 organizations host 50% of the Bitcoin

1This content was reproduced from the following article: M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A.
Mohaisen. Partitioning Attacks on Bitcoin: Colliding Space, Time, and Logic. In IEEE International Conference on
Distributed Computing Systems, pages 1175–1187, 2019.

36

nodes. Among them, only two organizations intercept 65.7% of Bitcoin hashing rate. We

note that this centralization can be exploited to launch BGP attacks against the dominant

ASes (spatial partitioning attacks §5.3.1).

2. We also observe that due to block propagation delay, the network has non-uniform consen-

sus. Our results show that in some cases, even 5 minutes after the publication of a block,

≈62.7% of nodes do not receive the block. We show that such a behavior can be exploited

to launch the temporal partitioning attack (§5.3.2) in which the adversary can feed false

blocks to nodes and temporally partition the network.

3. To optimize spatial and temporal attacks, we explore the spatio-temporal partitioning at-

tack (§5.3.3). By observing that only 5 ASes hosted ≈30% of synchronized nodes, this

attack considers them as more valuable targets, thus reducing the attacker’s effort.

4. We validate the partitioning attacks using the knowledge from real world settings or simu-

lations. For each attack, we also show the attack implications on the Bitcoin network and

conclude with proposed countermeasures (§5.4).

5.2 The Bitcoin Network Structure

Bitcoin consists of nodes connected in a peer-to-peer network. Upon joining the network, nodes

connect to each other using public IP addresses, and use the gossip protocol to exchange network

information such as transactions, blocks, and addresses. There are special nodes in the network,

called miners, that are responsible for extending the blockchain by creating new blocks [84].

Ideally, all the participating nodes in the network need to have an updated blockchain ledger, but the

growing size of the chain makes it infeasible to be used on smart devices. To address this problem,

Bitcoin also uses a concept of lightweight clients or SPV clients that run on a smart device and

obtain the blockchain information by connection to the full nodes. Therefore, the current Bitcoin

network is structured into full nodes that are active in the main network, and lightweight nodes

37

B2B1B3B2B1B4B3B2B1

B3B2B1B4B3B2B1

F1

Light Nodes

F2 F3 F4

F5Light Nodes

B4

Figure 5.1: The Bitcoin network illustration showing full nodes and lightweight nodes (also called
SPV clients). Lightweight nodes only have the view that their associated full nodes provide. Full
nodes F1, F2, and F5 have updated views while F3 and F4 are 1-2 blocks behind.

that use services of full nodes. In Fig. 5.1, we provide an illustration of this model. For more

information regarding the full nodes and the lightweight nodes, we refer the reader to [46].

5.2.1 Threat Model

In this section, we outline the basics of partitioning attacks on Bitcoin and describe our threat

model. Towards that, we revisit Apostolaki et al.’s work [5] (referred to as the “classical attack”),

providing a baseline for partitioning attacks. We highlight new targeted attacks on the network, by

introducing temporal and spatio-temporal attacks, which have not be identified before.

For the spatial partitioning, we assume the adversary to be an autonomous system (AS), an ISP

organization, or a nation-state. An AS hosting a fewer Bitcoin nodes can launch a BGP attack

on another AS that hosts more nodes [91]. As a result, it can hijack the Bitcoin traffic, isolate

the mining power, or simply harm the reputation of the target AS. For temporal attacks, we as-

sume a malicious mining pool that attempts to fork the network and deprive an honest miner from

block rewards. With soft forks, the adversary aims to create a temporary imbalance in system

ramifications, such as transaction processing, and by hard forks it attempts to permanently split

the network with diverging views. Additionally, due to the centralization of Bitcoin traffic and a

38

shift in country-level policies towards Bitcoin, we do not exclude the possibility of a nation-state

adversary.

Adversarial Capabilities. In the threat model, adversaries have unique capabilities. For example,

a malicious AS or organization will have the ability to announce false routing information to other

ASes and separate the target AS from neighboring nodes. This, in turn, can disrupt the exchange

of transactions, blocks, and mining information, thereby affecting all the network nodes.

For temporal partitioning, the adversarial mining pool will have a consistent view of the network,

which will allow it to identify nodes that are behind the blockchain. Obtaining this information

is not challenging since various Bitcoin crawlers are available and can be used to access the

blockchain view of nodes [19]. This can be exploited by the malicious mining pool to identify

vulnerable nodes that are one or more blocks behind. A malicious miner, for instance, can mislead

those nodes by propagating false information in the network. Doing so may create a partitioning

in the network, where a group of nodes are misled into following a counterfeit blockchain.

5.2.2 Data Collection

For our analysis, we crawled data from Bitnodes [19], which is a Bitcoin service supported by

Earn.com [26]. Bitnodes maintains a persistent connection with all reachable nodes by running a

full node that connects to the rest of the network. For each node, Bitnodes records useful infor-

mation such as the latency, the uptime, and the latest block etc. From IP addresses, it determines

the corresponding AS, organization, and location of nodes. We developed another crawler, atop

Bitnodes, to acquire data and store it in our local database. We ran the crawler for two months and

sampled the network snapshot at 10 minutes interval.

39

5.2.3 Methodology

First, we analyzed the distribution of nodes across ASes and organizations. The initial results

gave us a holistic view of the network and its centralization, which we used to describe spatial

partitioning attacks. Next, we analyzed the network synchronization by analyzing the blockchain

view of each node. We recorded the latest block published by miners in the network and the most

recent block that every node had. The difference between the two denoted how far behind the node

was from the network. As shown in Fig. 5.1, nodes F3 and F4 are 1-2 blocks behind the main

chain. We leveraged this information to outline temporal partitioning attacks that can be launched

on Bitcoin network to isolate nodes based on their outdated view.

Measurements and Observations. Below, we discuss some key observations we made during the

preliminary analysis on the Bitcoin network on February 28, 2018. The network snapshot showed

that there were 13,635 full nodes in the network out which 11,382 (83.47%) nodes were up. Only

6,155 (45.14%) nodes had the most updated copy of the blockchain while 7,480 (54.86%) were

1 or more blocks behind. Among the full nodes, 12,737 (93.41%) had IPv4 address, while 579

(4.24%) had IPv6 address. The remaining 319 (2.33%) full nodes had onion addresses, meaning

that they were using TOR services to run Bitcoin. During the two months data collection, the

average number of nodes that were up was ≈10K.

5.3 Partitioning Attacks

Based on our preliminary analysis, we propose three types of Bitcoin partitioning attacks. The

fundamental premise of each attack is related to the spatial positioning of nodes, the topological

symmetry of the network, or the temporal consensus over the blockchain state. We define these

attacks as spatial, temporal, and spatio-temporal partitioning attacks, respectively.

40

 AS100
 170.0.0.1/16

 AS200
 190.0.0.1/16

 AS600
 220.50.0.0/16
 AS-700
 230.50.0.0/16

 AS300
 180.50.0.0/16

 AS500
 200.50.50.0/24

 AS400
210.50.50.0/24

A B

C D

BGP Routing
Among ASes

 AS600
 220.50.50.0/24

 AS-700
 230.50.50.0/24

 AS500
 200.50.0.0/16

 AS400
210.50.0.0/16

E

F

BGP Hijacking
by D and E

Figure 5.2: Network topology consisting of organizations, ASes and full nodes. Organizations D
and E can launch BGP attacks against F and B respectively.

5.3.1 Spatial Partitioning

In this section, we analyze the centralization of full nodes and mining pools across ASes and orga-

nizations. Towards that, we revisit the prior work to evaluate the classical attack, and demonstrate

that over time, the Bitcoin network has further centralized and become more vulnerable.

Attack Objectives. The objective of spatial partitioning is to isolate miners, and restricting their

access to the network, or eclipsing an entire AS that hosts a large fraction of nodes. A mining pool

might launch such an attack against its competitor to increase its chances to publish more blocks.

A competing cryptocurrency can launch this attack to affect Bitcoin’s reputation.

Attack Procedure. In Fig. 5.2, we provide an illustration of a BGP attack, which can be launched

by a malicious organization or an AS. In this attack, the malicious AS announces prefixes that

belong to the victim AS. As shown Fig. 5.2, organizations D and E can launch BGP attacks against

organization F and B, respectively, by broadcasting more specific prefixes. Moreover, the attack

can be made more targeted by announcing prefixes addressing only Bitcoin nodes. This attack

relies on two major factors: the total number of ASes and organizations, and the total number of

nodes hosted in each of them. In particular, if the total number of ASes and organizations hosting

full nodes is large, the attack becomes costly. Similarly, if the number of nodes is concentrated

within a few ASes, that makes a better target rather than attacking arbitrary ASes with fewer

41

Table 5.1: Top 10 ASes and Organizations that host Bitcoin nodes as of February 28th 2018. Note
that the network is more centralized with respect to organizations than ASes, and AS24940 host
the maximum number of Bitcoin nodes.

ASes # of Nodes Total Nodes % Organizations # of Nodes Total Nodes %
AS24940 1,030 7.54% Hetzner Online GmbH 1,030 7.54%
AS16276 697 5.11% Amazon.com, Inc 756 5.54%
AS37963 640 4.69% OVH SAS 700 5.13%
AS16509 609 4.47% Hangzhou Alibaba 640 4.69%
AS14061 460 3.37% DigitalOcean, LLC 503 3.69%
AS7922 414 3.04% Comcast Communication 414 3.04%
AS4134 394 2.89% No.31, Jin-rong Street 394 2.89%
AS51167 288 2.11% Contabo GmbH 288 2.11%
AS45102 279 2.05% Alibaba (China) 279 2.05%

nodes. To evaluate that, we carried out two experiments to observe the total number of ASes

hosting Bitcoin nodes and the distribution of nodes among those ASes.

Practical Considerations. Our results show that the full nodes in Bitcoin are highly centralized at

the AS and organization level. Compared to [5], the network has become even more centralized,

and more vulnerable to BGP hijacking and routing attacks. In particular, we observed that among

the total of 84,903 ASes in the world [85], only 8 (0.0094%) ASes host 30% Bitcoin nodes. 24

(0.028%) ASes host 50% while 1,660 (1.95%) ASes host 100% Bitcoin nodes. This shows a

significant difference in the number of ASes that host 50% and 100% full nodes. To understand

that, we plot CDF of ASes that host the traffic of full nodes in Fig. 5.3.

Similarly, we observed that the top 8 organizations intercepted 30% Bitcoin traffic and the top 13

organizations intercepted 50% traffic, collectively. We also noticed that each organization con-

trolled one or more ASes, alluding to the possibility of a fine-grained partitioning attack.

In Table 5.1, we show the top 10 ASes and organizations along with the percentage of total nodes

that they host. AS24940 hosts 7.54% nodes and its corresponding organization Hetzner Online

also hosts 7.54% nodes, meaning that the Bitcoin traffic routed by Hetzner Online entirely goes

through AS24940. On the other hand, Amazon.com routes 5.54% of the traffic while AS16276

intercepts 5.11% traffic. This shows that Amazon.com owns another AS besides AS16276 that

42

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F
 o

f
F

u
ll

N
o
d
e
s

ASes and Organizations (x100)

Organizations
ASes

Figure 5.3: CDF of the Bitcoin full nodes in ASes and organizations.

Table 5.2: Top 5 mining pools per hash rate, ASes, and organizations. 65.7% mining data goes
through only three organizations. Alibaba intercepts at least 60% of the mining data. We exclude
the remaining 12 mining pools from the study as their contribution to the hash rate is minimal.

Mining Pool H. Rate % ASes Organizations

BTC.com 25%
AS37963 Hangzhou Alibaba
AS45102 AliBaba (China)

Antpool 12.4% AS45102 AliBaba (China)
ViaBTC 11.7% AS45102 AliBaba (China)
BTC.TOP 10.3% AS45102 AliBaba (China)

F2Pool 6.3%
AS45102 AliBaba (China)
AS58563 Chinanet Hubei

12 others 34.3% — —

also routes traffic. This model is similar to the illustration shown in Fig. 5.2.

Mining pools are another important part of Bitcoin, since they are responsible for extending the

blockchain and maintaining its state. Mining pools consist of miners on the Internet communi-

cating via a special mining protocol known as the “Stratum Mining Protocol” [21]. All miners

compute PoW and send the result to the stratum server address specified by the mining pool. The

stratum address is made public by the mining pool. As such, if the link to the stratum server is

compromised, the mining pool gets disconnected and its aggregate hash rate decreases. To analyze

the distribution of stratum servers, we carried out two experiments. First, we gathered informa-

43

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

 F
ra

c
ti
o
n
 o

f
N

o
d
e
s
 H

ija
c
k
e
d

Number of BGP Hijacks

AS24940 (51 prefixes)
AS16276 (104 prefixes)
AS37963 (454 prefixes)

AS16509 (2969 prefixes)
AS14061 (1430 prefixes)

Figure 5.4: CDF of top 5 ASes vulnerable to BGP attacks. The key shows total BGP prefixes
announced by AS. For 8 ASes, 80% nodes can be isolated by hijacking 20 BGP prefixes.

tion about major mining pools in Bitcoin and their hash rate from Blockchain.info [10]; results

are reported in Table 5.2. Next we selected the top 5 mining pools, which had an aggregate hash

rate of 65% of the total in the Bitcoin network. We then collected the stratum address of the se-

lected mining pools from their websites and traced the IP address corresponding to each stratum

address [12, 4, 40]. We mapped each IP address to the AS hosting the stratum server. We found

that 3 ASes had 65% of Bitcoin mining pool traffic while one organization “AliBaba” alone had

more than 50% of the Bitcoin mining pool traffic. We report our results in Table 5.2. In the light

of our threat model, and given an adversary capable of BGP hijacking, policy enforcement at an

organization level, or collusion, having an organization hosting more 50% of the mining power

makes such an attack even more effective.

Attack Validation and Implications. In this section, we validate our hypothesis regarding BGP

hijacking on Bitcoin ASes and organizations. BGP routing attacks on Internet happen frequently.

In 2008, a service provider from Pakistan hijacked Youtube traffic by announcing more specific

BGP prefixes than the ones announced by Youtube [48]. Similarly, in 2014, a Canadian ISP hi-

jacked prefixes of 19 organizations hosting Bitcoin traffic including Amazon, Digital Ocean, and

Alibaba [50]. In 2017 alone, 14,000 BGP attacks were launched against major ASes [86].

44

Synced Nodes

Behind Nodes

Attacker

Partitioned
Blockchain

Figure 5.5: An illustration of the temporal attack. The attacker establishes connections with nodes
and identifies vulnerable nodes that have an outdated view. Vulnerable nodes have have not been
provided new blocks by surrounding peers, which shows their weak relationship/connectivity. We
annotate this weak relationship with dotted lines. The attacker feeds his copy of blocks to vulner-
able nodes, thereby partitioning the network into two conflicting chains.

To validate the attack and its impact, we selected the top 5 ASes from Table 5.1, and enumerated

the IP addresses of full nodes hosted by these ASes. Next, we grouped the IP addresses based on

the BGP prefixes announced by each AS and calculated the number of BGP prefixes required to

isolate a percentage of full nodes. We report results in Fig. 5.4, showing that except for AS16509,

95% of full nodes in all other ASes are vulnerable, once fewer than 40 BGP prefixes are hijacked.

Spatial partitioning is detrimental to the Bitcoin network as it facilitates other major attacks includ-

ing eclipse attacks and the 51% attack. As shown in Table 5.2, if an attacker hijacks 3 ASes, he

can isolate more than 60% of the Bitcoin hash power. As Fig. 5.4 shows that by hijacking 15 BGP

prefixes, the attacker can cut 95% traffic of AS24940 that hosts 1,030 full nodes. By isolating the

hash power, an attacker can cause delays in the block creation and the transaction confirmation.

5.3.2 Temporal Partitioning

Temporal partitioning involves isolating nodes that are a few blocks behind the rest of the network.

As shown in Fig. 5.1, three nodes have the most updated copy of the blockchain, while nodes F3

and F4 are 1–2 blocks behind. These nodes might be behind the main chain due to a number of

reasons, such as the network latency due to increasing network size or malicious peer behavior.

Therefore, these nodes have an outdated blockchain view and remain vulnerable to partitioning

attacks. Fig. 5.5, provides an illustration of this attack.

45

0 1000 2000 3000 4000 5000
Complete View (10 Minutes Apart)

0

2

4

6

8

10

of
 N

od
es

 (x
10

00
)

>10 5-10 2-4 1 0

(a) General trend in the network

0 20 40 60 80 100 120 140
One Day Snapshot (10 Minutes Apart)

0

2

4

6

8

10

of

 N
od

es
 (x

10
00

)

>10 5-10 2-4 1 0

(b) One day snapshot

0 50 100 150 200 250
Data Points (One Minute Apart)

0

2

4

6

8

10

of

 N
od

es
 (x

10
00

)

>10 5-10 2-4 1 0

(c) One minute sampling

Figure 5.6: Temporal consensus in Bitcoin network. Y-axis denotes number of nodes in 1000. In
each figure, green region denotes the up-to-date blocks. Yellow region denotes 1 block behind.
Purple, blue, and magenta regions represent nodes that are 2–4, 5–10, and ≥ 10 blocks behind
respectively. Fig. 5.6(a) shows the overall network, Fig. 5.6(b), shows a day (March 25) that offers
greater attack opportunity, and Fig. 5.6(c) shows consensus pruning during 10 minutes.

Attack Objectives. The objective of the temporal partitioning is the isolation and subversion

of nodes or a group of nodes within the network. Latency in updating the blockchain is a well

known vulnerability of Bitcoin, which is confirmed in our data. Propagation delays are known to

be key contributors towards the latency [34]. Propagation delay is influenced by the number of

hops between nodes due to sparse peering, and the time required by software clients to verify and

forward a block. Solutions have been proposed that cluster nodes to reduce latency [98, 41], but

the authors note this may increase the potential for partitioning attacks. This indicates a trade-off

between spatial and temporal vulnerability.

Attack Procedure. Our analysis shows that several times a day, a significant fraction of nodes

are not up-to-date. We report our findings in Fig. 5.6 where the x-axis denotes a time-index for

network observations (one observation every 10 minutes in Fig. 5.6(a) and Fig. 5.6(b), and one

every minute in Fig. 5.6(c)). The y-axis is stacked, meaning that curves are cumulative. The green

part shows the synchronized nodes, the yellow part shows nodes that are 1 block behind. The

description of remaining colors is in the figure.

From Fig. 5.6(a), we were able to make following observations. (1) Generally, a majority of nodes

46

(≈ 50%) remains synchronized on the blockchain state. These nodes do not lag behind in the

main chain for a long duration. (2) 10% nodes are forever behind the main blockchain. They do

not update their blockchain and as such, they have no benefit in the network. (3) 30-40% nodes

in Bitcoin occasionally waver in terms of their view of the blockchain. Possibly due to network

latency or consensus delay, they lag behind the most recent block.

Focusing on a single day shown in Fig. 5.6(b), we observed that some yellow and purple spikes

are larger and wider than others. From Fig. 5.6(b), we made the following observations. (1) There

is non-uniform consensus in the network. (2) The most frequent delay among the blocks is 1

block indicated by yellow region, followed 2-4 blocks, indicated by the purple region. (3) On

various occasions, yellow and purple spikes can reach up to 7,000 nodes; approximately 90% of

the network can be partitioned if an attacker isolates them.

It is surprising to note the deteriorating network synchronization in the Bitcoin network. In 2013,

Decker et al. [34] noted that a Bitcoin block is delivered to all nodes in less than 12 seconds. In

contrast, our measurements present a different and more concerning picture. One possible reason

is that since 2013, the Bitcoin network size has grown from≈3.5K nodes to more than 10K nodes.

We believe that an increasing network size and the constant network outdegree (8) is the main

reason for poor network synchronization .

In Bitcoin, on average, a block is published every 10 minutes. In the previous two experiments, we

observed that with fine grained sampling, on a given day, the attacker can isolate a group of nodes

that are behind the main chain. To further analyze this behavior, we performed another experi-

ment that involved per-minute sampling of network. Our objective was to observe the consensus

distribution among peers immediately after a block broadcast. We plot the results obtained from

the third experiment in Fig. 5.6(c) showing that there are vulnerable spots in the network in which

up to 90% of the network is 1-4 blocks behind. As such, the non-uniform consensus presents an

opportunity whereby an attacker can find a time window to isolate a group of targeted nodes.

Simulation and Attack Validation. To validate the insights obtained from our data, we developed

47

(a) Time Step 151 (b) Time Step 201 (c) Time Step 251

Figure 5.7: Simulation of temporal attack. Fig. 5.7(a) shows fork B emerging at node [7,7]. Com-
pare the color distribution to the peaks of Fig. 5.6(c) above. Two blocks later in Fig. 5.7(b) fork B
has control of 1/6 of the nodes. In Fig. 5.7(c) the longer chain A overwhelms fork B but has lost
synchronization so cannot prevent emergence of a new fork C.

a simulation model in R to test the temporal partitioning attack. The simulator was tested in base

simulation scenarios, such as zero and perfect communication among nodes. As an internal error

check, and to make the simulation more realistic, each simulated node maintains a 64-bit MD5

hash linked chain of values updated to its current fork. By adjusting parameters, the simulation

was capable of accurately representing the state of the network as we observed in our dataset.

Fig. 5.7 shows a sample of results obtained from simulation, where the attacker has 30% of the

network hash rate. Once a portion of the network is isolated, it can be sustained with successive

forks, since the isolated nodes naturally assume that delay is due to network issues. As such, they

do not know that new blocks are taking more time to calculate due to the lower hash rate of the

attacker. Meanwhile, the main chain loses its hash rate and is therefore, less capable of responding.

Note that the cost of launching a temporal attack is much less than the spatial attack, provided that

the attacker has the consistent view of the network as shown in Fig. 5.6.

Implications. Even a short term fork in the network would cause sufficient disruption to invalidate

transactions. Such an attack is likely to result in significant loss to network stakeholders. Quan-

tifying the impact of adverse events on Bitcoin has been inconclusive [42][36], and is dependent

upon user perception [81]. However, once the targeted nodes are isolated, as shown in Fig. 5.5,

48

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
N

o
d
e
s

Data Points

Synced Nodes
1 Block Behind

2-4 Block Behind

(a) One day snapshot

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
N

o
d
e
s

Data Points

AS4134

AS24940

(b) Top 1-2 synced nodes ASes

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
N

o
d
e
s

Data Points

AS16276

AS16509

AS14061

(c) Top 3-5 synced nodes ASes

Figure 5.8: Spatial and temporal distribution of nodes for the day defined in Fig. 5.6(b). For
the synced nodes in Fig. 5.8(a), we outline their distribution across top five ASes in Fig. 5.8(b)
and Fig. 5.8(c). On average, AS4134 hosts most of the nodes.

the soft fork will create a temporary partition in the network. The isolated nodes will be following

a counterfeit blockchain with different transactions from the main chain. Therefore, when nodes

recover from the fork, the attacker’s blocks will be rejected, and all transactions belonging to le-

gitimate users in those blocks will also be reversed. This will require a major update on the set of

all UTXO’s at each node, and a system-wide check on the transactions being reversed.

5.3.3 Spatio-temporal Partitioning

We now analyze how an attacker can leverage spatio-temporal patterns to find vulnerable spots in

the network, through which he can effectively isolate a group of nodes. From our data analysis, we

found the feasibility and cost of this attack compared to spatial and temporal partitioning.

Attack Objectives. In this attack, the adversary aims to split the network based on the network’s

vulnerability to both the spatial and temporal partitioning. As shown in Fig. 5.6(a) and Fig. 5.6(b),

the purple and yellow nodes are vulnerable to temporal attacks. However, the attacker cannot

launch the same attack on nodes in the green region since they are up-to-date. These nodes can

still be partitioned based on the BGP attack presented in spatial partitioning. A combined effect of

both attacks will be an optimized and targeted attack that can prolong the partitioning effects.

Note that for a BGP attack on nodes within the green region, the attacker does not have to isolate

49

Table 5.3: Top 5 ASes that hosted all the synchronized nodes in Fig. 5.6(b) for 24 hours.

AS Organization Nodes Percentage
AS4134 No.31, Jin-rong 993 9.57%

AS24940 Hetzner Online 830 7.98%
AS16276 OVH SAS 530 5.22%
AS16509 Amazon.com 417 4.19%
AS14061 DigitalOcean 332 3.23%

all target nodes. Since these up-to-date nodes are connected with each other, therefore, an attack

on a subset of nodes can have a cascade effect, thereby compromising all other nodes.

Attack Procedure and Validation. For a successful attack, the attacker needs information about

the ASes and organizations of the synced nodes as well as nodes that are behind. The feasibility of

this attack depends on the adversary’s capabilities. Per our threat model, if the attacker is an AS,

it will prefer to hijack BGP prefixes to damage Bitcoin. As such, it will prefer maximum nodes in

the green region and minimum nodes in yellow and purple region, to maximize the attack severity.

If the attacker is a mining pool, then it will launch a temporal attack, and will prefer minimum

nodes in green region and maximum nodes in other regions. However, if the attacker is a cloud

service provider that has both routing and mining capabilities, then it can launch both spatial and

temporal attacks. Therefore, this attack is adjustable to the capabilities of an attacker.

Although multiple attack scenarios and case studies can be drawn for spatio-temporal partitioning

but in the interest of space, we illustrate one case study. From our simulations, we observed that

the temporal partitioning forks the network at a faster rate than spatial attacks. Therefore, we

assume a case in which cloud provider waits for minimum number of synced nodes, and launches

a spatio-temporal attack. In Table 5.3, we enlist the top 5 ASes and organizations that hosted most

synchronized nodes in Fig. 5.8(a). We observed that 28% of synced nodes are hosted within the

top 5 ASes. We plot their hosting pattern over a full day in Fig. 5.8(b) and Fig. 5.8(c). The cloud

provider can spatially attack the synchronized nodes by hijacking five ASes and temporally attack

the remaining nodes that are one or more blocks behind. This can eventually lead to a hard fork.

50

Implications. Spatio-temporal attack is an optimized and targeted attack that provides multi-

ple attack opportunities to a strong adversary to take down the network with minimal effort. As

demonstrated by our results in Fig. 5.8, at a given time, more than 50% of nodes can be behind the

main blockchain and vulnerable to temporal attacks. Moreover, at the same time, the remaining

synced nodes can be attacked by hijacking BGP prefixes of their hosting ASes and organizations.

The attacker can select a suitable trade-off between the lagging nodes and synced nodes, based on

the attacker’s capabilities, and disrupt the network. For a successful attack on synced nodes, the

attacker may just have to isolate a small number of nodes that relay blocks to each other, and due to

the cascade effect, remaining nodes will eventually collapse. Note that the synchronized nodes can

help other nodes to recover from the temporal partitioning attacks. However, in the spatio-temporal

attack, that recovery will not be possible leading to a hard fork.

5.4 Countermeasures

In this section, we discuss the preventive measures to counter the partitioning attacks. To prevent

spatial partitioning, mining pools should spread stratum servers across various ASes. This can

resist the centralization of stratum servers and raise the attack cost, since the attacker will have to

hijack more BGP prefixes to isolate the targeted pool. Furthermore, large Bitcoin exchanges such

as Coinbase and Bitstamp should also host their full nodes across multiple ASes to prevent spatial

attacks. In Bitcoin, spatial partitioning is an artifact of BGP hijacking and to counter that, Zhang

et al. [114] propose reactive and proactive defense strategies that are based on the idea of “bogus

route purging and valid route promotion” that can prevent BGP attacks on ASes across the Internet.

Temporal partitioning results from malicious peer behavior towards nodes that are behind the main

chain. Although nodes can be behind due to various factors, the absence of a trusted central au-

thority, makes them unaware of their condition. To counter that, a node can compare the timestamp

of its latest block and the expected time for the next block. If a node does not receive a block on

the expected time, it can try new outbound connections to increase its network reachability.

51

5.5 Summary

In this work, we uncover three forms of partitioning attacks on the Bitcoin network by measuring

and characterizing the increasing centralization of the Bitcoin nodes across ASes and decreasing

network synchronization. We call them spatial, temporal, and spatio-temporal attacks and show

their impact on the Bitcoin network through measurements and simulations. The spatial partition-

ing attack exploits the centrality of Bitcoin nodes across ASes to optimal BGP attack opportuni-

ties. The temporal partitioning attack exploits the weak network synchronization to allow a mining

pool to create soft forks in the network. Finally, the spatio-temporal partitioning attack exploits the

commonalities between spatial and temporal attack vectors to create long-term partitioning.

Standing out in our work is the the temporal partitioning attack which is a novel contribution to the

blockchain security. We are the first to note the decreasing network synchronization in the Bitcoin

network. We believe that this is due to the increasing network size and block propagation delay.

However, to confirm that, we conduct a root cause analysis, presented in the next chapter.

52

CHAPTER 6: ROOT CAUSE ANALYSIS FOR BITCOIN NETWORK

SYNCHRONIZATION

In this chapter, we conduct a root cause analysis to explore the key factors behind the decreasing

network synchronization in the Bitcoin network. Network synchronization ensures that all nodes

have an up-to-date and consistent view of the blockchain, whereas the lack of such a view, i.e.,

nodes being behind the current state of the blockchain, makes the Bitcoin network vulnerable to the

partitioning attacks [92]. In Bitcoin, a peer-to-peer (P2P) network of more than 10,000 nodes [72],

synchronization is affected by the block propagation delay. Recent work has shown that the syn-

chronization in the Bitcoin network deteriorated in 2018 [92], when compared to 2013 [34], due

to the increasing network size: between 2013 and 2018, the number of reachable nodes increased

from ≈3K nodes to ≈10K nodes, thereby increasing the block propagation delay.

The fundamental reason why the block propagation delay increases as a function of the Bitcoin

network size is twofold. First, in the current design of the Bitcoin protocol, each reachable node

in the Bitcoin network can connect to only eight other reachable nodes, making that the outdegree

of each node in the network. As a result, increasing the network size while fixing the outdegree

will only mean that longer paths will connect any two nodes in the network on average, and a

block has to traverse more hops to reach its destination, eventually negatively affecting the Bitcoin

network synchronization by increasing the block propagation delay. Second, the increasing number

of Bitcoin nodes are possibly hosted across different Autonomous Systems (ASes) [35, 5], with

various hosting patterns. Given the spatial distribution of the nodes across those ASes, and the

complexity (length and policy) of the routes between those ASes, the increase in the number of

nodes will also increase the block propagation delay.

Given the stability of the latency distribution on the Internet recently, one would anticipate the over-

all Bitcoin network synchronization will stay the same in the absence of any significant change to

the Bitcoin protocol, and given a constant network size. Surprisingly, however, recent measure-

53

20 40 60 80 100

Percentage Synchronized Nodes

2019

2020

K
er

n
el

D
en

si
ty

Figure 6.1: Bitcoin network synchronization in 2019 and 2020. Synchronization is determined by
the percentage of nodes with the up-to-date blockchain. In 2019, the mean and median network
synchronization were 72.02% and 80.38%, respectively. In 2020, the mean and median network
synchronization decreased to 61.91% and 65.47%, respectively. The kernel density shape also
shows that the Bitcoin network synchronization decreased in 2020.

ments show that, while the reachable network size has remained constant (≈10K nodes), the net-

work synchronization has deteriorated even further, as shown in Fig. 6.1, which captures a kernel

density plot of the network synchronization in 2019 and 2020.

6.1 Background and Motivation

To investigate what caused such changes, in both cases, we collected the Bitcoin network data

from Bitnodes [23] and measured the synchronization. Through analysis, we found that the num-

ber of reachable nodes between September and December 2019 was ≈10K, where the average

synchronized nodes’ percentage was ≈72%. However, we found that while the average number of

reachable nodes stayed the same between January and April 2020, at ≈10K, the average percent-

age of synchronized nodes decreased to only ≈62%.

The decreasing network synchronization is alarming, suggesting that the Bitcoin network is becom-

ing more vulnerable to partitioning attacks [92]. Moreover, these results suggest that the network

synchronization cannot be only attributed to the network size, and there must be other hidden fac-

tors that affect it, which warrants further exploration through root cause analysis. To this end, in

this work, we explore four plausible factors that may influence the block propagation and network

54

synchronization, which we briefly discuss in the following.

Unreachable Network. There are two types of Bitcoin nodes, reachable and unreachable. The

reachable nodes establish outgoing connections with and accept incoming connections from other

nodes. The unreachable nodes (often behind a NAT [35]) only establish outgoing connections. In

the prior work, block propagation was measured by observing the interactions among reachable

nodes [23, 92, 78], while the growth of unreachable nodes and their impact on network synchro-

nization is not characterized yet. While the reachable network size remains unchanged, as shown

in Fig. 6.1, the unreachable network size might be growing and may influence the block propaga-

tion. Therefore, the first part of our analysis includes a mapping of the unreachable network and

determining its impact on the Bitcoin network synchronization.

Addressing Protocols. When outbound connections of a node are dropped, the node tries to es-

tablish new connections with other nodes until the outbound slots are filled. While making those

connections, the node does not distinguish between reachable and unreachable IP addresses. Ide-

ally, a node’s IP address database, addrMan, should contain only reachable addresses so that

each outgoing connection is successful. In contrast, if addrMan is dominated by unreachable IP

addresses, the node wastes time in failed connection attempts and, as a result, might not imme-

diately receive a block if the outgoing slots are not filled. The second part of our analysis is by

studying the Bitcoin addressing protocol and empirically evaluating the success rate of outgoing

connections establishment. We conjecture a low outgoing connection establishment success rate

due to the addressing protocol will contribute to the deteriorating network synchronization.

Relaying Protocols. The Bitcoin ideal design [76, 44] assumes that each node “broadcasts” blocks

to the entire network in lock-step synchronous [44, 83] manner, meaning that the block is con-

currently released to all connections. Exploring how the Bitcoin Core implements the broadcast

mechanisms is essential, although not done before. Therefore, the third part of our analysis is by

studying the Bitcoin block relaying protocol and analyzing its impact on network synchronization.

Network Churn. The Bitcoin network is permissionless and nodes can leave the network at any

55

time. The nodes churn decreases the average node outdegree and network synchronization. More-

over, when new nodes replace the synchronized nodes, it could take the new nodes several days to

download the blockchain. Only after downloading the blockchain they will be able to propagate

newly mined blocks. Therefore, a high churn is undesirable. The fourth part of our analysis is

measuring and characterizing the network churn and how it affects synchronization.

Contributions. We pursue a measurement-based approach for evaluating these factors. First, we

set up a data collection system that connects to all reachable nodes and collects IP addresses of

unreachable nodes. Our longitudinal analysis captures the number of reachable and unreachable

nodes, and characterizes the network churn. Our source code inspection unveils characteristics of

the the block relaying protocol and the network addressing protocol. We conduct experiments to

evaluate those factors’ impact on block propagation. Our contributions are as follows:

1. We conduct a comprehensive mapping of the Bitcoin network. As a result, we discover

≈29K reachable and ≈694K unreachable nodes, respectively. By probing the ≈694K un-

reachable nodes, we find that ≈54K unreachable nodes are active at any time (§6.3.1).

2. Through source code analysis, we unveil a major limitation in the Bitcoin addressing pro-

tocol. We note that the addressing protocol does not distinguish between reachable and

unreachable nodes, thus increasing the failure rate of the outgoing connections. Our experi-

ments on a custom Bitcoin node showed a failure rate of 88.8% (§6.3.2).

3. We study the in situ block relaying protocol and measure its impact on block propagation.

We found that Bitcoin implements a round-robin block relaying for each connection, rather

than the simultaneous block broadcast. Our experiments show that the round-robin relaying

can add up to 17 seconds of delay in relaying block to the last connection (§6.3.3).

4. We measure the impact of nodes churn on synchronization. Our analysis reveals that reach-

able nodes have a short life. Each day, ≈8% reachable nodes leave the network, replaced by

an equal number of new reachable nodes. Compared to 2019, the churn among the synchro-

nized reachable nodes has doubled in 2020 (§6.3.4).

56

Reachable Nodes

Network Crawler
and Scanner

Unreachable
Nodes

4
Address
Crawler

BitnodesDNS Database

Blacklisted
Addresses

5

4
3

1

2

Figure 6.2: Data collection workflow. The “Address Crawler” collected IP addresses of reachable
nodes from DNS database and Bitnodes, removed blacklisted addresses, and forwarded them to the
“Network Crawler and Scanner” which operated our Bitcoin node that sent GETADDR messages.
After collecting IP addresses of unreachable nodes, it sent them a VER message using Scapy.
Unreachable nodes that responded to the VER message were labeled as responsive nodes.

6.2 Data Collection Methodology and Overview

Our analysis is based on the data we have collected from the Bitcoin network in a duration of 60

days (04 April, 2020 to 04 June, 2020). For this purpose, we have implemented our data collection

system as shown in Fig. 6.2. In this section, we present our data collection methodology, step-by-

step, and an overview of our dataset.

6.2.1 Collecting Reachable Bitcoin Node Addresses

As a first step of our data collection, we collect all reachable addresses in the Bitcoin network.

Since our data collection system relies on some key designs of Bitcoin network protocol, we first

present some of such details before discussing our data collection methodology.

Default Connection Limits. By default, in Bitcoin, a reachable node can establish 8 outgoing

and 117 incoming connections, while an unreachable node can only establish 8 outgoing connec-

tions [18]. Since, unreachable nodes drop incoming connections, therefore, no two unreachable

nodes can directly connect to each other. As such, information exchange (i.e. transactions or

blocks) between two unreachable nodes is enabled by reachable nodes.

57

Node Bootstrapping. When a node joins the Bitcoin network for the first time, it queries nine

DNS seeders that are hard-coded in the chainparams.cpp file [54]. The DNS seeders return a

list of IP addresses to which the node may establish outgoing connections. Once a connection is

established, the node sends a GETADDR request to each connected node and receives an ADDR

message in response. The ADDR message contains up to 1000 IP addresses that the sending node

selects from its addrMan database. If the addrMan database has less than 1000 IP addresses,

the sending node sends all those addresses in the ADDR message. In each ADDR message, a node

also sends its own IP address with the current UNIX timestamp.

Upon receiving the ADDR message, a node stores IP addresses in either a tried table or a new

table. The tried table stores addresses that the node has connected to in the past, while the new

table stores addresses that the node sees for the first time. To establish a new connection, the node

randomly selects an address from new or tried table with an equal probability. If a successful

connection is established to an address from the new table, it is moved to the tried table.

Design of our Collection System. Given these characteristics of a Bitcoin node, we set up our

data collection system to connect to the reachable nodes and discover the unreachable nodes. Our

system is shown in Fig. 6.2, where we first collected the IP addresses of reachable nodes from

Bitnodes and a DNS server database. Bitnodes has been extensively used in prior works [92, 5] to

sample reachable nodes, and we adopt the same approach in our study. Additionally, we gained

access to a Bitcoin DNS server database maintained by Luke Dashjr who has hard-coded his DNS

server address in Bitcoin Core [60]. Luke Dashjr’s DNS database records IP addresses of nodes

that queried his DNS server. The objective of using the DNS database was to connect with the

reachable addresses that may be skipped by Bitnodes, thus ensuring a full network coverage.

Ethical Considerations. During this study, we were advised to avoid connecting to any node

hosted in the national critical infrastructure sector (i.e. military infrastructure). In compliance,

we compiled a list of 4 million IP addresses that belong to the critical infrastructure. As shown

in Fig. 6.2, after collecting IP addresses from Bitnodes and the DNS database, we removed the IP

58

1.586 1.587 1.588 1.589 1.590 1.591 1.592

Sample Time ×109

6000

7000

8000

9000

10000
N

u
m

b
er

o
f

A
d

d
re

ss
es

Bitnodes

DNS

Common

(a) The number of IP addresses in Bitnodes, DNS,
and common among the two.

1.586 1.587 1.588 1.589 1.590 1.591 1.592

Sample Time ×109

300

350

400

450

N
u

m
b

er
o
f

A
d

d
re

ss
es

Bitnodes Blacklist

DNS Blacklist

Common Blacklist

(b) The number of banned IP addresses in Bitnodes,
DNS, and common among the two.

1.586 1.587 1.588 1.589 1.590 1.591 1.592

Sample Time ×109

8200

8400

N
u

m
b

er
o
f

A
d

d
re

ss
es

(c) The number of reachable nodes we connected.

1.586 1.587 1.588 1.589 1.590 1.591 1.592

Sample Time ×109

300

400

500

N
u

m
b

er
of

A
d

d
re

ss
es

(d) The number of Reachable nodes not in Bitnodes

Figure 6.3: Preliminary experiment results. On average, from Bitnodes and DNS server database,
we collected 10,114 and 6,637 IP addresses, respectively. Among them, 439 and 342 addresses
belonged to the critical infrastructure. Our Bitcoin node connected with 8,270 nodes on average.

addresses that mapped to the critical infrastructure sector and excluded them from analysis.

After removing these addresses, we provide the remaining set of reachable IP addresses to the

“Network Crawler and Scanner” (Fig. 6.2) that consists of a Bitcoin node equipped with a packet

generation tool called Scapy. The Bitcoin node connects with all the reachable nodes and ex-

changes ADDR messages to collect IP addresses of unreachable nodes. It then uses Scapy to

probe the unreachable nodes and mark the ones that responds to the VER message.

Overview of Reachable Addresses. In Fig. 6.3, we report (1) the number of IP addresses collected

from Bitnodes and DNS server Fig. 6.3(a), (2) the number of excluded IP addresses in Bitnodes

and DNS server Fig. 6.3(b), (3) the number reachable nodes with which we connected Fig. 6.3(c),

and (4) the number of reachable nodes, skipped by Bitnodes Fig. 6.3(d). On average, Bitnodes

provided 10,114 IP addresses out of which, 439 were excluded. The DNS server database provided

6,637 IP addresses out of which 342 were excluded. 6,078 IP addresses were common in both

59

Bitnodes and DNS database out of which, 329 were excluded.

In a duration of 60 days, our Bitcoin node connected with 28,781 unique reachable IP addresses.

In each experiment, our node connected with 8270 reachable nodes on average, where 95.78% of

all nodes used the default 8333 port while the remaining used 264 unique ports, other than 8333.

Moreover, some reachable IP addresses provided by the DNS server database were not present in

Bitnodes. As shown in Fig. 6.3(d), on average, we connected with 404 IP addresses that were not

present in the Bitnodes dataset. This shows that using the DNS server database for experiments

was useful in extending our coverage of the reachable network.

6.2.2 Collecting Unreachable Addresses

After connecting to the reachable nodes, our node sent GETADDR requests to all reachable nodes.

In response, the nodes replied with ADDR message containing up to 1000 IP addresses selected

from their new and tried tables [54]. In algorithm 1, we provide the methodology of collecting

unreachable addresses from the reachable nodes. For simplicity, we define Nr and Nu as two sets

containing IP addresses of reachable and unreachable nodes, respectively. We further define Pi as

an address in Nr to which our Bitcoin node sent GETADDR request. If the ADDR message from

Pi contained one unique address that was not sent in prior ADDR messages, our node repeated

the GETADDR request. If a new message contained all IP addresses that were sent in previous

ADDR message, we stopped sending GETADDR messages and assumed that the node had sent all

addresses from its tables. Through iterative requests, we collected IP addresses from each node’s

new and tried tables. For all addresses received, our node filtered reachable addresses from

Bitnodes and DNS server database to obtain the unreachable addresses.

6.2.3 Discovering Responsive Unreachable Addresses

Once the network crawler and scanner (Fig. 6.2) obtain the list of all unreachable addresses, it

scanned them to detect responsive nodes. In this work, the term responsive nodes refers to un-

60

Algorithm 1: Discovering unreachable IP addresses.
1 Input: reachable IP addresses in Nr

2 Initialize Empty list of unreachable IP addresses Nu

3 foreach Pi ∈ Nr do
4 Send GETADDR and Receive ADDR messages
5 if ip addresses ∈ ADDR /∈ Nr or Nu then
6 foreach ip address /∈ Nr do
7 Nu ← ip address
8 repeat
9 else

10 foreach ip address /∈ Nr do
11 Nu ← ip address
12 continue
13 Output: IP addresses of unreachable nodes in Nu

Algorithm 2: Discovering responsive addresses in Nu.
1 Input: reachable IP addresses in Nu

2 Initialize List of responsive nodes N3

3 foreach Pi ∈ Nu do
4 Send VER message
5 if Pi responds to VER then
6 N3 ← Pi

7 else
8 mark Pi as silent
9 Output: IP addresses responsive nodes in N3

reachable nodes that drop the incoming connection by responding to the VER message. As a

result, despite the node being unreachable, we know that it is running Bitcoin.

To verify our method, we deployed three unreachable nodes inside our network and sent the a

VER message through our reachable node outside of our network. We observed that all three

unreachable nodes dropped our connection by responding to the VER message with FIN flag set

to 1. We applied this methodology to all the unreachable IP addresses received from the reachable

nodes. If the unreachable address responded to VER message with FIN flag set to 1, we marked

the address as responsive. algorithm 1 outlines our methodology of detecting responsive nodes.

Considering the high volume of unreachable addresses, we manually crafted Bitcoin VER message

in Scapy and applied algorithm 2. The script was deployed on a commodity computer which sent

250 parallel requests to the unreachable addresses. This is to be noted that the procedure of using

VER message is a heuristic one that may only work for nodes that allow such incoming requests

61

1.586 1.587 1.588 1.589 1.590 1.591 1.592

Sample Time ×109

200000

400000

600000

N
u

m
b

er
of

A
d

d
re

ss
es Per Sample

Cumulative

Figure 6.4: Longitudinal analysis of unreachable addresses collected from the network. The black
line shows the unique IP addresses collected in each experiment and the red line shows the cumu-
lative number of unique IP addresses collected in 60 days. The gap between the two lines shows
that in each experiment, new IP addresses appeared in the network. Overall, we collected ≈694K
unique IP addresses of unreachable nodes.

through their firewall. It is possible that a node is unreachable and running Bitcoin while it has

disabled all incoming requests. In that case, our heuristic will not be able to detect the responsive

node. Therefore, the number of responsive nodes that we have detected provide a lower bound

estimate of unreachable nodes that run Bitcoin.

6.3 Analysis and Results

In this section, we present our analysis and main findings. For each of the four factors outlined in

§6, we evaluate their impact on block propagation and network synchronization.

6.3.1 Unreachable Nodes

In 60 days, we collected 694,696 unique unreachable IP addresses, with ≈195K addresses in

each experiment. Among those addresses, 615,083 (88.54%) used the default 8333 port while

79,613 (11.46%) used 9,414 unique ports. Fig. 6.4 presents the unreachable addresses obtained

in each experiment and the cumulative number of unique unreachable addresses collected in all

experiments. Among the total of 694,696 addresses, 163,496 (23.54%) were responsive, and≈54K

62

1.588 1.589 1.590 1.591 1.592

Sample Time ×109

75000

100000

125000

150000

N
u

m
b

er
of

A
d

d
re

ss
es Per Sample

Cumulative

Figure 6.5: Unique IP addresses of responsive nodes collected in each experiment as well as cumu-
lative. The cumulative number of responsive addresses follow the same trend as the unreachable
addresses. Initially, due to an error, the experiment on responsive nodes was delayed by two weeks.
On average, we collected ≈54K responsive addresses in each experiment.

(27.69%) addresses were responsive in each experiment. That is, ≈54K unreachable nodes were

running Bitcoin at any time. Fig. 6.5 plots the number of responsive nodes.

Impact of Unreachable Nodes. Our results show that the unreachable network is ≈24 times

larger than the reachable network. Considering the prevalence of unreachable nodes and the size

gap, we analyzed the number of reachable and unreachable addresses in all ADDR messages to

study the impact of the unreachable network on the Bitcoin network.

Since the unreachable addresses in the ADDR message provide no clear benefit to the network.

The only useful information in the ADDR message, however, is the number of reachable addresses,

which improve the outdegree. Therefore, propagating unreachable addresses may contribute to

increasing the initiated (outgoing) connections failure rate.

Our results reveal that an ADDR message contains 14.9% reachable addresses and 85.1% un-

reachable addresses on average. That is, 85.1% of the addresses exchanged in the network provide

no benefit in terms of improving the network connectivity. In the next section, we experimentally

show how the unreachable IP addresses affect the network outdegree. Since the Bitcoin network

overlay topology is anonymous, we will rely on various heuristics to aid our analysis.

63

6.3.2 Addressing Protocol

Per our previous analysis, we found that the unreachable network size is ≈24 times the reachable

network size, and that the ADDR messages are dominated by the unreachable addresses. In the

following, we analyze this information along with the addressing protocol to explore the impact of

those nodes on the network connectivity and synchronization.

In theory, and given that there are 10K reachable nodes where each node has 8 stable outgoing

connections, a block is received by all reachable nodes in five rounds (85 > 10K). In contrast, if

the number of the outgoing connections drops to 2, the block can take up to 14 rounds (214 > 10K)

to propagate. Therefore, the stability of the outgoing connections significantly affects the block

propagation. To analyze the stability of the outgoing connections, how this stability impacts the

effective outgoing degree, and eventually understand the number of rounds it will take to propagate

a block, we deployed a Bitcoin node with the recent Bitcoin Core version (v0.20.1) and analyzed

variations in the number of outgoing connections.

In practice, when a Bitcoin node starts, with IP addresses populated in the new and tried tables,

the node selects IP addresses from both tables with equal probability and establishes outgoing

connections. If a connection drops at any time, the process of selecting an IP address from the new

and tried tables is repeated until all of the outgoing slots are complete (total of eight connections).

This process naturally raises two questions. (1) How often do outgoing connections drop? (2) How

many outgoing connection attempts are successful?

How often do outgoing connections drop? To answer this question, we conducted an experiment

using the aforementioned Bitcoin node. Upon running the node for 260 seconds, we logged the

number of the outgoing connections using the Bitcoin RPC API, and reported the results in Fig. 6.6.

As shown in Fig. 6.6, the numbers of the outgoing connections are highly unstable, varying be-

tween 2 and 10 connections at any time. Aside from the eight outgoing connections specified in the

Bitcoin protocol, two feeler connections that are not used for block or transaction exchange [106]

are also observed, bringing the total sometimes to 10 at times. Overall, we observed that there was

64

50 100 150 200 250

Time (seconds)

0

2

4

6

8

10

C
on

n
ec

ti
on

s

Figure 6.6: Results from the experiment conducted to analyze the stability of outgoing connections.
The experiment was conducted for 260 seconds and we observed that the outgoing connections are
highly unstable. The number of connections varied between 2–10 connections at any time.

less than 8 connections for ≈60% of the time, while the average was 6.67 connections.

Note that the outgoing connections can be dropped for one of several reasons, including: (1) the

departure of a node from the network, or (2) connection/link failure in the physical network. Since

those reasons are equally-likely for all nodes in the network, we extrapolate from this observation

to the network at large. We argue that the topology of the reachable network is constantly changing

since the outgoing connections drop frequently, as shown in this experiment. This constant change

can be used to reason about the high variations in network synchronization for each block Fig. 6.1.

How many outgoing connection attempts are successful? Since now we know that the outgoing

connections are unstable, the next step is to analyze the failure rate of the outgoing connection

attempts. Answering this question will also help us to fully understand the impact of unreachable

addresses in the IP tables. For this purpose, we conducted five experiments in which we started the

Bitcoin node and counted the total number of the outgoing connection attempts and the number of

the successful connections. Each experiment was conducted for five minutes, where we restarted

our node upon each experiment to ensure settings independence.

The results of the five experiments are shown in Fig. 6.7, where we observe a high gap between the

total number of the outgoing connections and the number of successful connections. On average,

only 11.2% of the connection attempts were successful. Moreover, in one experiment, only 8 out

65

1 2 3 4 5
0

25

50

75

100

125

N
u

m
b

er
o
f

A
d

d
re

ss
es

129
36

76 56 76

8

15

9

8

7

Unsuccessful

Successful

Figure 6.7: Results from the experiment conducted to analyze the success rate of outgoing con-
nections. On average, only 11.2% attempts result in successful outgoing connections. For the
second experiment, the number of successful connections appear to be 15. This is due the fact
some connections were dropped after which the node made new successful connections.

of 137 attempts (5.8%) were successful. Furthermore, Fig. 6.7 shows a high diversity in the total

number of the outgoing connections in each experiment. In two experiments, the total number

of the outgoing slots were not filled during the experiment duration. In the second experiment

(Fig. 6.7) the total number of successful connections was 15. Since the maximum outbound con-

nections are only 8 (except the feeler connections), this shows that some successful connections

dropped and the node tried new connections from the IP tables.

Our results show a high outgoing connection failure rate. The failure rate of 88.8% comes as a sur-

prise, shedding light on weaknesses in the addressing protocol. Ideally, each outgoing connection

should be successful. However, the low success rate in the outgoing connections shows that the

network condition is far from ideal. This is in part due to the unreachable addresses dominating

the nodes’ IP tables. Moreover, since the outgoing connections are unstable, our results also show

that even the reachable nodes may leave the network at any time due to churn. Therefore, the

outgoing connections to the reachable nodes that have left the network also contribute to the low

success rate of outgoing connections. From Fig. 6.6 and Fig. 6.7, we conclude that the unreachable

network adversely affects the reachable network topology since the average node outdegree is less

than the default outdegree. Extrapolating this behavior to other nodes in the network means that the

average network outdegree is below the expected outdegree, and block propagation in the network

66

takes longer than expected, thus affecting network synchronization. Our experiments also reveal

that this undesirable network state is caused by the weakness in the Bitcoin addressing protocol

that allows the transmission of unreachable IP addresses in the ADDR message.

6.3.3 Information Relaying Protocol

As discussed in §6.1, the theoretical models of Bitcoin [76, 44, 80] assume that a Bitcoin node

concurrently releases every new block to all of its connections. As such, if a node has all 125

connection slots filled and the node produces a block, the block must be relayed to all 125 con-

nections simultaneously. In contrast, if there is delay in relaying the block to each connection, the

nodes that receive the block earlier will synchronize faster. In this section, we analyze the practical

implications of block relaying protocol in Bitcoin and how those aspects affect synchronization.

To study the implementation of the block relaying protocol, we inspected the net.cpp file in the

Bitcoin Core source code [18]. We found that when the Bitcoin Core starts, it creates two threads

to handle the protocol messages. On the one hand, the SocketHandler thread reads the

incoming messages from a connected peer and stores them in the vProcessMsg queue. It then

sends the outgoing messages to the peer from the vSendMessage queue using a Write buffer.

The ThreadMessageHandler thread reads the messages from vProcessMsg and processes

them using the ProcessMessage function.

We use the reconstructed protocol information from our analysis to draw the Bitcoin Core message

handling procedure in Fig. 6.8. We further illustrate this workflow with an example. Assume

two connected Bitcoin nodes, A and B, where A sends a GETADDR request to B. At B: (1)

the SocketHandler thread will queue the GETADDR message in the vProcessMsg queue,

(2) the ThreadMessageHandler thread will read the message from thevProcessMsg and

generate the ADDR response using the ProcessMessage function, (3) the ProcessMessage

function will send the ADDR response to vSendMessage, and (4) the SocketHandler

thread will write the response to the socket connected with A. However, if during this process, B

67

Socket

Read

Write vSendMessage

vProcessMessage Process Message

Send Message

Socket Handler: loop(peer) Message Handler: loop(peer)

Figure 6.8: Message handling workflow. The SocketHandler thread loops over each peer
and reads incoming messages into the vProcessMsg queue. It also sends outgoing messages
from vSendMessage queue. The message handler thread reads messages from vProcessMsg
queue and sends the output to vSendMessage queue.

Algorithm 3: Processing P2P Messages
1 Input: Cy,z where y and z are the number of connections and messages sent by each connection
2 foreach y ∈ Cy do
3 foreach z ∈ Cy,z do
4 if no new block then
5 invoke ThreadMessageHandler() and ThreadMessageHandler()
6 process message Cy,z (see Fig. 6.8)
7 if new block then
8 append block to vSendMessage queue
9 increment z

10 process message Cy,z (see Fig. 6.8)
11 return empty queue Cy,0

also generates a new block and wants to send it to A, the SendMessages function will queue

the block behind the ADDR message in vSendMessage, and the ThreadMessageHandler

thread will send it to A after sending the ADDR message.

Our analysis also revealed that a Bitcoin node schedules the connections in a round-robin manner,

processing one message per socket for each connection. For instance, if node B is connected to

five other nodes (A–F) and wants to send a block, B will loop over each connection to send that

block. Therefore, the block relaying does not follow a broadcast model assumed in prior works.

Moreover, if B wants to send a block to A, and A has already sent 3 GETADDR requests, then B

will process one request per loop per connection. As a result, A will get the block after B processes

15 requests for all connections including A’s three GETADDR requests. In algorithm 3, we show

the pseudo-code of the information relaying in Bitcoin Core.

68

Empirical Evaluation. A natural effect of the round-robin relaying is that some connections re-

ceive blocks earlier than others. Therefore, there is a gap in the time a node receives a block from

the network, and the time the node relays that block to all its connections. In Bitcoin, round-robin

relaying is not limited to blocks only, but also applies to transactions. We note that transaction re-

laying also plays a critical role in network synchronization, due to the deployment of the “compact

block” relay method in Bitcoin [30].

In the compact block relay method, a node only receives the block header and transaction iden-

tifiers from the sending node. The node then reconstructs the block using transactions from its

memory pool [30]. If some transactions are missing from the memory pool, the node requests

those transactions from the sending node to fully reconstruct the block. If those transactions are

delayed, the node cannot reconstruct the block and remains behind the blockchain. Therefore,

transaction relaying also plays a significant role in network synchronization. Taking this into ac-

count, we measure the delay incorporated by round-robin transaction and block relaying.

In order to empirically measure the delay in transaction and block relaying, we set up a reachable

Bitcoin node with 8 outgoing connections and 17 incoming connections. We then measured (1)

the time at which the node received a transaction or a block from the network, and (2) the time at

which that transaction or block was relayed to the last connection. We call the difference between

the two events as the relaying time. Naturally, a high relaying time is undesirable for network

synchronization since the receiving node stays behind the blockchain during that period. We col-

lected the relaying time for transactions and blocks from the debug.log file in the Bitcoin Core data

directory. The log file captures each event at one second interval. If a transaction or a block is

received and relayed within a second, the timestamp for the two events is the same.

Fig. 6.9 and Fig. 6.10 report the results collected by our node over two days. Fig. 6.9 shows

that the average relaying time for all blocks was 1.39 seconds, with a minimum and a maximum

relaying time of 0 and 17 seconds, respectively. Fig. 6.10 shows that the average relaying time

for all transactions was 0.45 seconds, with a minimum and a maximum relaying time of 0 and 8

69

0 50 100 150 200 250

Number of Blocks

0

5

10

15

D
el

ay
(s

ec
on

d
s)

Figure 6.9: Delay between the time of receiving block and the time at which the block is relayed
to the last connection. On average, it takes 1.39 seconds to relay blocks to all connections

40 60 80 100 120

Transactions (x104)

0

2

4

6

8

D
el

ay
(s

ec
on

d
s)

Figure 6.10: Delay between the time of receiving the transaction and the time at which the trans-
action is relayed to the last connection. The average delay is ≈0.45 seconds.

seconds, respectively. From these results, we conclude that the round-robin relaying adds delay in

relaying transactions and blocks to the nodes, thus affecting network synchronization. We further

observed that during the relaying process, the sending node does not prioritize the reachable nodes

over the unreachable nodes; a distinction that can be easily made by observing the incoming and

outgoing connections. Since reachable nodes enable network synchronization by relaying blocks

to other reachable nodes. As such, if the reachable nodes are among the last connections to receive

transactions or blocks, the network synchronization is affected considerably; e.g., delay of up to

17 seconds in some cases, as shown in Fig. 6.9.

70

6.3.4 Network Churn

Since the Bitcoin network is permissionless, nodes can leave the network at any time, causing a

churn. If reachable nodes leave the network, the average network outdegree decreases which af-

fects synchronization. In this section, we measure the impact of churn on network synchronization.

If a node leaves the network, at least 8 outgoing connections drop in the reachable network [57, 74].

Although, intuitively, it might appear that if the number of reachable nodes in the network is

constant, the average network outdegree must be constant as well. However, this assumption can

be false once we take churn into account.

To illustrate this problem with an example, consider a reachable node A with 8 stable outgoing

connections. Next, assume that the node A leaves the network at time tx, and all its outgoing

connections drop. Further assume that at the same time tx, another reachable node B joins the

network. As shown in Fig. 6.7, a node takes time to successfully establish 8 outgoing connections.

If we assume that node B successfully makes 8 outgoing connections by the time ty, then during

∆ = ty − tx, the network will have a fewer number of outgoing connections despite the same

network size. Accordingly, the network will have a smaller outdegree during ∆ = ty − tx.

Moreover, even after establishing 8 outgoing connections, node B will take time to catch up with

the blockchain by requesting blocks that are not present in its local blockchain. Once node B

synchronizes with an up-to-date blockchain, only then it can help in relaying the latest blocks to

other reachable nodes. In other words, during the time where node B is not up-to-date, it does

not contribute to the network synchronization. Moreover, the process of catching up with the

blockchain can take a few days if node B joins the network for the first time.

In an experiment to evaluate a node’s capability for contributing to the network synchronization,

we set up a Bitcoin node with an up-to-date blockchain. In the debug.log file, we observed that

our node was relaying the latest blocks to its connections, thus helping other nodes to synchronize.

Next, we restarted the node and recorded the time the node took to synchronize again. Our results

show that the node took 11 minutes and 14 seconds to synchronize with the network and regain

71

Algorithm 4: Creating Binary Matrix for Churn
1 Input: Reachable addresses U and sampling time T
2 Initialize: Binary matrix M
3 foreach ip i ∈ N do
4 foreach sample j ∈ T do
5 if ip in sample then
6 Mi,j ← 1
7 if ip not in sample then
8 Mi,j ← 0
9 return Binary matrix M

the ability of relaying blocks to its connections. Most of this time was spent on establishing stable

outgoing connections and synchronizing on the latest block. Alternatively, if the node stayed

offline for several days, it would have taken a longer time to synchronize.

From our results, we concluded that the departure of synchronized nodes and arrival of new nodes

are unfavorable for network synchronization. With the departure of existing nodes and the arrival

of new nodes, a high churn would lead to poor network synchronization. In the following, we

model Bitcoin churn and measure the nodes arrival and departure rates.

Modeling Network Churn. To model churn in the reachable network, we systematically evaluate

(1) the arrival time of a new reachable node, (2) the departure time of that node, and (3) whether a

node rejoins the network after departure.

For this analysis, we sampled all of the reachable addresses (Nr in algorithm 1) as an object T ,

with the network sampling time as the object keys and the reachable IP addresses corresponding

to the sampling time as values. Next, we collected all 28,781 unique reachable IP addresses in a

list U , and checked the presence of each IP address for the sorted keys in T . We then initialized

a zero matrix M in which each row denoted an IP address in U , and each column denoted the

sorted sampling time from T . If an address was found at the sampling time, its index in M is

changed from 0 to 1. In algorithm 4, we outline the procedure of obtaining the binary matrix M,

and in Fig. 6.11, we plot its binary image to provide a high level overview of churn in the reachable

network. The colored region shows the presence of an IP address in the network.

72

0 25 50 75 100 125 150 175

Network Snapshots

0

5000

10000

15000

20000

25000

IP
A

d
d
re

ss
es

Figure 6.11: Binary matrix plot. Value 1 is marked 1 while value 0 is marked white. For a given
IP address, end-to-end horizontal line shows that the address was connected in each experiment.

0 25 50 75 100 125 150 175

Network Snapshots

−1000

0

1000

A
rr

iv
al

-D
ep

ar
tu

re

Figure 6.12: The difference between the number of nodes that leave the network and the new nodes
that join. Overall, the arrival rate and the departure rate of nodes is roughly constant.

From Fig. 6.11, we observe the following. (1) A dominant white region in the bottom left shows

that a significant number of new nodes join the network. (2) A majority of lines does not cover the

entire x-axis after the starting point, indicating that a significant number of nodes leave the network.

(3) The reappearance of a few lines on the x-axis shows that some nodes rejoin the network after

leaving. (4) A few lines covering the entire x-axis show that a few nodes are always present in the

network. More precisely, we found 3,034 nodes that were always present in the network.

We empirically analyze nodes that join and leave the network daily. For that purpose, we take two

consecutive network snapshots and count the addresses that change in them by comparing each

column in M (algorithm 4) with the previous column. A change in the row value from 1 to 0 indi-

cates a node departure, while a change from 0 to 1 indicates a node arrival. In Fig. 6.12, we report

73

our results showing that the difference between the arrival of new nodes and departure of existing

ones is small. We also note that ≈708 nodes (8.6% reachable nodes) leave the network everyday,

replaced by an equal number of new nodes. As explained earlier, replacing departing nodes with

new nodes affects synchronization, since the new nodes take time to receive the blockchain before

contributing to synchronization. Therefore, the arrival rate of 8.6% shows that a significant number

of non-synchronized nodes appear in the Bitcoin network each day.

Measuring Departure of Synchronized Nodes. Among the reachable nodes that leave the net-

work, not all nodes are synchronized with an up-to-date blockchain. Moreover, if a non-synchronized

node leaves the network, the average network synchronization would increase. Therefore, a logical

question would be to determine how many synchronized nodes leave the network? By contrasting

the departure of synchronized nodes between 2019 and 2020, we can confidently answer the prob-

lem of decreasing synchronization shown in Fig. 6.1.

In order to experimentally evaluate the departure rate of the synchronized nodes, we used the Bitn-

odes dataset which we are collecting since September 2019, at 10 minutes interval. To contrast our

results with Fig. 6.1, we divided our dataset into two segments, consistent with the segmentation

used for Fig. 6.1 . The first segment included data from September to December 2019, and the sec-

ond segment included data from January to April 2020. For each segment, among the total number

nodes that leave the network in 10 minutes, we counted the number of synchronized nodes.

Our results show that the average number of synchronized nodes that left the network in 10 min-

utes was 3.9 (≈4) in 2019, which then increased to 7.6 (≈8) in 2020. In other words, the departure

of synchronized nodes nearly doubled in 2020, thus decreasing the total number of nodes that con-

tribute to network synchronization. Since the Bitcoin addressing protocol and the block relaying

protocol did not change between 2019 and 2020, it is safe to assume that their impact on network

synchronization has remained constant. As a result, we conclude that the most significant change

in the network is the churn among the synchronized nodes, which has doubled in 2020, and its

impact on synchronization is clear in Fig. 6.1.

74

Key Takeaways. To put our analysis in context, we observe an increasing churn among the syn-

chronized nodes, especially in 2020. When the synchronized nodes leave the network, the outgo-

ing connections of their peers drop below the default threshold, upon which those nodes try new

connections from their IP tables. Due to weaknesses in the addressing protocol, the IP tables of

reachable nodes are dominated by unreachable addresses, causing high failure rate of the outgo-

ing connections (Fig. 6.7). Due to the departure of synchronized nodes and delayed connection

recovery of their peers, we observe two consequences. First, fewer nodes are left in the network

that contribute to network synchronization. Second, during the failed connection attempts time,

the average network outdegree remains low, further slowing the block propagation.

We observe 73 malicious nodes that propagate unreachable addresses in the network to overwhelm

the IP tables of other reachable nodes and increase the connection failure rate. Moreover, the

information relaying protocol does not prioritize block propagation to the reachable nodes over

unreachable nodes, which led to block relaying delay by up to 17 seconds in some cases (Fig. 6.9).

In summary, all these factors play a role in weak network synchronization in the Bitcoin network.

6.4 Improving Bitcoin Network Synchronization

Based on our measurements and analysis, in this section, we propose refinements to the Bitcoin

Core design in order to improve the network synchronization.

Refining the Addressing Protocol. Since the Bitcoin network is permissionless, therefore, we

cannot prevent churn, despite its implications on network synchronization. However, we can help

the network to recover from the departure of synchronized nodes by tailoring the addressing pro-

tocol. Since relaying unreachable addresses in the ADDR message does not suit the network,

therefore, the source code can be modified to only select IP addresses from tried table for the

ADDR message. This will significantly improve the success rate of outgoing connections.

Refining the tried Table. We note that selecting IP addresses from the tried table only

partly solves the problem. The churn analysis shows that 708 reachable nodes leave the network

75

everyday. Despite their departure, their IP addresses stay in the tried of their connections. A

reachable IP address is removed from the tried table if: (1) more than 10 connection attempts

to that address fail in one week, or (2) the IP address is in the table for 30 days [55]. As such, even

if we apply the policy of sending IP addresses from the tried table, if the sending node has not

evicted the IP address from tried table, it will not be useful for the receiving node.

To make the IP address eviction policy more efficient, we revisit the threshold of retaining an IP

address in the tried table for 30 days. In the Bitcoin Core source code, we did not find any

justification for retaining an IP address for 30 days. We believe the underlying assumption of the

early developers was that the average network life time for a majority of nodes will be 30 days.

To revise this policy, we use results from Fig. 6.11 to provide a more realistic estimate of a node’s

lifetime. Our results show that the average network lifetime of a node is only 16.6 days. Therefore,

by reducing the limit of 30 days to 17 days, we can increase the eviction rate of IP addresses that

leave the network. With an increased eviction rate, we can increase the percentage of reachable

addresses in the ADDR message, thus increasing the success rate of outgoing connections.

Prioritizing Block Relay. Network synchronization can also be improved by prioritizing block

relaying to the reachable nodes. In the current implementation, a sending node does not distinguish

between incoming connections and the outgoing connections. While incoming connections can be

from both reachable and unreachable nodes, the outgoing connections are always established with

the reachable nodes. As such, if a new block is mined or received from any connection, the node

should first relay that block to all the outgoing connections, thereby increasing block propagation

among the reachable nodes. Moreover, if there is a queue of requests (i.e.GETADDR messages)

in the vSendMessage queue, then the block can be prioritized over those requests to minimize

unusual delay in block relaying (i.e. 17 seconds in Fig. 6.9).

By incorporating these changes, the Bitcoin network synchronization can be significantly improved

despite the high network churn. If a synchronized node leaves the network, all its peers will imme-

diately recover their outgoing connections, thus maintaining the average network outdegree. If the

76

synchronized node does not rejoin the network, its IP addresses will be removed from the tried

tables in 17 days. This will prevent the undesirable relaying of the address in the ADDR mes-

sage. Finally, by prioritizing block relaying to the outgoing connections, we can ensure that the

reachable network synchronizes quickly over a newly published block. By maintaining the net-

work outdegree and ensuring faster block relay, the undesirable consequences of churn on Bitcoin

network synchronization can be significantly minimized.

6.5 Summary

In this work, we conduct the root cause analysis of deteriorating Bitcoin network synchronization.

Through measurements and analysis, we show that the deteriorating network synchronization is

due to (1) a large number of unreachable nodes, (2) weaknesses in the network addressing protocol,

(3) the delay incorporated by round-robin block relaying, and (4) a high churn among the reachable

nodes. Among all these factors, we note that the most significant factor in the recent months is the

churn among the synchronized reachable nodes.

Our work also exposes two important characteristics of the real world Bitcoin network that have not

been concretely evaluated in prior works. First, we note that the Bitcoin network is asynchronous

which can be exploited to mount new attack strategies to violate the blockchain consistency. Sec-

ond, the impact of churn on network synchronization has not been formally characterized in the

Bitcoin security model. In the following two chapters, we elaborate on these findings and highlight

the security risks associated with the asynchronous network and the network churn.

77

CHAPTER 7: HASHSPLIT: EXPLOITING ASYNCHRONY TO VIOLATE

BLOCKCHAIN CONSISTENCY AND CHAIN QUALITY

Our attack surface analysis reveals that the application-specific design choices and the network

layer inconsistencies can be exploited to attack blockchain systems. So far, we have analyzed

these two layers independently by showing attacks that are specific to the blockchain application

constructs or the P2P network. In this work, we will consolidate our prior insights and present a

novel attack that results from a combination of the application-specific policies and the network

layer inconsistencies. We note that in Bitcoin, if a miner receives two valid blocks linked to the

same parent block (i.e. a fork), the miner extends the block that is received earlier [76]. If this

mining policy is applied in an asynchronous network, the probability of forks increases.

If all miners behave honestly, such forks can be easily resolved. However, a malicious miner

can exploit the mining policy and the asynchronous network to launch an attack that prevents

the fork resolution. In this work, we investigate the feasibility of such an attack in the Bitcoin

network, and the attack implications on the fundamental blockchain properties. However, this

analysis has several challenges including (1) theoretical modelling of Bitcoin network that specifies

the blockchain consistency, (2) large-scale measurements to identify a subset of mining nodes

among all the network nodes, (3) experimentally validating asynchronous communication among

the mining nodes, and (4) curating attack strategies that favor the adversary.

7.1 Contributions

We overcome these challenges and present the HashSplit attack that allows an adversary to violate

the blockchain consistency and chain quality with a high probability.

1. We construct the Bitcoin ideal world functionality to formally specify the two notable prop-

erties of the Bitcoin ledger; the common prefix property and the chain quality property [44]

78

(§7.2). The ideal world functionality faithfully models the expected functionality of a correct

Bitcoin implementation across prevalent deployments in real world Bitcoin network.

2. We deploy crawlers in the Bitcoin network and connect with over 36K IP addresses in five

weeks (§7.3). We develop heuristics to identify the mining nodes and identify 359 IP ad-

dresses of the mining nodes using those heuristics (§7.4).

3. We measure the block propagation patterns in the Bitcoin network (§7.5) and show that

that the average Bitcoin block time is 9.97 minutes during which only ≈39% nodes receive

the latest block, indicating a high propagation delay and weak synchronization. Moreover,

through a fine-grained analysis of the block propagation among the mining nodes we show

that the Bitcoin network is asynchronous in the real world (§7.5.1).

4. We show the effect of the asynchronous execution by presenting the HashSplit attack which

allows an adversary to violate the common prefix and chain quality properties of the Bitcoin

blockchain. We also propose attack countermeasures by developing a Bitcoin Core version

that closely models the ideal functionality and resists the network asynchrony [3].

7.2 The Bitcoin Ideal World Functionality

In this section, we present the Bitcoin ideal world functionality, which we later contrast with real

world measurements to present the HashSplit attack. The Bitcoin white paper by Nakamoto as-

sumed a network where each node possessed the capability of solving PoW (1 CPU=1 Vote) [76].

However, over time, the PoW difficulty significantly increased, allowing only a few nodes to solve

it. This change occurred due to large mining pools that drive implicit forms of centralization [108].

Since there are fewer mining pools than the number of Bitcoin users, therefore, there are fewer min-

ing nodes in the network. Realizing these changes, we formally define the Bitcoin ideal function-

ality to characterize the existing Bitcoin operative model, including the distinctive functionality of

the mining and non-mining nodes. The formulation of our ideal functionality is inspired by models

proposed in [44, 80] with necessary adjustments to incorporate the mining centrality.

79

Input: Nodes N including miners M , blockchain C, and trusted party F . The protocol starts at round r = r0 for a length l . Prior to the

execution, each Pi ∈ M reports its hash rate hi to F , using which F computes µ
′

i , the expected chain quality parameter for each Pi . F
mandates that hi < 0.5H , ∀Pi ∈ M ; otherwise, F aborts. When a Pi ∈ N broadcasts block br at time t0, it reaches all nodes in N and F at

the next time index t1. Therefore, N × N is fully connected, allowing each Pi to communicate with any node in N or F , concurrently.

onStart: The block mining starts in which Pi ∈ M compete.

• Each round r , each Pi ∈ M computes br+1 with probability
hi
H .

• If Pi ∈ M finds br+1 before it receives br+1 from any other miner, it broadcasts br+1 to F and N (no block withholding).

onReceive: On receiving a new block br+1, Pi ∈ M , Pi /∈ M , and F follow the following protocol:

• If F receives a single block br+1 in the round from Pi ∈ M , F extends the chain C ← br+1.

• If Pi /∈ M receives a single block br+1 in round r from Pi ∈ M , Pi /∈ M extends the chain C ← br+1.

• If Pi ∈ M receives br+1 from anothermj ∈ M in round, then Pi stops its own computation for br+1, extends the chain C ← br+1, and

moves to the next round to compute the next block using br+1 as the parent block.

• If F receives multiple inputs for the same parent block in a round (i.e., br+1 ⪯ br and b
′

r+1
⪯ br), F forms two concurrent chains

C1 ← br+1 C2 ← b
′

r+1
. Both C1 and C2 have an equal length.

• If Pi ∈ M receives multiple inputs for the same parent block (i.e., br+1 ⪯ br and b
′

r+1
⪯ br), Pi gives time-based precedence to the

blocks. i.e., br+1 is received at t1 and b
′

r+1
is received at t2, where t2 > t1, then Pi only accepts br+1 and discards b

′

r+1
by treating it as an

orphaned block. Pi extends the chain C ← br+1 and moves to the next round to compute the next block using br+1 as the parent block.

• If Pi ∈ M receives multiple inputs for the same parent block in a round (i.e., br+1 ⪯ br and b
′

r+1
⪯ br), at the same time t1, Pi tosses a

coin and selects one of the two blocks to extend the chain.

• If Pi /∈ M receives multiple inputs for the same parent block in a round (i.e., br+1 ⪯ br and b
′

r+1
⪯ br), Pi /∈ M forms two concurrent

chains C1 ← br+1 C2 ← b
′

r+1
. Both C1 and C2 have an equal length.

onTerminate: On input (r = rl), F terminates the execution and proceed towards the evaluation of Qcp and Qcq .

onQuery: In any round, F can query each Pi ∈ N to report View
Pi
C
. F then evaluates the Qcp and Qcq for that round.

onValidate: In any round, to validate Qcp , F queries each Pi ∈ N to report View
Pi
C
. If F receives a single ledger C from all Pi ∈ N, it

considers Qcp to be preserved. If F receives more than one ledgers (i.e., C1 and C2) from one or more Pi ∈ N, F prunes k blocks from C1

chain and verifies if C
⌈k

1
⪯ C2 (i.e., two chains share a common prefix). To evaluate Qcq , F selects the longest chain among C1 and C2,

and computes the experimental value of µi . If µi − µ
′

i = ϵ (negligible), F assumes Qcq is preserved. Otherwise, Qcq is violated and some

Pi ∈ M has maliciously contributed more blocks than its hash rate.

Ideal World Functionality of Bitcoin

Figure 1: The Bitcoin ideal functionality closely modeled on the practical implementation of Bitcoin as we largely see it. Only
mining nodes Pi ∈ M participate in the block race and the communication model follos the specification of [12, 26].

functionality is inspired by theoretical models proposed in [12, 29],

with necessary adjustments to incorporate the mining centrality.

To formulate the safety and liveness of the blockchain, we adopt the
formalism from the Bitcoin backbone protocol [12]. In Appendix §B,

we explain the model assumptions and the main theorems derived

in [12, 29] by presenting the experimental interpretation of their

results in the context of our ideal functionality.

First, we defineN as the set of all reachable IP addresses of Bitcoin

nodes. We define View
Pi
C

as the blockchain view of a single node

Pi ∈ N, where C is the blockchain ledger. The Bitcoin backbone

protocol [12] states that the inter-arrival time between two blocks

must be sufficiently large that each Pi ∈ N has View
Pi
C

(i.e., in
≈10 minutes, all Pi ∈ N have the up-to-date blockchain). Next, we

define {M ⊂ N} as a set IP addresses of the mining nodes.
2
For each

Pi ∈ M , hi is Pi ’s hash power, where 0 < hi < 1. H =

∑ |M |
i hi = 1

is the total hash power of all the mining nodes. With the network

entities defined, below, we discuss the common prefix property and

the chain quality property of the Bitcoin blockchain.

2M = N, implies all nodes are the mining nodes (satisfying Nakamoto’s assumption).

However, in §4, we show that due to mining centralization, there are only 359 miming

nodes among 36K IP addresses (|M |=359 and |N |=36K).

Common Prefix Property. The common prefix property Qcp ,

with parameter k specifies that for any pair of honest nodes P1 and

P2, adopting the chains C1 and C2 at rounds r1 ≤ r2, it holds that

C
⌈k

1
⪯ C2. In this context, an honest node is a node that respects

the ideal functionality. C
⌈k

1
denotes the chain obtained by pruning

k blocks from C, and ⪯ is the prefix relationship. For transaction

confirmation, the common prefix property must hold for 6 blocks

(C
⌈k

1
⪯ C2 for k = 6) [5].

Chain Quality Property. The chain quality property Qcq with

parameters µ and l specifies that for any honest node Pi with chain

C, it holds that for any l consecutive blocks of C, the ratio of honest
blocks is at least µ. Qcq ensures that for a sufficiently large value

of l , the contribution of Pi in C is proportional to its hash rate hi .
Moreover, Qcq assumes that no Pi ∈ M acquires more than 50%

hash rate [11, 15, 17, 20, 33].

Using these properties, we define the Bitcoin ideal world func-

tionality in Figure 1. Our formulation assumes Pi ∈ N as “interactive

Turing machines” (ITM) that execute the Nakamoto consensus for l
rounds, arbitrated by a trusted party F . A round is a time in which

each Pi ∈ M is mining on the same block. For any Pi ∈ M , a round

3

Figure 7.1: he Bitcoin ideal world functionality, closely modeled on the practical implementation
of Bitcoin as we largely see it. Only mining nodes Pi ∈M participate in the block race. The com-
munication model follows the primitive specifications of [76, 44]. We also distinctly characterize
the behavior of mining (Pi ∈M) and non-mining (Pi /∈M) nodes when they receive blocks.

First, we defineN as the set of all reachable IP addresses of Bitcoin nodes. We define VIEWPi
C as the

blockchain view of a single node Pi ∈ N, where C is the blockchain ledger. The Bitcoin backbone

protocol [44] states that the inter-arrival time between two blocks must be sufficiently large that

each Pi ∈ N has VIEWPi
C (i.e. in ≈10 minutes, all Pi ∈ N have the up-to-date blockchain). Next,

we define {M ⊂ N} as a set IP addresses of the mining nodes. For each Pi ∈ M , hi is Pi’s hash

power, where 0 < hi < 1. H =
∑|M |

i hi = 1 is the total hash power of all the mining nodes. With

the network entities defined, below, we discuss the common prefix property (also defined as the

consistency property in [80]) and the chain quality property of the Bitcoin blockchain.

Common Prefix Property. The common prefix property Qcp, with parameter k specifies that for

80

any pair of honest nodes P1 and P2, adopting the chains C1 and C2 at rounds r1 ≤ r2, it holds that

Cdk1 � C2. In this context, an honest node is a node that respects the ideal functionality. Cdk1 denotes

the chain obtained by pruning k blocks from C, and � is the prefix relationship. For transaction

confirmation, the common prefix property must hold for 6 blocks (Cdk1 � C2 for k = 6) [24].

Chain Quality Property. The chain quality propertyQcq with parameters µ and l specifies that for

any honest node Pi with chain C, it holds that for any l consecutive blocks of C, the ratio of honest

blocks is at least µ. Qcq ensures that the contribution of Pi in C is proportional to hi. Moreover,

Qcq assumes that no Pi ∈M acquires more than 50% hash rate [39, 67, 49, 53, 99].

Using these properties, we define the Bitcoin ideal world functionality in Fig. 7.1. Our formulation

assumes Pi ∈ N as “interactive Turing machines” (ITM) that execute the Nakamoto consensus for

l rounds, arbitrated by a trusted party F . A round is a time in which each Pi ∈M is mining on the

same block. For any Pi ∈ M , a round terminates when the VIEWPi
C is updated with a new block.

The network N×N is a fully connected such that when a block is released by any Pi ∈M at t1, all

nodes receive it at the next time step t2. As a result, the network exhibit a lock-step synchronous

execution [83]. Due to varying roles in the system, the mining nodes Pi ∈ M and the non-mining

nodes Pi /∈ M have unique operations. For instance, when a Pi ∈ M receives two valid blocks

for the same parent block, it gives time-based precedence to the block received earlier. The block

received later is discarded. However, when a Pi /∈ M receives two valid blocks, it creates two

concurrent branches of the chain and waits for the next block to extend one of them. The ideal

world functionality in Fig. 7.1 is consistent with the application rules in Bitcoin Core.

Ideal Functionality Proof. In the following, we provide the proof for the ideal world functionality.

Theorem 1 (Bitcoin Ideal World Functionality). If the protocol is run for l= 6 consecutive rounds,

in which k = 6 blocks are produced, then with a high probability, F guarantees the common prefix

property and the chain quality, as long as the adversary is bounded by H/2 hash rate.

Proof. Prior to the proof sketch, we present some practical considerations for the execution model.

81

In Bitcoin, the average duration of a round is 10 minutes (600 seconds) and the parameter k for the

common prefix is 6 blocks [24]. Moreover, Theorem 1 assumes that in each round, only one block

is produced, and therefore, for l consecutive rounds, a total of k = l blocks are produced.

To prove Theorem 1, we assume by contradiction that the ideal world execution runs for l =

6 consecutive rounds after which Cd61 � C2 does not hold. In other words, the two chains do not

share a common prefix after pruning 6 blocks. For this condition to hold, in each round, at least two

miners in M should concurrently produce a block at the same time t0 and due to a fully connected

topology, the remaining miners receive the two blocks at t1. As shown in Fig. 7.1, the recipients

toss a coin and select one of the two blocks (for generalization if x blocks are received, recipients

roll x sided dice). The probability that for l = k rounds, x blocks are concurrently produced is:

P (x|λ) =

(
e−λλx

x!

)k
(7.1)

Now assume a random variable X which represents an event that Cd61 � C2 for l = k rounds due to

x concurrent blocks. And since each recipient has to roll an x sided dice if x blocks are received,

therefore P (X) (from (7.1)) becomes:

P (X) =

(
e−λλx

x2(x− 1)!

)k
(7.2)

With λ =1/600, k = 6, and x = 2, P (X) is 0.00001. In other words, the ideal world functionality

guarantees the common prefix for k = 6 with overwhelming probability of 0.99999.

To ensure the chain quality property, F specifies that no hi for Pi ∈ M has more than 50% hash

rate. Otherwise, hi
H

does not hold and F aborts. Moreover, in the winning chain, the number

of blocks contributed by the honest miners is proportional to their hash rate. For instance, in a

chain length of l = 6 rounds in which 6 consecutive blocks are produced, a miner with 14.3%

hash rate should be able to contribute 1 block (µi). If a miner faithfully respects the protocol in

Fig. 7.1, its probability of contributing 1 block becomes k hi
H

. Plugging in the experimental values,

82

the probability is 0.999 (µ′i. Therefore, µi − µ′i is 0.001. This is a negligible probability (ε) which

we defined in the ideal world functionality (Fig. 7.1).

Key Takeaways. The ideal world functionality, in Fig. 7.1, characterizes the modus operandi

of Bitcoin. Compared to the prior theoretical models [44, 80], we distinctly define the mining

nodes and non-mining nodes and characterize their unique roles in the system. In the rest of the

chapter, we perform a data-driven study to investigate (1) the size |M | of the mining nodes, (2)

the synchronization patterns in the network to understand how closely Bitcoin follows the ideal

functionality, and (3) show deviations to construct the HashSplit attack.

7.3 Data Collection

In this section, we present our data collection system used for conducting measurements and analy-

sis. Prior to highlighting the system details, it is important to discuss the Bitcoin network anatomy

and the characteristics of reachable and unreachable nodes.

7.3.1 Bitcoin Peer-to-Peer Network

There are two types of Bitcoin full nodes, namely the reachable nodes and the unreachable nodes.

The reachable nodes establish outgoing connections as well as accept incoming connections from

other reachable and unreachable nodes. The unreachable nodes (often behind a NAT [35]) only

establish outgoing connections. For simplicity, we can characterize the Bitcoin network between

the reachable space and the unreachable space, as shown in Fig. 7.2.

It is argued that mining pools prefer to host their mining nodes in the unreachable space due to

security concerns [35]. As such, if we assume that all mining nodes exist in the unreachable

space, it implies that mining nodes cannot accept incoming connections with other mining nodes,

and their blocks will have to be relayed by the non-mining nodes in the reachable space to reach

other mining nodes. This assumption alone reflects an asynchronous network that deviates from

83

Mining Pool A

Mining Pool B

Mining Pool C

Unreachable
Nodes

Reachable
Nodes

Our
Crawlers

Unreachable

Space

Rea
ch

ab
le

Sp

ac
e

Mining Pool
Machinery

Figure 7.2: An illustration of our data collection system contextualized in the Bitcoin framework.
Mining pools can have reachable (Mining Pool A), unreachable (Mining Pool C), or both (Mining
Pool B) types of nodes. Note that unreachable nodes cannot connect with each other. Therefore,
a block must appear in the reachable space to reach other miners. Our crawlers directly connect
with all the reachable nodes to receive their blocks directly.

the ideal world functionality. Moreover, hosting only the unreachable nodes also adds delay in

block propagation since the block is first relayed to a reachable node which then relays the block

to its connections. This delay is undesirable for the miner and the Bitcoin network at large [34].

To further understand these arguments, we reached out to the Bitcoin Core developers and authors

of prior work above. We learned that there is no empirical evidence to support the argument that

all the mining nodes exist in the unreachable space. In fact, mining pools host both reachable and

unreachable mining nodes. From those discussions, we made the following characterizations.

(1) Mining pools typically host both reachable and unreachable nodes. (2) Since two unreachable

nodes cannot directly connect to each other, blocks between the unreachable nodes are relayed by

the reachable nodes. (3) Reachable nodes are responsible for relaying blocks and maintaining the

network synchronization. (4) This block relaying method is followed even when miners use fast

relay networks such as FIBER or Falcon [75]. (5) Since the reachable nodes are the entry points

for a block in the reachable network (Fig. 7.2), we can mark those entry points and treat them as

84

the mining nodes by connecting to all the reachable nodes.1 (6) The frequency of relaying blocks

can be used to estimate the hashing power of the mining pool behind a reachable node.

Using these insights, we set up a data collection system to connect with all the reachable nodes.

Based on the prior work, we noticed that the number of reachable nodes in Bitcoin can vary

between ≈7K to ≈9K addresses at any time. However, unlike [92], we did not want to rely solely

on Bitnodes [23] for data collection since Bitnodes does not disclose the mining nodes. Instead,

we developed our own data collection system and customized it to our desired specifications.

Data Collection System. We deployed eight crawlers in the Bitcoin network to connect with all the

reachable nodes. At each crawler, we mounted a NodeJS implementation of the RPC client-server

module for data collection and analysis. We also set up a node manager and installed the peers.dat

parser on it. The node manager 1) connected to all the crawlers, 2) provided them the list of IP

addresses to connect with, 3) obtained the JSON data from each crawler, 4) applied techniques to

identify the mining nodes, and 5) measured the block propagation patterns at specified intervals to

monitor the network synchronization. In five weeks, we connected to 36,360 unique IP addresses,

including 29,477 IPv4, 6,391 IPv6, and 522 Tor addresses. Fig. 7.2 provides an illustration of

our data collection system in the context of Bitcoin peer-to-peer network. We connected to all

the reachable nodes in the Bitcoin network and whenever a mining pool released a block in the

reachable space, our crawlers marked that node and analyzed the block propagation.

At each crawler, we used high-speed fiber-optic Internet with a 1GBps connection to minimize

propagation delay that could affect measurement results. After five weeks, we discontinued the

experiment since we did not observe any increase in the number of mining nodes. Continuing the

experiment would not have yielded more meaningful results while continuously surmounting the

connectivity cost. At any moment, the crawlers were connected to ≈10K IP addresses, consuming

significant bandwidth. Constrained by resources, we limited the experiment duration until we had

1Bitcoin network cannot synchronize without reachable nodes participating in the block propagation. Therefore,
our technique of identifying the mining nodes through the reachable nodes is valid even if miners use fast relay
network or exchange blocks through non-Bitcoin communication channels.

85

Key Challenges. In setting up our data collection system, we

encountered several challenges. The default Bitcoin Core client is

not designed to support large-scale network measurements. The

maximum connectivity limit in the Bitcoin Core is 125 (117 incom-

ing and 8 outgoing connections), which is insufficient to map a

network of thousands of nodes. Typical stand-alone systems do not

support concurrent connectivity with thousands of IP addresses

due to file descriptors and socket connection limits. Moreover, to

avoid storage intensive network traffic monitoring required for

obtaining IP addresses of reachable nodes through GETADDR and

ADDR messages and for identifying the mining nodes through a

block broadcast, we instead leveraged useful artifacts in the Bitcoin

Core to maintain a lightweight data collection system.

Among those artifacts, first we noticed a peers.dat file in the

Bitcoin Core data directory. The peers.dat file compactly logs the

information obtained from ADDR messages. The ADDR messages

include IP addresses that can be used to expand the network reach-

ability. We developed a peers.dat parser to obtain those addresses.

Second, we used the Bitcoin RPC API for mining nodes detection.

For measurements, we also sought help from the Bitcoin Core de-

velopers to understand the workings of the software.

3.2 Data Collection System
We deployed eight crawlers in the Bitcoin network to connect with

all the reachable nodes. At each crawler, we mounted a NodeJS

implementation of the RPC client-server module for data collec-

tion and analysis. We also set up a node manager and installed the

peers.dat parser on it. The node manager 1) connected to all the

crawlers, 2) provided them the list of IP addresses to connect with,

3) obtained the JSON data from each crawler, 4) applied techniques

to identify themining nodes, and 5) measured the block propagation

patterns at specified intervals to monitor the network synchroniza-

tion. In five weeks, we connected to 36,360 unique IP addresses,

including 29,477 IPv4, 6,391 IPv6, and 522 Tor addresses. Figure 2

provides an illustration of our data collection system in the context

of Bitcoin peer-to-peer network. We connected to all the reachable
nodes in the Bitcoin network and whenever a mining pool released

a block in the reachable space, our crawlers marked that node and

measured the block propagation in the network.

At each crawler, we used high-speed fiber-optic Internet with

a 1GBps connection to minimize propagation delay that could af-

fect measurement results. After five weeks, we discontinued the

experiment since we did not observe any increase in the number of

mining nodes. Continuing the experiment would not have yielded

more meaningful results while continuously surmounting the con-

nectivity cost. At any moment, the crawlers were connected to

≈10K IP addresses, consuming significant bandwidth. Constrained

by resources, we limited the experiment duration until we had

sufficient data to motivate for the HashSplit attack.
Ethical Considerations. Complying with the ethical practices,

we did not remove all crawlers immediately. Instead, we slowly ter-

minated connections at each crawler to avoid risking any significant

effect on the network’s health. To avoid influencing block propaga-

tion and network synchronization, we disabled block forwarding

at our crawlers. Finally, we want to emphasize that our crawlers

were merely listeners in the network since they only logged the

information that was willingly disclosed by their connections. We

1
8
.1

8
8
.x

2
4
.5

.x
1
3
8
.1

9
7
.x

1
0
4
.2

3
7
.x

1
3
.2

2
9
.x

d
v
u

.t
o
r

1
7
8
.1

2
8
.x

1
8
8
.1

6
6
.x

u
l3

.t
o
r

1
6
7
.9

9
.x

6
9
.6

4
.x

8
3
.2

5
1
.x

v
cs

.t
o
r

3
5
.1

5
8
.x

3
r4

.t
o
r

1
3
.2

2
9
.x

[2
a
0
2
::

x
]

1
6
9
.5

5
.x

fz
6
.t

o
r

x
a
g
.t

o
r

1
4
2
.9

3
.x

[2
a
0
1
::

x
]

v
ev

.t
o
r

7
0
.7

0
.x

jj
s.

to
r

1
4
9
.2

8
.x

p
v
w

.t
o
r

1
4
6
.2

5
5
.x

[2
0
0
2
::

x
]

ep
2
.t

o
r

IP Addresses of Mining Nodes

0.0

2.5

5.0

7.5

10.0

P
er

ce
n
ta

g
e

o
f

B
lo

ck
s

0 100 200 300

IP Addresses (Count)

0.8

1.0

C
D

F

Figure 3: Results obtained by applying Heuristic 1 on our
dataset. The histograms show the percentage of blocks con-
tributed bymining nodes.Wemask the last two octets to pre-
serve anonymity. The subplot is the CDF showing the distri-
bution of IP addresses with respect to the blocks produced.

{ i d : 12188 ,
addr : ' 169 . x . x . x : 8333 ' ,
a d d r l o c a l : ' 132 . x . x . x : 8333 ' ,
addrb ind : ' 132 . x . x . x : 8333 ' ,
l a s t s e n d : 1554493200 ,
l a s t r e c v : 1554493185 ,
v e r s i o n : 70015 ,
subve r : / S a t o s h i : 0 . 1 6 . 0 / ' ' ,
s t a r t i n g h e i g h t : 569534 ,
synced_header s : 570367 ,
synced_b l o ck s : 570366 ,
i n f l i g h t : [5 70367] , }

Figure 4: A sample JSON output when a block is received by
our crawler from a peer. Here, “addr” is the IP address of the
peer to which the crawler is connected to, “synced_headers”
is the height of blockchain header at which the crawler has
synchronized with the node, and “inflight” is the block that
the node is transmitting to the crawler.

did not send any measurement probes other than what is acceptable

within the Bitcoin network (i.e.,GETDATAmessage in response to a

block INVmessage). When a mining node sent a block through INV
or CMPCTBLOCK method, our crawlers logged the information

and took the network snapshot at the time of receiving the block.

4 IDENTIFYING THE MINING NODES
Priorworks have used block INVmessages to detectmining nodes [3],

which is storage intensive and less accurate since the deployment of

CMPCTBLOCKmethod [7]. To overcome these limitations, we used

the Bitcoin RPC API to sample the network information and de-

veloped Heuristic 1 to detect the mining nodes. We also validated

the correctness of Heuristic 1 using direct network monitoring

(see the extended version [1] page 19).

The Bitcoin RPC API command getblockchaininfo provides infor-
mation about the latest block on the blockchain tip. We deployed

a socket listener at the RPC client-side implementation to record

the arrival of a new block from a mining node. When a new block

was received, it generated an interrupt on the listener which in-

voked the getpeerinfo API. The getpeerinfo renders the up-to-date
5

Figure 7.3: A sample JSON output when a block is received by our crawler from a peer. Here,
“addr” is the IP address of the peer to which the crawler is connected to, “synced headers” is the
height of blockchain header at which the crawler has synchronized with the node, and “inflight” is
the block that the node is transmitting to the crawler.

sufficient data to motivate for the HashSplit attack.

Ethical Considerations. Complying with the ethical practices, we did not remove all crawlers

immediately. Instead, we slowly terminated connections at each crawler to avoid risking any

significant effect on the network’s health. To avoid influencing block propagation and network

synchronization, we disabled block forwarding at our crawlers. Finally, we want to emphasize that

our crawlers were merely listeners in the network since they only logged the information that was

willingly disclosed by their connections. We did not send any measurement probes other than what

is acceptable within the Bitcoin network (i.e. GETDATA message in response to a block INV mes-

sage). When a mining node sent a block through INV or CMPCTBLOCK method, our crawlers

logged the information and took the network snapshot at the time of receiving the block.

7.4 Identifying the Mining Nodes

Prior works used INV messages to detect mining nodes [5], which is storage intensive and less

accurate since the deployment of CMPCTBLOCK method [30]. To overcome this limitation, we

used the RPC API to sample the network and developed Heuristic 1 to detect the mining nodes.

86

The Bitcoin RPC API command getblockchaininfo provides information about the latest block on

the blockchain tip. We deployed a socket listener at the RPC client-side implementation to record

the arrival of a new block from a mining node. When a new block was received, it generated an

interrupt on the listener which invoked the getpeerinfo API. The getpeerinfo renders the up-to-date

interactions with all connected peers. A sample interaction with one peer is shown in Fig. 7.3

and the key variables to note are “addr”, “lastsrecv”, “synced headers”, and “inflight.” “addr”

is the connected peer’s IP address, “lastrecv” is the latest UNIX timestamp at which the peer

relayed any information, “synced headers” is the peer’s blockchain height, and the “inflight” is

the block relayed by the peer. Viewed through the lens of our ideal world functionality (Fig. 7.1),

“synced headers” renders the view VIEWPi
C of a peer Pi with the chain tip at C. An update on the

tip C + 1 is captured by “synced headers” and “inflight”. Leveraging this useful information, we

developed Heuristic 1 to detect the mining nodes in the Bitcoin network.

Heuristic 1. For a peer Pi, when the blockchain view is updated from VIEWPi
C to VIEWPi

C+1, if the

“synced headers” value and the inflight value are equal to C + 1, then the “addr” value denotes the

IP address of the mining node Pi ∈M ’.

Heuristic 1 is a mapping between the information exposed by the RPC API and the Bitcoin net-

work traffic of a crawler. For more clarity on Heuristic 1, revisit Fig. 7.3 that shows a sample inter-

action of a crawler connected to peers in N with its blockchain tip C = 570366 (“synced blocks” =

570366). When the crawler receives an update “570367” from getblockchaininfo, it checks VIEWPi
C

of all its peers using getpeerinfo. One information sample of a peer is shown in Fig. 7.3. For each

peer, the crawler checks if “synced headers” value is 570367 (C+1). When the mining node relays

a block, the “inflight” value is also set to the block height (C + 1). The example in Fig. 7.3 shows

that the “inflight” value is “570367”, hence the “addr” is the mining node’s IP address.

We performed two experiments called the “locality-inference experiment” and the “full-scale ex-

periment”. For each experiment, we used Heuristic 1 to detect the mining nodes.

Locality-inference experiment. In the locality-inference, we evaluate an intuitive hypothesis

87

1
6
4
.1

3
2
.x

8
8
.9

9
.x

4
7
.9

5
.x

4
7
.9

5
.x

4
7
.9

0
.x

1
0
1
.2

0
1
.x

4
7
.8

9
.x

3
5
.1

7
3
.x

4
7
.1

0
6
.x

1
8
.1

3
6
.x

1
3
8
.2

0
1
.x

2
.2

2
9
.x

3
8
.1

1
1
.x

8
8
.9

9
.x

9
5
.2

1
6
.x

3
4
.2

3
9
.x

3
9
.1

0
7
.x

4
0
.1

1
5
.x

1
8
.1

3
6
.x

4
7
.9

8
.x

1
3
6
.2

4
3
.x

3
4
.1

9
5
.x

1
8
.2

0
8
.x

9
5
.2

1
6
.x

5
4
.3

8
.x

4
7
.9

0
.x

1
3
6
.2

4
3
.x

2
1
3
.2

3
9
.x

1
7
6
.9

.x
8
8
.9

9
.x

1
3
6
.2

4
3
.x

1
3
6
.2

4
3
.x

8
8
.9

9
.x

9
4
.2

3
.x

1
8
.1

3
6
.x

3
4
.2

1
6
.x

1
3
6
.2

4
3
.x

5
2
.2

0
0
.x

1
3
.6

6
.x

4
7
.2

4
4
.x

IP Addresses of Mining Nodes

0

1

2

3

4

P
er

ce
n
ta

g
e

o
f

B
lo

ck
s

0 50 100 150 200

IP Addresses (Count)

0.75

1.00

C
D

F

Figure 7.4: Locality-inference experiment result. The histograms show the percentage of blocks
contributed by the top IP addresses. We mask thelast two octets to preserve privacy. Inside the plot,
there is a CDF showing the distribution of IP addresses with respect to the total blocks produced.

1
8
.1

8
8
.x

2
4
.5

.x
1
3
8
.1

9
7
.x

1
0
4
.2

3
7
.x

1
3
.2

2
9
.x

d
v
u
.t

o
r

1
7
8
.1

2
8
.x

1
8
8
.1

6
6
.x

u
l3

.t
o
r

1
6
7
.9

9
.x

6
9
.6

4
.x

8
3
.2

5
1
.x

v
cs

.t
o
r

3
5
.1

5
8
.x

3
r4

.t
o
r

1
3
.2

2
9
.x

[2
a
0
2
::
x
]

1
6
9
.5

5
.x

fz
6
.t

o
r

x
a
g
.t

o
r

1
4
2
.9

3
.x

[2
a
0
1
::
x
]

v
ev

.t
o
r

7
0
.7

0
.x

jj
s.

to
r

1
4
9
.2

8
.x

p
v
w

.t
o
r

1
4
6
.2

5
5
.x

[2
0
0
2
::
x
]

ep
2
.t

o
r

IP Addresses of Mining Nodes

0.0

2.5

5.0

7.5

10.0

P
er

ce
n
ta

g
e

o
f

B
lo

ck
s

0 100 200 300

IP Addresses (Count)

0.8

1.0

C
D

F

Figure 7.5: Full-scale experiment result. The histograms show the percentage of blocks contributed
by top IP addresses. We mask the last two octets to preserve privacy. Inside the plot, there is a
CDF showing the distribution of IP addresses with respect to the total blocks produced.

proposed in [35, 5], which assumes that mining pools prefer to host their mining nodes within

the same network prefix to minimize the propagation delay. Therefore, if we obtain a list of IP

addresses that use the ASIC mining hardware and find a corresponding prefix mapping in our

Bitcoin network, we can narrow our measurements to fewer nodes in N. This would reduce the

network size N to N′ , where |N′ | < |N|, and reduce the overhead of detecting the mining nodes.

For this experiment, we used the Internet scanner Shodan to obtain IP addresses of machines

that were running Bitcoin mining hardware. Shodan uses hardware fingerprinting to collect IP

88

addresses that disclose their hardware signatures [68]. Typically, the Bitcoin miners use custom

hardware called AntMiner for PoW hashing [22]. From Shodan and Censys, we obtained 1,714

IP addresses. Next, we checked how many Bitcoin nodes N, were hosted within the same subnet

of those IP addresses. We found a match for 1,033 IP addresses (N′ = 1,033, where |N′| < |N|),

indicating that 1,033 Bitcoin nodes were hosted in the same subnet of the mining hardware. We

deployed a single crawler that connected to all 1,033 IP addresses and collected their data.

Full-scale experiment. The locality-inference experiment, however intuitive, has few limitations.

The mining pools are multi-homed [21]. Therefore, the centrality of the mining hardware in one

place may not be representative that a lot of blocks will be produced from the mining node hosted

within the same prefix. Moreover, Shodan and Censys only provide IPv4 addresses and do not

provide information about the mining hardware using IPv6 nor Tor. As such, the results of the

locality-inference experiment may not be highly reliable.

To validate the strength of the assumption behind the locality-inference experiment, and to obtain

more reliable results, we performed a full-scale experiment in which we connected to all nodes,

N, and applied Heuristic 1 to identify M . In the full-scale experiment, we did not rely on any

apriori supposition regarding the mining nodes (i.e. locality distribution). We measured the entire

network and its behavior over time.

Results. Results of the full-scale experiment are reported in Fig. 7.5, while the results of the

locality-inference are reported in Fig. 7.4. We mask the last two octets of each IP address to

preserve anonymity. Key findings from the two experiments are summarized below.

1. In the locality-inference experiment, we found 214 unique mining nodes. Among them, 26

nodes produced 50%, 92 nodes produced 80%, and 153 nodes produced 90% of the total

blocks. Fig. 7.4 shows the distribution of the mining nodes.

2. In the full-scale experiment, we observed 359 mining nodes. Among them, 256 (68.5)%

were IPv4, 29 (8.1%) were IPv6, and 65 (23.4)% were Tor addresses. We noticed that

89

mining pools use Tor addresses to safeguard their mining nodes against routing attacks.

3. In the full-scale experiment, 31 nodes produced 80% and 60 nodes produced 90% blocks.

4. We found 13 IP addresses that overlapped between the two experiments, which is only 3.6%

|M |. Due to the weak overlap, we concluded that either the Internet scanners were not able to

accurately or completely determine the mining hardware, or the mining pools did not host the

mining nodes within the same prefix of the mining hardware. Hence, the locality-inference

is not highly useful in locating the mining nodes.

Given the current Bitcoin network size, mining nodes detection is a non-trivial task requiring a

large-scale data collection and sophisticated detection techniques. However, mining nodes de-

tection not only contributes to the HashSplit attack but also lowers the cost of launching spatial,

temporal, and spatio-temporal partitioning attacks discussed in the prior works [5, 92].

7.5 Network Synchronization

In this section, we analyze network synchronization to determine if the network complies with the

ideal world specifications. To preserve the common prefix property, the inter-arrival time between

two blocks must be long enough to allow each node to have an up-to-date blockchain [44]. In other

words, when a new block is released, all nodes must have the previous block in their blockchain. If

a node does not exhibit this behavior (i.e. due to propagation delay), it is vulnerable to partitioning.

To concretely evaluate the network synchronization, we use Heuristic 2 below.

Heuristic 2. When a crawler receives a new block bi+1 from a mining node, the crawler checks

VIEWPi
C for all connected peers in N. For a connected node Pi, if the blockchain tip C = bi (the

previous block), then Pi is synchronized with an up-to-date blockchain view. If C < bi, then the

peer is behind the chain by 1 or more blocks, showing poor synchronization.

To elaborate Heuristic 2, we again refer to Fig. 7.3. When our crawler received the new block

90

0 20 40 60 80

Percentage of Synchronized Nodes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 7.6: CDF of synchronized nodes reported from our measurements. Our results show that in
≈9.98 minutes on average, only 39.43% nodes have the latest block. The results are far from the
ideal world specifications, indicating a block high propagation delay.

570367 (bi+1) from the mining node, the “synced blocks” value was 570366 (bi). This means that

before sending the new block, the mining node’s blockchain tip was 570366 (C = bi−1). Hence,

the mining node had an up-to-date blockchain. Similarly, at the time of receiving the new block

570367, the crawler expected all its connected peers to have the “synced blocks” value 570366

in order to satisfy the synchronization property [44]. If the value of “synced blocks” is less than

570366 (i.e. 570365), the peer is behind the blockchain by one block. The “synced blocks” value

of all connected peers was obtained from the RPC API. We sampled this information every time

we received a block from a mining node. As a result, we were able to measure the percentage of

synchronized nodes with an up-to-date blockchain.

We plot the CDF of synchronized nodes in Fig. 7.6, showing a weak network synchronization. We

observed that the average block time was ≈9.98 minutes during which only 39.43% nodes had

the up-to-date blockchain. Moreover, compared to the measurements in prior works [34, 92], our

results indicate that the network synchronization is deteriorating over time.

7.5.1 Bitcoin Network Asynchrony

Since the overall network suffers from a weak synchronization, it is therefore intuitive to assume

that the mining nodes may also experience a high latency in the block reception as well. Moreover,

91

non-uniform delay in the block propagation indicates an asynchronous network. To the best of our

knowledge, the notable work that closely captures this behavior is conducted by Pass et al. [80] in

which they performed a theoretical analysis to understand the performance of Bitcoin in the non-

lock-step synchronous execution. This execution model allows an adversary to delay the block by

a parameter ∆, giving the adversary a head start mining advantage. Pass et al. [80] assumed that

after ∆, all the mining nodes simultaneously receive a block to start the next round. More precisely,

they assumed that all honest miners “freeze” and do not start mining until all miners receive the

block. In practice, however, when miners (honest or dishonest) receive a block, they immediately

start mining the next block [76]. Therefore, if miners receive blocks at different times and start

mining immediately, the network becomes asynchronous rather than non-lock-step synchronous.

This hypothesis can only be validated by experimentally observing the block propagation among

mining nodes, which we do in the following.

Block Propagation Among Mining Nodes. We performed a follow up experiment to study the

block propagation delay among the mining nodes and validate the asynchronous execution of

Nakamoto consensus in Bitcoin. For that experiment, we took the network snapshot at one second

interval. The difference between the two experiments is that in the previous experiment we only

took the network snapshot when we observed a new block in the network. In the second experi-

ment, however, we sampled the network every second. All our crawlers executed the getpeerinfo

command every one second to obtain the VIEWPi
C of each connected peer. Hence, we were able to

record the time when a new block appeared in the network and the time at which each node in the

reachable space received it (with one second granularity). Since we had the IP addresses of the

mining nodes, we were able to note the time at which each mining node received the block.

In our second experiment, we made three key observations. First, we noticed that the mining nodes

received blocks faster than the non-mining nodes. On average, all mining nodes received a block

within one minute. Second, we also noticed that the mining nodes received blocks at different

time intervals, confirming asynchronous execution. Third, we observed that the block propagation

92

0 20 40 60 80 100 120 140

Time (seconds)

0

20

40

60

80

N
o
d

es
w

it
h

B
lo

ck
s

(%
)

Miner B

Miner A

Figure 7.7: Block propagation of two miners, sampled at one second interval. Note that Miner A’s
block reaches |M |/2, |M |, |N|/2, and |N| at 2, 6, 30, and 76 seconds, respectively. In contrast,
Miner B’s block reaches the same set of nodes at 52, 58, 90, and 140 seconds respectively. Miner
A has a significant advantage over Miner B in terms of block propagation.

delay for each mining node varied, demonstrating variations in their network reachability (i.e. the

number of connected peers). Variations in block propagation delay confirms that the mining nodes

do not form a completely connected M ×M topology.

To further highlight the aforementioned observations, we present an example from our dataset

in Fig. 7.7, showing block propagation for two mining nodes randomly selected from the second

experiment. For simplicity, we label the two miners as “Miner A” and “Miner B.” Fig. 7.7 shows

that when “Miner A” released the block, within 2 seconds, the block reached half of the mining

nodes, and within 6 seconds, the block reached all the mining nodes. Moreover, within 76 seconds,

the block reached≈90% of all the nodes. In contrast, when ‘Miner B” released the block, the block

took 52 seconds to reach half of the mining nodes and 58 seconds to reach all the mining nodes.

The block took 140 seconds to reach ≈90% network.

From Fig. 7.7, we derived the following conclusions. (1) Since mining nodes receive blocks at dif-

ferent times, therefore, the execution of the Nakamoto protocol in Bitcoin is asynchronous instead

of lock-step synchronous [44] or non-lock-step synchronous [80, 83]. (2) Logically, this behavior

suggests that the mining nodes do not form a completely connected M × M topology. This is

analogous to our illustration in Fig. 7.2, where Mining Pool A is two hops away from Mining Pool

93

B, and Mining Pool C is one hop away from Mining Pool B. If Mining Pool B broadcasts a block

through its mining node, Mining Pool C is likely to receive it before Mining Pool A. (3) Variations

in the delay suggest that the Bitcoin mining nodes have a varying network reachability.

7.6 The HashSplit Attack

Nakamoto’s consensus in a non-lock-step synchronous network increases the fork probability,

wastes the effort of the honest miners, and lowers the cost for the majority attack [34, 80, 92].

Moreover, as indicated by Pass et al. [80], the problem becomes worse if the network is fully

asynchronous, thus allowing an adversary to mount new attacks to violate the blockchain safety

properties. Since our measurements clearly show that the Bitcoin network is fully asynchronous,

the next objective becomes formulating a new and feasible attack that violates the common prefix

(Qcp) and the chain quality (Qcq) properties with a high probability. Towards this objective, we

present HashSplit which allows an adversary to exploit the asynchrony and orchestrate concurrent

mining on multiple branches of a public chain to violate Qcp and Qcq.

HashSplit is a lower bound construction that shows: (1) an adversary with an arbitrary hashing

power can violate Qcq, (2) an adversary with 26% hash rate can violate both Qcp and Qcq with a

high probability, and (3) the requirement for a majority attack under any hash rate can be amortized

for all computationally admissible Bitcoin executions. From our measurements (§7.3–§7.5.1), we

note that the asynchronous network creates a natural partitioning among the mining nodes which

then expands the strategy space for an adversary to launch various attacks when combined with the

Bitcoin mining policies [76, 80, 39, 34, 44].

It is worth noting that, unlike the balance attack [77] or the routing attacks [5, 92], HashSplit does

not require the adversary to disrupt the network communication through BGP hijacking. Instead,

the adversary simply exploits the existing propagation delay among the mining nodes and the

natural partitioning created by the asynchronous network to split the hash rate. Below, we present

the threat model and the attack procedure for the HashSplit attack.

94

00

00

Time

N
o
d
e
s
R
e
a
c
h
e
d

Am
Hm

M1

M2

N/2

N

ta,1
ta,2

ta,3 ta,4
th,1 th,2 th,3 th,4

Figure 7: Generalized illustration of Figure 6. For simplic-
ity of modelling, we assume a uniform hashing power dis-
tribution in M (i.e., M1 ≈ |M |/2 ≈ 51% hash rate and i.e.,
M2 ≈ |M |/2 ≈ 49% hash rate).Am is well connected compared
to Hm . If Hm and Am concurrently produce a block, Am
wins race due to Hm ’s propagation delay. Here ta,1, ta,2, ta,3
and ta,4 are times when Am ’s block reaches 50% miners,
100% miners, 50% network, and 100% network. Accordingly,
th,1...th,4 are the corresponding values forHm .

for an adversary to launch various attacks when combined with

the Bitcoin mining policies [9, 11, 12, 26, 29].

It is worth noting that, unlike the balance attack [27] or the

routing attacks [3, 32], HashSplit does not require the adversary
to disrupt the network communication through BGP hijacking.

Instead, the adversary simply exploits the existing propagation

delay among the mining nodes and the natural partitioning created

by the asynchronous network to split the hash rate. Below, we

present the threat model for the HashSplit attack. In Table 2, we

compare HashSplit with similar attacks presented in the literature.

For more details on HashSplit novelty, we refer the reader to §E.

6.1 Threat Model and Attack Objectives
For HashSplit, we assume an adversaryAm ∈ M with less than 51%

hash rate. Am follows the experiment methodology in §3–§5 to

connect to all Pi ∈ N, identify the mining nodesM , estimate their

hashing power using the block mining rate (Figure 3), and obtain

the block propagation pattern of each mining node (Figure 6). After

identifying all Pi ∈ M , Am maintains a direct connection with

them to instantly send or receive blocks. Using the measurement

methodology in Figure 6, Am calculates how a block generated

by each Pi ∈ M reaches all Pi ∈ N. If Am samples the block

propagation pattern of each Pi ∈ M , Figure 6 can be expressed in

terms of the general model in Figure 7.

Figure 7 shows that Am has a good network reachability like

Miner A in Figure 6, whileHm (an honest miner) has poor network

reachability like Miner B in Figure 6. Since Figure 6 is sampled at

one second interval,Am knows precisely (in seconds) at what time

each Pi ∈ N receives a block. By calculating the difference in the

block generation time and the time at which each Pi ∈ N receives

the block, Am can calculate the delay in the block reception for

each Pi ∈ N. For each Pi ∈ M , we define the reachability time

Table 2: Comparing HashSplit with other attacks presented
in prior works. Unlike [3, 27], the HashSplit adversary does
not disrupt the network communication through a BGP at-
tack. As such, with only 26% hash rate and concurrent min-
ing on two or more blockchain branches, the adversary vio-
lates the blockchain safety and chain quality.
Study Requirement Branches Network Disruption
Decker et al. [9] 49% Hash Rate One ✗

Saad et al. [32] 30% Hash Rate Two or More ✗

Natoli et al. [27] 5% Two or More ✓

Apostolaki et al. [3] – One ✓

Heilman et al. [18] – One ✓

HashSplit 26% Hash Rate Two or More ✗

Ti , j = [ti ,1, ti ,2, ti ,3, ti ,4] as four time indexes at which the block is

received by 50% miners, 100% miners, 50% network, 100% network.

We further assume that each Pi ∈ M , exceptAm , conforms to the

ideal functionality such that when any Pi ∈ M generates a block, it

immediately releases the block to the network without withholding.

Moreover, when a Pi ∈ M receives two blocks with a hash pointer

to the same parent block, Pi ∈ M gives a time-based precedence

to the block received earlier, and mines on top of it. The time-

based precedence is a mining policy proposed by Nakamoto [26]

and is currently deployed in all Bitcoin Core versions. Finally, we

assume that (1) Am cannot influence the communication model of

other Pi ∈ N by launching routing attacks [3, 27], and (2) there is

no other attack (i.e., selfish mining) taking place concurrent with

the HashSplit attack. We specifically model HashSplit for a weaker
adversary as a lower bound construction. Logically, the attack is

more favorable for a stronger adversary considered in prior works

on Bitcoin partitioning attacks [3, 9, 29, 32].

Attack Objectives. Given that Am is a miner with a view of the

network’s communication model, Am can: (1) deviate from the

ideal functionality and violate Qcp and Qcq , (2) waste the mining

power of honest miners, and (3) prevent non-mining nodes from

generating or receiving k-confirmed transactions [26]. In HashSplit,
Am achieves these goals by exploiting block propagation delay to

split the public chain into two branches C1 and C2, and the mining

nodesM into two groupsM1 andM2. In a perfect split, Am splits

the network hash rate into C1 ← α = 0.51 and C2 ← β = 0.49

(α + β = 1), and mines on the branch with a higher hash rate. To

violate Qcp for any Pi ∈ N, Am ensures that C
⌈k

1
⪯̸ C2 for k = 6.

To violate Qcq , Am ensures that for any Pi ∈ N, µi − µ
′

i ̸= ϵ (the

blockchain ledger has disproportionately high blocks mined by the

adversary). In the following, we show that the HashSplit adversary
meets these objectives with a high probability.

6.2 Attack Procedure
6.2.1 Identifying Vulnerable Nodes. To split the blockchain,Am

first identifies the vulnerable mining nodes with a high block prop-

agation delay by running algorithm 1. In algorithm 1,Ta, j andTi , j
are reachability times for Am and other Pi ∈ M , respectively. Am
initializes four lists (aList...dList) and four variables (aMax...dMax).

For each Pi ∈ M , Am computes the time windows δ1...δ4 that

represent the difference between the block propagation time of

Am and the target mining node. For intuition, we again refer to

Figure 6, in which if assume Miner A as Am and Miner B asHm ,

8

Figure 7.8: Generalized illustration of Fig. 7.7. For simplicity of modelling, we assume a uniform
hashing power distribution in M (i.e. M1 ≈ |M |/2 ≈ 51% hash rate and i.e. M2 ≈ |M |/2 ≈
49% hash rate). Am is well connected compared to Hm. If Hm and Am concurrently produce a
block, Am wins race due to Hm’s propagation delay. Here ta,1, ta,2, ta,3 and ta,4 are times when
Am’s block reaches 50% miners, 100% miners, 50% network, and 100% network. Accordingly,
th,1...th,4 are the corresponding values forHm.

7.6.1 Threat Model and Attack Objectives

For HashSplit , we assume an adversary Am ∈ M with less than 51% hash rate. Am follows the

experiment methodology in §7.3–§7.5 to connect to all Pi ∈ N, identify the mining nodes M ,

estimate their hashing power using the block mining rate (Fig. 7.5), and obtain the block propaga-

tion pattern of each mining node (Fig. 7.7). After identifying all Pi ∈ M , Am maintains a direct

connection with them to instantly send or receive blocks. Using the measurement methodology

in Fig. 7.7, Am calculates how a block generated by each Pi ∈ M reaches all Pi ∈ N. If Am
samples the block propagation pattern of each Pi ∈ M , then Fig. 7.7 can be expressed in terms of

a general block propagation model in Fig. 7.8.

Fig. 7.8 shows that Am has a good network reachability like Miner A in Fig. 7.7, while Hm (an

honest miner) has poor network reachability like Miner B in Fig. 7.7. Since Fig. 7.7 is sampled at

one second interval, Am knows precisely (in seconds) at what time each Pi ∈ N receives a block.

95

By calculating the difference in the block generation time and the time at which each Pi ∈ N

receives the block, Am can calculate the delay in the block reception for each Pi ∈ N. For each

Pi ∈M , we define the reachability time Ti,j = [ti,1, ti,2, ti,3, ti,4] as four time indexes at which the

block is received by 50% miners, 100% miners, 50% network, 100% network.

We further assume that each Pi ∈ M , except Am, conforms to the ideal functionality such that

when any Pi ∈ M generates a block, it immediately releases the block to the network without

withholding. Moreover, when a Pi ∈ M receives two blocks with a hash pointer to the same

parent block, Pi ∈ M gives a time-based precedence to the block received earlier, and mines

on top of it. The time-based precedence is a mining policy proposed by Nakamoto [76] and is

currently deployed in all Bitcoin Core versions. Finally, we assume that (1) Am cannot influence

the communication model of other Pi ∈ N by launching routing attacks [5, 77], and (2) there is

no other attack (i.e. selfish mining [96]) taking place concurrent with the HashSplit attack. We

specifically model HashSplit for a weaker adversary as a lower bound construction. Logically, the

attack is more favorable for a stronger adversary considered in prior works [5, 34, 80].

Attack Objectives. Given thatAm is a miner with a view of the network’s communication model,

Am can: (1) deviate from the ideal functionality and violate Qcp and Qcq, (2) waste the min-

ing power of honest miners, and (3) prevent non-mining nodes from generating or receiving k-

confirmed transactions [76]. In HashSplit , Am achieves these goals by exploiting block propaga-

tion delay to split the public chain into two branches C1 and C2, and the mining nodes M into two

groups M1 and M2. In a perfect split, Am splits the network hash rate into C1 ← α = 0.51 and

C2 ← β = 0.49 (α + β = 1), and mines on the branch with a higher hash rate. To violate Qcp for

any Pi ∈ N, Am ensures that Cdk1 � C2 for k = 6. To violate Qcq, Am ensures that for any Pi ∈ N,

µi − µ′i 6= ε (the blockchain ledger has disproportionately high blocks mined by the adversary). In

the following, we show that the HashSplit adversary meets these objectives with a high probability.

96

7.6.2 Attack Procedure

7.6.2.1 Identifying Vulnerable Nodes

To split the blockchain, Am first identifies the vulnerable mining nodes with a high block prop-

agation delay by running algorithm 5. In algorithm 5, Ta,j and Ti,j are reachability times for

Am and other Pi ∈ M , respectively. Am initializes four lists (aList...dList) and four variables

(aMax...dMax). For each Pi ∈ M , Am computes the time windows δ1...δ4 that represent the dif-

ference between the block propagation time of Am and the target mining node. For intuition, we

again refer to Fig. 7.7, in which if assume Miner A as Am and Miner B as Hm, then algorithm 5

outputs δ1 = 50, δ2 = 52, δ3 = 60, and δ4 = 64 seconds, respectively. Therefore, algorithm 5

provides the difference in the reachability time of all Pi ∈ M relative to Am’s reachability time.

Additionally, algorithm 5 also determines the most vulnerable node with the maximum reachability

time difference, which can be the easiest target to initiate the split.

7.6.2.2 Blockchain Splitting

After discovering the vulnerable nodes,Am splits the blockchain into two branches, C1 and C2, and

miners into two groups, M1 and M2, using algorithm 6. We define the combined hash rate of M1

as α and M2 as β. algorithm 6 provides two attack strategies to achieve the split.

Strategy 1. In this strategy Am produces a block br+1 before any Pi ∈ M , and withholds it. Am
waits for another Pi ∈M to produce a block b′r+1. With the apriori knowledge of b′r+1 propagation

pattern in the network (algorithm 5), Am releases br+1 to M1 while b′r+1 reaches M2. As a result,

when b′r+1 reaches M1 after ta,1, M1 will not mine on it (time-based precedence [76]). However,

by ti,2, M2 receive b′r+1 and start mining on it. Since the miners mine on the earliest received block

(br+1 for M1 and b′r+1 for M2), the blockchain forks into two branches C1 ← α and C2 ← β.

Strategy 2. In this strategy, an honest miner Pi ∈M produces the block b′r+1 beforeAm. SinceAm
knows that b′r+1 will take ti,1 time to reach M1 (see Fig. 7.8), Am violates the ideal functionality

97

Algorithm 5: Identifying Vulnerable Mining Nodes
1 Input: Ti,j , Ta,j (reachability time of the adversary and all other mining nodes)
2 Initialize: aList, bList, cList, dList
3 Initialize: aMax, bMax, cMax, dMax = 0
4 for i = 0; i < |M |; i++ do
5 δ1 = ti,1 − ta,1, aList← δ1
6 if δ1 > aMax then
7 aMax = δ1
8 δ2 = ti,2 − ta,2, bList← δ2
9 if δ2 > bMax then

10 bMax = δ2
11 δ3 = ti,3 − ta,3, cList← δ3
12 if δ3 > cMax then
13 cMax = δ3
14 δ4 = ti,4 − ta,4, dList← δ4
15 if δ4 > dMax then
16 dMax = δ4

return: aList, bList, cList, dList, aMax, bMax, cMax

Algorithm 6: Attack Procedure (Split Ledger)
1 Input: M , Am

2 Case 1: Am finds br+1 before any Pi ∈M
3 Strategy 1: Am waits for another Pi ∈M to find b

′
r+1. When Am receives b

′
r+1 from Pi ∈M , Am releases

br+1 only to M1 before M1 receive b
′
r+1. Am does not release br+1 to M2, which invariably receive b

′
r+1 from

the other miner at ti,2 (Fig. 7.8).
4 Case 2: Any Pi ∈M finds b

′
r+1 before Am

5 Strategy 2: Am violates the ideal functionality (see onStart in Fig. 7.1) and keeps mining br+1. By ti,1, b
′
r+1

reaches M1 miners. If Am finds br+1 before ti,1, it releases br+1 to M2 before b
′
r+1 reaches them.

6 Result: In Strategy 1, M1 receives br+1 and M2 receives b
′
r+1. In Strategy 2, M1 receives b

′
r+1 and M2

receives br+1. In both cases, the chain C splits into two branches C1 and C2, and the network hash rate into α
and β.

and keeps mining for br+1 until ti,1. If Am succeeds in mining br+1 by ti,1, Am will release br+1 to

the other set of miners (M2) to which b′r+1 is yet to reach. As a result, and similar to Strategy 1,

the blockchain splits into C1 ← α and C2 ← β. Therefore, algorithm 6 provides two strategies for

the adversary to split the blockchain ledger into two branches.

Perfect Split. As described in §7.6.1, the perfect split leads to C1 ← α = 0.51 and C2 ← β = 0.49.

If Am, with a hash rate α1, mines on C1, we define the combined hash rate of all miners in M1 as

α = α1 + α2. Am can achieve the perfect split since it knows the block propagation pattern and

the hash rate distribution (Fig. 7.8) of all the miners. Am can time both strategies in algorithm 6 to

achieve the perfect split such that α1 + α2 = 0.51.

98

Without losing generality, in the rest of the analysis we assume: (1) Am achieves perfect split

from algorithm 6, (2) there are four miners in the network (Am, h1, h2, and h3), (3) Am and h1

mine on C1 with α1 = 0.26 and α2 = 0.25, (4) h2 and h3 mine on C2 with hash rates β1 = 0.25 and

β2 = 0.24, respectively (β = β1 + β2 = 0.49), and (5) Am has block propagation pattern similar

to Miner A in Fig. 7.7 and all other miners have block propagation patterns of Miner B in Fig. 7.7.

At ta,1, Am’s block reaches h1, and reaches both h2 and h3 at ta,2. Similarly, for h2, th,1 and th,2

are times at which Am and both h2 and h3 receive a block. We can extend the same propagation

sequence for h2 and h3. We make these assumptions to simplify the analysis. The model can be

easily generalized to more than four miners with varying hash rates and reachability times.

7.6.2.3 Block Race

Once the perfect split is achieved, the chains C1 and C2, enter in a block race. To formally analyze

the race conditions, we revisit the mathematical underpinnings of the Nakamoto consensus.

Bitcoin mining can be modeled as a Poisson process with inter-block times exponentially dis-

tributed with mean τ = 600 seconds. A valid block has the double hash of the block header less

than the difficulty SHA256(SHA256((Header))< d ∈ [0, 2256 − 1]. On average, a miner computes

m = 2256/d hashes to mine a block [52]. With the total network hash rate α+ β, m= (α+ β)× τ

is the total number of hashes required to mine a block at the specified block time τ [52]. When

the hash rate is split into α and β (algorithm 6), the time required to mine the next block on each

branch becomes to = m/α and t′o = m/β. In other words, after executing algorithm 6, the next

block from C1 is mined at to, and at t′o for C1, respectively. Therefore, the probability that C1 suc-

ceeds in producing the block before C2 becomes to/(to + t
′
o) = α/(α+ β) [52, 53, 88]. Similarly,

the probability that Am mines the next block on C1 before h1 is α1/(α1 + α2), and the probability

that h1 mines the next block on C1 beforeAm is α2/(α1+α2). This analysis can be easily extended

to the other two miners h1 and h2 on the second branch C2.

After executing algorithm 6, Am needs to maintain the fork for k consecutive blocks to violate

99

Fork Persists:
• f1 : Am produces a block on C1 . No other miner produces a block on either C1 or C2 . Am withholds its block to maintain the fork. Event probability is α1(1 − α2)(1 −

β1)(1 − β2).

• f2: Am produces a block on C1 and either h2 or h3 produce a block on C2 . Am sends its block to h1 who mines on C1 . h2 and h3 mine on C2 . Event probability is

α1β1(1 − α2)(1 − β2) + α1β2(1 − α2)(1 − β1).

• f3 : Am produces a block on C1 and both h2 and h3 produce a block on C2 . Three chains appear C1 , C2 , and C3 . Am sends its block to h1 and both mine on C1 . h2 and

h3 mine on C2 and C3 , respectively. Event probability is α1β1β2(1 − α2).

• f4 : Am and h1 produce a block on C1 and no miner on C2 produces a block. Am sends block to h2 to maintains the perfect split. Probability is α1α2(1 − β1)(1 − β2).

• f5: h1 produces a block on C1 and either h2 or h3 produce a block on C2 . C1 and C2 persist (perfect split exists) and Am mines on C1 . Event probability is

α2β1(1 − α1)(1 − β2) + α2β2(1 − α1)(1 − β1).

• f6 : h1 produces a block on C1 and both h2 or h3 produce a block on C2 . Three chains form (C1 , C2 , C3). Am receives block from h1 and both mine on C1 . h2 and h3

mine on C2 and C3 . Event probability is α2β1β2(1 − α1).

• f7 : Both Am and h1 produce blocks on C1 and either h2 , or h3 , or both produce blocks on C2 . Three or four branches can appear. Am mines with h1 to maintain the

hash rate advantage. Event probability is α1α2β1(1 − β2) + α1α2β2(1 − β1) + α1α2β1β2 .

• f8: Both h2 and h3 produce blocks on C2 and no miner on C1 produces a block. C1 resolves and C2 and C3 form. Am mines on h2’s branch for higher hash rate

advantage. Event probability is β1β2(1 − α1)(1 − α2).

• f9 : No miner produces block on either C1 or C2 . The original fork persists. Event probability is (1 − α1)(1 − α2)(1 − β1)(1 − β2).

Fork Gets Resolved:
• r1 : h1 produces a block on C1 before Am , and neither h2 or h3 produce a block on C2 . C2 dissolves and no fork remains. Event probability is α2(1 − α1)(1 − β1)(1 − β2).

• r2 : Either h2 or h3 produce a block and no miner on C1 produces a block. Fork gets resolved and Am mines on h2’s branch to maintain the hash rate advantage. Event

probability is β1(1 − α1)(1 − α2)(1 − β2) + β2(1 − α1)(1 − α2)(1 − β1).

Block Race

Figure 8: Block race after algorithm 2. For each event, we show the event probability and Am ’s next strategy.
(1) If the forks persist for more than k blocks, Qcp is violated, and

the attack succeeds partially.

(2) If the forks get resolved before k blocks and C1 wins, Qcq is

violated, and the attack succeeds partially.

(3) If the forks persist for k blocks and get resolved at k + 1 block

with C1 as the winning branch, both Qcp and Qcq are violated,

and the attack succeeds completely.

(4) If the forks persist for k blocks and get resolved at k + 1 block,

with all k blocks mined byAm , both Qcp and Qcq are violated.

Moreover, in that case, the HashSplit attack becomes a majority

attack since the adversary mines all blocks. In a synchronous

network, the probability this event is 0.08 with α1 = 0.26 [31].

(5) If the forks get resolved before or after k blocks and C2 wins,

Am loses all blocks, and the attack fails.

Clearly, HashSplit relies on the block race outcomes in which the

blockchain forks persist or get resolved. In Figure 8, we formally

analyze all outcomes of a block race along with their probability

distribution and Am ’s strategies for the next round. We define a

random variable X that specifies the probability distribution of the

block race outcome in Figure 8. We further define F and R as the

sum of events in which forks persist or get resolved. In (1) and (2),

we show the probability P[X = F] and P[X = R].

P[X = F] = α1(1 − α2)(1 − β1)(1 − β2) + α1β1(1 − α2)(1 − β2) + α1β2(1 − α2)(1 − β1)

+ α1β1β2(1 − α2) + α1α2(1 − β1) + (1 − β2) + α2β1(1 − α1)(1 − β2)

+ α2β2(1 − α1)(1 − β1) + α2β1β2(1 − α1) + α1α2β1(1 − β2) + α1α2β2(1 − β1)

+ α1α2β1β2 + β1β2(1 − α1)(1 − α2) + (1 − α1)(1 − α2) + (1 − β1)(1 − β2).

P[X = F] = 3α1α2β1β2 − 2α1α2β2 − 2α1β1β2 − 3α2β1β2 − 2α1α2β1 + α1β2

+ 2α2β2 + 2β1β2 + α1α2 + α1β1 + 2α2β1 − β2 − α2 − β1 + 1

(1)

P[X = R] = α2(1 − α1)(1 − β1)(1 − β2) + β1(1 − α1)(1 − α2)(1 − β2)

+ β2(1 − α1)(1 − α2)(1 − β1)

P[X = R] = 2α1α2β1 + 2α1α2β2 + 2α1β1β2 − 3α1α2β1β2 + 3α2β1β2

− α1α2 − α1β1 − α1β2 − 2α2β1 − 2α2β2 − 2β1β2 + α2 + β1 + β2

(2)

Plugging the hash rate of each miner from our threat model,

P[X = F] and P[X = R] become 0.6892 and 0.3108, respectively.

From these values and Figure 8, we make the following conclusions.

S0 S1
p00

p01

p11

p10

Figure 9: State machine representation of a block race. Tran-
sition probabilities are p00, p01, p10, and p11 are P[X = F],
P[X = R], P[X = F], and P[X = R], respectively.

(1) With algorithm 2 as the starting point of a block race, there is

a higher probability that the given fork persists or new forks

appear. This favors the violation of Qcp .

(2) The probability that a fork is resolved by an honest miner on

C1 is α2(1 − α1)(1 − β1)(1 − β2) = 0.1275; significantly less than

0.6892 and favors Qcq ’s violation.
4

(3) The probability that a fork is resolved by any honest miner on

C2 is β1(1 − α1)(1 − α2)(1 − β2) + β2(1 − α1)(1 − α2)(1 − β1) =

0.2401. This is the failure probability for the attack, and it is

considerably less than 0.6892 .

(4) WithM miners, potentiallyM branches can appear after a block

race, although with a negligible probability

(∏ |M |
i=1

h(i)
)
. More

branches increase the probability of violating Qcp , and we show

in Figure 8 how Am can deal with more than two branches.

(5) Block race can be modeled as a state machine in which the

outcomes can be a fork with probability P[Xk = F]. or no fork

with probability P[Xk = R] [11, 21]. Figure 9 presents a state

machine with S0 and S1 denoting states of forks and no forks,

respectively. The transition probabilities p00, p01, p10, and p11

are P[X = F], P[X = R], P[X = F], and P[X = F], respectively.

(6) Using Figure 9 and incorporating block propagation delay from

our measurements, we can compute the long term probability

of a forked blockchain that violates Qcp and Qcq .

4
If a fork is resolved by an honest miner, the adversary loses all blocks on the blockchain.

Although, the probability of such an event is low (0.127).

10

Figure 7.9: Block race after the adversary executes algorithm 6. For each event, we show the event
probability and the adversary’s strategy for the next round.

Qcp. However, if the fork gets resolved and the resulting chain has more blocks than 100α1 (i.e.

out of 100 blocks, more than 26 mined by Am), Qcq is violated. Note that since there are two

public chains, if the fork gets resolved before k, and C1 is the winning chain, Qcq is violated even

when Qcp is preserved. Considering these cases, in the following, we concretely specify the race

conditions under which the HashSplit attack succeeds or fails:

1. If forks persist for more than k blocks, Qcp is violated, and the attack succeeds partially.

2. If forks resolve before k blocks and C1 wins, Qcq is violated. The attack succeeds partially.

3. If forks persist for k blocks and get resolved at k + 1 block with C1 as the winning branch,

both Qcp and Qcq are violated. The attack succeeds completely.

4. If forks persist for k blocks and get resolved at k + 1 block, with all k blocks mined by Am,

both Qcp and Qcq are violated. Moreover, in that case, the HashSplit attack becomes a ma-

jority attack since the adversary mines all blocks. In a synchronous network, the probability

this event is 0.08 with α1 = 0.26 [88].

5. If forks resolve before or after k blocks and C2 wins, Am loses all blocks. The attack fails.

100

(1) If the forks persist for more than k blocks, Qcp is violated, and

the attack succeeds partially.

(2) If the forks get resolved before k blocks and C1 wins, Qcq is

violated, and the attack succeeds partially.

(3) If the forks persist for k blocks and get resolved at k + 1 block

with C1 as the winning branch, both Qcp and Qcq are violated,

and the attack succeeds completely.

(4) If the forks persist for k blocks and get resolved at k + 1 block,

with all k blocks mined byAm , both Qcp and Qcq are violated.

Moreover, in that case, the HashSplit attack becomes a majority

attack since the adversary mines all blocks. In a synchronous

network, the probability this event is 0.08 with α1 = 0.26 [31].

(5) If the forks get resolved before or after k blocks and C2 wins,

Am loses all blocks, and the attack fails.

Clearly, HashSplit relies on the block race outcomes in which the

blockchain forks persist or get resolved. In Figure 8, we formally

analyze all outcomes of a block race along with their probability

distribution and Am ’s strategies for the next round. We define a

random variable X that specifies the probability distribution of the

block race outcome in Figure 8. We further define F and R as the

sum of events in which forks persist or get resolved. In (1) and (2),

we show the probability P[X = F] and P[X = R].

P[X = F] = α1(1 − α2)(1 − β1)(1 − β2) + α1β1(1 − α2)(1 − β2) + α1β2(1 − α2)(1 − β1)

+ α1β1β2(1 − α2) + α1α2(1 − β1) + (1 − β2) + α2β1(1 − α1)(1 − β2)

+ α2β2(1 − α1)(1 − β1) + α2β1β2(1 − α1) + α1α2β1(1 − β2) + α1α2β2(1 − β1)

+ α1α2β1β2 + β1β2(1 − α1)(1 − α2) + (1 − α1)(1 − α2) + (1 − β1)(1 − β2).

P[X = F] = 3α1α2β1β2 − 2α1α2β2 − 2α1β1β2 − 3α2β1β2 − 2α1α2β1 + α1β2

+ 2α2β2 + 2β1β2 + α1α2 + α1β1 + 2α2β1 − β2 − α2 − β1 + 1

(1)

P[X = R] = α2(1 − α1)(1 − β1)(1 − β2) + β1(1 − α1)(1 − α2)(1 − β2)

+ β2(1 − α1)(1 − α2)(1 − β1)

P[X = R] = 2α1α2β1 + 2α1α2β2 + 2α1β1β2 − 3α1α2β1β2 + 3α2β1β2

− α1α2 − α1β1 − α1β2 − 2α2β1 − 2α2β2 − 2β1β2 + α2 + β1 + β2

(2)

Plugging the hash rate of each miner from our threat model,

P[X = F] and P[X = R] become 0.6892 and 0.3108, respectively.

From these values and Figure 8, we make the following conclusions.

(1) With algorithm 2 as the starting point of a block race, there is

a higher probability that the given fork persists or new forks

appear. This favors the violation of Qcp .

(2) The probability that a fork is resolved by an honest miner on

C1 is α2(1 − α1)(1 − β1)(1 − β2) = 0.1275; significantly less than

0.6892 and favors Qcq ’s violation.
4

(3) The probability that a fork is resolved by any honest miner on

C2 is β1(1 − α1)(1 − α2)(1 − β2) + β2(1 − α1)(1 − α2)(1 − β1) =

0.2401. This is the failure probability for the attack, and it is

considerably less than 0.6892 .

(4) WithM miners, potentiallyM branches can appear after a block

race, although with a negligible probability

(∏ |M |
i=1

h(i)
)
. More

branches increase the probability of violating Qcp , and we show

in Figure 8 how Am can deal with more than two branches.

(5) Block race can be modeled as a state machine in which the

outcomes can be a fork with probability P[Xk = F]. or no fork

with probability P[Xk = R] [11, 21]. Figure 9 presents a state

4
If a fork is resolved by an honest miner, the adversary loses all blocks on the blockchain.

Although, the probability of such an event is low (0.127).

Fork Persists:
• f1: Am produces a block on C1 . No other miner produces a block on either C1 or

C2 . Am withholds its block to maintain the fork. Event probability is α1(1−α2)(1−

β1)(1 − β2).

• f2: Am produces a block on C1 and either h2 or h3 produce a block on C2 . Am
sends its block to h1 who mines on C1 . h2 and h3 mine on C2 . Event probability is

α1β1(1 − α2)(1 − β2) + α1β2(1 − α2)(1 − β1).

• f3: Am produces a block on C1 and both h2 and h3 produce a block on C2 . Three

chains appear C1 , C2 , and C3 . Am sends its block to h1 and both mine on C1 . h2

and h3 mine on C2 and C3 , respectively. Event probability is α1β1β2(1 − α2).

• f4: Am and h1 produce a block on C1 and no miner on C2 produces a block. Am
sends block to h2 to maintains the perfect split. Probability is α1α2(1 − β1)(1 − β2).

• f5: h1 produces a block on C1 and either h2 or h3 produce a block on C2 . C1 and

C2 persist (perfect split exists) and Am mines on C1 . Event probability is α2β1(1 −

α1)(1 − β2) + α2β2(1 − α1)(1 − β1).

• f6 : h1 produces a block on C1 and both h2 or h3 produce a block on C2 . Three chains

form (C1 , C2 , C3). Am receives block from h1 and both mine on C1 . h2 and h3 mine

on C2 and C3 . Event probability is α2β1β2(1 − α1).

• f7: Both Am and h1 produce blocks on C1 and either h2 , or h3 , or both produce

blocks on C2 . Three or four branches can appear. Am mines with h1 to maintain the

hash rate advantage. Event probability is α1α2β1(1−β2)+α1α2β2(1−β1)+α1α2β1β2 .

• f8: Both h2 and h3 produce blocks on C2 and no miner on C1 produces a block.

C1 resolves and C2 and C3 form. Am mines on h2’s branch for higher hash rate

advantage. Event probability is β1β2(1 − α1)(1 − α2).

• f9: No miner produces block on either C1 or C2 . The original fork persists. Event

probability is (1 − α1)(1 − α2)(1 − β1)(1 − β2).

Fork Gets Resolved:
• r1 : h1 produces a block on C1 before Am , and neither h2 or h3 produce a block on

C2 . C2 dissolves and no fork remains. Event probability is α2(1−α1)(1− β1)(1− β2).

• r2 : Either h2 or h3 produce a block and no miner on C1 produces a block. Fork gets

resolved and Am mines on h2’s branch to maintain the hash rate advantage. Event

probability is β1(1 − α1)(1 − α2)(1 − β2) + β2(1 − α1)(1 − α2)(1 − β1).

Block Race

Figure 8: Block race after algorithm 2. For each event, we
show the event probability and Am ’s next strategy.

S0 S1
p00

p01

p11

p10

Figure 9: State machine representation of a block race. Tran-
sition probabilities are p00, p01, p10, and p11 are P[X = F],
P[X = R], P[X = F], and P[X = R], respectively.

machine with S0 and S1 denoting states of forks and no forks,

respectively. The transition probabilities p00, p01, p10, and p11

are P[X = F], P[X = R], P[X = F], and P[X = F], respectively.

(6) Using Figure 9 and incorporating block propagation delay from

our measurements, we can compute the long term probability

of a forked blockchain that violates Qcp and Qcq .

Incorporating Propagation Delay Advantage. Before comput-

ing the stationary distribution of Figure 9, it is important to in-

corporate Am ’s mining advantage due to the block propagation

delay and block withholding. For instance, in f1, when Am pro-

duces a block and withholds until h2 or h3 produce blocks,Am can

leverage the waiting time and the block propagation time to extend

the newly mined block. The gap between ta,1 and th,1 (or ta,2 and

th,2) provides additional time for Am to mine the next block. To

model this advantage, we first need to characterize the effect of

block propagation delay on each miner’s hash rate. Let ta,0, th1,0
,

th2,0
, th3,0

be times at which Am , h1, h2, and h3 mine blocks with

hash rates α1, α2, β1, and β2, respectively. The relationship between

block propagation delay and the hash rate can be obtained as:

10

Figure 7.10: State machine representation of a block race. Transition probabilities are p00, p01, p10,
and p11 are P[X = F], P[X = R], P[X = F], and P[X = R], respectively.

Clearly, HashSplit relies on the block race outcomes in which the forks persist or resolve. In Fig. 7.9,

we formally analyze all outcomes of a race along with their probability distribution and Am’s

strategies for the next round. We define a random variable X that specifies the probability distri-

bution of the race outcome in Fig. 7.9. We also define F and R as the sum of events in which forks

persist or resolve. In (7.3) and (7.4), we show the probability P[X = F] and P[X = R].

P[X = F] = α1(1− α2)(1− β1)(1− β2) + α1β1(1− α2)(1− β2) + α1β2(1− α2)(1− β1) + α1β1β2(1− α2)

+ α1α2(1− β1) + (1− β2) + α2β1(1− α1)(1− β2) + α2β2(1− α1)(1− β1) + α2β1β2(1− α1) + α1α2

β1(1− β2)α1α2β2(1− β1) + α1α2β1β2 + β1β2(1− α1)(1− α2) + (1− α1)(1− α2) + (1− β1)(1− β2)

P[X = F] = 3α1α2β1β2 − 2α1α2β2 − 2α1β1β2 − 3α2β1β2 − 2α1α2β1 + α1β2

+ 2α2β2 + 2β1β2 + α1α2 + α1β1 + 2α2β1 − β2 − α2 − β1 + 1

(7.3)

P[X = R] = α2(1− α1)(1− β1)(1− β2) + β1(1− α1)(1− α2)(1− β2) + β2(1− α1)(1− α2)(1− β1)

P[X = R] = 2α1α2β1 + 2α1α2β2 + 2α1β1β2 − 3α1α2β1β2 + 3α2β1β2

− α1α2 − α1β1 − α1β2 − 2α2β1 − 2α2β2 − 2β1β2 + α2 + β1 + β2

(7.4)

Plugging the hash rate of each miner from our threat model, P[X = F] and P[X = R] become

0.6892 and 0.3108, respectively. From these values, we make the following conclusions.

1. With algorithm 6 as the starting point of a block race, there is a higher probability that the

given fork persists or new forks appear. This favors the violation of Qcp.

2. The probability that a fork is resolved by an honest miner on C1 is α2(1 − α1)(1 − β1)(1 −

101

β2) = 0.1275; significantly less than 0.6892 and favors Qcq’s violation.2

3. The probability that a fork is resolved by any honest miner on C2 is β1(1− α1)(1− α2)(1−

β2) + β2(1 − α1)(1 − α2)(1 − β1) = 0.2401. This is the failure probability for the attack,

and it is considerably less than 0.6892 .

4. With M miners, potentially M branches can appear after a block race, although with a

negligible probability
(∏|M |

i=1 h(i)
)

. More branches increase the probability of violating

Qcp, and we show in Fig. 7.9 how Am can deal with more than two branches.

5. Block race can be modeled as a state machine in which the outcomes can be a fork with

probability P[Xk = F]. or no fork with probability P[Xk = R] [39, 69]. Fig. 7.10 presents

a state machine with S0 and S1 denoting states of forks and no forks, respectively. The

transition probabilities for the state machine p00, p01, p10, and p11 are P[X = F], P[X = R],

P[X = F], and P[X = F], respectively.

6. Using Fig. 7.10 and incorporating block propagation delay from our measurements, we can

compute the long term probability of a forked blockchain that violates Qcp and Qcq.

Incorporating Propagation Delay Advantage. Before computing the stationary distribution

of Fig. 7.10, it is important to incorporate Am’s mining advantage due to the block propagation

delay and block withholding. For instance, in f1, whenAm produces a block and withholds until h2

or h3 produce blocks, Am can leverage the waiting time and the block propagation time to extend

the newly mined block. The gap between ta,1 and th,1 (or ta,2 and th,2) provides additional time

for Am to mine the next block. To model this advantage, we first need to characterize the effect

of block propagation delay on each miner’s hash rate. Let ta,0, th1,0 , th2,0 , th3,0 be times at which

Am, h1, h2, and h3 mine blocks with hash rates α1, α2, β1, and β2, respectively. The relationship

between block propagation delay and the hash rate can be obtained as:

2If a fork is resolved by an honest miner, the adversary loses all blocks on the blockchain. Although, the probability
of such an event is low (0.127).

102

α1 =
τ

ta,0
, α2 =

τ

th1,0
, β1 =

τ

th2,0
, β2 =

τ

th3,0
(7.5)

α1 =
τ

ta,0 + ta,1
, α2 =

τ

th1,0 + th,1
, β1 =

τ

th2,0 + th,1
, β2 =

τ

th3,0 + th,1
(7.6)

Considering α1 = 0.26, α2 = 0.25, β1 = 0.25, β2 = 0.24, and τ = 600 seconds, from (7.5), ta,0,

th1,0, th2,0 become 2308, 2400, 2400, and 2500, respectively. Plugging these values in (7.6), the

hash rate of each miner becomes α1 = 0.259, α2 = 0.244, β1 = 0.244, and β2 = 0.235. Next, to

incorporate Am’s advantage in a block race, we convert δ1 in algorithm 5 as the mining advantage

that increases α1. In our model, δ1 with respect to all honest miners is 52 − 2 = 50 seconds. In

50 seconds,Am gets (δ1/τ = 0.0833 fraction of additional mining power. As a result, the effective

hash rate of each miner becomes α1 = 0.3423, α2 = 0.2163, β1 = 0.2163, and β2 = 0.2073.

Moreover, P[X = F] and P[X = R] become 0.739 and 0.261, respectively.

This advantage can be extended to miners when they resolve forks (r1 and r2 in Fig. 7.9). If a fork

resolves, the probability that it appears in the next round will be less than 0.739. The winning miner

will have ta,1 advantage over Am, and th,1 advantage over other miners. Empirically, ta,1 accounts

for 2/600 = 0.0033, and th,1 accounts for 52/600 = 0.087 fraction of the mining power. Therefore,

if a fork resolve, the probability that it appears in the next round becomes P[X = F] = 0.683.

Using these values, we can construct the transition probability matrix for Fig. 7.10.

P =

S0 S1

S0 p00 p01

S1 p10 p11

=

S0 S1

S0 0.739 0.261

S1 0.683 0.317

In (7.7), we derive the stationary distribution of P to calculate the long term probability of a forked
blockchain. The stationary distribution of P is a row vector π such that πP = π.

0.739π1 + 0.261π2 = π1, 0.683π1 + 0.317π2 = π2, π1 + π2 = 1 (7.7)

103

From (7.7), π1 = 0.724 and π2 = 0.276, and the long term probability of a forked chain is

significantly greater than of a single branch. Using the stationary distribution, we evaluate the

impact of HashSplit on Qcp, Qcq, and the majority attack.

Common Prefix Property. Our analysis reveals for any block race of length k, Qcp is violated

(Cdk1 � C2 for any k) with 0.724 probability. For k = 6, P 6 yields P[X = F] = 0.72. Therefore,

HashSplit violates Qcp with a high probability.

Chain Quality Property. Per (7.6), the block propagation affects the hash rate of each miner.

As such, and even when not partitioning the blockchain, Am can still mine more blocks that its

hash rate allows. For instance, assuming an honest block race, and since δ1 = 50 seconds, Am
has 50/(3 × 600) fraction of mining advantage over the other three miners (α1 = 0.26, α2 =

0.223, β1 = 0.223, β2 = 0.213). Moreover, if 100 blocks are mined, Am will mine 28.29 blocks.

From the ideal-world functionality view, µ − µ′ = 2.29 6= ε. Am mines two blocks more than its

hash rate, thus Qcq is violated.

Common Prefix and Chain Quality. To violateQcp andQcq, a fork needs to persist or get resolved

after k blocks, and C1 is the winning branch. Fig. 7.9 shows that r2 is the only outcome where forks

get resolved to C2 with probability 0.2401. We analyze that by branching S1 in Fig. 7.10 into two

states and calculate the probability of C2 being the winning chain (computed as 0.167). Therefore,

both Qcp and Qcq are violated with a probability of 1− 0.167 = 0.833.

Majority Attack. From Fig. 7.9, a majority attack happens if (1) C1 is the winning branch after k

rounds, and (2) all blocks on C1 are mined by Am. This happens if for k − 1 rounds, one of the

events fi, for i = 1, 2, 3, 4, 7 or 9 occurs, followed by event f1 on the kth round. Similar to the

analysis above, we can decompose this into a state machine where S0 determines the probability

of events fi, for i = 1, 2, 3, 4, 7 or 9, while S1 determines the probability of fi for i = 5, 6, or 8,

and r1 or r2. From Fig. 7.9, we compute p00, p01, p10, and p11 as 0.663, 0.337, 0.576, and 0.424,

respectively. For k = 6, the result is (0.63 × 0.342) = 0.2156. Therefore, with a probability of

0.2156, HashSplit allowsAm to launch a majority attack with only 26% hash rate. In the lock-step

104

synchronous or non-lock-step synchronous networks, the probability of successful majority attack

with 26% hash rate is ≈ 0.08 [88].

In summary, HashSplit violates the blockchain safety properties with a high probability and sig-

nificantly lowers the cost for the majority attack. In this chapter, we have only presented an attack

against the mining nodes, although it can be launched against non-mining nodes (i.e. Bitcoin

exchanges) to prevent them from generating k−confirmed transactions. As shown in §7.5, the

non-mining nodes have a relatively poor network synchronization compared to the mining nodes,

making them more vulnerable to HashSplit . Splitting the mining power to lower the cost of the

51% attack is known in the literature [77, 47, 5]. However, these attacks require an adversary to

disrupt the communication model which can be detected by the victims. In contrast, the Hash-

Split adversary does not disrupt the communication, and only relies on the latency and mining

policies to split the network. In the past five years, 26% hash rate has been possessed by various

mining pools, including BTC.com, Antpool, and F2Pool (see Antpool’s example [14]). All these

features make HashSplit more practical, stealthy, and feasible in the current Bitcoin network. We

acknowledge that the asynchronous network can be exploited in several other ways to launch new

attacks similar to HashSplit or further refine HashSplit by incorporating new strategies. However,

covering all those attacks is beyond the scope of this work.

7.7 Simulations and Results

In this section, we demonstrate the HashSplit attack through simulations. We developed a simula-

tor in Python that implements the PoW protocol. For simplicity, and to enable mining on a CPU,

we lowered the target value for PoW. To perform concurrent mining, we used the multiprocess-

ing library which effectively side-steps the “Global Interpreter Lock” by replacing threads with

subprocesses. As a result, we were able to leverage the multi-core processor to simulate a block

race among multiple nodes. For this experiment, we set up six miners, each with a genesis block

and a block prototype containing dummy transactions. We assigned 26% processing power to the

105

adversary and the remaining 74% randomly assigned to the other five miners.

For simulations, we created the network topology in a way that the adversary was directly con-

nected with all five miners so that whenever a new block was produced by any node, the adver-

sary directly received the block. Additionally, the topology among the other miners was adjusted

to mimic the real-world Bitcoin network in which random delay affected the block propagation,

thereby allowing the adversary to propagate two blocks among two separate sets of miners. We

had two options to curate the network topology. One was to implement sockets and add deter-

ministic delay in the block propagation. However, we noticed that socket implementation incurred

significant processing overhead which wasted critical CPU cycles that could be utilized in solv-

ing the PoW. Again, favoring simplicity, we instead used an access control policy to construct the

network topology. When a miner produced a block, the block was added to the public blockchain

stored in a file. Next, the file sent the updated blockchain to each process (miner) of the execution.

Based on the pre-determined relationship between the block producing miner and other miners,

we introduced the deterministic delay in the blockchain broadcast. For instance, since adversary

was directly connected to each miner, it immediately received the block when the blockchain was

updated in the file. In contrast, if two miners were not directly connected to each other, a block

produced by one was sent to the other after 100 milliseconds delay. This strategy allowed us to

construct the network topology without incurring the overhead of a client-server socket implemen-

tation. However, since we will open-source our simulation setup in future, therefore, it can be

tailored to any custom topology implementation.

Fig. 7.11 shows that except for the 5th block, the adversary was able to find a block before any

other miner in the network. After computing the block, the adversary waited for any other miner

from the competing chain to release the block. In the meantime, it continued extending its own

chain atop its previous block. In our results, we observed that at the 5th block, a miner on the

second branch produced the block before the adversary. However, the adversary was able to mine

the block immediately after, and it released the block to maintain the fork. Finally, at the 8th

block, when the adversary mined its block, it did not withhold it. Instead, it released the block to

106

20 40 60 80 100 120 140 160

Time (seconds)

2

4

6

8

10

N
u

m
b

er
o
f

B
lo

ck
s

Attacker’s Blocks

Other Miner’s Blocks

Figure 7.11: Simulations of the HashSplit attack. In each round (except 5th), the adversary with
26% hash rate is the first to produce a block and follows algorithm 6. In the 5th round, the adversary
manages to produce the block before th,2. Adversary releases the chain after 8th block

all miners in M , thereby forcing them to switch to the longer chain.

Our simulation results validate that by exploiting the asynchronous network, the adversary main-

tained two branches of the public chain to violate the common prefix property. The resulting chain

had a majority of blocks mined by the adversary, which violated the chain quality.

7.8 Attack Countermeasures

In this section, we instead focus on attack countermeasures. Since HashSplit primarily exploits

asynchronous network and block propagation delay, if δ1 . . . δ4 in algorithm 5 are minimized, Am:

(1) cannot split the mining nodes, and (2) cannot leverage a significant mining advantage from

propagation delay. Additionally, if all Pi ∈ M form M × M topology, Bitcoin will exhibit a

lock-step or non-lock-step synchronous network, countering HashSplit .

To reduce propagation delay and form M ×M network topology, we modified Bitcoin Core to

allow fast connectivity among nodes. Existing Bitcoin Core suffers from poor network reachability,

and a default node takes ≈120 days to connect to only 125 IP addresses (out of 6K–10K) [106], a

long duration for a small fraction of the total network. To overcome this limitation, we modified

Bitcoin Core to enable faster connectivity, as outlined in [3].

107

0 200 400 600 800 1000 1200 1400 1600

Time (seconds)

0

2

4

6

C
o
n

n
ec

ti
o
n

s
x
(1

0
3
)

(a) Number of Bitcoin connections established in
1800 seconds

20 40 60 80 100 120 140 160

Time (seconds)

0

1

2

3

B
an

d
w

id
th

(M
b

p
s)

Outgoing

Incoming

(b) Incoming and outgoing bandwidth consump-
tion in MBps.

Figure 7.12: Performance evaluation of our Bitcoin Core version deployed on a full node. In
less than 100 seconds, our node connected with over 6K reachable nodes while maintaining the
bandwidth overhead under 6Mbps.

For performance evaluation, we deployed our Bitcoin Core client on a local machine and evaluated

the connectivity speedup and bandwidth consumption, with results reported in Fig. 7.12. Our node

connected with over 6K reachable nodes in less than 100 seconds, with a bandwidth consumption

under 6Mbps (4Mbps incoming and 2Mbps outgoing) during the initial connectivity phase. Once

the number of connections stabilize, the bandwidth consumption becomes ≈4Mbps. Our Bitcoin

Core version is still in the testing phase and currently supports connections to IPv4 and IPv6 nodes.

From Fig. 7.12, we note that a Bitcoin node can connect to all IPv4 and IPv6 mining nodes in

less than 100 seconds. Through direct connectivity and better reachability, the node can instantly

receive blocks from honest mining nodes, thereby minimizing block delays and Am’s advantage.

However, we acknowledge that M ×M topology does not fully counter the attack. Our measure-

ments show that the network latency can be heterogeneous such that two peers connected to a same

node can have varying block propagation delay due to characteristics of the underlying Internet in-

frastructure (i.e. low bandwidth). Heterogeneous latency can be leveraged by Am to launch the

HashSplit attack even in M ×M topology. Therefore, in addition to network layer remedies, we

also require application layer defenses to counter the attack.

For application layer defenses, we equip our Bitcoin Core with a fork resolution mechanism. We

note from Fig. 7.9, that the victim nodes have multiple branches of the same length in each round

(i.e. C1 and C2) during the attack. Particularly, miners on C1 will continuously receive blocks

108

from Am, immediately followed by blocks from other honest miners. We leverage this sequence

of block arrival to eliminate Am’s advantage and reduce the likelihood of a perfect split. In our

Bitcoin Core [3], we provide a fork resolution mechanism in which a node removes the connection

and bans the IP address for twenty four hours in the event of receiving k = 6 sequential blocks

from it. This means that Am will lose a direct connection to all mining nodes and will not be

able to achieve a perfect split. Am may deploy Sybil nodes in the network to connect to the victim.

However, in that caseAm will lose δ1 advantage over the victim since the block will be first relayed

to the Sybil and then to victim node. Therefore, a combination of high network reachability and

fork resolution mechanism can mitigate the HashSplit attack.

7.9 Summary

In this work, we show how the application-specific policies (i.e. time-based block precedence) and

network layer constructs (i.e. asyncrony) in Bitcoin can be exploited to violate the fundamental

blockchain properties. We present an ideal functionality the correctly captures the modus operandi

of the Bitcoin network. By conducting large-scale measurements, we show that the Bitcoin net-

work is evolving, where known attacks can be optimized and new attacks can be launched, as

demonstrated by HashSplit . Our work bridges the gap between theory and practice of blockchain

security and draws attention to the Bitcoin vulnerabilities. Moreover, our proposed countermea-

sures provide means to mitigate the attack by creating a lock-step synchronous network.

In §6, we noted that the Bitcoin security models do not fully characterize the impact of network

asynchrony and network churn on the fundamental blockchain properties. In this chapter, by

proposing and analyzing HashSplit , we have concretely investigated the impact of asynchrony

on blockchain consistency. In the next chapter, we will demonstrate how an adversary can exploit

the network churn to violate the blockchain consistency without using any mining power.

109

CHAPTER 8: SYNCATTACK: DOUBLE-SPENDING IN BITCOIN

WITHOUT MINING POWER

In all the network layer attacks presented in prior chapters, we used the Nakamoto’s attack con-

struction as a blue print to model a block race between the adversary and the honest miners.

Through measurements, we were able to uncover various discrepancies in the real world Bitcoin

network that can be exploited to lower the cost of violating the blockchain consistency (i.e. 26%

hash rate requirement in HashSplit §7). Despite significantly lowering the attack cost, our threat

models assumed that the adversary controls some mining power to launch the attack and there

is a stable mining power distribution during the attack. These limitations also exist in all prior

works because the Nakamoto’s attack construction stipulates that an adversary controls some min-

ing power in order to violate the blockchain consistency property (i.e. through a double-spend

attack). Moreover, as noted in [88], the adversary’s success probability decreases exponentially if

the hash rate distribution changes during the attack (i.e. new honest miners joining the network).

8.1 Motivation

In contrast to these two requirements, in this chapter we find that an unstable hash rate distribution

can instead be used to the adversary’s advantage, irrespective of new miners joining the network.

Moreover, variations in the hash rate can be exploited to exempt the adversary from using the

mining power altogether, while still double-spending successfully.

Our findings are based on the two characteristics of the real world Bitcoin network that we observed

in §5 and §6, and found that they have not been thoroughly explored in the past. First, we note

that the blockchain forks, antecedent to a double-spend attack, do not solely rely on the hash

rate distribution among the honest miners. In fact, forks can also occur due to a weak network

synchronization that characterizes the blockchain view of each node in the network [92]. We

further observe that network synchronization depends on the overlay topology of reachable nodes

(e.g., using public IP addresses) in the network and the block propagation delay among those nodes.

110

If the overlay topology partitions or block propagation delay increase, the blockchain can fork even

in the absence of an adversary. Therefore, network synchronization plays a key role in preserving

the blockchain consistency. However, despite such a significance, network synchronization has not

been comprehensively characterized in the Bitcoin security model.

Second, we note that prior security models [44, 80] ignored the permissionless nature of Bitcoin,

which is intrinsic in its network design. The permissionless network allows nodes to leave or join

the network at any time, thereby creating churn. Our study reveals that churn can be exploited to

deteriorate network synchronization and launch new forms of partitioning attacks to disrupt the

overlay topology. Our experiments also reveal a major vulnerability in Bitcoin Core that can be

exploited to quickly partition the network by using only 28 IP addresses. More precisely, we show

that by setting up 8 reachable nodes and 20 Docker containers, costing about $1,000 in total, an

adversary can occupy the incoming connection slots of all the reachable nodes, preventing any

new node from connecting to any of the existing nodes. This separation creates a partitioning

between the incoming reachable nodes and the existing reachable nodes, which then increases

with the network churn. The adversary exploits the partitioning to launch an attack and create

forks by deteriorating the network synchronization. The adversary then uses those forks to launch

a double-spend attack without using any mining power.

Contributions. In summary, our work makes a fundamental contribution by positioning network

synchronization in the Bitcoin security model and analyzing its robustness in the permissionless

settings. Additionally, by measuring and characterizing the behavior of the real world Bitcoin

network, we propose SyncAttack, an attack that allows an adversary to deteriorate the network

synchronization and launch a double-spend attack without mining power. Through this work, we

conclude our attack surface analysis by presenting the most feasible attack on the Bitcoin network

to date that violates the blockchain consistency while incurring a low cost of $1000. Our key

contributions in this chapter are summarized as follows1.

1For details on reachable nodes, unreachable nodes, and network synchronization, we refer to §6

111

• We present the first ideal functionality for the Bitcoin network synchronization. Our pro-

posed ideal functionality characterizes the Bitcoin blockchain consistency property in light

of the overlay network topology and the block propagation delay (§8.2).

• We conduct measurements to analyze the Bitcoin network synchronization in the real world

network (§8.3). Our measurements reveal that, on average, only 52.2% reachable nodes

have an up-to-date blockchain at any time, demonstrating weak network synchronization.

• We characterize the permissionless nature of the Bitcoin network by measuring churn among

the reachable nodes (§8.3.2). Our measurements show a high network churn where 9% of

the reachable nodes leave the network every day, replaced by almost an equal number of new

reachable nodes. Additionally, we observe that all Bitcoin mining nodes experience churn.

• We show how the churn can be exploited to launch the SyncAttack in which the adversary

partitions the network and creates forks by deteriorating the network synchronization (§8.4).

• We discover a vulnerability in Bitcoin Core that can be exploited to launch the SyncAttack

by using only 28 unique IP addresses. We also demonstrate how SyncAttack can be used to

(1) double-spend without using any mining power, and (2) reduce the effective mining power

of the Bitcoin network. We also propose and implement the SyncAttack countermeasures.

.

8.2 Ideal Functionality for Bitcoin Network Synchronization

SyncAttack is a contrast between the Bitcoin ideal functionality and its real world implementation.

Therefore, in keeping with the flow, we first present the ideal functionality below.

For the ideal functionality, we assume a set of reachable nodes Nr that execute the Nakamoto

consensus for l rounds, arbitrated by a trusted party Fsyn. Each ni ∈ Nr establishes eight outgoing

112

Input: Reachable nodes Nr, with each ni ∈ Nr establishing Oi outgoing connections and accepting Ii incoming connections. The
average network outdegree deg+(Nr) is greater than the minimum network outdegree deg+min(Nr) (see §A) to form a connected
overlay topology. The mining power H is uniformly distributed among Nr such that ∑∀i hi = 1, where hi is the mining power of
ni. Each ni ∈ Nr maintains a blockchain ledger C , and participates in the block mining race which proceeds for l rounds. The
mining race is arbitrated by a trusted party Fsyn which knows Nr, H, deg+(Nr), and deg+min(Nr). In each round, the trusted
party Fsyn observes the following states.
Start: Each ni ∈ Nr starts mining on C with the latest block br on the blockchain tip. The probability to mine the next block
br+1 is hi/H. If ni successfully finds br+1 � br (� is the prefix relationship), ni appends br+1 to C and relays br+1 to Oi, Ii, and
Fsyn. Then, ni moves to the next round.

Receive: Consistent with the current Bitcoin protocol, if a node ni receives two valid blocks br+1 � br and b
′
r+1 � br in any

round, where those blocks are linked to the same parent block br, ni will stop its computation and start mining on the block that
it receives the earliest. For instance, if br+1 � br is received at t1 and b

′
r+1 � br is received at t2, where (t1 < t2), then ni mines

on br+1 � br. Additionally, ni forms two chains C1← br+1 � br and C2← b
′
r+1 � br, with C1 as the dominant chain on which

ni mines. Then, ni, relays b
′
r+1 � br to Oi and Ii, and moves to the next round.

Propagate: A valid block b
′
r+1 � br takes k = logdeg+(Nr)

Nr steps to reach all the reachable nodes. Each step adds a fixed delay

t, such that kt is the end-to-end delay for b
′
r+1 � br to end up in C of each ni. We enforce the end-to-end delay kt within a

bound by threshold parameter T such that kt ≤ T to prevent forks during block propagation.
Evaluate: Once Fsyn receives a valid block br+1 � br, it checks if the network satisfies the synchronization property. For that
purpose, Fsyn first checks if the network outdegree is greater than the minimum outdegree (deg+(Nr)> deg+min(Nr)). Fsyn then
concludes that br+1 � br will eventually reach all ni ∈ Nr if the condition is satisfied. Next, Fsyn calculates the end-to-end delay
kt as the upper bound delay threshold that prevents forks during the block propagation delay. For that purpose, Fsyn queries
each ni ∈ Nr after kt. For the nodes that report br+1 � br as the latest block on C , Fsyn puts them in Ns as the synchronized
nodes; otherwise in Nu as the non-synchronized nodes, where Nr = Ns +Nu. Fsyn then computes Nsyn as the ratio Ns/Nr. If
Nsyn > 0.5 (an honest majority is synchronized), Fsyn notifies each ni ∈ Nr that the network is synchronized.

Ideal Functionality Fsyn

Figure 1: Ideal functionality for the Bitcoin network synchronization. The two conditions specified in the ideal functionality
ensure that all reachable nodes in Bitcoin eventually receive a block and the maximum block propagation delay among the
reachable nodes is bounded by a delay threshold parameter to prevent forks with a high probability.

partitioning attacks [35]. In §3, we present the first formal
characterization of the Bitcoin network synchronization that
is inspired by the real world network characteristics.

It is important to note that only reachable nodes maintain
network synchronization by relaying blocks in the network.
For example, if a reachable node mines a block, it relays that
block via all its reachable and unreachable connections. If
we isolate unreachable nodes from the network, the block
will still reach all reachable nodes. In contrast, if an unreach-
able node mines a block, the block can only be relayed in
the network through reachable nodes. If we isolate reachable
nodes, the block cannot propagate, thus preventing synchro-
nization. Therefore, it is important to acknowledge the role
of reachable nodes in the network synchronization. Bitcoin
miners host both reachable and unreachable nodes, and use
reachable nodes to relay their blocks (see Figure 13 in §A for
details). The reachable nodes owned by the Bitcoin miners
are also called the mining nodes which we discuss in §4.

3 Ideal Functionality for Bitcoin Network
Synchronization

SyncAttack is a contrast between the Bitcoin ideal functional-

ity and its real world implementation. Therefore, in keeping
with the flow, we first present the ideal functionality below.

For the ideal functionality, we assume a set of reachable
nodes Nr as the “Interactive Turning Machine”s (ITM) that
execute the Nakamoto consensus for l rounds, arbitrated
by a trusted party Fsyn. Each ni ∈ Nr establishes eight
outgoing connections, making the average network outde-
gree deg+(Nr), which then enables the block propagation in
k = logdeg+(Nr)

|Nr| steps. Each step adds a fixed propagation
delay, t, and the network synchronizes if no fork appears in
time kt while Nr maintains a minimum outdegree deg+min(Nr).
Figure 1 provides the ideal functionality details, and Theo-
rem 1 specifies bounds on deg+(Nr) and block propagation
delay that preserve the network synchronization.

Theorem 1 (Ideal Functionality Fsyn). By maintaining both
(1) a minimum outdegree

(
deg+(Nr)≥ deg+min(Nr)

)
and (2)

an upper bound block propagation delay threshold (kt ≤ T),
Fsyn guarantees synchronization with a high probability.

In Appendix §A, we prove Theorem 1 and provide the
lower bound for deg+(Nr) and the upper bound for kt based on
the Bitcoin protocol specifications. Compared to the existing

3

Figure 8.1: Ideal functionality for the Bitcoin network synchronization. The two conditions speci-
fied in the ideal functionality ensure that all reachable nodes in Bitcoin eventually receive a block
and the maximum block propagation delay among the reachable nodes is bounded by a delay
threshold parameter to prevent forks with a high probability

connections, making the average network outdegree deg+(Nr), which then enables the block prop-

agation in k = logdeg+(Nr) |Nr| steps. Each step adds a fixed propagation delay, t, and the network

synchronizes if no fork appears in time kt while Nr maintains a minimum outdegree deg+
min(Nr).

Fig. 8.1 provides the ideal functionality details, and Theorem 2 specifies bounds on deg+(Nr) and

block propagation delay that preserve the network synchronization.

Theorem 2 (Ideal Functionality Fsyn). By maintaining both (1) a minimum network outdegree
(
deg+(Nr) ≥ deg+

min(Nr)
)

and (2) an upper bound block propagation delay threshold (kt ≤ T),

Fsyn guarantees network synchronization with a high probability.

Proof. For the proof sketch, we show that the proposed protocol in Fig. 8.1 securely realizes the

113

0 2000 4000 6000 8000 10000

Number of Nodes (Nr)

0

1

2

3

4

d
eg

+ m
in

(N
r
)

Figure 8.2: Relationship between |Nr| and deg+
min(Nr) required for a connected topology. In the

current network size of ≈11K nodes [23], deg+
min(Nr) must be greater than 4.47.

0 500 1000 1500 2000 2500

Delay (kt seconds)

0.0

0.2

0.4

0.6

0.8

F
or

k
P

ro
b

a
b

il
it

y

Upper Bound T

Figure 8.3: Fork probability due to block propagation delay kt. At kt=416 seconds, the fork
probability becomes greater than 0.5. Therefore, we set the delay threshold T=416 seconds.

ideal functionality Fsyn by faithfully modelling the real world network characteristics [92, 23]. For

that purpose, we specify the model parameters for the two conditions outlined in Theorem 2, and

use values from the real world Bitcoin network [23].

The first condition in Theorem 2
(
deg+(Nr) ≥ deg+

min(Nr)
)

refers to the Bitcoin network’s ca-

pability of delivering blocks to all the reachable nodes. Therefore, deg+
min(Nr) characterizes the

minimum number of edges required to construct a connected overlay topology among the reach-

able nodes. Logically, if the network outdegree falls below the minimum network outdegree
(
deg+(Nr) < deg+

min(Nr)
)
, a group of reachable nodes will not be connected to the network, thus

deteriorating the network synchronization [101].

To show that our ideal functionality satisfies the first condition in Theorem 2, we derive the mini-

114

mum Bitcoin network outdegree from [101], and compare it with the empirical values from the real

world Bitcoin network [23]. From [101], we note that among |Nr| reachable nodes, the minimum

outdegree deg+
min(Nr) is bounded by the following relationship.

deg+
min(Nr) ≥

⌈ |Nr|
|Nr| − 1

logOi
(|Nr|)

⌉
(8.1)

Using (8.1), we plot deg+
min(Nr) against |Nr| in Fig. 8.2. We increase |Nr| from 0 to 11K nodes,

which is currently the number of reachable nodes in the network [23]. Fig. 8.2 shows that among

|Nr|=11K nodes, if deg+
min(Nr) is greater that 4.47 (i.e. 5), then there is a path from each node to

every other node to deliver a block. Furthermore, through source code inspection, we observe that

each reachable node in the real world network establishes eight outgoing connections (Oi=8), mak-

ing that the network outdegree
(
deg+(Nr) = 8

)
[18]. Since deg+

min(Nr) < deg+(Nr), therefore,

our ideal functionality satisfies the first condition in Theorem 2.

The second condition in Theorem 2 (kt ≤ T) refers to the Bitcoin network’s capability of pre-

venting forks during block propagation. For that purpose, we specify that if the end-to-end block

propagation delay kt is below the delay threshold parameter T , the probability of a fork remains

below 0.5, thus preserving the blockchain consistency properties [44, 63].

In order to obtain a realistic value for T , we identify events during block propagation that can

cause forks. Consider a node n0 that mines a block br+1 � br at time ta. Next, consider another

node n|Nr| as the last node in Nr to receive br+1 � br at tb. Therefore, the end-to-end delay kt

becomes tb − ta, and a fork appears if n|Nr| mines b′r+1 � br between tb − ta. Let P[X = F] be the

probability that a fork appears during kt. [34] shows that P[X = F] can be calculated as follows.

P[X = F] = 1− (1− λ)kt (8.2)

In (8.2), λ is the probability of finding a block in 1 second. In Bitcoin, λ=1/600, where 600 is the

average block time. Using λ=1/600, (8.2) can also be written as follows.

115

P[X = F] = 1−
(

1− 1

600

)kt
(8.3)

In Fig. 8.3, we plot (8.3) by varying kt from 0 to 2500 seconds, and observe that P[X = F]

increases with kt. Since our objective is to keep P[X = F] below 0.5, therefore, we can derive the

cutoff value T=416 seconds that limits P[X = F] below 0.5. Furthermore, given that deg+(Nr)=8,

we can calculate the propagation delay t in each step k as t = T/ logdeg+(Nr) |Nr| ≈32 seconds.

Our bound on T is realistic since the prior work [34] reported kt ≈ 12 seconds.

To summarize, our ideal functionality is admissible in the Bitcoin computation model since we

show that (1) the average network outdegree is greater the minimum required outdegree, and (2)

the realistic bound of kt ≤ 416 prevents forks with a high probability.

Compared to the existing theoretical frameworks [44, 80, 83], we make the following refinements

in our ideal functionality to correctly model the real world characteristics of the Bitcoin network.

1. We acknowledge the default outgoing connection limits for a reachable node by setting

deg+(Nr) =8. In the prior works [44, 80], the authors assume thatNr×Nr is fully connected,

which abstracts away the deg+
min(Nr) requirement that the real world network must satisfy.

Therefore, our ideal functionality captures the correct state of the overlay topology.

2. We note that forks that violate the blockchain consistency are not solely determined by the

adversary’s mining power as modeled previously in [44, 80]. Instead, if any of the two

conditions in Theorem 2 are violated, forks will appear even in the absence of an adversary.

In summary, our ideal functionality embraces the reality of the real world overlay topology and

introduces network synchronization in the Bitcoin security model. As such, by violating Theo-

rem 2, an adversary can deteriorate the network synchronization to violate the blockchain consis-

tency property through forks. In the following section, we conduct measurements to analyze how

116

closely the real world network follows the ideal functionality specifications.

8.3 Bitcoin Network Measurement

In this section, we present measurements to highlight the real world characteristics of the Bit-

coin network. The key features we study are: (1) network synchronization in the real world, (2)

blockchain forks and network outdegree due to variations in synchronization, (3) network churn

caused by the permissionless network, and (4) partitioning possibilities due to churn.

For measurements, we collected data from an online service called Bitnodes that connects to all

Bitcoin reachable nodes and reports their latest blockchain view after every five minutes [23]. We

collected Bitnodes data from October 30, 2020 to December 30, 2020.

8.3.1 Bitcoin Network Synchronization

To analyze the network synchronization, we compare the latest block reported by Bitnodes with

the latest block on the blockchain of all reachable nodes. Since Bitnodes crawlers are connected to

all reachable nodes [92, 23], they instantly receive a newly mined block from any node. As such,

Bitnodes’ view of the network is similar to the view of Fsyn in Fig. 8.1. Taking that into account,

we assume Bitnodes as Fsyn and apply Heuristic 1 to analyze the network synchronization.

Heuristic 1. When Fsyn receives br+1 � br from any ni ∈ Nr, Fsyn invokes Evaluate in Fig. 8.1

and counts the percentage of |Nr| that report br+1 on C.

After applying Heuristic 1 on our dataset, we obtain the set of synchronized nodes Ns ⊂ Nr. We

then sample Nsyn =100×|Ns|/|Nr| as a list X = (x1, x2, ..., xz), where xi ∈ X is the percentage

value of Nsyn for each block and z is the total number of blocks. Next, we calculate the kernel

117

10 20 30 40 50 60 70 80 90

Percentage of Synchronized Nodes (X)
K

er
n

el
D

en
si

ty
f̂ h

(x
) µX = 52.2%

Figure 8.4: Results obtained by applying Heuristic 1 on our dataset. Our results show a weak
synchronization in the real world. On average, only 52.2% nodes had an up-to-date blockchain.

density estimation f̂h(x) of X [109] using the following formula.

f̂h(x) =
1

z

z∑

i=1

Kh (x− xi) =
1

mh

z∑

i=1

K

(
x− xi
h

)
(8.4)

In (8.4),K is the Gaussian kernel and h is the kernel bandwidth applied using the Scott’s rule [100].

In Fig. 8.4, we plot f̂h(x) against X , showing that the average network synchronization is 52.2%,

which is marginally above the 50% threshold specified in the ideal functionality. In other words, a

few minutes after the release of a new block, only 52.2% nodes received that block, demonstrating

weak synchronization. Our results are consistent with the prior work [92], where instances are

reported with only 30% of nodes receiving a block even after ten minutes of its release.

Ideally, the network synchronization should be close to 100% so that all nodes share the same

blockchain view. In 2013, the network synchronization was strong, since 90% of the reachable

nodes received a block within 12 seconds [34]. However, since 2018, network synchronization

appears to be deteriorating[92]. Moreover, we did not find any value of xi ∈ X , where Nsyn was

100%, and the maximum and minimum values for Nsyn were 86.3% and 15.7%, respectively.

Due to this weak synchronization, it is logical to assume that the Bitcoin network has a high or-

phaned block rate due to forks. However, no orphaned blocks are reported by the network [25] in

2020, which is counter-intuitive given the values ofNsyn obtained in our measurements. It is there-

fore pertinent to explore why the Bitcoin blockchain did not fork despite weak synchronization?

118

Algorithm 7: Determining deg+
min(Nr)

1 Input: reachable nodes Nr

2 Blockchain C = (c1, c2, ..., cz)
3 Initialize Object O, O.keys = Nr

4 foreach cj ∈ C do
5 foreach ni ∈ Nr do
6 if cj ∈ C of ni = cj then
7 O[ni]← 1
8 else
9 O[ni]← 0

10 Return: O

8.3.1.1 Bitcoin Forks

By taking a closer look at the network anatomy [82], we discovered that the rarity of forks despite

the weak synchronization is due to the mining centrality in the Bitcoin network [71, 108]. In the

last few years, the Proof-of-Work (PoW) difficulty has significantly increased, allowing only a few

miners with the sophisticated hardware to solve it [108, 64]. As a result, only a few nodes in

the network mine blocks and release them to the other nodes, which then synchronize on those

blocks [82]. Therefore, full nodes can be further categorized into (1) the mining nodes that mine

blocks, and (2) the non-mining nodes that use those blocks to settle transactions.

The rarity of forks shows that the non-synchronized nodes in Fig. 8.4 are the non-mining nodes.

Moreover, it also shows that deg+(Nr) among the mining nodes is always greater than deg+
min(Nr)

and the block propagation delay among them is below kt seconds. Therefore, their behavior is

consistent with the ideal functionality specification (Fig. 8.1), and they remain synchronized during

each block round. Nevertheless, the rarity of the forks does not undermine the need for strong

network synchronization even among the non-mining nodes. As stated earlier, the non-mining

nodes use the blockchain to settle their transactions. As such, if the non-mining node are behind

the blockchain as shown in Fig. 8.4, they are vulnerable to the temporal partitioning attack in which

a malicious miner can corrupt their blockchain view [92].

119

654670 654675 654680 654685 654690 654695 654700

Block Height

0

1

S
y
n

ch
ro

n
iz

at
io

n
In

d
ic

at
o
r

194.14.x.x

Figure 8.5: Network synchronization pattern of a node obtained from algorithm 7. When the node
was synchronized, the corresponding value in the list was marked 1 (synchronization indicator).
Therefore, the shaded region shows all the blocks for which the node remained synchronized.

8.3.1.2 Network Outdegree

Fig. 8.4 also shows a non-uniform width of f̂h(x) which indicates variations in deg+(Nr). It

is therefore worth investigating if the network outdegree falls below the minimum outdegree

(deg+(Nr) ≤deg+
min(Nr)), thus preventing block delivery to a group of nodes for a long time.2

A test case to determine this condition would be to find a non-synchronized node at a particular

block and observe the node’s synchronization pattern for all subsequent blocks. If the node stays

behind the blockchain for all subsequent blocks, we can conclude that deg+(Nr)≤deg+
min(Nr), and

there is no path in the overlay network that delivers blocks to that node.

In algorithm 7, we present our technique to determine if deg+(Nr) is below deg+
min(Nr) for a long

time. We initialize an object O and set its keys as ni ∈ Nr, and values as an empty list. We then

iterate over each block cj ∈ C and add 1 for a synchronized node and 0 otherwise. Finally, we

output the object O and apply Heuristic 2 to determine if deg+(Nr) is below deg+
min(Nr).

Heuristic 2. For all the list values corresponding to a key in O, if there is a value 1, after any

sequence of 0’s , then deg+(Nr) is eventually greater than deg+
min(Nr).

Heuristic 2 specifies that if a node was behind the chain in the past and eventually caught up, then

2Bitnodes does not relay blocks to its outgoing connections, thus 47.8% of its connections are non-synchronized.

120

there exists a path in the overlay network that delivers blocks to that node. Therefore, the average

network outdegree is greater than the minimum network outdegree.

After applying algorithm 7 on our dataset, we did not find any reachable node that stayed behind

the blockchain indefinitely. As an example, in Fig. 8.5, we plot the synchronization pattern of a

reachable node for 30 consecutive blocks. We mask the last two octets of the node’s IP address to

preserve its privacy. Fig. 8.5 shows that each time the node was behind the blockchain, it eventually

caught up and synchronized on the latest block.

Fig. 8.5 also shows variations in the synchronization pattern, indicating that block reception de-

pends on the node’s location in the overlay network relative to the mining nodes. For instance, for

blocks 654670 and 654695, the node was found to be synchronized, suggesting a close proximity

with the mining nodes of those blocks. On the other hand, for blocks 654675 and 654690, the node

was distant from the mining nodes of those blocks, therefore it did not receive blocks even after

a long time. Nevertheless, despite being behind the blockchain even for three consecutive blocks

(654690− 654692), the node eventually was synchronized.

These observations lead to two possible characterizations of the network outdegree. (1) The net-

work outdegree is always greater than the minimum outdegree and the lack of synchronization

is predominantly due to block propagation delay. (2) In the worst case assumption, even if the

network outdegree becomes less than the minimum outdegree, it eventually recovers since the

non-synchronized nodes eventually catch up with the blockchain.

Key Takeaways. From the synchronization analysis of the real world network, we make the

following conclusions. First, the overall network synchronization is weak since only 52.2% nodes

have an up-to-date blockchain at any time. However, because those nodes are non-mining nodes,

the blockchain does not fork. Second, despite the weak synchronization, the network outdegree is

usually greater than the minimum outedegree, which enables the non-synchronized nodes to catch

up with the blockchain. Therefore, the research question then becomes how can an adversary

bring deg+(Nr) below deg+
min(Nr) for both mining and non-mining nodes in order to deteriorate

121

1.604 1.605 1.606 1.607 1.608 1.609

Sampling Time ×109

1

2

3

N
u

m
b

er
o
f

N
o
d

es

×104

|Nri |, µ = 11, 094

Cumulative|Nr|

Figure 8.6: Cumulative number of reachable nodes and the average number of reachable nodes
present in the Bitcoin network at any time. The gap between the two lines indicates a high network
churn caused by the permissionless network.

the network synchronization and create forks? Our dataset reveals that an adversary can achieve

this objective by exploiting the churn caused by the Bitcoin network’s permissionless nature.

8.3.2 Bitcoin Network Churn

Since the Bitcoin network is permissionless, nodes can join or leave the network at any time [76].

The arrival and departure of nodes creates a churn and changes the network outdegree, which

subsequently affects the block propagation and network synchronization. In the SyncAttack, the

adversary exploits the churn to create a partitioning between the existing nodes and the arriving

nodes, and use that partitioning to create forks and break the blockchain consistency. In this

section, we analyze the Bitcoin network churn to extract useful insights for SyncAttack.

8.3.2.1 Measurement Results

Network Size. In 60 days, we collected 37,778 IP addresses of reachable nodes with ≈11,094

reachable nodes present in the network at any time. Fig. 6.6 shows the number of reachable nodes

(|Nr|) present in the network at any time, as well as the cumulative number of unique IP ad-

dresses of nodes collected over the measurement duration. The growing gap between the two lines

in Fig. 8.6 indicates a significant churn since the number of unique IP addresses increased contin-

122

1.605 1.606 1.607 1.608 1.609

Sampling Time ×109

0.8

1.0

1.2

1.4

N
u

m
b

er
o
f

N
o
d

es

×103

|Nei−1 | − |Nei |, µ = 946

|Nei | − |Nei−1 |, µ = 952

Figure 8.7: The number of arriving and departing nodes in the Bitcoin network. On average, in
two months, 952 nodes joined and 946 nodes departed from the network every day.

uously while the number of nodes present in the network at any time remained constant (≈11K).

Arriving and Departing Nodes. After observing a high network churn, we then analyze the

vulnerable network state created by the churn. When a reachable node departs from the network,

all its connections are dropped, including the incoming connections from its peers. Those peers

then try new outgoing connections to complete their default outgoing slots (8 in Bitcoin). If no

other reachable node accepts their connection requests, the average network outdegree decreases,

affecting the network synchronization (Fig. 8.1).

Similarly, if a node joins the network and no reachable node accepts its connections, the network

outdegree remains low. Furthermore, if an adversary occupies all the node’s incoming and out-

going connections, the node can be partitioned from the rest of the network [55]. Therefore, the

node arrivals and departures create an imbalance in the overall network outdegree, which can be

exploited by an adversary to split the network and control the communication model.

To analyze the number of arriving and departing nodes, we denote Nei−1
−Nei as the set of nodes

present on the previous day i− 1, and absent from the current day i. The resulting value |Nei−1
| −

|Nei | gives the number of nodes that departed from the network on day i. Conversely, |Nei |−|Nei−1
|

gives the number of arriving nodes that were not found on the previous day. In Fig. 8.7, we plot the

number of departing nodes |Nei−1
| − |Nei | and the number of arriving nodes |Nei | − |Nei−1

| for 60

days. Our results show that, on average, 946 nodes departed from the network and 952 new nodes

123

1.604 1.605 1.606 1.607 1.608 1.609

Sampling Time ×109

0.00

0.25

0.50

0.75

1.00

P
er

si
st

en
t

N
o
d

es
C

ou
n
t

×104

|Np|

Figure 8.8: The number of persistent nodes Rp in the Bitcoin network. Note that over time, the
curve flattens and we find 2,890 nodes that stayed persistently in the network.

joined the network every day. This shows a high churn and a high variation in the Bitcoin network

outdegree, leading to a varying network synchronization observed in Fig. 8.4.

Note that if an adversary occupies all the incoming connections of the nodes that are already present

in the network, the arriving nodes will not be able to establish connections to them. Additionally,

if the adversary connects to the arriving nodes, then the network will be partitioned between the

arriving nodes and the existing nodes in the network.

Persistent Nodes. Our measurements also revealed that despite churn, 2,890 nodes did not leave

the network during the entire measurement study. For simplicity, we call them the “persistent

nodes” (Rp), and plot them in Fig. 8.8 by counting the common elements in Nei and Nei−1
. The

key feature of the persistent nodes is that, unlike the arriving nodes, the outgoing connections

of the persistent nodes cannot be easily controlled by an adversary [55, 54]. For instance, if a

node ni ∈ Rp establishes all its outgoing connections to other nodes in Rp, those connections will

not drop despite the departure of other reachable nodes that experience churn.3 Therefore, the

outgoing connections among Rp cannot be controlled by the SyncAttack adversary.

Mining Nodes. As mentioned in §8.3.1.1, the rarity of forks is due to the strong synchronization

among the mining nodes. Detecting and partitioning the mining nodes allows the adversary to

create forks and double-spend. As such, if the mining nodes are among the persistent nodes, the

3We assume that no ni ∈ Rp experiences link failures.

124

Algorithm 8: Detecting Mining Nodes
1 Input: reachable nodes Nr, Sampling rate γ
2 Blockchain C = (c1, c2, ..., cz)
3 Initialize Synced Nodes Rs, Counter q, Object M
4 foreach cj ∈ C do
5 foreach ni ∈ Nr do
6 if cj ∈ C of ni = cj and ni 6∈ Rs then
7 add ni to Rs

8 if cj ∈ C of ni 6= cj and ni ∈ Rs then
9 remove ni from Rs

10 Count q as the occurrence of each ni ∈ Rs

11 Calculate node’s lifetime q × γ
12 Add M [n[i]]= q × γ Return: M

SyncAttack becomes less feasible since the adversary cannot control their outgoing connections

to each other. In contrast, if the mining nodes experience churn, the SyncAttack becomes more

feasible and the adversary can partition the mining nodes. Therefore, it is important to determine

if the mining nodes experience churn and can therefore be targeted by the SyncAttack adversary.

To determine the churn among the mining nodes, we applied algorithm 8 to find all nodes with

an up-to-date blockchain during their entire network lifetime. In algorithm 8, we sample all the

synchronized nodes Rs for each block cj ∈ C. If any node in Rs is found to be present in the

network and behind the blockchain, it is removed from Rs. Finally, we count the occurrence of

each node in Rs, and represent it in an object M , with the object key representing the node’s IP

address and the object value showing the node’s lifetime in the network while synchronized.

Our analysis reveals 18,077 nodes in the Bitcoin network that always have an up-to-date blockchain

during their entire network lifetime. In Fig. 8.9, we plot the number of synchronized nodes against

their network lifetime, showing that 72% of the synchronized nodes do not stay in the network for

more than two days. Moreover, we found ≈5K nodes that stayed in the network for up to ≈11

days. It is logical to assume that the mining nodes are among those≈5K synchronized nodes since

a longer network lifetime is desirable for a mining node to prevent the synchronization overhead

during the deployment of a new mining node. We did not find any synchronized node that stayed

in the network for more than 11 days. Therefore, we conclude that the mining nodes are not among

the persistent nodes, and churn make them vulnerable to the SyncAttack.

125

0 50 100 150 200 250

Lifetime (hours)

0.0

0.5

1.0

1.5

N
u

m
b

er
o
f

S
y
n

ch
ro

n
iz

ed
N

o
d

es ×104

Figure 8.9: Network lifetime of synchronized nodes. Among the total 18,007 nodes, 72% nodes did
not stay in the network for more than two days. Moreover, the maximum lifetime of a synchronized
node was found to be ≈11 days. The results clearly show that all mining nodes experience churn.

Key Takeaways. From the churn analysis, we make the following key conclusions. First, the

Bitcoin network has a high churn and ≈9% reachable nodes depart from the network every day,

replaced by almost an equal number of arriving nodes.4 A high churn also provides clues about the

weak synchronization observed in Fig. 8.4. When nodes leave the network, the network outdegree

decreases, which is then improved by the arriving nodes. However, the arriving nodes are usually

behind the blockchain and it takes time to synchronize with the network. As a result, there are

often behind the blockchain when Bitnodes queries them. Therefore, a high churn is another key

factor behind the weak network synchronization observed in Fig. 8.4.

Second, we discovered (1) 2,890 persistent nodes that are always present in the network at all

times, and (2) ≈5K synchronized nodes which include the mining nodes through which miners

release their blocks in the network (see Fig. 7.2). We did not find an overlap between the persistent

nodes and the mining nodes, leading us to a conclusion that all mining nodes experience churn.

4It is possible that nodes switch their IP addresses. However, that behavior is similar to the departure and arrival of
nodes since all the incoming and outgoing connections are dropped after switching the IP address.

126

8.4 The SyncAttack

We now present the SyncAttack by colliding network synchronization with the permissionless

nature of the Bitcoin network. At a high level, an adversary occupies all the incoming connections

of the existing nodes in the SyncAttack, and the incoming and outgoing connections of the arriving

nodes. As a result, the arriving nodes–including the mining nodes–cannot establish connections

with the existing nodes, creating a network partitioning controlled by the adversary. As the number

of the existing and arriving mining nodes changes due to churn, the mining power splits between

the two partitions, breaking the synchronization and creating forks. The adversary exploits those

forks to violate the blockchain consistency and double-spend without using any mining power. In

this section, we present the SyncAttack threat model, followed by the attack procedure.

8.4.1 Threat Model

For the SyncAttack threat model, we use the formalism introduced in §8.2 by specifyingNr reach-

able nodes in the network. Each ni ∈ Nr establishes Oi=8 outgoing connections and accepts

Ii=117 incoming connections. Acknowledging the churn, we further divide Nr into Ni arriving

nodes and Ne existing nodes. Prior to the SyncAttack, |Ni|=0 and |Ne|=11K.

Next, we assume an adversaryAwho runsAr reachable nodes andAu unreachable nodes. Each ai ∈

Ar maintains a Bitcoin blockchain and its source code is modified to allow more than 117 incoming

connections from Nr. In contrast, no ai ∈ Au maintains a blockchain or accepts incoming connec-

tions from Nr. Instead, each ai ∈ Au executes a lightweight script that emulates the behavior of

an unreachable node with only three functionalities defined below.

1. Establish an outgoing connection to ni ∈ Nr by simply performing the TCP handshake and

exchanging the VER and VERACK messages [106].

2. In response to the GETADDR message, only relay the IP addresses of Ar to ni ∈ Nr .

3. Optionally request the Bitcoin blocks from ni ∈ Nr and discard those blocks.

127

The above functionalities allow ai ∈ Au to behave like an unreachable node without maintaining

the ≈330GB blockchain. Moreover, by only relaying Ar in the ADDR messages, A ensures that

the IP addresses of its reachable nodes reach the new table of each ni ∈ Nr.

Number of Nodes required for SyncAttack. As stated earlier,A aims to occupy all the incoming

and outgoing connections of Ni, and all the incoming connections of Ne. Therefore, it is important

to estimate the number of the nodes required to achieve this objective in order to determine the

attack feasibility. Since each ni ∈ Nr establishes Oi=8 outgoing connections, A needs to host

only 8 reachable nodes to fill the outgoing connection slots of all the honest reachable nodes.

Given that |Ni| + |Ne| ≈11K at any time, each ai ∈ Ar needs to accept (11,000×8)/117≈753

incoming connections. This can be trivially achieved by modifying the Bitcoin Core source code

and increasing the number of the incoming connections to 753 or more. The adversary can host its

8 reachable nodes on a cloud and assign a unique IP address to each node.

To occupy all of the incoming connections of ni ∈ Nr, A needs to establish (117×11,000=

1,287,000) connections. Prior works on IP address-based partitioning attacks implicitly assumed

that the Bitcoin nodes only accepts one connection per IP address [92]. Therefore, their threat

model assumed a strong adversary (i.e. an ISP) that owns more than 100K IP addresses to target the

Bitcoin network [106]. If we use the same model in the SyncAttack, A will need (1,287,000/8=

160,875) IP addresses to occupy all the incoming connections of the honest reachable nodes. With

a modest estimate of $23 for acquiring an IP address [51] and $5 for hosting a virtual machine [79],

the total cost for the attack exceeds $4 Million. However, in the following, we show that A can

reduce the cost by exploiting a Bitcoin Core vulnerability.

Bitcoin Core Vulnerability. By inspecting the Bitcoin Core source code, we discovered a vul-

nerability that allows a single IP address to generate multiple outgoing connections to a reachable

node. We found that instead of treating each IP address as a unique connection, a reachable node

concatenates the IP address of an incoming connection with the port number and treats the result as

a single connection. This functionality can be easily exploited to launch a denial-of-service attack

128

to occupy all the incoming connections of a reachable node. Considering the fact that there are

65,535 available ports on a commodity computer, A can easily occupy all 117 incoming connec-

tions of a node by using a single IP address and different port numbers for each connection.

To experimentally demonstrate this vulnerability, we set up a Bitcoin reachable node and devel-

oped a lightweight Bitcoin script that establishes outgoing connections to the reachable node. We

observed that the script immediately occupied all the incoming connections of the reachable node

using the same IP address and a different port for each connection. As a result, the reachable node

was unable to accept any new connections from other reachable and unreachable nodes. In [2], we

provide a video demonstration of our experiment and, due to ethical concerns, we will not release

the script code. Moreover, we have patched the vulnerability in Bitcoin Core [2].

A single IP address can theoretically handle up to 65,535 incoming connections. Given 1,024 ports

are reserved, A only requires (1,287,000/64,511 ≈20) machines with unique IP addresses. A can

simply set up 20 Docker containers, each with a unique IP address and 64,511 ports in order to

attack all the reachable nodes in the Bitcoin network. To summarize, the SyncAttack adversary

only needs 8 commodity computers with a Bitcoin blockchain to use them as the reachable nodes,

and 20 Docker containers with lightweight scripts to use them as the unreachable nodes. Using

this approach, the attack cost can be reduced significantly from $4 Million to only ≈$800.

8.4.2 Attack Procedure

For the attack procedure, we assume that each ni ∈ Nr runs the default Bitcoin Core client with

Ii=117 andOi=8 connections. We later show in algorithm 9 that even if some nodes (i.e. Bitnodes)

increase their connection limits, A can easily attack them by increasing the number of Docker

containers with each container providing 64,511 new connections to A.

For Nr reachable nodes in the network, we define Rc = Nr×117 as the total number of slots

available for the reachable and unreachable nodes to occupy. Among those slots, we assume

that Ro slots are already occupied by those nodes prior to the attack. Accordingly, we define

129

Algorithm 9: Occupying All Incoming Connections
1 Input: Nr, Au

2 Compute: Ca = |Au|×64,511
3 foreach ni ∈ Nr do
4 if ni accepts connection and Ca > 1 then
5 connect to ni and Ca = Ca − 1
6 if ni does not accept connection and Ca > 1 then
7 Ra = 0 all slots occupied
8 if Ca = 0 then
9 add a Docker container and connect to ni. Ca = Ca+64,511

10 Return Ra=0

Ra = Rc − Ro as the available slots that A occupies using lightweight scripts. When Ra=0, there

is no available slot in the network for any new reachable or unreachable node. This is the focal

point of the SyncAttack, since A causes a denial-of-service by ensuring that no reachable node

accepts any new incoming connection from other nodes in the network. algorithm 9 describes how

A occupies all the available slots. If any node accepts more than 117 incoming connections and

A’s connection slots are exhausted, then A adds a new container to its setup and ensures Ra=0.

When algorithm 9 is completed, no ni ∈ Nr can establish any outgoing connection to any other

nj ∈ Nr. However, ni ∈ Nr can establish an outgoing connection to any reachable node ai ∈ Ar
controlled by A, since those nodes still accept incoming connections. Once Ra=0 and the churn

occurs,A starts to control the links between nodes in |Ni| and |Ne| to violate the ideal functionality

specifications. In the following, we show A’s strategies during churn.

Arriving Nodes. When a new node ni joins the network for the first time, it queries a list of

DNS seeds hardcoded in the chainparams.cpp file [18]. The DNS query returns a list of reachable

addresses to which ni establishes outgoing connections. After successfully connecting to a reach-

able node, ni sends the GETADDR message to that node in order to receive an ADDR messsage

in return containing up to 1000 IP addresses of other nodes in the network.

SinceRa=0 after algorithm 9, ni can only establish an outgoing connection if the DNS seeds return

an IP address of any ai ∈ Ar. Once ni connects to ai ∈ Ar and sends GETADDR message, ai ∈ Ar
only returns the IP addresses of A’s reachable nodes in Ar. Upon receiving those addresses, ni

makes all the eight outgoing connections to Ar.

130

When A learns the IP address of ni from Ar, it forwards the address to Au which then run algo-

rithm 9 to occupy ai’s incoming connections. If ni accepts incoming connections, algorithm 9 will

ensure that all its incoming slots are occupied. As a result, all Ii and Oi of ni are occupied by A.

A key constraint in this attack procedure is that the DNS seeds must relay at least one IP address in

Ar to ni. To analyze how this can be achieved, we explored the DNS seed specification provided by

a Bitcoin Core developer, which states that the DNS seeders “return a good sample” of reachable

nodes in their response [33]. This means that the Bitcoin nodes owned by the DNS seed providers

know a few IP addresses of reachable nodes in the network. Since A’s nodes are connected to

all the reachable nodes, A can send ADDR messages to its connections containing only the IP

addresses in Ar. This procedure will increase the probability of IP addresses in Ar being relayed

by the DNS seeders. A can also sidestep this process by parsing the publicly available DNS server

database maintained by a Bitcoin Core developer [60]. The database records all the IP addresses

that query the DNS seed. By constantly parsing the DNS database, A can learn the IP addresses

of new nodes and target them without relying on the DNS query results.

Resource Optimization. In the SyncAttack, A only targets the reachable nodes due to their role

in provisioning the network synchronization. It is possible that an arriving node is an unreachable

node that does not accept incoming connections. In such a case, A can disconnect with that node

by observing if the node drops all the incoming connections from ai ∈ Au.

Departing Nodes. When a reachable node departs from the network, its reachable connections

will have one less outgoing connection that they have established with the departing node. When

Ra=0, those nodes are unable to connect to any other node in Nr. However, if they have an IP

address of any ai ∈ Ar in their new or tried tables, they eventually establish an outgoing con-

nection with Ar to complete their outgoing slots. If the departing node rejoins the network at any

time, it skips the DNS querying phase and attempts connections from its new and tried tables.

If 11 seconds elapse without a successful connection, the node queries the DNS seeders [18]. If

Ra=0, the node eventually connects toAr based on the procedure described in the previous section.

131

Figure 8.10: SyncAttack illustration showing how A occupies all the connections of the arriving
nodes Ni and the outgoing slots of Ne, left opened by the departure of an existing node.

Figure 8.11: Due to churn, the size of Ne decreases and the size of Ni increases with time.

Network Partitioning. By maintaining Ra=0, A ensures that all the incoming and outgoing con-

nections of Ni are established with Au and Ar, respectively. Moreover, when any ni ∈ Ne departs

from the network, its reachable connections only connect withAr. Fig. 8.10 illustrates the network

state when a node departs and a new node joins the network. Since no node in Ni can connect to

any node in Ne (Ra=0), the network is partitioned between Ni and Ne. Moreover, the size of |Ne|

decreases and the size of |Ni| increases with the churn. Fig. 8.11 illustrates the change in |Ne| and

|Ni| due to churn. From Fig. 8.8, we note that it takes ≈52 days to flatten the curve, from which

we obtained Rp=2,890 nodes. Therefore, the size |Ni| will become |Ne| − |Rp| in 52 days.

Communication Model. We now examine the communication model of the network Ni under

churn and evaluate its compliance with the ideal functionality specifications in Fig. 8.1.

SinceA controls all the incoming and outgoing connections of each ni ∈ Ni, deg+(Ni) becomes 0

(i.e. no edge between the honest nodes). This allows A to violate the first condition in Theorem 2,

since deg+(Ni) remains 0 despite the increasing network size. Additionally, by controlling all

connections inNi,A can delay the block propagation among nodes inNi by more than kt seconds,

violating the second condition in Theorem 2. This shows that when algorithm 9 is followed by

132

churn, the network is partitioned and A completely deteriorates synchronization in Ni.

We further notice that the current Bitcoin network is highly vulnerable to the SyncAttack since

all mining nodes experience churn (§8.3.2). As a result, each mining node moves from Ne to Ni,

which allowsA to control all the incoming and outgoing connections of the Bitcoin mining nodes.

A can then orchestrate a block race among miners by controlling the block propagation among

them and allowing forks to appear. In the following, we show how A achieves that to launch a

double-spend attack without using the mining power.

8.4.2.1 Double-spending in the SyncAttack

Given that (1) A completely controls the communication in Ni, and (2) all miners eventually

become part of Ni, A can simply stop the block propagation among the mining nodes so that

each miner extends their own chain. Such an attack will violate the common prefix property

of the Bitcoin blockchain [44], since the blockchain will fork into m branches with m unique

mining nodes. However, in this section, our goal is to merely demonstrate how A double-spends

by exploiting the partitioning. To that end, we only present one attack construction in which A

orchestrates the mining on two branches of the public chain and eventually releases the longest

chain with a double-spent transaction.

In Fig. 8.12, we present an attack construction showing how A double-spends in the SyncAttack.

We categorize the mining nodes in two groups, namely Mi ∈ Ni and Me ∈ Ne. After execut-

ing algorithm 9, A waits for ≈11 days until |Me|=0 and all the mining nodes are in Mi
5. A then

estimates the hash rate of each mining node based on their block releasing frequency and further

categorizes them into M1 and M2, with a combined hash rate of α and β, respectively. Next, A

generates a transaction tx and conflicting transaction tx
′ using the same “Unspent Transaction

Output” (UTXO). A relays tx to M1 and a user A, and tx′ to M2 and another user B.

5The 11 days estimate for |Me|=0 is based on our measurements in §8.3. Once all the mining nodes leave Me, A
can launch the double-spend attack.

133

Input: Mining nodes Mi ∈ Ni, Me ∈ Ne, and adversary A . Each node mines on C. Initially, Mi=0 and Me = minxi ∈ X (1).
Churn: A waits for 11 days until Mi = minxi ∈ X and Me=0 so that A has a complete control over all the mining nodes. During
churn, whenever any mi ∈Mi or mi ∈Me produces a block, A relays that block to all nodes Nr through Ar. As a result, all nodes
have the same ledger C on their blockchain.
Hash Rate Estimation: Once Mi = minxi ∈ X , A measures hi for each mi ∈Mi. The hash rate can be measured by annotating
a mining node with its block mining frequency.
Split Miners: A then splits Mi into M1 and M2. M1← α is the hash rate of M1 and M2← β is the hash rate of M2. Although, A
can split Mi by any factor to obtain the desirable values for α and β, however, we assume that α=0.6 and β=0.4. The attack will
also succeed for any other values for α and β.
Issue Double-spent Transactions: A selects two users A and B with non-mining nodes na ∈ Ni and nb ∈ Ni, respectively. A
then generates a transaction tx a double-spent transaction tx

′
from the same UTXO [28]. For tx, A selects A is the recipient, and

for tx
′
, A selects B as the recipient. For each transaction, A sets a high mining fee and sends tx to M1 and tx

′
to M2.

Block Race: Assuming the br to be the latest block on C , when the block race starts, the mining nodes in M1 mine br+1 � br

before the mining nodes in M2 mine b
′
r+1 � br with 0.6 probability [18, 28]. The blockchain C splits into C1 � C and C2 � C .

The block br+1 contains tx and the block b
′
r+1 contains tx

′
.

Block Release: Upon receiving br+1 and b
′
r+1, A relays br+1 to the mining nodes in M1 and b

′
r+1 to the mining nodes in M2.

Additionally, A relays br+1 to na and b
′
r+1 to nb.

Receiving Product: Once C1 becomes k blocks long (typically k = 6 is the confirmation factor in Bitcoin [12]), A delivers the
product to A or spends tx

′
with another user. Similarly, when C2 becomes k = 6 blocks long, B delivers the product to A or

spends tx
′

with another user.
Dissolving Fork: Once A receives a product from both A and B, A releases the longer chain C1 to all the reachable nodes Nr in
the Bitcoin network. Complying with the longest chain rule [16, 28], all mining and non-mining nodes switch to C1 and discard
C2. A double-spends since tx

′
is invalidated.

Double-spending in the SyncAttack

Figure 10: Double-spending in the SyncAttack where A orchestrates mining on two blockchain branches and generates conflicting
transactions on each branch. When A receives the reward for each transaction, A releases the longest branch to diffuse the fork.
Note that despite diffusing the fork, A still controls Ni and can always re-launch the attack.

incoming mining nodes become part of Ni, thereby creating
a natural partitioning among the mining nodes in Ni and Ne.
In that case, A can (1) orchestrate the mining race between
Mi ∈ Ni and Me ∈ Ne, (2) select two users A and B from Ni,
and (3) execute the SyncAttack in Figure 10 to double-spend.

Per §1, a high variation in the mining power distribution
will exempt the adversary from using the mining power to
launch the SyncAttack. In prior attack models [16, 31], the
adversary’s success probability decreases exponentially when
the honest mining power increases during the attack. In con-
trast, in the SyncAttack, a faster change in the mining power
increases the attack feasibility, since new miners are forced to
join Ni, which is controlled by the adversary. The SyncAttack
becomes hard to launch if the mining power remains stable
and the mining nodes do not experience churn, as discussed
above. The change in the mining power will thus enable the
adversary to double-spend without using any mining power.
This property presents a strong contrast between the mining
power-based double-spend attack presented in prior works
and the synchronization-based attack proposed in this work.

It is also important to note that if the Bitcoin network size
increases in the future while the average outdegree remains
the same, the network synchronization will further deteriorate.

As a result, attacks similar to the SyncAttack will become
more feasible in the Bitcoin network.

5.2.6 Reducing Mining Power through SyncAttack
In addition to double-spending, SyncAttack can also be used to
reduce the effective mining power of the Bitcoin network [14].
In §5.1, we outlined three functionalities for ai ∈Au, including
the capability of requesting blockchain data from the reach-
able nodes. If A occupies all the incoming connections of
ni ∈ Ni and continuously requests the blockchain data from
each connection using either getblock or getheaders re-
quest, then ni will incur the overhead of processing each re-
quest and relaying data to each connection. The problem
becomes worse if ni ∈Me is a mining node, where any unnec-
essary delay in block relaying reduces the miner’s effective
mining power [14]. In the following, we investigate how A
reduces the effective mining power of the network.
Experiment Setup. We developed a script with all the func-
tionalities specified in §5.1. We then set up two reachable
nodes, N1 and N2, each maintaining an up-to-date blockchain
and establishing 8 outgoing connections to the same set of 8
reachable nodes. All other experiment conditions (i.e., band-
width and processing power) were kept the same for both
nodes. We also developed a debug.log parser to record the

11

Figure 8.12: Double-spending in the SyncAttack whereA orchestrates mining on two blockchain
branches and generates conflicting transactions on each branch. When A receives the reward for
each transaction, A releases the longest branch to diffuse the fork. Note that despite diffusing the
fork, A still controls Ni and can always re-launch the attack.

When any mining node in M1 or M2 releases a block, A relays that block to other miners in that

group. Since the mining nodes in M1 do not receive a block from the mining nodes in M2, the

blockchain C forks into C1 ← M1 and C2 ← M2. Moreover, A relays C1 to user A and C2 to user

B. Eventually, when both C1 and C2 acquire a k−confirmation promised by A to both A and B, A

receives products from both users and releases the longest branch to diffuse the fork. In Fig. 8.12,

we assume that α > β, thus C1 is longer than C2 and tx′ is rejected. As a result, user B is tricked

and A double-spends without using any mining power.

134

650000 700000 750000 800000 850000

Timestamp (UNIX Epoch) +1.611×109

0

10

20

30

N
u

m
b

er
o
f

C
on

n
ec

ti
on

s

Figure 8.13: Number of incoming connections from the same IP address recorded on our reachable
nodes. We observed instances where the node received up to 33 connections from the same IP
address, indicating an attempt to target our node.

8.4.3 Ongoing Attacks

Considering the SyncAttack feasibility, it is logical to assume that malicious nodes could be ex-

ploiting the Bitcoin Core vulnerability to deteriorate the network synchronization or to perform

other malicious activities. To investigate that and to identify those malicious nodes, we set up a

reachable node and observe the number of incoming connections that use the same IP address. We

conducted our experiment for three days and analyzed the IP addresses of the incoming connec-

tions using the RPC API at 10 minutes interval.

In Fig. 8.13, we report our results showing instances where our node received up to 33 incoming

connections from the same IP address. Upon further inspecting the debug.log file, we found that

each connection exhibited characteristics of ai ∈ Au by continuously requesting the Bitcoin blocks

from the genesis block. Fig. 8.13 also shows two time windows spanning ≈21 hours and ≈4.5

hours, in which the number of incoming connections significantly increased. Given that each

Bitcoin node randomly selects an IP address for the outgoing connection, it is improbable that up

to 33 unreachable nodes selected the same IP address to request the blockchain. Therefore, the

two anomalies observed in Fig. 8.13 suggest a likely malicious activity. Although, the activities

observed at our node do not represent all characteristics of the SyncAttack, they however clearly

show that malicious nodes are exploiting vulnerabilities to affect the network synchronization.

135

8.4.4 SyncAttack Countermeasures

In this section, we present the SyncAttack countermeasures, some of which have been deployed

and released in [2] while others are currently in development. For the SyncAttack, we propose

application-specific and network-specific defenses that can be deployed in Bitcoin.

Application-specific Defenses. Our analysis in §8.4.1 shows that an adversary can occupy all the

available connection slots of the reachable nodes by hosting only 20 Docker containers with unique

IP addresses. This is made possible by the vulnerability in Bitcoin Core design, which allows one

IP address to occupy more than 65K connection slots in the network. Therefore, a naı̈ve approach

to counter the attack is by removing the IP address and port concatenation, and only allowing 1

incoming connection per IP address. This policy will raise the attack cost to≈4 Million USD since

the adversary will then be required to acquire thousands of IP addresses [106]. We have deployed

the “1 IP address per incoming connection” policy in the Bitcoin Core [2].

It can be argued that the “1 IP address per incoming connection” policy affects the unreachable

nodes behind NAT. In other words, two unreachable nodes behind NAT cannot connect to the

same reachable node. However, given that there are more than 11K reachable nodes, the current

network can easily support a large volume of unreachable nodes behind each NAT. If each node

establishes eight outgoing connections, then up to 1,375 unreachable nodes behind a NAT can be

supported by the reachable nodes in the current network.

Network-specific Defenses. Network churn cannot be avoided due to the permissionless nature

of the network. However, Bitcoin miners can deploy network-specific defense techniques to mini-

mize the risk of partitioning created by churn. In §10, we observed that A completely controls the

communication model in Ni, allowing A to violate the ideal functionality. Since all mining nodes

experience churn and become part of Ni, they are vulnerable to the SyncAttack. In contrast, if the

mining nodes resist churn and persistently stay in Ne, the risk of SyncAttack can be reduced. Due

to the pre-attack stable outgoing connections Ro in Ne, A only partially controls the communica-

tion inNe. Although the departure of a node fromNe reducesRo by eight connections, we observe

136

30004000500060007000800090001000011000

Number of Existing Nodes |Ne|

−1

0

1

d
eg

+
(N

e
)

×10−3 + 7.999

Figure 8.14: The change in deg+(Ne) as |Ne| decreases from 11K to 2,890.

that it does not significantly decrease deg+(Ne), preventing A from completely controlling Ne.

To analyze the effect of churn on Ne, we start from the pre-attack situation where |Ni|=0 and

Ne = Nr=11K. The adversary then executes algorithm 9 to maintain Ra=0 during churn. As

a result, the size |Ne| decreases with time along with the number of edges among the honest

nodes. §8.3.2.1 provides us the minimum value for |Ne| which is the total number of persistent

nodes |Np|=2,890 in the network. Using these values, we decrease |Ne| from 11K to 2,890 and

remove 8 edges with each node. With each node removal, we calculate deg+(Ne) as follows.

deg(Ne) =

⌈ |Ne|
|Ne| − 1

logOi
(|Ne|)

⌉
(8.5)

In Fig. 8.14, we plot deg+(Ne) against |Ne|, showing only a marginal decrease in deg+(Ne) with

the maximum and minimum values of 8 and 7.997, respectively. From these results, we conclude

that compared to Ni, Ne is relatively more secure against SyncAttack since A cannot occupy the

stable outgoing connections of nodes in Ne. If mining nodes stay in Ne and maintain persistent

outgoing connections with each other, they can resist the SyncAttack.

From our analysis in §8.4.2.1, we acknowledge that the network-specific defenses do not offer a

complete protection against SyncAttack since the new mining nodes join the Bitcoin network. If

Ra=0, those miners will become part of Ni and A can trigger a mining race between miners in Ni

137

and Ne. Acknowledging this possibility, we emphasize that both application-specific defenses and

the network-specific defenses must be deployed to fully counter the SyncAttack.

8.5 Summary

In this chapter, we incorporate network synchronization in the Bitcoin security model and evaluate

its robustness in the permissionless network. Our measurements and analysis present a contrast be-

tween the ideal functionality and the real world network behavior to expose various attack vectors

that can be exploited to deteriorate the network synchronization and violate the Bitcoin blockchain

consistency property. Especially new to the Bitcoin security model is our observation that churn

can be exploited to partition the network and deteriorate the network synchronization. We formally

analyze the churn-based partitioning by presenting SyncAttack that allows an adversary to double-

spend without using any mining power. Moreover, we identify a vulnerability in Bitcoin Core that

can be exploited to significantly lower the SyncAttack cost from $4 Million to only about $1,000.

Realizing the feasibility of SyncAttack, and observing that malicious nodes are possibly exploit-

ing the vulnerability to deteriorate network synchronization, we patch the vulnerability in Bitcoin

Core and propose application-specific and network-specific defenses to counter the SyncAttack.

With the SyncAttack, we conclude our attack surface analysis in this dissertation by presenting

the most feasible network layer attack that violates the Bitcoin blockchain consistency. Our work

opens new directions in the security evaluation of permissionless blockchain systems by empha-

sizing the need to incorporate the realistic network synchronization in their security models.

138

CHAPTER 9: CONCLUSION

Blockchains have become a new paradigm in the distributed systems, enabling secure asset ex-

change among entities with competing interests. Blockchain systems are fast expanding, par-

ticularly in the form of cryptocurrencies such as Bitcoin and Ethereum that have a joint market

capitalization of over ≈$850 Billion. Due to a high market capitalization, blockchain-based cryp-

tocurrencies are often attacked by adversaries for monetary gains.

In this dissertation, we have comprehensively analyzed the blockchain attack surface. We ob-

served that the blockchain attack surface can be broadly categorized into attacks related to (1)

the application-specific policies in blockchain systems, (2) the cryptographic constructs of the

blockchain data structure, and (3) the P2P network formed by the blockchain nodes. Among these

three categorizes, the cryptographic constructs generally remain the same across most blockchain

systems while the application-specific policies and the P2P network intricacies may vary signifi-

cantly. As a result, the adversaries typically exploit the application-specific policies or the network

layer irregularities to launch the attacks. Therefore, in this dissertation, we took a top-down ap-

proach in our attack surface analysis, starting with the application-specific attacks.

In the application-specific attacks, first we conducted the static and dynamic analysis of in-browser

cryptojacking, an attack that involves hijacking resources of a machine to covertly mine cryptocur-

rency (Chapter 3). Using an unsupervised machine learning approach on the code-based features,

we were able to uniquely distinguish the cryptojacking scripts from other forms of JavaScript

codes with ≈96% accuracy. In the dynamic analysis, we evaluated the resource exploitation of a

target device through cryptojacking, and found that cryptojacking consumes a significant process-

ing power of the target device causing excessive battery drainage in the battery powered devices.

Finally, by examining the limitations of the existing countermeasures, we proposed more robust

countermeasures for cryptojacking using insights from our dynamic analysis.

In our second work on the application-specific attacks, we uncovered a distributed denial-of-service

139

attacks on PoW-based blockchain systems (Chapter 4). We observed a high correlation between

the transaction fee and the size of the memory pool that stores unconfirmed transactions prior to

mining. We observed that the memory pool size can be trivially increased through dust transactions

thereby forcing benign users to pay a high transaction fee in order to prioritize their transactions. To

counter the attack, we proposed fee-based an age-based countermeasures that removed malicious

transactions from the memory pool and optimized the memory pool size.

Following our top-down approach, we then analyzed the network layer attacks on the blockchain

systems, starting with the spatial, temporal, and spatio-temporal attacks on the Bitcoin network

(Chapter 5). In our measurements-driven analysis, we observed (1) a biased distribution of Bitcoin

nodes in the physical network, and (2) a weak network synchronization among those nodes. Based

on those observations, we proposed spatial, temporal, and spatio-temporal partitioning attacks that

allow a malicious miner to fork the blockchain with less than 51% of the network hash rate.

In Chapter (6), we expanded on the temporal partitioning attack by conducting a root cause analysis

for weak synchronization in the Bitcoin network. We conducted large-scale measurements and

characterized the impact of (1) unreachable nodes, (2) network addressing protocol, (3) block

relaying protocol, and (4) network churn on synchronization. Our results revealed that among all

those factors, churn had the most significant impact on network synchronization. A high churn

among the synchronized nodes led to variations in the network outdegree which then deteriorated

network synchronization. Additionally, we also observed that (1) the real world Bitcoin network is

asynchronous and blocks reach miners at different times, and (2) network synchronization has not

been formally incorporated in the Bitcoin security model.

In Chapter (7), we combined the application-specific policies (i.e. block mining strategies) with

the network irregularities (i.e. asynchronous network) to present the HashSplit attack that allows

a miner to violate the blockchain consistency and chain quality with as low as 26% hash rate. We

proposed an ideal functionality that embraced the mining centrality in the Bitcoin network and

characterized the behavior of mining and non-mining nodes. We then conducted measurements to

140

detect the mining nodes and observed asynchronous block propagation among them. Using that

knowledge, we constructed the HashSplit attack that allows an adversary to orchestrate concurrent

mining on two branches of the public chain to violate the blockchain consistency and chain quality

with a high probability. We also proposed and implemented the HashSplit countermeasures.

The last chapter in the dissertation (Chapter 8) concludes our attack surface analysis by present-

ing the most cost effective attack on the Bitcoin P2P network. Towards that, we first formulated

the ideal functionality to incorporate network synchronization in the Bitcoin security model. We

then discovered that the network synchronization can be violated by exploiting the network churn.

Using that knowledge, we presented SyncAttack, an attack that allows an adversary to occupy all

the connection slots of the reachable nodes and create a partitioning between the existing nodes

and the incoming nodes. Moreover, we discovered a vulnerability in Bitcoin Core that reduces the

attack cost from $4 Million to only about $1000. Compared to any network layer attack presented

in this work or in the literature, SyncAttack is the most feasible partitioning attack on the Bitcoin

network. We conclude Chapter 8 by deploying the SyncAttack countermeasures in Bitcoin Core.

In conclusion, this dissertation makes foundational contributions to the distributed systems security

by uncovering various novel attacks related to the application-specific policies and the network

layer intricacies of the blockchain systems. Our theoretical modeling, measurements, attacks, and

countermeasures open new directions in the security evaluation of blockchain systems.

141

APPENDIX: COPYRIGHT INFORMATION

142

1.

2.

3.

4.

5.

6.

1.

2.

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

Dine and Dash: Static, Dynamic, and Economic Analysis of In-Browser Cryptojacking

Muhammad Saad, Aminollah Khormali, Aziz Mohaisen

2019 APWG Symposium on Electronic Crime Research (eCrime)

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

GENERAL TERMS

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

CONSENT AND RELEASE

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.

143

-

-

-

-

-

-

-

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

 Muhammad Saad 20-11-2019

Signature

Date (dd-mm-yyyy)

144

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

145

1.

2.

3.

4.

5.

6.

1.

2.

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

Mempool Optimization for Defending Against DDoS Attacks in PoW-based Blockchain Systems

Muhammad Saad and Laurent Njilla and Charles Kamhoua and Joongheon Kim and DaeHun Nyang and Aziz Mohaisen

2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

GENERAL TERMS

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

CONSENT AND RELEASE

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.

146

-

-

-

-

-

-

-

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

 Muhammad Saad 11-03-2019

Signature

Date (dd-mm-yyyy)

147

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

148

1.

2.

3.

4.

5.

6.

1.

2.

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

Partitioning Attacks on Bitcoin: Colliding Space, Time, and Logic

Muhammad Saad, Victor Cook, Lan Nguyen, My T. Thai, Aziz Mohaisen

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

GENERAL TERMS

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

CONSENT AND RELEASE

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.

149

-

-

-

-

-

-

-

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

 Muhammad Saad 15-04-2019

Signature

Date (dd-mm-yyyy)

150

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

151

LIST OF REFERENCES

[1] A. Ahmad, M. Saad, and A. Mohaisen. Secure and transparent audit logs with BlockAudit.

J. Netw. Comput. Appl., 145, 2019. https://doi.org/10.1016/j.jnca.2019.

102406.

[2] Anonymous. Bitcoin synchronization attack. https://anonymous.4open.

science/r/106b2297-8daf-4b75-a209-6468a8dc91c1/.

[3] Anonymous. Improved bitcoin core to counter hashsplit. https://anonymous.

4open.science/r/56e77487-0470-4e10-b634-b13e939863c0/.

[4] Antpool. Antpool stratum address, 2018. https://www.antpool.com/.

[5] M. Apostolaki, A. Zohar, and L. Vanbever. Hijacking bitcoin: Routing attacks on cryp-

tocurrencies. In Symposium on Security and Privacy, pages 375–392, 2017. https:

//doi.org/10.1109/SP.2017.29.

[6] B. Badge. Plato tool, 2016. https://github.com/es-analysis/plato.

[7] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver. Stressing out: Bitcoin ”stress testing”.

In Financial Cryptography and Data Security, pages 3–18, 2016. https://doi.org/

10.1007/978-3-662-53357-4_1.

[8] M. Bastiaan. Preventing the 51%-attack: a stochastic analysis of two phase proof of work

in bitcoin. In Technical Report, 2015. https://goo.gl/cNACCq.

[9] J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means clustering algorithm.

Computers and Geosciences, 10:191–203, 1984. https://bit.ly/3tIQgNF.

[10] Blockchain. Hashrate distribution, 2018. https://blockchain.info/pools.

152

https://doi.org/10.1016/j.jnca.2019.102406
https://doi.org/10.1016/j.jnca.2019.102406
https://anonymous.4open.science/r/106b2297-8daf-4b75-a209-6468a8dc91c1/
https://anonymous.4open.science/r/106b2297-8daf-4b75-a209-6468a8dc91c1/
https://anonymous.4open.science/r/56e77487-0470-4e10-b634-b13e939863c0/
https://anonymous.4open.science/r/56e77487-0470-4e10-b634-b13e939863c0/
https://www.antpool.com/
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/SP.2017.29
https://github.com/es-analysis/plato
https://doi.org/10.1007/978-3-662-53357-4_1
https://doi.org/10.1007/978-3-662-53357-4_1
https://goo.gl/cNACCq
https://bit.ly/3tIQgNF
https://blockchain.info/pools

[11] A. Bruns, A. Kornstädt, and D. Wichmann. Web application tests with selenium. IEEE

Softw., 26(5):88–91, 2009. https://doi.org/10.1109/MS.2009.144.

[12] BTC. Btc.com stratum address, 2018. https://bit.ly/2N9NQH6.

[13] Coinhive. Monero JavaScript Mining, 2018. https://coinhive.com/

documentation.

[14] B. Community. Antpool hash rate. https://www.bitcoinmining.com/images/

bitcoin-mining-pool-hash-rate-distribution.png.

[15] B. Community. Fork monitor. https://forkmonitor.info/stale/btc/

666833.

[16] B. Community. Global cryptocurrency market charts — coinmarketcap. https://

coinmarketcap.com/charts/.

[17] B. Community. Bitcoin Data from Blockchain.info, 2017. https://blockchain.

info/charts/transaction-fees-usd.

[18] B. Community. Bitcoin core, 2018. https://github.com/bitcoin/bitcoin.

[19] B. Community. Bitnodes: Global bitcoin nodes distribution, 2018. https://

bitnodes.earn.com/.

[20] B. Community. Developer’s Guide, Confirmation Score, Transaction Fee and

Miner Fee, Minimum Relay Fee, UTXO, Memory Pool, Child Pays for Parent,

Raw Transactions, 2018. https://bitcoin.org/en/developer-reference#

rpc-quick-reference.

[21] B. Community. Stratum mining protocol, 2018. https://en.bitcoin.it/wiki/

Stratum_mining_protocol.

[22] B. Community. Antminer, 2019. https://m.bitmain.com/.

153

https://doi.org/10.1109/MS.2009.144
https://bit.ly/2N9NQH6
https://coinhive.com/documentation
https://coinhive.com/documentation
https://www.bitcoinmining.com/images/bitcoin-mining-pool-hash-rate-distribution.png
https://www.bitcoinmining.com/images/bitcoin-mining-pool-hash-rate-distribution.png
https://forkmonitor.info/stale/btc/666833
https://forkmonitor.info/stale/btc/666833
https://coinmarketcap.com/charts/
https://coinmarketcap.com/charts/
https://blockchain.info/charts/transaction-fees-usd
https://blockchain.info/charts/transaction-fees-usd
https://github.com/bitcoin/bitcoin
https://bitnodes.earn.com/
https://bitnodes.earn.com/
https://bitcoin.org/en/developer-reference#rpc-quick-reference
https://bitcoin.org/en/developer-reference#rpc-quick-reference
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://m.bitmain.com/

[23] B. Community. Bitnodes: Discovering all reachable nodes in bitcoin, 2019. https:

//bitnodes.earn.com/.

[24] B. Community. Six confirmation practice in bitcoin, 2019. https://en.bitcoin.

it/wiki/Confirmation.

[25] B. Community. Bitcoin forks and orphaned blocks chart, 2020. https://www.

blockchain.com/charts/n-orphaned-blocks.

[26] E. Community. Earn: Earn money by answering messages and completing tasks, 2018.

https://earn.com.

[27] J. Community. JSECoin: Digital currency - designed for the web, 2018. https:

//jsecoin.com/.

[28] M. Community. Monero cryptocurrency, 2018. https://monero.org/.

[29] S. Community. Selenium browser automation, 2018. https://www.seleniumhq.

org/docs/.

[30] M. Corallo. Bitcoin improvement proposal 152. https://github.com/bitcoin/

bips/blob/master/bip-0152.mediawiki.

[31] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,

E. Shi, E. G. Sirer, et al. On scaling decentralized blockchains. In International Conference

on Financial Cryptography and Data Security, pages 106–125, 2016. https://doi.

org/10.1007/978-3-662-53357-4_8.

[32] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert. ZOZZLE: fast and precise in-browser

javascript malware detection. In USENIX Security Symposium, 2011. http://static.

usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf.

[33] C. Decker. Bitcoin dns seeders. https://bitcoinstats.com/network/

dns-servers/.

154

https://bitnodes.earn.com/
https://bitnodes.earn.com/
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Confirmation
https://www.blockchain.com/charts/n-orphaned-blocks
https://www.blockchain.com/charts/n-orphaned-blocks
https://earn.com
https://jsecoin.com/
https://jsecoin.com/
https://monero.org/
https://www.seleniumhq.org/docs/
https://www.seleniumhq.org/docs/
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf
https://bitcoinstats.com/network/dns-servers/
https://bitcoinstats.com/network/dns-servers/

[34] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In Interna-

tional Conference on Peer-to-Peer Computing, pages 1–10, 2013. https://doi.org/

10.1109/P2P.2013.6688704.

[35] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski, A. Miller, and B. Bhat-

tacharjee. Txprobe: Discovering bitcoin’s network topology using orphan transactions. In

International Conference on Financial Cryptography and Data Security, volume 11598,

pages 550–566, 2019. https://doi.org/10.1007/978-3-030-32101-7_32.

[36] J. Donier and J.-P. Bouchaud. Why do markets crash? bitcoin data offers unprece-

dented insights. PloS one, 10:e0139356, 03 2015. https://journals.plos.org/

plosone/article?id=10.1371/journal.pone.0139356.

[37] T. Duong, L. Fan, T. Veale, and H. Zhou. Securing bitcoin-like backbone protocols against a

malicious majority of computing power. IACR Cryptology ePrint Archive, 2016:716, 2016.

http://eprint.iacr.org/2016/716.

[38] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark. A first look at browser-based

cryptojacking. In European Symposium on Security and Privacy Workshops, pages 58–66,

2018. https://doi.org/10.1109/EuroSPW.2018.00014.

[39] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Inter-

national Conference on Financial Cryptography and Data Security, pages 436–454, 2014.

https://doi.org/10.1007/978-3-662-45472-5_28.

[40] F2Pool. F2pool stratum address, 2018. https://www.f2pool.com/help.

[41] M. Fadhil, G. Owenson, and M. Adda. Locality based approach to improve propagation

delay on the bitcoin peer-to-peer network. In Symposium on Integrated Network and Service

Management, 2017. https://doi.org/10.23919/INM.2017.7987328.

155

https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1007/978-3-030-32101-7_32
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139356
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139356
http://eprint.iacr.org/2016/716
https://doi.org/10.1109/EuroSPW.2018.00014
https://doi.org/10.1007/978-3-662-45472-5_28
https://www.f2pool.com/help
https://doi.org/10.23919/INM.2017.7987328

[42] A. Feder, N. Gandal, J. T. Hamrick, and T. Moore. The impact of DDoS and other security

shocks on bitcoin currency exchanges: evidence from mt. gox. J Cyber Secur, 3(2):137–

144, 2017. https://doi.org/10.1093/cybsec/tyx012.

[43] N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE Transac-

tions on software engineering, 25(5):675–689, 1999. https://doi.org/10.1109/

32.815326.

[44] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with chains

of variable difficulty. In International Cryptology Conference on Advances in Cryptology,

pages 291–323, 2017. https://doi.org/10.1007/978-3-319-63688-7_10.

[45] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer. Decentralization in bitcoin

and ethereum networks. CoRR, abs/1801.03998, 2018. http://arxiv.org/abs/

1801.03998.

[46] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber. On the privacy provisions of bloom

filters in lightweight bitcoin clients. In C. N. P. Jr., A. Hahn, K. R. B. Butler, and M. Sherr,

editors, Computer Security Applications Conference, pages 326–335, 2014. https://

doi.org/10.1145/2664243.2664267.

[47] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On the secu-

rity and performance of proof of work blockchains. In Conference on Computer and Com-

munications Security, pages 3–16, 2016. https://doi.org/10.1145/2976749.

2978341.

[48] S. Goldberg. Why is it taking so long to secure internet routing? Commun. ACM, 57(10):56–

63, Sept. 2014. http://doi.acm.org/10.1145/2659899.

[49] S. Goldberg and E. Heilman. Technical perspective: The rewards of selfish mining. Com-

mun. ACM, 61(7):94, 2018. https://doi.org/10.1145/3213006.

156

https://doi.org/10.1093/cybsec/tyx012
https://doi.org/10.1109/32.815326
https://doi.org/10.1109/32.815326
https://doi.org/10.1007/978-3-319-63688-7_10
http://arxiv.org/abs/1801.03998
http://arxiv.org/abs/1801.03998
https://doi.org/10.1145/2664243.2664267
https://doi.org/10.1145/2664243.2664267
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/2976749.2978341
http://doi.acm.org/10.1145/2659899
https://doi.org/10.1145/3213006

[50] A. Greenberg. Hacker redirects traffic from 19 internet providers to steal bitcoins, Jun 2017.

https://www.wired.com/2014/08/isp-bitcoin-theft/.

[51] I. M. Group. IP address marketplace: Worldwide, Jan 2021. https://

ipv4marketgroup.com/ipv4-pricing/.

[52] C. Grunspan and R. Pérez-Marco. Double spend races. CoRR, abs/1702.02867, 2017.

http://arxiv.org/abs/1702.02867.

[53] C. Grunspan and R. Pérez-Marco. On profitability of selfish mining. CoRR, abs/1805.08281,

2018. http://arxiv.org/abs/1805.08281.

[54] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg. Tumblebit: An un-

trusted bitcoin-compatible anonymous payment hub. In Network and Distributed System

Security Symposium, 2017. https://bit.ly/3jBOjOg.

[55] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on

bitcoin’s peer-to-peer network. In USENIX Security Symposium, pages 129–

144, 2015. https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/heilman.

[56] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang, Y. Zhang, Z. Qian, and

H. Duan. How you get shot in the back: A systematical study about cryptojacking in the

real world. In Conference on Computer and Communications Security, pages 1701–1713,

2018. https://doi.org/10.1145/3243734.3243840.

[57] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis. Churn in the bitcoin network:

Characterization and impact. In International Conference on Blockchain and Cryptocur-

rency, pages 431–439, 2019. https://doi.org/10.1109/BLOC.2019.8751297.

[58] J. Jang and H. Lee. Profitable double-spending attacks. CoRR, abs/1903.01711, 2019.

http://arxiv.org/abs/1903.01711.

157

https://www.wired.com/2014/08/isp-bitcoin-theft/
https://ipv4marketgroup.com/ipv4-pricing/
https://ipv4marketgroup.com/ipv4-pricing/
http://arxiv.org/abs/1702.02867
http://arxiv.org/abs/1805.08281
https://bit.ly/3jBOjOg
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://doi.org/10.1145/3243734.3243840
https://doi.org/10.1109/BLOC.2019.8751297
http://arxiv.org/abs/1903.01711

[59] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore. Game-theoretic analysis of

DDoS attacks against bitcoin mining pools. In Financial Cryptography and Data Security,

pages 72–86, 2014. https://doi.org/10.1007/978-3-662-44774-1_6.

[60] L. D. Jr. Bitcoin seed file. http://luke.dashjr.org/programs/bitcoin/

files/charts/seeds.txt, 2020.

[61] R. Keramidas. No coin web extension to detect cryptojacking, Feb 2018. https://

github.com/keraf/NoCoin.

[62] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov, M. Antonakakis,

and M. Bailey. Outguard: Detecting in-browser covert cryptocurrency mining in the wild.

In The World Wide Web Conference, pages 840–852, 2019. https://doi.org/10.

1145/3308558.3313665.

[63] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing

bitcoin security and performance with strong consistency via collective signing. In USENIX

Security Symposium, pages 279–296, 2016. https://bit.ly/3rQrOZd.

[64] K. Kononova and A. Dek. Bitcoin carbon footprint: Mining pools based estimate method-

ology. In International Conference on Information and Communication Technologies in

Agriculture, Food and Environment, pages 265–273, 2020. http://ceur-ws.org/

Vol-2761/HAICTA_2020_paper39.pdf.

[65] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos, and G. Vigna.

Minesweeper: An in-depth look into drive-by cryptocurrency mining and its defense. In

Conference on Computer and Communications Security, 2018. http://doi.acm.org/

10.1145/3243734.3243858.

[66] J. A. Kroll, I. C. Davey, and E. W. Felten. The economics of bitcoin mining. In Proceedings

of WEIS, 2013. https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=2531518.

158

https://doi.org/10.1007/978-3-662-44774-1_6
http://luke.dashjr.org/programs/bitcoin/files/charts/seeds.txt
http://luke.dashjr.org/programs/bitcoin/files/charts/seeds.txt
https://github.com/keraf/NoCoin
https://github.com/keraf/NoCoin
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1145/3308558.3313665
https://bit.ly/3rQrOZd
http://ceur-ws.org/Vol-2761/HAICTA_2020_paper39.pdf
http://ceur-ws.org/Vol-2761/HAICTA_2020_paper39.pdf
http://doi.acm.org/10.1145/3243734.3243858
http://doi.acm.org/10.1145/3243734.3243858
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2531518
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2531518

[67] Y. Kwon, D. Kim, Y. Son, E. Y. Vasserman, and Y. Kim. Be selfish and avoid dilemmas:

Fork after withholding (FAW) attacks on bitcoin. In Conference on Computer and Commu-

nications Security, pages 195–209, 2017. https://doi.org/10.1145/3133956.

3134019.

[68] S. Lee, S. Shin, and B. Roh. Abnormal behavior-based detection of shodan and censys-like

scanning. In International Conference on Ubiquitous and Future Networks, pages 1048–

1052, 2017. https://doi.org/10.1109/ICUFN.2017.7993960.

[69] Q. Li, Y. Chang, X. Wu, and G. Zhang. A new theoretical framework of pyramid

markov processes for blockchain selfish mining. CoRR, abs/2007.01459, 2020. https:

//arxiv.org/abs/2007.01459.

[70] T. Loechner. Pixalate unveils the list of sites secretly mining cryptocurrency, 2017.

[71] S. B. Mariem, P. Casas, M. Romiti, B. Donnet, R. Stütz, and B. Haslhofer. All that glitters

is not bitcoin - unveiling the centralized nature of the BTC (IP) network. In IEEE/IFIP

Network Operations and Management Symposium, pages 1–9, 2020. https://doi.

org/10.1109/NOMS47738.2020.9110354.

[72] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and S. Capkun. BITE: bitcoin

lightweight client privacy using trusted execution. In USENIX Security Symposium, pages

783–800, 2019. https://bit.ly/2Z2QHo0.

[73] F. Memoria. 700 million stuck in 115,000 unconfirmed bitcoin transactions, 2017. https:

//goo.gl/mYX14V.

[74] S. G. Motlagh, J. V. Misic, and V. B. Misic. Modeling of churn process in bitcoin network.

In International Conference on Computing, Networking and Communications, pages 686–

691, 2020. https://doi.org/10.1109/ICNC47757.2020.9049704.

159

https://doi.org/10.1145/3133956.3134019
https://doi.org/10.1145/3133956.3134019
https://doi.org/10.1109/ICUFN.2017.7993960
https://arxiv.org/abs/2007.01459
https://arxiv.org/abs/2007.01459
https://doi.org/10.1109/NOMS47738.2020.9110354
https://doi.org/10.1109/NOMS47738.2020.9110354
https://bit.ly/2Z2QHo0
https://goo.gl/mYX14V
https://goo.gl/mYX14V
https://doi.org/10.1109/ICNC47757.2020.9049704

[75] R. Nagayama, R. Banno, and K. Shudo. Identifying impacts of protocol and internet devel-

opment on the bitcoin network. In Symposium on Computers and Communications, pages

1–6. IEEE, 2020. https://doi.org/10.1109/ISCC50000.2020.9219639.

[76] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. https://

bitcoin.org/bitcoin.pdf.

[77] C. Natoli and V. Gramoli. The balance attack or why forkable blockchains are ill-suited

for consortium. In International Conference on Dependable Systems and Networks, pages

579–590, 2017. https://doi.org/10.1109/DSN.2017.44.

[78] T. Neudecker, P. Andelfinger, and H. Hartenstein. Timing analysis for inferring the topology

of the bitcoin peer-to-peer network. In International Conferences on Ubiquitous Intelligence

& Computing, Advanced and Trusted Computing, pages 358–367, 2016. https://doi.

org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070.

[79] D. Ocean. Spin up your virtual machine in just 55 seconds. https://try.

digitalocean.com/.

[80] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous net-

works. IACR Cryptology ePrint Archive, 2016:454, 2016. https://bit.ly/3p1GRNP.

[81] M. Polasik, A. I. Piotrowska, T. P. Wisniewski, R. Kotkowski, and G. Lightfoot. Price

fluctuations and the use of bitcoin: An empirical inquiry. International Journal of Electronic

Commerce, 20(1):9–49, Sept. 2015. https://bit.ly/2YYqBT0.

[82] M. Rahouti, K. Xiong, and N. Ghani. Bitcoin concepts, threats, and machine-learning secu-

rity solutions. IEEE Access, 6:67189–67205, 2018. https://bit.ly/2Z05K1w.

[83] L. Ren. Analysis of nakamoto consensus. Cryptology ePrint Archive, Report 2019/943,

2019. https://eprint.iacr.org/2019/943.

160

https://doi.org/10.1109/ISCC50000.2020.9219639
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/DSN.2017.44
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://try.digitalocean.com/
https://try.digitalocean.com/
https://bit.ly/3p1GRNP
https://bit.ly/2YYqBT0
https://bit.ly/2Z05K1w
https://eprint.iacr.org/2019/943

[84] B. Reward. Bitcoin block reward halving countdown, 2018. http://www.

bitcoinblockhalf.com/.

[85] RIR. Autonomous systems in the world, 2018. https://tinyurl.com/yaz73jnb.

[86] A. Robachevsky. 14,000 incidents: A 2017 routing security year in review, Jan 2018.

https://goo.gl/MtiVus.

[87] M. Rosenfeld. Analysis of bitcoin pooled mining reward systems. CoRR, abs/1112.4980,

2011. http://arxiv.org/abs/1112.4980.

[88] M. Rosenfeld. Analysis of hashrate-based double spending. CoRR, abs/1402.2009, 2014.

http://arxiv.org/abs/1402.2009.

[89] T. Ruffing, P. Moreno-Sanchez, and A. Kate. P2P mixing and unlinkable bitcoin transac-

tions. In Network and Distributed System Security Symposium, 2017. https://bit.

ly/2MIvgWU.

[90] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld. Digging into browser-based crypto

mining. In ACM Internet Measurement Conference, New York, USA, 2018. http://

doi.acm.org/10.1145/3278532.3278539.

[91] M. Saad, A. Anwar, A. Ahmad, H. Alasmary, M. Yuksel, and A. Mohaisen. Routechain:

Towards blockchain-based secure and efficient BGP routing. In International Conference on

Blockchain and Cryptocurrency, pages 210–218, 2019. https://doi.org/10.1109/

BLOC.2019.8751229.

[92] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen. Partitioning attacks on bitcoin:

Colliding space, time, and logic. In International Conference on Distributed Computing

Systems, pages 1175–1187, 2019. https://bit.ly/3aa0sat.

161

http://www.bitcoinblockhalf.com/
http://www.bitcoinblockhalf.com/
https://tinyurl.com/yaz73jnb
https://goo.gl/MtiVus
http://arxiv.org/abs/1112.4980
http://arxiv.org/abs/1402.2009
https://bit.ly/2MIvgWU
https://bit.ly/2MIvgWU
http://doi.acm.org/10.1145/3278532.3278539
http://doi.acm.org/10.1145/3278532.3278539
https://doi.org/10.1109/BLOC.2019.8751229
https://doi.org/10.1109/BLOC.2019.8751229
https://bit.ly/3aa0sat

[93] M. Saad, A. Khormali, and A. Mohaisen. Dine and dash: Static, dynamic, and economic

analysis of in-browser cryptojacking. In APWG Symposium on Electronic Crime Research,

pages 1–12, 2019. https://doi.org/10.1109/eCrime47957.2019.9037576.

[94] M. Saad and A. Mohaisen. Towards characterizing blockchain-based cryptocurrencies for

highly-accurate predictions. In IEEE Conference on Computer Communications, pages

704–709, 2018. https://doi.org/10.1109/INFCOMW.2018.8406859.

[95] M. Saad, L. Njilla, C. A. Kamhoua, J. Kim, D. Nyang, and A. Mohaisen. Mempool op-

timization for defending against ddos attacks in pow-based blockchain systems. In Inter-

national Conference on Blockchain and Cryptocurrency, pages 285–292, 2019. https:

//doi.org/10.1109/BLOC.2019.8751476.

[96] M. Saad, L. Njilla, C. A. Kamhoua, and A. Mohaisen. Countering selfish mining in

blockchains. In International Conference on Computing, Networking and Communications,

pages 360–364, 2019. https://doi.org/10.1109/ICCNC.2019.8685577.

[97] M. Saad, J. Spaulding, L. Njilla, C. A. Kamhoua, S. Shetty, D. Nyang, and D. A. Mo-

haisen. Exploring the attack surface of blockchain: A comprehensive survey. IEEE Com-

mun. Surv. Tutorials, 22(3):1977–2008, 2020. https://doi.org/10.1109/COMST.

2020.2975999.

[98] M. F. Sallal, G. Owenson, and M. Adda. Proximity awareness approach to enhance propaga-

tion delay on the bitcoin peer-to-peer network. In International Conference on Distributed

Computing Systems, pages 2411–2416, 2017. https://bit.ly/3qb60a4.

[99] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin.

In International Conference on Financial Cryptography and Data Security, pages 515–532,

2016. https://doi.org/10.1007/978-3-662-54970-4_30.

[100] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley

Series in Probability and Statistics. Wiley, 1992. https://bit.ly/3rDlIey.

162

https://doi.org/10.1109/eCrime47957.2019.9037576
https://doi.org/10.1109/INFCOMW.2018.8406859
https://doi.org/10.1109/BLOC.2019.8751476
https://doi.org/10.1109/BLOC.2019.8751476
https://doi.org/10.1109/ICCNC.2019.8685577
https://doi.org/10.1109/COMST.2020.2975999
https://doi.org/10.1109/COMST.2020.2975999
https://bit.ly/3qb60a4
https://doi.org/10.1007/978-3-662-54970-4_30
https://bit.ly/3rDlIey

[101] Y. Shahsavari, K. Zhang, and C. Talhi. Performance modeling and analysis of the bitcoin

inventory protocol. In International Conference on Decentralized Applications and Infras-

tructures, pages 79–88, 2019. https://bit.ly/3b5bop5.

[102] SLM. In-browser cryptojacking: What is it and how can you avoid it?, 2018. https:

//supremelevelmedia.com/browser-cryptojacking-can-avoid/.

[103] S. Solat and M. Potop-Butucaru. Zeroblock: Preventing selfish mining in bitcoin. arXiv

preprint arXiv:1605.02435, 2016. http://arxiv.org/abs/1605.02435.

[104] C. B. Staff. 21 top examples of javascript, 2017. https://tinyurl.com/y8wqarpb.

[105] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. A. Gunter, F. Zaffar, M. Caesar, and N. Borisov.

Mining on someone else’s dime: Mitigating covert mining operations in clouds and enter-

prises. In International Symposium on Research in Attacks, Intrusions and Defenses, pages

287–310, 2017. https://doi.org/10.1007/978-3-319-66332-6_13.

[106] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang. A stealthier partitioning attack

against bitcoin peer-to-peer network. In IEEE Symposium on Security and Privacy, pages

894–909, 2020. https://doi.org/10.1109/SP40000.2020.00027.

[107] M. Vasek, M. Thornton, and T. Moore. Empirical analysis of denial-of-service attacks in the

bitcoin ecosystem. In Financial Cryptography and Data Security, pages 57–71. Springer,

2014. https://doi.org/10.1007/978-3-662-44774-1_5.

[108] C. Wang, X. Chu, and Y. Qin. Measurement and analysis of the bitcoin networks: A view

from mining pools. In International Conference on Big Data Computing and Communica-

tions, pages 180–188, 2020. https://bit.ly/3p6dsBV.

[109] P. Wang, H. Deng, Y. M. Wang, Y. Liu, and Y. Zhang. Kernel density estimation based

gaussian and non-gaussian random vibration data induction for high-speed train equipment.

IEEE Access, 8:90914–90923, 2020. https://bit.ly/2OnIlFr.

163

https://bit.ly/3b5bop5
https://supremelevelmedia.com/browser-cryptojacking-can-avoid/
https://supremelevelmedia.com/browser-cryptojacking-can-avoid/
http://arxiv.org/abs/1605.02435
https://tinyurl.com/y8wqarpb
https://doi.org/10.1007/978-3-319-66332-6_13
https://doi.org/10.1109/SP40000.2020.00027
https://doi.org/10.1007/978-3-662-44774-1_5
https://bit.ly/3p6dsBV
https://bit.ly/2OnIlFr

[110] A. H. Watson, D. R. Wallace, and T. J. McCabe. Structured testing: A testing methodol-

ogy using the cyclomatic complexity metric, volume 500. US Department of Commerce,

Technology Administration, 1996.

[111] Wizsche. Malicious javascript dataset. https://github.com/geeksonsecurity/

js-malicious-dataset.git, 2017.

[112] X. Yang. List of top Alexa websites with web-mining code embedded on their homepage,

2017. https://tinyurl.com/ybo6u4pf.

[113] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and G. Vigna. The dark alleys

of madison avenue: Understanding malicious advertisements. In ACM Internet Measure-

ment Conference, pages 373–380, 2014. https://tinyurl.com/ybqmcjmb.

[114] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao. Practical defenses against BGP prefix

hijacking. In Conference on Emerging Network Experiment and Technology, page 3, 2007.

http://doi.acm.org/10.1145/1364654.1364658.

164

https://github.com/geeksonsecurity/js-malicious-dataset.git
https://github.com/geeksonsecurity/js-malicious-dataset.git
https://tinyurl.com/ybo6u4pf
https://tinyurl.com/ybqmcjmb
http://doi.acm.org/10.1145/1364654.1364658

	Analyzing the Blockchain Attack Surface: A Top-down Approach
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Research Statement and Dissertation Organization
	1.2.1 Application-Specific Attacks
	1.2.2 Network Layer Attacks

	CHAPTER 2: LITERATURE REVIEW
	2.1 Application-specific Attacks
	2.2 Network Layer Attacks

	CHAPTER 3: STATIC AND DYNAMIC ANALYSIS OF IN-BROWSER CRYPTOJACKING
	3.1 Contributions
	3.2 Preliminaries and Data Collections
	3.3 Static Analysis
	3.3.1 Content and Currency-based Categorization
	3.3.2 Code-based Analysis
	3.3.3 Fuzzy C-Means Clustering

	3.4 Dynamic Analysis
	3.4.1 CPU Usage
	3.4.2 Network Usage and Profiling

	3.5 Countermeasures
	3.6 Summary

	CHAPTER 4: COUNTERING DDOS ATTACKS ON BLOCKCHAIN MEMORY POOLS
	4.1 Contributions
	4.2 Background and Preliminaries
	4.3 Threat Model
	4.3.1 Attack Procedure
	4.3.2 Attack Cost

	4.4 Countering The Mempool Attack
	4.4.1 Fee-based Mempool Design
	4.4.2 Age-based Mempool Design

	4.5 Summary

	CHAPTER 5: PARTITIONING ATTACKS ON THE BITCOIN NETWORK
	5.1 Contributions
	5.2 The Bitcoin Network Structure
	5.2.1 Threat Model
	5.2.2 Data Collection
	5.2.3 Methodology

	5.3 Partitioning Attacks
	5.3.1 Spatial Partitioning
	5.3.2 Temporal Partitioning
	5.3.3 Spatio-temporal Partitioning

	5.4 Countermeasures
	5.5 Summary

	CHAPTER 6: ROOT CAUSE ANALYSIS FOR BITCOIN NETWORK SYNCHRONIZATION
	6.1 Background and Motivation
	6.2 Data Collection Methodology and Overview
	6.2.1 Collecting Reachable Bitcoin Node Addresses
	6.2.2 Collecting Unreachable Addresses
	6.2.3 Discovering Responsive Unreachable Addresses

	6.3 Analysis and Results
	6.3.1 Unreachable Nodes
	6.3.2 Addressing Protocol
	6.3.3 Information Relaying Protocol
	6.3.4 Network Churn

	6.4 Improving Bitcoin Network Synchronization
	6.5 Summary

	CHAPTER 7: HASHSPLIT: EXPLOITING ASYNCHRONY TO VIOLATE BLOCKCHAIN CONSISTENCY AND CHAIN QUALITY
	7.1 Contributions
	7.2 The Bitcoin Ideal World Functionality
	7.3 Data Collection
	7.3.1 Bitcoin Peer-to-Peer Network

	7.4 Identifying the Mining Nodes
	7.5 Network Synchronization
	7.5.1 Bitcoin Network Asynchrony

	7.6 The HashSplit Attack
	7.6.1 Threat Model and Attack Objectives
	7.6.2 Attack Procedure
	7.6.2.1 Identifying Vulnerable Nodes
	7.6.2.2 Blockchain Splitting
	7.6.2.3 Block Race

	7.7 Simulations and Results
	7.8 Attack Countermeasures
	7.9 Summary

	CHAPTER 8: SYNCATTACK: DOUBLE-SPENDING IN BITCOIN WITHOUT MINING POWER
	8.1 Motivation
	8.2 Ideal Functionality for Bitcoin Network Synchronization
	8.3 Bitcoin Network Measurement
	8.3.1 Bitcoin Network Synchronization
	8.3.1.1 Bitcoin Forks
	8.3.1.2 Network Outdegree

	8.3.2 Bitcoin Network Churn
	8.3.2.1 Measurement Results

	8.4 The SyncAttack
	8.4.1 Threat Model
	8.4.2 Attack Procedure
	8.4.2.1 Double-spending in the SyncAttack

	8.4.3 Ongoing Attacks
	8.4.4 SyncAttack Countermeasures

	8.5 Summary

	CHAPTER 9: CONCLUSION
	LIST OF REFERENCES

